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a b s t r a c t

There are many examples for point sets in finite geometry which
behave ‘‘almost regularly’’ in some (well-defined) sense, for in-
stance they have ‘‘almost regular’’ line-intersection numbers. In
this paper we investigate point sets of a desarguesian affine
plane, for which there exist some (sometimes: many) parallel
classes of lines, such that almost all lines of one parallel class
intersect our set in the same number of points (possibly mod
p, the characteristic). The lines with exceptional intersection
numbers are called renitent, and we prove results on the (regular)
behavior of these renitent lines. As a consequence of our results,
we also prove geometric properties of codewords of the Fp-linear
code generated by characteristic vectors of lines of PG(2, q).
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1. Introduction

One of the key motivations in the history of finite geometries is the study of symmetric
tructures, i.e. structures admitting a large symmetry group. These structures (quadrics, Hermitian
arieties, subgeometries over a subfield, etc.) are typically very ‘‘regular’’ when one considers
heir intersection properties with the subspaces of the ambient geometry; and there exist many
‘classification-type’’ results, stating that an ‘‘intersection-wise very regular’’ set must be one on the
ist of the (classical, symmetric) structures.

Throughout combinatorics, many theorems state that within a certain class of structures, the
‘nicest’’ ones (with respect to some well-defined combinatorial property) are stable, meaning that
f another structure is ‘‘almost as nice’’, then that must be just a slightly modified version of a nicest
ne. Such stability results, as e.g. the Erdős–Simonovits theorem (see [1]) which states the stability
f Turán’s theorem in extremal graph theory, or the Hilton–Milner (see [2]) theorem for intersecting
amilies, always describe some deep properties of the class.

Following this route, it is natural to investigate point sets, which behave ‘‘almost regularly’’ with
espect to the subspaces of the ambient space. Describing the patterns how little irregularities may
ccur, reveals some properties of the regular structures.
In this paper we restrict ourselves to point sets of a desarguesian affine plane AG(2, q), where
is a power of the prime p. (The natural but not obvious extensions to other spaces will come

n separate papers.) It may well happen that our point set intersects almost all lines of a parallel
lass in the same number of points, possibly mod p. (E.g. if you take a point set which intersects
very line in constant mod p points and delete a few, say κ points of it then all the lines, except
t most κ per parallel class, still intersect it in constant mod p points.) If it happens for many
arallel classes, then one may guess that the reason is that our point set has a hidden structure,
.e. the non-regular intersections may be ‘‘corrected’’, or at least they also possess some regularity
hemselves. For instance, in AG(2, q), q even, an arc of size q + 1 has almost regular intersection
umbers mod 2 in every parallel line class: it meets each line in 0 or 2 points, except one line per
ach parallel class (which is 1-secant). Now, it is easy to prove that these 1-secant (exceptional)
ines are concurrent, which can be interpreted as (i) they are points of a degree 1 curve in the dual
lane; or (ii) their intersection point can be added to the original point set, which becomes ‘‘regular’’
his way (i.e. every line meets it in 0 mod 2 points). This tiny example illustrates that if you control
he irregularities then you may prove that every oval is contained in a hyperoval (i.e. in the ’’nice
tructure’’). In general, a (q + 2 − k)-arc is a point set (of size (q + 2 − k)) in PG(2, q) intersecting
every line in at most 2 points. It is easy to see that such a point set has exactly k 1-secants through
each of its point. Segre’s celebrated theorem says that there is a curve of degree k or 2k, depending
on q is even or odd, in the dual plane which contains these 1-secants.

There are many papers dealing with problems in view of (ii), for a survey on arcs see [3] and
for k (mod p) multisets see [4]. In this paper we extend and explore this idea. We start with a
result, which is from [5] and it can be viewed as a generalization of [6, Theorem 5], see also
[7, Proposition 2] and [8, Remark 7]. We use the usual extension of AG(2, q) with its line at infinity
ℓ∞, containing points called directions, and the affine lines with slope d all meet at the direction
(d), where d ∈ Fq ∪ {∞}.

Lemma 1.1 (Lemma of Renitent Lines [5]). Let T be a point set of AG(2, q). A line ℓ with slope d is
called renitent if there exists an integer md such that |ℓ ∩ T | ̸≡ md (mod p) but every other line with
lope d meets T in md modulo p points. The renitent lines are concurrent.

Now we define renitent lines in the following, more general setting and then prove various
eneralizations of the lemma above.

efinition 1.2. Let T be a multiset of AG(2, q). For some integer λ, a direction (d) is called (q−λ)-
niform w.r.t. T if there are at least (q−λ) affine lines with slope d meeting T in the same number

of points modulo p. This number will be called the typical intersection number at (d). The rest of the
lines with direction (d) will be called renitent (w.r.t. T ).

A direction (d) is sharply (q− λ)-uniform w.r.t. T if it is incident with exactly (q− λ) affine lines
meeting T in the same number of points modulo p.
2
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In the definition above, different directions might have different typical intersection numbers.
n most cases we think about λ as a small value (hence the name typical), however in Theorems 2.1
nd 2.4, in the prime case we do not need that λ is small. When q is non-prime we will usually

suppose λ ≤ p − 1. In this latter case it is rather automatic that the typical intersection numbers
are uniquely determined for each (q − λ)-uniform direction.

Remark 1.3. If λ > (q − 1)/2 then it might happen that for a given (q − λ)-uniform direction (d)
the typical intersection number is not uniquely determined. In this case one typical intersection
number has to be fixed w.r.t. the direction (d).

Under some conditions, if a set of (q− λ)-uniform directions Eλ is of size at most q, then we are
ble to prove that the renitent lines are contained in an algebraic envelope of relatively small class
i.e. a curve of the dual plane of relatively small degree), see Theorem 2.1. This result resembles
egre’s theorem mentioned above.
In Theorem 2.4, we remove the condition on the size of Eλ and give a more general formulation of

heorem 2.1. The proof relies on kth power sums and the Newton–Girard formulas. If we are more
ermissive with the renitent lines of T then the class of the algebraic envelope might increase.
o prove the following result we apply a ‘‘weighted’’ version of the Newton–Girard formulas, see
emma 3.1. The proof is given in Section 3, see Theorem 3.3.

heorem 1.4. Take a multiset T of AG(2, q) and an integer 0 < λ ≤ (q − 1)/2. Let Eλ denote a set
f (q − λ)-uniform directions of size at most q. The renitent lines with slope in Eλ are contained in an
lgebraic envelope of class λ2. Furthermore, if a direction is (q − λ)-uniform, but not sharply uniform,
hen the line pencil centered at that direction is fully contained in the envelope.

In Section 4, we show how to apply the resultant method, cf. [4], with the help of a polynomial
hich can detect renitent lines at each uniform direction. For other polynomial techniques used

n finite geometry, see for example [9]. In Section 5, we dualize some of our results and as a
onsequence, we also prove geometric properties of codewords of the Fp-linear code generated by
haracteristic vectors of lines of PG(2, q). This is a generalization of a result of Blokhuis, Brouwer,
ilbrink [10, Proposition, p. 66].

. Envelopes of small class

In this section our aim is to show that there is an envelope (i.e. a curve in the dual plane) of
elatively small class (i.e. degree) containing the renitent lines with slope in a given subset Fλ of
q − λ)-uniform directions. There exist at least λ common lines of such an envelope and a line
encil centered at a sharply (q−λ)-uniform direction. So if there are s > 0 sharply (q−λ)-uniform

directions in Fλ, then such an envelope has class at least min{λ, s} (if it has class less than λ then
t necessarily contains the s line pencils centered at the sharply (q − λ)-uniform directions).

Any line set of size at most |Fλ|λ is contained in an algebraic envelope of class at most
√
2|Fλ|λ⌉ − 1. Indeed, a 3-variable homogeneous polynomial h of degree d has

(d+2
2

)
coefficients.

For any point P ∈ PG(2, q), the condition that h vanishes at P is equivalent to a linear equation for
these coefficients. If

(d+2
2

)
is larger than the size of a point set S , then there is a non-trivial solution

for the homogeneous system of equations which corresponds to the condition that the points of S
are zeroes of h. In Theorem 2.1, we show that no matter of the size of Fλ, with some conditions on
the renitent lines we can always construct an envelope of class λ containing all renitent lines with
slope in Fλ. The results of this section will rely on the Newton–Girard formulas.

From now on, we coordinatize the projective plane PG(2, q) with homogeneous coordinates over
GF(q) in such a way that the line at infinity is [0 : 0 : 1], while the X- and the Y -axes are [0 : 1 : 0]
and [1 : 0 : 0], resp. The direction (d), where d ∈ Fq, means the point (1 : d : 0) on the line at
infinity.

Later in this section, we will be able to remove the condition |Eλ| ≤ q from Theorem 2.1, see
Remark 2.5.
3
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Theorem 2.1. Take a multiset T of AG(2, q) and let Eλ denote a set of (q − λ)-uniform directions of
ize at most q such that:

(i) 0 < λ ≤ min{q − 2, p − 1},
(ii) for each (d) ∈ Eλ the renitent lines meet T in the same number, say td, of points modulo p,
(iii) for each (d) ∈ Eλ if md denotes the typical intersection number at direction (d), then td − md

modulo p does not depend on the choice of (d).

hen the renitent lines with direction in Eλ are contained in an algebraic envelope of class λ.

roof. First we show that the number of renitent lines is the same at each direction (d) of Eλ, hence
e can find a common value λ′

≤ λ for which all the directions in Eλ are sharply (q− λ′)-uniform;
ote that if λ′ < λ then we will find an envelope of even smaller class at the end of the proof. Let (d)
nd (e) denote two directions in Eλ which are sharply (q−λd)-uniform and sharply (q−λe)-uniform,
espectively. Then, counting points on lines with slope d and lines with slope e, we obtain

(q − λd)md + λdtd ≡ |T | ≡ (q − λe)me + λete (mod p),

ence

λd(td − md) ≡ λe(te − me) (mod p).

By assumption (iii), td − md ≡ te − me (mod p) and td ̸≡ md (mod p), thus λd ≡ λe (mod p). Then
λd = λe follows from the fact that 0 ≤ λe, λd ≤ λ ≤ p − 1.

From now on, we may assume that we had λ = λ′ already, and the directions in Eλ are sharply
(q − λ)-uniform. Since |Eλ| ≤ q, we may assume (0 : 1 : 0) /∈ Eλ. For each (1 : d : 0) ∈ Eλ put
(0 : α1(d) : 1), (0 : α2(d) : 1), . . . , (0 : αλ(d) : 1) for the points of the Y -axis on the renitent lines
with slope d.

Put s := |T | and T = {(ai : bi : 1)}si=1. Next define the polynomials

πk(V ) :=

s∑
i=1

(bi − aiV )k ∈ Fq[V ]

of degree at most k. We project T from (d) to the Y -axis: the line joining (1 : d : 0) and (ai : bi : 1)
meets the Y -axis at the point (0 : bi − aid : 1), hence for each (1 : d : 0) ∈ Eλ the projected image,
i.e. the multiset

Md := {(bi − aid)}si=1

contains md mod p copies of the values belonging to non-renitent lines and td mod p copies of the
αi(d)’s, or one may say md mod p copies of Fq and c mod p further copies of αi(d) for 1 ≤ i ≤ λ,
where c ∈ {1, . . . , p − 1} is an integer such that c ≡ td − md (mod p). Since

∑
γ∈Fq γ k

= 0 for
0 ≤ k ≤ q − 2 and since πk(d) is the kth power sum of the elements in Md, for 0 ≤ k ≤ q − 2 it
holds that for (1 : d : 0) ∈ Eλ

πk(d) = c
λ∑

i=1

αi(d)k. (1)

Denote by σi(X1, . . . , Xλ) the ith elementary symmetric polynomial in the variables X1, . . . , Xλ. Also,
for any integer i ≥ 0 and d ∈ Eλ put

σi(d) = σi(α1(d), . . . , αλ(d)).

For p − 1 ≥ j ≥ 1 define the following polynomial of degree at most j:

Sj(V ) := (−1)j
∑

n1+2n2+···+jnj=j

j∏
i=1

(−πi(V )/c)ni

ni!ini
∈ Fq[V ].
n1,n2,...,nj≥0

4
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Then for min{q − 2, p − 1} ≥ j ≥ 1 from (1) and from the Newton–Girard identities it follows that
j(d) = σj(d) for each (1 : d : 0) ∈ Eλ.
Consider the affine curve of degree λ defined by

f (U, V ) := Uλ
− S1(V )Uλ−1

+ S2(V )Uλ−2
− · · · + (−1)λ−1Sλ−1(V )U + (−1)λSλ(V ).

hen the projective curve of degree λ defined by the equation g(U, V ,W ) := W λf (U/W , V/W )
contains the point (αi(d) : d : 1) for each d ∈ Eλ and 1 ≤ i ≤ λ. Indeed,

g(U, d, 1) = Uλ
− σ1(d)Uλ−1

+ σ2(d)Uλ−2
− · · · + (−1)λ−1σλ−1(d)U + (−1)λσλ(d) =

λ∏
i=1

(U − αi(d)).

It follows that the lines [d : −1 : αi(d)] are contained in an algebraic envelope of class λ. □

Let U be an affine (q − n)-set and denote by DU the set of directions determined by U (that
is, directions incident with at least one line meeting U in at least 2 points). Szőnyi proved in
[8, Theorem 4] that the affine lines which do not meet U and are incident with a not determined
direction are contained in an algebraic envelope of class n. If λ ≤ min{q − 2, p − 1}, then this is
a special case of our Theorem 2.1, with λ = n, En = ℓ∞ \ DU (for d ∈ En it holds that td = 0 and

d = 1). To construct the envelope, Szőnyi’s proof relies on the fact that a typical line intersects U
n 1 point exactly, while a renitent line in 0 point. Our theorem considers a more general setting,
ut the cost of it is that we need an upper bound on λ.
As in [8], if λ ≤

√
q/2 and |Eλ| ≥ (q + 1)/2, then [8, Proposition 2] yields that the

nvelope constructed in Theorem 2.1 is the product of n pencils. (For an improved version of
[8, Proposition 2] see [11, Lemma 3.2].) This actually happens as the next example shows.

Example 2.2. In AG(2, q) consider an m mod p multiset and remove λ of its points. These λ points
determine at most

(
λ

2

)
directions which we will denote by D. Then the points of ℓ∞ \D are (q− λ)-

niform with typical intersection number m and the renitent lines (lines meeting U in m − 1 mod
points) are contained in the product of the λ pencils centered at the removed points.

As the next example shows, Theorem 2.1 does not hold when λ = p2 − p, hence we certainly
eed some restriction on the value λ. In Section 5, we show that the bound λ ≤ p − 1 is necessary
hen q = p2.

Example 2.3. In AG(2, q), q = ph, p prime, h > 2, consider a subplane PG(2, p) and delete p + 1
ollinear points from it. Let T denote the point set obtained, T = {Q1,Q2, . . . ,Qp2}. Denote by
P1, . . . , Pp2+p the points of ℓ∞ through which there passes a p-secant of T . These points are incident
with p2 −p affine lines meeting T in 1 point and with q−p2 +p affine lines meeting T in 0 modulo
p points.

We claim that the (p2 +p)(p2 −p) renitent lines are not contained in an envelope of class p2 −p.
Indeed, the point Qi is incident with p2+p−(p+1) lines containing a point Pj for some j ∈ [1, p2+p]
nd intersecting T in 1 modulo p points, i.e with this many renitent lines; so the pencil with center
i would be a component of such an envelope for each i. A contradiction by degree considerations.

The next theorem seems to have rather artificial conditions and settings. But this provides a
iddle ground between the kind of best bound deg ≤ λ of Theorem 2.1 with strong assumptions

and the weaker bound deg ≤ λ2 of Theorem 3.3 holding in general.

Theorem 2.4. Take a multiset T of AG(2, q) and let Fλ denote a set of (q − λ)-uniform directions.
or each (d) ∈ Fλ denote the typical intersection number by md and denote the intersection numbers
f the renitent lines by td,1, td,2, . . . , td,λd , for some 0 < λd ≤ λ. For c ∈ Fp \ {0} define the integers
d,i(c) ∈ {1, . . . , p − 1} such that
cλd,i(c) ≡ td,i − md (mod p)

5
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and assume that

Λd(c) :=

λd∑
i=1

λd,i(c) ≤ min{q − 2, p − 1} (2)

olds for each (d) ∈ Fλ (note that the sum is taken over natural numbers). Then Λ(c) := Λd(c) does
ot depend on d and the renitent lines with direction in Fλ are contained in an algebraic envelope of
lass Λ(c). If ℓ is a renitent line with slope d and with intersection number td,i, then the intersection
ultiplicity of the pencil centered at (d) with Fλ at ℓ is λd,i(c).

roof. Throughout the proof, we will fix c and so neglect it from λd,i(c), Λd(c) and Λ(c). As before,
irst we show that Λd does not depend on (d) of Fλ. Let (e1) and (e2) denote two directions in Fλ.
hen

qme1 + Λe1c ≡ |T | ≡ qme2 + Λe2c (mod p),

hence

Λe1 ≡ Λe2 (mod p).

Then Λe1 = Λe2 follows from the fact that 0 < Λe1 , Λe2 ≤ p − 1.
First we prove the assertion for any Eλ ⊆ Fλ such that |Eλ| ≤ q. In this case, we may assume

(0 : 1 : 0) /∈ Eλ. For each (1 : d : 0) ∈ Eλ put (0 : α1(d) : 1), (0 : α2(d) : 1), . . . , (0 : αλd (d) : 1) for the
points of the Y -axis on the renitent lines with slope d.

Put s := |T | and T = {(ai : bi : 1)}si=1. Next define the polynomials

πk(V ) :=

s∑
i=1

(bi − aiV )k ∈ Fq[V ]

of degree at most k. For each (1 : d : 0) ∈ Eλ the multiset

Md := {(bi − aid)}si=1

contains md modulo p copies of Fq and td,i − md modulo p further copies of αi(d) for 1 ≤ i ≤ λd.
Since

∑
γ∈Fq γ k

= 0 for 0 ≤ k ≤ q− 2 and since πk(d) is the kth power sum of the elements in Md,
for 0 ≤ k ≤ q − 2 it holds that for (1 : d : 0) ∈ Eλ

πk(d) = c
λd∑
i=1

λd,i∑
j=1

αi(d)k. (3)

Denote by σi(X1, . . . , XΛ) the ith elementary symmetric polynomial in the variables X1, . . . , XΛ. Also,
for any integer i ≥ 0 and d ∈ Eλ put

σi(d) = σi(α1(d), . . . , α1(d)  
λd,1 times

, . . . , αj(d), . . . , αj(d)  
λd,j times

, . . . , αλd (d), . . . , αλd (d)  
λd,λd times

).

For p − 1 ≥ j ≥ 1 define the following polynomial of degree at most j:

Sj(V ) := (−1)j
∑

n1+2n2+···+jnj=j
n1,n2,...,nj≥0

j∏
i=1

(−πi(V )/c)ni

ni!ini
∈ Fq[V ].

Then for min{q − 2, p − 1} ≥ j ≥ 1 from (3) and from the Newton–Girard identities it follows that
Sj(d) = σj(d) for each (1 : d : 0) ∈ Eλ.

Consider the affine curve of degree Λ defined by

f (U, V ) := UΛ
− S (V )UΛ−1

+ S (V )UΛ−2
− · · · + (−1)Λ−1S (V )U + (−1)ΛS (V ).
1 2 Λ−1 Λ

6
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Then the projective curve of degree Λ defined by the equation g(U, V ,W ) := WΛf (U/W , V/W )
contains the point (αi(d) : d : 1) for each d ∈ Eλ and 1 ≤ i ≤ λd, with multiplicity λd,i. Indeed,

g(U, d, 1) = UΛ
− σ1(d)UΛ−1

+ σ2(d)UΛ−2
− · · · + (−1)Λ−1σΛ−1(d)U + (−1)ΛσΛ(d) =

λd∏
i=1

(U − αi(d))λd,i .

It follows that the point (αi(d) : d : 1) lies on the curve defined by g . Note that (V −d) cannot divide
f (U, V ) and hence the ‘‘horizontal’’ line [0 : 1 : −d] cannot be a component of the curve defined
by f . The intersection multiplicity of the curve defined by f and [0 : 1 : −d] is λd,i at the point
(αi(d) : d : 1). It follows that the lines [d : −1 : αi(d)] are contained in an algebraic envelope of
class Λ and the intersection multiplicity of this envelope with the pencil centered at (1 : d : 0) is
λd,i at the line [d : −1 : αi(d)].

Now assume that |Fλ| = q+1. Apply the argument above for two distinct subsets of Fλ, both of
them of size q. Denote them by Eλ and E ′

λ and denote the corresponding curves (in the dual plane) of
degree Λ by C and C′, respectively. Our aim is to prove that these two curves coincide. Put C = H ·A
and C′

= H · A′, where A and A′ do not have a common component. Denote the degree of H by h
and suppose to the contrary that h < Λ.

For (d) ∈ Eλ ∩ E ′

λ denote the line [0 : 1 : −d] by ℓd and the point (αi(d) : d : 1) by Pd,i. Recall
that ℓd cannot be a component of C or C′. The intersection multiplicity I(C ∩ ℓd, Pd,i) = λd,i equals
I(H ∩ ℓd, Pd,i) + I(A ∩ ℓd, Pd,i), thus

I(A ∩ ℓd, Pd,i) = λdi − I(H ∩ ℓd, Pd,i).

Replacing A by A′, the same argument yields that

I(A′
∩ ℓd, Pd,i) = λdi − I(H ∩ ℓd, Pd,i).

By [12, Lemma 9.2 and p. 87] or [13, Lemma 10.4] it follows that I(A∩A′, Pd,i) ≥ λdi − I(H∩ℓd, Pd,i).
Then

λd∑
i=1

I(A ∩ A′, Pd,i) ≥

λd∑
i=1

λdi −

λd∑
i=1

I(H ∩ ℓd, Pd,i) = Λ −

λd∑
i=1

I(H ∩ ℓd, Pd,i) ≥ Λ − h, (4)

since
∑λd

i=1 I(H ∩ ℓd, Pd,i) ≤ degH = h. The inequality (4) holds for each (d) ∈ Eλ ∩ E ′

λ and hence∑
P∈A∩A′

I(A ∩ A′, P) ≥

∑
(d)∈Eλ∩E ′

λ

λd∑
i=1

I(A ∩ A′, Pd,i) ≥ (q − 1)(Λ − h).

On the other hand, By Bézout’s theorem
∑

P∈A∩A′ I(A ∩ A′, P) ≤ degA · degA′
= (Λ − h)(Λ − h).

This contradiction proves h = Λ, that is, C = C′. □

Remark 2.5. If in Theorem 2.4 we assume td,1 = td,2 = · · · = td,λd =: td for each (d) ∈ Fλ,
we also assume that td − md does not depend on the choice of d, and further assume 0 < λ ≤

min{q − 2, p − 1}, then with the choice c ≡ td − md (mod p) we obtain Theorem 2.1 without the
restriction |Eλ| ≤ q.

Remark 2.6. If |T | ≡ 0 (mod p) then Theorem 2.4 cannot be applied. Indeed, in that case for each
(d) ∈ Fλ,

λd∑
i=1

(td,i − md) ≡ 0 (mod p)

and hence Λd =
∑λd

i=1 λd,i ≡ 0 (mod p), which is not possible if Λd ≤ p − 1 (by definition λd,i > 0
for each i).
7
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Remark 2.7. For c = 1, 2, . . . , p − 1, the values of Λd(c) give different residues modulo p and this
esidue is the same for every choice of d. However, it is possible that for some of the directions,
d(c) ≤ min{q − 2, p − 1} does not hold.
Indeed, put for example p = 5, λ = 2 and assume that the typical intersection number is 0 at

ach direction. Also, assume that both of the two renitent lines with direction (d1) ∈ Fλ meet T in
modulo p points and the two renitent lines with direction (d2) ∈ Fλ meet T in 3 and in 4 points
odulo p. Then, with c = 1 we obtain Λd1 (c) = 2 and Λd2 (c) = 7, so the result cannot be applied.
n the other hand, with c = 3 we obtain Λd1 (c) = Λd2 (c) = 4 and hence the result can be applied
f q > 5. This also shows that sometimes it might be convenient to choose Fλ not as the set of all
q − λ)-uniform directions, but as a subset of them.

xample 2.8. In Theorem 2.4, put λ = 3 and assume that md = 1 and the renitent lines
eet T modulo p in the multiset {3, 3, 5} for each (d) ∈ Fλ. Note that this implies p ̸= 2.
ith the choice c = 2, it follows that the renitent lines are contained in a curve of degree
= (3 − 1)/2 + (3 − 1)/2 + (5 − 1)/2 = 4 whenever 4 ≤ min{q − 2, p − 1}.

One might think that to obtain a curve of the lowest degree, the best option is to chose c as the
reatest common divisor of the values td,i − md. The next example disproves this belief.

xample 2.9. In Theorem 2.4, put λ = 2, p = 13, and assume that md = 1 and the renitent lines
eet T modulo 13 in the set {2, 8} for each (d) ∈ Fλ. With the choice c = 1, it follows that the

enitent lines are contained in a curve of degree Λ = (2− 1)+ (8− 1) = 8. With the choice c = 7,
t follows that the renitent lines are contained in a curve of degree Λ = 1/7 + 7/7 = 2 + 1 = 3.

. The general case

First we prove a recursion connecting elementary symmetric polynomials with ‘‘weighted’’
ower sums.

emma 3.1. Let σk = σk(X1, . . . , Xλ) denote the kth elementary symmetric polynomial in the variables
1, . . . , Xλ. For some field elements c1, c2, . . . , cλ put

Pk = Pk(X1, . . . , Xλ) =

λ∑
i=1

ciXk
i .

hen for any integer j ≥ 0 it holds that

Pλ+j = Pλ+j−1σ1 − Pλ+j−2σ2 + · · · + (−1)λ+1Pjσλ.

Proof. Note that

Y j
λ∏

i=1

(Y − Xi) = Y λ+j
− Y λ+j−1σ1 + Y λ+j−2σ2 − · · · + (−1)λY jσλ.

t follows that

c1(X
λ+j
1 − Xλ+j−1

1 σ1 + Xλ+j−2
1 σ2 − · · · + (−1)λX j

1σλ) = 0,

c2(X
λ+j
2 − Xλ+j−1

2 σ1 + Xλ+j−2
2 σ2 − · · · + (−1)λX j

2σλ) = 0,

...

cλ(X
λ+j
λ − Xλ+j−1

λ σ1 + Xλ+j−2
λ σ2 − · · · + (−1)λX j

λσλ) = 0.

Summing up both sides above yields the assertion. □
8
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Lemma 3.2. As before, put

Pk = Pk(X1, . . . , Xλ) =

λ∑
i=1

ciXk
i ,

and define the λ × λ matrix

H = H(X1, . . . , Xλ) =

⎛⎜⎜⎝
Pλ−1 Pλ−2 . . . P0
Pλ Pλ−1 . . . P1
...

...
...

...

P2λ−2 P2λ−3 . . . Pλ−1

⎞⎟⎟⎠ .

Then detH = (−1)λ(λ−1)/2c1c2 . . . cλ
∏

1≤i<j≤λ(Xi − Xj)2.

Proof. It follows from the properties of Vandermonde matrices and from the fact that

H =

⎛⎜⎜⎝
c1 c2 . . . cλ

c1X1 c2X2 . . . cλXλ

...

c1Xλ−1
1 c2Xλ−1

2 . . . cλXλ−1
λ

⎞⎟⎟⎠
⎛⎜⎜⎜⎝
Xλ−1
1 Xλ−2

1 . . . 1
Xλ−1
2 Xλ−2

2 . . . 1
...

Xλ−1
λ Xλ−2

λ . . . 1

⎞⎟⎟⎟⎠ . □

Now we are ready to prove an upper bound for the degree of the curve, under very general
conditions.

Theorem 3.3. Take a multiset T of AG(2, q) and an integer 0 < λ ≤ (q− 1)/2. Let Eλ denote a set of
q−λ)-uniform directions of size at most q and assume that there is at least one sharply (q−λ)-uniform
irection in Eλ. Then the renitent lines with slope in Eλ are contained in an algebraic envelope of class
2 with the following properties:

(1) if a direction (u) of Eλ is (q − λu)-uniform for some 0 ≤ λu < λ then the line pencil centered at
(u) is fully contained with multiplicity (λ − λu) in the envelope;

(2) pencils centered at sharply (q − λ)-uniform directions are not contained in the envelope.

roof. For each (1 : d : 0) ∈ Eλ denote by λd the number of renitent lines with slope d and denote
y (0 : α1(d) : 1), (0 : α2(d) : 1), . . . , (0 : αλd (d) : 1) the points of the Y -axis on these lines (first we
ssume λd > 0, the λd = 0 case is very simple and it is treated in the last paragraph of the proof).
lso, denote the typical intersection number at (d) by md. Put s := |T | and T = {(ai : bi : 1)}si=1.
ext define the polynomials

πk(V ) :=

s∑
i=1

(bi − aiV )k ∈ Fq[V ]

f degree at most k. As in the earlier proofs, for any (1 : d : 0) ∈ Eλ the multiset

Md := {(bi − aid)}si=1

ontains md modulo p copies of Fq and ci(d) ̸≡ 0 modulo p further copies of αi(d) for 1 ≤ i ≤ λd.
ince

∑
g∈Fq g

k
= 0 for 0 ≤ k ≤ q−2 and since πk(d) is the kth power sum of Md, for 0 ≤ k ≤ q−2

t holds that

πk(d) =

λd∑
i=1

ci(d)αi(d)k. (5)

ote that πk(d) is as Pk(α1(d), α2(d), . . . , αλd (d)) (with ci = ci(d)) in Lemma 3.1. For any integer
≥ 0 and (1 : d : 0) ∈ Eλ put

σ (d) = σ (α (d), . . . , α (d)),
i i 1 λd

9
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where for i > λd we define σi(d) to be 0.
For j ≥ 0, q − 2 ≥ λd + j and (1 : d : 0) ∈ Eλ Lemma 3.1 yields

πλd+j(d) = πλd+j−1(d)σ1(d) − πλd+j−2(d)σ2(d) + · · · + (−1)λd+1πj(d)σλd (d). (6)

efine

H(V ) =

⎛⎜⎜⎝
πλ−1(V ) πλ−2(V ) . . . π0(V )
πλ(V ) πλ−1(V ) . . . π1(V )

...
...

