The environmental impact of human activities is becoming one of the key aspects to be regulated by the current standards in terms of reduction of harmful emissions. Among those activities, emissions related to the mass transportation sector are constantly increasing over the last years especially because of the continuous growing of the big cities and, consequently, of the transport line and infrastructure. For this reason, the big brand manufacturers are acting in the direction of updating the design criteria for the vehicle of the near future. Recent statistics from the International Council on Clean Transportation report that the adoption of “greener” propulsion configurations (as in the case of the hybrid systems) are constantly spreading for automotive applications as being considered an immediate solution to tackle the problem of the harmful emissions. Nevertheless, it is strongly believed that one of the promising alternative is based on the reduction of the vehicles mass by extensively adopting light alloys for the structural components: Aluminium alloys are then considered a serious candidate being able to provide superior mechanical properties combined with a low density (one third of a steel grade for stamping applications); in addition, with a particular focus on the railway transportation field, they are ranked as the most performing material in terms of safety since not producing any toxic smoke in case of fire (which is considered a primary aspect especially for all the underground applications). On the other hand, the poor formability at room temperature still remains the main drawback hindering the definitive implementation as the primary structural material for ground transportation. It becomes clear the reason why the scientific research, over the last two decades, has put lots of efforts in finding valuable solutions to overcome such a big limitation: higher formability means the production of more complex components, which can then be accomplished in fewer manufacturing steps thus sensibly reducing the cycle time. Within this scenario, the cooperation between the Politecnico di Bari and the O.Me.R. S.p.A. company (located in Carini, province of Palermo, Sicily), leading the sector of interior design and components production for railway transport (www.omerspa.com), has started with the full funding of the PhD grant whose activities, described in details in the present final dissertation, has to be intended as the company serious intention to develop and optimize innovative technological solutions to be definitely implemented within its production schemes with the final aim of remarking its leading presence in the railway interiors trade market. The present dissertation starts with the current scenario in the railway transportation sector reporting recent statistics about the constant growth of the passenger activities especially on the high speed and metro lines; accurate predictive models – as in the case of the High Rail Scenario – suggest that, only by means of huge investments in the infrastructures and in the vehicle design, a significant portion of user can be shifted from less efficient transport modes (cars, truck and aviation) to make the railway transportation become the main, or at least one of the most used, mean and then achieve a significant reduction of emissions. The need for more performing vehicles to support such a growth has to be matched with the capabilities of the current sheet metal forming processes, focussing the discussion on two approaches currently used to improve the formability of Aluminium alloys: (i) the Heating During Forming (HDF) based on the increase of the working temperature during the forming operation (the alloy formability increases in warm conditions) and (ii) the Heating Before Forming (HBF) based on a preliminary modifications of the material properties by local heating to carry out the subsequent forming operation at room temperature. Regardless of the specific approach, the definition of the operative window, due to the large number of variables involved in the process, is not trivial and the adoption of the process simulation is considered an effective way for a proper process design. The creation of an accurate numerical model, described in detail in the present dissertation, passes through a prior knowledge of the material behaviour: the importance of the conventional characterization route (i.e. based on uniaxial tensile tests or formability tests) as well as the research for faster and comprehensive innovative approaches (for example those based on the physical simulation) is strongly underlined since providing the necessary data to the process simulation to improve the accurateness of the numerical prediction. The Finite Element (FE) based process design is described in detail in the second part of the dissertation when applied for the stamping of industrial case studies according to the base principles of the two abovementioned methodologies. In the case of the HBF, starting from the extensive characterization of the alloy under investigation (the strain hardenable AA5754 alloy purchased in the annealed state), the warm stamping of a large-scale window panel has been designed according to an uncoupled thermo-mechanical approach, starting from a preliminary optimization of the temperature distribution over the blank to be transferred in the forming simulation to optimize the variables of the stamping process. The accurateness of the numerical prediction has been then validated by means of experimental trials leading to the successful manufacturing of the designed component. The strongly innovative connotation of the HDF approach and the intent to further develop and optimize the current state of the technology, has led the Politecnico di Bari and the O.Me.R. company to jointly submit a 4 years research proposal within the framework of the National Operative Programme (PON) 2014-2020: the For.Tra.In. project – Italian acronym for Formatura di componenti per il settore ferroviario con Trattamento termico localizzato Integrato –has been funded by the Italian Ministry of Economic Development (MiSE) and officially started in April 2017. The effectiveness of the HDF approach is then discussed at first when applied to a simple geometry, as in the case of cylindrical cups obtained by the deep drawing process. The optimization of the heating strategy to obtain a favourable distribution of the material properties (the alloy under investigation belongs to the age hardenable AA6082 alloy) has been numerically designed and the extent of the treated region to maximize the Limit Drawing Ratio was determined by an optimization procedure managed by a genetic algorithm. Deep drawing tests, carried out for validation purposes, have shown a remarkable increase of the material formability if compared to as-received conditions. The adoption of the HDF approach is then also described when applied to the design of the stamping of an industrial component, belonging to the category of the window panel, whose stamping at room temperature has been demonstrated to be too critic: in this particular case, the definition of the proper heating strategy has been carried out by means of a double round optimization procedure based on the creation of accurate metamodels fitting the results from a designed set of numerical simulations. Pareto designs picked from both the optimization rounds have been then numerically validated once again demonstrating that a proper distribution of material properties is able to overcome the stamping limit of the alloy at room temperature.

