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A B S T R A C T

The problem of the detachment of a flat indenter from a plane adhesive viscoelastic strip of
thickness ‘‘b’’ is studied. For any given retraction speed, three different detachment regimes
are found: (i) for very small ‘‘b’’ the detachment stress is constant and equal to the theoretical
strength of the interface, (ii) for intermediate values of ‘‘b’’ the detachment stress decays approx-
imately as b−1∕2, (iii) for thick layers a constant detachment stress is obtained corresponding
to case the punch is detaching from a halfplane. By using the boundary element method a
comprehensive numerical study is performed which assumes a linear viscoelastic material with
a single relaxation time and a Lennard-Jones force-separation law. Pull-off stress is found to
consistently and monotonically increase with unloading rate, but to be almost insensitive to
the history of the contact. Due to viscoelasticity, unloading at high enough retraction velocity
may allow punches of macroscopic size to reach the theoretical strength of the interface. Finally,
a corrective term in Greenwood or Persson theories considering finite size effects is proposed
with good agreement between theoretical and numerical results.

. Introduction

Soft materials are of great interest in the scientific community as for their applicability in many engineering fields ranging from
he automotive sector [1], biomechanics [2], soft robotics [3,4], manipulators [5], tires grip [1], sealing of syringes [6], finger–
ouch-pad interactions [7,8], soft tissue adhesion for regenerative medicine [9,10] and pressure-sensitive adhesives [11]. With soft
olymers macroscopic adhesion due to van der Waals adhesive interactions remains strong [12], whereas in hard materials it is
asily canceled by the inevitable surface roughness.

In many of these applications the bond strength is a crucial mechanical property and it is often quantified by measuring the
pparent adhesion strength as given by the maximum pulling force per unit area in a tensile bond test [13]. Peng et al. [13] have
lready elucidated how the critical pull-off force of a flat rigid axisymmetric punch adhered to an elastic film of finite thickness
epends by two dimensionless parameters. The former shows a transition from uniform detachment (DMT-like) to crack-like
ropagation (JKR-like), while the latter is a correction factor due to finite thickness of the film.

However, in many of the applications mentioned above, soft materials (polymers, elastomers) are employed, which are known to
e viscoelastic, i.e. they exhibit a frequency-dependent modulus and dissipation [14], and this complicates their mechanical adhesive
ehavior. Numerous experiments in steady state conditions have shown that the apparent surface energy 𝛥𝛾, i.e. the energy per unit
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area needed to separate two ideally parallel surfaces, during the crack opening is related to the crack speed 𝑉 through a power law
unction [15–18], commonly referred as the Gent and Schulz empirical law [19]

𝛥𝛾 (𝑉 )
𝛥𝛾0

= 1 +
(

𝑉
𝑉𝑟𝑒𝑓

)𝑛
, (1)

here 𝛥𝛾0 is the adiabatic surface energy (or thermodynamic work of adhesion), 𝑉 is the crack velocity, 𝑉𝑟𝑒𝑓 =
(

𝑘𝑎𝑛𝑇
)−1 and 𝑘, 𝑛

are constants with 0 < 𝑛 < 1 and 𝑎𝑇 is the WLF factor to translate viscoelastic modulus results at various temperatures 𝑇 [20]. In
its simplest form Gent and Schulz empirical law Eq. (1) is generally a good phenomenological model for opening cracks, while for
closing cracks a reduced apparent surface energy 𝛥𝛾 is observed which generally shows the reciprocal of that law [21–26] . There
is no indication in the law of a limit enhancement, nor it is clear how far it can be used for transient conditions. Finally, and most
importantly, in this empirical law, there is no indication on possible size effects, i.e. on how the parameters of the law should be
affected by geometry, and 𝛥𝛾(𝑉 )

𝛥𝛾0
> 1 which instead we shall find is not always true, even for advancing crack.

There are two main approaches which have been attempted to capture more fundamentally the propagation of viscoelastic crack
ropagation. One is based on the description of the processes occurring at the crack tip through a cohesive zone model [25–28],
nd as such is rather general as it can take into account of initiation of the crack, transient propagation, and steady state. Also it
ay show a transition to a cohesive rupture for small enough cracks (what Peng et al. [13] call uniform DMT-like detachment in

heir case, see also [29–31]), in principle it may be generalized to rate-dependent cohesive laws, and to non linear materials. In
ractice, it attempts to model the real processes occurring at the crack tip. The other, developed by Persson and coauthors [22–24],
akes an “energy-based” approach and is restricted to linear materials and to steady state conditions. It is derived by equating the
ower input in the system with the power dissipated by viscoelastic losses and by the rate at which energy is spent to create new
urfaces. The energy-based approach finds different results for finite size systems where it seems to show non-monotonic 𝛥𝛾 (𝑉 ) ∕𝛥𝛾0

and also 𝛥𝛾 (𝑉 ) ∕𝛥𝛾0 > 1 [23], which is in contrast to the limit case of cohesive failure where 𝛥𝛾 (𝑉 ) ∕𝛥𝛾0 can decrease down to zero
for very small crack (see [29]), as we shall discuss in details here with respect to our geometry. Only for a semi-infinite system and
linear material both approaches yield a very similar monotonically increasing behavior of 𝛥𝛾 (𝑉 ) ∕𝛥𝛾0 with respect to 𝑉 up to the
theoretical “high-frequency” limit of 𝛥𝛾∕𝛥𝛾0 = 𝐸∞∕𝐸0, where 𝐸∞ and 𝐸0 respectively represent the glassy (high frequency) and the
rubbery (low frequency) modulus of the viscoelastic material [32].1 Furthermore, the cohesive model has been applied modeling
of bi-materials crack (one elastic, one viscoelastic) [33] showing transient dissipation can be arbitrarily large while loads remain
finite and hence dissipation should not be taken as an indication of true fracture energy [34].

Recently, it has been shown that, depending on the indenter geometry, the loading history may or may not affect the detachment
force. For a Hertzian indenter, Afferrante and Violano [30,31] have shown that the loading velocity and the maximum indentation
reached during the loading phase can significantly influence the pull-off force. One the other hand, Papangelo and Ciavarella [29]
found that when considering an axisymmetric flat punch, the loading history has a relatively weak effect, and the primary
determinant of the pull-off force is largely the unloading velocity. This is partly related to the fact that, for a given preload, the
contact area achieved at maximum indentation strongly depends on the loading history only for a Hertzian indenter, while it remains
fixed for a flat punch. This interpretation is somehow confirmed by the recent work of Muller et al. [35] which further considers the
contact of a flat punch indenter with superimposed small scale roughness. Their study focuses on the significant hysteresis that is
observed during crack closure and opening which is obtained by the concurrent presence of viscoelasticity and adhesion. They find
that small scale roughness can indeed leads to local jumps -in and -out of contact, which causes the dependence of the detachment
force on the preload.

While previous works have focused on the detachment from viscoelastic semi-infinite substrates [29,36,37], the influence of the
layer thickness on the detachment process has been mostly overlooked. Nevertheless, the latter has a broad interest in engineering
applications where often a thin layer of viscoelastic material is used, as in Fig. 1, as well as to exploit the thin layer testing geometries,
like in Peng et al. [13] which could permit to extract cohesive properties as well as surface energy properties.

Hence, in the present study, we focus on the detachment problem of a flat punch indenting a thin adhesive viscoelastic layer
of finite thickness 𝑏 in plane strain conditions. The remainder of the paper is organized as follows. In Section 2 the elastic solution
for halfplane contact is recalled. In Section 3, the case of a thin layer is considered leveraging on the “thin strip” assumption by
Johnson [38] and applying the Griffith energy balance. This serves to determine the limiting solutions within which the viscoelastic
results should be confined. In Section 4 the numerical scheme is introduced which is based on the boundary element method and
it assumes a standard linear model for the viscoelastic layer and a Lennard-Jones force-separation law for the contact interactions,
which is rate-independent. In Section 5 the numerical results are presented and compared with Greenwood theory for viscoelastic
crack propagation [21] which we extend for finite size effects. In Section 6 the conclusions are drawn. The study is carried on with
particular emphasis on the effect of (i) the loading history, (ii) the layer thickness and (iii) the unloading velocity on the pull-off
force and on the effective adhesive energy.

1 In their basic form, both approaches consider 𝛥𝛾 to be an intrinsic material property and therefore rate-independent, as we shall also assume here.
2
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Engineering Fracture Mechanics 298 (2024) 109898A. Maghami et al.
Fig. 1. Practical engineering applications where thin polymeric layers are used: (a) rubber tape, (b) polymeric carpet, (c) gasket, (d) soft gripper for delicate
handling and manipulation.
Source: UCSD Jacobs School of Eng., CC BY-NC-SA 4.0.

2. Detachment from a halfplane

Let us consider the plane contact problem of a flat punch of semi-width 𝑎 indenting an elastic adhesive frictionless halfplane
with Young modulus 𝐸 and Poisson ratio 𝜈. The adhesive contact problem is equivalent to a fracture mechanics problem where the
crack advance when this is energetically favorable, i.e. if the energy release rate 𝐺, defined as the reduction in the elastic strain
energy per unit area of crack extension, is greater then 𝛥𝛾. The equilibrium condition is found when 𝐺 = 𝛥𝛾, which is equivalent
to enforce a maximum strength of the square root singularity at the edge of the contact. The reader is referred to Chapter 12 of
Barber’s book [39] for a more detailed analysis of the energetic approach to solve adhesive contact problems in soft materials. By
applying the Griffith energy balance, the pull-off force [39,40] is given by

𝑃𝑝𝑜 = 𝐿
√

2𝜋𝐸∗𝛥𝛾0𝑎, (2)

where 𝐿 is the layer width, 𝐸∗ = 𝐸∕
(

1 − 𝜈2
)

is the plane strain elastic modulus. Hence the mean interfacial stress at pull-off is

𝜎𝑝𝑜 =
√

𝜋𝐸∗𝛥𝛾0
2𝑎

, (3)

which has the classical Linear Elastic Fracture Mechanics (LEFM) square-root dependence with respect to the punch semiwidth
𝑎. Overbar indicates here the mean value. This implies that smaller punches have a higher pull-off stress, potentially reaching the
theoretical strength (or the cohesive strength) of the interface, denoted as 𝜎0. This is typically observed for punches with a semi-width
less than the following typical fracture length

𝑎0 =
𝜋
2
𝐸∗𝛥𝛾0
𝜎20

. (4)

In what follows in the paper we shall assume that the punch size is 𝑎 ≫ 𝑎0 as we are interested in the transitions due to the
finite size of the layer rather than the size of the punch. For the latter effect the reader is referred to Ref. [29].

Hence, in dimensionless form, we have the following relations

𝜎𝑝𝑜 =
𝜎𝑝𝑜
𝜎0

= 1
√

𝑎∕𝑎0
, (5)

𝑎0
ℎ0

=
9
√

3𝜋
32𝛴0

≈ 1.53
𝛴0

, (6)

where we have assumed a Lennard-Jones force-separation law, for which 𝛥𝛾0 = 𝛼𝐿𝐽ℎ0𝜎0, where ℎ0 is the range of interaction and
𝛼𝐿𝐽 = 9

√

3
16 is a constant, 𝑎 = 𝑎∕ℎ0, 𝛴0 = 𝜎0∕𝐸∗ is usually in the range of [0.1 ÷ 1] for soft polymers [40–42], implying 𝑎0 to be 1

to 10 times higher than the range of attractive forces. For a true crystal, this would imply a range of few nanometers, but for soft
materials, the range of adhesive forces may be larger. Considering the parameters in [43] for PDMS one can estimate ℎ0 to be of
the order of microns. If a viscoelastic material with relaxed modulus 𝐸0 and instantaneous modulus 𝐸∞ is considered, then in the
limit of very slow and very fast unloading rate we will have

⎧

⎪

⎨

⎪

⎩

𝜎𝑝𝑜 =
√

9
√

3𝜋
32𝛴0𝑎

= 1
√

𝑎∕𝑎0
; slow limit 𝐸 = 𝐸0,

𝜎𝑝𝑜 =
√

9
√

3𝜋
32𝛴0𝑘𝑎

= 1
√

𝑘𝑎∕𝑎0
; fast limit 𝐸 = 𝐸∞,

(7)

where 𝑘 = 𝐸 ∕𝐸 and 𝑎 = 𝑎∕ℎ .
3
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Engineering Fracture Mechanics 298 (2024) 109898A. Maghami et al.
Fig. 2. On the left is a sketch of a flat punch being loaded on a viscoelastic adhesive layer of thickness 𝑏. The numerical implementation employs the
Lennard-Jones force-separation law, while the viscoelastic material is represented using a standard linear model, as depicted in the lower-right panel.

3. Detachment from a thin layer

If the substrate has a finite thickness, it is necessary to consider the effect of thickness in the analysis. Hence, here we focus on
the plane contact problem of a flat punch with a semi-width of 𝑎 indenting an adhesive layer with a thickness of 𝑏 (Fig. 2). We first
focus on the linear elastic solution, and then we will provide the limiting solutions for the viscoelastic problem based on the elastic
formulation.

3.1. Elastic layer

Let us consider the layer in plane strain and supported by a rigid foundation. In the following, the case of frictionless contact
between the layer and the rigid substrate is considered while the correction due to the Poisson effect for the case of a layer perfectly
bonded to the substrate is shown in the Appendix-I.

Following Johnson [38], we assume that plane sections remain plane upon loading. Hence for the case of no friction between
the layer and the rigid substrate, the load 𝑃 and the corresponding elastic strain energy 𝑈𝐸 stored in the layer are

𝑃 = −2𝑎𝐿𝐸∗ 𝛿
𝑏
, (8)

𝑈𝐸 = 𝑎𝐿𝐸∗ 𝛿2

𝑏
, (9)

where 𝛿 is the indentation considered positive when the flat punch is approaching the substrate, consequently, 𝑃 is positive when
tensile. At unloading, the Griffith energy balance requires the elastic strain energy released per unit area to be equal to the surface
energy. Hence, assuming detachment occurs immediately, we have the following relations

1
2𝐿

𝜕𝑈𝐸
𝜕𝑎

= 𝛥𝛾 →

⎧

⎪

⎨

⎪

⎩

𝛿𝑝𝑜 = −
√

2𝑏𝛥𝛾
𝐸∗ ,

𝜎𝑝𝑜 =
√

2𝐸∗𝛥𝛾
𝑏 ,

(10)

where, 𝛿𝑝𝑜 and 𝜎𝑝𝑜 are the indentation and the average interfacial stress at pull-off respectively. Notice that the pull-off stress depends
on the layer thickness as 𝜎𝑝𝑜 ∝ 𝑏−1∕2, hence it is possible to define a characteristic thickness 𝑏0 of the substrate where 𝜎𝑝𝑜 reaches
the theoretical interfacial strength 𝜎0, i.e.

𝑏0 =
2𝐸∗𝛥𝛾
𝜎20

= 4
𝜋
𝑎0 ≈ 1.27𝑎0, (11)

which is of the same order of magnitude of 𝑎0. Experiments with PDMS elastomers in Peng et al. [13], show that this 𝑏0 is of the
order of 0.1 mm, where clearly their loading rate corresponds to a certain effective elastic modulus. On the other hand, in the limit
of a very thick layer, we should obtain the half-plane solution, for which we can utilize Eqs. (3) and (10) to determine a length
scale

𝑏1 =
4𝑎
𝜋
, (12)

with the meaning that for substrates thicker than 𝑏1 one should anticipate the half-plane behavior. Notice that, while 𝑏0 is a
characteristic length scale that depends on the material and interfacial properties, 𝑏 depends on the punch semi-width. Overall
4
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as indicated by Eqs. (11) and (12), and as illustrated in Fig. 3, we identify the following three regimes

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑝𝑜 = 𝜎0, 𝑏 < 𝑏0

𝜎𝑝𝑜 =
√

2𝐸∗𝛥𝛾
𝑏 , 𝑏0 ≤ 𝑏 ≤ 𝑏1

𝜎𝑝𝑜 =
√

𝜋𝐸∗𝛥𝛾
2𝑎 , 𝑏 > 𝑏1

(13)

or, in dimensionless form,
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎𝑝𝑜 = 1, 𝑏∕𝑎0 <
4
𝜋

𝜎𝑝𝑜 =
√

9
√

3
8𝛴0 �̂�

=
√

4
(𝑏∕𝑎0)𝜋

, 4
𝜋 ≤ 𝑏∕𝑎0 ≤

4
𝜋

𝑎
𝑎0

𝜎𝑝𝑜 =
√

9
√

3𝜋
32𝛴0𝑎

= 1
√

𝑎∕𝑎0
. 𝑏∕𝑎0 >

4
𝜋

𝑎
𝑎0

(14)

Hence, the theoretical strength of the interface can be reached both reducing the dimension of the punch as in Ref. [29,44] or
reducing the thickness of the layer. This is also refereed as a ‘‘flaw-tolerance’’ regime [44].

3.2. Limiting solutions for a viscoelastic layer

Let us assume that the layer is constituted by a viscoelastic material with relaxed Young modulus 𝐸0 and instantaneous Young
modulus 𝐸∞ so that 𝑘 = 𝐸0∕𝐸∞. In the limit of very slow/very fast unloading rate, the substrate behaves as elastic. Thus, for the
case of no friction between the substrate and the layer, according to Eq. (10), one can anticipate the following two scenarios

⎧

⎪

⎨

⎪

⎩

𝜎𝑝𝑜 =
√

2𝐸∗
0𝛥𝛾
𝑏 , ‘‘very slow’’

𝜎𝑝𝑜 =
√

2𝐸∗
∞𝛥𝛾
𝑏 , ‘‘very fast’’

(15)

or in dimensionless form
⎧

⎪

⎨

⎪

⎩

𝜎𝑝𝑜 =
√

4
(𝑏∕𝑎0)𝜋

, ‘‘very slow’’

𝜎𝑝𝑜 =
√

4
𝑘(𝑏∕𝑎0)𝜋

, ‘‘very fast’’
(16)

here, one should notice that for rapid unloading (very fast scenario) the pull-off stress will reach the cohesive strength by the
ollowing value of the substrate thickness:

𝑏0∞ =
4𝑎0
𝑘𝜋

. (17)

However, for a thick layer, the halfplane limit will be always obtained at 𝑏1 = 4𝑎∕𝜋, irrespective of the unloading rate. Fig. 3
schematically displays the elastic limits at low and high retraction speeds that constitute the bounds for the possible viscoelastic
solutions.

Form Eq.s (12) and (17) it follows that if 𝑎∕𝑎0 < 𝐸∞∕𝐸0 then 𝑏0∞ > 𝑏1. In other words, if 𝑎 < 𝑎0∕𝑘 at a high enough retraction
velocity, it is possible to reach the adhesive strength of the interface. It is easy to find elastomers with 𝐸∞∕𝐸0 ≃ 103 ÷ 104 [45].
This implies that punches with semi-width 𝑎 much larger than 𝑎0 can still reach the theoretical interfacial strength if unloading is
performed fast enough. Also, this holds for layer thickness. If we assume that the experiments with PDMS in Peng et al. [13] were
conducted relatively slowly, when 𝑏0 was of the order of 0.1 mm, then clearly 𝑏0∞ could reach very large values, provided the
punch is also large enough. This peculiarity may be exploited in the future as a technique to improve/enhance interfacial adhesion
in micro-structured interfaces by optimizing not only the micro-pillar geometry, but also the unloading protocols.

4. Numerical implementation of the adhesive viscoelastic contact problem

In this section, the numerical scheme used to solve the adhesive viscoelastic contact problem is introduced. We utilized the
boundary element method, which necessitates the discretization solely of the interface. A similar code has been used in previous
works for solving both adhesive elastic [46] and viscoelastic [29] axisymmetric contact problems, therefore, in this section, we will
focus on the essential adaptations required to tailor the implementation for a plane viscoelastic strip.

The flat punch interacts with the viscoelastic layer according to the Lennard-Jones 3-9 force-separation law defined as

𝜎 (ℎ) =
8𝛥𝛾
3ℎ0

[

(

ℎ0
ℎ

)3
−
(

ℎ0
ℎ

)9
]

, (18)

here 𝜎 is the traction (𝜎 > 0, when it is tensile), ℎ is the interfacial gap and ℎ0 is the equilibrium distance. The theoretical strength
of the interface (maximum tensile stress) is then equal to 𝜎0 = 𝛥𝛾∕(𝛼𝐿𝐽ℎ0) and takes place at a separation equal to ℎ = 31∕6ℎ0. The
gap is a function of the in-plane coordinate 𝑥 as

ℎ(𝑥) = −𝛿 + ℎ + 𝑣 𝑥 , (19)
5
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Fig. 3. Schematic representation of the three possible detachment regimes.

where 𝑣 (𝑥) is the deflection of the viscoelastic layer with respect to the origin (0, 0) (𝑣 (𝑥) is positive as shown in Fig. 2). Here,
Eq. (19) is solved numerically in a discrete manner at the 𝑁 = 𝑀 + 1 nodes, being 𝑀 the number of equally spaced elements with
the length of 𝑐 = 2𝑎∕𝑀 . Following Bentall and Johnson [47] we implemented the method of overlapping triangles, i.e. for the 𝑛th
node the pressure is 0 at node 𝑥𝑛−1, rises linearly to 𝑝𝑛 at node 𝑥𝑛 and then falls linearly to 0 at node 𝑥𝑛+1, which gives overall a
linear variation of the contact pressure 𝑝 (𝑥) over the considered domain. With respect to the case of constant pressure elements, a
piecewise-linear distribution of normal tractions produces a displacement field that is everywhere smooth and continuous. Hence,
according to Bentall and Johnson [47] the vertical deflection at node 𝑚 of an elastic layer relatively to the origin (𝑥, 𝑦) = (0, 0) due
to a triangular distribution of pressure centered in 𝑥𝑛 is

𝑣𝑚 = 𝑎𝐵 4
𝜋𝐸∗

[

𝐼𝐴0 + 𝐼𝐴 [𝑚 − 𝑛] + 4𝑧𝐼𝐴𝑅 [𝑚 − 𝑛]
]

𝑝𝑛, (20)

where {𝑚, 𝑛} are integers numbers, 𝑝𝑛 is the pressure acting on the 𝑛th node determined using Eq. (18) (𝑝𝑛 > 0 when it is tensile),
𝐵 = 𝑏∕𝑎, 𝑧 = 𝑐∕4𝑏 = 1∕2𝐵𝑀 and 𝐼𝐴0, 𝐼𝐴, 𝐼𝐴𝑅 are the following integral functions2

𝐼𝐴0 =
2
𝑧 ∫

∞

0

(

1 − cosh 𝛽
𝛽 + sinh 𝛽

)

sin2 (𝛽𝑧)
𝛽3

𝑑𝛽, (21)

𝐼𝐴 [𝑚 − 𝑛] = −4
𝑧 ∫

∞

0

(

1 +
1 − cosh 𝛽
𝛽 + sinh 𝛽

)

sin2 (𝛽𝑧)
𝛽3

sin2 (𝛽𝑧 (𝑚 − 𝑛)) 𝑑𝛽, (22)

𝐼𝐴𝑅 [𝑚 − 𝑛] = ∫

∞

0

sin2 (𝜂) sin2 (𝜂 (𝑚 − 𝑛))
𝜂3

𝑑𝜂, 𝜂 = 𝛽𝑧. (23)

By applying the superposition principle, the normal deflection 𝑣𝑚 at node 𝑚 due to a piecewise linear distribution of pressure can
be written as

𝑣𝑚 = 1
𝐸∗

𝑁
∑

𝑛=1
𝐺𝑚𝑛𝑝𝑛, (24)

where each column of the influence matrix {(1∕𝐸∗)𝐺}𝑁𝑥𝑁 corresponds to the displacement field due to a unity triangular pressure
centered at node 𝑛 being all the other nodes unloaded. Therefore, the displacement field and, correspondingly, the influence matrix
can be readily computed using Eq. (20). Once the elastic solution is obtained, the displacement field of the viscoelastic layer 𝑣 (𝑥, 𝑡),
can be determined by the elastic–viscoelastic correspondence principle in the form of Boltzmann integrals [48] as

𝑣 (𝑥, 𝑡) = 1
𝐸∗
0
∫ 𝐺(𝑥, 𝑠)∫

𝑡

−∞
𝑐(𝑡 − 𝜏)

𝑑𝑝(𝑠, 𝜏)
𝑑𝜏

𝑑𝜏𝑑𝑠, (25)

where 𝑐(𝑡) is the dimensionless creep compliance function, the strain variation after an application of a constant unit stress, and,
in our discrete formulation, the Green function 𝐺(𝑥, 𝑠) is replaced by the appropriate tensor {𝐺}𝑁𝑥𝑁 , so that the viscoelastic nodal
displacements {𝑣(𝑡)}𝑁𝑥1 at time 𝑡 are

{𝑣(𝑡)}𝑁𝑥1={𝐺}𝑁𝑥𝑁 ∗
{

1
𝐸∗
0
∫

𝑡

−∞
𝑐(𝑡 − 𝜏)

𝑑𝑝
𝑑𝜏

𝑑𝜏
}

𝑁𝑥1
, (26)

2 Care should be taken when integrating 𝐼𝐴0 which converges slowly. The Appendix 3 of Bentall and Johnson [47] suggests a convenient integration strategy
we have also adopted. Notice that Bentall and Johnson [47] contains a misprint as the second part in which 𝐼𝐴0 is split up should be integrated over the
interval 𝛿,+∞ .
6
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Table 1
Description of parameters governing the loading protocols for the curves presented in Figs. 4 and 5.

Loading protocol 𝛿0 𝛿𝑙𝑜𝑎𝑑 �̂�𝑙𝑜𝑎𝑑 �̂� �̂�𝑑𝑤𝑒𝑙𝑙

# 1 1 1 very fast 10 0
# 2 1 1 very slow 10 0
# 3 0 1 5 10 0
# 4 2 2 very fast 10 0
# 5 2 2 very slow 10 0
# 6 0 2 5 10 0

where the symbol ‘‘∗’’ stands for the row by column product. For the linear viscoelastic material, the standard model is assumed
ith a single relaxation time 𝜏, composed by a spring placed in series with an element constituted by a dashpot and a spring in
arallel (see Fig. 2), for which the dimensionless creep compliance function is as follows

𝑐(𝑡) =
[

1 + (𝑘 − 1) exp
(

− 𝑡
𝜏

)]

. (27)

being 𝜏 the relaxation time of the material. Notice that the creep compliance function 𝑐(𝑡) depends only upon the time 𝑡 and not
on the strain rate �̇� as we are using a linear viscoelastic model [49]. Hence, by using a sequential time-marching continuation, we
solved Eqs. ((18),(19),(26)), where at each time step an iterative scheme is used to determine the equilibrium solution.

5. Results

Here the results of the numerical investigations are shown by using the following dimensionless parameters

𝑎 = 𝑎
ℎ0

; 𝜎(𝑥) =
𝜎(𝑥)
𝜎0

; 𝜎 = 𝑃
2𝑎𝐿𝜎0

; 𝛿 = 𝛿
ℎ0

; �̂� = 𝑡
𝜏
, (28)

nd 𝜎𝑝𝑜 is the (dimensionless) average stress at pull-off and is defined as 𝜎𝑝𝑜 = max(𝜎). If not stated differently, in our simulations
we considered 𝑀 = 200, 𝛴0 = 0.05, and 𝑘 = 0.1.

5.1. History dependence

Viscoelastic materials typically exhibit a ‘‘history-dependent’’ response and this tremendously affects the detachment force in
Hertzian indenters [30,31]. Hence, first, we aimed to explore how different loading scenarios affect the detachment characteristics
of the flat indenter we considered while keeping the unloading rate constant. The simulations were carried out under displacement
control using a trapezoidal function (see inset in Fig. 4.a) whose main parameters are shown in Table 1. We define the dwell time
as �̂�𝑑𝑤𝑒𝑙𝑙 = �̂�2 − �̂�1, the unloading rate �̂� = (𝛿𝑙𝑜𝑎𝑑 − 𝛿𝑢𝑛𝑙𝑜𝑎𝑑 )∕(̂𝑡3 − �̂�2), and the loading rate as �̂�𝑙𝑜𝑎𝑑 = (𝛿𝑙𝑜𝑎𝑑 − 𝛿0)∕(̂𝑡1) with reference to
the inset of Fig. 4.a. We endeavored to investigate the impact of different loading protocols meticulously although the unloading
curves presented in Fig. 4 are restricted to the six different protocols described in Table 1.

These loading scenarios included: (i) Unloading from a fully relaxed substrate after a slow loading process, indicated by the
black curves (2,5). (ii) Unloading following rapid loading, causing the substrate to exhibit an elastic response with 𝐸(𝑡 = 0) = 𝐸∞,
as denoted by the blue curves (1,4). (iii) Unloading after indenting the substrate at a constant loading rate �̂�𝑙𝑜𝑎𝑑 = 5, represented
by the red curves (3,6). It is important to note that while the loading phase is not shown for curves (1, 2, 4, 5), we accounted for
the pre-loading effect in our simulations. Furthermore, the maximum indentation depth 𝛿𝑙𝑜𝑎𝑑 was kept at 𝛿𝑙𝑜𝑎𝑑 = 1 for curves (1,
2, 3) (solid lines) and set to 𝛿𝑙𝑜𝑎𝑑 = 2 for curves [4, 5, 6] (dashed lines). The punch has 𝑎∕𝑎0 = 64.85, and the viscoelastic layer’s
(dimensionless) thickness is 𝐵 = 𝑏∕𝑎 = 0.5 which is equivalent to 𝑏∕𝑎0 = 32.42.

The primary result from Fig. 4 is that, regardless of the significant variations in loading conditions, the magnitude of the pull-off
stress remains consistent across various loading histories. Indeed, one can conclude that the pull-off stress remains nearly unaffected
by the loading history. In Fig. 4.b, we present the same curves as in Fig. 4.a, but with a shift in the horizontal axis by 𝛿𝑃 . This shift
corresponds to the indentation depth at which the normal load vanishes during unloading. It helps better to observe the slight
changes in the unloading trajectories. Furthermore, we also conducted a comprehensive investigation of the effect of the different
loading scenarios for various layer thicknesses. In Fig. 5, we illustrate 𝜎𝑝𝑜 versus the variation in thickness 𝑏∕𝑎0 with different loading
scenarios. The legend in Fig. 5 clarifies that the plot presents results derived from the loading conditions in Table 1, all with the
same unloading rate. Remarkably, these plots closely overlap, indicating very similar values across the various simulations for all
the thicknesses tested. To further quantify the distinctions between these loading cases, we examined the relative changes in pull-off
stress with respect to one specific case that serves as the foundation for our subsequent investigations. The results are plotted in the
inset of Fig. 5 as a relative change for various thickness values. It is evident that within a certain accuracy, we can state that the
detachment force of a flat indenter from a viscoelastic adhesive strip is negligibly influenced by the loading history of the contact. For
the remainder of the paper we will consider unloading the viscoelastic strip from a fully relaxed condition, unless explicitly stated

̂ �̂�𝑜𝑎𝑑 ̂
7
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Fig. 4. (a) Unloading curves for 𝛴0 = 0.05, 𝑘 = 0.1 and punch of radius 𝑎∕𝑎0 = 64.85 from a fully relaxed viscoelastic surface of 𝑏∕𝑎0 = 32.42 with different
oading protocols. (b) The identical curves displayed in (a) are reiterated here subsequent to a horizontal axis shift equal to 𝛿𝑃=0.

Fig. 5. Normalized pull-off stress (𝜎𝑝𝑜) as a function versus the normalized layer’s thickness for different loading protocols.

5.2. Dependence on the unloading rate

After establishing that the loading history does not influence the pull-off stress 𝜎𝑝𝑜, we examine how 𝜎𝑝𝑜 varies with respect to
he layer thickness for four different unloading rates: �̂� = [0.1, 1, 10, 100] represented in Fig. 6 by black diamonds, green circles, red

squares, and pink triangles, respectively. Fig. 6 shows a comprehensive analysis for the punch semi-width 𝑎∕𝑎0 = 64.85. The results
are obtained starting from a fully relaxed substrate. For 𝑏 < 𝑏0 ≃ 1.27𝑎0, we reach the cohesive limit, where the pull-off stress remains
independent on both the unloading rate and the layer thickness, approaching the theoretical value 𝜎𝑝𝑜 = 1. Most importantly, for
0 < 𝑏 < 𝑏1, the curves align well with the LEFM (Linear Elastic Fracture Mechanics) solution we have derived in Section 3 showing
scaling of ∝ 𝑏−1∕2. Here, the pull-off stress increases with the unloading rate, and the pull-off data consistently stay well by the

‘slow’’ and ‘‘fast’’ limits we derived, represented by the blue dashed and solid black lines, respectively. For a thickness larger than
8
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Fig. 6. Normalized pull-off stress (𝜎𝑝𝑜) as a function of the normalized layer’s thickness for different unloading rates of a punch with 𝑎∕𝑎0 = 64.85.

𝑏1 the curves align with the half-plane solution and, for a given unloading rate, the pull-off stress remains constant independently
of the layer thickness.

Notice that in the theoretical elastic solution, the detachment happens with no propagation (𝑎𝑐 = 𝑎, being 𝑎𝑐 the semi-width
of the crack ligament). Clearly, this condition is never achieved in a more refined cohesive zone model, as it is the one we have
implemented numerically. This accounts for the small deviations we found in the limiting case of very fast and very slow unloading
between numerical and theoretical results. Nevertheless, to ascertain the correctness of the numerical viscoelastic results, the plots
also include the curves obtained unloading an elastic strip with modulus 𝐸0 (filled blue stars) and 𝐸∞ (empty blue stars). One easily
recognizes that the viscoelastic solutions are perfectly bounded between the two limiting elastic cases.

To support our conclusion we focus on the mechanism of crack propagation and stress distribution at the interface from the
unloading onset up to pull-off. Figs. 7 show the stress distribution for three specific cases out of the 120 cases shown in Fig. 6.
All the cases are for unloading rate �̂� = 100. The punch radius in Fig. 7 is 𝑎∕𝑎0 = 64.85. The corresponding points for these three
cases are highlighted with red squares in Fig. 6. According to Fig. 7, during unloading, the crack propagates at the interface hence
the semi-width of the crack ligament 𝑎𝑐 is smaller than the punch semi-width 𝑎 when pull-off happens. This explains the difference
between the expected pull-off stress from the analytical limits and the actual pull-off stress.

Fig. 7 displays three distinct cases with different values of 𝐵 (0.001, 0.25, and 10), denoted as Figs. 7a, 7b, and 7c, respectively.
Fig. 7a pertains to the cohesive zone, where the detachment occurs at 𝑎𝑐 ≃ 𝑎 and with a uniform distribution of tensile tractions
at the interface. For a more comprehensive understanding of crack propagation and the detachment process, we have included gap
plots on the right side of Fig. 7. These plots represent the gap 𝐻(𝑥) = ℎ(𝑥)∕ℎ0 − 1 between the rigid punch and the viscoelastic
layer as a function of the in plane coordinate 𝑥. Fig. 7a illustrates that in the cohesive region, the gap is uniformly distributed at
the interface, with no crack formation. This is, in fact, the reason why we can achieve 𝜎𝑝𝑜 numerically with the same results as the
xpected analytical results (see Fig. 6 for 𝐵 = 0.001). In contrast, for the other two cases, as depicted in Figs. 7b and 7c, we observe
rack propagation, with detachment occurring at 𝑎𝑐 < 𝑎. Notably, for larger values of 𝐵, a reduction in the ratio 𝑎𝑐∕𝑎 is evident,

resulting in the small deviation observed in Fig. 6 between the numerical and the analytical results.
A more detailed view of the dependence of the pull-off stress on rate effects is shown in Fig. 8 that shows 𝜎𝑝𝑜 as a function of

he crack speed at pull-off, defined as

𝑉𝑐 = −𝑑𝑎𝑐∕𝑑𝑡, (29)

here 𝑎𝑐 represents the crack ligament semi-width, which decreases as the crack propagates at the interface. The results are
losely related to the interaction between adhesion and viscoelastic dissipation in the strip (see also [33]), indeed it represents
ne of the major objectives of viscoelastic crack propagation theories [22–28]. Consequently, we conducted additional analyses to
xamine this effect. We selected four different cases with a punch radius of 𝑎∕𝑎0 = 64.85 and the corresponding thickness ratios of
∕𝑎0 = [3.24, 6.48, 12.97, 32.42], corresponding to the blue, orange, yellow, and purple curves, respectively. We conducted numerical
xperiments with 20 different unloading rates ranging from �̂� = 0.1 to �̂� = 100 to obtain curves representing a wide range of
he dimensionless crack velocity 𝑉𝑐 = 𝑉𝑐𝜏∕ℎ0 at pull-off. The analysis of Fig. 8 illustrates clearly the trend: thin layers and high
etraction velocity favor high pull-off stress. Nevertheless, this effect is mitigated when the 𝑏 ≈ 𝑎0 ≈ 𝑏0 as, in the cohesive region,
he detachment tends to happen at a uniform stress.

Although, the pull-off force reduces increasing the layer thickness the enhancement in terms of effective surface energy remains
he same when moving from low to high unloading rates, provided that 𝑏 > 𝑏0. Based on the thin layer elastic solution Eq. (10) we
efine the effective surface energy as

𝛥𝛾𝑒𝑓𝑓 =
𝜎2𝑝𝑜𝑏

∗

(

𝑎
)2

, (30)
9
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Fig. 7. Gap function (the right plots) and the stress distribution (the left plots) on the surface of a layer with parameters 𝛴0 = 0.05, 𝑘 = 0.1, and 𝑎∕𝑎0 = 64.85
re presented for various geometries: (a) 𝐵 = 0.001, (b) 𝐵 = 0.25, and (c) 𝐵 = 10, all under an unloading rate of �̂� = 100. Each plot displays results for three

different moments, with pull-off data highlighted in red.

Fig. 8. Normalized pull-off stress (𝜎𝑝𝑜) as a function of the normalized crack velocity at pull-off for four different values of 𝑏∕𝑎0 for a punch with 𝑎∕𝑎0 = 64.85
unloaded from a fully relaxed viscoelastic surface at different unloading rates.
10
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Fig. 9. Normalized effective surface energy as a function of the crack velocity at pull-off for four different values of 𝑏∕𝑎0 for a punch with 𝑎∕𝑎0 = 64.85 unloaded
from a fully relaxed viscoelastic surface at different unloading rates. Dashed lines are obtained with Eq. (36). Maximum enhancement for the dimensionless
effective surface energy as a function of 𝑏∕𝑎0. Inset: maximum enhancement of the effective surface energy obtained numerically at very high unloading rates
for 𝑎∕𝑎0 = [32.42, 64.84, 129.69], respectively red circles, green stars, blue triangles. The solid black line shows the prediction of Eq. (32).

where we considered that in general the detachment happens at 𝑎𝑐 < 𝑎. Hence, in dimensionless form,

𝛥𝛾𝑒𝑓𝑓 =
𝛥𝛾𝑒𝑓𝑓
𝛥𝛾0

=
𝜎
2
𝑝𝑜𝛴0�̂�

2𝛼𝐿𝐽

(

𝑎
𝑎𝑐

)2
. (31)

Fig. 9 shows that the normalized effective surface energy 𝛥𝛾𝑒𝑓𝑓 increases monotonically with respect to the crack velocity 𝑉𝑐
at pull-off up to a certain plateau value. In the case of 𝑏∕𝑎0 = 32.42, the normalized effective surface energy reaches its theoretical
upper limit 𝛥𝛾𝑒𝑓𝑓 = 1∕𝑘 (all our simulations are for k=0.1). Notice that for any thickness of the layer larger than 𝑏0∞ one would
get the maximum possible enhancement 1∕𝑘. Care should be taken when interpreting the data using Eq. (31) as, if the latter is used
for 𝑏 > 𝑏1 this may lead to unrealistic enhancements 𝛥𝛾𝑒𝑓𝑓 , which is due to the fact that for 𝑏 > 𝑏1 the halfplane solution should be
considered.

It is important to note that, due to the finite size effect, for cases with 𝑏 < 𝑏0∞, we observe the maximum enhancement of the
normalized effective surface energy to be lower than 1∕𝑘. This happens because, for the very thin layer, the cohesive region is
approached, namely the DMT-type failure rather than the JKR-type, in the Peng et al. [13] terminology. In the latter case, if we
assume 𝜎𝑝𝑜 = 1, and 𝑎 = 𝑎𝑐 , and with the acquisition of Eq. (6), one can obtain the following relation for the maximum enhancement
hat can be reached at high retraction rates

𝛥𝛾𝑒𝑓𝑓 |𝑚𝑎𝑥 =
(𝜋
4

)

(

𝑏
𝑎0

)

, (32)

which turns out to be solely dependent on the ratio 𝑏∕𝑎0. In order to validate our upper bound enhancement factor (Eq. (32)), we
considered three distinct values of punch semi-width 𝑎∕𝑎0, on fully relaxed viscoelastic substrate with varying 𝑏∕𝑎0 ratios, unloaded
at a high unloading rate �̂� = 100. The inset of Fig. 9 shows that the maximum enhancement obtained numerically compared very
well with Eq. (32).

We incorporated this correction in Greenwood (2004) theory [21] for crack propagation in a semi-infinite substrate constituted
by a linear standard viscoelastic material, the same we used in the numerical simulations, which, in its original form gives

𝛥𝛾𝑒𝑓𝑓 =

[

𝑘 + (1 − 𝑘) 𝛼
2 ∫

1

0
𝐻 (𝜉) exp (−𝛼 (1 − 𝜉)) 𝑑𝜉

]−1

, (33)

where

𝐻 (𝜉) = 2𝜉1∕2 − (1 − 𝜉) ln
(

1 + 𝜉1∕2

1 − 𝜉1∕2

)

, (34)

𝛼 = 𝜋
4𝛴0

𝛥𝛾𝑒𝑓𝑓𝛼𝐿𝐽
𝑉𝑐

. (35)

q. (33) for very slow propagation gives 𝛥𝛾𝑒𝑓𝑓 = 1, while at high speed provides the maximum enhancement 𝛥𝛾𝑒𝑓𝑓
|

|

|max
= 1∕𝑘. This

icture, on which all present theories agree, is valid for semi-infinite solids, nevertheless, in agreement with recent results [29–31],
e have found that due to finite size effects the maximum enhancement may be consistently reduced. For the present problem, if
< 𝑏0∞, the maximum enhancement will be given by 𝛥𝛾𝑒𝑓𝑓

|

|

|max
= (𝜋∕4)

(

𝑏∕𝑎0
)

, so we propose here a generalization of Eq. (33) for
𝑏0 < 𝑏 < 𝑏0∞

𝛥𝛾𝑒𝑓𝑓

(

𝑉𝑐 ,
𝑏
)

=

[

4
( ) +

(

1 − 4
( )

)

𝛼
∫

1
𝐻 (𝜉) exp (−𝛼 (1 − 𝜉)) 𝑑𝜉

]−1

, (36)
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Fig. 10. Normalized work of separation as a function of the crack velocity at pull-off for four different values of 𝑏∕𝑎0 for a punch with 𝑎∕𝑎0 = 64.85 unloaded
from a fully relaxed viscoelastic surface at different unloading rates.

where we have explicitly indicated that now the velocity dependent effective surface energy depends not only on the crack speed,
but also on the ratio between the layer thickness and the fracture length 𝑎0. Notice that for 𝑏 > 𝑏0∞ Eq. (33) remains valid, while for
𝑏 < 𝑏0 the effective energy is velocity independent and equal to 𝛥𝛾𝑒𝑓𝑓

|

|

|max
= (𝜋∕4)

(

𝑏∕𝑎0
)

. Fig. 9 compares the predictions obtained
with the finite size Greenwood model (Eq. (36)) against the numerical results, which are found in fairly good agreement. This
result (Eq. (32)), obtained with the more general cohesive-based theory, could also be used to correct the theory of Persson–Brener
(2005) [22] and Persson (2017) [23], as we shall do in Appendix-II.

One important parameter to examine is the work of separation, which is defined as

�̂�𝑠𝑒𝑝 =
𝑤𝑠𝑒𝑝

2𝑎𝐿𝛥𝛾0
= ∫

∞

𝛿𝑃
𝜎 𝑑𝛿. (37)

which indicates the energy spent during the unloading phase to separate the contact. We calculated this parameter for four different
layer thicknesses, specifically 𝑏∕𝑎0 = [3.24, 6.48, 12.97, 32.42], which corresponds to the blue, orange, yellow, and purple curves in
Fig. 10. Similarly to previous research works [29–31] the �̂�𝑠𝑒𝑝 has a typical bell shape; at low and high velocity there is little
energy expenditure to separate the contact as the material behaves essentially as elastic, but for intermediate regimes �̂�𝑠𝑒𝑝 presents
a maximum related to the dissipative phenomena happening in the viscoelastic layer.

6. Discussion

The effect of unloading rate and layer thickness on the adhesion properties of soft viscoelastic materials has been widely observed
experimentally. Creton et al. [50] studied the micromechanics of debonding of soft elastomers from a flat punch: they identified the
local confinement of the film (quantified by the ratio a/b) as a key parameter for the nucleation and growth of cavities, which can
lead to different fracture mechanisms. In a follow-up work, Nase et al. [51] demonstrated how the work of separation (debonding
energy) is affected by the layer thickness. Similarly to what we showed in Fig. 10, they found that more energy is needed to propagate
the crack at a given velocity if the samples are thicker, due to viscoelastic dissipation.

Bartlett et al. [52] studied the effect of local confinement (a/b) on the adhesion properties of an elastic thermoreversible
gel consisting of a poly(methyl methacrylate)-poly(n-butyl acrylate)- poly(methyl methacrylate) (PMMA–PnBA–PMMA) triblock
copolymer in contact with a rigid axisymmetric flat punch, observing again how making thin layers enables inherently ‘‘weak’’
adhesive to achieve high pull-off stresses. In addition, the authors proposed a scaling law for the maximum adherence force that
predicts their experimental results quite well (Eq. (3) in [52]). This formula is based on a semiempirical model of the contact
compliance as a function of the ratio a/b. While such a model accurately captures the halfplane-to-layer transition, it fails to account
for the cohesive-zone regime where, for very low substrate thickness, adherence is limited by the theoretical strength of the interface
as we have shown here (see our Fig. 6).

More recently, Peng et al. [13] observed how the interfacial strength between PDMS and a cylindrical stainless steel flat punch
increases by decreasing the layer thickness, with the decohesion mechanism evolving from JKR-like to DMT-like (what we called
the ‘‘cohesive region’’).

By exploiting concurring effects of unloading rate and layer thickness, but this time for the case of spherical contact, Kim
et al. [53] came up with a smart design that allows, with an optimized ad-hoc thickness of the PDMS layer, to pick up, move
around and place small objects from a soft substrate, just by varying the detachment speed. Indeed, our problem has similarities
with the problem of peeling, which has been classically studied by imposing the Griffith energy balance as we did here when deriving
the elastic model. Elastomers and silicones belong to the class of soft viscoelastic materials, which exhibits rate-dependent fracture
energy [19], hence increasing the peeling rate increases the peeling force just as fast unloading increases the pull-off force in our
problem.
12
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However, to the best of our knowledge, a systematic study of how layer thickness and unloading rate affect the pull-off stress
nd the apparent work of adhesion for the case of a flat punch has not yet been reported. This may also be due to some practical
imitations intrinsic of this type of tests. Firstly, flat punch indentation can be strongly affected by sample misalignment, which
ffects the stress distribution beneath the probe and hence the crack propagation, resulting significant error when measuring
dhesion energy [54]. Another constraint may be represented by inertial effects, limiting an efficient detachment of the probe
t high velocities: linear actuators used for driving the punch often require a certain time to accelerate, which in the case of soft
ontacts, with small forces at play, may lead to pull-off before the target velocity has been achieved.

. Conclusions

The plane problem of the detachment of a large flat punch from an adhesive viscoelastic layer of finite thickness 𝑏 has been
studied. First, we have derived an elastic model based on the “thin strip” assumption by Johnson [38]. It was found that the pull-off
stress decays as ∝ 1∕

√

𝑏. Nevertheless, this functional dependence is bounded (i) for very thin layer by the cohesive limit where
the pull-off stress equals the theoretical stress of the material, (ii) for very thick layer by the halfplane limiting solution. The elastic
model provided the bounds for the viscoelastic analysis. We found that if the layer is thin, particularly at high enough retraction
velocity, the theoretical limit of the material could be reached. This turns particularly interesting as for soft polymers 𝐸∞∕𝐸0 may
easily be of the order of 103 ÷ 104 and this amplifies the layer thickness for which the theoretical strength can be observed. Clearly,
this behavior will be hindered by the fact that during unloading the crack starts to propagate at the interface hence, at pull-off, the
actual crack ligament 𝑎𝑐 is smaller than the punch semi-width.

Theoretical predictions have been compared with boundary element numerical simulations for a standard linear viscoelastic
material and using a Lennard-Jones force-interaction law. We have shown that the loading conditions have a negligible effect on
the pull-off force, in contrast with what was shown for a Hertzian geometry. Instead, the pull-off force consistently increases with
the unloading rate up to a certain plateau given by the cohesive strength of the interface.

Finally, we have shown that when the data are represented in terms of effective surface energy, at high velocity the theoretical
enhancement given by 𝐸∞∕𝐸0 is reached only when the layer thickness is larger than a characteristic lengthscale 𝑏0∞. For
𝑏0 < 𝑏 < 𝑏0∞ the maximum adhesion enhancement is limited by finite size effect and in particular we found 𝛥𝛾𝑒𝑓𝑓 |max = (𝜋∕4)

(

𝑏∕𝑎0
)

.
Hence, we have proposed an extension of Greenwood and Persson crack propagation theories accounting for finite size effects which
we found in good agreement with numerical results.

Further work may be possible to assess how different punch geometry and different substrates may affect the reported results.
Indeed, by changing the Green function the proposed numerical model can be further extended to consider 2D bonded elastic
strip [47], layered halfplane [55], 2D functionally graded half-plane [56], axisymmetric layered half-space [57,58].
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ppendix A. Perfectly bonded layer

Compressible materials

For the case of a layer perfectly bonded to the rigid substrate, following Johnson [38], one only needs to correct the results
resented in the main text for the Poisson effect with 𝜁 = (1−𝜈)2

1−2𝜈 (this requires 𝜈 ≲ 0.45, [38]), so that we have

𝛿𝑝𝑜 =

√

2𝑏𝛥𝛾
𝜁𝐸∗ , 𝜎𝑝𝑜 =

√

2𝜁𝐸∗𝛥𝛾
𝑏

, (38)

here 𝜎𝑝𝑜 equals the cohesive strength of the material for the layer thickness

𝑏0 =
2𝜁𝐸∗𝛥𝛾

𝜎20
= 4

𝜋
𝜁𝑎0. (39)

Incompressible materials

For the case of incompressible bonded layer the hypothesis that plane sections remain plane under compression is no more valid.
arber ([39], Eqt 14.64) shows that

𝑃 = −3𝐺𝐾𝛿
4𝑏3

(40)

where 𝐺𝐾 is torsional stiffness of a bar of the same cross section 𝛺 which is here an infinitely long rectangle (𝐿 → ∞), so that

𝐾 = 1
3
𝐿 (2𝑎)3 (41)

and 𝐺 = 𝐸
2(1+𝜈) is the shear modulus of the material. Hence,

𝑃
𝐿

= −2𝐺
(𝑎
𝑏

)3
𝛿 (42)

and

𝑈𝐸 = −∫ 𝑃𝑑𝛿 = 𝐿𝐺
(𝑎
𝑏

)3
𝛿2 (43)

The Griffith energy balance requires

1
2𝐿

𝜕𝑈𝐸
𝜕𝑎

= 3𝐺
(𝑎
𝑏

)3 𝛿2

2𝑎
= 𝛥𝛾 (44)

ence the indentation and stress at pull-off are

𝛿𝑝𝑜,𝑖 = −

√

2𝑏3𝛥𝛾
3𝐺𝑎2

; 𝜎𝑝𝑜,𝑖 =
𝑃𝑝𝑜

2𝑎𝐿
=
√

2
3
𝐺𝛥𝛾 𝑎

2

𝑏3
(45)

where 𝜎𝑝𝑜,𝑖 equals the cohesive strength of the interface for the layer thickness

𝑏0,𝑖 = 3

√

1
6
𝐸∗𝛥𝛾
𝜎20

𝑎2 = 𝑎
3
√

3𝜋
(

𝑎∕𝑎0
)

Appendix B. An extension of Persson and Brener viscoelastic crack propagation theory accounting for finite size effects

Using Persson and Brener theory [22] for a single relaxation time material gives an implicit equation for the effective adhesion
energy [32]

𝛥𝛾𝑒𝑓𝑓
(

𝑉𝑐
)

=

⎡

⎢

⎢

⎢

1 − (1 − 𝑘)
𝛥𝛾𝑒𝑓𝑓
𝛽𝑉𝑐

⎛

⎜

⎜

⎜

√

√

√

√

√1 +

(

𝛽𝑉𝑐
𝛥𝛾𝑒𝑓𝑓

)2

− 1

⎞

⎟

⎟

⎟

⎤

⎥

⎥

⎥

−1

, (46)
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Fig. 11. Normalized effective surface energy as a function of the crack velocity at pull-off for four different values of 𝑏∕𝑎0 for a punch with 𝑎∕𝑎0 = 64.85
unloaded from a fully relaxed viscoelastic layer (𝑘 = 0.1). Dashed lines are obtained with Eq. (47).

being 𝛽 = 64𝛴0∕
(

9
√

3
)

. Eq. (46) can be extended to finite size systems by accounting that for a very thin layer the maximum
enhancement will be reduced to 𝛥𝛾𝑒𝑓𝑓

|

|

|max
= (𝜋∕4)

(

𝑏∕𝑎0
)

, so we propose here a generalization of Eq. (46) in order to take into
account finite size systems, i.e. for 𝑏0 < 𝑏 < 𝑏0∞

𝛥𝛾𝑒𝑓𝑓

(

𝑉𝑐 ,
𝑏
𝑎0

)

=

⎡

⎢

⎢

⎢

⎣

1 −

(

1 − 4
𝜋
(

𝑏∕𝑎0
)

)

𝛥𝛾𝑒𝑓𝑓
𝛽𝑉𝑐

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√1 +

(

𝛽𝑉𝑐
𝛥𝛾𝑒𝑓𝑓

)2

− 1

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

−1

, (47)

where we have explicitly indicated that the normalized effective surface energy depends not only on the crack speed, but also on
the ratio between the layer thickness and the fracture length 𝑎0. A comparison between the numerical results and Eq. (47) is shown
in Fig. 11.
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