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In chiral magnets, localized topological magnetic whirls, magnetic skyrmions, can be moved by spin polarized
electric currents. Upon increasing the current strength, with prospects for high-speed skyrmion motion for
spintronics applications in mind, isolated skyrmions deform away from their typical circular shape. We analyze
the influence of spin-transfer torques on the shape of a single skyrmion, including its stability upon adiabatically
increasing the strength of the applied electric current. For rather compact skyrmions at uniaxial anisotropies well
above the critical anisotropy for domain wall formation, we find for high current densities that the skyrmion
assumes a noncircular shape with a tail, reminiscent of a shooting star. For larger and hence softer skyrmions
close to the critical anisotropy, in turn, we observe a critical current density above which skyrmions become
unstable. We show that above a second critical current density the shooting star solution can be recovered also
for these skyrmions.
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I. INTRODUCTION

Since the experimental discovery in chiral magnets [1,2]
and layered magnetic systems [3,4], magnetic skyrmions
[5–8] have inspired a variety of possible applications in in-
formation technology devices [8–10]. Their nontrivial topol-
ogy is often associated with high stability against thermal
fluctuations and material defects. Similarly to magnetic do-
main walls in racetrack-type memories [11], skyrmions can
be moved by spin-polarized electric currents [9,12–17] (spin
currents) which suggests their use in shift-register-like devices
[18,19]. However, a type of Walker breakdown [20,21] is
known to limit the speed of domain walls [22] by exciting the
internal degrees of freedom. An important topic for the use
of skyrmions in future technological devices is the dynamic
behavior of the whirls subject to high current densities and
their intrinsic upper-speed limit [23–25].

Whether for the spin-current-driven switching of magnetic
domains in MRAM elements [26], or for the current-driven
motion of magnetic states like domain walls [22] or skyrmions
[17,27], two distinct mechanisms are usually considered: (i)
spin-transfer torques (STTs) for smooth magnetic textures,
which arise as the spin polarization of the conduction elec-
trons follows almost adiabatically the direction of the mag-
netization and, hence, exerts a torque on the magnetization
wherever it is noncollinear [28–30], and (ii) spin-orbit torques
(SOTs), which appear as effective local fieldlike or damping-
like torques due to spin accumulation at interfaces [31]. Both
mechanisms are known to move ferromagnetic skyrmions
not precisely in the direction of the applied current but with
an additional perpendicular velocity component. This feature

defines the skyrmion Hall angle which arises intrinsically due
to a topologically nontrivial skyrmion winding number. Since
most applications consider the motion of skyrmions in con-
stricted geometries [15], a first limitation therefore arises from
the skyrmion Hall effect [25] which can push the skyrmion out
of the system [10,24]. Proposals have therefore been made to
avoid the perpendicular component of motion entirely, e.g.,
by (i) fine tuning the polarization of the electrons for the SOT
by using ferromagnetic layers with certain crystal symmetries
[24,32,33], (ii) adjusting the direction of the current for the
STT, (iii) creating antiferromagnetically coupled layers in
which the opposite winding numbers and, hence, opposite
Hall effects cancel [34], or (iv) by solely considering anti-
ferromagnetic systems [35] where the skyrmion Hall effect
is naturally absent [36–38]. A second challenge arises due
to the presence of defects such as impurities or edges in the
system which cause local deformations of the magnetization
and can even act as nucleation hotspots for skyrmions if
applied currents are strong enough [39,40]. In addition to
these practical difficulties, it has been experimentally shown
that the in-plane fieldlike SOTs not only tilt the easy axis of
the magnetization but also cause deformations of skyrmions
[17,25,41]. It was therefore argued that deformations due to
SOTs might explain the current dependence of the skyrmion’s
Hall effect [17,25,41] and, eventually, are responsible for their
destruction.

For isolated skyrmions driven by STTs, distortions as for
SOT-driven skyrmions are usually neglected. This assumption
is supported by a plethora of micromagnetic simulations
which confirm that skyrmions move as approximately circu-
lar, rigid objects with speed proportional to the magnitude of
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applied current and at an angle to the current direction [14].
This behavior is faithfully described by the widely used Thiele
method [42] and its extensions, for example, in the case of
pinning [43–45]. Moreover, it was shown by Lin, Ref. [46],
that the STT-induced deformations are indeed small, using a
linear response approach for skyrmions stabilized in external
magnetic fields. Larger deformations and even instabilities,
in turn, are only reported for the combination of extremely
large STTs and small skyrmions of the order of the atomic
lattice [47]. However, a detailed analysis of the STT-induced
distortion of skyrmions does, to the best of our knowledge, not
exist in the literature.

In this paper, we systematically study the distortion of iso-
lated skyrmions by STTs with both high-precision numerical
simulations and analytical approximations of the nonlinear
sigma model, Sec. II. In Sec. III, we first review STT-driven
motion and pair annihilation of 1D domain walls for compar-
ative purposes. In Sec. V, in agreement with Ref. [46], we find
that skyrmions with external magnetic fields are very rigid and
not much affected by STTs. Skyrmions which are stabilized
by a strong uniaxial anisotropy are, however, more attractive
for device applications since they do not require invasive
external magnetic fields for stability. We intensively study
these systems in Sec. IV and find that deformations cannot be
neglected and, eventually, trigger an elliptical instability of the
skyrmions even for small STTs. Moreover, we demonstrate
the possible existence of current-stabilized skyrmion solutions
in a regime above the elliptical instability.

II. THE MODEL

To study the deformation of skyrmions due to STTs, we
focus our analysis on an idealized two-dimensional system in
which the magnetization is described by a nonlinear sigma
model. We write the energy of a magnetic texture m = M/Ms

with respect to the out-of-plane polarized state with mfm = ẑ
as

E [m] = z0

∫
dx dy

[
A(∇m)2 − D m · ((ẑ × ∇ ) × m)

−μ0MsH (mz − 1) − K
(
m2

z − 1
)]

, (1)

where Ms is the saturation magnetization, A the magnetic stiff-
ness, D the interfacial Dzyaloshinskii-Moriya (DM) interac-
tion, H an external magnetic field, and z0 the thickness of the
magnetic thin film. Here, K = Ku − μ0M2

s /2 > 0 is an effec-
tive uniaxial anisotropy which corrects the lattice anisotropy
Ku by a local approximation of the magnetostatic interactions
[6]. The interfacial form of the DM interaction in Eq. (1)
stabilizes noncollinear Néel-type spirals and skyrmions, i.e.,
where the plane of spin rotation is spanned by propagation
vector q and the out-of-plane direction ẑ for spirals or within
planes spanned by the radial vector and ẑ for skyrmions.