Lo studio riguardante l'impatto ambientale delle attività umane rappresenta uno degli aspetti chiave da regolare secondo gli attuali standard in material di emissioni. Ciò che riguarda il settore dei trasporti di massa rappresenta tutt'oggi una tematica di interesse sempre crescente a causa dell'accrescimento spaziale delle grandi città e conseguentemente, l'irrobustimento delle infrastrutture ad esse connesse. E' per tale motivo che i grandi produttori di veicoli hanno spostato l'attenzione sull'aggiornamento dei criteri di progettazione dei veicoli del prossimo futuro. L'utilizzo delle leghe leggere è universalmente riconosciuto quale soluzione ideale per ridurre la massa dei veicoli marcianti: in particolare, le leghe di alluminio offrono una combinazione ottimale di proprietà resistenziali e limitata densità (circa un terzo dell'acciaio); in aggiunta a ciò, e con particolare attenzione al settore ferroviario, le leghe di alluminio rappresentano la soluzione ottimale in termini di sicurezza essendo l'unico materiale strutturale capace di non produrre fumi in caso di incendio della carrozza. Va sottolineato che la limitata formabilità a temperatura ambiente di tali leghe rappresenta ancora il maggiore limite nella direzione di un pieno utilizzo delle stesse come materiale principale per applicazioni strutturali. Per tale motivo la ricerca scientifica degli ultimi vent'anni ha profuso notevoli sforzi nella determinazione di soluzioni tecnologiche capaci di superare tali limitazioni: una maggiore formabilità implica la produzione di pezzi a maggiore complessità geometrica, il che può essere realizzato in un numero inferiore di step andando ad incidere positivamente sulla riduzione dei tempi ciclo. All'interno di questo scenario, la cooperazione tra il Politecnico di Bari e la O.Me.R. S.p.A. (sita in provincia di Palermo), azienda leader nella produzione e design di componenti interiors per applicazioni ferroviarie (www.omerspa.com), è cominciata con il finanziamento della presente borsa di dottorato le cui attività vanno interpretata come una precisa volontà dell'azienda stessa di sviluppare ed ottimizzare soluzioni tecnologiche innovative che permettano di rafforzare la presenza sul mercato di settore. Il presente lavoro inizia con la descrizione dello scenario attuale nel settore del trasporto ferroviario riportando statistiche recenti riguardanti la crescita costante delle linee ad alta velocità e metropolitana; l'adozione di accurati modelli predittivi - come nel caso dello scenario High Rail - porta alla conclusione che , solo attraverso ingenti investimenti nelle infrastrutture e nella progettazione del veicolo, una parte significativa degli utenti fruitori dei mezzi pubblici può essere "mossa" da modalità di trasporto meno efficienti (auto, camion e aerei) al fine di rendere il trasporto ferroviario il mezzo principale, o almeno uno dei mezzi più utilizzati, e quindi ottenere una riduzione significativa delle emissioni. La necessità di veicoli più performanti per supportare tale crescita deve essere abbinata miglioramento delle performance degli attuali processi di deformazione plastica della lamiera, concentrando la discussione su due approcci attualmente utilizzati per migliorare la formabilità delle leghe di alluminio: (i) il riscaldamento durante la formatura (HDF, Heating During Forming) basato sull'aumento della temperatura di lavoro durante le operazioni di stampaggio (la formabilità della lega aumenta con l'aumento della temperatura di lavoro) e (ii) il riscaldamento precedente alle operazioni di formatura (HBF, Heating Before Forming) per ottenere distribuzione ottimale delle proprietà del materiale per poi eseguire la successiva operazione di formatura a temperatura ambiente. Indipendentemente dall'approccio specifico, la definizione della finestra operativa, a causa dell'elevato numero di variabili coinvolte nel processo, non è immediata e l'adozione della simulazione numerica di processo è considerata un modo efficace per una corretta progettazione dello stesso. La creazione di un modello numerico accurato, così descritto in dettaglio nella presente discussione, passa attraverso una conoscenza preliminare del comportamento materiale: l'importanza delle metodologie di caratterizzazione convenzionale (cioè basato su prove di trazione monoassiali o prove di formabilità) nonché la ricerca di approcci innovativi più rapidi e completi (ad esempio quelli basati sulla simulazione fisica) è fortemente evidenziata in quanto fornisce i dati necessari alla simulazione del processo per migliorare l'accuratezza della previsione numerica. La progettazione di processo tramite simulazione agli elementi finiti (FE) è descritta in dettaglio nella seconda parte della presente dissertazione relativamente allo stampaggio di casi di studio industriali secondo i principi di base delle due metodologie precedentemente indicate. Nel caso dell'HDF, a partire dall'ampia caratterizzazione della lega in esame (la lega AA5754, non trattabile termicamente, inizialmente allo stato ricotto), lo stampaggio a caldo di un pannello finestrino di grandi dimensioni è stata progettato secondo un approccio termo-meccanico disaccoppiato, partendo da una preliminare ottimizzazione della distribuzione della temperatura sulla lamiera al termine della fase di riscaldamento successivamente da trasferire nella simulazione di formatura per ottimizzarne le variabili di processo. L'accuratezza della previsione numerica è stata quindi convalidata mediante prove sperimentali che hanno portato alla corretta realizzazione del componente studiato. La connotazione fortemente innovativa dell'approccio HBF, combinate all'intenzione di sviluppare e ottimizzare ulteriormente lo stato attuale della tecnologia, ha portato il Politecnico di Bari e la O.Me.R. a presentare congiuntamente una proposta di progetto di ricerca della durata di 4 anni nell'ambito del Programma Operativo Nazionale (PON) 2014-2020: il progetto For.Tra.In. - acronimo di "FORmatura di componenti per il settore ferroviario con TRAttamento termico localizzato INtegrato" - è stato finanziato dal Ministero dello Sviluppo Economico (MiSE) e avviato ufficialmente nell'aprile 2017. L'efficacia dell'approccio HBF è preliminarmente studiata quando applicata ad una geometria semplice, come nel caso componenti cilindrici ottenuti dal processo di imbutitura. L'ottimizzazione della strategia di riscaldamento per ottenere una distribuzione ottimale delle proprietà del materiale (il materiale in esame è la lega AA6082 trattabile termicamente) è stata progettata numericamente e l'estensione della regione trattata per massimizzare il Rapporto Limite di Imbutitura è stata determinata tramite un'ottimizzazione gestita da un algoritmo genetico multiobiettivo. I test sperimentali di imbutitura hanno confermato il notevole aumento della formabilità del materiale rispetto alle condizioni iniziali. L'adozione dell'approccio HBF viene quindi descritto anche quando applicato alla progettazione dello stampaggio di un componente industriale, appartenente alla categoria dei "pannelli finestra", la cui formatura a freddo risulta ancora troppo critica: in questo caso particolare, la definizione della corretta strategia di riscaldamento è stata effettuata mediante una procedura di ottimizzazione a doppio livello basata sulla creazione di metamodelli accurati che fittano ìi risultati di un set di simulazioni numeriche organizzate secondo un approccio DOE. I design di Pareto scelti a seguito di entrambi i round di ottimizzazione sono stati quindi validati numericamente ancora una volta dimostrando che una corretta distribuzione delle proprietà del materiale è in grado di superare il limite di stampaggio della lega a temperatura ambiente.

