
14 August 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Development of advanced immersed-boundary methods for multiphysics / De Marinis, Dario. - ELETTRONICO. - (2016).

This is a PhD Thesis

Original Citation:

Development of advanced immersed-boundary methods for multiphysics

Published version
DOI:

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/271581 since: 2024-07-03

Publisher: Politecnico di Bari

POLITECNICO DI BARI

DOTTORATO DI RICERCA IN

INGEGNERIA MECCANICA E GESTIONALE
XXVIII CICLO

Curriculum: Macchine a Fluido (SSD ING-IND/08) e
Fluidodinamica (SSD ING-IND/06)

Development of Advanced Immersed-Boundary Methods
for Multiphysics

Dario DE MARINIS

Relatori: Controrelatori:

Prof. M. NAPOLITANO Prof. G. IACCARINO

Prof. M. D. DE TULLIO Prof. B. FACCHINI

Coordinatore:

Prof. G. P. DEMELIO

TRIENNIO ACCADEMICO 2013-2015

a mio padre

iv

Abstract

The purpose of this work is to develop and test an accurate and efficient tool for

computing three-dimensional complex flows past fixed or moving geometries, for a wide

range of Reynolds and Mach numbers.

Firstly, an accurate and efficient Immersed-Boundary (IB) method, using a state-of-

the-art Unsteady Reynolds-Averaged Navier–Stokes (URANS) parallel Cartesian solver,

has been improved, by means of a new IB treatment, extended to three space dimensions,

and validated versus several test cases of increasing complexity.

Then, a code for solving heat conduction (HC) equation that uses the same spatial

discretization and time-marching scheme as the URANS solver has been developed and

coupled with it to obtain an efficient tool for solving Conjugate-Heat-Transfer (CHT)

problems: the Cartesian grid presents both fluid and solid zones: the URANS equations

are solved at all fluid cells and the HC equation is solved at all solid cells; the two solutions

are coupled by the interface conditions requiring that both the temperature and heat-flux

be the same at all (fluid-solid) boundary points.

Finally, a surface-based structural solver that simulates the dynamics of deformable

geometries, discretized by triangulated Lagrangian meshes, has been coupled with the basic

IB-URANS method to provide an efficient tool for solving Fluid-Structure-Interaction

(FSI) problems: the forces exerted by the fluid onto the solid surface are used to determine

its motion, which is fed as a kinematic boundary condition for the flow, via an iterative

procedure implemented within the dual time stepping procedure of the URANS solver.

The two coupled solvers have been validated versus CHT and FSI problems, such as

the flow through an air cooled gas turbine cascade and the low Reynolds shear flow past a

deformable sphere, proving to be promising research and development tools for industrial

and medical applications.

Keywords: RANS equations; Immersed Boundary; Conjugate Heat Transfer; Turbine

Cooling, Fluid Structure Interaction.

v

Contents

Introduction 1

1 Automatic Mesh Generation 9

1.1 Surface Geometry . 10

1.2 Cartesian Volume Mesh Generation . 11

1.2.1 Ray Tracing . 11

1.2.2 Refinement Criteria . 13

1.3 Parallel decomposition . 14

2 Governing Equations 17

2.1 Navier–Stokes equations for turbulent flows 17

2.1.1 k − ω turbulence model . 19

Low Reynolds Correction . 20

2.1.2 k − ω Unsteady Reynolds-Averaged Navier–Stokes equations 20

2.2 Heat conduction equation . 21

2.3 Structure dynamics equation . 23

3 Immersed Boundary technique 25

3.1 One-dimensional reconstruction . 26

3.2 Inverse distance weighted reconstruction . 27

3.3 Least squares reconstruction . 28

3.4 Adaptive wall functions for Immersed Boundary 30

3.5 Parallelization procedure . 33

4 Numerical Solvers 35

4.1 Cartesian grid Solver . 35

4.1.1 Solution procedure for unsteady problems 39

vii

CONTENTS

4.1.2 Finite-volume approach . 43

4.1.3 Overall Algorithm . 47

4.1.4 Compact matrices coefficient storage 48

4.1.5 Boundary conditions . 49

4.2 Surface-based structural solver for Lagrangian mesh 54

4.3 Conjugate-Heat-Transfer coupling . 58

4.3.1 Interface boundary conditions . 58

4.3.2 Stability considerations . 60

4.3.3 Overall procedure . 61

4.4 Fluid Structure Interaction coupling . 63

4.4.1 Surface forces calculation . 64

4.4.2 Overall procedure . 65

5 Validation 67

5.1 IB-URANS validation . 68

5.1.1 Incompressible flow past a sphere . 68

5.1.2 Supersonic flow past an NACA0012 airfoil 70

5.1.3 Supersonic flow past a circular cylinder 71

5.1.4 Flow through VKI-LS59 turbine-rotor cascade 73

5.1.5 Transonic flow past the AGARD Wing 76

5.1.6 The transonic flow past the Unmanned Space Vehicle 77

5.2 CHT-IB-URANS validation . 81

5.2.1 Conjugate-heat-transfer in a rotating heated fluid 81

5.2.2 Flow past a heated cylinder in cross-flow 85

5.2.3 Conjugate-heat-transfer in an internally cooled C3X vane 88

5.3 FSI validation . 92

5.3.1 Oscillating circular cylinder in a cross-flow 92

5.3.2 Motion of a spherical microcapsule freely suspended in linear shear

flow . 93

Conclusions 95

A Segment triangle intersection 97

viii

CONTENTS

B Viscous coefficient matrices 101

C Right and Left Eigenvectors 103

ix

List of Figures

1.1 Surface triangle distribution in a STL model. 10

1.2 Generic 2D non convex object crossed by several rays. 12

1.3 Different configurations for the intersection between two segments in a

plane: cases a) and b) have a valid intersection, cases c) and d) no valid

intersections. 12

1.4 Different configurations for the intersection between a segment and a trian-

gle in space: cases a) and b) have a valid intersection, cases c) and d) have

no valid intersections. 13

1.5 Examples of user-input keywords for local grid refinement. 15

2.1 Control volume for heat transfer equation. 22

3.1 Tagging technique. 25

3.2 Linear reconstruction scheme. 26

3.3 Distance-weighted reconstruction scheme. 27

3.4 Least squares reconstruction scheme. 29

3.5 Numerical solution for U+ computed using κ-ω turbulence model with wall

integration, for different values of Reθ, [1]. 30

3.6 Imposition of U1 in the interface cell using the wall function approach. . . . 33

4.1 Flux balance in the x-direction (east side) of the cell L1. 43

4.2 Example of grid points distribution. 49

4.3 Triangulated surface mesh. 54

4.4 Description of coordinates for triangular element. 55

4.5 The out-of-plane deformation of two adjacent faces. 56

4.6 Gradient interpolation on the surface . 59

xi

LIST OF FIGURES

4.7 Overall CHT procedure to be employed at each pseudo-time step m. 61

4.8 Support-domain of the probe used for the evaluation of the forces at each

triangulated mesh vertex. 64

4.9 Overall FSI procedure to be employed at each physical-time step n. 65

5.1 Incompressible flow past a sphere: local view of the refined grid for z = 0. . 68

5.2 Incompressible flow past a sphere: length of the separation bubble compared

with the experimental data [2] and the numerical ones obtained by de Tullio

et al. [3]. 69

5.3 Incompressible flow past a sphere: drag coefficient are compared with the

experimental data obtained by Clift et al. [4] and the numerical ones ob-

tained by de Tullio et al. [3]. 69

5.4 Supersonic laminar flow past an NACA0012 airfoil: pressure coefficient dis-

tributions along the profile. 70

5.5 Supersonic laminar flow past an NACA0012 airfoil: Mach number contours

on the finest grid, ∆M = 0.1. 71

5.6 Supersonic turbulent flow past a circular cylinder: local view of the mesh. . 72

5.7 Supersonic turbulent flow past a circular cylinder: Mach number contours. . 72

5.8 Supersonic turbulent flow past a circular cylinder: pressure coefficient distri-

bution along the surface of the cylinder. Comparison between experimental

and numerical results for M∞ = 1.7. 73

5.9 Flow through VKI-LS59 turbine-rotor cascade: local view of the grid. . . . 73

5.10 Flow through VKI-LS59 turbine-rotor cascade: Mach number contours,

∆M = 0.03. (a) M2,is = 0.810; (b) M2,is = 1.00; (c) M2,is = 1.11; (d)

M2,is = 1.20. 74

5.11 Flow through VKI-LS59 turbine-rotor cascade: isentropic Mach number

distributions along the blade. (a) M2,is = 0.810; (b) M2,is = 1.00; (c)

M2,is = 1.11; (d) M2,is = 1.20. 75

5.12 Agard wing: 2D (a) and 3D (b) view of the triangulated mesh. 76

5.13 Agard wing: pressure coefficient on the mean aerodynamic chord η. Results

obtained by Lee-Raush and Batina [5] are shown for comparison. 77

5.14 Triangular mesh of the Unmanned Space Vehicle. 77

xii

LIST OF FIGURES

5.15 Local views of the 3D mesh used for the USV simulations: USV symmetry

plane y = 0 (a) and the right wing at y = 1m. 78

5.16 CL vs. α at M = 0.94 for the clean configuration of the USV. 79

5.17 a): pressure distribution at the USV surface at M = 0.94 and α = 7.24o.

b) pressure coefficient at wing section y = 1.0m (M = 0.94, α = 7.24), ob-

tained with the present IB-URANS solver are compared to the experimental

results. 80

5.18 Rotating tube geometry setup. 81

5.19 contours of the (tangential) speed (a) and temperature (b) obtained using

the least squares reconstruction scheme. 82

5.20 radial velocity distribution (a) and radial temperature distribution (b). . . . 82

5.21 computed mse and errmax of the velocity obtained imposing the wall tem-

perature at r = Rm and using the different IB reconstructions. 83

5.22 computed mse and errmax of the temperature obtained imposing the wall

temperature at r = Rm and using the different IB reconstructions. 84

5.23 computed mse and errmax of the velocity obtained using the different CHT-

IB reconstructions. 84

5.24 computed mse and errmax of the temperature obtained using the different

CHT-IB reconstructions. 85

5.25 computed wall temperature at r = Rm using the different CHT-IB methods

and ∆x = ∆y = 0.01 . 86

5.26 Data-set of the numerical simulation of the flow past a heated cylinder in

a channel flow. 87

5.27 locally refined computational grid. 87

5.28 contours of the (tangential) speed (a) and temperature (b) obtained using

the least squares reconstruction scheme. 88

5.29 C3X vane: locally refined grid (a); temperature contours for three different

z-planes (b); mid-span pressure (c) and temperature (d) distribution on the

external surface of the vane; Cx is the axial chord of the vane. 91

5.30 Oscillating circular cylinder in a cross-flow: drag and lift coefficients as a

function of time, fe = f0. 92

xiii

LIST OF FIGURES

5.31 Oscillating circular cylinder in a cross-flow: pressure and skin friction co-

efficients, Cp and Cf , when the cylinder is located at the extreme upper

position, compared with the experimental data provided by Guilmineau

and Queutey [6] and the numerical ones obtained by de Tullio et al.(2012) [7]. 93

5.32 Spherical microcapsule freely suspended in linear shear flow: initial condi-

tion (a) and converged solution (b) . 94

5.33 Spherical microcapsule freely suspended in linear shear flow: comparison

with the analytical solution proposed by Barthès-Biesel [8]. 94

A.1 Projection of a triangle and its intersection point on a coordinate plane. . . 98

A.2 Different configurations for the relative position of a point and a triangle. . 99

xiv

List of Tables

2.1 Coefficients for the transitional k − ω turbulence model. 20

4.1 Coefficients for different orders of accuracy. 44

5.1 Flow conditions of the R112 test-case . 89

5.2 Coolant flow conditions of the R112 test-case. 89

xv

Introduction

Background

In Computational Fluid Dynamics (CFD), the mathematical description of a problem

requires a discretization step, which allows one to transform the Navier–Stokes equa-

tions into an algebraic set of equations. To this purpose, the entire domain of interest

is discretized into small elements forming a computational grid. Usually starting from a

geometrical description of the boundaries (body and external domain), a surface grid is

produced and used to generate a volume grid covering the whole fluid domain. One of

the main difficulties in performing calculations for very complex geometries is the grid

generation process that requires many hours if not days of work by a CFD specialist.

In recent years the Immersed-Boundary (IB) method has emerged as a very appealing

approach for solving flows past very complex geometries, like those occurring in most

industrial applications. Its main, very significant, feature is the use of a Cartesian grid

embodying the complex boundaries of the flow domain that allows one to generate the

computational grid within a few minutes, as well as to use the simple and efficient numerical

methods developed in that framework. The effect of a stationary or moving boundary can

be accounted for by introducing a distribution of fictitious forcing terms in the governing

equations, such that the correct flow boundary conditions on the solid boundaries can be

assigned, or by enforcing the wall boundary conditions effect over the cells close to the

surface, as done in this work.

Over the past decades, several methods have been proposed, with various degrees of

accuracy and complexity. The IB method was originally developed for incompressible flows

(Peskin [9], Mohd-Yusof [10], Fadlun et al. [11], Iaccarino and Verzicco [12]), using non-

uniform Cartesian grids to take advantage of simple numerical algorithms–an interesting

review of the IB method and its applications is provided by Mittal and Iaccarino [13].

The CFD group at the Department of Mechanics, Mathematics and Management of

1

Introduction

the Polytechnic of Bari has extended the IB method to the preconditioned compressible

Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations for solving complex vis-

cous flows at any value of the Mach number and equipped it with a local grid refinement

procedure to resolve boundary layers and regions with high flow gradients (De Palma et

al. [14], de Tullio et al. [3]).

Overview of the Immersed-Boundary technique

The first example in literature of the IB method is due to Vieceli [15] that extended

the Marker And Cell (MAC) method (Welch et al. [16], Harlow & Welch [17]) to include

boundaries of arbitrary shape. The basic idea consisted of treating the fluid-boundary

interface as a free-surface and to impose there pressure boundary conditions so that par-

ticles could move only along the tangent to the boundary line. This procedure led to

an iteration between pressure and velocity fields until flow incompressibility and bound-

ary impermeability were both satisfied. The method, referred to as ABMAC (Arbitrary

Boundary MAC), was generalized in a successive paper (Vieceli [18]) to handle moving

walls and, in this case, in addition to the pressure, also velocity boundary conditions

were imposed at the interface. This technique allowed the treatment of walls moving

with a prescribed law or moving as a consequence of the forces exerted by the fluid on

the surface. Peskin [9],[19] reported at the beginning of the seventies simulations of the

blood flow in the hearth/mitral-valve system assuming a very low Reynolds number and

two-dimensional flow. Three-dimensional heart flows that included also the contractile

and elastic nature of the boundary were considered successively by Peskin [20] and Mc-

Queen and Peskin [21]-[22]. In Peskin’s formulation the fluid equations (incompressible

Navier–Stokes equations) are solved on a uniform Cartesian grids and the elastic fibers

of the heart walls are immersed in the flow: fluid and fibers exert time-varying forces

on each another. A Lagrangian coordinate system moving with the local fluid velocity

is attached to the fibers and tracks their location in space; the information about the

position of the fibers and their forcing on the fluid is transferred to the Eulerian under-

lying mesh where the flow solution is obtained. In this procedure the IB forcing consists

of delta functions located on the first cells external to the immersed body. These forces

can not be adequately represented on the computational mesh and, therefore, a smooth

transition between the external fluid region and internal (body) cells is introduced. This

2

Introduction

is equivalent to spreading the delta function over a narrow band (typically 3 or 4 nodes)

across the boundary. The problem of heart modeling is complicated by the fact that the

boundaries of the computational domain are moving and respond to forces (typically the

pressure and viscous stresses) depending on the local flow conditions. In contrast, if the

boundary configuration is fixed and known, the computation of the interaction between

the fluid and the immersed surfaces is much simpler. In principle, Peskin’s approach can

be applied directly by decreasing the deformability of the elastic fiber; in practical terms

this will result in a numerically stiff problem. The first applications of the IB approach to

problems with solid, indeformable immersed surface were carried out by Basdevant and

Sadourny [23], Briscolini and Santangelo [24], and Goldstein et al. [25]. Briscolini and

Santangelo [24] used an IB approach (referred to as mask method, which was a modified

version of that by Basdevant and Sadourny [23]) to compute the unsteady two-dimensional

flow around circular and square cylinders at Reynolds numbers up to 1000, whereas Gold-

stein et al. [25] considered the two-dimensional start-up flow around a circular cylinder

and three-dimensional plane- and ribbed-turbulent channel flow. In these works, the IB

approach is used in conjunction with spectral methods and the forcing is applied in a

band (consisting of 3 − 4 computational nodes) around the interface. This was required

to reduce spurious oscillations appearing in the solutions. On the other hand, Saiki and

Biringen [26] used the forcing of Goldstein et al. [25] to compute the flow around steady

and rotating circular cylinders using fourth order central finite-difference approximations.

The use of finite-differences avoided the appearance of spurious flow oscillations at the

boundary even if, in that case, the forcing was spread across the boundary using a pro-

cedure that the authors refer to as ‘first-order accurate similar to the delta-function of

Peskin’. The main drawback of the forcing introduced in Goldstein et al. [25] is that it

contains two free parameters that require a problem-dependent tuning; in particular, for

unsteady flows this forcing introduces a time-step limitation that reduces the efficiency

and the applicability of the method. Another disadvantage of the described methods is

that, in order to reduce the stiffness of the solution algorithm and to avoid unphysical flow

oscillations, the boundary forcing terms are spread across the boundary which is therefore

smeared over the grid and reduces the solution accuracy. Mohd-Yusof [10] derived an

alternative formulation of the forcing that does not affect the stability of the discrete-time

equations and does not require forcing smoothing. In addition, no user-defined parameters

were used, making the approach flow independent. In Mohd-Yusof [10] the new forcing

3

Introduction

was combined with B-splines to compute the laminar flow over a three-dimensional ribbed

channel, showing substantial improvements with respect to the previous formulations.

This discrete-time forcing scheme was originally developed in a spectral context and has

also been successfully applied to flows around cylinders and spheres, at moderate Reynolds

numbers. The same idea of forcing has been used by Fadlun et al. [11], Balaras [27], Kang

et al. [28], Kim et al. [29], Majumdar et al. [30], Tzeng and Ferziger [31], Dadone and

Grossman [32]. It is important to note that in this case, the forces are not specified in the

continuous space by means of some physical arguments, but rather in the discrete space by

directly requiring the solution to respect the desired boundary conditions. This process

is equivalent to a local reconstruction of the solution near the immersed boundary. In

Fadlun et al. [11] and Balaras [27], the solution is reconstructed at the fluid nodes closest

to the immersed boundary with one-dimensional interpolation scheme along an arbitrary

grid line and along the line normal to the interface, respectively. A revised version of the

linear interpolation method along with quadratic and ’quadratic + momentum’ interpola-

tion schemes have been presented by Kang et al. [28], to reduce the error accumulated in

the pressure field in the time-marching scheme. Differently, in Kim et al. [29], Majumdar

et al. [30], Tzeng and Ferziger [31] the solution is reconstructed at points inside the solid

phase, called ’ghost-points’, using linear, quadratic and distance-weighted interpolation

methods. In the ghost-cell framework, Dadone and Grossman [32] have combined the IB

method with the curvature-corrected symmetry technique (CCST) to accurately impose

boundary conditions for inviscid compressible flows. The above reconstruction techniques

have been used in the framework of finite-difference and finite-volume methods, and were

shown to preserve second-order space accuracy. The applications included the flow around

simple and complicated geometries in a wide range of Reynolds numbers for incompressible

and inviscid compressible flows calculations.

The first compressible viscous flows calculations have been presented by De Palma et

al. [14] and de Tullio et al. [3]. A finite-volume numerical method has been employed

for the solution of compressible Navier–Stokes equations, relying on high-order-upwind

discretization of the convective fluxes and TVD limiter, in order to accurately describe

transonic and supersonic flows. To make the methodology suitable for flow fields pre-

senting both quasi-incompressible and supersonic regions, the solver has been equipped

with a preconditioning strategy. Since industrial and aerospace applications involve very

high Reynolds number flows, the Reynolds-Averaged equations have been implemented,

4

Introduction

in conjunction with the k − ω turbulence model. A dual-time stepping approach is em-

ployed to cope with both steady and unsteady flows. Concerning the IB conditions, the

direct forcing method by Mohd-Yusof [10] has been generalized to compressible flows,

with several reconstruction strategies, namely the one-dimensional and distance-weighted

reconstruction schemes. These works are limited to several two-dimensional and simple

three-dimensional scalar calculations.

Present contribution

The purpose of this work is to develop and test an accurate and efficient tool for

computing three-dimensional complex flows past fixed or moving geometries, for a wide

range of Reynolds and Mach numbers.

Firstly, the scalar IB-URANS solver developed by De Palma et al. [14] and de Tullio

et al. [3] for Cartesian grid is extended to three-dimensional computations, using a new IB

least-squares reconstruction and a parallel decomposition of the computational domain, so

as to perform simulations within reasonable computational times. The new reconstruction

scheme, has been validated performing several test-cases. In order to efficiently compute

turbulent flows, an adaptive version of wall functions has been introduced in combination

with the IB, providing good results for attached flows.