...
...

π2λ−2(V ) π2λ−3(V ) . . . πλ−1(V )

⎞⎟⎟⎠ .

hen for each (1 : d : 0) ∈ Eλ, since 2λ − 1 ≤ q − 2, by (6) applied for λ − λd ≤ j ≤ 2λ − λd − 1,
e obtain

H(d)

⎛⎜⎜⎝
σ1(d)

−σ2(d)
...

(−1)λ+1σλ(d)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
πλ(d)

πλ+1(d)
...

π2λ−1(d)

⎞⎟⎟⎠ . (7)

enote by Hi(V ) the matrix obtained from H(V ) by replacing its ith column with

C(V ) := (πλ(V ), πλ+1(V ), . . . , π2λ−1(V ))T .

Put S(V ) = detH(V ) and Si(V ) = detHi(V ). Then deg S ≤ λ(λ − 1) and deg Si(V ) ≤ λ2
− λ + i.

lso, S(d) = detH(d) and Si(d) = detHi(d) for (1 : d : 0) ∈ Eλ. Consider the affine curve C of degree
t most λ2 defined by the equation

f (U, V ) := S(V )Uλ
− S1(V )Uλ−1

− S2(V )Uλ−2
− · · · − Sλ−1(V )U − Sλ(V ). (8)

By Lemma 3.2, if (1 : d : 0) ∈ Eλ is sharply (q − λ)-uniform, then the determinant of H(d) is
−1)λ(λ−1)/2 ∏λ

i=1 ci(d)
∏

1≤i<j≤λ(αi(d) − αj(d))2 and hence H(d) is invertible and the existence of a
harply (q − λ)-uniform direction ensures that S(V ) is not the zero-polynomial. Then by Cramer’s
ule (−1)i+1σi(d) = detHi(d)/detH(d) = Si(d)/S(d) for 1 ≤ i ≤ λ.

Hence if (1 : d : 0) ∈ Eλ is sharply (q− λ)-uniform (that is λd = λ), then (αi(d), d) is a point of C
efined in (8) for each 1 ≤ i ≤ λd, since in this case f (U, d) equals

S(d)(Uλ
− σ1(d)Uλ−1

+ σ2(d)Uλ−2
− · · · + (−1)λ−1σλ−1(d)U + (−1)λσλ(d)) =

S(d)
λ∏

i=1

(U − αi(d)).

ow consider (1 : d : 0) ∈ Eλ such that λd < λ. To show that the pencil with carrier (d) is contained
ith multiplicity (λ − λd) in the envelope, it is enough to prove that (V − d)λ−λd divides f (U, V ).

(If (d) is a sharply (q− λ)-uniform direction then S(d) ̸= 0 and this shows that V − d cannot divide
f (U, V ), so in this case the pencil with carrier (d) cannot be contained in the envelope.) To do this,
we will show

(V − d)λ−λd | S(V ), S1(V ), S2(V ), . . . , Sλ(V ).

For 1 ≤ k ≤ λ put H(d)(k) to denote the kth column of H(d). For the integer k, 1 ≤ k ≤ λ − λd by
6) applied for the integers j where λ − k− λd ≤ j ≤ 2λ − k− λd − 1, in H(d) we obtain that H(d)(k)
s the linear combination of H(d)(k+1),H(d)(k+2), . . . ,H(d)(k+λd). Hence the column space of H(d) is
enerated by the last λd columns of H(d), so the rank of this matrix is at most λd. By (7), the column
(d) is the linear combination of the columns of H(d) and hence when H(d) has rank at most λd,
hen so is Hi(d) for each i. Then for s > λd the s × s minors of H(d) have determinant zero. Using
emma 2.3 of [14] it follows that d is a (λ−λd)-fold root of detH(d) = S(d) and of detHi(d) = Si(d)
s we claimed.
10
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If λd = 0 for some (d) ∈ Eλ, then Md contains the same number of copies of each element of Fq
nd hence π0(d) = · · · = π2λ−2(d) = 0, so H(d) is the λ × λ null-matrix. From Lemma 2.3 of [14],
t follows that d is a λ-fold root of detH(d) = S(d) and of detHi(d) = Si(d), thus (V − d)λ divides
f (U, V ). □

The next example shows the sharpness of Theorem 3.3.

Example 3.4. In AG(2, q), q even, let U denote a subset consisting of λ points of a parabola. Assume
that there are at least λ directions (ui) ̸= (∞) incident with λ 1-secants of U (this always happens
if λ(λ−1)/2 < q−λ). For (d) ∈ ℓ∞ \{(∞)} denote by Nd the number of 2-secants of U incident with
(d). Then the directions of ℓ∞ \ {(∞)} are (q − λ)-uniform (with 0 modulo 2 as typical intersection
number, and the renitent lines are the 1-secants of U). More precisely, the direction (d) is sharply
(q − λd)-uniform, where λd = λ − 2Nd.

Then the product of the pencils centered at (d), for each (d) with Nd > 0, taking each of them
with multiplicity λ − λd = 2Nd, is an envelope of class

2
∑
d

Nd = λ(λ − 1).

