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We derive an effective Hamiltonian system describing the low-energy dynamics of circular magnetic
skyrmions and antiskyrmions. Using scaling and symmetry arguments, we model (anti)skyrmion dynamics
through a finite set of coupled, canonically conjugated, collective coordinates. The resulting theoretical descrip-
tion is independent of both micromagnetic details as well as any specificity in the ansatz of the skyrmion profile.
Based on the Hamiltonian structure, we derive a general description for breathing dynamics of (anti)skyrmions
in the limit of radius much larger than the domain wall width. The effective energy landscape reveals two
qualitatively different types of breathing behavior. For small energy perturbations, we reproduce the well-
known small breathing mode excitations, where the magnetic moments of the skyrmion oscillate around their
equilibrium solution. At higher energies, we find a breathing behavior where the skyrmion phase continuously
precesses, transforming Néel to Bloch skyrmions and vice versa. For a damped system, we observe the transition
from the continuously rotating and breathing skyrmion into the oscillatory one. We analyze the characteristic
frequencies of both breathing types, as well as their amplitudes and distinct energy dissipation rates. For
rotational (oscillatory) breathing modes, we predict on average a linear (exponential) decay in energy. We argue
that this stark difference in dissipative behavior should be observable in the frequency spectrum of excited
(anti)skyrmions.

DOI: 10.1103/PhysRevB.99.054430

I. INTRODUCTION

Topological magnetic textures have attracted substantial
attention in spintronics [1–4] in light of prospects to harness
their favorable properties for magnetic memory technologies,
[5–7] information processing [8–12], and novel approaches
to computation [13–19]. An important building block in
this direction is understanding their dynamical excitations
to test stability and to devise ways to efficiently manipu-
late them. Among the magnetic textures studied are domain
walls [5,20–22] and skyrmions [4,6,23–28]. With respect to
possible applications in memory devices, skyrmions present
several advantages over domain walls due to their smaller
sizes, lower threshold for current driven mobility [3,7,27,29],
and their tendency to avoid obstacles and boundaries [30].
Recently, a growing collection of other exotic relatives are
also receiving attention. This includes magnetic solitons of
higher topological order [31], chiral bobbers [32], nontopo-
logical counterparts such as the skyrmionium particle [33],
and antiskyrmions [34–37], where the winding number is
opposite in sign compared to the skyrmion.

Following the pioneering work by Schryer and Walker
[38], effective descriptions for current-driven and field-driven
domain-wall motion have been considered widely [20,39,40],
including recent models leveraging canonically conjugated
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variables derived from the spin Berry phase action [41–43].
For a magnetic skyrmion, it has been shown [33,44,45] that
its motion can be described with two conjugated variables
describing its position. Effective descriptions for the internal
dynamics of magnetic skyrmions, however, are few in number.
Previous works have often focused on eigenmode analysis of
magnons to obtain the small amplitude internal excitations
of isolated magnetic skyrmions [46–51]. Skyrmion breathing
modes, in which the core of the spin structure grows and
shrinks periodically in time, were first described theoretically
by numerical simulations of skyrmion lattices [52] and later
found experimentally [53] in the insulator Cu2OSeO3 from
microwave response experiments.

In this paper, we derive a nonlinear effective model for
rotationally symmetric (anti)skyrmion breathing modes in
terms of two collective coordinates whose validity extends
beyond approaches based on an eigenmode analysis, similar
to an earlier effective breathing model found in the context
of dynamically stabilized skyrmions [54]. This is obtained by
the method of Hamiltonian collective coordinate dynamics,
independently of microscopic details, and is applicable to the
circular internal modes of both skyrmions and antiskyrmions.
We consider an experimentally relevant model for chiral
thin films to study the equilibrium and breathing properties
of (anti)skyrmions in detail where all material details can
be collapsed into a single effective parameter. In model-
ing the nonlinear excitations above equilibrium, we describe
two dynamical regimes of coherent magnetization behavior:
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(i) oscillation around the local equilibrium magnetization
direction and (ii) rotational breathing mode dynamics where
the local magnetization continuously rotates [54,55]. By anal-
ogy, these regimes may be thought of as a pendulum which,
depending on its energy, either (i) swings about its equilibrium
position or (ii) fully rotates around its pivot point.

This paper is organized as follows. In Sec. II, we describe
how to pass from a micromagnetic dynamical description to
a Hamiltonian mechanics in terms of collective coordinates.
In Sec. III we derive the Hamiltonian mechanics describing
the dynamics of soft modes for (anti)skyrmions. We first
review the Poisson bracket for the translational motion of rigid
textures in two dimensions and then derive its analog for cir-
cular breathing modes. In Sec. IV, we introduce a micromag-
netic model for chiral thin films with perpendicular magnetic
anisotropy, construct its effective energy as a one parameter
physical model, and study its equilibrium properties. Lastly,
in Sec. V, as an application of the effective Hamiltonian
formalism, we study the breathing modes of circularly shaped
(anti)skyrmions and make precise predictions regarding their
dissipative behavior.

II. COLLECTIVE COORDINATES
AND HAMILTONIAN FORMALISM

The magnetization dynamics below the critical temperature
in ferromagnetic materials is well described in a continuum
approximation by the Landau-Lifshitz-Gilbert (LLG) equa-
tion [56],

ṁ = 1

J m × δH[m]

δm
+ αm × ṁ, (m)2 = 1, (1)

where the magnetization configuration is represented by the
unit vector m(r, t ) = M(r, t )/Ms. Here J = Ms/γ0 is the an-
gular momentum density, γ0 is the gyromagnetic constant, Ms

is the constant saturation magnetization, the Hamiltonian of
the system is H ≡ H[m], α is the Gilbert damping parameter,
and the overdots indicate total time derivatives ṁ ≡ dm/dt .

The LLG is a nonlinear differential equation with an in-
finite number of degrees of freedom. This poses an obstacle
for the comprehensive study of the magnetization dynamics,
prohibiting a full analytical solution and usually requiring ex-
tensive micromagnetic simulations. However, the low-energy
dynamics of magnetic textures depend only on the system’s
soft modes, which can be described by conjugated variables in
a Hamiltonian formalism [40,42,43,57]. This allows access to
generic features of the magnetization textures independently
from the microscopic characteristics of the material.

The conservative, precessional part of the LLG equation
may be derived from the first variation of the action

S =
∫

dtL = SB −
∫

dtH, (2)

with the constraint of a constant magnetization amplitude.
Here L is the Lagrangian and SB is the spin Berry phase
action [41,44,58]. The spin Berry phase couples the
dynamical degrees of freedom of the local magnetization.
In a spherical representation of the magnetization field,
m(θ (r, t ), φ(r, t )) = (sin θ cos φ, sin θ sin φ, cos θ )ᵀ, using
the “north-pole” parametrization [59], it is possible to write

the spin Berry phase as

SB = J
∫

dt
∫

dV (1 − cos θ )φ̇. (3)

Two canonically conjugated fields, in this case given by
φ(r, t ) and J [1 − cos(θ (r, t ))], are sufficient to describe the
magnetization dynamics. In addition to the energy-conserving
part, the phenomenological damping term may be intro-
duced directly into the Euler-Lagrange equations by use of a
Rayleigh dissipative functional [56], such that the full Eq. (1)
is derived from

0 = d

dt

δL[M, Ṁ]

δṀ
− δL[M, Ṁ]

δM
+ δR[Ṁ]

δṀ
, (4)

where the Rayleigh functional is

R[Ṁ] = αJ
2M2

s

∫
dV (Ṁ)2. (5)

Since the magnetization is characterized by a field, it has
infinitely many modes. It is possible to map the dynamics
to an infinite number of time-dependent functions ξ(t ) =
{ξ1(t ), ξ2(t ), . . . }, i.e., m[r, ξ(t )]. The unique equation of
motion with infinite degrees of freedom, Eq. (1), becomes an
infinite set of equations of motion for these dynamical param-
eters in this approach. The utility of this mapping is that these
different parameters may have different timescales. Therefore,
the low-energy excitations can be described as a reduced
set of collective coordinates, ξ(t ) = {ξ1(t ), ξ2(t ), . . . , ξ2N (t )}
describing the soft modes which dominate the dynamics [40],
and whose relaxation time is much longer than the rest of
the infinite set. Examples include the position and tilt angle
of a domain wall when subjected to small driving currents,
or the position (X,Y )ᵀ of a rigid homogenous domain in
steady translational motion as described originally by Thiele
[60]. Identifying collective coordinates therefore offers the
possibility to work with a reduced number of degrees of
freedom, i.e., a minimal number of equations of motion just
for the corresponding soft modes, rather than the full LLG
field equation, which is usually analytically intractable.

There are several methods to obtain the equations of mo-
tion for the collective coordinates [40,42,60,61]. In this paper,
we outline the Hamiltonian approach. Within this formalism,
the equations of motion are obtained in an explicit and di-
rect manner from an effective energy which is a function
of collective coordinates for the soft modes. We provide
the comparison between this Hamiltonian approach and the
generalized Thiele approach in Appendix B. Recasting Eq. (1)
in a Hamiltonian language yields [44]

ṁ = {m, H}�,	 + γm, (6)

containing an energy-conserving part expressed using Poisson
brackets for two canonically conjugated fields �(r, t ) and
	(r, t ), and a damping contribution described by γm ≡ αm ×
ṁ. The conventions for Poisson brackets used throughout this
paper and their properties are listed in Appendix A.

The effective equations of motion for the collective coordi-
nates in the Hamiltonian language are

ξ̇i = {ξi, H}q,p + γξi , (7)
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where the Poisson brackets {·, ·}q,p are now defined for pairs
of canonical variables (qi, pi) in terms of the independent
collective coordinates ξi(t ) and their time derivatives ξ̇i(t ).

In general, the canonical coordinates may always be taken
as collective coordinates themselves, qi ≡ ξi; meanwhile,
the momenta are gauge-dependent functionals pi = Ai[ξ], so
the corresponding Lagrangian is L = ∑

i Aiξ̇i − H [62] .The
canonical momenta arising from the vector potential corre-
spond to a monopole field in the spin Berry phase action,
i.e., ∇ × A = Jm [57,63], and are related to the gyrotropic
tensor by [40,57] Gi j = J −1(∂Ai/∂ξ j − ∂Aj/∂ξi ). For the
commonly used gauge choice giving Eq. (3) the functional is
simply Ai[ξ] = ∫

dV (1 − cos θ )∂ξiφ. In terms of the magneti-
zation, the gyrotropic tensor is

Gi j =
∫

dV m · (∂ξi m × ∂ξ j m
)
. (8)

In the following, we will only consider Hamiltonians H =
H[ξ] that are not explicitly time dependent. In this case, the
dissipative part γξi is derived by comparing the rate of energy
dissipation that is given by the dissipative functional, Ḣ =
−2R = −αJ

∑
i j Di j ξ̇iξ̇ j , to its expansion Ḣ = ∑

i
∂H
∂ξi

ξ̇i,
where

Di j =
∫

dV
(
∂ξi m · ∂ξ j m

)
(9)

is the viscosity tensor. Solving for γξi yields the result,

γξi = αJ
∑

j,k

{ξi, ξ j}ξ,pξ
D jk ξ̇k. (10)

We point out that Eqs. (7) and (10) taken together are not
specific to magnetization dynamics; rather, they are generic
for conservative mechanical systems to which frictional forces
(force terms linear in velocities) are included in the equation
of motion by the use of a Rayleigh function. Using the identity
{ξi, H}ξ,pξ

= ∑
j{ξi, ξ j}ξ,pξ

∂H
∂ξ j

, we may write Eqs. (7) and (10)
together for a reduced set of soft modes,

ξ̇i =
2N∑
j=1

{ξi, ξ j}ξ,pξ

(
∂H

∂ξ j
+ αJ

∑
k

D jk ξ̇k

)
, (11)

which is our first main theoretical result. As an explicit matrix
equation, the above result becomes

ξ̇ = 1

J (G − αD)−1 ∂H

∂ξ
(12)

by use of the relation between the Poisson brackets and the
gyrocoupling tensor [63] J {ξi, ξ j}ξ,pξ

= (G−1)i j .

III. EFFECTIVE HAMILTONIAN DESCRIPTIONS
FOR MAGNETIC SKYRMIONS

The LLG equation contains topologically nontrivial so-
lutions. In 1D, they include domain walls, and in 2D they
include different types of solitons that are distinguished by
their integer topological charge or winding number,

Q = 1

4π

∫
dxdy m · (∂xm × ∂ym). (13)

An important example of magnetic solitons in 2D are
skyrmions. In the following, we will apply the Hamiltonian

description given by Eqs. (7) and (10) to the dynamics of
skyrmions and antiskyrmions. First we review the steady
translational motion for rigid topological structures using this
approach, and second we apply the technique to study the
breathing mode.

A. Translational modes of rigid topological textures

The translational motion of a rigid structure can be de-
scribed in terms of a position rs(t ) = (X (t ),Y (t ))ᵀ, where
X and Y are collective coordinates describing a soft mode
[44,63,64]. The following discussion does not require a spe-
cific definition of rs(t ). To obtain the Poisson bracket structure
from Eq. (3), we need to peturbatively expand the fields
θ (r, t ) and ∂tφ(r, t ) in terms of small deviations in X,Y and
Ẋ , Ẏ , respectively. Considering a rigid texture ansatz for the
magnetization, m(r, t ) = m0[r − rs(t )], implies [60] ∂X m =
−∂xm and ∂Y m = −∂ym. Performing an expansion in the
spin Berry Phase action Eq. (3) up to quadratic order and
discarding terms that do not contribute to the dynamics leads
to (see Appendix B)

SB ≈
∫

dtz0J XẎ
∫

dxdy [(∂y cos θ )∂xφ − (x ↔ y)],

(14)

where z0 is the thickness of the system and the spatial integral
is proportional to the topological charge defined in Eq. (13).
Hence the effective action is

Seff =
∫

dt (4πQz0J XẎ − H ). (15)

Noting that the canonical momentum to Y is pY =
4πQz0J X , we therefore read off the Poisson bracket for
topologically nontrivial textures [44]:

{Y, X }Y,pY = 1

4πQz0J
. (16)

Inserting the Poisson bracket of Eq. (16) into Eq. (11) gives
the dynamical equations of motion for the translational mode,

Ẋ = − 1

4πQz0

[
1

J
∂H

∂Y
+ α(DY X Ẋ + DYY Ẏ )

]
, (17a)

Ẏ = 1

4πQz0

[
1

J
∂H

∂X
+ α(DXX Ẋ + DXY Ẏ )

]
, (17b)

which are equivalent to the traditional Thiele equations for
skyrmions [60,65], and in the case of circular states, like
for a simple skyrmion, the off-diagonal elements DXY = DY X

vanish.

B. Internal dynamics of skyrmions and antiskyrmions

For a study of the internal dynamics of magnetic solitons,
such as skyrmion breathing modes [46–48], one must go be-
yond the rigid texture (or traveling-wave) approximation used
in the last section. We will consider a thin film system that
is translationally invariant along the z direction and contains
localized rotationally symmetric states [6,23,24],

m(ρ) = [sin θ (ρ) cos φ(ψ ), sin θ (ρ) sin φ(ψ ), cos θ (ρ)]ᵀ,

(18a)

ρ = (ρ cos ψ, ρ sin ψ )ᵀ, (18b)
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FIG. 1. Schematic figure of a (a) Néel skyrmion, (b) anti-
skyrmion, and (c) the common mz component for both structures.
(d) The in-plane spins for prototypical (anti)skyrmions with phase η,
where η = 0 corresponds to the spin structures to the left in (a) and
(b).

where ρ and ψ are the polar coordinates in the x–y plane.
Since the magnetic angle θ only changes with distance ρ from
the skyrmion core, these field configurations are referred to
as circular in this paper. In view of describing the breathing
modes of skyrmions as well as antiskyrmions, we parametrize
the azimuthal angle of the magnetization by

φ(ψ ) = mψ + η, (19)

where m ∈ Z is the vorticity and η is the relative azimuthal
angle. For a simple skyrmion, one has m = 1 and the angle η

describes its helicity: for a Bloch-skyrmion η = (n + 1/2)π
and for a Néel-skyrmion η = nπ , where n ∈ Z, see Fig. 1.
This corresponds to Q = −m/2[cos θ (∞) − cos θ (0)] with
the boundary conditions θ (0) = π and θ (∞) = 0. In other
words, the ferromagnetic background points in the +ẑ direc-
tion. For circular (anti)skyrmions there are two characteristic
length scales: the radius R and the width d for the twisted do-
main over which mz varies, see Fig. 1(c). We define the radius
R by the circle where mz = 0. We assume in the following
that during the breathing dynamics, θ (ρ) retains its smooth
and monotonic variation, ensuring the definition of R to be
unique. This paper will consider only large (anti)skyrmions in
the regime where d � R, where the skyrmion’s wall width can
be considered constant even as its radius is allowed to vary.

The relevant soft mode for the breathing dynamics of a
circular (anti)skyrmion is described by the radius R(t ) and the
relative azimuthal angle η(t ) [54]. Unlike in Sec. III A, the
magnetic texture is not rigid but soft in its overall shape. For
skyrmions, the phase η is the global in-plane angle of the local
magnetization pointing away from the radial direction (such
that η = 0, π correspond to Néel and η = ±π/2 to Bloch
configurations, respectively), while for antiskyrmions, chang-
ing η corresponds to a rigid rotation of the entire magnetic
texture.

We will now follow the general recipe of Sec. II. By
estimating the volume integral for the Berry phase term in
Eq. (3) we obtain the effective action (see Appendix C)

Seff =
∫

dt (aJ R2η̇ − H ), (20)

in terms of the collective variables R and η. The length scale
a is given by a = 2πz0C, where C is a dimensionless constant
(with 0 < C < 5) arising from the integral over ρ. Defining
the canonical momentum conjugate to η as pη = aJ R2, we
read off the Poisson bracket as

{η, R2}η,pη
= 1

J a
. (21)

Next, via the identity {η, R2}η,pη
= (∂RR2){η, R}η,pη

=
2R{η, R}η,pη

, we obtain {η, R}η,pη
= (2aJ R)−1. Exploiting

Eq. (11), the dynamical equations for η and R are readily
derived

η̇ = 1

2aJ R

∂H

∂R
+ α

DRR

2a

Ṙ

R
, (22a)

Ṙ = − 1

2aJ R

∂H

∂η
− α

Dηη

2a

η̇

R
. (22b)

Above we used that ∂Rm · ∂ηm = 0 by virtue of the rota-
tionally symmetric ansatz Eqs. (18) and (19). Equation (22)
describes the effective internal dynamics of a rotationally
symmetric magnetic texture subject to the ansatz Eqs. (18) and
(19) for time-independent Hamiltonians H .

IV. EFFECTIVE ENERGY FOR CIRCULAR SKYRMIONS

Previous works have assumed an explicit domain wall
ansatz for the skyrmion’s radial profile [66–68]. By using
scaling arguments, however, one does not need to assume
a specific ansatz for the skyrmion. The energy can, in fact,
be expanded in powers of the collective R coordinate for
skyrmions satisfying d � R. We illustrate this procedure for
a micromagnetic model including exchange, anisotropy, and
interfacial Dzyaloshinskii-Moriya interaction (DMI), whose
magnetic free energy is given by

H[m] =
∫

dV

{
A
∑

i

(∂im)2 + K
(
1 − m2

z

)
+ D(mz∂xmx − mx∂xmz )

±D(mz∂ymy − my∂ymz )

}
, (23)

where the + (−) sign stands for the isotropic (anisotropic)
DMI which stabilizes circular skyrmions (antiskyrmions).
Performing the expansion of Eq. (23) in R for a large radius
skyrmion, we obtain the following dimensionless effective
energy in units of EDW = A3/2K−1/2,

Ẽ (r̃, η) = (c1 − c3gcos η)r̃ + c2

r̃
, (24)

where r̃ ≡ R/� is the dimensionless (anti)skyrmion radius in
units of the one-dimensional domain wall width � = √

A/K .
The single coupling constant g is the reduced DMI strength
g = πD/(4

√
AK ), selecting either a ferromagnetic |g| < 1 or

helical |g| > 1 mean-field ground state [23,24,67]. All rescal-
ing constants are summarized in Table I. The dimensionless
values c1, c2, and c3 are uniquely determined by the material
parameters through the coupling constant g (see Appendix
D) [49], since we have chosen to focus on the limit where
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TABLE I. Natural unit system for a study of skyrmion breathing
modes in a system with DMI, exchange, and perpendicular magnetic
anisotropy.

Quantity Characteristic Definition SI unit

� length A1/2K−1/2 m
1/ωFM time Msγ

−1
0 K−1 s

EDW energy A3/2K−1/2 J
g coupling constant πD(4

√
AK )−1 1

the skyrmion wall width d is time independent. The effective
energy is identical for both skyrmions and antiskyrmions as
a consequence of Eq. (19), taken with the appropriate choice
of m = +1(−1) for skyrmions (antiskyrmions). As such, we
will reduce our discussion to skyrmions only from now on
even though the results derived are valid for antiskyrmions
as well. In Appendix D, we discuss how to introduce other
interactions, such as dipole-dipole and bulk DMI, into this
framework.

Energy landscape analysis

The energy landscape described by the effective model
Eq. (24) has two extrema. The first is a global energy mini-
mum with corresponding equilibrium coordinates:

r̃eq =
√

c2

c1 − c3|g| , ηeq =
{

0 if 0 < g < 1
π if −1 < g < 0.

(25)

The second represents an energy saddle point with coordi-
nates:

r̃sad =
√

c2

c1 + c3|g| , ηsad =
{
π if 0 < g < 1
0 if −1 < g < 0,

(26)

where we note that r̃eq > r̃sad and that their respective effective
energies are Ẽeq(sad) = 2c2/r̃eq(sad).

Upon rescaling the radii by the equilibrium radius (r ≡
r̃/r̃eq) and energy by the equilibrium energy (ε ≡ Ẽ/Ẽeq) in
Eq. (24), the effective energy reduces to the simplified form

ε = 1

2r

(
1 − B cos η

1 − |B| r2 + 1

)
, (27)

where we have defined B = c3g/c1 as the single parameter
which encapsulates the entire contribution from the material
properties on the physics of the system. In these units, the
saddle point radius is exactly the inverse of the corresponding
saddle point energy [rsad = ε−1

sad = √
(1 − |B|)/(1 + |B|)].

A cut along the ε = εsad plane partitions the energy land-
scape into three distinct regions. A schematic view of the
energy landscape is shown in Fig. 2, where individual energy
sectors have been color coded to guide the reader. The (r, η)
coordinates in the bowl and horn regions both correspond to
high energy states (ε > εsad) as opposed to the basin’s low
energy states (ε < εsad). In the inset of Fig. 2, we show a cut
through η = 0 and η = π to emphasize the structure of the
extrema introduced above. The constant energy trajectories
followed by skyrmions in their configuration space in the

FIG. 2. Effective energy landscape for circular skyrmion breath-
ing modes, Eq. (27), with B = 0.45, highlighting the distinct basin,
bowl and horn energy partitioned by the constant saddle energy curve
(shown in white). Inset: a cut through η = 0 and η = π .

absence of damping [see Fig. 3(a)] are obtained by solving
Eq. (27) for the rescaled radius:

r±(η) = (1 − |B|)ε
1 − B cos η

[
1 ±

√
1 − 1 − B cos η

(1 − |B|)ε2

]
. (28)

While the two solutions in Eq. (28) represent distinct horn
and bowl orbits in the ε > εsad regime, they represent the two
branches of the same basin orbit in the ε < εsad case. In all
scenarios, constant energy orbits describe skyrmion breathing
motions as the radius grows and shrinks as a function of η.
The qualitative nature of orbits in the basin and bowl/horn
regions are, however, very different from each other as the
dynamical range of η is limited in the basin orbits while it
takes all values from 0 to 2π in the horn/bowl orbits. This
leads us to denominate the high and low energy breathing
dynamics as rotating and oscillating modes, respectively. The
degeneracy of the rotating modes disappears as their energy
is lowered through the saddle energy and into the basin. The
horn rotations are unphysical, however, as they would predict
uncollapsable skyrmions in the limit of very small skyrmion
sizes. Furthermore, since our theory is only applicable for
skyrmions much larger than the profile wall width d , it cannot
reliably describe their behavior at such small radii. Overall,
the dynamical spectrum of this model is reminiscent of that of
a simple pendulum which exhibits rotations and oscillations

FIG. 3. Breathing mode dynamics from the energy landscape
with B = 0.45. (a) Constant energy orbits: two are degenerate on the
bowl and horn at ε = 2εsad, while the third one lies in the basin at
ε = 3

4 εsad. (b) A damped trajectory starting on the bowl that spirals
in towards the energy minimum.
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FIG. 4. Time evolution of the dynamical system for the rescaled radius r (top row), azimuthal angle η (middle row), and rescaled energy
(bottom row). Orange and blue curves correspond to undamped and damped trajectories, respectively. (a) Numerical results based on the
effective model, Eq. (31) with B = 0.45 for an initial energy starting in the ε > εsad bowl region (light blue background). The black dashed
lines in (a) denote the maximum and minimum radii of the undamped trajectory [r+

1 and r+
2 from Eq. (35), respectively]. The transition

from rotating to oscillating phase (light pink background) is best seen in the behavior of the azimuthal angle where η rotates a number of
times before oscillating around its equilibrium value. Inset: Projection of the trajectory on the (r cos η, r sin η) polar coordinate plane where
the dashed magenta line represents saddle energy εsad separatrix. Subplots (b) and (c) show the breathing behavior of skyrmions obtained
by micromagnetic simulations for an energy above and below the saddle point energy, respectively. The parameters of the simulations are
Ms = 1.0 × 106 Cm−1s−1, α = 0.02, D = 2.8 × 10−3 Jm−2, A = 1.5 × 10−11 Jm−1, K = 1.1 × 106 Jm−3, i.e., g ≈ 0.54. The qualitatively
different energy decay behavior is shown in the lower row to transition from linearlike to exponentially decreasing in the rotating and oscillating
phases, respectively.

around its suspension point, depending on whether the kinetic
energy is greater or less than the potential energy of its “upside
down” unstable equilibrium.

Lastly, the full range of the radial oscillations can be
readily obtained from Eq. (28) by noting that all radial max-
ima/minima in the orbits appear on the η = 0, π line (as
shown in Fig. 2). For B > 0 the rotating modes have rmax =
r±(0) and rmin = r±(π ) whereas in the oscillating phase one
has rmax = r+(0) and rmin = r−(0). Since the lower energy
branch on this line is independent of the coupling B, the
amplitude for oscillating breathing modes below the saddle
energy is insensitive to material properties (see discussion
below).

V. SKYRMION BREATHING MODES

A. Equations of motion

In terms of the variables r and η, the Poisson bracket
Eq. (21) becomes

{η, r2}η,p̃η
= c0/r̃2

eq, (29)

where we assume a constant shape factor c0 coming from the
dimensionless integral c−1

0 = 2π z̃0
∫∞

0 dx x [1 − cos θ (Rx)]
in the spin Berry phase action. Moreover, the dimensionless
dissipation factors both scale linearly with the radius r̃,

Drr = cr r̃ = cr r̃eqr, Dηη = cη r̃ = cη r̃eqr, (30)

where cr and cη are time-independent proportionality con-
stants that may depend on the coupling strength B. Using
Eqs. (29) and (30) in the Hamiltonian formalism Eq. (12)
gives the dynamical system for skyrmion breathing,

dr

dτ
= −

(
B

1 − |B| sin η + α
c0cη

r̃eq

rε − 1

r3

)
, (31a)

dη

dτ
=
(

2
rε − 1

r3
− α

c0cr r̃eq

2

B

1 − |B| sin η

)
, (31b)

with ε = ε(r, η) as defined in Eq. (27) and τ is the rescaled
time:

τ = pαt =
(

2c0c1

4 + (αc0)2cηcr

1 − |B|
r̃eq

)
t . (32)

Numerical solutions of Eqs. (31) with and without damping
are shown in Fig. 4(a), where the initial energy is set above the
saddle energy. These results show the characteristic transition
from rotating to oscillating phase in the r, η, and ε damped
evolutions as compared to their undamped, constant energy
analogs. All three variables relax toward the equilibrium state
as expected. The rate of energy loss is qualitatively different
in the two phases, transitioning from a linearlike to an ex-
ponential decay as further discussed below. Micromagnetic
simulations confirm the qualitative predictions of the effec-
tive energy model as it pertains to the skyrmion breathing
modes. In particular, we observe the rotating [Fig. 4(b)] and
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oscillating [Fig. 4(c)] breathing regimes and their distinct energy loss behavior.

B. Results

In the following, we present analytical results pertaining to the expected dynamical periods, breathing amplitudes, and energy
decay rates.

1. Dynamical periods

The undamped periods of motion can be calculated from Eqs. (31a) and (31b) as

T (ε) =

⎧⎪⎨
⎪⎩

sgn(B)(1 − |B|)2
∫ ηmax

ηmin
dη

2ε2(1−|B|)+B cos(η)−1

(B cos(η)−1)2
√

(1−|B|)(ε2(1−|B|)+B cos(η)−1)
, with ε < εsad

(1 − |B|)2
[ ∫ 2π

0 dη
2ε2(1−|B|)+B cos η−1

2(B cos η−1)2
√

(1−|B|)(ε2(1−|B|)+B cos η−1)
∓ 2πε

(1−B2 )3/2

]
, with ε > εsad.

(33)

where the limits of integration are ηmax = cos−1{[1 − ε2(1 −
|B|)]B−1} and ηmin = −ηmax + θ (−B)2π with θ (x) = 1 if
x > 0 (or 0 otherwise) being the Heaviside function. For
the case of ε > εsad, the positive and negative signs refer to
bowllike and hornlike rotations, respectively. Direct numerical
integrations of these formulas show that the period scales lin-
early in energy for both the rotating and oscillating breathing
modes (see Fig. 5). Our theory allows us to explore dynamics
beyond the small amplitude limit in an ansatz independent
manner. It includes, however, the small amplitude breath-
ing calculated previously by using a nonenergy-minimizing
ansatz. For small oscillations around equilibrium, the period
can be computed up to O(ε − 1) as

T = π

√
2

(
1 − |B|

|B|
)

. (34)

Upon converting back to physical time using Eq. (32) and
recalling from Eq. (25) how the physical equilibrium ra-
dius scales with the material parameters r̃−1

eq ∼ √
1 − |B|,

one recovers that the period of small oscillations around

FIG. 5. Numerical calculations of the periods T (ε) with B =
0.82. In the regime ε > εsad, the rotational “bowl” breathing modes
are shown. As expected from Eq. (33), the period scales linearly with
the system’s energy T (ε) ∝ ε in both regimes.

equilibrium scales as T ∝ r̃2
eq in agreement with previous

literature [49,69].
In Fig. 6, we emphasize the predictive power of the effec-

tive model by comparing theory to micromagnetic modeling

FIG. 6. Comparison of micromagnetic simulations (black points)
and effective model predictions (orange lines) in the undamped limit
for (a) rotational breathing (light blue background) and (b)–(c) oscil-
lating breathing (light pink background). We find strong agreement
for the weak oscillatory breathing, including the expected simple
harmonic motion for small oscillations in (c) about equilibrium, but
our model shows a deviation from the micromagnetic simulations
in the rotational regime. The mismatch arises from the breakdown
of the large skyrmion radius approximation [see inset in (a)] when
the skyrmion contracts to its smallest size. The parameters in all
three simulations are Ms = 1.0 × 106 Cm−1s−1, α = 10−8, D =
3.2 × 10−3 Jm−2, A = 1.5 × 10−11 Jm−1, and K = 1.1 × 106 Jm−3,
i.e., g ≈ 0.62.
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in the undamped dynamical limit. Radial and angular trajec-
tories obtained by integrating Eq. (31) compare well with
similar micromagnetic simulations in both rotating [Fig. 6(a)]
and oscillating [Figs. 6(b)–6(c)] regimes. While the oscillating
breathing modes match almost perfectly, a small deviation
is seen between physical and predicted radial dynamics in
the rotating regime. This is due to a breakdown in the large
skyrmion approximation, underpinning the theory whenever
the skyrmion contracts to sizes comparable to the profile’s
wall width. To illustrate this, the inset of Fig. 6(a) shows
the different profiles observed for maximum and minimum
skyrmion radii throughout one rotational period.

2. Breathing amplitudes

The maximum and minimum possible skyrmion radii de-
rived from the model are1

r±
1 = ε ±

√
ε2 − 1, (35a)

r±
2 = 1 − B

1 + B
ε

(
1 ±

√
1 − 1 + B

(1 − B)ε2

)
, (35b)

which may be obtained directly from Eq. (28) upon setting
η = 0 or η = π . At energies below the saddle energy (ε <

εsad), r+
1 is the maximum radius of oscillations and r−

1 is
the minimum radius of oscillations; meanwhile, for ener-
gies above the saddle energy (ε > εsad), r+

1 is the maximum
radius of rotations on the bowl, r+

2 is the minimum radius of
rotations on the bowl, r−

2 is the maximum radius of rotations
on the horn, and r−

1 is the minimum radius of rotations on
the horn. We see from Eq. (35a) that the stationary points
of the r oscillations for breathing modes below the saddle
energy are independent of the material properties. This may
be likened to a mass-on-a-spring system where the amplitude
is fully determined by the initial extension from equilibrium
even though the specific dynamics connecting the two extrema
of motion do depend on the size of the spring constant and the
mass. In this case, this is not a trivial consequence of small
harmonic oscillations around equilibrium, however, because
it is true for the entire 1 < ε < εsad range.

3. Energy decay rates

From the expression for the skyrmion’s energy Eq. (27) and
the breathing equations of motion Eq. (31), one can quantify
the energy dissipated by the system as

dε

dτ
= εr − 1

r2

dr

dτ
+ B

2(1 − B)
r sin η

dη

dτ

= −α
c0cη

r̃eq

[
(εr − 1)2

r5
+ cr r̃2

eq

cη

(
B

2(1 − B)

)2

r sin2 η

]
,

(36)

which we will use to analytically explain the distinction
between linear and exponential decay observed in the nu-
merical calculations (see Fig. 4). Since Eq. (36) is globally
negative, except at the energy minimum (r, η) = (1, 0) where

1From here on, we select B > 0 for definiteness.

it vanishes, it correctly describes a dissipative process that
relaxes the skyrmion to its equilibrium state.

If the skyrmion’s rotational and oscillatory mode precesses
on timescales sufficiently small compared to those for energy
dissipation, the two dynamics can be effectively decoupled
by averaging Eq. (36) over constant energy orbits to obtain
a single ordinary differential equation describing the energy
lost by the system over time. One then has〈

dε

dτ

〉
= − α

T (ε)

c0cη

r̃eq

[ ∮
dη

(εr(η) − 1)2

r5(η)
(37)

+ cr r̃2
eq

cη

(
B

2(1 − B)

)2 ∮
dη r(η) sin2 η

]
,

where the integrals are performed over one complete oscilla-
tory/rotational orbit Eq. (28). In what follows we will leverage
the fact that orbital periods Eq. (33) scale linearly with the
orbit’s energy T (ε) ∝ ε (see Fig. 5). The above integrals are
not exactly solvable but a series of upper and lower bounds
can still be constructed (see Appendix E). For the rotational
breathing mode, one can show that〈

dε

dτ

〉
|rot � − α

T (ε)

c0cη

r̃eq

[
2πε6

sad

ε
+ 2πε

cr r̃2
eq

4cη

(
B

1 − B

)2
]

� −α

[
C1 + C2

ε2

]
, (38)

where we absorb all constants into C1,2 > 0. By construction,
the solution of this new bounding equation is guaranteed to
decay faster than the true solution of Eq. (36). Since ε  1
for rotational modes, this upper bound guarantees at most a
linear decay to the skyrmion’s energy.

Following a similar reasoning for the oscillatory breathing
modes by constructing a lower bound to the energy dissipation
rate, one finds (see Appendix E)〈

dε

dτ

〉
|osc � − α

T (ε)

c0cη

r̃eq

[
2

ε2

cr r̃2
eq

4cη

(
B

1−B

)5/2

× [sin η+(ε) cos2 η+(ε) − cos η+(ε)]

]

� −αC3 ε
√

ε − 1, (39)

where η+(ε) = cos−1{[1 − ε2(1 − B)]B−1} is the maximum
range of domain-wall tilt angle attained during a single con-
stant energy oscillation. Since the solution of Eq. (39) is
guaranteed to decay slower than that of Eq. (36), the true
energy loss in the oscillating regime must decay at least
exponentially. These arguments confirm the sharp transition
observed in the dissipation rate when the skyrmion breathing
dynamics cross the saddle separatrix when transitioning be-
tween ε > εsad and ε < εsad states, see Fig. 4.

VI. CONCLUSIONS

In this paper, we have derived the Hamiltonian system
for the low-energy excitations of rotationally symmetric mag-
netic (anti)skyrmions in an ansatz-independent manner. By
means of scaling and symmetry arguments, we modeled the
breathing mode of (anti)skyrmions in terms of collective
coordinates, where the area of reversed spins in the skyrmion
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core and the skyrmion phase are conjugated variables in phase
space. As seen from the form of the energy landscape, our
model exhibits a rich behavior which is confirmed by micro-
magnetic simulations of (anti)skyrmion structures in magnetic
substrates with translational invariance along the out-of-plane
easy anisotropy axis. The main results presented in this paper
include the analytical and numerical investigation of the well-
known oscillatory breathing mode where small amplitude os-
cillations in the radius and skyrmion phase around equilibrium
proceed in tandem, as well as the description of rotational
breathing behavior, characterized by large-radius oscillations
and a continuous nonuniform precession of the phase. Further-
more, we predict two distinct regimes of energy dissipation
where the average power loss of large-amplitude rotational
breathing modes decays linearly as opposed to exponentially
for the oscillating modes. We expect that these distinctive
energy decays will allow us to detect the different modes
experimentally. It must be stated that the limit of our model
lies in the implicit assumption of fixed skyrmion wall profiles.
The next order approximation would be to incorporate the
skew of the wall profile by introducing an additional pair of
collective coordinates. Doing so would allow extension of this
analysis to skyrmion radii much smaller than those allowed
by this paper. We would like to emphasize that the results
described here hold for both skyrmions and antiskyrmions.
Therefore, a perfect test system will be one where both of
them occur simultaneously. This is, for example, naturally
the case when skyrmion and antiskyrmion pairs are created
[36,70–72] or in systems with certain symmetries [37].
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APPENDIX A: POISSON BRACKETS

In the main text, we applied techniques from Hamiltonian
mechanics. Poisson brackets entered at the level of the col-
lective coordinates, where we were concerned with just time-
dependent functions, and also at the level of the LLG field
equation, where the magnetization field depends on both space
and time. Below we review equations for Poisson brackets
relevant to this work.

1. Time-dependent functions

The Poisson bracket convention for time-dependent func-
tions A(t ) and B(t ) is

{A, B}q,p =
∑

i

(
∂A

∂qi

∂B

∂ pi
− ∂A

∂ pi

∂B

∂qi

)
, (A1)

corresponding to the simple action S = ∫
dt (

∑
i piq̇i − H ).

For example, a basic result is the Poisson bracket between the

canonical coordinates and momenta,

{qi, p j}q,p = δi j . (A2)

Using the Poisson bracket, the time derivative of any function
f (q, p, t ) can be calculated,

ḟ =
∑

i

(
∂ f

∂qi
q̇i + ∂ f

∂ pi
ṗi

)
+ ∂ f

∂t

= { f , H}q,p + ∂ f

∂t
, (A3)

where Hamilton’s equations ṗi = − ∂H
∂qi

, q̇i = ∂H
∂ pi

were used
in the second line.

A further rule can be derived for the Poisson bracket
between quantities that have a known dependence
on functions of the canonical variables, e.g., A(t ) =
A[ f1(q, p, t ), f2(q, p, t ), . . . ] and similar for B(t ):

{A, B}q,p =
∑
i, j

∂A

∂ fi

∂B

∂ f j
{ fi, f j}q,p. (A4)

2. Fields

There is an analogous description to Eqs. (A1)–(A4) for
fields. The Poisson bracket between scalar fields A(x) and
B(x′) is

{A(x),B(x′)}�,�

=
∑

i

∫
dy
(

δA(x)

δ�i(y)

δB(x′)
δ	i(y)

− δA(x)

δ	i(y)

δB(x′)
δ�i(y)

)
, (A5)

corresponding to an action of the form S =∫
dt

∫
dV (

∑
i 	i∂t�i − H). So the Poisson bracket between

the canonical fields is

{�i(x),	 j (x′)}�,� = δi jδ(x − x′). (A6)

The time derivative for a field F (x, t ), similar to Eq. (A3), is

Ḟ = {F , H}�,� + ∂F
∂t

, (A7)

by use of Hamilton’s equations �̇i = δH
δ	i

and 	̇i = − δH
δ�i

.
Finally, the useful identity in analogy to Eq. (A4), for the Pois-
son bracket between quantities that have known dependence
on a set of functions, say {gi(x)}, is

{A(x),B(x′)}�,�

=
∑
i, j

∫
dy

∫
dz

δA(x)

δgi(y)

δB(x′)
δg j (z)

{gi(y), g j (z)}�,�. (A8)

3. Example: Hamiltonian formulation of the LLG

The LLG Eq. (1) may be written as a Hamiltonian Eq. (6)
if one assumes that the local magnetization obeys the algebra

{mi(x), mj (x′)}�,	 = − 1

J
∑

k

εi jkmk (x)δ(x − x′), (A9)

where J = Ms/γ0. This may be verified explicitly. For exam-
ple, using the spherical parametrization of the magnetization
employed in the main text, we may identify the two canonical
fields as �(x) = φ(x) and 	(x) = J (1 − cos θ (x)) from the
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spin Berry phase action Eq. (3). Then the three nonzero
Poisson brackets between the magnetization components mx,
my, and mz in Eq. (A9) are straightforwardly verified using
Eq. (A5) with these canonical fields. Moreover, in this situa-
tion Eq. (A8) reduces to a cross product structure:

{A(x),B(x′)}�,	 = − 1

J

∫
dy m(y) ·

(
δA(x)

δm(y)
× δB(x′)

δm(y)

)
.

(A10)

Hence, by using Eqs. (A7)–(A9), evaluating the time evolu-
tion of a component ml (x) gives

{ml (x), H}�,	

=
∑
i, j

∫
dy

∫
dz

δml (x)

δmi(z)

δH

δmj (y)
{mi(z), mj (y)}�,	

= − 1

J
∑

jk

εl jk
δH

δmj (x)
mk (x)

= 1

J

[
m(x) × δH

δm(x)

]
l

, (A11)

which is the anticipated precessional term for undamped
motion.

APPENDIX B: COMPARISON BETWEEN
GENERALIZED THIELE METHOD

AND THE HAMILTONIAN FORMALISM

The generalized Thiele method is based on the idea of
describing the dynamics of certain magnetic configurations
just in terms of the time evolution of a finite number of
collective coordinates describing the soft modes [40,57], for
which we have that

ṁ =
2N∑
i=1

(
∂m
∂ξi

)
ξ̇i. (B1)

This decomposition has been successfully applied in the de-
scription of the low-energy excitations of topological mag-
netic textures. For example, for the field-driven or current-
driven motion of domain walls, the physics is well described
up to a certain magnitude of the applied driving field or current
[21] by a soft mode described by the two collective coordi-
nates: the domain-wall position and the tilt angle of the mag-
netization inside the wall. Another example is the dynamics of
the position (X,Y )ᵀ of a rigid homogenous domain in steady
translational motion as described by Thiele [60]. Considering
the expansion Eq. (B1), performing the projection of the LLG
Eq. (1) onto m × ∂ξi m and integrating over volume gives a

generalization of Thiele’s equations [40,60,61],∑
j

Gi j ξ̇ j = 1

J
∂H

∂ξi
+ α

∑
j

Di j ξ̇ j, (B2)

where the matrix elements Gi j and Di j were defined in Eqs. (8)
and (9), respectively. By assuming that the matrix Gi j[ξ] is
invertible, one may also write

ξ̇k =
∑
i, j

G−1
ki Gi j ξ̇ j = 1

J
∑

i

G−1
ki

∂H

∂ξi
+ α

∑
i, j

G−1
ki Di j ξ̇ j,

(B3)

where G−1
ki ≡ (G−1)ki are the elements of the inverse matrix.

Comparing this equation with the Hamiltonian Eq. (7), the
equivalence between the generalized Thiele approach and
Hamiltonian approach is embedded in the following identities

{ξi, ξ j}ξ,pξ
≡ J −1G−1

i j , (B4a)

γξk ≡ α
∑
i, j

G−1
ki Di j ξ̇ j . (B4b)

The result for the dissipative term γξ j in terms of the Poisson
brackets {ξi, ξ j}ξ,pξ

is also derived in a more general manner
(see the main text) and therefore this structure is general
for including viscous damping into Hamilton’s equations,
regardless of the system of study.

To further illustrate the Hamiltonian approach, we present
as an example the Poisson bracket for X and Y , describing
the position of a skyrmion, for the soft mode associated with
translational motion.

Example: Derivation of the X,Y Poisson bracket
for the translational modes from the spin Berry phase action

By virtue of Thiele’s traveling wave ansatz, m(r, t ) =
m0[r − rs(t )], the unit magnetization has the properties ṁ =
−(ṙs · ∇)m and ∂X,Y m = −∂x,ym, where rs = (X,Y )ᵀ. The
Poisson brackets between X and Y , and hence access to the
conservative dynamics, are derived by expanding the spin
Berry phase action SB = ∫

dtLB around rs = 0, while making
use of these properties. The Lagrange function here is

LB =
∫

dVJ (1 − cos θ )φ̇

=
∫

dVJ (1 − cos θ )(Ẋ∂X φ + Ẏ ∂Y φ). (B5)

Performing the expansion, denoting θ = θ [r, rs] and φ =
φ[r, rs], this becomes to lowest order in X,Y, Ẋ , and Ẏ :

LB ≈
∫

dVJ [(1 − cos θ [r, 0]) + X∂x cos θ [r, 0] + Y ∂y cos θ [r, 0]][Ẋ (−∂xφ[r, 0]) + Ẏ (−∂yφ[r, 0])]

= J
{
−Ẋ

[∫
dV (1 − cos θ [r, 0])∂xφ[r, 0]

]
− Ẏ

[∫
dV (1 − cos θ [r, 0])∂yφ[r, 0]

]

− XẊ

[∫
dV ∂x cos θ [r, 0]∂xφ[r, 0]

]
− YẎ

[∫
dV ∂y cos θ [r, 0]∂yφ[r, 0]

]

−XẎ

(∫
dV ∂x cos θ [r, 0]∂yφ[r, 0]

)
− Y Ẋ

(∫
dV ∂y cos θ [r, 0]∂xφ[r, 0]

)}
. (B6)
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The first four terms in the expansion can be written as total
derivatives of X or Y or their squares and therefore do not
enter into the equations of motion. Next, by integrating the
final term by parts in the action with respect to time, the
boundary contribution similarly vanishes and it follows that
the spin Berry phase action reduces to lowest order to

SB =
∫

dtJ
{

XẎ
∫

dV (∂y cos θ [r, 0]∂xφ[r, 0]

− ∂x cos θ [r, 0]∂yφ[r, 0])

}
(B7)

This is Eq. (14) of the main text. Finally, by integrating over z
from 0 to z0 and comparing Eq. (B7) to the topological charge,

Q = 1

4π

∫
dxdy m · (∂xm × ∂ym)

= 1

4π

∫
dxdy sin θ (∂yφ∂xθ − ∂yθ∂xφ)

= 1

4π

∫
dxdy (∂y cos θ∂xφ − ∂yφ∂x cos θ ), (B8)

one finds the effective action Seff = ∫
dt (4πQz0J XẎ − H ).

This gives the Poisson bracket {Y, X }Y,pY = (4πQz0J )−1 in
the main text [see Eq. (16)].

APPENDIX C: DERIVATION OF EQ. (21)

For the effective breathing dynamics, the volume integral
from the spin Berry phase action can be approximated in
three pieces. Let ρ = Rx, where R defines the dimension-
full skyrmion radius located at mz = 0 and where x is a
dimensionless coordinate,

LB = 2πJ z0η̇

∫ ∞

0
dρρ[1 − cos θ (ρ)]

= 2πJ z0R2(I1 + I2 + I3). (C1)

Above, Ii are the dimensionless integrals,

I1 =
∫ r0/R

0
dx x[1 − cos θ (Rx)], (C2)

I2 =
∫ (r0+d )/R

r0/R
dx x[1 − cos θ (Rx)], (C3)

I3 =
∫ ∞

(r0+d )/R
dx x[1 − cos θ (Rx)], (C4)

where, for the bubblelike magnetic skyrmions, Fig. 7, we
assume an extended region of core spins pointing along −ẑ
up to a radius r0, followed by a small skyrmion wall-width d ,2

mz = cos θ (ρ) =
⎧⎨
⎩

−1 if ρ < r0

0 if ρ = R
1 if ρ > r0 + d

, (C5)

2In the limit of very large bubblelike skyrmions, d equals the
1D domain wall width � = √

A/K , although for smaller radii it is
expected to pick up a dependence on DMI.

FIG. 7. Length scales for a bubblelike skyrmion shape, i.e., d <

R, where mz = −1(+1) inside (outside) the innermost (outermost)
circle.

and meanwhile θ (ρ) is an a monotonically decreasing func-
tion from ρ = r0 to ρ = r0 + d . An auxiliary constant 0 <

b < 1 may accommodate for different rigid shapes for the θ

profile across the domain wall, Fig. 7, such that the skyrmion
radius need not be in the center of the wall:

r0 = R − bd. (C6)

Using Eqs. (C5) and (C6), we may calculate upper bounds on
the integrals for all d < R, independent of a specific θ -profile,

0 < I1 = 2
∫ r0/R

0
dx x =

( r0

R

)2
< 1, (C7)

0 < I2 < 2
d

R

[
1 + d

R
(1 − b)

]
< 4

d

R
< 4, (C8)

I3 = 0, (C9)

where I2 was bounded by a rectangle of height 2(r0 + d )/R
and width d/R. By focusing on situations d � R(t ) with a
constant wall width d , and with a large extended core, (R −
r0)/r0 � 1, any small time variations in the integrals I1 and I2

are considered negligible. Thus, for Eq. (C1), we crudely find
LB = 2πCJ z0R2η̇, where C is such that 0 < C < 5. To finally
find the Poisson bracket written in the main text, we calculate
the canonical momentum, pη = ∂L

∂η̇
= 2πCJ z0R2, which, by

using {η, pη}η,pη
= 1, gives Eq. (21):

{η, R2}η,pη
= 1

2πCJ z0
. (C10)

This was also calculated using a domain wall ansatz in
Ref. [49].

APPENDIX D: GENERALIZATIONS
OF THE EFFECTIVE MODEL

The arguments used to expand the micromagnetic model
Eq. (23) in powers of R can be used for other interactions,
including dipole-dipole interactions and bulk DMI. In this
Appendix, we briefly outline how to modify the effective
energy Eq. (24) to take into account these terms.

The dipole-dipole interaction is known to produce in thin-
films with strong perpendicular magnetic anisotropy to mod-
ify the strength of the anisotropy [73], Keff = K − 1

2μ0M2
s .

Moreover, for circular skyrmions, it also produces a coupling
for the η angle. From symmetry arguments, we argue that
this interaction is invariant under the transformation η → −η.
And, from the scaling argument, we argue that it decays
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with the inverse of the radius. Therefore, the contribution to
the η coupling may be written as −cdd (cos2 η)/r, where cdd

depends on the exact profile of the skyrmion. Usually, cdd is
at least an order of magnitude smaller than the other c’s in
the effective energy Eq. (24). This contribution was calculated
using the domain wall ansatz in a previous paper [74].

Another example of possible modifications to the energy is
the generalization of the DMI to include bulk and hybrid DMI.
In the case of hybrid DMI, we take into account a combination
of bulk and interfacial DMI [75]. The general contribution to
the energy density becomes

H̃DMI = DN (mz∂xmx − mx∂xmz )

± DN (mz∂ymy − my∂ymz )

− DB(mz∂ymx − mx∂ymz )

± DB(mz∂xmy − my∂xmz ), (D1)

where B and N stand for bulk and interfacial DMI, respec-
tively, and the different signs correspond to the energies that
stabilize skyrmions and antiskyrmions, as stated in the main
text. In this case, the effective contribution is given by

ẼDMI(r̃, η) = −r̃(gN cos η + gB sin η), (D2)

where gB,N = πDB,N /4
√

AK . If neither gB or gN is zero, it
produces an equilibrium η that is different from the usual Néel
and Bloch skyrmion and can take any value between 0 and 2π .
The new equilibrium angle is given by the ratio of gN and gB,
i.e., η = arctan(gB/gN ).

For the case where we consider that the domain wall
width d is also a function of the radius, we need to keep its
explicit dependence in the effective energy. In this case, by
analyzing the scaling factors before the reparametrization by
the domain-wall width �, it is possible to obtain the effective
energy for the model Eq. (23),

Ẽ (r̃, η) =
(

c12

d
+ c11d − c3gcos η

)
r̃ + c21d

r̃
, (D3)

where c12 and c21 are contributions from the exchange inter-
action, c11 is due to the anisotropy interaction, and c3 is due
to DMI. The dependence of d on the DMI strength may be
obtained in two ways. One method is by analyzing the scaling
behavior for a rotationally symmetric solution of the LLG
equation in two dimensions. An explicit method is to consider
r, η, and d as collective variables and minimizing the energy
for these three parameters. Thereby we obtain

d = c3|g|
2c11

. (D4)

An important remark is that the effective description men-
tioned in this paper is only valid for the case that r̃  d . If
the radius of the skyrmion becomes comparable to the width
of the circular domain wall, it is necessary to consider the
solutions for small skyrmions studied in Refs. [23,24].

The effective energy Eq. (24) gives the static properties
obtained in Ref. [67] with c values independent of DMI,
while the model obtained in Eq. (D3) with the width of the
skyrmion given by Eq. (D4) corresponds to the one obtained
in Ref. [49]. For the circular domain wall ansatz, the values of

the constants are given by: c3 = 2, c1 = 2, and all other con-
stants c are equal to 1. The conversion between the constants
in the two approaches [Eqs. (24) and (D3)] is given by

c1 = 2c11c12

c3|g| + c3

2
|g|,

c2 = c21c3|g|
2c11

. (D5)

APPENDIX E: CONSTANT ENERGY ORBIT AVERAGES

To estimate the average energy decay during the skyrmion
breathing mode, one can construct upper and lower bounds for
the two integrals entering in Eq. (37):

I1(ε; B) ≡
∮

dη
(εr(η) − 1)2

r5(η)
(E1a)

I2(ε; B) ≡
∮

dη r(η) sin2 η. (E1b)

These integrals need to be performed over one full ro-
tational/precessional constant energy orbit as defined by the
orbit trajectory:

rrot (η; ε) = 1 − B

2(1 − B cos η)

[
1 +

√
1 − 1 − B cos η

(1 − B)ε2

]
, (E2)

r±
osc(η; ε) = 1 − B

2(1 − B cos η)

[
1 ±

√
1 − 1 − B cos η

(1 − B)ε2

]
, (E3)

where, as discussed in the main text, rrot (η) is defined for η ∈
[0, 2π ] whereas the two branches r±

osc(η) are only defined for
η ∈ [−η+, η+] with

cos η+ = 1 − (1 − B)ε2

B
. (E4)

For rotational phase integrals we have∮
dη f (η) = 2

∫ π

0
dη f (η), (E5)

whereas for oscillatory phase integrals we have∮
dη f ±(η) =

∫ η+

−η+
dη f +(η) +

∫ −η+

η+
dη f −(η)

= 2
∫ η+

0
dη [ f +(η) − f −(η)], (E6)

one can therefore write Eq. (E1a) explicitly as

I rot
1 (ε; B) = ε2J rot

3 − 2εJ rot
4 + J rot

5 , (E7)

I rot
2 (ε; B)

= 2(1−B)ε
∫ π

0
dη

sin2 η

1 − B cos η

(
1 +

√
1 − 1 − B cos η

(1 − B)ε2

)
,

(E8)

054430-12



CHARACTERIZING BREATHING DYNAMICS OF MAGNETIC … PHYSICAL REVIEW B 99, 054430 (2019)

for integrals in the rotational regime, and

Iosc
1 (ε; B) = ε2Josc

3 − 2εJosc
4 + Josc

5 , (E9)

Iosc
2 (ε; B)

= 4
√

B(1 − B)
∫ η+

0
dη

sin2 η

1 − B cos η

√
cos η − cos η+,

(E10)

for integrals in the oscillatory regime, where we have further
defined

J rot
k ≡ 2

(1 − B)kεk

∫ π

0
dη (1 − B cos η)k

×
[

1 +
√

1 − 1 − B cos η

(1 − B)ε2

]−k

, (E11)

and

Josc
k ≡ 4

(1 − B)kεk

∫ η+

0
dη (1 − B cos η)k

×
⎧⎨
⎩
[

1 +
√

1 − 1 − B cos η

(1 − B)ε2

]−k

−
[

1 −
√

1 − 1 − B cos η

(1 − B)ε2

]−k
⎫⎬
⎭. (E12)

The necessary upper bounds to the I rot
1 and I rot

2 are obtained

by approximating 1 +
√

1 − 1−B cos η

(1−B)ε2 � 2 and writing

∫ π

0
dη

sin2 η

1 − B cos η
� π

2(1 − B)
, (E13)

∫ π

0
dη (1 − B cos η)k � π (1 + B)k . (E14)

These bounds are independent of the energy of the orbit thus
justifying Eq. (38) of the main text.

For the oscillatory phase integrals, one just focuses on Iosc
2

as Josc
k is always bounded from below by 0. One finds

Iosc
2 (ε; B) � 4

ε2

√
B

1 − B

∫ η+

0
dη sin2 η(cos η − cos η+)

� 2

ε2

√
B

1 − B
(sin η+ cos2 η+ − cos η+), (E15)

where from the definition of η+(ε), the term sin η+ cos2 η+
can be expanded to dominant order in ε as

sin η+ cos2 η+ =
√

1 −
(

1 − (1 − B)ε2

B

)(
1 − (1 − B)ε2

B

)2

∼ 2

√
(1 − B)5

B
ε4

√
ε − 1[1 + O(ε − 1)],

(E16)

allowing for the reconstruction of result Eq. (39) in the main
text.

APPENDIX F: DETAILS ON MICROMAGNETIC
SIMULATIONS

All micromagnetic simulations reported in this paper were
performed with an enhanced version of MicroMagnum [76].

1. Simulation geometry details for Figs. 4–6

All simulations used a mesh of uniformly discretized cubic
finite difference cells with periodic boundary conditions to
approximate an infinite thin film system. Figures 4(b) and
4(c) in the main text used 1024 × 1024 × 1 nodes with cell
length 0.25nm. Figure 6 used for (a): 2048 × 2048 × 1 nodes
with cell length 0.5nm; for (b): 512 × 512 × 1 nodes with
cell length; and for (c): 256 × 256 × 1 nodes with cell length
0.25nm.

2. Calculation of r and η

For the calculation of the skyrmion radius in the sim-
ulations, we used a linear interpolation between the finite
difference cells where mz changes sign. For this, we picked
a fixed cut through the diameter of the skyrmion since it has
no translational motion.

FIG. 8. Transition from rotational breathing to oscillatory breath-
ing from a micromagnetic simulation, showing one full rotation
before traversing the saddle energy. The point where the energy
drops below the energy saddle is estimated by closely inspecting the
energy signal to find a sharp drop. The parameters in this simulation
are α = 0.1, D = 2.8 × 10−3Jm−2, A = 1.5 × 10−11 Jm−1, and K =
1.1 × 106 Jm−3, i.e., g = 0.54.
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For the calculation of η, we used a marching-squares
algorithm to approximate the magnetization along the mz = 0
contour by using image processing tools [77] and then took
a simple average of the η values for the spins along these
points, η = (1/N )

∑N
i=1 ηi, where ηi = arctan(my,i/mx,i ) are

the N wall angles taken along the interpolated contour.

3. The transition from rotations to oscillations

Observing a transition from the rotatinglike breathing be-
havior and small oscillatorylike breathing in the micromag-
netic simulations is nontrivial. This can be understood from
the results reported in the main text as follows. The amplitude
of the breathing motion is larger for higher energies, so the

total size of the magnetic material has to be sufficiently large.
At the same time, there also needs to be many finite difference
cells because the trajectory of a breathing skyrmion typically
passes close to the saddle point during the transition from
the bowl region to the basin region and because the saddle
point radius is always small, rsad < 1. In addition, our model
is intended to be more accurate for larger radius skyrmions,
suggesting that best results should come for high coupling
constants |B|. And yet, we have the difficulty that rsad → 0+
as |B| → 1−. This presents a quandary: The more reliable
we take the micromagnetic parameters to assess the model,
the longer the simulations will last due to requiring more
simulation cells to maintain numerical stability. Nonetheless,
the transition can still be obtained, see Fig. 8.
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