Then, a code for solving heat conduction (HC) equation that uses the same spatial

discretization and time-marching scheme as the URANS solver has been developed and

coupled with it to obtain an efficient tool for solving Conjugate-Heat-Transfer (CHT)

problems: the Cartesian grid presents both fluid and solid zones: the URANS equations

are solved at all fluid cells and the HC equation is solved at all solid cells; the two solutions

are coupled by the interface conditions requiring that both the temperature and heat-flux

be the same at all (fluid-solid) boundary points. More in detail, at each iteration: i) the

IB grid generator detects the position of each cell of the Cartesian grid with respect to

the Lagrangian mesh, and divides the cells into four types: solid and fluid cells–whose

centers lie within the body and within the fluid, respectively; fluid- and solid-interface

cells, that have at least one of their neighbors inside and outside the body, respectively;

ii) the URANS equations are solved at all internal fluid cells, whereas the heat conduction

equation is solved at all internal solid cells using the same spatial discretization and time-

marching scheme; iii) the boundary conditions, which account for the presence of the body

5

Introduction

are imposed at the fluid-/solid-interface cells, using a local interpolation procedure; iv) the

interface boundary conditions requiring that both the temperature and heat-flux are the

same for the fluid and the solid at all boundary points are imposed by the CHT coupling

approach. Extensive validation of the overall procedure for several test-cases concerning

CHT problems in a wide range of both Reynolds and Mach numbers is carried out to

demonstrate the accuracy of the proposed methodology: the flow past a heated cylinder

in cross-flow, for which both experimental and numerical results using a body fitted CHT-

RANS solver are available (Laskowski et al. [36]); compressible turbulent flow past the

air cooled C3X turbine guide vane (Hylton et al. [37]), for which detailed experimental

results are also available. The interested reader is referred to the works by Andrei et

al. [38], Yoshiara et al. [39], Luo and Razinsky [40].

Finally, a surface-based structural solver that simulates the dynamics of deformable

geometries, discretized by triangulated Lagrangian meshes, has been coupled with the ba-

sic IB-URANS method to provide an efficient tool for solving Fluid-Structure-Interaction

(FSI) problems: the forces exerted by the fluid onto the solid surface are used to determine

its motion, which is fed as a kinematic boundary condition for the flow, via an iterative

procedure implemented within the dual time stepping procedure of the URANS solver.

More in detail, at each physical time-step: i) the IB grid generator detects the position

of each cell of the Cartesian grid with respect to the Lagrangian mesh, and divides the

cells into three types: solid and fluid cells–whose centers lie within the body and within

the fluid, respectively; fluid-interface cells, that have at least one of their neighbors inside

the body; ii) the URANS equations are solved at all internal fluid cells, and the solid cells

have no influence of the fluid domain; iii) the boundary conditions, which account for the

presence of the body are imposed at the fluid-interface cells, using a local interpolation

procedure; iv) the forces exterted by the fluid upon the structure are fed to the structural

solver which updates the position and the velocity of the surface mesh points. The pro-

posed methodology emerges as a promising approach for aeroelasticity problems: a first

computation with a moving geometry has been performed using the least squares recon-

struction scheme with very little additional effort compared to the non-moving boundary

case, namely, the oscillating circular cylinder in a cross-flow; a three-dimensional FSI

computation of the incompressible low Reynolds number flow past a deformable sphere is

presented, showing very good agreement with the analytical data.

6

Introduction

Outline

This thesis is organized as follows.

In Chapter 1 the automatic generation process of the Cartesian grid and the Lagrangian

meshes is presented, with a particular focus on the specific procedure used to determine

the position of the grid cells with respect to the body and on the local grid refinement

procedure.

In Chapter 2 the governing equations for fluid flows, the heat conduction equation in

the solid and the structure dynamics equation are described.

In Chapter 3 the IB procedure, focusing on the different reconstruction schemes devel-

oped and implemented in the numerical tool is described in detail.

In Chapter 4 the numerical solvers are described in detail. Firstly, the numerical

method for the solution of the preconditioned compressible Navier-Stokes equations and

the heat conduction equation in the Cartesian domain, is described. Then, the finite

element surface-based solver implemented for the solution of the structure dynamics is

presented. Finally, the proposed coupling methodologies for both CHT problems and FSI

problems are described.

In Chapter 5 several numerical results are provided. In the first section the IB-URANS

solver is validated versus several test-cases, covering a wide range of Mach and Reynolds

numbers for two- and three- dimensional flows past rigid geometries. Since the IB-URANS

solver is validated, in the second and in the third section, both CHT computations and the

FSI computations are presented in order to validate the coupling methodologies proposed.

7

Chapter 1

Automatic Mesh Generation

In contrast to body-fitted approaches, IB methods use a regular underlying Cartesian

grid, not conforming to the boundaries in the computational domain. Hexahedral cells

may extend through solid wall boundaries, therefore the volume mesh structure is indepen-

dent of the geometry surface discretization and topology. This allows the treatment of any

complex geometry without the need of tedious and time-consuming surface preparation

processes. The surface description may focus uniquely on resolving the geometry, while

the volume mesh should correctly describe the flow. On the other hand, Cartesian grids

suffer from a certain ”lack of resolution”. To resolve thin boundary layers and geometrical

details of various sizes and scales, the mesh is required to be very fine. This resolution is

inevitably extended to the entire computational domain using a structured environment,

and the resulting mesh may exceed the storage capacity of computers. Therefore, local

adaptive mesh refinement could significantly alleviate this shortcoming. As demonstrated

by Berger and Oliger [41], De Zeeuw and Powell [42], Quirk [43], Melton et al. [44], Kar-

man [45], Welterlen and Karman [46], Melton et al. [47], Melton [48], the technique is

very amenable to automation. Since solid wall boundaries may cut arbitrarily the volume

cells, an important component of these methods is the specific procedure to determine

the position of the cells with respect to the body. Fortunately, the fundamental issues

related to this problem have been thoroughly studied, and robust algorithms are available

in computational geometry and computer graphics literature (Preparata and Shamos [49],

Voorhies [50], O’Rourke [51], Foley et al. [52]).

It is important to note that the approach is component-based: the first step of the mesh

generation process is the positioning of the geometries in the computational domain.

Therefore, for complex configurations, one needs to create separate components that are

9

Automatic Mesh Generation

not required to have commensurate length scales. Once created, the components can be

easily translated or rotated as necessary to quickly obtain new configurations.

1.1 Surface Geometry

Three-dimensional geometries can be specified in a variety of formats, like proprietary

CAD formats, trimmed Non Uniform Rational B-Splines (NURBS), Stereo-Lithography

(STL) formats, network of grid patches, and others.

The Cartesian methods essentially rely on the identification of the relative position be-

tween the body surface and the computational nodes, and this is efficiently performed in

three dimensions if the body surface is described by triangles. For this reason, the STL

format, which is the standard for the Rapid Prototyping community, has been employed

in this work.

The STL representation of a surface is a collection of unconnected triangles of sizes in-

versely proportional to the local curvature of the original surface (Figure 1.1), and the

only requirement for the object description is that the given surface must be a closed

manifold. This restriction is enforced by rapid prototyping tools and guarantees that the

final objects can be machined (produced).

Figure 1.1: Surface triangle distribution in a STL model.

10

1.2 Cartesian Volume Mesh Generation

1.2 Cartesian Volume Mesh Generation

The Cartesian volume mesh generation task is simple, where the only complications

arise from the presence of the immersed geometries. Since generation of uniform Cartesian

cells is extremely fast, the performance of the overall algorithm depends directly on the

scheme used for adaptive refinement.

The mesh generation process begins with an initial coarse mesh, with a resolution

given by the user, covering the domain of interest. A notional description of the domain in

integer triplets is used. The use of integer coordinates makes it possible to unambiguously

compare vertex locations and leads to compact storage schemes, making these methods

particularly attractive for Cartesian meshes (Aftosmis et al. [53]). The user specifies the

minimum Xmin
d and maximum Xmax

d coordinates for each Cartesian direction d = 1, 2, 3.

Each direction can be split in a possible number Nd of cells, and each node i in the mesh

can be specified exactly by an integer triplet P id. The Cartesian coordinates of the nodes

are reconstructed, when needed, from

xid = Xmin
d +

P id
Nd

(
Xmax
d −Xmin

d

)
. (1.1)

Following the geometric criteria described in Subsection 1.2.2, the mesh sizes are then

recursively halved to increase the resolution in particular areas. To this purpose, the

relative position of each grid node with respect to the body has to be determined.

1.2.1 Ray Tracing

The easiest and computationally efficient way to determine the position of the geometry

with respect to the grid nodes is by using a ray tracing algorithm. A ray is cast between

the query point Q and a control point C the latter being definitely outside the body.

The number of intersections N of the ray with the surface are counted, if N is even the

point is external while if N is odd the point is internal. This method is extremely general

and it works for any surface provided it is closed (it must enclose an inner volume or it

must be ‘watertight’). The ray tracing works for non-convex objects and even if the body

contains cavities; the only delicate point of the procedure is that the intersections must be

counted properly. Consider first the two-dimensional example of Figure 1.2 in which the

surface triangles are segments: for the inner points Q1 and Q2 and for the outer points

Q3 and Q4 the intersection counting is straightforward but the same is not true for the

internal point Q5 and the external Q6. Following O’Rourke, however, the problem can be

11

Automatic Mesh Generation

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

C’

C

Q

Q

Q

Q

Q

Q

5

4

1

3

6

2

Figure 1.2: Generic 2D non convex object crossed by several rays.

easily solved by defining a criterion for an intersection to be considered valid. If S1 and

S2 are the extrema of a segment there is a valid intersection when one of the endpoints

is strictly above the ray and the other at the same level or below the ray. Without

loss of generality all possible cases can be reduced to those of Figure 1.3 by properly

rotating the ray and/or the segment. According to this criterion points Q5 and Q6 are

S
1

S
1

S
1

S 2

S 2

S 2

S 2

S
1

a) b) c) d)

Figure 1.3: Different configurations for the intersection between two segments in a plane:
cases a) and b) have a valid intersection, cases c) and d) no valid intersections.

correctly identified, respectively, as internal and external since the ray of the former has

only one valid intersection with the body while the latter has six intersections. It is worth

mentioning that since the intersection is computed by floating point arithmetic the terms

‘intersecting’ or ‘non intersecting’ must be considered within some tolerance. In other

words cases b), c) and d) of Figure 1.3 could be correctly identified or not depending on the

set tolerance. The ray tracing procedure, however, must work for any ray independently

12

1.2 Cartesian Volume Mesh Generation

of the particular control point, therefore if the amplitude of the tolerance parameter is an

issue a different control point can easily used to answer the question. For example, the

control point C ′ of Figure 1.2 does not cause any ambiguity for the intersection counting

of the query points Q5 and Q6. Although a rigorous proof for this point can not be

given, O’Rourke [51] reports that for a generic non convex polyhedron out of one million

of rays generated in 0.8% of cases a second ray was needed, in 0.01% a third one and

only in one case a further attempt was necessary. All the arguments previously illustrated

S
1

S
1

S 2

S 2

S 2

S
1

S
1

S 2

b) c) d)a)

Figure 1.4: Different configurations for the intersection between a segment and a triangle in
space: cases a) and b) have a valid intersection, cases c) and d) have no valid intersections.

for a two-dimensional example can be easily extended to three-dimensional configurations

provided that the intersection between a ray and a segment is replaced by the intersection

between a ray and a triangle (Figure 1.4). An important advantage of describing a surface

in space by triangles is that the intersection between a ray and a triangle can be found

parametrically by a computationally efficient procedure illustrated in Appendix A.

1.2.2 Refinement Criteria

The ray-tracing procedure allows one to generate a locally refined grid very easily, so

as to use a fine grid in the high-flow-gradient regions and a coarser one where the flow

is smooth. Now that the cells are identified to be ’inside’ or ’outside’ the body, a tag

function is generated to mark the cells assigning the value ±1 to ’fluid’ and ’solid’ cells,

respectively. The gradient of this function is different from zero only at the immersed

boundary and is used to select the rows of cells to be refined. A smoothing function

can be applied on the ±1 tag function to obtain a smeared interface that will allow a

smoother transition between coarse and refined regions. In fact, anytime a cell is tagged

for division, the refinement must be propagated several layers into the mesh to avoid

corruption of the difference stencils in the immediate vicinity of the body. The automatic

refinement strategy is based on the curvature information. The volume cells tagged for

13

Automatic Mesh Generation

refinement which intersect the body surface will include a number NT of surface triangles

and the local surface normal within the cell is computed averaging the NT surface normals.

Given a desired normal and tangential resolution (∆n,∆t) on the surface, the cell splitting

procedure is performed iteratively in each Cartesian direction independently until the cell

size reaches a target defined as

∆xi = min

(
∆n

|ñi|
,∆t

)
, (1.2)

where i represents each Cartesian direction and ñi are the direction cosines of the local

normal.

In addition to the geometric automatic refinement, it is possible to define additional regions

of the computational domains to be refined. The aim is to enhance resolutions in regions

of the flow field with large gradients. Figure 1.5(a) shows a ‘Box window’, which enforces

a prescribed grid resolution inside a box; Figure 1.5(b) shows a ‘Segment window’, which

enforces a prescribed grid resolution in the region within a distance from a line segment;

Figure 1.5(c) shows a ‘Surface refinement’, which enforces a prescribed grid resolution

along the surface of a solid body; and Figure 1.5(d) shows a ‘Layer window’ which enforces

a prescribed grid resolution within a distance from a solid body. ‘Surface resolution’ is

useful to achieve a desired grid resolution near the wall and the ‘Layer window’ can be

used to achieve a smooth mesh transition from the boundary to the far field.

1.3 Parallel decomposition

A Cartesian grid with hundreds of millions cells is required to compute three dimen-

sional flows of industrial interest. Therefore, the solver, in addition of being capable of

refining the grid locally, e. g., within the boundary layers, wakes and cooling channels,

has been parallelized, so that when running on a multiprocessor computer, may require

an acceptable computer time for preliminary design. The parallel strategy employed here

is a ghost-cell one. The computational domain is decomposed into blocks, and, at block

interfaces, rows of ghost cells are created in order to exchange information between neigh-

boring blocks. Each processor has its own grid that advances the solution and, after

each solver iteration, the solution in the ghost cells is transferred from one processor to

the neighbor one. The parallel communication between blocks is based on MPI libraries.

Multilevel Partitioning Algorithm (PARMETIS) and node balancing are used to minimize

communications between CPUs.

14

1.3 Parallel decomposition

(a) (b)

(c) (d)

Figure 1.5: Examples of user-input keywords for local grid refinement.

15

Chapter 2

Governing Equations

2.1 Navier–Stokes equations for turbulent flows

The equations governing the motion of an unsteady, compressible viscous flow of a

Newtonian fluid are the Navier–Stokes equations. They represent the conservation of

mass, momentum and energy. These equations can be written in Cartesian coordinates

(neglecting the body forces) as:

∂ρ

∂t
+

∂

∂xj
(ρ uj) = 0, (2.1)

∂(ρ ui)

∂t
+

∂

∂xj
(ρ uj ui) = − ∂p

∂xi
+
∂τji
∂xj

, (2.2)

∂(ρ e)

∂t
+

∂

∂xj
(ρ uj h) =

∂

∂xj
[ui τij − qj] , (2.3)

where ρ is the density, ui is the component of the velocity in the i-direction and e is the

total energy per unit mass,

e = eint +
V 2

2
, (2.4)

eint being the internal energy per unit mass and V being the magnitude of the velocity, h

is the total enthalpy per unit mass,

h = eint +
p

ρ
, (2.5)

and qj are the heat flux vector components, assumed following the Fourier’s law for heat

transfer by conduction

qj = −K ∂T

∂xj
. (2.6)

The viscous stress tensor τi,j is given as follows:

τi,j = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

]
. (2.7)

17

Governing Equations

In order to close the system of fluid dynamic equations the thermodynamic variables are

related by the equations of state. The problems of interest in this work involve a perfect

gas at relatively low temperatures, so that it is possible to assume a perfect gas with

constant specific heats. The equations of state are the following:

p = ρ(γ − 1)ei = ρ(γ − 1)

(
e− V 2

2

)
, (2.8)

h =
γp

(γ − 1)ρ
+
V 2

2
. (2.9)

Finally, the coefficient of viscosity can be related to the thermodynamic variables using

the Sutherland’s formula:

µ = C1
T 3/2

T + C2
, (2.10)

where C1 and C2 are constants for a given gas. For air at moderate temperatures, C1 =

1.458 · 10−6 kg/(m s
√
K), C2 = 110.4 K . The Prandtl number

Pr =
cpµ

K
(2.11)

is used to determine the coefficient of thermal conductivity K once µ is known since the

ratio (cp/Pr) is approximately constant for most gases. For air at standard conditions,

Pr = 0.72.

Turbulent flows are governed by Equations (2.1) - (2.3) but they are characterized by

fluctuations in space and time that can be characterized by very small space scale and high

frequency. To solve a turbulent flow by direct numerical simulation (DNS) all relevant

length scales have to be resolved, from the smallest eddies to scales on the order of the

physical dimensions of the domain. Moreover, the time steps must be small enough so

that the small-scale motion can be resolved in a time-accurate manner even if the flow

is steady in a time-mean sense. This results in extremely high resolution requirements

in space and time, demanding huge computer resources for high Reynolds number flow

configurations.

Instead, the instantaneous and exact governing equations are typically averaged (either in

time or in space) to remove the smallest scales, resulting in a modified set of equations

that are computationally less expensive to solve. When the averaging procedure is applied

to the unknown quantities in the Navier-Stokes equations, a new set of equations can be

derived, the so-called Reynolds-Averaged Navier-Stokes (RANS) equations. The RANS

equations now contain a term that cannot be expressed in terms of averages, usually

18

2.1 Navier–Stokes equations for turbulent flows

referred to as the Reynolds stress tensor. In order to close the equations, it is necessary

to introduce additional assumptions: a turbulence model.

2.1.1 k − ω turbulence model

The simplest approach is to relate the large-scale effects of turbulence to modified

thermodynamic properties of the fluids, namely to an effective viscosity obtained as the

sum of the conventional molecular term and a turbulent or eddy viscosity, µt. In this case,

the Reynolds stress tensor can be written as:

τ̃ij = µt

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

]
− 2

3
ρkδij . (2.12)

Equation (2.12) is normally referred to as Boussinesq hypothesis. In Equation (2.12) k is

the turbulent kinetic energy defined as:

k =
1

2
u′iu
′
i, (2.13)

where u′i are the fluctuations of the velocity components ui. The solution of the RANS

equations is now possible once the eddy viscosity is defined. There is a very large amount

of literature devoted to different definition of µt but in general the models are derived on

the basis of (i) dimensional arguments (i.e. the units are [m2/s]), (ii) physical insights (i.e.

consistency with experimental observation) and (iii) practical aspects of the formulation

such as simplicity and generality. The k − ω turbulence model developed by Wilcox

(1988a) [54] has been employed in this work. The transport equations for the turbulent

kinetic energy k and for the specific dissipation rate ω are:

∂(ρ k)

∂t
+

∂

∂xj
(ρ uj k) = τ̃ij

∂ui
∂xj
− β∗ρω k +

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
, (2.14)

∂(ρω)

∂t
+

∂

∂xj
(ρ uj ω) = α

ω

k
τ̃ij
∂ui
∂xj
− β ρω2 +

∂

∂xj

[
(µ+ σµt)

∂ω

∂xj

]
, (2.15)

where the eddy viscosity is

µt = α∗ρ
k

ω
. (2.16)

The model coefficients are:

α∗ = 1, α =
5

9
, (2.17)

β =
3

40
, β∗ =

9

100
, σ =

1

2
, σ∗ =

1

2
. (2.18)

19

Governing Equations

Low Reynolds Correction

The model presented in the previous subsection is restricted to high–Reynolds number

applications since it does not take in account low–Reynolds number effects. In fact, for

example, the model fails to predict the sharp peak in turbulent kinetic energy close to

surface for pipe and channel flows. In order to adapt the model to low-Reynolds number

flows, a correction is which renders the model coefficients α, α∗, and β∗ functions of the

turbulent Reynolds number defined as:

Ret =
ρk

ωµ
. (2.19)

The coefficients maintain the value of Equations (2.17) - (2.18) as Ret → ∞, that is the

fully turbulent case (herein called αHR and βHR), whereas they assume a lower value as

the turbulent Reynolds number decreases (e.g. in the viscous sub-layer). The relations

introduced by Wilcox are the followings:

α∗ =
α∗o +Ret/Rk
1 +Ret/Rk

, (2.20)

α = αHR
α0 +Ret/Rω
1 +Ret/Rω

(α∗)−1 , (2.21)

β∗ = β∗HR
β0 + (Ret/Rβ)4

1 + (Ret/Rβ)4 . (2.22)

Table 2.1 provides two set of the coefficients value, corresponding to the 1988a and 1998

version of the model: The coefficients Rk, Rω, and Rβ control the rate as the closure

Rk Rω Rβ α0 α∗0 β0

Wilcox[88a] 6 2.7 8 1/10 β/3 5/18
Wilcox[98] 6 2.95 8 1/9 β/3 4/15

Table 2.1: Coefficients for the transitional k − ω turbulence model.

coefficients approach the fully–turbulent case ones, and their value has been tuned with

experimental and numerical data (DNS).

2.1.2 k − ω Unsteady Reynolds-Averaged Navier–Stokes equations

The Reynolds Averaged Navier–Stokes (RANS) equations, in terms of Favre mass-

averaged quantities, using the k − ω turbulence model, in a Cartesian coordinate system

can be rewritten:
∂ρ

∂t
+

∂

∂xj
(ρ uj) = 0, (2.23)

20

2.2 Heat conduction equation

∂(ρ ui)

∂t
+

∂

∂xj
(ρ uj ui) = −∂pt

∂xi
+
∂τ̂ji
∂xj

, (2.24)

∂(ρ H̃ − pt)
∂t

+
∂

∂xj

(
ρ uj H̃

)
=

∂

∂xj

[
ui τ̂ij + (µ+ σ∗µt)

∂k

∂xj
− qj

]
, (2.25)

∂(ρ k)

∂t
+

∂

∂xj
(ρ uj k) = Sk +

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
, (2.26)

∂(ρω)

∂t
+

∂

∂xj
(ρ uj ω) = Sω +

∂

∂xj

[
(µ+ σµt)

∂ω

∂xj

]
, (2.27)

where

H̃ = h+
1

2

(
u2 + v2 + w2

)
+

5

3
k, (2.28)

pt = p+
2

3
ρk = ρRT +

2

3
ρk = ρ

(
R+

2

3

k

T

)
= ρR̃T , (2.29)

Sk = τ̃ij
∂ui
∂xj
− β∗ρω k, (2.30)

Sω = α
ω

k
τ̃ij
∂ui
∂xj
− β ρω2, (2.31)

τ̂ij = (µ+ µt)

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

]
. (2.32)

The heat flux vector components qj are rewritten as:

qj = −
(
µ

Pr
+

µt
Prt

)
∂h

∂xj
, (2.33)

where Prt is the turbulent Prandtl number.