In this paper, we will mainly focus on the dynamics of
skyrmions stabilized without an external field, H = 0. We
briefly discuss the stability diagram of a field stabilized
skyrmion in Sec. V, where we show that even right at
the phase transition from the polarized ferromagnet to the
skyrmion lattice the deformation of the skyrmion is minimal,
in agreement with previous results [44,46]. The reason for
the small deformation is that the eigenmodes of the skyrmion

have a large gap [48,49] even close to the transition from the
polarized background to a skyrmion lattice state, making these
skyrmions very stiff. Without an external field, however, inter-
nal eigenmodes of the skyrmion soften at the phase transition
from the polarized state to the helicoidal phase [48,50]. In
Sec. IV, we will therefore focus on the regime near the critical
anisotropy [6] K � Kc = π2D2/16A, where we also observe
the strongest deformations.

The dynamics of the magnetization far below the Curie
temperature is well described by the Landau-Lifshitz-Gilbert
(LLG) equation [51]. The interaction with the electric current
is included by STTs for smooth magnetic textures [28,29]:

ṁ = −γ m × B̃eff − (ve · ∇ )m

+α m × ṁ + β m × (ve · ∇ )m, (2)

where ṁ = dm/dt , γ is the (positive) gyromagnetic ratio,
and B̃eff = −δE [m]/(Msδm) is the effective magnetic field
due to interactions in the magnetization. The dimensionless
constants α and β are, respectively, the Gilbert damping and
the nonadiabatic damping parameter. The drift velocity here is
[29] ve = −[PμB/eMs(1 + β2)] je with je the electric current
density, P the polarization, μB the Bohr magneton, and e > 0
the electron charge.

A. Dimensionless unit system

In the remainder of this paper we will use a dimensionless
unit system for convenience. Within the continuum approx-
imation we can express the energy in units of 2Az0 and
length in units of 2A/D [52]. Consequently the dimensionless
effective magnetic field Beff = (2AMs/D2)B̃eff ,

Beff = ∇2m + 2(ẑ × ∇ ) × m + 2κmz ẑ, (3)

depends only on a single coupling constant, a dimensionless
anisotropy κ = 2AK/D2. The ∇ operator in Eq. (3) and from
this point forward is dimensionless. In these dimensionless
units the critical anisotropy separating the mean field ground
states is κc = π2/8. In the LLG, Eq. (2), we can absorb the
prefactor of the precession term by defining a dimensionless
time γ D2(2AMs)−1t and dimensionless drift velocity v =
Ms(γ D)−1ve. This brings the LLG to a form where only
κ, α, β, and v appear as parameters when it is written out fully
in terms of the magnetization and its derivatives:

ṁ = −m × Beff − (v · ∇ )m

+αm × ṁ + βm × (v · ∇ )m. (4)

As a guide we provide a conversion dictionary in Table I to
change all results back into usual notations.

B. Reduced sets of parameters for steady-state motion

Upon assuming to reach a steady-state motion with con-
stant dimensionless drift velocity vd , magnetic textures may
be described by the traveling wave ansatz m(r − vdt ) [42]. By
transforming the LLG Eq. (4) with the steady-state assump-
tion, we obtain (now in dimensionless units)

0 = −m × Bss
eff , (5)
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TABLE I. Guide to change from dimensionless quantities in
final results back into usual notations with simple replacements, for
estimating any measurable quantities. The damping parameters α and
β do not change.

Dimensionless Dimension-full
Name quantity replacement

length x (|D|/2A)x
time t (γ D2/2AMs )t
velocity v (Ms/γ |D|) |ve|
reduced anisotropy κ 2AK/D2

magnetic field h (2AMs/D2) H

where the steady-state effective field Bss
eff is

Bss
eff = Beff + BDL + BFL, (6)

with

BDL = [(αvd − βv) · ∇]m (7a)

BFL = m × [(vd − v) · ∇]m. (7b)

Equation (5) is a second order differential equation in the
spatial variables only and characterizes the magnetization pro-
file in steady-state motion due to STTs. The current-induced
terms are responsible for the deformations of these magnetic
textures, compared to the magnetization profile in the absence
of applied current. Note that the equation contains precisely
the effective velocity vectors appearing in the Thiele equation
[42] for translationally invariant models,

G × (vd − v) + D(αvd − βv) = 0. (8)

The first term is the Magnus force, where G = 4πQẑ is the
gyrovector responsible for the Hall angle of magnetic states
with a nontrivial 2D Pontryagin index

Q = 1

4π

∫
dx dy m · (∂xm × ∂ym) ∈ Z, (9)

while the second term is dissipative and controlled by the
symmetric dissipative matrix defined by

Di j =
∫

dx dy ∂im · ∂ jm, (10)

where i, j ∈ {x, y} and Diz = δiz. We shall later utilize the
dissipative matrix D for characterizing current-induced defor-
mations of topologically nontrivial magnetic textures. To con-
veniently compare the differences between domain walls and
skyrmions, we analyze how the reduced anisotropy coupling
κ , drive parameter u, and Gilbert damping α [27],

κ = 2AK

D2
, u = α − β

α
v, and α, (11)

describe deformations of magnetic textures and, potentially,
instabilities.

C. Fundamental limit: The ferromagnetic instability

An isolated skyrmion in a uniformly polarized background
can only exist as long as the embedding phase is stable. There-
fore, the most fundamental upper limit for current-driven

FIG. 1. Illustration of how spin currents lead to a canting of the
magnetization out of the preferred plane of spin rotation set by the
DM interaction. Magnetization of 180◦ and 360◦ domain walls in one
spatial dimension in the absence (a),(c) or presence (b),(d) of STTs.
The brightness encodes the azimuthal angle θ of the magnetization
and the color the equatorial angle φ as indicated in (e). Gray arrows
additionally illustrate the in-plane components. White vertical stripes
denote infinite distances. The black line in (d) indicates one unit
length. Parameters are κ = 1.3 and u = 0 (a),(c) or u = 0.95 x̂ =
0.29 ufm

c x̂ (b),(d).

skyrmion motion is set by the instability of the polarized
phase itself [28,53–55]. A linear order expansion of the LLG
Eq. (4) around the ferromagnetic state with mfm = ẑ yields the
spectrum of spin waves which propagate as ∝ei(ωt−q·r). With
this convention, the imaginary part of the spectrum reads

�(ω±
q ) = α

1 + α2
(± q · u + q2 + 2κ ). (12)

For sufficiently small currents, the imaginary part of the
spectrum is positive for all values of q, �(ω±

q ) > 0, and hence
the spin wave excitations decay exponentially to zero. Above
the critical drive

|u| = ufm
c = 2

√
2κ, (13)

where �(ω±
q ) may become negative, the excitations of the

ferromagnetic phase grow exponentially, driving the ferro-
magnet unstable. This sets an upper bound of possible drive
parameters u to investigate for STT-driven motion of any
metastable state over the uniform background, including both
domain walls and skyrmions.

III. 180◦ AND 360◦ DOMAIN WALLS

In an effectively one-dimensional system, a 180◦ domain
wall connects two oppositely out-of-plane polarized states,
see Fig. 1(a). In a simple approximation, a skyrmion can be
regarded as a closed 180◦ domain wall in two dimensions [56],
much as in early studies of magnetic bubbles [21]. There-
fore, we first review and analyze the influence of STTs on
domain walls in a simplified setup, neglecting magnetostatic
interactions, to give first insights into the analogous effects for
skyrmions, as a 360◦ domain wall is similar to a cross section
through a skyrmion.

Without any applied STT, the magnetization across a chiral
domain wall rotates in a plane which is set by the symmetry
of the DM interaction. For low current densities, but above

214428-3



J. MASELL et al. PHYSICAL REVIEW B 101, 214428 (2020)

an intrinsic pinning threshold, the STT leads to a steady
translation and additional deformation of the domain wall
[57–59]. The dominant effect of the deformation is a canting
of the magnetization out of the DM plane, shown in Fig. 1(b).
At a critical current, the magnetization in the center of the
domain wall becomes perpendicular to its equilibrium posi-
tion marking the onset of a Walker-esque breakdown [22,60].
Above this critical current, the magnetization at the center of
the wall precesses and the translational velocity of the wall
oscillates in time.

This behavior can be understood by exploring the steady-
state motion, Eq. (5). Assuming that the domain wall moves
at a constant speed vd = vdw without internal excitations, the
solution to the Thiele Eq. (8) is vdw = (β/α)v and Eq. (5)
becomes 0 = −m × Bdw

eff with

Bdw
eff = Beff − m × (u · ∇ )m, (14)

where the influence of the applied current is absorbed into a
modified effective magnetic field Bdw

eff . In terms of the set of
reduced parameters, Eq. (11), Beff depends only on κ . There-
fore, the deformation of the moving domain wall depends
only on the effective coupling strengths κ and the effective
drive u. For the up-to-down wall shown in Fig. 1(a), Eq. (14)
shows that the drive induces an extra effective magnetic field
in the ŷ direction, explaining the deformation sketched in
Fig. 1(b). Note that, for domain walls in systems with higher
dimensions, the domain wall can further minimize its energy
from the second term in Eq. (14) by tilting its orientation [61].

Without an applied current, an up-to-down domain wall as
in Fig. 1(a) can be transformed into its down-to-up counterpart
via a time reversal transformation. When a current is applied,
this symmetry is broken by the modified Bdw

eff such that the
magnetization in both types of domain walls twists along the
same direction. The current-induced asymmetry has strong
implications on 360◦ domain walls, see Fig. 1(c). If stabilized
by easy-axis anisotropy and without magnetic field, a 360◦
domain wall is unstable and decays into two separate 180◦
domain walls due to a repulsive force decaying exponentially
with their distance ddw [62]. When a current is applied, the
STTs twist both 180◦ domain walls into the same direction
and they become attractive. The resulting bound state, see
Fig. 1(d), is, in fact, only a quasi-360◦ domain wall as the
azimuthal angle does not cover the full 360◦, i.e., at no
point mz = −1. Consequently, a sufficiently strong current
can annihilate a pair of domain walls by smoothly unwinding
it [62].

We have calculated the equilibrium distance ddw between
two domain walls for different values of the coupling pa-
rameter κ and the effective drive u from longtime numerical
simulations of the LLG equation, Eq. (4), in a moving frame
of reference with the velocity vdw = (β/α)v, for details of the
numerical simulations see Appendix A. Our results for u �
0.6 are summarized in Fig. 2. The critical current ubpdw

c for the
annihilation of the bound pair of domain walls decreases with
increasing κ .

In the region considered, it can be well described by the lin-
ear fit ubpdw

c (κ ) ≈ 0.9954 − 0.0336 κ . This domain wall pair
annihilation occurs well below the ferromagnetic instability

FIG. 2. Distance ddw (encoded in color) between two domain
walls in a current-induced bound state as a function of coupling
strength κ and STT drive parameter u. It is defined as the distance
between the two roots of mz(x). In the white area, we do not find a
stable bound pair.

(ufm
c = 2

√
2κ � 3) or the Walker breakdown (uWalker

c � 1.5)
[22] at finite ddw � 2.4.

IV. CURRENT-INDUCED DEFORMATION OF SKYRMIONS

Similar to the 360◦ domain walls discussed in Sec. III,
skyrmions are also deformed by STTs. However, unlike
the domain wall bound pair, isolated skyrmions cannot be
smoothly unwound by the antisymmetric effective magnetic
field due to the STTs due to their topological nature. More-
over, the nontrivial winding number of a skyrmion gives rise
to the skyrmion Hall effect, i.e., they do not move parallel to
the driving current but, instead, along the direction vd = vsky.

Assuming that the skyrmion moves as a rigid object, the
time evolution of the magnetization is given by m(r − vskyt ).
In this case the skyrmion velocity vsky can be derived from the
Thiele equation (8),

vsky = v + α

G2 + α2det(D)
(G × (Du) − α det(D)u). (15)

Note that the dissipative matrix D depends on the profile of
the skyrmion which potentially is deformed by the applied
drive. Furthermore, for the rigidly moving skyrmion Eq. (5)
becomes

0 = −m × [Beff + α(vDL · ∇ )m + m × (vFL · ∇ )m], (16)

where the two current-induced effective fields are mediated by
vFL = vsky − v and vDL = vFL + u. The term proportional to
vDL is dissipative in the sense that it is the only torque that is
odd under time reversal [63], and meanwhile the vFL term is a
reactive torque due to the applied current.

We point out here that in the Galilean invariant case,
i.e., α = β, the drive u vanishes and so do the effective
current-induced torques in Eq. (16), such that the skyrmion
shape is unmodified by the current, as expected. However,
for any finite u > 0, i.e., α 	= β, both vFL and vDL are al-
ways simultaneously nonzero (see Appendix B) and lead to a
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deformation of the skyrmion. Moreover, they both depend
on the dissipative matrix D which itself depends on the
deformations due to the applied current. Therefore, Eqs. (15)
and (16) must be solved self-consistently.

As a quantitative measure for the deformation of the
skyrmion, we introduce two order parameters: (i) the distor-
tion δ which quantifies how close the skyrmion is to a circular
shape and (ii) the axis of distortion d which corresponds to the
principle axis of the deformation. Both these quantities are
extracted from the nontrivial 2 × 2 block of the dissipation
matrix D which is symmetric and can therefore always be
diagonalized. With the normalized eigenvectors as λ± and
their corresponding eigenvalues λ+ > λ− > 0 we define

δ ≡ λ+ − λ−

λ+ and d = λ−. (17)

With this convention, δ = 0 corresponds to a perfectly circular
skyrmion, while δ = 1 is an arbitrarily elongated skyrmion.
We choose the sign of d such that the gyrotropic vector G (∼
skyrmion center orientation), the drive u, and the direction of
distortion d obey a right handed rule: (G × u) · d > 0.

The deformations and instabilities of skyrmions are dis-
cussed in the following based on our numerical results and
analytical approximations. For an extended discussion on the
simulation details see Appendix A.

A. Phase diagrams for current-driven skyrmions

In this part, we systematically investigate the deformation
parameter δ of isolated skyrmions under the influence of
STTs as a function of the three parameters the anisotropy
coupling κ , drive parameter u, and Gilbert damping, α; i.e.,
δ ≡ δ(κ, u, α). In our study, we consider only regimes where
the ferromagnet is the ground state, i.e., κ > κc = π2/8 ∼
1.23, and cover all reduced drives u below the ferromagnetic
instability, u < ufm

c = 2
√

2κ .
We start by investigating the dependence of the deforma-

tion parameter δ in terms of u and α for κ = 1.3 ≈ 1.05 κc,
where strong deformations are observed. Our numerical re-
sults are shown in Fig. 3. We notice the existence of three
main areas: (1) The white area corresponds to the region
where no steady skyrmion solution is possible, i.e. skyrmions
are unstable; (2) the mainly yellow area below the instability
shows the region where the skyrmions remain mostly circular,
δ ≈ 0, see Sec. IV B; (3) the area above the instability, where
δ � 0.4.

Among the interesting features of this phase diagram is
that, as we increase the drive parameter u from the region with
almost circular skyrmions towards the unstable region, there
is an elliptical instability, see Sec. IV C, where the skyrmions
elongate and eventually collapse or keep elongating indefi-
nitely, see Fig. 8. The stability, however, is recovered for large
α upon increasing the drive, where the skyrmion relaxes to
a steady solution with an asymmetric shape that resembles a
shooting star, see Sec. IV D.

In Fig. 4 we show the dependence of the deformation
parameter δ for a skyrmion in terms of the drive u and the
anisotropy strength κ (∼ inverse skyrmion size) for different
damping values α. While for small damping parameters we
find only the transition from mainly symmetric skyrmions to

FIG. 3. Phase diagram for a skyrmion as a function of Gilbert
damping α and drive parameter u for anisotropy κ = 1.3. The color
gradient (yellow to dark green) encodes the distortion δ, see colorbar.
In white areas, no steady skyrmion solution exists. The dashed gray
horizontal line indicates the ferromagnetic instability, see Eq. (13) in
Sec. II C. The black dashed line corresponds to the analytical expres-
sion for the onset of the instability region, see Eq. (24) in Sec. IV C.
Vertical dashed lines mark cuts at constant α, corresponding to the
cuts in the phase diagrams in Fig. 4. Blue dots indicate the position
of the corresponding real-space magnetization textures shown in the
left panels: (a) a shooting starlike distorted skyrmion, (b) no stable
skyrmion, and (c) a rather circular skyrmion.

the unstable region via the elliptical instability, the behavior
for large α is more complex. For low κ and low u the situation
is similar, i.e., upon increasing the drive the circular skyrmion
distends until reaching the unstable region. Continuing on to
even higher u, past this apparent instability of isolated steady-
state traveling wave solutions, we find the regime where
the steady state resembles a shooting star. Above a certain
coupling parameter strength κ , radially symmetric skyrmions
smoothly transform into shooting-star-like skyrmions upon
increasing the drive. For detailed plots of the distortion as a
function of drive for various κ we refer to Appendix C.

In the following sections we will present in detail the
possible steady skyrmion configurations obtained from our
numerics, discuss their properties, and explain the elliptical
instability. To obtain a physical understanding of our nu-
merical results, we will discuss how torques act on different
magnetic configurations.

For this let us define the border of the skyrmion as the
curve along which the magnetization is in-plane, X (l ), where
l is the arc length [25,64,65], see Fig. 5. We define a basis
of the normal and tangential unit vectors as l̂ = ∂lX , and
n̂ = l̂ × ẑ. With this definition, the local radius of curvature
r(l ) is r(l ) = (l̂ .∂l n̂)−1 and a position x in the vicinity of
the border can be parameterized as x = X (l ) + nn̂(l ), with
n � r(l ). The magnetization in this region can then be defined
in spherical coordinates as

m = sin θ cos φ n̂ + sin θ sin φ l̂ + cos θ ẑ. (18)

Substituting this ansatz into Eq. (16), using that θ ≡ θ (n, l ),
l̂ ≡ l̂ (l ), n̂ ≡ n̂(l ), and assuming φ(n, l ) ≡ φ(l ) is constant
along the normal direction [66], we obtain the effective equa-
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FIG. 4. Distortion δ of a skyrmion as a function of anisotropy κ and drive parameter u for different values of the Gilbert damping α =
0.1, 0.4, 1.0. As in Fig. 3 δ = 0 (yellow) corresponds to an unperturbed (circular) skyrmion and δ = 1 (dark green) to an infinitely elongated
skyrmion. White areas indicate regimes for which no steady skyrmion solution exists. The black dashed line corresponds to the analytical
expression for the onset of the instability region, see Eq. (24) in Sec. IV C. The dashed gray line indicates the ferromagnetic instability, see
Eq. (13) in Sec. II C. The vertical dashed lines mark cuts at constant κ = 1.3, corresponding to the cuts in the phase diagram in Fig. 3. The
white dashed line indicates a local maximum of δ(u) for fixed κ which smoothly flattens out for larger κ and finally disappears (white circle).
For detailed analysis, see Appendix C.

tions defining the profile of the magnetization in the vicinity
of the steady skyrmion boundary in the presence of STTs

0 = ∂2
n θ + ∂2

l θ + 2 sin2 θ cos φ (19a)

− sin 2θ

2
(2κ + 2 + (∂lθ )2 − 2∂lθ sin φ)

+αvDL(cos(θDL − �)∂nθ + sin(θDL − �) cos2 θ∂lθ )

− vFL sin(θFL − �) sin θ,

0 = 2∂nθ sin θ sin φ + 2∂lθ cos θ + sin θ∂l

+αvDL sin(θDL − �) sin θ + vFL(cos(θFL − �)∂nθ

X

v

r

n
l

v

vDL

DL

FIG. 5. Magnified version of the slightly deformed skyrmion
shown in Fig. 3, δ ≈ 0. The horizontal white arrow represents the
direction of the current v. Left panel: Coordinate system in the vicin-
ity of the skyrmion boundary. The curve where the magnetization is
in-plane is given by X (l ) (solid circle) with the corresponding locally
defined tangential vector l̂ and normal vector n̂. Right panel: Field
lines depict the dampinglike (blue) and fieldlike (red) parts of the
effective magnetic field, Eqs. (7a) and (7b). For a mirror symmetric
skyrmion, as shown, the main axis of distortion d corresponds to the
direction of vDL.

+ sin(θFL − �) cos2 θ∂lθ ), (19b)

where (l ) ≡ ∂lφ + 1/r(l ). The angles �(l ), θDL, and θFL

are the angles between n̂, vDL, and vFL with respect to u,
respectively, see Fig. 5.

Notice that these equations are analogous to the usual equa-
tions for domain wall dynamics in one dimension [67–69],
with two main differences: First, for one-dimensional domain
walls the local radius of curvature is zero and the function 

converts to  → ∂nφ. Second, for a skyrmion both damping
and fieldlike terms contribute to a deformation of the shape,
while for a domain wall only the fieldlike term contributes,
see Eq. (14). The reason for the latter is that while for domain
walls vDL can be set to zero independently from vFL, this is
not possible for skyrmions, see Appendix B.

In general, Eq. (19a) is associated to the profile of the mag-
netization along the normal direction. For a circular skyrmion
Eq. (19b) is trivial and just defines the global azimuthal
angle. Whenever we consider deformations of the skyrmion
these two equations are coupled and must be solved self-
consistently.

While the gyrotropic vector G is associated to the topologi-
cal property of the skyrmion, and is, therefore, invariant under
smooth transformations, the dissipative matrix D depends
explicitly on the shape of the skyrmion. If we substitute the
ansatz (18) of the skyrmion border into the definition of D we
obtain the following components

Dxx = 1

2

∫
dldn(�+

n, + �−
n, cos 2�), (20a)

Dyy = 1

2

∫
dldn(�+

n, − �−
n, cos 2�), (20b)

Dxy = 1

2

∫
dldn(�−

n, sin 2�), (20c)
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where we have introduced �±
n, = ∂nθ

2 ± 2 sin2 θ , and the
integrals are performed over the skyrmion border. Notice that
an axially symmetric skyrmion is described by � = ψ where
ψ is the polar angle,  = 1/R where R is the skyrmion radius,
and θ (n, l ) = θ (n). It therefore follows that Dxx = Dyy and
Dxy = 0, as expected.

We also would like to highlight another special case,
namely when the skyrmion is mirror symmetric with respect
to the axis given by vDL. Then (i) the two effective velocities
are perpendicular to each other, vDL ⊥ vFL, (ii) they corre-
spond to the eigenvectors of the dissipative matrix D, and (iii)
vDL is the axis of distortion, i.e., d ‖ vDL, see Appendix D.

B. Skyrmion deformations at low drives

In the absence of a driving current, the shape of a skyrmion
is axially symmetric. Then the corresponding dissipative ma-
trix reduces to a simple diagonal form [70], D = 1Ds, and
there is no distortion, i.e., δ = 0, see Eq. (17). When a driving
current is applied, the rotational symmetry is broken and
the skyrmion is deformed along an axis which finally is
determined by vDL and vFL, see Eq. (16).

For small driving parameters, we can perform a linear
expansion in u. While the deformation itself scales linearly
with u, the dissipative matrix does not have corrections to
linear order in u, D = 1Ds + O(u2). Thus, at low drives, the
skyrmion remains mirror symmetric with respect to the axis
of the deformation. A more detailed analysis of Eq. (19) to
linear order in the drive is given in Appendix E. It follows that
the skyrmion is mirror symmetric with respect to vDL, thus
d ‖ vDL and the first nonzero contribution to the distortion is
given by

δ ∝ 1

R2
((αvDL − vFL)2 − c(κ/κc) α vDLvFL). (21)

Here, R ≈ 1/(2
√

κ − √
κκc) is the approximate radius of a

circular skyrmion [71–73] and c(κ/κc) depends on the details
of the skyrmion solution. For κ → κc one can expand c in
terms of κ such that to leading order we obtain a constant.

Furthermore, for small drive parameters, the angle ζ be-
tween the deformation axis d and the drive u is given by

ζ =∠(u, d ) = arctan

(
4πQα u · (Du)

G2u2 + α u · (G × (Du))

)

≈ arctan

(
−αDs

4π

)
, (22)

where we have used Du ≈ Dsu up to first order in the drive.
We show a comparison of this approximate expression, being
independent of the drive parameter, and the results of numer-
ical simulations in Fig. 6. Even for large STTs with a drive
parameter of u = 1.0, the distortion δ = 0.07 is rather small,
and the numerical results agree very well with the predicted
expression in Eq. (22). Moreover, as expected, the axis of
distortion d changes with the effective anisotropy parameter
κ , since Ds depends on κ .

C. Elliptical instability

At larger effective drive u, beyond the linear regime and
for smaller κ � κc, the deformation parameter grows sig-

FIG. 6. Angle ζ between the axis of distortion d and the effective
drive u as a function of the Gilbert damping α for anisotropies κ =
1.25, 1.30, and 1.52. Solid lines indicate the analytic approximation
for u = 0, see Eq. (22). Numerical results are shown for a very low
drive u = 0.01 (dots) and an elevated drive u = 0.07, 0.25, and 1.0,
respectively (triangles). They are in agreement with our analytical
prediction and are, in particular, independent of the drive.

nificantly, see Fig. 7. For drives above a critical value, the
steady solution is no longer possible and the skyrmion evolves
dynamically at constant drive. This evolution corresponds to
a growth in size that may lead to an elongation or the eventual
breakdown into other structures, see Fig. 8.

We associate the elongation behavior to an elliptical insta-
bility. This is due to the fact that the shape of the skyrmion
resembles an ellipse with focal points distancing over time.
The major bulk of the structure, however, can be compared
to two parallel domain walls. For such elongated magnetic
structures, the distortion parameter reaches its limiting value
of δ = 1. Besides the elongation instability, Fig. 8(a), we also
observe from numerical simulations other sorts of distortions
associated to bending the skyrmion, Figs. 8(b) and 8(c). While
the elongated skyrmion tends to preserve mirror symmetry,

FIG. 7. Distortion δ as function of the STT u for κ = 1.25
(blue), κ = 1.30 (dark green), and κ = 1.38 (light green), for α =
1, 0.4, 0.1. The numerical data (dots, triangles, squares) is supple-
mented by a

√
uc − u fit (solid line). The instability point is marked

by a star. For κ = 1.38 and α = 0.1 we do not find an instability of
the skyrmion below the ferromagnetic instability.
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FIG. 8. Time evolution of a variety of observed instabilities of a
skyrmion due to STT: (a) elongation, (b) expansion, and (c) duplica-
tion. Parameters (κ, α, u) are (a) (1.3,1.0,0.2977), (b) (1.3,0.1,1.17),
and (c) (1.35,0.4,2.2). Instabilities (a) and (b) are obtained by in-
creasing u whereas (c) was initially above the unstable regime and u
was then decreased. For (a) we observed an expansion that was only
limited by the size of the simulated area. In the last snapshot of (b),
the skyrmion has filled the entire space over the periodic boundary
conditions. Both (b) and (c) result in unpredictable behavior at even
longer timescales. The color code is chosen as in Fig. 1. The current
u = ux̂ points to the right. The small black bar in the bottom right
corner indicates the length scale 2A/D in each series of panels
[panels (c) are magnified with respect to (a) and (b)].

this is lost for the other instabilities, which can be mainly
associated to the fieldlike component of the effective field, see
Eq. (6).

An analytical understanding of the elliptical instability can
be obtained from Eq. (19b). The shape of the skyrmion is best
described by its curvature (l ). In the regime κ → κc, and
assuming that the profile along the skyrmion border is rather
constant, i.e., ∂lθ ≈ 0 (as consistent with micromagnetic sim-
ulations), the shape of the skyrmion for high drives resembles
the ellipse

r(ψ ) ≈ R

1 − e(vFL, vDL, R)R cos (θDL − ψ )
, (23)

hence the name “elliptical” instability.
An important remark is that the growth in shape of the

skyrmion is associated with squeezing its radial profile, see
Eq. (19a). In total, the skyrmion grows along vDL and shrinks
along the perpendicular direction. Furthermore, we notice the
existence of a critical behavior depending on the function
e(vFL, vDL, R), when e(vFL, vDL, R)R = 1. Numerical calcu-
lations show that this critical behavior happens for

e(vFL, vDL, R)R ≈ vFLR2

2
≈ 1. (24)

Above this limit, a solution for ∂lθ ≈ 0 is no longer allowed
such that the skyrmion becomes unstable or smoothly deforms
into the “shooting star” skyrmion, see Figs. 3 and 4.

FIG. 9. Profile of the “shooting star” skyrmion for κ = 1.4 and
u = 2.5. The real-space magnetization for u = ux̂ is shown with the
same color code as in Fig. 1. Colored lines indicate the axes for which
the mz component is plotted with the corresponding color.

D. Current-stabilized “shooting star” skyrmions

At high currents and larger damping parameters, a steady-
state motion can be found where the shape of the magnetic
skyrmion resembles a shooting star. This happens either for
larger κ or drives past the elongation instability, i.e., for pa-
rameter sets above the white regions in Figs. 3, 4(b), and 4(c).
An example of such a shooting-star-like skyrmion is displayed
in the inset of Fig. 9, alongside with its radial profile, which
changes significantly as indicated by the different colors. The
stability of the shooting star skyrmion for such high drives
can be explained by the fact that the energy associated to the
skyrmion profile deformation is much higher than the energy
associated with the eigenmodes that lead to its boundary
contour change [64,72]. We observe that these shooting star
skyrmions are very rigid structures, even at ultrahigh currents.
Upon increasing the drive in this phase, we find that they
become even more compact.

The numerics indicate that the shooting star solutions are
rather mirror symmetric with respect to the axis vDL. As stated
above and proven in Appendix D, for such mirror symmetric
solutions (i) vDL ⊥ vFL, (ii) vDL and vFL are the eigenvectors
of D, and (iii) the axis of distortion is along vDL.

V. CURRENT-INDUCED DEFORMATION OF SKYRMIONS
STABILIZED BY MAGNETIC FIELD

So far, we only considered skyrmions which are stabilized
in the absence of external magnetic fields and, instead, by
a uniaxial anisotropy. However, stable skyrmion solutions
can also be found for additional external magnetic fields,
even for vanishing or in-plane anisotropy [3,7,74]. Yet the
thermodynamic phase transitions, as well as the energetics
of excitations of a skyrmion in the two regimes—field vs
anisotropy-stabilized—are very different: As discussed above,
anisotropy-stabilized skyrmions become very soft close to
the phase transition to the spiral phase and can easily de-
form under an applied current. For magnetic field-stabilized
skyrmions in the absence of a uniaxial anisotropy, however,
we find that the skyrmion is rather rigid in the proximity of
the phase transition. It shows only little deformation due to
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FIG. 10. Distortion δ of skyrmions stabilized by a magnetic field
h = 0.8 (in rescaled units) without uniaxial anisotropy as a function
of Gilbert damping α and drive u. For better visibility, the color code
only ranges from δ = 0 (yellow) to δ = 0.2 (dark green), see color
bar. The solid gray line shows the ferromagnetic instability at u =
2
√

h above which the ferromagnetic background becomes unstable,
cf. Sec. II C.

STTs over a wide range of parameters α and u, as shown in
Fig. 10. This can be explained by the following argument:
The ferromagnet becomes unstable against the formation of
a skyrmion lattice at the critical field hc1 which in rescaled
units is given by hc1 ≈ 0.8 [5,56,75,76] However, the in-
stability of the skyrmion in a polarized background occurs
via the softening of the elliptical excitation mode at much
lower fields hc2 ≈ 0.56 [48,49,77]. Therefore, excitations are
massively gapped around the phase transition [48,49,76] and
the skyrmion cannot deform much.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have systematically investigated the prop-
erties of isolated skyrmions in steady-state motion, including
their deformations and instabilities, in chiral ferromagnets due
to STTs. In general, we have found that skyrmions deform
away from their typical circular shape for applied drives and
we have quantified their distortion of the skyrmion by the
single scalar parameter δ, see Eq. (17). As depicted in Figs. 3
and 4, depending on the size of a skyrmion and the damping
parameter, there are various scenarios which happen as a
function of driving strength: (i) For a smaller skyrmion at
smaller damping, it remains rather circular; (ii) for a larger
skyrmion at smaller damping, it first develops an elliptical
instability which then goes over into the ferromagnetic in-
stability; (iii) for a larger skyrmion at larger damping, it first
develops an elliptical instability which then contracts back to
a shooting-star shaped form; (iv) for a smaller skyrmion at
larger damping, it transforms continuously into the shooting-
star skyrmion solution. In particular, in this work we have
predicted the shooting star skyrmion as a new, less symmetric
state which is stable at ultrahigh currents. This is due to the
fact that its radial profile varies significantly (unlike for a usual
skyrmion).

Even though we have derived our results explicitly for
interfacial DMI, we would like to point out that our results
are independent of the flavor of DMI, as long as its absolute
value is isotropic. By replacing ẑ × ∇ → Rφ

z ∇ where Rφ
z is a

rotation by φ around the ẑ axis, any other plane of rotation can
be stabilized, including Bloch-type skyrmions. Note that also
antiskyrmions can be considered, as ẑ × ∇ → Rφ

z σx∇ (where
σx is a Pauli matrix).

To summarize, our results show that uniaxial anisotropy-
stabilized skyrmions are in fact rather soft compared to mag-
netic field stabilized skyrmions. Hence, for any technological
devices aiming to exploit skyrmions in chiral magnets with
an easy-axis anisotropy, in the absence of invasive external
magnetic fields, it is essential to know the range of parameters
where the skyrmion is unstable. Otherwise, the spin torques
can destroy the skyrmion or, at least, modify its shape and
hence skyrmion Hall effect which then leads to a less con-
trolled motion.

ACKNOWLEDGMENTS

J.M. acknowledges fruitful discussions with A. Rosch, K.
Litzius, N. Nagaosa, and C. Melcher. J.M. was supported
in Germany by the German Research Foundation (DFG)
CRC 1238 project C04 and in Japan by JSPS (project No.
19F19815) and the Alexander von Humboldt foundation.
The group at Mainz acknowledges funding from the German
Research Foundation (DFG) under the Project No. EV 196/2-
1, EV196/5-1, SI1720/4-1, TRR173 - 268565370 (project
B11), the Graduate School of Excellence Materials Science in
Mainz (MAINZ, GSC 266), and from the Emergent AI Center
funded by the Carl-Zeiss-Stiftung. We furthermore thank the
Regional Computing Center of the University of Cologne
(RRZK) for providing computing time on the DFG-funded
High Performance Computing (HPC) system CHEOPS as
well as support.

APPENDIX A: SIMULATION DETAILS

1. Numerical implementation of the continuum model

Minimizing artifacts due to numerical discretization of the
continuum theory, Eq. (1) and Eq. (2), requires a numer-
ical grid with a small lattice constant a � ξ , where ξ is
the typical length scale of variations of the magnetization.
The large skyrmions at low κ are particularly sensitive to the
anisotropies that arise from the numerical discretization of the
grid. This erroneously leads to noncircular skyrmions already
without applied currents and wrong results for the axis of
distortion. With the standard micromagnetic solvers and their
O(a2) finite difference schemes, a very fine discretization is
therefore required to reduce these effects which leads to very
long run times.

Therefore, in this work, we use higher order stencils with
a numerical error of the order O(a8) for the discretization of
derivatives, following the continuum calculations in Ref. [78].
Because of the high order scaling of the numerical error, a
square lattice with lattice constant a = 1

3
2A
D or a = 1

6
2A
D was

found to be sufficiently precise, and thus, was used throughout
this work. The usual lattice sizes are then only 60 × 60, 100 ×
100, or 200 × 200, depending on the size of the skyrmion.
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2. Simulations of moving skyrmions in Thiele’s
comoving frame of reference

As we apply a strong current to our system, the skyrmion
moves very rapidly over the numerical lattice. To avoid nu-
merical precision errors, we simulate the system in a frame
of reference which moves with the magnetic texture. Instead
of numerically tracking the position of the skyrmion, which is
hard to do at high precision, we estimate the velocity vsky of
the skyrmion from the Thiele equation, Eq. (15). To account
for the changes in the magnetic texture during the simulation,
the dissipation matrix elements become time dependent, D →
D(t ), and have to be evaluated at each time step of the
simulation. We can write the time-dependent magnetization
in the comoving frame of the skyrmion as n(r, t ) = m(r −
Rsky(t ), t ) where Rsky(t ) is the position of the skyrmion with
Ṙsky(t ) = vsky(t ), see Eq. (15). The resulting LLG equation is

ṅ = 1

1 + α2
(−γ n × Beff − (1 + αβ )(ve · ∇ )n

−αγ n × (n × Beff ) − (α − β ) n × (ve · ∇ )n)

+ (vsky(t ) · ∇ ) n, (A1)

where vsky(t ) is calculated at each time step. Note that the
equation has been written in a form with the time derivative
appearing only on the left hand side, making it suitable for
direct numerical integration.

Moreover, as we study the steady motion of skyrmions,
we have to apply the current quasiadiabatically, avoiding
sharp accelerations of the skyrmion. In the simulations this
is achieved via smoothly increasing the current density to its
final strength vf with a time dependence v(t ) = vf sin2(t/t0)
where t0 is chosen sufficiently large such that excitations
of the skyrmion are avoided. A typical value of t0 that we
have used is t0 ≈ 6 × 104 in dimensionless units. The time
integration of the co-moving LLG equation, Eq. (A1), is then
performed until a steady state is reached.

APPENDIX B: PROOF THAT THE EFFECTIVE
VELOCITIES vFL and vDL ARE ALWAYS NONZERO FOR A

SKYRMION SUBJECT TO FINITE DRIVE u

Let us assume that vDL = 0, i.e., the dampinglike part of
Eq. (16) equals zero. In this case from Eq. (15) we obtain

−u = α

G2 + α2 det(D)
(G × (Du) − α det(D)u) (B1)

which reduces to an eigenvalue equation

GDu = −(G2/α)u, where G =
⎛
⎝

0 −G 0

G 0 0

0 0 1

⎞
⎠.

(B2)

For a nontrivial solution to this equation, u has to be an eigen-
vector of GD with eigenvalue −(G2/α). However, explicitly
calculating the eigenvalues of GD we obtain ±|G|√− det D,
which for an arbitrary skyrmion leads to a contradiction.

Let us now assume that vFL = 0, leaving just the purely
dampinglike spin torque in Eq. (16). By a similar analysis,

FIG. 11. Distortion δ as a function of applied drive u for damping
α = 0.4 and α = 1. Dots/triangles indicate numerically obtained
results and lines are interpolations. The color denotes the anisotropy
κ . The inset is a reproduction of the full κ-u phase diagrams in
grayscale, cf. Fig. 4, where the horizontal lines correspond to the
data shown.

from Eq. (15) we obtain the eigenvalue equation for u

GDu = α det(D)u, (B3)

which for a general skyrmion can also not be fulfilled. To
conclude, for any finite u > 0, and thus α 	= β, both vFL and
vDL are always simultaneously nonzero, as stated in the main
text.

APPENDIX C: DETAILED RESULTS FOR
THE DISTORTION

In Fig. 11 we plot the detailed numerical results for the
deformation parameter shown in Figs. 4(b) and 4(c) in the
main text. These data explicitly display the different behavior
of the distortion of the different phases—slightly deformed
skyrmions, instability phase, and the shooting star. For the
lowest κ shown here, the skyrmion exhibits an instability for
an intermediate range of u. At higher κ , the unstable regime
closes but a peak is still visible which marks the transition to
a new current-stabilized skyrmion state which we refer to as
the “shooting star” skyrmion. For even higher anisotropy this
peak vanishes and the transition to the shooting star becomes
a smooth crossover.
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APPENDIX D: MIRROR SYMMETRIC
CURRENT-DRIVEN SKYRMIONS

First we show that, if the skyrmion is mirror symmet-
ric around a certain axis, then, in the coordinate system
where this axis is along one of the basis vectors, the dissi-
pative matrix is diagonal. To do that, we consider without
loss of generality x̂ as the axis of the mirror symmetry,
such that mx(x, y) = mx(x,−y) and my(x, y) = −my(x,−y).
It follows that Dxy = ∫

d2x ∂xm(x, y) · ∂ym(x, y) = 0, since
∂ym(x,−y) = −∂ym(x, y) and ∂xm(x,−y) = ∂xm(x, y).

Second, we show that if the current-driven skyrmion is
mirror symmetric with respect to vDL then, and only then,
vDL ⊥ vFL. To proof this, we consider Eq. (16) in a coordinate
frame such that x̂ ‖ vDL. In this coordinate frame, we can
express vFL as vFL = vFL xx̂ + vFL yŷ, where vFL x = vFL · vDL,
the component of vFL along vDL and vFL y the component of
vFL perpendicular to vDL. In this case, Eq. (16) reduces to

0 = m × [Beff + αvDL∂xm] − (
vFL x∂x + vFL y∂y

)
m. (D1)

If we project the equations above along m × ∂xm and m ×
∂ym and integrate over space we obtain the following Thiele
equations, respectively,

α vDLDxx − 4πQvFL y = 0, (D2a)

α vDLDxy + 4πQvFL x = 0. (D2b)

Here we used that the energy, Eq. (1), is translationally
invariant, i.e., δxE [m] = δyE [m] = 0. The only solution
for this system of equations such that both effective
drives vDL and vFL are nonzero and the dissipative
matrix D is diagonal, is given by vFL x = 0 and
|vFL| = α|vDL|Dxx/4πQ. Moreover, then vDL and vFL

are the eigenvectors of the dissipation matrix D and vDL

is along the axis of distortion. Notice that in a different
basis, the mirror symmetric dissipation matrix components
become Dx′x′ = Dxx cos2 θ ′ + Dyy sin2 θ ′, Dy′y′ =
Dxx sin2 θ ′ + Dyy cos2 θ ′, and Dx′y′ = (Dyy −
Dxx ) sin θ ′ cos θ ′, where θ ′ is the angle between vDL and
x̂′.

APPENDIX E: DERIVATION FOR SKYRMION
DEFORMATION IN THE LIMIT OF LOW DRIVE

A quantitative analysis of the deformation δ can be ob-
tained by a linearization of Eqs. (19) on the drive parameter

u. We take into account that up to linear order in the drive
vDL ⊥ vFL, i.e., θFL = θDL − π/2. Furthermore, we consider
a perturbative ansatz around the circular skyrmion solution
with radius R characterized by φ0 = 0 and θ0(n). The latter
solves Eqs. (19) for a circular skyrmion which reduce to

∂2
n θ0 + 2

R
sin2 θ0 − sin 2θ0

2

(
2κ + 1

R2

)
= 0. (E1)

The perturbative ansatz is given by

θ (n, l ) = θ0(n) + θ̃ (n, l ) (E2a)

φ(n, l ) = φ̃(l ), (E2b)
where the functions with the tilde are small perturbations.
With this ansatz follows r(l ) = R + r̃(l ), (l ) = (1/R) +
̃(l ), with ̃(l ) = ∂l φ̃ − (∂2

l r̃ + r̃)/R2, � = ψ − ∂ψ r̃/R, and
∂l = (1/R − r̃/R2)∂ψ , where ψ is the polar angle. This ansatz
simplifies Eqs. (19) to the following system of equations up to
first order in perturbation,

0 = ∂2
n θ̃ + ∂2

l θ̃ + 2̃ sin2 θ0 + 2
sin 2θ0

R
θ̃ (E3a)

− sin 2θ0

R
̃ − θ̃ cos 2θ0

(
2κ + 1

R2

)

+ cos(θDL − ψ )

(
αvDL∂nθ0 + vFL sin θ0

R

)
,

0 = 2∂l θ̃ cos θ0

R
+ sin θ0(2∂nθ0φ̃ + ∂l̃) (E3b)

+ sin(θDL − ψ )

(
vFL∂nθ0 + αvDL sin θ0

R

)
.

From the radial profile (E1), in the limit of big radius,
we can consider that ∂nθ0 ∼ f (κ ) sin θ0/R such that solutions
of Eqs. (E3) can be approximated by functions of (αvDL −
vFL) cos(θDL − ψ ) and (αvDL − vFL) sin(θDL − ψ ). By ex-
panding the components of the dissipation matrix, Eq. (20),
into the lowest order of the perturbation, considering the basis
with x̂ ‖ vDL, we obtain: (i) Dxy = 0, such that the skyrmion is
mirror symmetric with respect to vDL, and (ii) the first nonzero
contribution to the distortion is given by

δ ∝ ((αvDL − vFL)2 − c(κ/κc)αvDLvFL)/R2, (E4)

where c(κ/κc) is a function of κ and depends on the exact
solutions of Eqs. (E3), as claimed in the main text.
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