Innovative solutions to improve the formability of Aluminium alloys

Piccininni, Antonio
2020-01-01

Abstract

The environmental impact of human activities is becoming one of the key aspects to be regulated by the current standards in terms of reduction of harmful emissions. Among those activities, emissions related to the mass transportation sector are constantly increasing over the last years especially because of the continuous growing of the big cities and, consequently, of the transport line and infrastructure. For this reason, the big brand manufacturers are acting in the direction of updating the design criteria for the vehicle of the near future. Recent statistics from the International Council on Clean Transportation report that the adoption of “greener” propulsion configurations (as in the case of the hybrid systems) are constantly spreading for automotive applications as being considered an immediate solution to tackle the problem of the harmful emissions. Nevertheless, it is strongly believed that one of the promising alternative is based on the reduction of the vehicles mass by extensively adopting light alloys for the structural components: Aluminium alloys are then considered a serious candidate being able to provide superior mechanical properties combined with a low density (one third of a steel grade for stamping applications); in addition, with a particular focus on the railway transportation field, they are ranked as the most performing material in terms of safety since not producing any toxic smoke in case of fire (which is considered a primary aspect especially for all the underground applications). On the other hand, the poor formability at room temperature still remains the main drawback hindering the definitive implementation as the primary structural material for ground transportation. It becomes clear the reason why the scientific research, over the last two decades, has put lots of efforts in finding valuable solutions to overcome such a big limitation: higher formability means the production of more complex components, which can then be accomplished in fewer manufacturing steps thus sensibly reducing the cycle time. Within this scenario, the cooperation between the Politecnico di Bari and the O.Me.R. S.p.A. company (located in Carini, province of Palermo, Sicily), leading the sector of interior design and components production for railway transport (www.omerspa.com), has started with the full funding of the PhD grant whose activities, described in details in the present final dissertation, has to be intended as the company serious intention to develop and optimize innovative technological solutions to be definitely implemented within its production schemes with the final aim of remarking its leading presence in the railway interiors trade market. The present dissertation starts with the current scenario in the railway transportation sector reporting recent statistics about the constant growth of the passenger activities especially on the high speed and metro lines; accurate predictive models – as in the case of the High Rail Scenario – suggest that, only by means of huge investments in the infrastructures and in the vehicle design, a significant portion of user can be shifted from less efficient transport modes (cars, truck and aviation) to make the railway transportation become the main, or at least one of the most used, mean and then achieve a significant reduction of emissions. The need for more performing vehicles to support such a growth has to be matched with the capabilities of the current sheet metal forming processes, focussing the discussion on two approaches currently used to improve the formability of Aluminium alloys: (i) the Heating During Forming (HDF) based on the increase of the working temperature during the forming operation (the alloy formability increases in warm conditions) and (ii) the Heating Before Forming (HBF) based on a preliminary modifications of the material properties by local heating to carry out the subsequent forming operation at room temperature. Regardless of the specific approach, the definition of the operative window, due to the large number of variables involved in the process, is not trivial and the adoption of the process simulation is considered an effective way for a proper process design. The creation of an accurate numerical model, described in detail in the present dissertation, passes through a prior knowledge of the material behaviour: the importance of the conventional characterization route (i.e. based on uniaxial tensile tests or formability tests) as well as the research for faster and comprehensive innovative approaches (for example those based on the physical simulation) is strongly underlined since providing the necessary data to the process simulation to improve the accurateness of the numerical prediction. The Finite Element (FE) based process design is described in detail in the second part of the dissertation when applied for the stamping of industrial case studies according to the base principles of the two abovementioned methodologies. In the case of the HBF, starting from the extensive characterization of the alloy under investigation (the strain hardenable AA5754 alloy purchased in the annealed state), the warm stamping of a large-scale window panel has been designed according to an uncoupled thermo-mechanical approach, starting from a preliminary optimization of the temperature distribution over the blank to be transferred in the forming simulation to optimize the variables of the stamping process. The accurateness of the numerical prediction has been then validated by means of experimental trials leading to the successful manufacturing of the designed component. The strongly innovative connotation of the HDF approach and the intent to further develop and optimize the current state of the technology, has led the Politecnico di Bari and the O.Me.R. company to jointly submit a 4 years research proposal within the framework of the National Operative Programme (PON) 2014-2020: the For.Tra.In. project – Italian acronym for Formatura di componenti per il settore ferroviario con Trattamento termico localizzato Integrato –has been funded by the Italian Ministry of Economic Development (MiSE) and officially started in April 2017. The effectiveness of the HDF approach is then discussed at first when applied to a simple geometry, as in the case of cylindrical cups obtained by the deep drawing process. The optimization of the heating strategy to obtain a favourable distribution of the material properties (the alloy under investigation belongs to the age hardenable AA6082 alloy) has been numerically designed and the extent of the treated region to maximize the Limit Drawing Ratio was determined by an optimization procedure managed by a genetic algorithm. Deep drawing tests, carried out for validation purposes, have shown a remarkable increase of the material formability if compared to as-received conditions. The adoption of the HDF approach is then also described when applied to the design of the stamping of an industrial component, belonging to the category of the window panel, whose stamping at room temperature has been demonstrated to be too critic: in this particular case, the definition of the proper heating strategy has been carried out by means of a double round optimization procedure based on the creation of accurate metamodels fitting the results from a designed set of numerical simulations. Pareto designs picked from both the optimization rounds have been then numerically validated once again demonstrating that a proper distribution of material properties is able to overcome the stamping limit of the alloy at room temperature.