2.2 Heat conduction equation

Heat transfer can occur for convection, conduction or radiation. The conduction mode

occurs either because of an exchange of energy from one molecule to another, with no

motion, or because of the motion of the free electrons. On the other hand, molecules

present in liquids and gases have freedom of motion and they carry energy. The transfer

of heat from one region to another due to such a motion, added to conduction within the

fluid, builds heat transfer by convection. When fluid motion occurs by density variation, it

is called free convection. When fluid motion is driven by external forces, forced convection

occurs. Finally, heat transfer can occur via thermal radiation. According to the particular

physical case, the three heat transfer modes are involved in a different amount and some

21

Governing Equations

of them can be neglected. It is usually important to quantify the amount of energy being

transferred per unit time. The temperature distribution in a medium is the main objective

of a conduction analysis and it involves the evaluation of the temperature in the medium

as a function of space at steady state and as a function of time during the transient state.

Once a temperature distribution is known, for heat conduction the rate equation is known

as Fourier’s law and expressed as:

q = −Ks∇Ts (2.34)

where Ks is the thermal conductivity and q is the thermal flux.

The energy balance law considered at the beginning of this chapter, can be summarized

for a generic control volume of Figure 2.1 as:

energy stored = Inlet energy − exit energy + energy generated . (2.35)

This relation can be re-written as:

ρ∆x∆y∆z
∂T

∂t
= (Qx +Qy +Qz)− (Qx+dx +Qy+dy +Qz+dz) +G∆x∆y∆z. (2.36)

Figure 2.1: Control volume for heat transfer equation.

From Equation (2.36), the conduction heat equation can be written as:

ρscs
∂Ts
∂t

= ∇ · (Ks∇Ts) + Ss (2.37)

22

2.3 Structure dynamics equation

where T is the temperature, ρs is the density and cs is the volumetric specific heat. The

last term on the right hand side is any source term defined by the problem. The thermal

conductivity in the most general case is a tensor defined as:

Ks =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 . (2.38)

Formulation (2.38) is valid for solving for heat conduction problems in anisotropic ma-

terial, with a directional variation in the thermal conductivity. In this study, an isotropic

material behavior is assumed and the thermal conductivity reduces to the scalar quantity,

Ks.

2.3 Structure dynamics equation

The governing equation for the structure dynamics read

ρs
d2r

dt2
+ ηd

dr

dt
= ∇ · σ + ρsts + ρsgs (2.39)

where ρs is the material density, r is the displacement vector, ηd is a damping coefficient,

σ is the stress tensor, ts is the vector of external surface forces per unit mass and gs is the

vector of the body forces per unit mass. Note that the equation is given in the Lagrangian

reference frame, therefore the time derivatives of the displacements are material (or total)

derivatives.

The stress tensor σ is related to the strain tensor

E =
1

2

(
∇r + (∇r)T + (∇r)T · ∇r

)
, (2.40)

by a constitutive law σ = f(E) describing the material behavior.

23

Chapter 3

Immersed Boundary technique

The IB method allows one to greatly simplify the grid generation process and even

to automate it completely. The governing equations are solved directly on a Cartesian

grid in their simplest form by means of very efficient numerical schemes that can be also

parallelized in a relatively simple way. On the other hand, the effect of the body has to

be accounted for and the relative position of each grid cell with respect to it has to be

determined. This is accomplished by a tagging algorithm; the grid generator detects the

cell faces that are cut by the body surface and divides the cells into four types: solid and

fluid cells, whose centers lie within the body and within the fluid, respectively; and fluid-

/solid-interface cells, which have at least one of their neighbor cells inside the body/fluid,

respectively. Then, the centers of the fluid- and solid-interface cells are projected onto

the body surface along its normal direction, so as to obtain fluid-cell and solid-cell pro-

jection points (FCPPs, SCPPs), respectively, see Fig. 3.1. The boundary conditions that

Figure 3.1: Tagging technique.

account for the presence of the body are mimicked by a special treatment of the interface

cells, according to the direct forcing procedure proposed by Mohd-Yusof [10]. A local

25

Immersed Boundary technique

interpolation procedure is used to transfer the boundary conditions onto the centers of

the fluid-/solid-interface cells, whereas the governing equations are solved at all of the

fluid/solid cell centers and the solid/fluid cells have no direct influence on the fluid/solid

domain. Different methods of imposing the IB conditions are described in detail in the

following.

3.1 One-dimensional reconstruction

In general, the position of the center of each cell, where the flow unknowns are located,

does not lie on the immersed boundary, so that the solution is to be interpolated to

account for the wall boundary conditions. Following the idea of Fadlun [11], the simplest

interpolation is the one-dimensional linear one. For each fluid-interface cell, the shortest

Cartesian distance between the cell center and the wall is evaluated and the relative FCPP

(W) is determined along the corresponding Cartesian direction. As shown in Fig. 3.2 (for

the two-dimensional case), the flow variable at the center of the interface cell (point I)

is linearly interpolated between the imposed value at the FCPP and the computed value

at the neighboring fluid-cell center (point A). For the pressure, a first-order accurate

Neumann boundary condition is imposed forcing the value at point I to be equal to that

at point A.

Figure 3.2: Linear reconstruction scheme.

26

3.2 Inverse distance weighted reconstruction

3.2 Inverse distance weighted reconstruction

For each fluid-interface cell, the (normal) distance between the cell center and the wall

is evaluated and the relative FCPP (W) is determined. At the fluid-interface cell I the

flow variables are then reconstructed using an inverse-distance-based interpolation of the

computed values of Nnbr surrounding fluid cells and the imposed one at W, see Fig. 3.3.

Thus, the interpolation formula used to reconstruct the variable ΦI when the Dirichlet

condition ΦW is to be imposed at the immersed boundary point, W, is:

ΦI =

Nnbr∑
i

αi
q

Φi +
β

q
ΦW , (3.1)

where q =
∑Nnbr

i αi+β, αi = 1/di, β = 1/d. di are the distances between the surrounding

cell centers and the fluid-interface cell center and d is its distance from the wall.

On the other hand, when a Neumann boundary condition is to be imposed, its first

order discretization reads: ΦW = ΦI − 1
β

(
∂Φ
∂n

)
W

; and for the special case of the pressure,

the homogeneous Neumann condition,
(
∂Φ
∂n

)
W

= 0, leads to the following interpolation

formula for ΦI :

ΦI =

∑Nnbr
i

αi
q Φi

1− β
q

. (3.2)

In conclusion, at all fluid-interface points, the flow and turbulence variables are eval-

uated using Equation (3.1), whereas the pressure is computed using Equation (3.2).

Figure 3.3: Distance-weighted reconstruction scheme.

27

Immersed Boundary technique

3.3 Least squares reconstruction

For each fluid-interface cell, the (normal) distance between the cell center and the wall

is evaluated and the relative FCPP (W) is determined. The value of each variable of

interest at the center of each fluid-interface cell is computed by linear interpolation of the

values at W –as prescribed by the boundary condition–and at the location of a probe L

placed at a distance δ from the wall along its local normal direction; this does not coincide

with a fluid-cell center and is to be evaluated in terms of the values at ne first neighboring

fluid-cell centers. The choice of δ, which is critical for the application of this procedure,

has been chosen equal to twice the largest distance between the interface cells and the

wall.

The interpolation procedure is that proposed by Vanella and Balaras [55]: a support-

domain is defined around each probe and a shape function is constructed in it, based on

a moving least-squares approach. In this work the support-domain is a box of half-size

1.5Hx × 1.5Hy × 1.5Hz centered at the probe location. Hx, Hy and Hz are different for

each probe and are proportional to the local grid. In particular

Hx = max(|xI − xi|), Hy = max(|yI − yi|), Hz = max(|zI − zi|),

with i = 1,2,...,ne.
(3.3)

The transfer operator that evaluates the unknown variable U at each probe, L, from

the known values at the ne neighboring fluid cells, ui, is finally obtained as:

UL (x) =
m∑
j=1

pj (x) aj (x) = pT (x) a (x) . (3.4)

In Equation (3.4), pT (x) is the basis functions vector of length m, a(x) is the interpolation-

coefficients vector and x is the position of the probe. Vanella and Balaras [55] show that

a linear basis, pT (x) = [1 x y z], is cost-efficient and second order accurate. The vector,

a(x), is computed as follows. A weighted L2-norm is defined as:

J =

ne∑
k=1

W (x− xk)[pT (xk)a(x)− uki]2, (3.5)

where xk is the position vector of the grid point k in the interpolation stencil, uki is the

variable value at grid point k, and W(x − xk) is a cubic spline weight function that will

be defined below. J is minimized with respect to a(x), leading to the following system:

28

3.3 Least squares reconstruction

A (x) a (x) = B (x) uki ,

uki = [u1
i . . . u

ne
i]T ,

A (x) =

ne∑
k=1

W
(
x− xk

)
p
(
xk
)

pT
(
xk
)
,

B (x) =
[
W
(
x− x1

)
p
(
x1
)
. . . W (x− xne) p (xne)

]
(3.6)

Here, A(x) is a 4× 4 matrix, while B(x) is of size 4×ne. Combining Eqs. (3.4) and (3.6)

one can write U as follows:

UL(x) =

ne∑
k=1

ΦL
k (x)uki = ΦT (x)uki (3.7)

where Φ(x) = p(x)A(x)−1B(x) is a column vector with length ne, containing the shape

function values for the probe L. Cubic splines are finally used for the weight functions:

W (x− xk) =


2
3 − 4r2

k + 4r3
k for rk ≤ 0.5

4
3 − 4rk + 4r2

k −
4
3r

3
k for 0.5 ≤ rk ≤ 1.0

0 for rk ≥ 1.0

(3.8)

where rk = |x− xk|/Hi.

After evaluating the values of all unknowns at the probe location, the zero pressure

gradient in the wall normal direction is imposed by setting pI = pL and all of the other

variables are linearly interpolated using the prescribed values at the wall and the computed

ones at the probe, see Fig. 3.4.

Figure 3.4: Least squares reconstruction scheme.

29

Immersed Boundary technique

3.4 Adaptive wall functions for Immersed Boundary

High Reynolds number wall-bounded flows are particularly challenging, as thin tur-

bulent boundary layers develop near wall regions, with large gradients of the flow field

variables normal to the surface. For such flows, the representation of the wall boundary

has a large impact on the accuracy of the computation, and is also crucial for the robust-

ness and convergence of the flow solver. The local grid refinement approach allows the

enhancement of resolution near solid boundaries, and in principle this procedure can be

sufficient. In the framework of Cartesian methods, however, there are still many appli-

cations for which the correct integration of the flow variables at the wall would require

a large number of grid points and thus prohibitive computer resources. In these cases,

it would be suitable to employ accurate wall functions. The approach used in this work

follows the work by Kalitzin et al. [1].

Near-wall behavior

Consider an incompressible flow with constant molecular viscosity. For turbulent flow

conditions, the velocity profile can be split into three distinguished regions: the viscous

sub-layer, the logarithmic layer and the defect layer. The location of the outer edge of the

logarithmic layer depends on the far-field Reynolds number Reθ as shown in Fig. 3.5 and

the extension of the logarithmic layer grows with increasing Reynolds number.

Figure 3.5: Numerical solution for U+ computed using κ-ω turbulence model with wall
integration, for different values of Reθ, [1].

30

3.4 Adaptive wall functions for Immersed Boundary

In a quasi-equilibrium boundary layer (e.g., flow over a flat plate at zero-pressure

gradient), the region between the wall and the outer edge of the logarithmic layer has

a characteristic behavior, not influenced by the Reynolds number. Defining the friction

velocity:

uτ =

√
τw
ρ
, (3.9)

where τw = µ(∂U/∂y)w is the wall shear stress, and

y+ =
yuτ
ν

(3.10)

the profiles of the flow variables as function of y+ collapse. This universal law justifies

the derivation of wall functions. Near the wall, derivatives in the stream-wise direction

can be neglected and the flow and turbulence variables depend only on the coordinate y,

which is directed normal to the wall. To derive solutions for the viscous sub-layer and

logarithmic layer, the equations are recast in non-dimensional form. The velocity and

various turbulence variables in wall units are:

U+ =
U

uτ
, ν+

τ =
νt
ν
, κ =

κ

u2
τ

, ω+ =
ων

u2
τ

. (3.11)

For the flow over a flat plate at zero pressure gradients, the RANS equations simplify in

the region between the wall and the outer edge of the logarithmic layer to

d

dy

(
(µ+ µτ)

dU

dy

)
= 0. (3.12)

Integration along the wall normal coordinate y yields

(µ+ µτ)
dU

dy
= µ

(
∂U

∂y

)
w

= ρu2
τ . (3.13)

Introducing the dimensionless variables of Eq. (3.11) in the Eq. (3.13), the last becomes

(1 + ν+
t)
dU+

dy+
= 1. (3.14)

The linear law, U+ = y+, follows for the viscous sub-layer where ν+ � 1. In the logarith-

mic layer, ν+
t is large and Eq. (3.14) is usually approximated by

ν+
t

dU+

dy+
= 1. (3.15)

Using Prandtls assumption for the turbulent viscosity,

ν+
t = Ady+, (3.16)

31

Immersed Boundary technique

the logarithmic law U+ = (1/A)log(y+) + B follows with the experimentally fitted con-

stants A = 0.41 and B = 5.0. Suppose that ν+
t were known. Then Eq. (3.14) could

be integrated to find the universal function U+(y+). An early approach was to assume a

form for that function. However, it is more consistent to determine the function by solving

the wall layer equations numerically. Then, knowing the universal function, the friction

velocity can be computed from the velocity at the first grid point if this lies in the wall

layer. In fact,

Rey ≡ yU/ν = y+U+(y+) = F (y+), (3.17)

where Rey is the Reynolds number based on y and U . The right-hand-side of Eq. (3.17)

is a universal function. Inverting this function for the first computed cell close to the wall

with y = y1 and U = U1 one has:

y+
1 = y1uτ/ν = F−1(Rey)1, (3.18)

from which uτ can be found and the characteristics of the boundary layer can be extracted

from the universal profile. Given F (y+), the inversion can be done iteratively by Newtons

method. However, this can be done once and for all, and the inverse function stored in

a table. This is the method used in the present computations. In the same way, look-up

tables for each dimensionless turbulence variable for a well resolved numerical solution are

generated.

Numerical implementation

The look-up tables have been created from an accurate numerical solution of a flow

over a flat plate at zero-pressure gradient. For variables with large variations in the

boundary layer the tables are obtained for their logarithm (e.g., logω+ is reported in place

of ω+), thus reducing the interpolation error. An off-wall boundary condition is assumed

for the velocity components as well as for the turbulence variables, enforcing the interface

cell center values. For each interface cell (see Fig. 3.6), the tangential component of the

velocity, U2, is evaluated at a certain distance δ from the immersed surface along the local

normal direction (this de facto corresponds to the creation of a body − fitted grid line).

Knowing the value of y2 = δ, ν2 and U2, the local Reynolds number Rey,2 = y2U2/ν2

is computed. A value of uτ is then obtained from the corresponding look-up tables. From

the definition of uτ (Eq. (3.9)), knowing the interface cell values y1 and ν1, the tangential

component of the velocity, U1 can be computed and imposed. The same procedure is

32

3.5 Parallelization procedure

Figure 3.6: Imposition of U1 in the interface cell using the wall function approach.

used for the turbulence variables, while both the normal velocity and the temperature are

linearly interpolated using the value at the wall and at the point 2. Finally a zero pressure

gradient in the normal direction is imposed.

It is worth mentioning that for a general geometry, an interpolation procedure is needed

for the calculation of the tangential velocity in the point 2 since the wall normal passing

through the interface cell does not contain any computational node. So the velocity at this

point is computed using the least-squared formula based on the grid points surrounding the

interpolation node. Finally, the choice of distance δ is obviously critical for the application

of this procedure. The results in this work have been obtained using δ equal to twice the

largest distance from the wall in all the interface cells.

3.5 Parallelization procedure

Since the parallel strategy employed for the Cartesian grids provides a row of ghost

cells for the communication between two neighbor processors, for the one-dimensional

and for the inverse distance weighted reconstruction schemes no additional information

are required from the neighbor processors. Instead of the first two reconstruction, in

the case of the least squares reconstruction, and more in general for all the procedures

involving the probe points, additional information are required because the probe points

can lie inside a computational cell belonging to a different processor-domain. Thus each

processor reconstructs the variables of each probe that lie in its domain and then sends

these information to the processor that contains the interface cell related to the probe.

33

Chapter 4

Numerical Solvers

4.1 Cartesian grid Solver

As shown in the Chapter 3, the Cartesian grid is divided in fluid zones and solid zones,

where the equations (2.23), (2.24), (2.25) and the equation (2.37) are to be solved, respec-

tively. Following the idea of Iaccarino et al. [56] the solid heat transfer equation (2.37)

is included in the equation (2.25), deleting the convective and turbulent terms only while

solving the solid zones. The numerical advantage of this approach is the reduced time

for each iteration, because basically the overall system has one less equation, while more

difficulties in setting a time step only for solid may be encountered. Finally in this way

the same spatial discretization and time-marching numerical algorithm can be used for

both fluid and solid zones.

For numerical solutions, it is convenient to recast the equations (2.23), (2.24), (2.25)

into a compact form:

∂Q

∂t
+
∂(E − Ev)

∂x
+
∂(F − Fv)

∂y
+
∂(G−Gv)

∂z
= Hr, (4.1)

where Q is the vector of primary conservative variables:

Q = (ρ, ρu, ρv, ρw, ρH̃ − pt, ρk, ρω)T , (4.2)

E,F and G are the inviscid flux vectors, Hr is the source terms vector:

E =



ρu
ρu2 + pt
ρuv
ρuw

ρH̃u
ρuk
ρuω


, F =



ρv
ρuv

ρv2 + pt
ρvw

ρH̃v
ρvk
ρvω


, G =



ρw
ρuw
ρvw

ρw2 + pt
ρH̃w
ρwk
ρwω


, Hr =



0
0
0
0
0
Sk
Sω


, (4.3)

35

Numerical Solvers

and the viscous flux vectors Ev,Fv and Gv are written in terms of a viscous set of dependent

variables

Qv = (pt, u, v, w, T, k, ω)T , (4.4)

and coefficient matrices such that (Schwer [57]):

Ev = Rxx
∂Qv
∂x

+ Rxy
∂Qv
∂y

+ Rxz
∂Qv
∂z

, (4.5)

Fv = Ryx
∂Qv
∂x

+ Ryy
∂Qv
∂y

+ Ryz
∂Qv
∂z

, (4.6)

Gv = Rzx
∂Qv
∂x

+ Rzy
∂Qv
∂y

+ Rzz
∂Qv
∂z

. (4.7)

The viscous stress tensors Rij are included in Appendix B.

From the definition of pt (Equation (2.29)):

dpt = dp+
2

3
kdρ+

2

3
ρdk. (4.8)

Now we can write the following functional forms:

ρ = ρ(p, T), h = h(p, T), (4.9)

whose differential read:

dρ = ρpdp+ ρTdT, dh = hpdp+ hTdT (4.10)

where the subscripts indicate partial derivative operator. Substituting the equation for dρ

Equation (4.10) into Equation (4.8) we get:

dpt =

(
1 +

2

3
kρp

)
dp+

2

3
ρdk +

2

3
kρTdT. (4.11)

From the definition of derivative,

ρ̃pt = lim
dpt → 0

T, k = const

{
dρ

dpt
= ρp

dp

dpt
+ ρT

dT

dpt

}
, (4.12)

but dT/dpt = 0, so that:

ρ̃pt = ρp

(
dp

dpt

)
T,k

. (4.13)

Notice that the derivatives of the flow variables are designated with (̃), meaning that they

are functions of the set of primitive variables pt, T, k. From Equation (4.11):(
dp

dpt

)
T,k

=
1

1 + 2
3kρp

, (4.14)

36

4.1 Cartesian grid Solver

resulting in the expression:

ρ̃pt =
ρp

1 + 2
3kρp

. (4.15)

The remaining derivatives are evaluated in a similar manner and are given by the following

expressions:

ρ̃T =
ρT

1 + 2
3kρp

, ρ̃k =
−2

3ρρp

1 + 2
3kρp

, (4.16)

h̃pt =
hp

1 + 2
3kρp

, h̃T = hT −
2
3kρThp

1 + 2
3kρp

, h̃k =
−2

3ρhp

1 + 2
3kρp

. (4.17)

Now we introduce the variable c̃2 which is equal to the speed of sound squared c2 plus a

contribution from the turbulent kinetic energy:

c̃2 =
ρh̃T

ρρ̃pt h̃T + ρ̃T (1− ρh̃pt)
=

ρhT
ρρphT + ρT (1− ρhp)

+
2
3kρ(ρphT − ρThp)
ρρphT + ρT (1− ρhp)

. (4.18)

For a perfect gas, Equation (4.18) reduces to:

c̃2 = γRT +
2

3
γk = γ

(
R+

2

3

k

T

)
T = γR̃T . (4.19)

Finally, Equation (4.15) can be rewritten as follows:

ρ̃pt =
1

c̃2
− ρ̃T (1− ρh̃pt)

ρh̃T
, (4.20)

Now we consider the inviscid form of the equations, to study some characteristics of

the conservation equations. Setting the viscous variables Qv as our primary variables and

using chain rule, equation (4.1) is written as:

P
∂Qv
∂t

+ Av
∂Qv
∂x

+ Bv
∂Qv
∂y

+ Cv
∂Qv
∂z

= 0, (4.21)

where P = ∂Q/∂Qv, Av = ∂E/∂Qv, Bv = ∂F/∂Qv and Cv = ∂G/∂Qv.