Recall that there were at least λ sharply (q − λ)-uniform directions and so the points of U are
incident with at least λ renitent lines with a sharply (q−λ)-uniform slope. Hence the renitent lines
with a sharply (q−λ)-uniform direction cannot be covered by an envelope of class less than λ. But
they can be covered by an envelope of class λ: the product of λ pencils centered at the points of
U . In total we obtain an envelope of class λ(λ − 1)+ λ = λ2 and there is no envelope with smaller
class with the given properties.

Consider the envelope ensured by Theorem 3.3. The renitent lines incident with sharply (q −

λ)-uniform directions of Eλ are contained in a factor of degree at least λ (since the sharply (q− λ)-
uniform directions are incident with λ of these lines, and pencils centered at such directions are not
contained in the envelope) and hence from the second part of the previous theorem the following
is clear.

Corollary 3.5. Suppose that the assumptions of the previous theorem holds. Then there are at most
λ2

− λ directions incident with less than λ renitent lines. More precisely, if λd denotes the number of
renitent lines with slope d for every (d) ∈ Eλ, then∑

(d)∈Eλ

(λ − λd) ≤ λ2
− λ.

It is also immediate that the number of renitent lines is at least λ|Eλ| − (λ2
− λ) = λ(|Eλ| + 1− λ). □

4. The resultant method

The next result was developed in a series of papers by Szőnyi and Weiner [14,15], see also [13]
and the Appendix of [16] for the version that we cite here.

Result 4.1 (Szőnyi–Weiner Lemma). Let f , g ∈ F[X, Y ] be polynomials over the arbitrary field F. Assume
that the coefficient of Xdeg f in f is not 0 and for y ∈ F put ky = deg gcd(f (X, y), g(X, y)). Then for any
y0 ∈ F2∑

y∈F

(ky − ky0 )
+

≤ (deg f − ky0 )(deg g − ky0 ). (9)

2 Here α+
= max{0, α}. Note that g can be the zero polynomial as well, in that case deg f = ky = ky0 and the lemma

laims the trivial 0 ≤ 0.
11
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The main ingredient of the next proofs is how we define the polynomials f (X, Y ) and g(X, Y ) in
the above lemma. In order to be able to detect the renitent lines at the (q − λ)-uniform directions,
in the definition of g we introduce an auxiliary polynomial h that we obtain by interpolation.

This method does not reveal the underlying envelope, but it can be used to deduce quantitative
information about the reintent lines. First we show an alternative proof of Corollary 3.5. Note that in
this proof we do not need the λ ≤ (q− 1)/2 condition which was used in Theorem 3.3 to construct
the envelope. Then we will show another quantitative result: we prove that each affine point is
incident either with just a ‘‘few’’ or with a ‘‘lot’’ of renitent lines.

Second proof of Corollary 3.5. Put |Eλ| = k, Eλ = {(1 : di : 0)}ki=1 and T = {(ai : bi : 1)}|T |

i=1. Denote
y mi the typical intersection number corresponding to the point (1 : di : 0). We will need the
olynomial h(Y ) :=

∑k
i=1 mi(1 − (Y − di)q−1) ∈ Fq[Y ]. Then h(di) ≡ mi (mod p) for each 1 ≤ i ≤ k.

ext define the polynomials

f (X, Y ) := Xq
− X,

g(X, Y ) :=

∑
i

(X + aiY − bi)q−1
− |T | + h(Y ).

Note that g encodes the intersection numbers of the lines [d : −1 : x] with T , i.e. g(x, d) ≡

(d) − |[d : −1 : x] ∩ T | (mod p). For a direction (y) ∈ Eλ let λy denote the number of renitent
ines incident with (y). Then for any (y) ∈ Eλ it holds that

ky := deg gcd(f (X, y), g(X, y)) = q − λy.

hen for any fixed (r) ∈ Eλ, (9) gives∑
(y)∈Eλ

(λr − λy) ≤

∑
y∈Fq

(λr − λy)+ ≤ λr (λr − 1).

f we choose (r) so that λr = λ, then

kλ −

∑
(y)∈Eλ

λy ≤ λ(λ − 1)

nd hence∑
(y)∈Eλ

(λ − λy) ≤ λ2
− λ and λ(k + 1 − λ) ≤

∑
(y)∈Eλ

λy. □

heorem 4.2. Take a multiset T of AG(2, q), q > 2, and fix an integer λ > 0. Let Fλ denote the set of
q−λ)-uniform directions. If |Fλ| > λ2

+λ then for each point R of the plane it holds that R is incident
ith at most λ or with at least |Fλ| + 1 − λ renitent lines.

roof. First we prove the following. If Eλ is a set of at most q directions which are (q− λ)-uniform
nd |Eλ| > λ2

+ λ, then for each point R of the plane it holds that R is incident with at most λ or
ith at least |Eλ| + 1 − λ renitent lines with slope in Eλ.
Consider AG(2, q) embedded in PG(2, q) as {(a : b : 1) : a, b ∈ GF(q)} and apply a collineation of

G(2, q) which maps the line [0 : 0 : 1] (the line at infinity) to the line [1 : 0 : 0] (the Y -axis) such
hat (0 : 1 : 0) is not in the image of Eλ. It may be further assumed that this collineation maps R to
ome point (1 : y0 : 0). Denote the image of T by {(ai : bi : 1)}i ∪ {(1 : zj : 0)}j and the image of Eλ

y {(0 : ck : 1)}k.
Let mk be the typical intersection number corresponding to the point (0 : ck : 1). We will need

he polynomial h(X) =
∑

|Eλ| m (1 − (X − c )q−1) ∈ F [X]. Then h(c ) ≡ m (mod p) for each
k=1 k k q k k

12
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k ∈ {1, . . . , |Eλ|}. Next define the polynomials

f (X, Y ) :=

|Eλ|∏
k=1

(X − ck),

g(X, Y ) :=

∑
i

(X + aiY − bi)q−1
+

∑
j

(Y − zj)q−1
− |T | + h(X).

s before, g encodes the intersection multiplicities of the lines [d : −1 : x] with T , i.e. g(x, d) ≡

h(d) − |[d : −1 : x] ∩ T | (mod p). For a point P ∈ PG(2, q) let ind P denote the number of renitent
lines incident with P . Then for any y ∈ Fq it holds that

ky := deg gcd(f (X, y), g(X, y)) = |Eλ| − ind(1 : y : 0).

hen (9) gives∑
y∈Fq

(ind R − ind(1 : y : 0))+ ≤ ind R(q − 1 − |Eλ| + ind R).

ote that∑
y∈Fq

ind(1 : y : 0) ≤ |Eλ|λ

nd hence

q ind R − |Eλ|λ ≤ ind R(q − 1 − |Eλ| + ind R),

0 ≤ (ind R)2 − ind R(|Eλ| + 1) + |Eλ|λ.

or ind R = λ + 1, or ind R = |Eλ| − λ we have

(ind R)2 − ind R(|Eλ| + 1) + |Eλ|λ = λ2
+ λ − |Eλ|,

hich is less than 0 since |Eλ| > λ2
+ λ. This proves ind R ≤ λ or ind R ≥ |Eλ| − λ + 1.

Of course, if |Fλ| ≤ q then one can take Eλ = Fλ and this proves the theorem.
Now assume q+1 = |Fλ| > λ2

+λ and take an affine point R. We have to show that R is incident
ith at most λ or with at least q+ 2−λ renitent lines. Define Eλ as any subset of directions of size
. Note that q + 1 = |Fλ| ̸= λ2

+ λ + 1 because this would imply q = λ(λ + 1) and hence λ = 1
and q = 2, which we excluded. It follows that |Eλ| = q > λ2

+ λ and hence the arguments above
show that R is incident with at most λ + 1 renitent lines or with at least q + 1 − λ renitent lines.
We have to exclude the cases when R is incident with exactly λ + 1 renitent lines or with exactly
q + 1 − λ renitent lines.

If the former case holds, then take a direction S such that RS is not renitent and define Eλ as
ℓ∞ \ {S}. Then the renitent lines incident with R have slopes in Eλ, a contradiction since there are
more than λ but less than q + 1 − λ of them.

If the latter case holds, then take a direction S such that RS is renitent and, as before, define Eλ as
ℓ∞\{S}. Then there are exactly q−λ renitent lines incident with R with slopes in Eλ, a contradiction
since this number should be at least q+ 1− λ or at most λ (recall that q+ 1 = |Fλ| > λ2

+ λ). □

With some further efforts, the earlier methods by Szőnyi and Weiner [14,15], see also [13,17],
also provide an alternative, but more laborious, route to reach similar results as in Section 3.

5. The dual statements and codewords of PG(2, q) the dual statements and codewords of
PG(2,q)

In this section, we will dualize some of the earlier theorems and we will show how they apply
for codewords of PG(2, q). The dual version of Theorem 2.1 (allowing also |E| = q+ 1 and not only
|E| ≤ q, as a consequence of Theorem 2.4, see Remark 2.5) is the following.
13
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Theorem 5.1. Fix a point Q of PG(2, q). Take a multiset of lines L in PG(2, q), none of them containing
. Let Eλ denote a non-empty set of lines through Q . Assume that

(i) 0 < λ ≤ min{q − 2, p − 1},
(ii) for each line z ∈ Eλ, there are at most λ points which are incident with tz modulo p lines of L

(counted with multiplicities); we call these points renitent,
(iii) for each z ∈ Eλ the remaining points of z \{Q } are incident with mz (the typical covering number

of z) modulo p lines of L, and the values tz − mz modulo p do not depend on the choice of z.

hen the renitent points incident with lines of Eλ are contained in an algebraic curve of degree λ.

Note that one may formulate the dual version of Theorems 2.4 and 3.3 similarly.

efinition 5.2. Let C1(2, q) be the p-ary linear code generated by the incidence vectors of the lines
f PG(2, q), q = ph, p prime.

The next result proves a nice geometric property on codewords of PG(2, q).

esult 5.3 (Blokhuis, Brouwer, Wilbrink [10, Proposition, p. 66]). Let X be a subset of PG(2, q) whose
haracteristic vector is a codeword of C1(2, q) and let Q be a point not in X. Then the points P for which
he line QP is tangent to X (i.e., QP ∩ X = {P}) are all collinear.

The next theorem follows easily from Theorem 5.1 and it is the generalization of Result 5.3.

heorem 5.4. Let X be a subset of PG(2, q) whose characteristic vector is a codeword c of C1(2, q) and
et Q be a point in PG(2, q). Let Eλ denote a non-empty set of lines through Q , each of them incident
ith at most λ ≤ min{q− 2, p− 1} points of X \ {Q }. Then the points of X \ {Q } incident with lines of

λ are on a curve of degree λ.

roof. Put Eλ = {z1, . . . , z|Eλ|}. By definition, c is the linear combination of some lines ej of PG(2, q),
.e. c =

∑
j cjej, cj ∈ F∗

p . We define a multiset L of lines of PG(2, q) in the following way: if ej is not
ncident with Q then the weight of ej is cj, all other lines have weight 0. On each line zi there will
e at most λ points of X \ {Q } incident with tzi modulo p lines of L (counted with multiplicities)
nd the rest of the points will be incident with mzi := (tzi − 1) modulo p lines of L. Here tzi = 1
nd mzi = 0 if zi is not one of the ejs and tzi = 1 − cj, mzi = −cj if zi = ej for some j. Hence the
esult follows from Theorem 5.1. □

Note that from the theorem above, it follows that the assumption λ ≤ p− 1 in Theorem 5.1 and
o in Theorems 2.1 and 2.4 is sharp at least in case q = p2. Blokhuis, Brouwer and Wilbrink [10]
howed that the characteristic vector of a Hermitian unital in PG(2, q) is a codeword in C1(2, q). Let
be a Hermitian unital in PG(2, p2) and let Q be a point of H, Eλ be the set of p2 lines through Q

ntersecting the unital in p+ 1 points. If Theorem 5.4 was true with λ = p, then it would yield that
he points of H \ {Q } are on a curve C of degree p. But through any point of H \ {Q }, there pass
2
− 1 lines intersecting H \ {Q } in p + 1 points. Hence by Bézout’s theorem these lines would be

inear factors of the curve C; which is a contradiction since the degree of C is p < p2 − 1.
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