2020
Lo studio riguardante l'impatto ambientale delle attività umane rappresenta uno degli aspetti chiave da regolare secondo gli attuali standard in material di emissioni. Ciò che riguarda il settore dei trasporti di massa rappresenta tutt'oggi una tematica di interesse sempre crescente a causa dell'accrescimento spaziale delle grandi città e conseguentemente, l'irrobustimento delle infrastrutture ad esse connesse. E' per tale motivo che i grandi produttori di veicoli hanno spostato l'attenzione sull'aggiornamento dei criteri di progettazione dei veicoli del prossimo futuro. L'utilizzo delle leghe leggere è universalmente riconosciuto quale soluzione ideale per ridurre la massa dei veicoli marcianti: in particolare, le leghe di alluminio offrono una combinazione ottimale di proprietà resistenziali e limitata densità (circa un terzo dell'acciaio); in aggiunta a ciò, e con particolare attenzione al settore ferroviario, le leghe di alluminio rappresentano la soluzione ottimale in termini di sicurezza essendo l'unico materiale strutturale capace di non produrre fumi in caso di incendio della carrozza. Va sottolineato che la limitata formabilità a temperatura ambiente di tali leghe rappresenta ancora il maggiore limite nella direzione di un pieno utilizzo delle stesse come materiale principale per applicazioni strutturali. Per tale motivo la ricerca scientifica degli ultimi vent'anni ha profuso notevoli sforzi nella determinazione di soluzioni tecnologiche capaci di superare tali limitazioni: una maggiore formabilità implica la produzione di pezzi a maggiore complessità geometrica, il che può essere realizzato in un numero inferiore di step andando ad incidere positivamente sulla riduzione dei tempi ciclo. All'interno di questo scenario, la cooperazione tra il Politecnico di Bari e la O.Me.R. S.p.A. (sita in provincia di Palermo), azienda leader nella produzione e design di componenti interiors per applicazioni ferroviarie (www.omerspa.com), è cominciata con il finanziamento della presente borsa di dottorato le cui attività vanno interpretata come una precisa volontà dell'azienda stessa di sviluppare ed ottimizzare soluzioni tecnologiche innovative che permettano di rafforzare la presenza sul mercato di settore. Il presente lavoro inizia con la descrizione dello scenario attuale nel settore del trasporto ferroviario riportando statistiche recenti riguardanti la crescita costante delle linee ad alta velocità e metropolitana; l'adozione di accurati modelli predittivi - come nel caso dello scenario High Rail - porta alla conclusione che , solo attraverso ingenti investimenti nelle infrastrutture e nella progettazione del veicolo, una parte significativa degli utenti fruitori dei mezzi pubblici può essere "mossa" da modalità di trasporto meno efficienti (auto, camion e aerei) al fine di rendere il trasporto ferroviario il mezzo principale, o almeno uno dei mezzi più utilizzati, e quindi ottenere una riduzione significativa delle emissioni. La necessità di veicoli più performanti per supportare tale crescita deve essere abbinata miglioramento delle performance degli attuali processi di deformazione plastica della lamiera, concentrando la discussione su due approcci attualmente utilizzati per migliorare la formabilità delle leghe di alluminio: (i) il riscaldamento durante la formatura (HDF, Heating During Forming) basato sull'aumento della temperatura di lavoro durante le operazioni di stampaggio (la formabilità della lega aumenta con l'aumento della temperatura di lavoro) e (ii) il riscaldamento precedente alle operazioni di formatura (HBF, Heating Before Forming) per ottenere distribuzione ottimale delle proprietà del materiale per poi eseguire la successiva operazione di formatura a temperatura ambiente. Indipendentemente dall'approccio specifico, la definizione della finestra operativa, a causa dell'elevato numero di variabili coinvolte nel processo, non è immediata e l'adozione della simulazione numerica di processo è considerata un modo efficace per una corretta progettazione dello stesso. La creazione di un modello numerico accurato, così descritto in dettaglio nella presente