The form of the the matrix P is the following:

P =



ρ̃pt 0 0 0 ρ̃T ρ̃k 0

ρ̃ptu ρ 0 0 ρ̃Tu ρ̃ku 0

ρ̃ptv 0 ρ 0 ρ̃T v ρ̃kv 0

ρ̃ptw 0 0 ρ ρ̃Tw ρ̃kw 0

H̃ρ̃pt + ρh̃pt − 1 ρu ρv ρw H̃ρ̃T + ρh̃T H̃ρ̃k + ρh̃k + 5
3ρ 0

ρ̃ptk 0 0 0 ρ̃Tk ρ+ kρ̃k 0

ρ̃ptω 0 0 0 ρ̃Tω ρ̃kω ρ



. (4.22)

37

Numerical Solvers

We can individually diagonalize the Jacobians P−1Av for the x-direction, P−1Bv for the

y-direction, or P−1Cv for the z-direction with the eigenvectors matrix Mx,My, or Mz,

respectively, but we can not simultaneously diagonalize any pair of them. Because the

Euler equations are hyperbolic in nature, the eigenvectors and eigenvalues associated with

this system are real. This results in a diagonal matrix Λx,Λy, or Λz, representing the

propagation speeds of the characteristics variables M−1
x dQv, M−1

y dQv, or M−1
z dQv. For

instance, diagonalizing in the x-direction results in the transformed equation:

M−1
x

∂Qv
∂t

+ ΛxM
−1
x

∂Qv
∂x

+ M−1
x P−1Bv

∂Qv
∂y

+ M−1
x P−1Cv

∂Qv
∂z

= 0, (4.23)

where Λx is

Λx = diag (λ1, λ2, λ3, ...) = diag (u, u, u, u+ c̃, u− c̃, u, u), (4.24)

where c is the speed of sound. For each Jacobian matrix (Av, Bv and Cv) we have three

propagation velocities: a particle velocity u and two acoustic velocities u ± c̃. These

characteristic velocities play an important role in the overall convergence and dissipation

properties, for different schemes. The characteristic variables in the x-direction are:

M−1
x dQv =



dpt −
(

ρh̃T
1−ρh̃p

)
dT

−
√

2
2 (ρdv − ρdw)

−
√

2
2 (ρdv + ρdw)
dpt + ρc̃du
dpt − ρc̃du

ρdk
ρdω


. (4.25)

The first three characteristic variables all travel at the particle velocity u. The first is

entropy, the second and third are transverse velocities. The fourth characteristic variable,

called the p wave, is an acoustic wave and travels at the velocity u + c. The fifth char-

acteristic variable, called the q wave, is also an acoustic wave and travels at the velocity

u− c. Both eigenvalues and eigenvectors are illustrated in Appendix C.

This analysis is the starting point for increasing the convergence rate through precondi-

tioning.

38

4.1 Cartesian grid Solver

4.1.1 Solution procedure for unsteady problems

Because of the complexity of the flow fields we want to capture, we apply a three-point

fully-implicit time marching procedure to the Equations (4.1):

3Qn+1 − 4Qn +Qn−1

2∆t
+

[
∂(E − Ev)

∂x
+
∂(F − Fv)

∂y
+
∂(G−Gv)

∂z
−Hr

]n+1

= 0, (4.26)

where ∆t is the time step. In this equations, the solution at time level n+ 1 is unknown,

whereas that at time levels n and n− 1 are known. The flux vectors (E,Ev, F, Fv, G,Gv)

as well as the source-terms vector Hr are all specified in terms of the solution vector Qv

but are non-linear in Qv. Because of the non-linear nature of these equations, an iterative

solution procedure must be used in order to determine the solution vector Qv at time

level n + 1 satisfying Equation (4.26). An additional problem with the above equations

is that even if (E,Ev, F, Fv, G,Gv) were linear, we would end up with a large size sparse

matrix which is very difficult and time consuming to invert, this requiring some sort of

factorization scheme.

The iteration methods to solve the above equations have become popular, and are covered

in detail in the works by Chakravarthy and Osher [58] and Pulliam [59].

Dual Time Stepping

The approach chosen in this work for iterating to the correct solution Qv at time level

n+1 is the Dual-Time Stepping (DTS) scheme. This scheme is similar to the approximate-

Newton method, but has an additional sink term that can be controlled to optimize

convergence. In fact, the iterative method is treated as a time-marching method based

on a pseudo-time, and in this formulation, the physical-time derivative becomes a sink in

the pseudo-time frame. The total system can be viewed as a steady-state calculation with

a sink term dependent on the physical-time step. For large physical-time steps, the sink

term is small, the problem behaves like a steady-state problem and the Courant-Friedrichs-

Lewy number based on the pseudo-time step (pseudo-CFL) should be set corresponding

to the steady-state optimal values. For small time steps, the problem is sink dominated

and the pseudo-CFL can be increased. Unlike the physical-time step, the pseudo-time step

can be set locally depending on the local flow conditions and physical-time steps. This is

especially useful for grids that include sparse regions where the CFL based on the physical

time step is fairly low and stretched regions where the physical CFL is fairly high.

Since the Euler method works well for time-marching to a steady-state solution, because

39

Numerical Solvers

of its good dissipation properties as the time step is increased (it typically damps out any

unsteadiness for large values of the time step), we apply the DTS to the equations (4.26),

using an Euler implicit procedure in the pseudo-time:

Qn+1,m+1
v −Qn+1,m

v

∆τ
+

3Qn+1,m+1 − 4Qn +Qn−1

2∆t
+

+

[
∂(E − Ev)

∂x
+
∂(F − Fv)

∂y
+
∂(G−Gv)

∂z
−Hr

]n+1,m+1

= 0,

(4.27)

where ∆τ is the pseudo-time step, and n and m indicate the physical and pseudo-time

levels respectively.

A linearization procedure is used in the pseudo-time to express the fluxes and the other

quantities in terms of the primary set of dependent variables Qv at step n+ 1,m+ 1:

En+1,m+1 = En+1,m +

(
∂E

∂Qv

)n+1,m

∆Qv = En+1,m + An+1,m
v ∆Qv, (4.28)

En+1,m+1
v = En+1,m

v +

(
∂Ev
∂Qv

)n+1,m

∆Qv =

En+1,m
v +

(
Rxx

n+1,m ∂

∂x
+ Rxy

n+1,m ∂

∂y
+ Rxz

n+1,m ∂

∂z

)
∆Qv,

(4.29)

Qn+1,m+1 = Qn+1,m +

(
∂Q

∂Qv

)n+1,m

∆Qv = Qn+1,m + Pn+1,m∆Qv, (4.30)

Hn+1,m+1
r = Hn+1,m

r +

(
∂Hr

∂Qv

)n+1,m

∆Qv = Hn+1,m
r , (4.31)

where

∆Qv = Qn+1,m+1
v −Qn+1,m

v . (4.32)

The terms Fn+1,m+1, Gn+1,m+1, Fn+1,m+1
v and Gn+1,m+1

v are obtained in a similar way.

Premultiplying the pseudo-time derivative through a preconditioning matrix Γ for opti-

mum convergence in the inner iterations, multiplying all the terms through the pseudo-

time step ∆τ , and rewriting the equations in delta-form (omitting the superscripts of the

Jacobians for clearness):[
Γ +

3

2

∆τ

∆t
P + ∆τ

∂

∂x

(
Av −Rxx

∂

∂x
−Rxy

∂

∂y
−Rxz

∂

∂z

)
+∆τ

∂

∂y

(
Bv −Ryx

∂

∂x
−Ryy

∂

∂y
−Ryz

∂

∂z

)
+∆τ

∂

∂z

(
Cv −Rzx

∂

∂x
−Rzy

∂

∂y
−Rzz

∂

∂z

)]
∆Qv =

−∆τ

[
3Qn+1,m − 4Qn +Qn−1

2∆t
+Rn+1,m

]
,

(4.33)

40

4.1 Cartesian grid Solver

where

Rn+1,m =

[
∂(E − Ev)

∂x
+
∂(F − Fv)

∂y
+
∂(G−Gv)

∂z
−Hr

]n+1,m

. (4.34)

This procedure maintains the fully non-linear method in the physical-time. To recover the

non-dual-time steady-state form, we simply set the physical-time step to infinity and con-

verge in one physical-time step. However, with a poor initial solution, a finite physical-time

step typically helps to stabilize the numerical solution and thus enhances the robustness

of the code.

Preconditioning

The form of the preconditioning matrix Γ used in the code is based on the generalized-

equation-of-state preconditioner introduced by Merkle [60], which is based on the time-

accurate Jacobian P introduced in Equation (4.22) with a modified density derivative

ρ̃
′
pt :

Γ =



ρ̃
′
pt 0 0 0 ρ̃T ρ̃k 0

ρ̃
′
ptu ρ 0 0 ρ̃Tu ρ̃ku 0

ρ̃
′
ptv 0 ρ 0 ρ̃T v ρ̃kv 0

ρ̃
′
ptw 0 0 ρ ρ̃Tw ρ̃kw 0

H̃ρ̃
′
pt + ρh̃pt − 1 ρu ρv ρw H̃ρ̃T + ρh̃T H̃ρ̃k + ρh̃k + 5

3ρ 0

ρ̃
′
ptk 0 0 0 ρ̃Tk ρ+ kρ̃k 0

ρ̃
′
ptω 0 0 0 ρ̃Tω ρ̃kω ρ



. (4.35)

The effect of steady-state preconditioning is to modify the speed of sound such that all

of the eigenvalues of the system Γ−1Av are of a similar order. This prevents the stiffness

problem common for factorized schemes at low Mach numbers. Viscous precondition-

ing ensures that the inviscid and viscous time scales are similar in low Reynolds number

computational cells. Time-accurate flow fields present a further problem. For very small

physical-time steps, the solution is sink dominated and best convergence can be obtained

only if Γ is equal to P (ρ̃
′
pt = ρ̃pt), regardless of the Mach number. However, for very

large time steps the sink becomes very weak and the steady-state preconditioner gives

41

Numerical Solvers

the best convergence rates. Extensive research has been done for determining appropriate

expressions for the preconditioning parameter (ρ̃
′
pt) for the steady-state inviscid (Choi and

Merkle [61], Turkel [62], van Leer, Lee and Roe [63]), and viscous (Choi and Merkle [64])

flow fields as well as for time-accurate flow fields (Venkateswaran and Merkle [65]). Follow-

ing the work of Venkateswaran [66], [65] and Merkle [60], the preconditioning parameter

is given by the following formula:

ρ̃
′
pt =

1

V 2
r

− ρ̃T (1− ρh̃pt)
ρh̃T

, (4.36)

The term Vr in Equation (4.36) is a reference velocity that is chosen to appropriately

precondition the relevant time scales. The non-preconditioned ρ̃
′
pt = ρ̃pt can be recovered

by setting V 2
r = c̃2.

One possible way of choosing Vr (Buelow et al. [67]) is:

V 2
r = min

[
c̃2, max

(
V 2
inv, V

2
vis, V

2
unsteady

)]
. (4.37)

The inviscid velocity scale is given by V 2
inv ∼ M2c2, where M is the Mach number. The

viscous velocity scale is given by V 2
vis ∼ V 2

inv/Re
2
∆x, where Re∆x is the cell Reynolds

number. Venkateswaran and Merkle [65], by analyzing the exact stability solution of

the one-dimensional dual-time stepping Euler equations, determined an expression for the

unsteady velocity scale based on characteristic length scales and the physical-time step:

V 2
unsteady ∼

(
Lx
∆t

)2

+

(
Ly
∆t

)2

+

(
Lz
∆t

)2

. (4.38)

The optimal value for the length scales Lx,Ly and Lz are dependent on the specific problem;

however, they are always of the same order of the characteristic length of the domain.

The definition for ρ̃
′
pt differs slightly from definitions given by Merkle and Venkateswaran,

ρ̃
′
pt = 1/V 2

r . The definition in Equation (4.36) was chosen because in the limit as the

Mach number approaches one, this definition smoothly tends to the non-preconditioned

equations exactly, whereas the Mach number becomes very small it approaches the same

value given by Merkle and Venkateswaran. For an ideal gas, where h̃pt = 0, the expression

becomes:

ρ̃
′
pt =

1

c̃2

[
c̃2

V 2
r

− 1

]
+ ρ̃pt . (4.39)

The bracketed term is always greater than zero because c̃2/V 2
r (from Equation (4.37)) is

always greater than or equal to one, thus ρ̃
′
pt is always greater than ρ̃pt . The conditions

42

4.1 Cartesian grid Solver

for setting the appropriate velocity scale for inviscid and viscous equations is covered in

detail in Buelow [68].

4.1.2 Finite-volume approach

A collocated cell-centered finite volume space discretization is used. The convective

terms in the residual R in Equation (4.34) are discretized using either an upwind flux-

difference-splitting scheme with first and second order of accuracy, or a second-order-

accurate centered scheme. The viscous terms are discretized by second-order-accurate

centered differences. The convective terms in the left-hand-side (LHS) of Equation (4.34),

are always discretized using a first-order upwind scheme, according to a deferred-correction

approach, in order to ensure convergence of the iterative solver.

Discretization of the residual R terms

In the present finite-volume methodology, for each face, the contributions of the neigh-

bor cells in each Cartesian direction are collected to build the corresponding convective

and dissipative operators for the cell.

R
22

R
12

R
11

R
21

L
1

R
2

R
1

L
11

L
12

Figure 4.1: Flux balance in the x-direction (east side) of the cell L1.

For example, considering the convective fluxes in the x direction, referring to Figure 4.1,

for the cell L1 we have: ∫
V

∂E

∂x
δV = (ErL1

− ElL1
)Sx, (4.40)

where r and l indicate the right and left faces of each computational cell and the evaluation

43

Numerical Solvers

of ErL1
is carried out in the following way:

ErL1
=

1

N r
L1

Nr
L1∑

j=1

{
1

2
(ERj + EL1)− φ1 (ΓMx|Λx|)rL1,j

(
M−1

x

)r
L1,j

(Qv,Rj −Qv,L1)

− φ2

N l
L1

(
ΓMxΛ

+
x

)r
L1,j

N
l
L1∑
i=1

(
M−1

x

)l
L1,i

(Qv,L1 −Qv,L1i)


+
φ2

N r
Rj

(
ΓMxΛ

−
x

)r
L1,j

N
r
Rj∑
i=1

(
M−1

x

)r
Rj ,i

(Qv,Rji −Qv,Rj)


.

(4.41)

In Equation (4.41), R and L indicate the cell centers at the right and left sides of the face,

respectively, one and two subscripts being employed for the first and second row of cells

(see Figure 4.1). Ny
X is the number of the neighboring cells of the cell X on the y side.

The matrices Λ±x are defined as:

Λ+
x =

1

2
(Λx + |Λx|), Λ−x =

1

2
(Λx − |Λx|). (4.42)

Matrices Γ,Mx,Λ
±
x and M−1

x are calculated using the averaged variables according to

Roe’s linearization and the values of φ1 and φ2 are provided in Table 4.1 for different

orders of accuracy. A similar approach is employed to build the centered diffusive operator.

When computing flows with shocks, a total variation diminishing approach, with minmod

limiter function, is employed in conjunction with the second order upwind scheme.

order φ1 φ2

1st-upwind 1/2 0
2nd-upwind 1/2 -1/2
2nd-centered 0 0

Table 4.1: Coefficients for different orders of accuracy.

In the same way, considering the dissipative fluxes in the x direction, we have:∫
V

∂Ev
∂x

δV = (ErvL1
− ElvL1

)Sx, (4.43)

where r and l indicate the right and left faces of each computational cell and the evaluation

of ErvL1
is carried out in the following way:

ErvL1
=

1

N r
L1

Nr
L1∑

j=1

Rxxj

(
QvRj

−QvL1

)
xRj − xL1

+ Rxyj

(
∂Qv
∂y

)
j

+ Rxzj

(
∂Qv
∂z

)
j

 (4.44)

44

4.1 Cartesian grid Solver

where Rxxj
, Rxyj

,Rxzj ,
(
∂Qv

∂z

)
j
,
(
∂Qv

∂z

)
j

are calculated using the averaged variables ac-

cording to Roe’s linearization.

Discretization of the LHS terms

The left-hand-side (LHS) of Equation (4.33) is modified to improve the efficiency of

the method, without affecting the residual, that is, the physical solution.

A significant reduction in operation count and CPU time can be accomplished through

a diagonalization procedure used in conjunction with ADI first introduced by Pulliam and

Chaussee [69] and extended to dual-time stepping schemes by DeRango and Zingg [70]

and Buelow et al. [67]. For the inviscid steady-state equations without source/sink terms,

the diagonalization is straightforward. However, for the dual-time stepping formulation

there is always a sink term 3
2

∆τ
∆tP. Following the work by Schwer [57], we group the

preconditioning and physical-time Jacobians together into a single term S = Γ + 3
2

∆τ
∆tP

and then diagonalize the LHS with respect to this term. In order for this procedure to

work efficiently, S must be easily invertible and must have easily obtained eigenvectors

and eigenvalues. Because Γ and P are almost identical, S can be written in the form:

S =

(
1 +

3

2

∆τ

∆t

)



ρ̃
′′
pt 0 0 0 ρ̃T ρ̃k 0

ρ̃
′′
ptu ρ 0 0 ρ̃Tu ρ̃ku 0

ρ̃
′′
ptv 0 ρ 0 ρ̃T v ρ̃kv 0

ρ̃
′′
ptw 0 0 ρ ρ̃Tw ρ̃kw 0

H̃ρ̃
′′
pt + ρh̃pt − 1 ρu ρv ρw H̃ρ̃T + ρh̃T H̃ρ̃k + ρh̃k + 5

3ρ 0

ρ̃
′′
ptk 0 0 0 ρ̃Tk ρ+ kρ̃k 0

ρ̃
′′
ptω 0 0 0 ρ̃Tω ρ̃kω ρ



,

(4.45)

where

ρ̃
′′
pt =

ρ̃
′
pt + 3

2
∆τ
∆t ρ̃pt

1 + 3
2

∆τ
∆t

. (4.46)

Because S has the same form as Γ and P, the eigenvectors and eigenvalues also take the

same form, yielding an easily computed set of real eigenvalues and eigenvectors.

Now, the scheme is obtained firstly neglecting the non-orthogonal viscous coefficient ma-

trices, Rxy, Rxz, Ryx,Ryz,Rzx and Rzy, and then factoring out the matrix S from the

45

Numerical Solvers

LHS:

S

[
I + ∆τS−1 ∂

∂x

(
Av −Rxx

∂

∂x

)
+ ∆τS−1 ∂

∂y

(
Bv −Ryy

∂

∂y

)
+ ∆τS−1 ∂

∂z

(
Cv −Rzz

∂

∂z

)]
∆Qv = −∆τ

[
3Qn+1,m − 4Qn +Qn−1

2∆t
+Rn+1,m

]
.

(4.47)

Diagonalizing following the procedure by Pulliam and Chaussee [69], the matrices S−1Av,

S−1Bv and S−1Cv can be written as:

S−1Av = MxΛxM
−1
x . (4.48)

S−1Bv = MyΛyM
−1
y . (4.49)

S−1Cv = MzΛzM
−1
z . (4.50)

For the inviscid equations, the eigenvector matrices can be factored out of the implicit

operator. The viscous terms, however, present another difficulty. The linearized viscous

coefficient matrix Rij is not diagonalized by the same eigenvectors as the inviscid flux

terms. The current method for incorporating viscous effects into the LHS is to replace

the viscous coefficient matrix with its spectral radius Rs times the identity matrix. The

spectral radius is defined as below (Schwer [57]):

Rs = max

(
µ+ µt
ρ

,
ρ̃
′′
ptK

ρρ̃′′
pt h̃T + ρ̃T (1− ρh̃pt)

)
. (4.51)

The diagonalized scheme is then written as:

S

[
I+∆τMx

∂

∂x

(
Λx −RsI

∂

∂x

)
M−1

x + ∆τMy
∂

∂y

(
Λy −RsI

∂

∂y

)
M−1

y

+∆τMz
∂

∂z

(
Λz −RsI

∂

∂z

)
M−1

z

]
∆Qv = −∆τ

[
3Qn+1,m − 4Qn +Qn−1

2∆t
+Rn+1,m

]
.

(4.52)

One potential drawback to the above method for diagonalizing the LHS is that the

modal analysis, based on S−1Av, appears to be inconsistent with that used for the RHS

dissipation terms, based on Γ−1Av. Due to the nature of the preconditioning, this does

not appear to be a problem. Examining Equation (4.45) and Equation (4.35), the only

difference between S and Γ is a scalar multiplier and the definition of ρ̃
′′
pt found in Equa-

tion (4.46). Since preconditioning is employed under low Mach number conditions, there

are primarily two limiting cases to examine: 1) temporal resolution of acoustic waves,

46

4.1 Cartesian grid Solver

where a very small physical-time step is used, and 2) temporal resolution of particle prop-

agation, which generally employs a much larger time step. For case 1, the small time step

causes the preconditioner to be shut off, thus ρ̃
′′
pt = ρ̃

′
pt = ρ̃pt so that leaves the system

reverts to its non-preconditioned form and thus is consistent between the LHS and RHS.

