We demonstrate a sensor scheme for nanoscale target displacement that relies on a single quantum cascade laser (QCL) subject to optical feedback. The system combines the inherent sensitivity of QCLs to optical reinjection and their ultrastability in the strong feedback regime where nonlinear frequency mixing phenomena are enhanced. An experimental proof of principle in the micrometer wavelength scale is provided. We perform real-time measurements of displacement with λ/100 resolution by inserting a fast-shifting reference etalon in the external cavity. The resulting signal dynamics at the QCL terminals shows a stroboscopic-like effect that relates the sensor resolution with the reference etalon speed. Intrinsic limits to the measurement algorithm and to the reference speed are discussed, disclosing that nanoscale ranges are attainable.

Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers / Mezzapesa, F. P.; Columbo, L. L.; De Risi, G.; Brambilla, M.; Dabbicco, M.; Spagnolo, V.; Scamarcio, G.. - In: IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. - ISSN 1077-260X. - STAMPA. - 21:6(2015), pp. 1200908.107-1200908.114. [10.1109/JSTQE.2015.2443075]

Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers

Brambilla M.;Spagnolo V.;
2015-01-01

Abstract

We demonstrate a sensor scheme for nanoscale target displacement that relies on a single quantum cascade laser (QCL) subject to optical feedback. The system combines the inherent sensitivity of QCLs to optical reinjection and their ultrastability in the strong feedback regime where nonlinear frequency mixing phenomena are enhanced. An experimental proof of principle in the micrometer wavelength scale is provided. We perform real-time measurements of displacement with λ/100 resolution by inserting a fast-shifting reference etalon in the external cavity. The resulting signal dynamics at the QCL terminals shows a stroboscopic-like effect that relates the sensor resolution with the reference etalon speed. Intrinsic limits to the measurement algorithm and to the reference speed are discussed, disclosing that nanoscale ranges are attainable.
2015
Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers / Mezzapesa, F. P.; Columbo, L. L.; De Risi, G.; Brambilla, M.; Dabbicco, M.; Spagnolo, V.; Scamarcio, G.. - In: IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS. - ISSN 1077-260X. - STAMPA. - 21:6(2015), pp. 1200908.107-1200908.114. [10.1109/JSTQE.2015.2443075]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/393
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact