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Abstract 

Hydraulic hammers, also known as breakers and peckers, are utilized in a wide 

variety of applications to demolish a structure and break rocks into smaller sizes. 

These tools and equipment are extremely sensitive and operate in harsh 

environments. As a result, there is a widespread requirement for remote control and 

monitoring of equipment and machines. In addition, given the technological 

advances in sensors, data transmission, and data collection via the Internet of 

Things, as well as the high demand for data analytics and the importance of 

maintenance in the fourth industrial revolution, artificial intelligence is being used 

as a powerful tool.  

     Thus, remote monitoring of industrial equipment such as hydraulic hammers has 

become a critical feature of Industry 4.0 and Internet of Things technologies. Data 

collection has also recently received a lot of attention to improve machines' ability 

to make future decisions based on the collected data and increase efficiency. 

However, a major challenge is to ensure the lifetime of equipment and machines 

and reduce the time and cost of maintenance, which directly affects the cost and 

competitiveness of the product. Therefore, machine learning, deep learning, and 

predictive maintenance models have become important. The first part of this study 

(INDECONNECT® project) involves presenting the design and development of an 

Internet of Things  device, specifically a data logger, that aims to enhance the 

performance of hydraulic breakers through remote monitoring. 

     The device is equipped with sensors for data collection, analysis, and 

management. By designing the platform and strategically placing sensors, the 

device is expected to obtain vast amounts of data (Big Data) regarding various 
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aspects of the hydraulic hammer such as vibration, machine operation time, oil 

pressure, temperature, and oil flow, based on the operation conditions and type of 

material used. Analyzing the large amount of data collected by the Data logger 

directly from the hydraulic hammer during its operation can provide valuable 

information for adjusting process planning, implementing predictive maintenance, 

and establishing standard technical information for different modes of the 

Hydraulic hammer.  

    Secondly, the project seeks to predict maintenance operations by utilizing 

artificial intelligence tools, particularly machine learning and deep learning 

methods, based on a dataset of various components at different time periods. In this 

study, we utilized machine learning and deep learning algorithms to predict 

machine and component failures for two different time periods - one day and seven 

days in the future. Nevertheless, as maintenance prediction datasets tend to be 

unbalanced, we employed two approaches in this study - a weighted average 

coefficient and a two-step method - to predict the probability of long-term failures. 

The two-step method is a novel technique that significantly reduces the data set 

imbalance and enhances the performance of neural network algorithms. The 

outcomes indicate that the Convolutional Neural Network is the most effective in 

predicting the likelihood of machines and components failing. 
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Chapter 1 

Introduction 

1.1 Objective and Research Question 

The production and manufacturing of goods and tools date back to the earliest days 

of human history. However, with the advent of the first industrial revolution 

(Industry 1.0) in the 18th century, a new factory system emerged, powered by 

steam, leading to large-scale industries. During the second industrial revolution 

(Industry 2.0) in the 19th century, electricity was utilized to develop innovative 

mechanisms and processes that increased production speed and facilitated mass 

production. The third industrial revolution (Industry 3.0) saw the widespread use of 

IT technology, automated production systems, and robots in various industries. The 

fourth industrial revolution (Industry 4.0), an evolution of the third industrial 

revolution, incorporates communication and intelligent information technologies, 

connecting computers and various automations via the Internet and data 

transmission networks. 

    The Internet of Things (IoT) and the Industrial Internet of Things (IIoT) are two 

fundamental concepts and technologies that have become increasingly prevalent in 

the fourth industrial revolution. The IoT and IIoT are utilized in various industries 

to monitor, analyze, and make devices smarter, setting up a platform that manages 

a range of smart devices. With the implementation of IoT in devices, they can 

communicate with each other seamlessly and without human intervention. This 

interconnectedness enables devices to share data and work together in ways that 

optimize productivity, efficiency, and safety. Since IoT-based applications do not 

require human intervention, they are used in many industries [1]. 

In recent years, industrial equipment monitoring and data collection by sensors, 

data loggers, and operators have attracted much attention. This has improved the 
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ability of machines to make intelligent decisions based on the collected data and 

has led manufacturers to adopt product service systems (PSS) and the Internet of 

Things (IoT) [2, 3]. Today, technology and the Internet of Things provide the ability 

to remotely monitor in the harsh environments and predict equipment maintenance 

using intelligent algorithms and machine learning [4]. Despite the advancements in 

Industry 4.0, there still exists a need for standardization and modularity in the field. 

The distributed computing of the massive amounts of data generated by sensors and 

interactions with industrial machines also poses a significant challenge [5]. In 

addition to predicting failures, a major challenge is performing reliable and error-

free maintenance operations and validating fully functional equipment in a 

continuous and timely manner. To this end, significant efforts have been made to 

develop and test real-time technical service systems and software for mobile apps 

to avoid undesirable faults and problems [6].   In [7], innovative forms of virtual 

reality (AR) are combined to improve not only maintenance but also training of 

PSS types. In [8], an approach to machine tool management is presented that 

combines sensors, a timing module, and engineers to control the department store 

in real-time.  

Nowadays, advances in transportation technology also lead to global 

competition among companies worldwide to produce a product with high quality 

and a low price. However, maintenance of production equipment and machinery 

reduces productivity (machine downtime and machine calibration) and directly 

affects the cost of the final production of the product [9, 10]. About one-third of 

equipment maintenance expenditures in the United States are unnecessary and only 

drive-up costs [11]. Thus, maintenance directly affects human resources and 

material consumption and is a major concern of the fourth industrial revolution [12]. 

Therefore, artificial intelligence tools, particularly machine learning and deep 

learning, due to their great potential in creating automatic models for Big Data 

analysis, allow us to reduce repair and maintenance costs, maximize components’ 

working lives, reduce machine downtime, increase performance and operational 

safety, and improve decision-making capabilities regarding the ideal timing and 

actions for machine maintenance [13, 14, 15, 16, 17]. 
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1.2 Contribution 

The aim of this work is to propose and develop, as a first step, an innovative 

device (data logger) to improve monitoring, safety and performance. It is attached 

to the hydraulic breakers and reports detailed information about the operation in 

real time or near real time to the customer and the technical department. The data 

logger provides real-time data on operating hours, maintenance intervals, oil 

pressure, flow, temperature, vibration, and equipment location. The second step is 

to analyze a set of data obtained from various sources available online [18]. First, 

10 of the most popular machine learning algorithms used in various predictive 

maintenance (PdM) works were applied. Machine learning algorithms used: 

• Random Forest Classifier (RFC); 

• eXtreme Gradient Boosting Classifier (XGB Classifier); 

• Logistic Regression (LR); 

• Extra Trees Classifier; 

• Bagging Classifier;  

• Support Vector Classifier (SVC); 

• Linear Support Vector Classifier (Linear SVC); 

• Stacking Classifier; 

• Adaptive Boosting Classifier (AdaBoost); 

• Decision Tree Classifier.  

Second, an innovative Deep Learning method was applied to the dataset. In this 

work, two types of Deep Learning algorithms are used: 

• Convolutional Neural Networks (CNN) 

• Long Short-Term Memory networks (LSTM) 

 The results of the Machine Learning algorithms and Deep Learning models 

were compared and discussed over the next 24 hours. Considering that the 

maintenance and repair of industrial equipment is a time-consuming process and, 

in many cases, requires the replacement of parts and the purchase and supply of 

spare parts and industrial equipment may be located in remote areas (e.g., road 

construction machinery, hydraulic breakers, etc.) [19]. Therefore, we improved 

PdM models with traditional learning machines and Deep Learning algorithms for 

up to 7 days and compared the results.  
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1.3 Part Outline 

This thesis is composed by four chapters. The first and current Chapter 1 

provides an introduction about the reference context. The following Chapter 2 

describes the state of the art of Industry 4.0, its challenges and technologies, 

focusing on remote monitoring, data acquisition, design requirements and 

standards, sensors and microprocessors, sensor placement, cybersecurity and data 

transmission. Chapter 3 presents artificial intelligence algorithms and datasets, the 

challenges of maintaining predictive datasets, data preparation, data analysis, data 

visualization, and the study of the structure of machine learning and deep learning 

algorithms. To better explain the results for each component and machine, short-

term (24-hour) and long-term (7-day) maintenance predictions are presented. The 

studies and contributions reported in this thesis are always compared with the 

results presented in various articles on this data set. Chapter 4 serves as a concluding 

chapter, summarizing the research findings and suggesting possible areas for future 

research. 
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Chapter 2  

IIoT-enabled device for remote 

monitoring 

2.1  State of the Art 

This chapter describes the background and literature on an IIoT device (data 

logger), challenges, and Industry 4.0 technologies with a focus on remote 

monitoring of hydraulic hammers. 

2.1.1 Introduction 

The fourth industrial revolution has affected all aspects of industry by changing 

attitudes toward design, requirements, production and manufacturing, and even 

delivery and payment. Unlike previous revolutions, the fourth industrial revolution 

was predictable [5]. Therefore, companies, institutes, and researchers were given 

the opportunity to actively shape the future. The concept of the fourth industrial 

revolution was first introduced in Germany as a leading industrial and technology 

sector to create a fully integrated industry in 2011 [20].  In contrast, Italy presented 

a national plan for Industry 4.0 about four years later. One of the most important 

factors of the fourth industrial revolution is the change in technology and 

production processes, which has created new employment and investment 

opportunities. In Figure 2-1, you can see nine different areas of the fourth industrial 

revolution, which can be divided into four main parts: Interconnectivity, 

Automation, Machine Learning, and Real-Time Data.  

The fourth industrial revolution is characterized by the central role played by 

Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices. These 

devices facilitate communication and interaction between objects and things 

through sensors and smartphones, with the ultimate goal of achieving the Internet 

of Services (IoS). By providing companies with the ability to offer their products 

over the Internet, IoS enables them to offer services and enhance their overall value 

proposition [21]. The Industrial Internet of Things uses a range of sensors, 

actuators, processors, GSM modules, etc. to improve the manufacturing process. 

By using smart machines, the data that traditional industrial machines have been 



6 

 

generating for years in the industry can be analyzed in real-time or near real-time. 

The philosophy of IIoT is that smart machines and industrial equipment are not only 

better than humans at storing and collecting data in an integrated way but are also 

better at analyzing and transmitting important information that aids in improving 

technical business decisions. 

     

 

Fig 2- 1. The Industry 4.0 enabling technologies [22]. 

The utilization of connected sensors and actuators can assist companies in 

detecting inefficiencies and issues early on, resulting in time and cost savings and 

supporting business intelligence initiatives. The Industrial Internet of Things (IIoT) 

is particularly promising for enhancing quality control, implementing sustainable 

and eco-friendly practices, ensuring supply chain traceability, and improving 

overall manufacturing supply chain efficiency. Moreover, the IIoT plays a crucial 

role in various industrial processes, such as predictive maintenance (PdM), 

improved field service, energy management, and asset tracking. 
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Generally, the shift in society's demand for cheaper and more technological 

products and services is a powerful stimulus for improving technologies. The 

development of connected devices and tooling environments, combined with 

available data collection and analysis techniques has led manufacturers to 

incorporate Product Service Systems (PSS) and the Internet of Things (IoT) [23, 

24]. Figure 2-2  shows the image and position of the Indeconnect data logger. 

 

Fig 2- 2. Image and position of the INDECONNECT data logger on a hydraulic hammer 

INDECO HP 600 FS. 

This chapter describes a monitoring device (IIoT) that can monitor both real-

time and non-real-time measurements. The data logger is mounted to machine tools, 

which perform the necessary preprocessing to transmit these measurements to a 

cloud server by sensors. To increase the efficiency of product development, the 

hydraulic machinery and tooling industry must have reliable and accurate 

monitoring systems that can be accessed quickly and accurately [25]. For fluid 

power systems, and especially for oil-hydraulic percussion units, it is crucial to 
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know the temperature, pressure, oil flow, and vibration of the system under different 

operating conditions [26].  

This project will provide an innovative device (data logger) to improve 

monitoring, safety, and performance. It is attached to the hydraulic hammers and 

reports detailed information about the operation in real-time or close to real-time to 

the customer and the engineering department. It will provide real-time data on 

operating hours, maintenance intervals, pressure, flow and temperature of the oil, 

vibrations, and the location of the equipment. 