For case 2, the preconditioning remains active. For Euler computations, the term ∆τ/δt

is no greater than unity, and is typically much less than one. Also, ρ̃
′
pt/ρ̃pt ≈ 1/M2 and

from examination of Equation (4.46) we see that ρ̃
′′
pt ' ρ̃

′
pt so that S ≈ Γ again the LHS

and RHS remaining nearly consistent.

In order to have a more compact form of the matrix to be inverted, we use an ADI

factorization of the LHS:

SMx

[
I + ∆τ

∂

∂x

(
Λx −RsI

∂

∂x

)]
M−1

x My

[
I + ∆τ

∂

∂y

(
Λy −RsI

∂

∂y

)]
M−1

y

Mz

[
I + ∆τ

∂

∂z

(
Λz −RsI

∂

∂z

)]
M−1

z ∆Qv = −∆τ

[
3Qn+1,m − 4Qn +Qn−1

2∆t
+Rn+1,m

]
.

(4.53)

4.1.3 Overall Algorithm

The final algorithm takes the following seven steps:

∆Q̂(0)
v = −∆τS−1

[
3Qn+1,m − 4Qn +Qn−1

2∆t
+Rn+1,m

]
, (4.54)

[
I + ∆τ

∂

∂x

(
Λx −RsI

∂

∂x

)]
∆Q̂(1)

v = M−1
x ∆Q̂(0)

v , (4.55)

∆Q̂(2)
v = Mx∆Q̂(1)

v , (4.56)[
I + ∆τ

∂

∂y

(
Λy −RsI

∂

∂y

)]
∆Q̂(3)

v = M−1
y ∆Q̂(2)

v , (4.57)

∆Q̂(4)
v = My∆Q̂

(3)
v , (4.58)[

I + ∆τ
∂

∂z

(
Λz −RsI

∂

∂z

)]
∆Q̂(5)

v = M−1
z ∆Q̂(4)

v , (4.59)

∆Qv = Mz∆Q̂
(5)
v , (4.60)

where Equations (4.55), (4.57), and (4.59) are inverted using the BiCGStab approach (van

der Vorst [71]). S−1 is illustrated in Appendix C.

47

Numerical Solvers

4.1.4 Compact matrices coefficient storage

As mentioned in Subsection 4.1.3, for each Cartesian direction we end up with a linear

problem of the form:

[A]X = B, (4.61)

The matrix [A] is a (Ncells ·Neq) square matrix, because the equations are coupled, and it

is sparse due to the non-structured connectivity of the grid. Furthermore, the BiCGStab

iterative procedure used to solve this system is based on several matrix-vector operations.

It is clear that matrices storage and manipulation strategy plays a crucial role when solving

complex three-dimensional configurations, where a very large number of grid points is

needed, without demanding prohibitive computer memory resources. To cope with this

problem, a compact matrices coefficient storage procedure is used in this work. The

key idea is that thanks to the diagonalizing procedure, only Neq elements per cell are

non-zero and we know their position in the matrix structure. To save memory during

calculations, only the non-zero coefficients of the original matrix are stored in a vector A′

with (Ncells +Nfaces,i) ·Neq elements, where i is the sweep Cartesian direction. To rebuilt

the matrix structure, we need now to create two auxiliary vectors of integers, storing the

column and row informations of the matrix elements. For this purpose are introduced:

the vector IND that stores the index of the column of the elements of A′ in the matrix

A, and has the same size of A′; the vector NCOL that stores the ending index in A′ of

each row of the matrix A and has (Ncells ·Neq + 1) elements.

As Ncells increases, Nfaces,i increase proportionally, with a factor depending on the levels

of refinement required (for the structured case, the factor is 2, since we are considering a

single direction). For large values on Ncells the ratio between the size of the three vectors to

store in the compact case and the size of the single matrix of the standard case, assuming

that the storing of an integer takes the same memory amount of the storing of a real (this

assumption penalizes our estimate), will be:

2 (Ncells +Nfaces,i)Neq + (Ncells ·Neq + 1)

(Ncells ·Neq)
2 '

3Ncells + 2Nfaces,i

N2
cells ·Neq

∝ 1

Ncells
. (4.62)

An example of the procedure, for a very simple case is given in the following.

Considering the grid shown in Figure 4.2, supposing Neq = 1 and solving the x–

48

4.1 Cartesian grid Solver

4

8

31

5 6 7

2

Figure 4.2: Example of grid points distribution.

direction, the matrix [A] of the resulting system will have the following form:

[A] =



A11 A12 A13 0 0 0 0 0
A21 A22 0 A24 0 0 0 0
A31 0 A33 A34 0 0 0 0

0 A42 A43 A44 0 0 0 0
0 0 0 0 A55 A56 0 0
0 0 0 0 A65 A66 A67 0
0 0 0 0 0 A76 A77 A78

0 0 0 0 0 0 A87 A88


. (4.63)

The stored vectors will be:

A′ = (A11,A12,A13,A22,A21,A24,A33,A31,A34,A44,A42,A43,
A55,A56,A66,A65,A67,A77,A76,A78,A88,A87)

, (4.64)

IND = (1, 2, 3, 2, 1, 4, 5, 1, 4, 4, 2, 3, 5, 6, 6, 5, 7, 7, 6, 8, 8, 7) , (4.65)

N(COL) = (0, 3, 6, 9, 12, 14, 17, 20, 22) . (4.66)

Note that for each row of the matrix A, building the vector A′, the first element to be

stored is the diagonal element Aii.

In the general case of Neq, each element Ai,j is a Neq ×Neq diagonal matrix.

4.1.5 Boundary conditions

Because the code is a cell-centered finite-volume method, the boundary conditions at

the external surfaces of the computational domain are applied using fake cells (f). Several

types of boundary conditions have been applied. For inflow and outflow boundaries, the

fake cell values are set so that certain quantities as stagnation or static pressure and

49

Numerical Solvers

stagnation or static temperature are kept constant. For wall boundaries, the fake cell

values are set such that there is no flux through the boundary. The fake cells are updated

after the interior flow field is calculated and the boundary conditions are imposed explicitly.

In the next subsections, the subscripts f , 1 and 2 indicate the fake-cell and the first and

second cell inside the computational domain respectively.

Wall

The pressure gradient normal to the wall is assumed to be zero, which is approximately

correct for boundary layers:
∂p

∂n

∣∣∣∣
wall

= 0. (4.67)

A first-order application of this boundary requires that the fake cell value for pressure is

equal to that of the first cell within the domain,

pf = p1. (4.68)

Walls can either be isothermal or have no heat flux. The no heat flux case requires that

the temperature gradient be zero at the wall. Similar to the pressure boundary condition

above, this requires the temperature at the fake cell to be equal to the temperature of the

first cell within the domain,

Tf = T1. (4.69)

The isothermal case states that the wall is held at a constant temperature Twall. To

ensure that the wall remains at the appropriate temperature, in the fake cells the following

condition is employed:

Tf = 2Twall − T1. (4.70)

Walls can also either be inviscid or viscous. Viscous walls satisfy the no slip condition

such that the normal component of the relative velocity to the wall Vn and the tangential

component of the relative velocity to the wall Vt are zero. This condition is easily applied

by

uf = 2uwall − u1, vf = 2vwall − v1, wf = 2wwall − w1. (4.71)

Inviscid walls must ensure that no flow goes through them, therefore only the normal

component of the velocity Vn is set to zero. Like the pressure and no heat-flux conditions,

for inviscid walls the gradient of the tangent velocity normal to the wall is zero.

50

4.1 Cartesian grid Solver

As for temperature (4.70) and velocity (4.71), the wall boundary condition for k and

ω are

kf = −k1, ωf = 2ωwall − ω1, (4.72)

being kwall = 0. For the specific dissipation rate the boundary condition suggested by

Menter [72] is used:

ωwall = a
6ν

βy2
1

, (4.73)

where y1 is the distance between the wall and the first cell above the wall, and the constant

a is equal to 10.

Subsonic inflow

A free-stream flow condition is imposed and the magnitude of the velocity at the fake

cell centers is reconstructed using a second-order discretization:

|V1| =
√
u2

1 + v2
1 + w2

1,

|V2| =
√
u2

2 + v2
2 + w2

2,

∂ |V |
∂n

= 0 −→ |Vf | =
4

3
|V1| −

1

3
|V2| .

(4.74)

Then, using the imposed values of the stagnation temperature Tstag and the stagnation

pressure pstag, the static temperature and the static pressure can be evaluated:

Tf = Tstag −
|Vf |2

2ht
,

pf = pstag

(
Tf
Tstag

)ht
R

.

(4.75)

The direction of the inlet velocity is also imposed, and then the three components of the

velocity can be calculated:

uf = sinφ cos θ |Vf | , vf = sinφ sin θ |Vf | , wf = cosφ |Vf | , (4.76)

where θ and φ are the azimuth and zenith angle, respectively. The turbulent variables

are calculated imposing the inlet turbulence intensity ti and the inlet kinematic turbulent

viscosity νt = µt/ρ, in the following way:

kf =
3

2
t2i |Vf |

2 , ωf =
α∗

νt
kf . (4.77)

51

Numerical Solvers

Supersonic inflow

In the case of supersonic inflow, the Mach number M , the static temperature T∞ and

the static pressure p∞ are imposed. The speed of sound is evaluated as

c =

√
ρhT

ρT (1− ρhp) + ρρphT
(4.78)

and then in the fake cells:

Tf = T∞, pf = p∞, |Vf | = Mc. (4.79)

As for the subsonic inflow case, the direction of the inlet velocity is also imposed and then

the three components of the velocity can be calculated:

uf = sinφ cos θ |Vf | , vf = sinφ sin θ |Vf | , wf = cosφ |Vf | . (4.80)

The turbulent variables are calculated imposing the inlet turbulence intensity ti and the

inlet kinematic turbulent viscosity νt = µt/ρ, in the following way:

kf =
3

2
t2i |Vf |

2 , ωf =
α∗

νt
kf . (4.81)

Subsonic outflow

In the case of subsonic outflow, only the static pressure pout is imposed while all of the

other variables are extrapolated with a second-order reconstruction. Then:

pf = pout,

uf =
4

3
u1 −

1

3
u2, vf =

4

3
v1 −

1

3
v2, wf =

4

3
w1 −

1

3
w2,

Tf =
4

3
T1 −

1

3
T2, kf =

4

3
k1 −

1

3
k2, ωf =

4

3
ω1 −

1

3
ω2.

(4.82)

Supersonic outflow

In the case of supersonic outflow, no variables can be imposed and then all the variables

are extrapolated using always the same second-order reconstruction. Then:

52

4.1 Cartesian grid Solver

pf =
4

3
p1 −

1

3
p2,

uf =
4

3
u1 −

1

3
u2, vf =

4

3
v1 −

1

3
v2, wf =

4

3
w1 −

1

3
w2,

Tf =
4

3
T1 −

1

3
T2, kf =

4

3
k1 −

1

3
k2, ωf =

4

3
ω1 −

1

3
ω2.

(4.83)

Periodicity

The implementation of periodic boundary conditions is employed using ghost-cells. In

this case, the values of the first cells inside the flow of one surface are copied in the ghost

cells of the second surface and vice-versa. In this way, periodicity of the functions and

their derivative is imposed. The restriction is that the cells of the two surface must have

a one-to-one correspondence.

Immersed boundary

For boundaries inside the computational domain, the wall boundary conditions are

imposed using the IB technique shown in Chapter 3.

53

Numerical Solvers

4.2 Surface-based structural solver for Lagrangian mesh

The structure is defined by a triangulated network of Ne springs (edges), forming Nt

triangles. The mass of the structure is concentrated on the Nv vertices of the triangles

with Cartesian coordinates {xi}, i ε 1 ... Nv, uniformly distributed on the surface, see

Fig. 4.3.

Figure 4.3: Triangulated surface mesh.

The potential energy of the structure includes in-plane elastic terms, combined with

bending energy and constraints for volume conservation:

W ({xi}) = Win−plane ({xi}) +Wbending ({xi}) +Wvolume ({xi}) . (4.84)

and the corresponding nodal internal forces:

fi = fe + fb + fv,

fe = −
∂Win−plane ({xi})

∂xi
,

fb = −
∂Wbending ({xi})

∂xi
,

fv = −∂Wvolume ({xi})
∂xi

.

(4.85)

The in-plane deformations are evaluated using a finite element method for large de-

formations of a triangulated surface mesh based on the work of Taylor et al. [33] and

also implemented by Hammer et al. [34]. The model ignores the shear bending forces

in the element, which will be evaluated in a separated way. Here, the method is briefly

described and the reader is referred to [33] for the details and the derivations. The right

Cauchy-Green deformation tensor can be computed as

C = GT g G (4.86)

54

4.2 Surface-based structural solver for Lagrangian mesh

where G and g are the inverse Jacobian matrices mapping the position of a point in global

coordinates in the initial and current position, respectively, to the parametric representa-

tion adopted within a triangle:

G =

 1
|∆R21| −

∆RT
21·∆R31

|∆R21||n|

0 |∆R21|
|n|

 g =

 ∆rT21 ·∆r21 ∆rT21 ·∆r31

∆rT21 ·∆r23 ∆rT31 ·∆r31

 (4.87)

where ∆rij and ∆Rij are the position vectors from vertex j to i in the present (deformed)

and original (undeformed) configuration, respectively, see Fig. 4.4. The vector n is defined

as ∆R21 ×∆R31. The Green strain tensor can be obtained by

Figure 4.4: Description of coordinates for triangular element.

E =
1

2
(C− I) (4.88)

where I is the identity tensor. As shown in Section 2.3, the stress tensors are related to

the strain tensors by the constitutive law of the material. In the case of elastic behavior,

stresses are thus given by

σ = DE elastic behavior (4.89)

where D are constant elastic moduli. In the case of hyperelastic behavior, stresses are

given by

σ = 2µE + λtr(E)I hyperelastic behavior (4.90)

where µ and λ are the Lamè coefficients and tr(·) is the trace function. Finally, the local

component of the stress tensor σ are used to calculate the internal forces on the vertices

55

Numerical Solvers

of a triangular element:

fe = AhBT

 σ11

σ22

σ12

 (4.91)

where A and h are the area and height of the triangular element in the original config-

uration, respectively, and B = Qb, where Q is the stress tensor transformation matrix,

which can expressed in terms of components G as:

Q =


G2

11 0 0

G2
12 G2

22 G12G22

2G12G11 0 G11G22

 (4.92)

and b is a 3 × 9 strain displacement matrix given by:

Q =


−∆rT21 ∆rT21 (0, 0, 0)

−∆rT31 (0, 0, 0) ∆rT31

−(∆r21 + ∆r31)T ∆rT31 ∆rT21

 . (4.93)

The nine elements of vector fe are the three components of vertex 1, followed by those of

vertices 2 and 3 of the triangle. The internal force fei for a given vertex i is obtained by

summing the contributions from all elements sharing that vertex.

The out-of-plane deformation of two adjacent faces sharing an edge is modeled by

means of a bending spring, as shown in Fig. 4.5. Four vertices are involved in the energy

term. Here, the model adopted in [35] is employed:

Figure 4.5: The out-of-plane deformation of two adjacent faces.

Wbending ({xi}) =

Nei∑
j=1

kb
[
1− cos(θj − θ0

j)
]

(4.94)

56

4.2 Surface-based structural solver for Lagrangian mesh

where Nei is the number of edges starting from the i–vertex, θ and θ0 are the angles

between two faces in the actual and stress-free configurations, respectively, and kb is the

bending constant. The nodal forces corresponding to the bending energy are obtained as

(see Fig. 4.5):

f b1 =βb[b11(n1 × r32) + b12(n2 × r32)]

f b2 =βb[b11(n1 × r13) + b12(n1 × r34 + n2 × r13) + b22(n2 × r34)]

f b3 =βb[b11(n1 × r21) + b12(n1 × r42 + n2 × r21) + b22(n2 × r42)]

f b4 =βb[b11(n1 × r23) + b22(n2 × r23)]

(4.95)

with

b11 = −cos(θ)

|n1|2
; b12 =

1

|n1||n2|
; b22 = −cos(θ)

|n2|2
; βb = kb

sin(θ) cos(θ0)− cos(θ) sin(θ0)√
1− cos2(θ)

;

(4.96)

and rij = ri − rj , with ri position vector of the vertex i.

The volume conservation constraint is given by

Wvolume ({xi}) =
kv
(
V − V tot

0

)2
2V tot

0

(4.97)

where kv is the volume constraint constant and V tot
0 is the desired total volume. The nodal

forces corresponding to the volume conservation constraint are obtained as:

fvi = −kv(V − V
tot

0)

V tot
0

Nti∑
j=1

1

6

(
|nj |

3
+ tjc × r

j
lm

)
(4.98)

where Nti is the number of triangles containing the i–vertex and tjc = (xi +xl +xm)/3 is

the center-of-mass of the j-th triangle.

Considering also body forces G and external surface forces T (i.e., the gravity forces

and the hydrodynamic load) the total potential energy is:

Π ({xi}) = W ({xi}) + ΦG ({xi}) + ΦT ({xi}) . (4.99)

Then, the forces applied to mass points are:

Fi = −∂Π ({xi})
∂xi

= fi + Gi + Ti, (4.100)

The minimum energy problem can be solved by moving mass point in accordance with

the motion equation:

mi
d2ri
dt2

+ ηi
dri
dt

= Fi, (4.101)

which yields the displacement ri of the i-th element of mass mi, inner viscosity ηi subject

to the force Fi.

57

Numerical Solvers

4.3 Conjugate-Heat-Transfer coupling

In CHT problems, the URANS equations are solved at all fluid cells and the heat

conduction equation is solved at all solid cells, using the same spatial discretization and

time-marching numerical algorithm presented in the Section 4.1; the two solutions are

coupled by the interface conditions requiring that both the temperature and heat-flux

be the same at all (fluid-solid) boundary points. Therefore, in order to enforce such

interface conditions, as already done for the fluid domain, for each solid-interface cell, the

appropriate SCPP, and eventually L, are determined and the temperature is interpolated

just as for each fluid-interface cell, see Chapter 3.

4.3.1 Interface boundary conditions

With the scope to ensure a solution to the heat transfer equation, two conditions shall

be imposed at each time step. At first, it is reasonable to say from theory that the tem-

perature distribution on a finite plate is completely defined by its boundary temperature.

The consequence of that is a boundary condition involving the wall temperature. Apply-

ing this statement to a general solid body surface and to the particular case study, it is

straightforward to define that a continuity of temperature shall occur on the solid-fluid

interface. As the author has experienced, this first condition it is not sufficient to define

a physical solution. Heat transfer between two different materials is strongly influenced

by the difference in thermal diffusivity, affecting the exchange rate. The second condi-

tion may be introduced, which forces the heat transfer rate by means of thermal fluxes

at solid-fluid interface. Moreover, solid heat transfer travels on very different time scales

than Navier–Stokes equations (2.1) - (2.3). In fact, because of the significant difference

between the two media, the transient phenomena in the fluid usually take place at a much

smaller time scale as those in the solid. Thus, a direct coupled solution of the URANS

and heat conduction equations is unfeasible and an iterative procedure is to be employed.

The aforementioned interface conditions are given as:

Tw,f = Tw,s (4.102)

Ks∇Ts · nw = Kf∇Tf · nw (4.103)

where the subscripts s and f refer to solid and fluid respectively, K indicates the thermal

conductivity, and nw is the unit vector normal to the wall. The boundary conditions above

58

4.3 Conjugate-Heat-Transfer coupling

are to be enforced at all fluid- and solid-interface cells. Unfortunately the corresponding

wall-points do not coincide, see Fig. 3.1, so that a connectivity map for all FCPPs and

SCPPs on the surface is to be created and an iterative procedure to calculate the wall

temperature for both FCPPs and SCPPs at each physical time-step is required.

A first-order-accurate approximation of ∇Tf · nw,f is obtained as:

∇Tf · nw,f = (Tmint,f − Tm−1
w,f)βf (4.104)

where m is the current iteration and βf is the inverse of the distance between the fluid

interface cell and the wall. Eq. (4.104) provides the heat fluxes (apart from the thermal

conductivity) at all FCPPs. Such values are then used to provide those pertaining to all

SCPPs by means of a distance-weighted interpolation, see fig 4.6. Then, the Neumann

Figure 4.6: Gradient interpolation on the surface

condition at all SCPPs is written as:

∇Ts · nw,s =
Kf

Ks
(∇Tf · nw,f) =

Kf

Ks

ns∑
i

αi
q

(∇Tf · nw,f)|i, (4.105)

where ns is the number of the neighboring FCPPs, αi is the inverse of the distance between

the considered SCPP and the surrounding FCPPi and q =
∑ns

i αi. Tmw,s can then be

computed using again a first-order-accurate scheme:

Tmw,s = Tmint,s −
∇Ts · nw,s

βs
, (4.106)

59

Numerical Solvers

and used to provide the wall fluid temperature at all SCPPs by means of the Dirichlet

condition. Such values are finally interpolated onto each FCPP to provide the updated

value for Tmw,f :

Tmw,f =

nf∑
i

αi
q

(
Tmw,f

)
|i =

nf∑
i

αi
q

(
Tmw,s

)
|i, (4.107)

where nf is the number of the neighboring SCPPs, αi is the inverse distance between the

considered FCPP and the surrounding SCPPi and q =
∑nf

i αi.

4.3.2 Stability considerations

The way to apply these boundary conditions to the fluid and solid zones is critical for

the accuracy and stability of the computations. Several studies have been carried out about

the way to force boundary conditions in a CFD solver. Giles [73] makes a very accurate

analysis on the stability of the solid-fluid heat transfer coupling in 1D and in that analysis

the coupling technique which is used by this work is classified as “loosely coupled”. This

analysis is performed on a backward implicit algorithm and explicit updating of boundary

conditions. The scope is to make a correct choice as which domain shall use boundary

condition on temperature and which one shall use boundary condition on thermal flux.

The solid-fluid interface is identified as xsurface = 0, with C (heat capacity in J/K) and K

(thermal conductivity) having uniform values C− and K− for x < 0, on one side, and C+

and K+ for x > 0, on the other side. The initial assumption is to impose the temperature

B.C. as:

T+ = Tw from Tw = T− (4.108)

The stability analysis shows a stability limit of

∆x+C+

∆x−C−
< 1 (4.109)

which is satisfied only if the temperature B.C. is applied to the fluid and more precisely

if “+” is the fluid side and “-” is the solid side. As it is explained later in this paragraph,

this condition implies fluid temperature to lag solid temperature by one iteration. The

final conclusion is that the thermal flux B.C. (4.103) should be forced to the solid and

the temperature B. C. of (4.102) should be forced to the fluid. To a similar conclusion

have been led Duchaine et al. in [74], who simulate CHT coupling of separate solid and

fluid solvers. The main reason for unstable behaviour is the large difference between the

thermal conductivity which may occur between solid and fluid, which makes the B.C.

60

4.3 Conjugate-Heat-Transfer coupling

choice critical. Moreover, the difference between the solid- and the fluid-heat-transfer

time scales can lead to instability problems. In the present work, the first problem is

overcome by using a proper coupling technique and some numerical test cases will show

the applicability of the method to a wide range of thermal conductivities. No additional

relaxation factors are needed [74]. On the other hand, the second remark is solved by

using a higher time scale solely for equation (2.37). Moreover, this approach is a classical

stable approach for problems having Biot number less than one. For all applications, this

work falls inside this class.

4.3.3 Overall procedure

The overall procedure to be employed at each pseudo-time step m is shown in Fig.

4.7. More in detail: i) the IB grid generator detects the position of each cell of the

Figure 4.7: Overall CHT procedure to be employed at each pseudo-time step m.

Cartesian grid with respect to the geometry, discretized by a surface mesh consisting of

triangular elements, and divides the cells into four types: solid and fluid cells—whose

centers lie within the body and within the fluid, respectively; fluid- and solid-interface

cells, that have at least one of their neighbors inside and outside the body, respectively;

ii) the URANS equations are solved at all internal fluid cells, whereas the heat conduction

61

Numerical Solvers

equation is solved at all internal solid cells using the same spatial discretization and time-

marching scheme; iii) the boundary conditions, which account for the presence of the body

are imposed at the fluid-/solid-interface cells, using a local interpolation procedure; iv) the

interface boundary conditions requiring that both the temperature and heat-flux are the

same for the fluid and the solid at all boundary points are imposed by the CHT approach.

62

4.4 Fluid Structure Interaction coupling

4.4 Fluid Structure Interaction coupling

Aeroelasticity is one of the most important and challenging problems in the turboma-

chinery design and operation; and its understanding is critical to improve the performance,

efficiency and reliability of a given advanced-design fluid machinery. A serious aeroelas-

ticity analysis demands an accurate simulation of the flow field and of the blades dynamic

response by means of a state-of-the-art fluid-structure-interaction (FSI) solver. Here, the

finite volume URANS solver is combined with the efficient surface-based structural one

describing the dynamics of deformable bodies, to provide a dual-time-stepping computa-

tional tool for predicting the flow field around deformable bodies as well as their induced

motion.

For the case of not fixed boundaries, the position of the Lagrangian surface points

changes in time with respect to the fixed Cartesian grid, and therefore the tagging pro-

cedure is repeated at each physical time-step, in order to recognize the new fluid/solid-

interface cells and the new position of the relative FCPPs and SCPPs. It is noteworthy

that the Cartesian grid and the Lagrangian mesh are not re-generated at each physical

time-step and thus the ray-tracing technique cannot be used to refine the grid in the new

high gradient regions. For this reason the grid is generated refining all the regions crossed

by the Lagrangian mesh points in the considered FSI problem.

Two different types of structures can be solved using this approach:

• rigid structure with imposed motion: the structure is rigid and the position of each

mesh point is imposed at each time step;

• deformable structure: the forces exerted by the fluid upon the structure are fed to

the structural solver which updates the position and the velocity of the surface mesh

points at each physical time-step.

An important issue that requires careful consideration arises when the motion of the

immersed boundary exposes into the fluid a cell, which at the previous time-step was

internal. The numerical problem is that such cells lack of physically realistic values of

the variable at the time steps n and n − 1 required in Equation (4.27). For the present

work, in the Dual Time Stepping (DTS) framework, this represents a restriction for the

physical-time step used. In fact, the physical-time step has to guarantee that the body

never transverses an entire computational cell within one time step, meaning that a previ-

63

Numerical Solvers

ous solid cell first emerges into the fluid as an interface cell (for which the variable values

are iteratively interpolated in the pseudo-time step and not computed). In the first com-

putations, we have noted that this conditions is less restrictive than the CFL condition

for stability of the DTS algorithm, and, thus, any additional stability restriction on the

overall algorithm is not required.

4.4.1 Surface forces calculation

The computation of the surface pressure and shear stress is a key issue for non–

boundary conforming formulations. In the present study, a linear interpolation strategy

has been implemented. The method starts with the geometrical description of the three-

dimensional object, as a triangulated closed surface. Then, using a local search process,

starting from each vertex, a probe point L on the outgoing normal is selected so that all

surrounding computational cells lies inside the fluid, see Fig. 4.8.

Figure 4.8: Support-domain of the probe used for the evaluation of the forces at each
triangulated mesh vertex.

This step can be iterative, adjusting the distance from the boundary until the above

condition is met. The value of the pressure and velocity derivatives at the probe point L

are calculated by the least-squares interpolation formula (see Section 3.3) involving the

surrounding cells. Velocity derivatives on the body are assumed to be equal to those at

the probe location (linear velocity profile) and then the external surface force Ti can be

calculated as

Ti = (τL · ni − pLni)Si, (4.110)

64

4.4 Fluid Structure Interaction coupling

where Si is the area related to the i–vertex, see Fig. 4.8.

4.4.2 Overall procedure

The overall procedure to be employed at each physical-time step n is shown in Fig. 4.9.

In more detail, at each physical time-step: i) the IB grid generator detects the position

Figure 4.9: Overall FSI procedure to be employed at each physical-time step n.

of each cell of the Cartesian grid with respect to the geometry, discretized by a surface

mesh consisting of triangular elements, and divides the cells into three types: solid and

fluid cells–whose centers lie within the body and within the fluid, respectively; and fluid

interface cells, which have at least one of their neighbors inside the body; ii) the flow

variables at the centers of the fluid cells are computed by the URANS solver and the

boundary conditions, which account for the presence of the structure, are imposed at the

interface fluid cells, using a local interpolation procedure, so that the solid cells have no

influence on the flow field; iii) the forces exerted by the fluid upon the structure are fed

to the structural solver which updates the position and the velocity of the surface mesh

points; iv) the coupling is converged by iterating within a standard dual time stepping

procedure, until the unsteady residuals are reduced to a prescribed level.

65

Chapter 5

Validation

In order to test the proposed methodology several test-cases have been considered,

involving two- and three-dimensional steady and unsteady flows in an extended range of

Mach and Reynolds numbers past both rigid and deformable geometries.

Firstly, in Section 5.1, the accuracy of the new LS reconstruction (Section 3.3) is

compared with the 1D reconstruction (Section 3.1) already validated by de Tullio [75]

using the following test-cases: the laminar incompressible flow past a sphere, the laminar

supersonic flow past an NACA-0012 airfoil and the compressible supersonic flow past

a cylinder. Then, adaptive wall functions (Section 3.4) have been employed for: both

subsonic and supersonic flows through the VKI-LS59 turbine-rotor cascade, the transonic

flow past the Unmanned Space Vehicle, and the transonic flow past the Agard Wing.

Then, in Section 5.2, the CHT interface conditions coupled with the 1D, IDW and LS

reconstructions have been tested considering the following test case: the heat transfer in a

rotating flow inside a tube, the flow past a heated cylinder in cross-flow and the internally

cooled C3X vane.

Finally, in Section 5.3, a first computation with a moving geometry has been performed

using the least squares reconstruction scheme with very little additional effort compared to

the non-moving boundary case, namely, the oscillating circular cylinder in a cross-flow. A

three-dimensional FSI computation of the incompressible low-Reynolds number flow past

a deformable sphere is presented, showing very good agreement with analytical data even

in the three-dimensional case.

67

Validation

5.1 IB-URANS validation

5.1.1 Incompressible flow past a sphere

The flow past a sphere has been computed to test the flow solver and the IB method

versus a first three dimensional application. A single value of the free-stream Mach num-

ber, M∞ = 0.03, and four values of the Reynolds number (based on the sphere diameter,

D, the free-stream velocity, U∞, and kinematic viscosity, ν∞), namely, 40, 60, 80, and 100,

have been considered. The computational domain is a box; the inlet and outlet boundary

planes are located at xi = −40D and xo = 80D and the far-field boundaries are located at

y = ±40D and z = ±40D, the origin of the box coinciding with the center of the sphere.

Computations have been performed using a grid, with a total number of cells equal to

1219822. The grid has been locally refined on the sphere surface in order to have a good

resolution of the boundary layer, and in a box surrounding the sphere and the wake, in

order to describe accurately the separation region, see Fig. 5.1.

Figure 5.1: Incompressible flow past a sphere: local view of the refined grid for z = 0.

According to Batchelor, the flow around a sphere does not separate up to Re ' 24 and

for increasing Reynolds number the axial length of the separation bubble grows linearly

up to Re ' 100. The same results are obtained by the present numerical simulations.

Figures 5.2 and 5.3 show the length of the separation bubble and the drag coefficient

compared to the experimental data by Batchelor [2] and Clift et al. [4] and the numerical

results obtained by de Tullio et al. [3] using the inverse distance weighted reconstruction.

68

5.1 IB-URANS validation

Figure 5.2: Incompressible flow past a sphere: length of the separation bubble compared
with the experimental data [2] and the numerical ones obtained by de Tullio et al. [3].

Figure 5.3: Incompressible flow past a sphere: drag coefficient are compared with the
experimental data obtained by Clift et al. [4] and the numerical ones obtained by de
Tullio et al. [3].

69

Validation

5.1.2 Supersonic flow past an NACA0012 airfoil

In order to test the proposed methodology versus a well documented viscous flow at

high Mach number, the laminar supersonic flow past a NACA0012 airfoil with M∞ = 2,

α = 10◦ and Re∞ = 1000 has been considered (Bristeau et al. [76]). De Palma et al. [14]

used three structured grids with 1252, 2502, and 5002 cells to discretize the computational

domain [−8 c; 9 c] × [−8 c; 8 c], c being the chord-length of the airfoil, whose leading edge

is located at the origin. Standard characteristic boundary conditions have been imposed

at inlet and outlet surfaces. Numerical results are obtained using the TVD second-order-

accurate upwind scheme and the finest grid used also by De Palma et al. [14].

The distribution along the profile of the pressure coefficient cp = (p− p∞)/(0.5ρ∞U
2
∞)

is given in Figure 5.4 where the solution obtained with the least squares reconstruction,

is in a very good agreement with those obtained by De Palma et al. [14] using the one

dimensional reconstruction.

Finally, the Mach number contours computed are provided in Figure 5.5 showing that

the shock is well captured.

Figure 5.4: Supersonic laminar flow past an NACA0012 airfoil: pressure coefficient distri-
butions along the profile.

70

5.1 IB-URANS validation

Figure 5.5: Supersonic laminar flow past an NACA0012 airfoil: Mach number contours
on the finest grid, ∆M = 0.1.

5.1.3 Supersonic flow past a circular cylinder

The steady turbulent supersonic flow past a circular cylinder has been considered as

a suitable test case to validate the method for turbulent compressible flows, involving

shocks. The case with M∞ = 1.7, Re∞ = 2 × 105, inlet values of the turbulence kinetic

energy and specific dissipation rate k/U2
∞ = 0.0009 and ωD/U∞ = 40, respectively, has

been computed. For the considered value of M∞, a bow shock is obtained upstream

of the cylinder; the subsonic flow at the front part close to the wall accelerates along the

surface forming a supersonic-flow region, which envelopes the subsonic recirculation region

behind the cylinder, with two symmetric tail shocks at the end of the separation region.

Results have been obtained using a rectangular computational domain with dimensions

[−8D; 9D] × [−8D; 8D], D being the diameter of the cylinder centered at the origin.

Periodic conditions have been applied in the third direction in order to simulate a two

dimensional case using the three dimensional solver. Standard characteristic boundary

conditions have been imposed at inlet and outlet surfaces and free-shear wall boundary

conditions are imposed at the far-field boundaries. Simulations have been performed using

two grids having 139777 cells. The grid is locally refined as shown in Figure 5.6.

The Mach number contours are given in Fig. 5.7, showing that a clear description of

the shocks and of the wake are obtained, thanks to the resolution of the grid in those

regions. The computed separation angle, measured clockwise from the leading edge, is

71

Validation

Figure 5.6: Supersonic turbulent flow past a circular cylinder: local view of the mesh.

equal to 116◦ which reasonably agree well with the corresponding experimental data,

namely, 112◦, provided in Bashkin et al. [77].

Figure 5.7: Supersonic turbulent flow past a circular cylinder: Mach number contours.
.

Finally, the computed pressure coefficient distributions along the surface of the cylinder

are provided in Fig. 5.8 together with the experimental data obtained by Bashkin et al. [77]

and the numerical data obtained by De Palma et al. [14]. All numerical results agree

reasonably well with the literature data.

72

5.1 IB-URANS validation

Figure 5.8: Supersonic turbulent flow past a circular cylinder: pressure coefficient distri-
bution along the surface of the cylinder. Comparison between experimental and numerical
results for M∞ = 1.7.

A final comment on the experimental results is warranted. The discrepancies be-

tween the numerical solutions and the experimental results are believed to be due to

three-dimensional or wall effects in the experiments, rather than to inadequate turbulence

modeling, insofar as they are equally important in both the attached and separated flow

regions.

5.1.4 Flow through VKI-LS59 turbine-rotor cascade

The IB method has been employed to compute subsonic and transonic flows through

the high turning VKI-LS59 turbine-rotor cascade.

Figure 5.9: Flow through VKI-LS59 turbine-rotor cascade: local view of the grid.

73

Validation

Experimental data available in the literature (Sieverding [78], Kiock et al. [79]), indicate

that the flow is nearly two-dimensional. End-wall effects and aspect ratio influence are

practically negligible, so that a flow computation in two-dimensions is adequate.

Four flow conditions have been considered, with isentropic exit Mach number, M2,is

equal to 0.810, 1.00, 1.11, and 1.20. The corresponding Reynolds numbers, based on the

blade chord c and exit conditions, are 8.22×105, 7.44×105, 7.00×105, 6.63×105, whereas

the inlet flow angle with respect to the axial direction is always 30o. Total conditions have

been imposed at the inlet surface, static pressure is fixed at the outlet surface whereas

periodic conditions are imposed in the y direction. Adaptive wall functions (Section 3.4)

have been used. Computations have been performed using a 61669 cells grid refined on

the immersed boundary and in the shocks regions, see Fig. 5.9.

Figure 5.10 show the Mach number contours for the four exit Mach number flow cases.

In all cases, the complex structure of the flow is well predicted and the shocks are captured

in the correct position.

(a) (b)

(c) (d)

Figure 5.10: Flow through VKI-LS59 turbine-rotor cascade: Mach number contours,
∆M = 0.03. (a) M2,is = 0.810; (b) M2,is = 1.00; (c) M2,is = 1.11; (d) M2,is = 1.20.

74

5.1 IB-URANS validation

The computed isentropic Mach number distributions along the blade are shown in

Figure 5.11. All the solutions agree reasonably well with the experimental data provided

by Sieverding [78], and the numerical ones obtained by de Tullio [75] using the 1D recon-

struction scheme.

(a) (b)

(c) (d)

Figure 5.11: Flow through VKI-LS59 turbine-rotor cascade: isentropic Mach number
distributions along the blade. (a) M2,is = 0.810; (b) M2,is = 1.00; (c) M2,is = 1.11; (d)
M2,is = 1.20.

75

Validation

5.1.5 Transonic flow past the AGARD Wing

The IB method has been then employed to compute the transonic flow past the

AGARD wing. The geometry complexity of the AGARD wing can be appreciated in

Fig. 5.12, that clearly shows the very little aspect ratio of the wing thickness to the

other dimensions. This is a fully three-dimensional turbulent flow well documented in

literature for both steady cases [5] and dynamic response configurations, e.g., flutter con-

figurations [80].

(a) (b)

Figure 5.12: Agard wing: 2D (a) and 3D (b) view of the triangulated mesh.

In this work, the investigation is limited to the steady case. Computations have been

performed using a grid with 3833720 cells and 11596105 faces and refined on the wing sur-

face in order to have a good resolution of the boundary layer, and in a box surrounding the

wing. The imposed inlet conditions ensure Re∞ = 451000, Ma∞ = 0.96, P o∞ = 4662.34Pa

and T o∞ = 257.81K; the outlet static pressure is imposed equal to 2579.23Pa; finally, the

angle of attack is equal to 0◦. To reduce the computational cost of the simulation, adaptive

wall functons have been imposed to the IB. The pressure coefficient for the mean aero-

dynamic chord is shown in Fig. 5.13 and compared with the numerical results obtained

by Lee-Rausch and Batina [5]. The oscillations in the pressure coefficient behavior are

probably due to the Menter condition on ω, see Eq. (4.73), when it is applied to interface

cells having y+ < 1.

76

5.1 IB-URANS validation

Figure 5.13: Agard wing: pressure coefficient on the mean aerodynamic chord η. Results
obtained by Lee-Raush and Batina [5] are shown for comparison.

5.1.6 The transonic flow past the Unmanned Space Vehicle

The CIRA USV (Unmanned Space Vehicle) is a multi-mission, re-usable vehicle de-

veloped at CIRA, the Italian Aerospace Research Center. It is a not-propelled, winged

vehicle able to perform experiments on aerodynamics. The geometrical complexity of the

winged body can be appreciated in the Fig. 5.14 where the well-refined triangular mesh,

used as immersed boundary in the set of simulations, is shown.

Figure 5.14: Triangular mesh of the Unmanned Space Vehicle.

77

Validation

Here, a numerical rebuilding result of the in-flight aerodynamic experiment carried

out during the first mission DTFT (Dropped Transonic Flight Test) is presented. The

aerodynamic characterization of the transonic phase of a re-entry space vehicle trajectory

is critical due to the strong variability of the aerodynamic coefficients, the reason being

the non-linear behaviour of the flow field. From CFD computations both global aerody-

namic coefficients and local pressure distributions can be extracted, thus allowing for the

comparison of CFD results with the in-flight acquired global forces and static pressure

measurements [81].

(a)

(b)

Figure 5.15: Local views of the 3D mesh used for the USV simulations: USV symmetry
plane y = 0 (a) and the right wing at y = 1m.

All the simulations have been performed with a clean configuration having side-slip

angle β = 0, elevon deflection angles δr,lE = 0 and rudder deflection angles δr,lR = 0, where r

and l are the right wing and the left wing, respectively. Calculations have been performed

using 240 CPUs since the mesh contains 12341210 cells and 39875070 faces. In Fig. 5.15,

local grid refinements for the body of the USV (a) and for the right wing (b) are shown.

Different values of the angle of attack, namely, 0◦, 5◦, 7.24◦, 10◦, 15◦, 20◦, have been

considered. The analysis of the results presented here allows the understanding of the

78

5.1 IB-URANS validation

global aerodynamics coefficients behaviour as function of the angle of attack. In Fig. 5.16

the lift coefficients at M = 0.94 are plotted in function of the angle of attack α and are

compared to the data available in [81]. Fig. 5.17(a) provides the contours of the pressure

Figure 5.16: CL vs. α at M = 0.94 for the clean configuration of the USV.

distribution on the USV obtained for M = 0.94 and α = 7.24o. More in detail, the

comparisons between predicted and in-flight measured pressure coefficients at one wing

section (y = 1.0m from the vehicle’s symmetry plane) are reported in Fig. 5.17(b). Even

if in the experimental results carried out during the mission DTFT the elevon and rudder

deflection angles had not been set equal to zero, in the numerical simulation the USV

present a clean configuration with all these parameters equal to zero. Thus, the behaviour

of the pressure coefficient agrees with the experimental results as less as far from the

stagnation point.

79

Validation

(a)

(b)

Figure 5.17: a): pressure distribution at the USV surface at M = 0.94 and α = 7.24o. b)
pressure coefficient at wing section y = 1.0m (M = 0.94, α = 7.24), obtained with the
present IB-URANS solver are compared to the experimental results.

80

5.2 CHT-IB-URANS validation

5.2 CHT-IB-URANS validation

5.2.1 Conjugate-heat-transfer in a rotating heated fluid

The heat transfer problem in a rotating flow inside a tube–for which an analytical

solution of the 2D Navier–Stokes equations is available [28]–has been considered at first

to validate and compare the three different IB wall treatments presented in the previous

sections within a CHT approach. The fluid is contained between a stationary hollow inner

cylinder and a rotating outer one. The outer cylinder has a radius Ro = 1.8m, moves with

tangential velocity and is kept at To = 700K. The inner hollow cylinder has radii equal

to Rm = 0.9m and Ri = 0.45m, respectively, the inner surface is kept at Ti = 500K and

Ks/Kf = 9. The geometry is shown in Figure 5.18.

Figure 5.18: Rotating tube geometry setup.

The velocity distribution is given as

ur = 0, uθ(r) =

{
0 for Ri ≤ r ≤ Rm (solid),

− RoR2
mUo

(R2
o−R2

m)r
− RoUo

(R2
o−R2

m)
r, for Rm ≤ r ≤ Ro (fluid),

(5.1)

whereas the temperature distribution is given as

T (r) =


Ti + To−Ti

log
(

Rm
Ri

)
+

(
Ks
Kf

)
log

(
Ro
Rm

) log
(
r
Ri

)
, for Ri ≤ r ≤ Rm (solid),

To − To−Ti
log

(
Ro
Rm

)
+
(

Kf
Ks

)
log

(
Rm
Ri

) log
(
Ro
r

)
, for Rm ≤ r ≤ Ro (fluid).

(5.2)

81

Validation

Computations have been performed using periodic boundary conditions in the axial

direction—to solve a 2D flow by a 3D code—and a uniform Cartesian grid with ∆x =

∆y = 0.16, 0.08, 0.04, 0.02, 0.01. Figure 5.19 show the finest-grid (tangential) speed- and

temperature-contours using the least squares reconstruction scheme. Fig. 5.20 shows the

speed (a) and temperature (b) radial distributions obtained with the finest grid. The exact

analytical solutions are also reported for comparison. It is worth remarking that the IB

method provides very smooth contours, also using the other IB reconstruction schemes.

(a) (b)

Figure 5.19: contours of the (tangential) speed (a) and temperature (b) obtained using
the least squares reconstruction scheme.

(a) (b)

Figure 5.20: radial velocity distribution (a) and radial temperature distribution (b).

Using the analytical solution, for each numerical solution, the mean square error (mse)

82

5.2 CHT-IB-URANS validation

and the maximum error (errmax) have been computed:

mse =
1

ncells

√√√√ncells∑
i

err2
i ,

errmax = max(erri).

(5.3)

Firstly, a set of simulations have been provided imposing the analytical value of the

wall temperature also for the fluid and solid interface (r = Rm), and using one of the three

IB reconstructions (Sec. 3.1, 3.2, 3.3) indicated as 1D, IDW and LS, respectively. All of

the solutions well predict the tangential-speed and temperature fields within the flow and

the hollow tube. The corresponding computed errors are reported in Figs. 5.21 and 5.22

and show that the IB reconstructions do not affect the second order of the global spatial

accuracy, while the maximum errors are first-order-accurate.

Figure 5.21: computed mse and errmax of the velocity obtained imposing the wall tem-
perature at r = Rm and using the different IB reconstructions.

Then, the same computations have been performed using the CHT conditions at r =

Rm and ns and nf (see Section 4.3) both equal to 7. The order of the spatial accuracy

is not modified, see Figs. 5.23 and 5.24, and the temperature errors are slightly higher,

as anticipated. Such results clearly indicate the validity of the three CHT-IB interface

reconstructions.

A more detailed analysis has been conducted in order to better understand the merits

and limitations of the three different reconstruction schemes. Because of the Cartesian

grid that uses FCPPs and SCPPs at different distances from the corresponding interface

83

Validation

Figure 5.22: computed mse and errmax of the temperature obtained imposing the wall
temperature at r = Rm and using the different IB reconstructions.

Figure 5.23: computed mse and errmax of the velocity obtained using the different CHT-IB
reconstructions.

84

5.2 CHT-IB-URANS validation

Figure 5.24: computed mse and errmax of the temperature obtained using the different
CHT-IB reconstructions.

cells, the numerical solutions are not uniform along the cylinders contours, but experience

a periodic behaviour, characterized by both low- and high-frequency errors, see Fig. 5.25.

It appears that the 1D and IDW reconstructions experience the largest high and low fre-

quency errors, respectively, whereas the LS reconstruction dramatically reduces the high

frequency error but provides the least accurate mean temperature. It is somewhat surpris-

ing that the 1D reconstruction provides the most accurate mean temperature, probably

due to the fact that it employs a computational node value in the interpolation procedure.

5.2.2 Flow past a heated cylinder in cross-flow

A more challenging test case, involving unsteady flow, natural convection, transition to

turbulence and heat transfer from and to an internally heated cylinder in water cross-flow

has been used to further validate the present IB-CHT method, namely, the flow past a

heated cylinder in cross-flow, for which both experimental and numerical results using a

body fitted CHT-RANS solver are available [36]. The tube has a length equal to 61 cm and

a height equal to 7.62 cm, as shown in figure 5.26. The center of the tube has coordinates

42.7 cm and 1.43 cm in the streamwise and wall-normal directions, respectively; the inner

and outer diameters of the tube are equal to 0.635 cm and 1.587 cm, respectively, and the

Reynolds number, based on the streamwise velocity and the tube diameter, is 189. The

inlet velocity has been imposed equal to 1.09 cm/s and the inlet temperature of the water

is 284 K; the heated bottom surface is kept at a constant temperature equal to 318 K

85

Validation

Figure 5.25: computed wall temperature at r = Rm using the different CHT-IB methods
and ∆x = ∆y = 0.01

and the top wall is considered adiabatic; the core temperature of the tube is considered

constant and equal to 318 K; the outlet pressure has been imposed equal to 1 bar. The

ratio between the solid and fluid thermal conductivities, Ks/Kf = 35.

Again, in the present calculations, two internal arrays of cells and two arrays of ghost

cells have been used in the third direction to impose periodic conditions so as to compute

a 2D CHT problem using a 3D code. The finest locally refined computational grid, used

in this work and verified to provide grid-converged solutions has a total of 152375 cells in

the x-y plane, see Fig. 5.27.

A physical time step of 0.005 s has been used and a local pseudo-time step correspond-

ing to = 0.5. The CPU time for each physical time step and a fixed number of inner

iterations equal to 80, using 2 Xeon 10-core E5-2660v3 (2.6 Ghz) is equal to 7.8 s. As

far as the temperature is concerned, Laskowski et al. [36] provide only the mean value

of the measured temperature which is equal to 311.3 K, whereas the present 1D, IDW

and LS computations provide mean values of 314.5 K, 312.1 K and 312.0 K, respectively

and time-averaged temperature profiles of the outer surface of the cylinder, as shown in

Fig. 5.28(a). The IDW and LS schemes are clearly superior insofar as they provide a more

accurate mean value and considerably smoother time averaged circumferential profiles.

As far as the more challenging heat flux computations, the present time-averaged heat

86

5.2 CHT-IB-URANS validation

Figure 5.26: Data-set of the numerical simulation of the flow past a heated cylinder in a
channel flow.

Figure 5.27: locally refined computational grid.

87

Validation

fluxes q are presented in Fig. 5.28(b), where both the measured and the numerical results

by Laskowski et al. [36] are also given for comparison. It clearly appears that only the

results obtained with the LS reconstruction are acceptable: it is noteworthy that also the

body-fitted-RANS solutions do not agree with the experimental ones by the same authors.

(a) (b)

Figure 5.28: contours of the (tangential) speed (a) and temperature (b) obtained using
the least squares reconstruction scheme.

5.2.3 Conjugate-heat-transfer in an internally cooled C3X vane

The flow past the C3X turbine guide vane of Hylton et al. [37]–for which detailed

experimental results are available–was finally selected to test the method versus a CHT

problem of industrial interest. The three-dimensional computational domain included one

vane, with periodic boundary conditions employed to simulate the cascade test condition,

as well as 10 cooling channels. The domain extended from the hub to the shroud, the

computational inlet/outlet being located at about one chord length upstream/downstream

of the vane leading/trailing edges, respectively.

The operating conditions, listed in Tab. 5.1, are the ones of the test-case R112 docu-

mented in [37]. The hot gas total pressure P ht,in and total temperature T ht,in were specified

at the inlet where the turbulence intensity was imposed to be the experimental value of

8.3%. The static pressure P hs,out (derived using P ht,in and T ht,in) was specified at the exit.

The coolant flows in the ten channels are independent of each other and fully developed

88

5.2 CHT-IB-URANS validation

at the channel inlet (i.e., the hub of the vane), being fed by long tubes. The mass flow

rates (FR) for each channel, as reported by Hylton et al. [37] are listed in Tab. 5.2, which

also provides the hub total pressure P ct,in and temperatures T ct,in, being specified to match

the corresponding flow rate, see [38]. A static pressure P cs,out equal to 1 bar was imposed

at the exit of the channels. Finally, the vane material is stainless steel (ASTM Type 310),

with thermal conductivity Ks = 0.0182T + 6.13. It is noteworthy that in addition to the

complexity of the flow, the test-case emerges as a very challenging CHT problem being

the ratio between the solid and fluid thermal conductivities, Ks/Kf almost equal to 500.

P ht,in(bar) T ht,in(K) Mahout P hs,out(bar) Tuin(%)

3.217 783.0 0.9 1.925 8.3

Table 5.1: Flow conditions of the R112 test-case

Coolant (#) Diameter (mm) P ct,in(bar) T ct,in(K) P cs,out(bar) FR (g/s)

1 6.30 1.539 412.2 1.0 7.79

2 6.30 1.386 408.7 1.0 6.58

3 6.30 1.336 389.0 1.0 6.34

4 6.30 1.386 396.0 1.0 6.66

5 6.30 1.351 372.1 1.0 6.50

6 6.30 1.420 435.4 1.0 6.72

7 6.30 1.344 384.2 1.0 6.33

8 3.10 2.015 372.3 1.0 2.26

9 3.10 1.449 420.0 1.0 1.38

10 1.98 1.872 433.2 1.0 0.68

Table 5.2: Coolant flow conditions of the R112 test-case.

Results have been obtained with four meshes having a total number of cells equal to

69624 × 8n cells, n being equal to 0, 1, 2, 3, respectively; namely, each finer grid was

obtained by doubling the number of cells of the coarser one in each space dimension.

The grids are smaller within the holes and the vanes and are locally refined, as shown

in Fig. 5.29(a), where the coarsest grid at mid-span is shown. It is noteworthy that the

periodic boundary conditions simulating the cascade test condition can be imposed within

the IB method even if the vane height is larger than the vane spacing. Fig. 5.29(b) shows

the temperature contours for three different z-planes, using the finest grid, to give an

overall idea of the cooling process. Finally, Fig. 5.29(c) and 5.29(d) provide the computed

and measured mid-span pressure and temperature distributions on both sides of the vane,

respectively. It is noteworthy that in Fig. 5.29(d) the pressure side of the blade is indicated

89

Validation

by negative values of x.

The results show that the pressure distribution on the pressure side of the vane is well

captured even by the coarsest grid, whereas even the finest grid with about 32 million

cells does not provide a grid converged pressure distribution on the suction side of the

vane. As far as the temperature distribution is concerned, the coarsest grid is seen to

be quite inadequate, but the finer grids show a consistent behavior tending towards grid

convergence, but some of the flow features near the holes are not yet completely captured.

Moreover, the differences between the computed values and the experimental ones can

be considered acceptable for such a very complex turbulent flow and it is in the authors

opinion very difficult to decide which are the more correct ones. For this reason, current

work aims at implementing velocity and temperature wall functions, which are anticipated

to further improve the accuracy of the method. At the moment, fully converged solutions

on the 4 and 32 million-cells-grids require about 100 and 300 CPU hours using 16 and 32

Xeon 10-core E5-2660v3 (2.6 Ghz).

90

5.2 CHT-IB-URANS validation

(a)

(b)

(c) (d)

Figure 5.29: C3X vane: locally refined grid (a); temperature contours for three different z-
planes (b); mid-span pressure (c) and temperature (d) distribution on the external surface
of the vane; Cx is the axial chord of the vane.

91

Validation

5.3 FSI validation

5.3.1 Oscillating circular cylinder in a cross-flow

The case of a circular cylinder transversely oscillating in a cross-flow is considered in

order to validate the method in case of a moving geometry with a prescribed motion. As

showed by Uhlmann [82], the direct forcing approach of Fadlun et al. [11], can lead to

large fluctuations of the hydrodynamic forces, when it is coupled with a fractional time-

step solver. This suggests us to use an IB reconstruction as smooth as possible also in the

present URANS approach, to reduce the high frequency errors.

The Reynolds number, based on the cylinder diameter D and the free-stream velocity

U , is equal to 185. The ratio of the forcing frequency, fe, to the natural shedding frequency,

f0, is equal to 1, with f0D/U = 0.195. The motion of the cylinder follows a sinusoidal

law, y(t) = A0 sin (2πfet), with A0 = 0.2D. The constant physical time-step used in the

computation is ∆t = 0.001D/U .

The time histories of the computed drag and lift coefficients, CD and CL are given in

Fig. 5.30 showing a very smooth behavior.

Figure 5.30: Oscillating circular cylinder in a cross-flow: drag and lift coefficients as a
function of time, fe = f0.

The different behaviour of the force coefficients is captured accurately, and the results

are in very good agreement with those obtained by Guilmineau and Queutey [6] obtained

using a body-fitted approach, and the ones obtained by de Tullio et al.(2012) [7] using a

92

5.3 FSI validation

fractional time-step incompressible solver. The distribution of pressure and skin-friction

coefficients, Cp and Cf , respectively, on the cylinder surface are shown in Figure 5.31, at

the time instant corresponding to the extreme upper position. The results are in a very

good agreement.

Figure 5.31: Oscillating circular cylinder in a cross-flow: pressure and skin friction coeffi-
cients, Cp and Cf , when the cylinder is located at the extreme upper position, compared
with the experimental data provided by Guilmineau and Queutey [6] and the numerical
ones obtained by de Tullio et al.(2012) [7].

5.3.2 Motion of a spherical microcapsule freely suspended in linear shear
flow

Here, the motion of a spherical microcapsule made of neo-Hookean material in a shear

flow is studied. Barthès-Biesel [8] provides a perturbation solution valid for small values

of the ratio ε of viscous deforming forces to elastic shape-restoring forces ensuring that

the deformation of the sphere remains small. The flow between two parallel surfaces is

driven by the shear rate γ̇ = |U | /(h) where U is the velocity of the moving plate and h

is distance between the two parallel plates. Here the provided results have been obtained

for γ̇ = 0.015 and ε = 0.03. Since ε is very small, the material can be modeled as a

neo-Hookean (hyperelastic) material using a value of the Lamè parameters µ and λ equal

to 1/30 and 1/15, respectively. The bending constant kb has been fixed equal to 0.1

and the volume constraint constant kv equal to 1.0. Starting from its initial condition

(Fig. 5.32(a)), the microcapsule reaches a steady deformed configuration (Fig. 5.32(b)).

The converged solution has been reached after 25s using a physical time-step equal to

93

Validation

(a) (b)

Figure 5.32: Spherical microcapsule freely suspended in linear shear flow: initial condition
(a) and converged solution (b)

0.005s and 100 inner iterations for each physical time-step. The forces exerted upon the

surface by the fluid are calculated at the end of the inner iterations and are fed to the struc-

tural solver which updates the new position of the surface mesh points. The comparison

of the converged final solution with the analytical solution proposed by Barthès-Biesel [8]

is shown in Fig. 5.33. The results obtained using the proposed methodology are in a good

agreement with the analytical data.

Figure 5.33: Spherical microcapsule freely suspended in linear shear flow: comparison with
the analytical solution proposed by Barthès-Biesel [8].

94

Conclusions

The purpose of this work has been to develop and test an accurate and efficient tool for

computing three-dimensional complex flows past fixed or moving geometries, for a wide

range of Reynolds and Mach numbers.

Firstly, an accurate and efficient IB method, using a state-of-the-art URANS parallel

Cartesian solver, has been improved, by means of a new IB treatment, extended to three

space dimensions, and validated versus several test cases of increasing complexity. The

new IB treatment based on a least-squares approach, performs best in all applications.

Then, a code for solving the HC equation that uses the same spatial discretization

and time-marching scheme as the URANS solver has been developed and coupled with it

to obtain an efficient tool for solving CHT problems. The CHT-IB solver has proven to

compute the flow and temperature fields within a rotating heated fluid, a heated channel

flow past a cylinder and in and around an internally cooled C3X vane.

Finally, a surface-based structural solver that simulates the dynamics of deformable

geometries, discretized by triangulated Lagrangian meshes, has been coupled with the ba-

sic IB-URANS method to provide an efficient tool for solving FSI problems. The FSI-IB

solver has proven to compute the flow past an oscillating circular cylinder and the three-

dimensional incompressible flow past a deformable sphere.

Current and future work aim at:

• developing a CHT boundary treatment based on wall functions so as to render the

proposed method a formidable tool for computing very challenging industrial flows,

such as the transonic high Reynolds number flows within an entire turbine;

• extending the FSI methodology to aeroelasticity problems in turbomachinery;

• extending the method to hypersonic flows characterized by ionization and dissocia-

tion.

95

Appendix A

Segment triangle intersection

In the followings an efficient method for the computation of the intersection in space

between a segment and a triangle is described.

Assume that Q = (xQ, yQ, zQ) is the query point and C = (xC , yC , zC) is an (external)

control point. The segment QC is the ray r = (xQ − xC , yQ − yC , zQ − zC) and any point

on the ray can be spanned by the parameter u ∈ [0, 1] through

xU = xC+u(xQ−xC), yU = yC+u(yQ−yC) and zU = zC+u(zQ−zC) (A.1)

or in vector form U = C+ur. In order to check if the ray r intersects a triangle (given by

the three vertices A, B and C) it is convenient to verify first if the ray intersects the plane

containing the triangle. A plane in space is represented by the equation ax+ by + cz = d

or equivalently by the inner product between the plane normal vector n and a vector

x = (x, y, z), namely n · x = d (recall that n = (a, b, c) is not a unit vector). This has the

simple geometrical interpretation that any point x belonging to the plane has the same

projection length d on n.

It should be noted that given the coordinate of the triangle vertices A, B and C the

coefficients a, b, c and d of the plane equation are not known immediately. Of course the

fact that A, B and C all belong to the plane could be sufficient to determine, by a linear

system, the ratios a/d, b/d and c/d 1 even if the procedure can be made simpler. In fact,

we know that n is a vector orthogonal to the plane while B −A and C −A both lie on

the plane. The cross product (B −A) × (C −A) is in fact n from which a, b and c are

immediately available. The remaining coefficient d can be simply found by substituting

the coordinates of one of the points A, B and C in the the equation for the plane. With

1This can be done provided d 6= 0. Should be d = 0, however, the plane equation contains only a, b and
c and the passage of the plane through A, B and C is sufficient for the computation of the coefficients.

97

Segment triangle intersection

U

U’x

z

y
B

A
C

Figure A.1: Projection of a triangle and its intersection point on a coordinate plane.

the equation for the plane at hand the computation of the ray/plane intersection is very

easy upon considering that the condition of a point on the ray U belonging to the plane

is U · n = d; by substitution this yields

(C + ur) · n = d u =
d−C · n

r · n
, (A.2)

which plugged into Equation (A.1) yields the coordinates of the intersection point U.

The final task is to check if the intersection U between the ray and the plane is inside

or outside the triangle. Although both elements are in three-dimensions the intersection

problem can in fact be reduced to a two-dimensional problem by introducing a reference

frame on the plane of the triangle and considering only the intersection point. Even this

rotation, however is unnecessary when considering that U is within the triangle only if

the projection U′ on one plane is inside the projection of the triangle over the same plane.

The projection over the plane orthogonal to the largest component of n guarantees that

degenerate cases like a triangle nearly (or exactly) orthogonal to the plane do not occur.

As a preliminary step consider the problem of computing the area of a triangle. The most

usual definition as one half the product of the lengths of the base times the altitude is not

practical if the triangle is assigned by the coordinates of the three vertices. An alternated

definition, however, can be obtained by the cross product of two vectors. Let B − A

and C −A be the vectors, their cross product is a third vector orthogonal to the plane

containing the original vectors with a magnitude equal to the area of the parallelogram

formed by B−A and C−A. Being A, B and C the vertices of the triangle its area then

98

simply reads

A′
ABC =

1

2
|(B−A)× (C−A)|, (A.3)

which can be explicitly computed from the coordinates of the vertices. Of course since

in Equation (A.3) we take the absolute value of the cross product the area A′
ABC will

be positive regardless of the relative position of B − A and C − A. Considering the

above expression with its own sign AABC = (B − A) × (C − A)/2, however, evidences

an interesting property of the area of a triangle which is positive or negative depending

if the orientation of the path ABC is counterclockwise or clockwise. This property can

be efficiently used for the determination of the relative position of a point with respect to

a triangle. Consider in fact the configuration of Figure A.2a with the point U inside the

triangle. The three triangles ABU , BCU and CAU all have positive areas, respectively,

A1, A2 and A3. If the point U is outside the triangle one or two of these triangles will

have negative areas (Figures A.2b-c). If the point U is on one of the edges of the triangle

ABC one of the areas will be zero (Figure A.2d). If instead two areas are zero the U will

be on one of the vertices (Figure A.2e). All the above arguments hold only if the path

A
B

U

C

A
B

C

U

A
B

C

U

A
B

C

U

a)

c)

b)

d)

A
B

C

U

e)

Figure A.2: Different configurations for the relative position of a point and a triangle.

ABC is oriented counterclockwise, it is however easy to show that if the sequence ABC is

oriented clockwise the area of the triangle is negative and if U is internal triangles ABU ,

BCU and CAU will all have negative areas.

The criterion can then be easily generalized as follows: if the three sub-triangles all have

areas with the same sign then U is inside the triangle, while if the sign of one of the areas

99

Segment triangle intersection

is different from the other two U is outside the triangle. If A1 is zero U is on the edge

AB while if A1 and A2 are both zero U ≡ B. All the other possibilities can be deduced

by induction.

100

Appendix B

Viscous coefficient matrices

Rxx =



0 0 0 0 0 0 0
0 4

3(µ+ µt) 0 0 0 0 0
0 0 (µ+ µt) 0 0 0 0
0 0 0 (µ+ µt) 0 0 0

0 4
3(µ+ µt)u (µ+ µt)v (µ+ µt)w Cp

(
µ
Pr + µt

Prt

)
(µ+ σ∗µt) 0

0 0 0 0 0 (µ+ σ∗µt) 0
0 0 0 0 0 0 (µ+ σµt)


;

Rxy =



0 0 0 0 0 0 0
0 0 −2

3(µ+ µt) 0 0 0 0
0 (µ+ µt) 0 0 0 0 0
0 0 0 0 0 0 0
0 (µ+ µt)v −2

3(µ+ µt)u 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


;

Rxz =



0 0 0 0 0 0 0
0 0 0 −2

3(µ+ µt) 0 0 0
0 0 0 0 0 0 0
0 (µ+ µt) 0 0 0 0 0
0 (µ+ µt)w 0 −2

3(µ+ µt)u 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


;

Ryx =



0 0 0 0 0 0 0
0 0 (µ+ µt) 0 0 0 0
0 −2

3(µ+ µt) 0 0 0 0 0
0 0 0 0 0 0 0
0 −2

3(µ+ µt)v (µ+ µt)u 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


;

101

Viscous coefficient matrices

Ryy =



0 0 0 0 0 0 0
0 (µ+ µt) 0 0 0 0 0
0 0 4

3(µ+ µt) 0 0 0 0
0 0 0 (µ+ µt) 0 0 0

0 (µ+ µt)u
4
3(µ+ µt)v (µ+ µt)w Cp

(
µ
Pr + µt

Prt

)
(µ+ σ∗µt) 0

0 0 0 0 0 (µ+ σ∗µt) 0
0 0 0 0 0 0 (µ+ σµt)


;

Ryz =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −2

3(µ+ µt) 0 0 0
0 0 (µ+ µt) 0 0 0 0
0 0 (µ+ µt)w −2

3(µ+ µt)v 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


;

Rzx =



0 0 0 0 0 0 0
0 0 0 (µ+ µt) 0 0 0
0 0 0 0 0 0 0
0 −2

3(µ+ µt) 0 0 0 0 0
0 −2

3(µ+ µt)w 0 (µ+ µt)u 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


;

Rzy =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 (µ+ µt) 0 0 0
0 0 −2

3(µ+ µt) 0 0 0 0
0 0 −2

3(µ+ µt)w (µ+ µt)v 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


;

Rzz =



0 0 0 0 0 0 0
0 (µ+ µt) 0 0 0 0 0
0 0 (µ+ µt) 0 0 0 0
0 0 0 4

3(µ+ µt) 0 0 0

0 (µ+ µt)u (µ+ µt)v
4
3(µ+ µt)w Cp

(
µ
Pr + µt

Prt

)
(µ+ σ∗µt) 0

0 0 0 0 0 (µ+ σ∗µt) 0
0 0 0 0 0 0 (µ+ σµt)


;

102

Appendix C

Right and Left Eigenvectors

The inverse of the matrix S is given by:

S−1 = b



sinv11
ρ̃Tu

d′
ρ̃T v

d′
ρ̃Tw

d′
− ρ̃T
d′

sinv16 0

− u
ρ

1
ρ 0 0 0 0 0

− v
ρ 0 1

ρ 0 0 0 0

− w
ρ 0 0 1

ρ 0 0 0

sinv51 −uρ̃
′′
pt

d′
−vρ̃

′′
pt

d′
−wρ̃

′′
pt

d′
ρ̃
′′
pt

d′
sinv56 0

− k
ρ 0 0 0 0 1

ρ 0

− ω
ρ 0 0 0 0 0 1

ρ



, (C.1)

where

h = H̃ − 1

2

(
u2 + v2 + w2

)
d
′

= ρρ̃
′′
pt h̃T + ρ̃T

(
1− ρh̃pt

)
b =

1

1 + 3∆τ
2∆t

.

sinv11 =
h̃T (ρ+ ρ̃kk) + ρ̃T

(
h− h̃kk − 5

3k
)

d′

sinv16 =
ρ̃T

(
5
3 + h̃k

)
− ρ̃kh̃T

d′

sinv51 =

(
1 + k

ρ ρ̃k

)(
1− ρh̃pt

)
− ρ̃′′

pt

(
h− 5

3k − h̃kk
)

d′

sinv56 = −
ρ̃k
ρ

(
1− ρh̃pt

)
+ ρ̃

′′
pt

(
5
3 + h̃k

)
d′

(C.2)

103

Right and Left Eigenvectors

The eigenvalues are:

λ1 = λ2 = λ3 = Ûb

λ4,5 =
1

2
b

Û (1 + ε
′
)
±

√
Û2 (1− ε′)2

+
4ρh̃T |∇l|2

d′

 (C.3)

where

Û = ulx + vly + wlz

∇l = (lx, ly, lz)

|∇l|2 = l2x + l2y + l2z

ε
′

=
ρρ̃pt h̃T + ρ̃T

(
1− ρh̃pt

)
ρρ̃′′

pt h̃T + ρ̃T

(
1− ρh̃pt

)
(C.4)

and l represents generalized coordinates.

The corresponding right and left eigenvectors are given respectively by:

M =



0 0 0 λ̃5−ε
′
Ũb

λ̃5−λ̃4
λ̃4−ε

′
Ũb

λ̃4−λ̃5
0 0

0 m1
ρ

n1
ρ

l̃xb
ρ(λ̃4−λ̃5)

− l̃xb
ρ(λ̃4−λ̃5)

0 0

0 m2
ρ

n2
ρ

l̃yb

ρ(λ̃4−λ̃5)
− l̃yb

ρ(λ̃4−λ̃5)
0 0

0 m3
ρ

n3
ρ

l̃zb
ρ(λ̃4−λ̃5)

− l̃zb
ρ(λ̃4−λ̃5)

0 0

− (1−ρh̃pt)
ρh̃T

0 0 A4 A5 0 0

0 0 0 0 0 1
ρ 0

0 0 0 0 0 0 1
ρ



, (C.5)

and

104

M−1 =



1 0 0 0 − ρh̃T
(1−ρh̃pt)

0 0

0 ρm1 ρm2 ρm3 0 0 0

0 ρn1 ρn2 ρn3 0 0 0

1 B4 l̃x B4 l̃y B4 l̃z 0 0 0

1 B5 l̃x B5 l̃y B5 l̃z 0 0 0

0 0 0 0 0 ρ 0

0 0 0 0 0 0 ρ



, (C.6)

where A4 and A5 are given by

A4 =

(
1− ρh̃pt

)
ρh̃T

λ̃5 − ε
′
Ũb

λ̃5 − λ̃4

and A5 =

(
1− ρh̃pt

)
ρh̃T

λ̃4 − ε
′
Ũb

λ̃4 − λ̃5

; (C.7)

B4 and B5 are given by

B4 = ρ

(
λ̃4

b
− ε′Ũ

)
and B5 = ρ

(
λ̃5

b
− ε′Ũ

)
; (C.8)

∇l̃, m, n represent three mutually orthogonal unit vectors,(
l̃x, l̃y, l̃z

)
=
∇l
|∇l|

,

(m1,m2,m3) =
(ly − lz, lz − lx, lx − ly)√

2
(
|∇l|2 − lxly − lylz − lxlz

) ,

(n1, n2, n3) =

(
lx (ly + lz)− l2y − l2z , ly (lx + lz)− l2x − l2z , lz (lx + ly)− l2x − l2y

)
|∇l|

√
2
(
|∇l|2 − lxly − lylz − lxlz

) ,

(C.9)

and, finally,

Ũ = l̃xu+ l̃yv + l̃zw and λ̃4,5 =
λ4,5

|∇l|
. (C.10)

105

Right and Left Eigenvectors

106

Bibliography

[1] G. Kalitzin, G. Medic, G. Iaccarino, and P. Durbin. Near-wall behavior of RANS

turbulence models and implications for wall functions. Journal of Computational

Physics, 204:265–291, 2005.

[2] G. K. Batchelor. An Introduction to Fluid Mechanics. Cambridge Univ. Press, 1967.

[3] M. D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, and M. Napolitano. An im-

mersed boundary method for compressible flows using local grid refinement. Journal

of Computational Physics, 225:2098–2117, 2007.

[4] R. Clift, J. R. Grace, and M. E. Weber. Bubbles, Drops and Particles. Academic

Press, 1978.

[5] M. Lee-Rausch and J. T. Batina. Calculation of AGARD wing 445.6 flutter using

Navier–Stokes aerodynamics. Technical report, 1993.

[6] E. Guilmineau and P. Queutey. A numerical simulation of vortex shedding from an

oscillating circular cylinder. Journal of Fluid and Structures, 16:773–794, 2002.

[7] M. D. de Tullio, G. Pascazio, and M. Napolitano. Arbitrarily shaped particles in

shear flow. Proceedings Seventh International Conference on Computational Fluid

Dynamics (ICCFD7), Big Island, HI, US, 2012.

[8] D. Barthès-Biesel. Motion of a spherical microcapsule freely suspended in a linear

shear flow. Journal of fluid mechanics, 100:831–853, 1980.

[9] C. S. Peskin. Flow Patterns Around Heart Valves: A Digital Computer Method for

Solving the Equations of Motion. PhD thesis, Physiology, Albert Einstein College of

Medicine. University Microfilms 72-30, 378, 1972.

107

BIBLIOGRAPHY

[10] J. Mohd-Yusof. Combined immersed boundaries/b-splines methods for simulations

of flows in complex geometries. Technical report, NASA Ames / Stanford University,

1997. CTR Annual Research Briefs.

[11] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yosuf. Combined immersed-

boundary finite-difference methods for three-dimensional complex flow simulations.

Jorunal of Computational Physics, 161:35–60, 2000.

[12] G. Iaccarino and R. Verzicco. Immersed boundary technique for turbulent flow sim-

ulations. Appl. Mech. Rev., 56:331–347, 2003.

[13] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid

Mechanics, 37:239–261, 2005.

[14] P. De Palma, M. D. de Tullio, G. Pascazio, and M. Napolitano. An immersed bound-

ary method for compressible viscous flows. Computers & Fluids, 35:693–702, 2006.

[15] J. A. Vieceli. A method for including arbitrary external boundaries in the mac

incompressible fluid computing technique. Journal of Computational Physics, 4:543–

551, 1969.

[16] J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly. A computing technique for

solving viscous incompressible transient fluid flow problems involving free-surfaces.

Report LA–3425, Los Alamos Scientific Laboratory, 1966.

[17] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous

incompressible flows of fluid with free surface. Phys. Fluids, 8:2182–2189, 1965.

[18] J. A. Vieceli. A computing method for incompressible flows bounded by moving walls.

Journal of Computational Physics, 8:119–143, 1971.

[19] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational

Physics, 25:220–252, 1977.

[20] C. S. Peskin. The fluid dynamics of heart valves: Experimental, theoretical and

computational methods. Annual Review of Fluid Mechanics, 14:235–259, 1982.

[21] C. S. Peskin and D. M. McQueen. A three-dimensional computational method for

blood flow in the heart I. immersed elastic fibers in a viscous incompressible fluid.

Journal of Computational Physics, 81:372–405, 1989.

108

BIBLIOGRAPHY

[22] D. M. McQueen and C. S. Peskin. A three-dimensional computational method for

blood flow in the heart: (II) contractile fibers. Journal of Computational Physics,

82:289–297, 1989.

[23] C. Basdevant and R. Sadourny. Numerical solution of incompressible flow: the mask

method. Laboratoire di Meteorologie Dynamique, Ecole Normale Superieure, Paris

(unpublished), 1984.

[24] M. Briscolini and P. Santangelo. Development of the mask method for incompressible

unsteady flows. Journal of Computational Physics, 84:57–75, 1989.

[25] D. Goldstein, R. Handler, and L. Sirovich. Modeling no-slip flow boundary with an

external force field. Journal of Computational Physics, 105:354–366, 1993.

[26] E. M. Saiki and S. Biringen. Numerical simulation of a cylinder in uniform flow: Appli-

cation of a virtual boundary method. Journal of Computational Physics, 123:450–465,

1996.

[27] E. Balaras. Modeling complex boundaries using an external force field on fixed

Cartesian grids in large-eddy simulations. Computers & Fluids., 33:375–404, 2004.

[28] S. Kang. An improved immersed boundary method for computation of turbulent flow

with heat transfer. PhD thesis, Stanford University, 2008.

[29] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite volume method for simu-

lations of flow in complex geometries. Journal of Computational Physics, 171:132–150,

2001.

[30] S. Majumdar, G. Iaccarino, and P. Durbin. RANS solvers with adaptive structured

boundary non-conforming grid. Center for Turbulence Research, Annual Research

Briefs, Stanford University, pages 353–366, 2001.

[31] Y. H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in

complex geometry. Journal of Computational Physics, 153:535–574, 1999.

[32] A. Dadone and B. Grossman. Ghost-cell method for inviscid three-dimensional flows

on Cartesian grids. 43rd AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada,

10-13 Jan 2005.

109

BIBLIOGRAPHY

[33] R. L. Taylor, P. Onate, and P. Ubach. Finite element analysis of membrane structures.

In book: Textile Composites and Inflatable Structures, pages 47–68, 2005.

[34] P. E. Hammer, M. S. Sacks, P. J. del Nido, and R. D. Howe. Mass-spring model for

simulation of heart valve tissue mechanical behavior. Annals of Biomedical Engineer-

ing, 39:1–12, 2011.

[35] D. A. Fedosov. Multiscale Modeling of Blood Flow and Soft Matter. PhD thesis,

Division of Applied Mathematics at Brown University, USA., 2010.

[36] G. M. Laskowski, S. P. Kearney, G. Evans, and R. Greif. Mixed convection heat

tranfer to and from a horizontal cylinder in cross-flow with heating from below. In-

ternational Journal of Heat and Fluid Flow, 28:454–468, 2007.

[37] L. Hylton, M. Mihelc, E. Turner, D. Nealy, and R. York. Analytical and experimental

evaluation of the heat transfer distribution over the surfaces of turbine vanes. Tech-

nical report, National Aeronautics and Space Administration, NASA Lewis Research

Center, 1983.

[38] L. Andrei, A. Andreini, B. Facchini, and L. Winchler. A decoupled CHT procedure:

application and validation on a gas turbine vane with different cooling configurations.

Energy Procedia, 45:1087–1096, 2014.

[39] T. Yoshiara, D. Sasaki, and K. Nakahashi. Conjugate heat transfer simulation of

cooled turbine blades using unstructured-mesh cfd solver. In 49th AIAA Aerospace

Sciences Meeting including the New Horizons Forum and Aerospace Exposition in

Orlando, Florida, page 498, 2011.

[40] J. Luo and E. H. Razinsky. Conjugate heat transfer analysis of a cooled turbine vane

using the V2F turbulence model. Journal of turbomachinery, 129:773–781, 2007.

[41] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differ-

ential equations. Journal of Computational Physics, 53:482–512, 1984.

[42] D. De Zeeuw and K.M. Powell. An adaptively-refined Cartesian mesh solver for the

Euler equations. AIAA Paper 91-1542, 1991.

[43] J. Quirk. An alternative to unstructured grids for computing gas dynamic flows

around arbitrarily complex two dimensional bodies. ICASE Report 92-7, 1992.

110

BIBLIOGRAPHY

[44] J. E. Melton, F. Y. Enomoto, and M. J. Berger. Automatic Cartesian grid generation

for Euler flows. AIAA Paper 93-3386-CP, 1993.

[45] S. L. Jr Karman. Splitflow: A 3D unstructured Cartesian/prismatic grid CFD code

for complex geometries. AIAA 95-0343, 1995.

[46] T. J. Welterlen and S. L. Jr. Karman. Rapid assessment of F-16 store trajectories

using unstructured CFD. AIAA 95-0354, 1995.

[47] J. E. Melton, M. J. Berger, M. J. Aftosmis, and M. D. Wong. 3D applications of a

Cartesian grid Euler method. AIAA Paper 95-0853, 1995.

[48] J.E. Melton. Automated Three-Dimensional Cartesian Grid Generation and Euler

Flow Solutions for Arbitrary Geometries. PhD thesis, Univ. CA., Davis CA, 1996.

[49] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

SpringerVerlag, 1985.

[50] D. Voorhies. Graphics Gems II: TriangleCube Intersections. Academic Press, Inc.,

1992.

[51] J. O’Rourke. Computational Geometry in C. Cambridge Univ. Press, NY, 1993.

[52] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and

Practice. AddisonWesley, Reading, MA, 1995.

[53] M. J. Aftosmis, M. J. Berger, and J.E Melton. Handbook of Mesh Generation. Con-

tributed Chapter. CRC Press., 1998.

[54] D. C. Wilcox. Turbulence Modelling for CFD. DCW Industries, Inc., second edition,

1998.

[55] M. Vanella and E. Balaras. A moving-least-squares reconstruction for embedded-

boundary formulations. Journal of Computational Physics, 228:6617–6628, 2009.

[56] G. Iaccarino and S. Moreau. Natural and forced conjugate heat transfer in complex

geometries on cartesian adapted grids. Transactions of ASME, 128:838–846, 2006.

[57] D. A. Schwer. Numerical study of unsteadiness in non-reacting and reacting mixing

layers. PhD thesis, Department of Mechanical Engineering, The Pennsylvania State

University, 1999.

111

BIBLIOGRAPHY

[58] S. Chakravarthy and S. Osher. Numerical experiments with the Osher upwind scheme

for the Euler equations. AIAA Journal, 24:1241–1248, 1986.

[59] T. H. Pulliam. Time accuracy and the use of implicit methods. AIAA Paper 93-3360

CP, 1993.

[60] C. Merkle. Preconditioning methods for viscous flow calculations. Computational

Fluid Dynamics, pages 419–436, 1995.

[61] D. Choi and C. Merkle. Application of time–iterative schemes to incompressible flows.

AIAA Journal, 23:1518–1524, 1985.

[62] E. Turkel. Preconditioning method for solving the incompressible and low speed

compressible equations. Journal of Computational Physics, 72:277–298, 1987.

[63] B. van Leer, W. Lee, and P. Roe. Characteristic time-stepping or local preconditioning

of the Euler equations. AIAA paper 91-1552 CP, 1992.

[64] D. Choi and C. L. Merkle. The application of preconditioning to viscous flows. Journal

of Computational Physics, 105:207–223, 1993.

[65] S. Venkateswaran and C. L. Merkle. Dual time stepping and preconditioning for

unsteady computations. AIAA paper 95-0078, 1995.

[66] S. Venkateswaran, J. M. Weiss, Merkle C. L., and Y. H. Choi. Propulsion–related

flowfields using the preconditioned Navier–Stokes equations. AIAA paper 92-3437,

1992.

[67] P. E. O. Buelow, D. A. Schwer, J. Z. Feng, C. L. Merkle, and D. Choi. A precondi-

tioned dual-time, diagonalized ADI scheme for unsteady computations. AIAA Paper

97-2101 CP, 1997.

[68] P. E. O. Buelow. Convergence Enhancement of Euler and Navier–Stokes algorithms.

PhD thesis, Department of Mechanical Engineering, The Pennsylvania State Univer-

sity, 1995.

[69] T. H. Pulliam and D. S. Chaussee. A diagonal form of an implicit approximate

factorization algorithm. Journal of Computational Physics, 39:347–363, 1981.

112

BIBLIOGRAPHY

[70] S. De Rango and D. Zingg. Improvements to a dual-time stepping method for com-

puting unsteady flows. AIAA Journal, 35:1548–1551, 1997.

[71] van der Vorst. Bi-CGStab: a fast and smoothly converging variant of the bi-CG for

the solution of non-symmetric linear systems. SIAM J. Sci. Statist. Comput., 13:361,

1992.

[72] F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering appli-

cations. AIAA Journal, 32-8:1598–1605, 1994.

[73] M. B. Giles. Stability analysis of numerical interface conditions in fluid-structure

thermal analysis. International Journal of Numerical methods in fluid, 25:421–436,

1997.

[74] F. Duchaine, A. Corpron, L. Pons, V. Moureau, F. Nicoud, and T. Poinsot. Devel-

opment and assessment of a coupled strategy for conjugate heat transfer with large

eddy simulation: application to a cooled turbine blade. International Journal of Heat

and Fluid Flow, 30:1129–1141, 2009.

[75] M. D. de Tullio. Development of an Immersed Boundary method for the solution of

the preconditioned Navier-Stokes equations. PhD thesis, Politecnico di Bari, 2006.

[76] M. O. Bristeau, R. Glowinski, J. Periaux, and A. Viviand. Numerical simulation of

compressible Navier-Stokes flow, volume 18. Vieweg, 1987.

[77] V. A. Bashkin, A. V. Vaganov, I. V. Egorov, D. V. Ivanov, and G. A. Ignatova.

Comparison of calculated and experimental data on supersonic flow past a circular

cylinder. Fluid Dynamics, 37:473–483, 2002.

[78] C. H. Sieverding. Experimental data on two transonic turbine blade sections and

comparisons with various theoretical methods. VKI Report No. LS59, von Karman

Institute, Belgium, 1973.

[79] R. Kiock, F. Lethaus, N. C. Baines, and C. H. Sieverding. The transonic flow through

a plane turbine cascade as measured in four European winnd tunnels. ASME J. Eng.

Gas Turbines Power, 108:277–285, 1986.

[80] F. Liu, J. Cai, and Y. Zhu. Calculation of wing flutter by a coupled fluid-structure

method. Journal of aircraft, 38:334–342, 2001.

113

BIBLIOGRAPHY

[81] G. C. Rufolo, M. Marini, P. Roncioni, and S. Borrelli. In-flight aerodynamic exper-

iment for the unmanned space vehicle ftb-1. First CEAS European Air and Space

Conference, Berlin, Germany, Septemper 10-13, 2007.

[82] M. Uhlmann. An immersed boundary method with direct forcing for the simulation

of particulate flows. Journal of Computational Physics, 209:448–476, 2005.

114

