The paper deals with the estimation of the pressure distribution, the shape of contact and the friction force at the interface of a flat soft elastic solid moving on a rigid half-space with a slightly wavy surface. In this case an unsymmetrical contact is considered and justified with the adhesion hysteresis. For soft solids as rubber and polymers the friction originates mainly from two different contributions: the internal friction due to the viscoelastic properties of the bulk and the adhesive processes at the interface of the two solids. In the paper the authors focus on the latter contribution to friction. It is known, indeed, that for soft solids, as rubber, the adhesion hysteresis is, at least qualitatively, related to friction: the larger the adhesion hysteresis the larger the friction. Several mechanisms may govern the adhesion hysteresis, such as the interdigitation process between the polymer chains, the local small-scale viscoelasticity or the local elastic instabilities. In the paper the authors propose a model to link, from the continuum mechanics point of view, the friction to the adhesion hysteresis. A simple one-length scale roughness model is considered having a sinusoidal profile. For partial contact conditions the detached zone is taken to be a mode I propagating crack. Due to the adhesion hysteresis, the crack is affected by two different values of the strain energy release rate at the advancing and receding edges respectively. As a result, an unsymmetrical contact and a friction force arise. Additionally, the stability of the equilibrium configurations is discussed and the adherence force for jumping out of contact and the critical load for snapping into full contact are estimated.

Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface / Carbone, G; Mangialardi, L. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. - ISSN 0022-5096. - STAMPA. - 52:6(2004), pp. 1267-1287. [10.1016/j.jmps.2003.12.001]

Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface

Carbone G;Mangialardi L
2004-01-01

Abstract

The paper deals with the estimation of the pressure distribution, the shape of contact and the friction force at the interface of a flat soft elastic solid moving on a rigid half-space with a slightly wavy surface. In this case an unsymmetrical contact is considered and justified with the adhesion hysteresis. For soft solids as rubber and polymers the friction originates mainly from two different contributions: the internal friction due to the viscoelastic properties of the bulk and the adhesive processes at the interface of the two solids. In the paper the authors focus on the latter contribution to friction. It is known, indeed, that for soft solids, as rubber, the adhesion hysteresis is, at least qualitatively, related to friction: the larger the adhesion hysteresis the larger the friction. Several mechanisms may govern the adhesion hysteresis, such as the interdigitation process between the polymer chains, the local small-scale viscoelasticity or the local elastic instabilities. In the paper the authors propose a model to link, from the continuum mechanics point of view, the friction to the adhesion hysteresis. A simple one-length scale roughness model is considered having a sinusoidal profile. For partial contact conditions the detached zone is taken to be a mode I propagating crack. Due to the adhesion hysteresis, the crack is affected by two different values of the strain energy release rate at the advancing and receding edges respectively. As a result, an unsymmetrical contact and a friction force arise. Additionally, the stability of the equilibrium configurations is discussed and the adherence force for jumping out of contact and the critical load for snapping into full contact are estimated.
2004
Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface / Carbone, G; Mangialardi, L. - In: JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS. - ISSN 0022-5096. - STAMPA. - 52:6(2004), pp. 1267-1287. [10.1016/j.jmps.2003.12.001]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/5393
Citazioni
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 100
social impact