discussione, passa attraverso una conoscenza preliminare del comportamento materiale: l'importanza delle metodologie di caratterizzazione convenzionale (cioè basato su prove di trazione monoassiali o prove di formabilità) nonché la ricerca di approcci innovativi più rapidi e completi (ad esempio quelli basati sulla simulazione fisica) è fortemente evidenziata in quanto fornisce i dati necessari alla simulazione del processo per migliorare l'accuratezza della previsione numerica. La progettazione di processo tramite simulazione agli elementi finiti (FE) è descritta in dettaglio nella seconda parte della presente dissertazione relativamente allo stampaggio di casi di studio industriali secondo i principi di base delle due metodologie precedentemente indicate. Nel caso dell'HDF, a partire dall'ampia caratterizzazione della lega in esame (la lega AA5754, non trattabile termicamente, inizialmente allo stato ricotto), lo stampaggio a caldo di un pannello finestrino di grandi dimensioni è stata progettato secondo un approccio termo-meccanico disaccoppiato, partendo da una preliminare ottimizzazione della distribuzione della temperatura sulla lamiera al termine della fase di riscaldamento successivamente da trasferire nella simulazione di formatura per ottimizzarne le variabili di processo. L'accuratezza della previsione numerica è stata quindi convalidata mediante prove sperimentali che hanno portato alla corretta realizzazione del componente studiato. La connotazione fortemente innovativa dell'approccio HBF, combinate all'intenzione di sviluppare e ottimizzare ulteriormente lo stato attuale della tecnologia, ha portato il Politecnico di Bari e la O.Me.R. a presentare congiuntamente una proposta di progetto di ricerca della durata di 4 anni nell'ambito del Programma Operativo Nazionale (PON) 2014-2020: il progetto For.Tra.In. - acronimo di "FORmatura di componenti per il settore ferroviario con TRAttamento termico localizzato INtegrato" - è stato finanziato dal Ministero dello Sviluppo Economico (MiSE) e avviato ufficialmente nell'aprile 2017. L'efficacia dell'approccio HBF è preliminarmente studiata quando applicata ad una geometria semplice, come nel caso componenti cilindrici ottenuti dal processo di imbutitura. L'ottimizzazione della strategia di riscaldamento per ottenere una distribuzione ottimale delle proprietà del materiale (il materiale in esame è la lega AA6082 trattabile termicamente) è stata progettata numericamente e l'estensione della regione trattata per massimizzare il Rapporto Limite di Imbutitura è stata determinata tramite un'ottimizzazione gestita da un algoritmo genetico multiobiettivo. I test sperimentali di imbutitura hanno confermato il notevole aumento della formabilità del materiale rispetto alle condizioni iniziali. L'adozione dell'approccio HBF viene quindi descritto anche quando applicato alla progettazione dello stampaggio di un componente industriale, appartenente alla categoria dei "pannelli finestra", la cui formatura a freddo risulta ancora troppo critica: in questo caso particolare, la definizione della corretta strategia di riscaldamento è stata effettuata mediante una procedura di ottimizzazione a doppio livello basata sulla creazione di metamodelli accurati che fittano ìi risultati di un set di simulazioni numeriche organizzate secondo un approccio DOE. I design di Pareto scelti a seguito di entrambi i round di ottimizzazione sono stati quindi validati numericamente ancora una volta dimostrando che una corretta distribuzione delle proprietà del materiale è in grado di superare il limite di stampaggio della lega a temperatura ambiente.
Aluminium alloy; Material Characterization; Finite Element process design; Optimization; Response Surface Methodology; Experimental Validation.
File in questo prodotto:
File Dimensione Formato  
32 ciclo - PICCININNI Antonio.pdf

Open Access dal 21/01/2021

Descrizione: Tesi di dottorato completa
Tipologia: Tesi di dottorato
Licenza: Tutti i diritti riservati
Dimensione 14.52 MB
Formato Adobe PDF
14.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/189933
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact