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A B S T R A C T

We present a model to study the non-steady V-shaped peeling of a viscoelastic thin tape adhering to a rigid flat
substrate. Geometry evolution and viscoelastic creep in the tape are the main features involved in the process,
which allows to derive specific governing equations in the framework of energy balance. Finally, these are
numerically integrated following an iterative scheme to calculate the process evolution assuming different
controlling conditions (peeling front velocity, peeling force, tape tip velocity). Results show that the peeling
behavior is strongly affected by viscoelasticity. Specifically, for a given applied force, the peeling can either
be prevented, start and stop after some while, or endlessly propagate, depending on the original undeformed
tape geometry. Viscoelasticity also entails that the interface toughness strongly increases when the tape tip is
fast pulled, which agrees to recent experimental observations on tougher adhesion of natural systems under
impact loads, such as see waves and wind gusts.
1. Introduction

In modern science, the study of attachment and detachment mecha-
nisms is of practical importance for several applications, such as climb-
ing ability in soft-robotics [1,2], deposition and removal of coating
for specialized interfaces [3], pick-and-place processes in manufactur-
ing [4], self-healing heterogeneous materials for construction [5] and
wound dressing for medical industries [6]. Among the others, when
dealing with tapes and membranes, as well as fibrils and thin bristles,
detachment through mechanical peeling has recently seen a growing
interest, quickly becoming the main mechanism for systems such as
electro-adhesive [7] and shear-activated nano-structured [8] grippers
for objects manipulation made of compliant membranes, band-aids [9]
and tunable skin patch [10] to minimize the removal damage of biologi-
cal tissues [11,12], spray coatings [13] and transfer printing [14,15] for
flexible circuits fabrication (also adopting micro-fibrils adhesives [16]),
and highly-stretchable structural adhesive tapes [17].

Since the first experimental study by Rivlin dealing with (almost)
rigid tapes [18], a dramatic effort has been made to include the effect
of tape deformability, with a specific focus on finite strain [19,20],
prestrain [21–23], bending stiffness [24,25], tape plasticity [26], peel
rate dependent adhesion [27–29], and film–substrate interface condi-
tions (e.g., frictional sliding and stick–slip) [30–33]. It is the case, for
instance, of energy-based Kendall’s model [34] for elastic tapes peeling,
which still represents the benchmark for a broad class of real systems,
also including ISO standards for adhesive interfaces [35,36].
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E-mail address: nicola.menga@poliba.it (N. Menga).

Although peeling itself is a local phenomenon involving a crack
propagation at the interface between a layer and a substrate, the
macroscopic detachment response is also affected by the global system
properties. Those of main interest for similar tribological problems usu-
ally are the system geometry [37–39] and the materials rheology [40,
41]. Indeed, studying peeling geometries other than single peeling (in
which case the peeling angle equals the force angle) has been recently
urged by biomimetics in the attempt, for instance, to mimic [42] the
superior locomotion performance of spiders, insects, and reptiles. This
depends on the ability to quickly detach their hierarchical-structured
toes by exploiting simultaneous peeling fronts propagation, ranging
from the macro-scale (e.g., the leg) to the nano-scale (e.g., the toe
spatula) [43]. Pugno and coworkers [44,45] suggested that both the
hierarchy and V-shape of the peeling geometry of such systems may
play a key role in the overall toughness as multiple peeling fronts
coexist, and the peeling angle varies during the detachment process.
Later, Lepore et al. [46] showed that the angles assumed by Tokay
geckos at the two characteristic sizes of feet and toes are in excellent
agreement with Pugno’s multiple peeling theory predictions. Similarly,
V-peeling geometry has been observed in spiders’ webs anchors [47,48]
and byssus threads networks of mussels [49,50], both showing superior
adhesive performance and the ability to withstand heavy winds and
waves. Moreover, since peeling has also been successfully employed in
characterizing the adhesive properties of materials and adhesives [51],
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Nomenclature

𝐴𝑡 = 𝑤𝑑 Tape cross section
𝑑 Tape thickness
𝐸0, 𝐸∞ Low and high frequency viscoelastic moduli
 Viscoelastic creep function
𝐿𝑖 initial undeformed length of the non-adhering

tape
𝑁 Number of detached elements
𝑃 Peeling force
 Viscoelastic relaxation function
𝑠𝑑 Undeformed peeled tape length
𝑣𝑐 Peeling front velocity
𝑣𝑃 Tape tip pulling velocity
𝑣𝛾 Reference peeling velocity for adhesion
𝑤 Tape width
𝑊𝑖𝑛,𝑊𝑃 ,𝑊𝑎𝑑 Power of the internal stress, the peeling force, and

the adhesive bonds
𝛾 Adhesion energy
𝛾0 Nominal adhesion energy for 𝑣𝑐 ≪ 𝑣𝛾
𝛥𝐿 Total detached tape elongation
𝛥𝑡 Time step
𝜀 Tape deformation
𝜃 Peeling angle
𝜙 Peeling angle at rest
𝜅 = 𝐸∞∕𝐸0 Viscoelastic parameter
𝜆, 𝜆𝑐 Tape joint coordinate and peeling front location
𝜎 Tape stress
𝜎𝑐𝑟 Critical stress value to trigger peeling propagation
𝜏 Creep time
𝜏𝑟 Relaxation time
𝑃0, 𝜃0 Critical force and angle for peeling initiation
𝑃𝑆 , 𝜃𝑆 Long-term steady-state peeling force and angle

as well as to assess the toughness of interfaces, specific tests (e.g., ASTM
Loop Tack test) have been defined relying on the V-peeling geometry to
reduce the possible effect of tape bending [52], compared to standard
90◦–180◦ peel tests.

Nonetheless, existing models for V-peeling geometry only focus on
lastic tapes [54], whereas biological systems and commercial tapes
sually exhibit a certain degree of viscoelasticity. Indeed, the effect of
he materials viscoelasticity and, in turn, of energy dissipation during
reep deformation, has been mostly addressed with reference to the
ingle peeling configuration. Both physical [55–57] and phenomeno-
ogical [27,29,58–60] models have been developed, showing that tape
iscoelasticity makes the peeling toughness increase with peel rate.
ore in detail, Ceglie et Al. [55] have shown that viscoelasticity

nd local frictional sliding close to the peeling front may lead to
nbounded peeling toughness at very low peeling angles, in agreement
ith existing experimental results [61]. Zhu et al. [62] focused on the

ape visco-hyperelasticity effect on specific zero-degree peeling config-
ration, showing that for relatively thick tapes the peeling expected
eeling force is less sensitive to bulk properties and interfacial adhesion
i.e., surface defects) compared to the case of linear rheology materials.

Viscoelasticity can also be localized in the substrate [63] leading
o an ‘‘ultra-tough’’ behavior achievable at specific peel rates. Similar
esults were also confirmed by Pierro et al. [64] for a real viscoelastic
aterial with a broader relaxation spectrum and by Zhu at Al. [65] also

ssuming rate dependent interface adhesion. The substrate rheology is
rucial, for instance, when adhesive tapes are removed from human
2

kin, in which case Renvoise at al. [66] showed that at relatively large r
peeling velocity the multi-layer nature of human skin can also matter.
Surprisingly, less has been done combining rheology effects and V-
peeling geometry, although Menga et al. [53,67] have shown that, for
purely elastic conditions, highly compliant substrates can drastically
alter the peeling toughness in V-shaped systems due to the elastic
interaction between adjacent peeling fronts.

In this study, we present a model for the V-peeling process of
viscoelastic tapes backed onto rigid substrates, aiming at fostering the
understanding of the mechanisms underlying the superior performance
shown by insect toes, mussels attachment structures, and other biologi-
cal systems relying on V-shaped peeling geometry in the presence of
viscoelasticity, as well as to enhance the accuracy of loop tack test
analysis to predict the adhesive performance of real interfaces. Since
the process under investigation is non-steady, in Section 2 we set the
appropriate theoretical energy-based framework and derive the gov-
erning equations for the peeling load, angle and front velocity, while
the numerical procedure to integrate such equations and predict the
process evolution over time is given in Appendices A and B. Results are
presented in Section 3, focusing on three possible peeling procedures
(constant peeling front velocity, constant peeling load, and constant
velocity of the tape tip), each of which leads to qualitatively different
results highlighting the interplay between V-shaped geometry and tape
viscoelasticity.

2. Formulation

We consider the peeling configuration shown in Fig. 2a, where a
thin viscoelastic tape of thickness 𝑑 and width 𝑤 adhering to a rigid
substrate is pulled away by a normal force 2𝑃 . Since two peeling fronts
ropagate in opposite directions (V-shaped double peeling), the whole
rocess is symmetric with respect to the force direction and the study
an be limited to half of the system, as shown in Fig. 2b.

Before the peeling force 𝑃 being applied, the (undeformed) non-
dhering tape length and angle are 𝐿𝑖 and 𝜙, respectively. Once the
orce is applied, at the time instant when the peeling starts to prop-
gate, the tape angle is 𝜃0 and the peeling force is 𝑃0. According to
ig. 2b, at a generic time 𝑡, the peeling front coordinate and velocity are
𝑐 (𝑡) and 𝑣𝑐 (𝑡) = −𝑑𝜆𝑐∕𝑑𝑡, respectively, with 𝜆 being the (undeformed)
ape-fixed reference frame. Similarly, 𝑠𝑑 (𝑡) = ∫ 𝑡

0 𝑣𝑐 (𝑡)𝑑𝑡 is the detached
ape length, and the peeling angle 𝜃(𝑡) is given as

os 𝜃 =
𝑠𝑑 + 𝐿𝑖 cos𝜙
𝐿𝑖 + 𝑠𝑑 + 𝛥𝐿

, (1)

here 𝛥𝐿(𝑡) = ∫ 𝜆𝑐+𝑠𝑑+𝐿𝑖
𝜆𝑐

𝜀(𝜆, 𝑡)𝑑𝜆 is the elongation of the overall non-
dhering tape, with 𝜀(𝜆, 𝑡) being the extensional deformation field in
he tape.

The instantaneous energy balance governing the peeling process is

𝑃 +𝑊𝑖𝑛 +𝑊𝑎𝑑 = 0, (2)

here 𝑊𝑃 (𝑡) is the work per unit time done by the peeling force 𝑃 (𝑡),
𝑖𝑛 (𝑡) is the work per unit time done by the internal stress field, and
𝑎𝑑 (𝑡) is the rate of the surface adhesion energy. In Eq. (2), minor

nergy contributions ascribable to acoustic emissions and heat transfer
re neglected, as well as dynamic and inertial effects which might
ead to stick–slip unstable delamination [68–72]. Moreover, we assume

fully stuck adhesion between the tape and the rigid substrate in
he adhering region, thus no friction energy dissipation occurs due to
elative sliding, as instead considered in Refs. [30,55].

The term 𝑊𝑖𝑛 (𝑡) is associated with both the rate of elastic energy
tored in the detached tape and the viscoelastic energy loss occurring
uring the tape relaxation. Large deformations can be reasonably ex-
ected for soft polymeric tapes; however, both numerical [20] and
xperimental [61] studies have clearly shown that real systems exhibit-
ng strains as large as beyond 60% can still be both qualitatively and
uantitatively described in linear theory approximation, especially at
elatively large peeling angles [73]. Similar results are confirmed for
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Fig. 1. Examples of V-peeling configurations in natural systems and practical applications: (a) spider web anchors (from Ref. [53]); (b) gecko upside down climbing (adapted from
Wikipedia); (c) mussel byssus threads (from Wikipedia); (d) loop tack test schematic (from Ref. [51]).
Fig. 2. (a) Double V-shaped peeling scheme of a viscoelastic tape adhering to a rigid substrate. 𝑣𝑐 is the peeling front propagation velocity, and 𝑣𝑃 is the pulling velocity (i.e., the
velocity of the tape tip). (b) By exploiting the system symmetry, the study only focuses on half of the tape. We show three different configurations: the undeformed tape, the tape
at peeling propagation start (subscript 0), and a generic time instant with peeling force 𝑃 (𝑡) and angle 𝜃(𝑡). In the bottom part, we also show qualitative diagrams of the stress 𝜎
(blue) and deformation 𝜀 (orange) along the tape coordinate 𝜆.
visco-hyperelastic tapes [62], where qualitatively different behaviors
are expected only beyond approximately 100% strain value. Moreover,
we assume purely extensional stress 𝜎(𝜆, 𝑡) and deformation 𝜀(𝜆, 𝑡) fields
in the tape, as experiments have shown that bending effects vanish for
very thin tapes [74] (i.e., the tape bending stiffness depends on 𝑑3).
Therefore, we have

𝑊𝑖𝑛 = −𝐴𝑡 ∫

𝜆𝑐+𝐿𝑖+𝑠𝑑

𝜆𝑐
𝜎(𝜆, 𝑡) 𝜕𝜀

𝜕𝑡
(𝜆, 𝑡)𝑑𝜆, (3)

with 𝜀(𝜆, 𝑡) = 𝜎(𝜆, 𝑡) = 0 for 𝜆 < 𝜆𝑐 (adhering tape) and 𝜎(𝜆, 𝑡) = 𝜎(𝑡) =
𝑃∕

(

𝐴𝑡 sin 𝜃
)

for 𝜆 > 𝜆𝑐 (detached tape). In the peeling section (i.e., for
𝜆 = 𝜆𝑐), a step change of the stress occurs [55], so that

𝜎(𝜆, 𝑡) = 𝜎(𝑡)𝐻[𝜆 − 𝜆𝑐 (𝑡)], (4)

where  is the Heaviside step function. In the framework of linear
viscoelasticity, the deformation field within the tape is given by

𝜀(𝜆, 𝑡) = ∫

𝑡

−∞
 (𝑡 − 𝑡′) 𝜕𝜎

𝜕𝑡′
(𝜆, 𝑡′)𝑑𝑡′, (5)

where  is the viscoelastic creep function which, for a single charac-
teristic creep time 𝜏, is given by

 (𝑡) = 1
𝐸0

− 𝑒−𝑡∕𝜏

𝐸1
, (6)

where 𝐸−1
1 = 𝐸−1

0 − 𝐸−1
∞ , with 𝐸0 and 𝐸∞ being the low and high

frequency viscoelastic moduli, respectively.
The term 𝑊𝑃 (𝑡) in Eq. (2) is given by

𝑊 = 𝑃 𝑣 = 𝜎𝐴 𝑣 sin 𝜃, (7)
3

𝑃 𝑃 𝑡 𝑃
where

𝑣𝑃 = 𝑑ℎ
𝑑𝑡

= 𝑣𝑐 tan 𝜃 +
𝑠𝑑 + 𝐿𝑖 cos𝜙

cos2 𝜃
𝜃̇ (8)

is the pulling velocity (see Fig. 2).
Finally, in Eq. (2), 𝑊𝑎𝑑 (𝑡) represents the energy per unit time

associated with the rupture of interfacial bonds between the tape and
the rigid substrate; being 𝛾 the energy of adhesion (also called Dupre’s
energy), we have

𝑊𝑎𝑑 = −𝑣𝑐𝑤𝛾. (9)

The adhesion energy 𝛾 might, in general, depend on the peeling
velocity, as reported by several experiments [15,27,29,60]. This is
usually ascribed to viscoelastic non-conservative (stiffening) effects in
the tape close to the peeling front, as recently predicted in Ref. [55].
Here, we precisely model the tape viscoelastic creep, thus the latter
effect is intrinsically accounted for. However, as pointed out by Marin
Derail [75] with ad hoc tests on inextensible tapes, velocity-dependent
power loss is also localized in the thin adhesive layer between the tape
and the substrate, with 𝛾 given by the following power-law

𝛾 = 𝛾0

[

1 +
(

𝑣𝑐
𝑣𝛾

)𝑛]

, (10)

where 𝛾0 is the nominal adhesion energy for 𝑣𝑐 ≪ 𝑣𝛾 , with 𝑣𝛾 being a
reference peeling velocity, and 𝑛 being a constant which depends on the
properties of the adhesive (typically in a range of 0.3−0.7) [15,60,75].

At any given time 𝑡, Eqs. (1), (2) allow to calculate the critical
condition for peeling propagation.

To set the range of validity of the present model, we observe
that the real deformation process occurring across the peeling front
is continuous and cannot be formally represented by a step-change
in the stress field. Nonetheless, physical arguments suggest that the
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length of the region undergoing the stress increase from 0 to 𝜎 is of
the same order of magnitude as the tape thickness 𝑑 [63,67], which
results in a local excitation frequency 𝜔 ≈ 𝑣𝑐∕𝑑 and allows to identify
three different qualitative behaviors across the peeling section. For
𝑣𝑐 ≪ 𝑑∕𝜏 (i.e., 𝜔 ≪ 1∕𝜏), the tape behaves almost elastically, with
lastic modulus approaching the low-frequency modulus 𝐸0. Since no

viscoelastic dissipation occurs, this case is clearly out of the scope of
this study, and the corresponding peeling behavior follows the elastic
predictions given in Refs. [44,76]. For 𝑣𝑐 ≈ 𝑑∕𝜏 (i.e., 𝜔 ≈ 1∕𝜏), the tape
esponse strongly depends on the specific deformation process across
he peeling front (small-scale energy dissipation cannot be neglected),
nd a local ad hoc solid mechanics formulation is required to model
he peeling. Finally, the third case is the one of interest for the present
odel, as for 𝑣𝑐 ≫ 𝑑∕𝜏 (i.e., 𝜔 ≫ 1∕𝜏) the tape behavior is elastic

cross the peeling section with high frequency elastic modulus 𝐸∞, and
iscoelastic losses are localized in the non-adhering tape (large-scale).
aily-life adhesive tapes are commonly very thin, with a corresponding

hreshold velocity usually being in the range of 𝑑∕𝜏 ≈ 10–100 μm∕s,
hich makes the third case of most relevant practical interest.

.1. Steady-state long-term propagation limit

After the initial transient regime, the elastic V-peeling process
symptotically approaches a steady-state regime in the long-term limit
76]. In the viscoelastic case, a similar behavior is expected for 𝑡 ≫ 𝜏
nd 𝑠𝑑 ≫ 𝐿𝑖, which corresponds to complete viscoelastic relaxation
long the tape. In this case, steady-state conditions occurs with 𝜃(𝑡) ≈
S, 𝜎(𝜆, 𝑡) ≈ 𝜎S = 𝑃S∕

(

𝐴𝑡 sin 𝜃S
)

, and 𝜀(𝜆, 𝑡) ≈ 𝜀S = 𝜎S∕𝐸0, while
he energy balance equation recovers the viscoelastic single peeling
orm [55] as

𝜎2S
2𝐸∞

+ 𝜎S
(

1 − cos 𝜃S
)

−
𝛾
𝑑

= 0, (11)

here 𝛾 = 𝛾(𝑣𝑐 ) is given by Eq. (10). Moreover, since 𝑠𝑑 ≫ 𝐿𝑖, Eq. (1)
can be rewritten as
1 − cos 𝜃S
cos 𝜃S

=
𝜎S
𝐸0

. (12)

urthermore, since 𝜃̇S ≈ 0, Eq. (8) gives

𝑃 = 𝑣𝑐 tan 𝜃S. (13)

otably, under force-controlled conditions (i.e., given 𝑃 = 𝑃S), Eqs.
11), (12), (10) allow to calculate the peeling front velocity 𝑣𝑐 and,
hrough Eq. (13), the pulling velocity 𝑣𝑃 . On the contrary, under
elocity-controlled conditions (i.e., given 𝑣𝑐 or 𝑣𝑃 ), the value of 𝑃S can
e calculated by Eqs. (11) , (12), (10).

. Results and discussion

In this section, we discuss the peeling behavior resulting from
qs. (1), (2), which can be numerically solved by following the pro-
edure outlined in Appendix A. To simplify the analysis of the results,
e refer to dimensionless quantities, i.e. 𝑡 = 𝑡∕𝜏, 𝛾̃ = 𝛾∕𝐸0𝑑, 𝑣̃𝑐 =
𝑐𝜏∕𝑑, 𝑣̃𝑃 = 𝑣𝑃 𝜏∕𝑑, 𝑃 = 𝑃∕𝑑𝑤𝐸0 = 𝜎 sin 𝜃∕𝐸0. In our calculations,
e consider a tape of thickness 𝑑 ≈ 100 μm with initial non-adhering

ength 𝐿𝑖 = 100𝑑. The tape material is viscoelastic with low-frequency
odulus 𝐸0 = 10 MPa and creep time 𝜏 = 1 s. Marin and Derail [75]
easured the peeling force 𝑃 as a function of the peeling velocity 𝑣𝑐 for

eal adhesives with inextensible aluminum backing, and Rivlin peeling
heory [18] allows to calculate the corresponding effect of 𝑣𝑐 on the
dhesion energy 𝛾. Since no viscoelastic relaxation occurs, the latter
ffect is only ascribable to non-conservative phenomena localized in
he very proximity of the peeling front. According to their results, we
et 𝑣𝛾 ≈ 10−3 m∕s, 𝛾0 ≈ 20 J/m2, and 𝑛 = 0.5 in Eq. (10), whose
orresponding dimensionless quantities are 𝑣̃𝛾 = 𝑣𝛾𝜏∕𝑑 = 10 and 𝛾̃0 =
4

0∕𝐸0𝑑 = 0.02.
Results are presented considering three different controlling param-
ters, corresponding to specific physical scenarios: (i) peeling propaga-
ion occurring at constant peeling front velocity 𝑣𝑐 ; (ii) the case of a
onstant peeling force 𝑃 applied at the tape tip; and (iii) the case of
he tape tip pulled at constant velocity 𝑣𝑃 .

.1. Constant peeling front velocity

We firstly consider the peeling process occurring at constant peeling
ront velocity 𝑣𝑐 . This case corresponds to time-varying values of both
he peeling force 𝑃 and pulling velocity 𝑣𝑃 , thus resulting harder to
e straightforwardly associated with common applications. However,
ince 𝑣𝑐 also represents the length of undeformed tape that detaches
he substrate per unit time and, once deformed, undergoes viscoelas-
ic relaxation, fundamental insight on the interplay between peeling
ropagation and tape viscoelasticity.

With reference to Fig. 2b, we assume that the peeling front prop-
gation starts with velocity 𝑣𝑐 at time 𝑡 = 0 under the action of the
ritical force 𝑃0, which is instantaneously applied. At this time, the tape
eformation and angle undergo a step-change, varying from 𝜀 = 0 and
at time 𝑡 → 0− to 𝜀 = 𝜎0∕𝐸∞ and 𝜃0 at time 𝑡 → 0+. As a consequence,

o viscoelastic loss occurs in the non-adhering tape at 𝑡 = 0, and the
ritical values of 𝜎0 and 𝜃0 for peeling initiation are given by Kendall’s
quation [34,53,67]

𝜎20
2𝐸∞

+ 𝜎0
(

1 − cos 𝜃0
)

−
𝛾
𝑑

= 0, (14)

and, from Eq. (1) with 𝑠𝑑 = 0

cos𝜙 − cos 𝜃0
cos 𝜃0

=
𝜎0
𝐸∞

. (15)

Finally, the critical force is calculated as 𝑃0 = 𝐴𝑡 𝜎0 sin 𝜃0. For 𝑡 > 0,
the peeling process evolution follows Eqs. (1), (2) and is calculated by
exploiting the numerical procedure outlined in Appendix A.

Comparing the critical peeling force 𝑃0 with the long-term limit 𝑃𝑆
allows to differentiate from toughening and weakening overall peeling
behaviors. This is done in the top row of Fig. 3, where we consider the
effect of (a) the dimensionless adhesion energy 𝛾̃0, (b) the viscoelastic
parameter 𝜅 = 𝐸∞∕𝐸0, and (c) the dimensionless peeling front velocity
𝑣̃𝑐 . While in the elastic V-peeling case, the toughest behavior always
occurs in the steady-state limit, as clearly shown for 𝜅 = 1 in Fig. 3b
where 𝑃S > 𝑃0, the same principle cannot be generalized to the vis-
coelastic case, where the value of both 𝑃0 and 𝑃𝑆 depends on the tape
relaxation process and, as a consequence, on the specific combination
of the parameters 𝛾̃0, 𝜅 , and 𝑣̃𝑐 , as shown in Figs. 3a, b, c. Moreover,
according to Eqs. (14)–(15), the critical starting force 𝑃0 depends on
the undeformed tape angle 𝜙, specifically leading to tougher peeling
initiation with 𝜙 reducing. In agreement with theoretical [34] and
experimental results [77], stiffer tapes entail higher peeling forces, as
shown in Fig. 3b; nonetheless, at very large values of 𝜅 both 𝑃0 and
𝑃𝑆 are almost constant and the Rivlin [18] solution for rigid tapes is
asymptotically approached.

The bottom row of Fig. 3 shows the peeling transient evolution
from start to steady-state behavior. The most important feature is that
V peeling of viscoelastic tapes may present non-monotonic trends of
both 𝜃 and 𝑃 , in contrast with results achieved for the elastic case in
Refs. [53,67,76]. More in detail, focusing on 3e, given the undeformed
tape angle 𝜙, the tape angle at peeling start 𝜃0 increases with 𝑣̃𝑐 , as
expected from Eq. (15) and Fig. 3c showing 𝜃0 increasing with 𝑃0 and
𝑃0 increasing with 𝑣̃𝑐 , respectively. Following Eq. (1), once the peeling
starts, the value of 𝜃(𝑡) depends on the interplay between (i) the peeling
front propagation, causing a linear increase of 𝑠𝑑 , and (ii) the detached
ape relaxation, increasing the term 𝛥𝐿. For 𝑡 ≪ 1, a rough estimation
f 𝜃̇ can be derived from Eq. (1) as 𝜃̇ ∝ 𝑑 (𝛥𝐿) ∕𝑑𝑡 − 𝛽𝑣𝑐 , with 𝛽 = 𝛽 (𝜙)

being a monotonically increasing function; indeed, in agreement with
̃
Fig. 3e, f, and g, the peeling angle 𝜃 at 𝑡 ≪ 1 can either decrease (at
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Fig. 3. Top row: the initial 𝑃0 and long-term 𝑃𝑆 dimensionless peeling force as functions of the dimensionless adhesion energy 𝛾̃0 (a), the viscoelastic parameter 𝜅 = 𝐸∞∕𝐸0 (b),
and the dimensionless peeling front velocity 𝑣̃𝑐 (c). In figure (c), the rate-dependent dimensionless adhesion energy 𝛾̃ is also shown for comparison (dashed line). Notably, 𝜅 = 1
corresponds to elastic tapes. Bottom row: the time–history of the normalized peeling force 𝑃∕𝑃S (d) and peeling angle 𝜃 (e) for different values of the dimensionless peeling front
elocity 𝑣̃𝑐 and initial undeformed configurations. Non-monotonic behavior occurs in the red regions, i.e. for 𝑡 ≈ 𝜏. Transient diagrams 𝑃 versus 𝜃 are shown for different values
f 𝑣̃𝑐 and for 𝜙 = 30◦ (f) and 𝜙 = 45◦ (g). Blue and red curves represent the starting condition and the steady-state limit, respectively. Black arrows indicate the time evolution of
he process.
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igh velocity, i.e. 𝑣̃𝑐 ≈ 1000) or increase (at low velocity, i.e. 𝑣̃𝑐 ≈ 10),
hile in the long-term limit 𝜃(𝑡 ≫ 1) ≈ 𝜃S eventually leading to
on-monotonic behavior, depending on the specific value of 𝜃S. The
ormalized peeling force 𝑃∕𝑃𝑆 in Fig. 3d, f, and g is non-monotonic,
s well, since high values of 𝜃 lead to low values of 𝑃∕𝑃𝑆 and vice
ersa, as expected [34,55,76].

.2. Constant peeling force

In this section, we investigate the viscoelastic V peeling behavior
nder a constant peeling force 𝑃 , such as under the action of a dead
eight. Surprisingly, the results show that the peeling process can
ither start and indefinitely propagate, start and then stop after some
ime, or not even start at all, depending on the value of 𝑃 and initial
ape geometry (i.e., the undeformed angle 𝜙 and length 𝐿𝑖). The
oundaries between these qualitatively different behaviors depend on
he peeling front velocity, which is not known a priori in this case;
herefore, the critical (minimum) forces for peeling start and steady-
tate propagation must be sought for both 𝑣𝑐 ≫ 𝑑∕𝜏 and 𝑣𝑐 ≪ 𝑑∕𝜏
ssuming 𝛾 ≈ 𝛾0, as for real thin tapes 𝑣̃𝛾 ≈ 10𝑑∕𝜏. As discussed at
he end of Section 2, in the former case, critical loads for peeling start
1 and steady-state propagation 𝑃2 are given by Eqs. (14), (15) and
qs. (11), (12), respectively, with 𝛾 ≈ 𝛾0. On the contrary, in the
atter case (i.e., for 𝑣𝑐 ≪ 𝑑∕𝜏), the critical forces 𝑃3 (start) and 𝑃4
steady-state propagation) are given by the same equations with the
igh-frequency modulus 𝐸∞ replaced by the low-frequency one 𝐸0 and,
gain, with 𝛾 ≈ 𝛾 .
5

0

The map in Fig. 4c shows the possible peeling behaviors as discussed
bove as functions of the dimensionless applied peeling force 𝑃 and

undeformed tape angle 𝜙 (we assume 𝐿𝑖 = 100𝑑 for all calculations).
Specifically, in region I the peeling does not propagate, in region II–
III the peeling propagation starts and then stops after some time, and
in regions IV–V–VI–VII the peeling propagates indefinitely approaching
the steady-state regime (though in IV and V the long-term velocity is
lower than 𝑑∕𝜏). The present model predictions are rigorously valid in
egions I and VII; nonetheless, qualitative insight can also be inferred
or regions III and V, as a steady-state propagation with very low
elocity (about 𝑑∕𝜏 ≈ 10−4 m∕s) qualitatively corresponds to a peeling
top (i.e., as in case III), for region VI, where 𝑣𝑐 ≈ 𝑑∕𝜏 when peeling
tarts and then rapidly increases, and for region II, as the peeling
annot be sustained in steady-state conditions regardless of the starting
ehavior. Finally, region IV cannot be accounted for in the present
ramework, as the specific viscoelastic behavior close to the peeling
ront does really matter throughout the whole process evolution. In
ost cases, real systems belong to the first scenario, with 𝑣𝑐 ≫ 𝑑∕𝜏.

The peeling front velocity calculated at the process start [𝑣𝑐 ]0 and in
the long-term steady-state [𝑣𝑐 ]𝑆 limit are shown in Fig. 4a as functions
of 𝑃 . More interestingly, two different peeling behaviors are shown in
Fig. 4b, with respect to the time–history of the normalized peeling front
velocity 𝑣̃𝑐∕

[

𝑣̃𝑐
]

0 for different values of 𝑃 belonging to regions VII and
III. In the latter case (blue curve), for 𝑃 < 𝑃4, the peeling front velocity
decreases down to full stop. In the other cases, all belonging to region
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Fig. 4. (a) The initial [𝑣̃𝑐 ]0 and long-term [𝑣̃𝑐 ]S dimensionless peeling front velocity as functions of the dimensionless peeling force 𝑃 . (b) The time–history of the normalized
eeling front velocity 𝑣̃𝑐∕[𝑣̃𝑐 ]0 for different values of dimensionless peeling force 𝑃 . (c) The state map of the possible peeling behavior as a function of the dimensionless applied
eeling force 𝑃 and undeformed tape angle 𝜙. 𝑃1 and 𝑃2 are the critical (minimum) force for peeling start and steady-state propagation calculated with 𝑣𝑐 ≫ 𝑑∕𝜏, while 𝑃3 and
̃
4 refer to the same critical conditions when 𝑣𝑐 ≪ 𝑑∕𝜏 (further know are given in the text). Results refer to 𝜅 = 10 and 𝛾̃0 = 0.02.
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II, after the initial non-monotonic behavior, in the long-term a steady-
tate behavior is approached, with endless propagation occurring at
elocity [𝑣𝑐 ]𝑆 .

.3. Constant pulling velocity

The final case we deal with is with the tape being pulled at a
onstant velocity 𝑣̃𝑃 . In this case, the start of peeling propagation does
ot coincide with the application of the pulling velocity. Indeed, before
eeling starts, the stress 𝜎 in the non-adhering tape must increase from
ero to a certain critical value 𝜎𝑐𝑟. The energy-based procedure to
alculate such a critical condition is given in Appendix B.

In Figs. 5a, b, and c, we show, respectively, the time–history of 𝑃 ,
and 𝑣̃𝑐∕𝑣̃𝑃 , for different values of the dimensionless pulling velocity

𝑣̃𝑃 and undeformed angle 𝜙. Circles indicate the peeling start, which
ncreases with 𝜙 reducing, as expected from Eq. (B.1). In the long-
erm limit, steady-state propagation occurs, with

[

𝑣𝑐
]

S ∕𝑣̃𝑃 = 1∕ tan 𝜃S
ccording to Eq. (13). The most interesting result from Fig. 5a, is that
he peeling force 𝑃 may present a maximum at the early stage, right
fter the peeling start, at a relatively high pulling velocity 𝑣̃𝑃 . This is
lso shown in Fig. 5d, clearly indicating that this is associated with a
emporary reduction of the peeling angle 𝜃 which results from a fast
ncrease of 𝑣𝑐 before viscoelastic relaxation occurs (i.e., for 𝑡 ≪ 1).
uch a peculiar feature may partially link to the superior adhesive
erformance of V-shaped natural systems, such as spider webs [47] and
ussels byssus [49], under the action of high-speed (impact) loading

onditions. In the latter case, for instance, Cohen et al. [78] have shown
hat the single byssus is highly stretchable, due to the heterogeneous
ilament structure (a system of nonlinear swollen springs); here, we
uggest that also the interplay between byssus rheology and V-shaped
ultiple threads geometry (see Fig. 1c) may contribute to the observed
6

ougher adhesive response under dynamic loads [49]. s
. Conclusions

In this study, we model the peeling behavior of a viscoelastic
hin tape arranged in V-shaped peeling configuration. Specifically, the
elocity-dependent condition for peeling front propagation is found in
erms of energy balance between the work per unit time done by the
nternal stress in the tape, the external forces acting on the system,
nd the surface adhesion forces. An ad hoc numerical procedure is
erived to predict the time-evolution of the peeling process, taking into
ccount the time-varying viscoelastic relaxation of the detached tape.
e consider three possible physical scenarios for peeling propagation:

onstant peeling front velocity, constant peeling force, and constant
ulling velocity at the tape tip.

In the long-term limit, the peeling propagation asymptotically ap-
roaches a steady-state elastic-like behavior, regardless of the specific
ontrolled parameter. However, the initial transient peeling behavior is
trongly affected by the tape viscoelasticity and undeformed geometry,
nd presents non-monotonic time evolution of the peeling force and
ngle. More in detail, when a constant force is applied, we found that
he peeling can either endlessly propagate, start and stop after some
ime, or not even start. Which of these scenarios occurs seems to depend
nly on the applied force value and undeformed non-adhering tape
eometry (angle and length).

More surprisingly, when the pulling velocity at the tape tip is
ssigned, as in the case of impact loads acting on an attached object, the
eeling propagation is delayed against the instant of force application,
nd the force required to sustain the peeling propagation (i.e., the
eeling toughness) can be temporarily larger than in stationary condi-
ions. This mechanism might be qualitatively related to the high-speed

uperior adhesive performance observed in several natural systems.
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Fig. 5. The time–history of the dimensionless peeling force 𝑃 (a), the peeling angle 𝜃 (c), and the peeling velocity ratio 𝑣̃𝑐∕𝑣̃𝑃 (c), together with the transient diagram 𝑃 vs. 𝜃 (d)
or different values of the dimensionless pulling velocity 𝑣̃𝑃 . Two undeformed tape angles are considered. The circles indicate the instant when peeling front propagation starts.
he red curve in (d) represents the steady-state peeling limit, and black arrows indicate the time evolution of the process. Results refer to 𝜅 = 10 and 𝛾̃0 = 0.02.
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Appendix A. Numerical calculation of peeling process evolution

The process evolution can be calculated by numerical integration of
Eqs. (2), (1). However, dealing with a viscoelastic tape, the governing
equations depend on the entire time–history of the process and the
solution of Eqs. (2), (1) must be iteratively sought by successively
updating the system configurations as the peeling front moves.

The numerical method is based on uniform time discretization,
with time step 𝛥𝑡 ≪ 𝜏, and non-uniform tape mesh. In the following
discussion, the notation 𝜂𝑘𝑗 represents the discrete value of the generic
quantity 𝜂 at the 𝑗th time instant in the 𝑘th tape element. Only the non-
adhering tape is discretized, and the mesh is updated at each time step
so that, at the generic time 𝑡𝑗 = 𝑗𝛥𝑡, an element of (undeformed) length
𝛥𝜆 =

[

𝑣𝑐
]

𝑗 𝛥𝑡 is added to the mesh due to peeling front motion. The re-
sulting non-uniform ‘‘incremental’’ mesh has two primary advantages:
(i) the total number of elements does not need to be fixed a priori;
(ii) only the non-adhering tape is discretized, and the computational
cost is reduced. More in detail, referring to Fig. A.1, 𝑁𝑗 = 𝑗 + 1 is the
total number of tape elements at the 𝑗th time instant, with the first
element 𝛥𝜆1 being the initial non-adhering tape (i.e., 𝛥𝜆1 = 𝐿𝑖) and
the 𝑁th element 𝛥𝜆𝑁𝑗 being last detached element (𝛥𝜆𝑁𝑗 = 𝛥𝑡

[

𝑣𝑐
]

𝑗−1).
Therefore, the detached tape projection 𝑠𝑗 is given by

𝑠𝑗 = 𝐿𝑖 cos𝜙 +
[

𝑠𝑑
]

𝑗 = 𝐿𝑖 cos𝜙 +
𝑁𝑗
∑

𝑘=2
𝛥𝜆𝑘. (A.1)

The discrete form of Eqs. (9), (7) is
[

𝑊𝑎𝑑
]

𝑗 = −
[

𝑣𝑐𝛾
]

𝑗 𝑤 (A.2)
[

𝑊𝑃
]

𝑗 = 𝐴𝑡
[

𝑣𝑃 𝜎
]

𝑗 sin 𝜃𝑗 (A.3)

where, from Eq. (8),

[

𝑣𝑃
]

𝑗 =
[

𝑣𝑐
]

𝑗 tan 𝜃𝑗 +
𝑠𝑗
2

𝜃𝑗 − 𝜃𝑗−1 . (A.4)

cos 𝜃𝑗 𝛥𝑡
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Fig. A.1. Scheme of the tape discretization: at the generic 𝑗th time instant, the tape mesh is updated by including a freshly detached element of undeformed length 𝛥𝜆 =
[

𝑣𝑐
]

𝑗 𝛥𝑡.
Integrating by parts, Eq. (5) is rewritten as

𝜀(𝜆, 𝑡) =
𝜎(𝜆, 𝑡)
𝐸∞

+ ∫

𝑡

−∞
̇ (𝑡 − 𝑡′)𝜎(𝜆, 𝑡′)𝑑𝑡′, (A.5)

where we used  (0) = 𝐸−1
∞ , and 𝜎(𝜆,−∞) = 0; the discrete form

of Eq. (A.5) gives the elongation of the generic 𝑘th element of the
non-adhering tape at the 𝑗th time instant as

𝜀𝑘𝑗 =
𝜎𝑘𝑗
𝐸∞

+ 𝛥𝑡
𝑗
∑

ℎ=0

̇𝑗−ℎ𝜎ℎ, (A.6)

with 𝜎𝑘𝑗 = 𝜎𝑗 = 𝑃𝑗∕
(

𝐴𝑡 sin 𝜃𝑗
)

for all the tape elements.
To calculate 𝑊𝑖𝑛, we observe that the term 𝜕𝜀∕𝜕𝑡(𝜆, 𝑡) diverges at

the peeling front (i.e., for 𝜆 → 𝜆𝑐 (𝑡)), as we assume a step-change in
the tape stress 𝜎. In this case, the discretized form of Eq. (3) can be
conveniently rewritten as
[

𝑊𝑖𝑛
]

𝑗

𝐴𝑡
= −𝜎𝑗 𝜀̇𝑁𝑗 𝛥𝜆𝑁 − 𝜎𝑗

𝑁−1
∑

𝑘=1
𝜀̇𝑘𝑗𝛥𝜆

𝑘, (A.7)

where, according to [55,79], since 𝑣𝑐 ≫ 𝑑∕𝜏, the first right-hand side
term can be calculated as

𝜎𝑗 𝜀̇
𝑁
𝑗 𝛥𝜆𝑁 =

[

𝜎2𝑣𝑐
]

𝑗

2𝐸∞
. (A.8)

Combining Eqs. (A.7), (A.8), the discretized form of Eq. (3) is
[

𝑊𝑖𝑛
]

𝑗

𝐴𝑡
= −

[

𝑣𝑐𝜎2
]

𝑗

2𝐸∞
− 𝜎𝑗

𝑁−1
∑

𝑘=1

[ 𝜀𝑗 − 𝜀𝑗−1
𝛥𝑡

𝛥𝜆
]𝑘

(A.9)

Finally, using Eqs. (A.2), (A.3), (A.9) in Eq. (2) gives the discrete
form for the instantaneous energy balance equation
[

𝑊𝑃
]

𝑗 +
[

𝑊𝑖𝑛
]

𝑗 +
[

𝑊𝑎𝑑
]

𝑗 = 0 (A.10)

and, from Eq. (1) we have

𝑠𝑗
cos 𝜃𝑗

=
𝑁
∑

𝑘=1

(

1 + 𝜀𝑘𝑗
)

𝛥𝜆𝑘, (A.11)

where
(

1 + 𝜀𝑘𝑗
)

𝛥𝜆𝑘 is the deformed length of the generic 𝑘th element
at the 𝑗th time instant. The process time evolution is obtained from an
iterative algorithm based on the Newton–Raphson method that solves
Eqs. (A.10), (A.11) for the unknown peeling quantities at each time
instant.
8

Appendix B. Starting condition under constant pulling velocity

We consider that at time 𝑡 = 0 the tape tip is pulled at a constant
velocity 𝑣𝑃 . In this case, the deformation 𝜀(𝑡) and stress 𝜎(𝑡) in the non-
adhering tape monotonically increase, and peeling front propagation
starts at time 𝑡∗ when 𝜎(𝑡∗) = 𝜎𝑐𝑟(𝑡∗). The value 𝜎𝑐𝑟 depends on the
energy balance

𝜎2𝑐𝑟
2𝐸∞

+ 𝜎𝑐𝑟[1 − cos 𝜃] =
𝛾0
𝑑
, (B.1)

where we assumed that 𝑣𝑐 (𝑡∗) ≪ 𝑣𝛾 .
According to Fig. B.1a, before peeling front propagation (i.e., for

𝑡 < 𝑡∗), the peeling angle is given by

tan 𝜃 =
𝐿𝑖 sin𝜙 + 𝑣𝑃 𝑡

𝐿𝑖 cos𝜙
, (B.2)

where 𝑣𝑃 𝑡 is the tape tip vertical displacement at the generic time 𝑡.
Similarly, since 𝐿𝑖 + 𝛥𝐿 = 𝐿𝑖 cos𝜙∕ cos 𝜃 is the deformed tape length,
the tape uniform deformation before peeling propagation is

𝜀(𝑡) =
𝐿𝑖 + 𝛥𝐿

𝐿𝑖
− 1 =

cos𝜙
cos 𝜃

− 1. (B.3)

Finally, using the viscoelastic constitutive equation, we can calculate
the uniform stress in the detached tape as

𝜎(𝑡) = ∫

𝑡

−∞
(𝑡 − 𝑡′)𝜀̇(𝑡′)𝑑𝑡′, (B.4)

where  is the stress-relaxation function given by

(𝑡) = 𝐸0 + (𝐸∞ − 𝐸0)𝑒𝑡∕𝜏𝑟 , (B.5)

with 𝜏𝑟 = 𝜏∕(1+𝛥) being the relaxation time, and 𝛥 = 𝐸∞∕𝐸0 −1 being
the relaxation strength.

The peeling starting condition 𝜎(𝑡∗) = 𝜎𝑐𝑟(𝑡∗) is then obtained by
simultaneously solving Eqs. (B.1)–(B.4). In Fig. B.1b we show the time–
history of 𝜎̃(𝑡) and 𝜎̃𝑐𝑟(𝑡), for different dimensionless pulling velocities
𝑣̃𝑃 . Increasing 𝑣̃𝑃 leads to faster stress increase in the viscoelastic tape,
thus peeling propagation starts sooner.

Once the peeling front propagation starts, the numerical algorithm
described in Appendix A can be used to calculate the time evolution
of the peeling process, with 𝑡∗ corresponding to 𝑗 = 0. In the present
formalism, the peeling front velocity 𝑣 (𝑡∗) at the instant of the peeling
𝑐
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Fig. B.1. (a) A schematic of the tape in undeformed condition, and at a generic time 𝑡 < 𝑡∗, i.e. before the peeling propagation starts. (b) The dimensionless stress 𝜎̃ in the tape
(solid curves) and the dimensionless critical stress 𝜎̃𝑐𝑟 required to start the peeling propagation (dashed curves) as functions of the dimensionless time 𝑡 for different dimensionless
ape tip velocity 𝑣̃𝑃 . Circles indicate the instant of propagation start.
ropagation start cannot be exactly determined; however, in the rea-
onable assumption for practical applications that 𝑣𝑃 ∕ tan 𝜃S = [𝑣𝑐 ]S ≫
∕𝜏, the system rapidly approaches the conditions 𝑣𝑐 > 𝑑∕𝜏 at the very
arly stage of peeling propagation. As a consequence, we set 𝑣̃𝑐 (𝑡∗) ≈ 1.
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