2.1.2 Challenges 

As described earlier, the core and main goal of the fourth industrial revolution is 

machine intelligence, data acquisition, data analysis, and object-to-object and 

human-to-object interaction to decentralize production and personalize products 

and services. This project (INDECONNECT) is about making hydraulic hammers 

intelligent. One of the upcoming challenges is to review the performance and 

structure of hydraulic hammers in order to identify the sensitive and vulnerable 

points of these machines. It should be recalled that hydraulic breakers are widely 

used in dam construction, tunneling, mining and road construction.  

    The study of the sales data of the company INDECO has shown that these devices 

are used all over the world from Australia to Mexico and from Northern Europe to 

South Africa. This issue has presented us with many challenges, such as the 

different types of rock and soil, ambient temperature and humidity, which directly 

affect the performance of hydraulic breakers. For example, the ambient temperature 

affects the density of the oil and thus the pressure and flow rate. The studies carried 

out in this project on hydraulic hammers are based on the ambient temperature of 

the city of Bari in August 2021, with an average temperature of 29 degrees Celsius 

and humidity of 87%, based on the results of the meteorological terminal of Bari 

Karol Wojtyla airport station. Moreover, the results are considered with a safety 

factor of 20% to determine the requirements. 

     After reviewing [27, 28, 29, 30, 31], it is impossible to verify the performance 

of hydro percussion devices without performing a certain number of tests on 

samples. In fact, for any research work on hydraulic hammers, we need to conduct 

experimental tests to verify the data and performance results of the set. In [32, 33], 

it was reported that the first challenge and the reason for the incomplete description 

of the conditions of laboratory tests is the lack of accurate knowledge of the 

production conditions of hydraulic hammer components, possible leakage and drag 

forces. 

     In this project, the INDECO HP 3000 FS (Figure 2-3) model was studied to 

determine design requirements such as ambient and oil operating temperature, oil 

pressure, vibration, and oil flow. Based on these design requirements, sensors, 
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microprocessors, batteries, communication modules, and device box standards 

were investigated. It should be noted that all design requirements and claims were 

evaluated at most operating pressures.  

 

 
 

Fig 2- 3. INDECO HP 3000 FS . 

 

    The final challenge is data transmission over the Internet and cloud storage. As 

mentioned earlier, hydraulic breakers are typically deployed in harsh environments 

far from residential areas, so the quality of Internet coverage in these areas is weak 

or, in many cases, there is no Internet access at all. Internet standards also vary from 

country to country. In Mexico, for example, there is only 2g and 3g coverage in 

urban and non-urban areas, while in European countries most areas have 3G and 4g 

Internet coverage. In General, A remote monitoring device for a hydraulic hammer 

should have the following design requirements: 

• Real-time monitoring: The device should be designed to provide real-time 

monitoring of key operating parameters such as hydraulic pressure, 

temperature, impact frequency, and energy output. 
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• Wireless connectivity: The device should be designed to connect 

wirelessly to a monitoring system, allowing operators to view performance 

data in real-time from a remote location. 

• Robustness: The device should be designed to withstand the harsh 

operating conditions of a hydraulic hammer, including vibration, shock 

loads, and exposure to dust and debris. 

• Power efficiency: The device should be designed to consume minimal 

power, ensuring long battery life and reducing the need for frequent 

recharging. 

• Data storage: The device should be designed to store data locally, allowing 

for offline analysis and troubleshooting. 

• Compatibility: The device should be designed to be compatible with a wide 

range of hydraulic hammers, regardless of manufacturer or model. 

• User interface: The device should be designed with a user-friendly 

interface that provides easy access to data and allows operators to configure 

settings and alerts. 

    Overall, a remote monitoring device for a hydraulic hammer should provide 

operators with the information they need to optimize performance, reduce 

downtime, and increase productivity, while minimizing the need for onsite 

inspections and maintenance. 

2.2 Hydraulic Hammer Structure 

A series of experimental measurements will be performed to evaluate how the 

sensors' data can predict the hydraulic hammer's behavior. The hydraulic hammer 

that will be used for this work is an INDECO HP series. (See Fig 2-1.) This 

hydraulic hammer is of medium  and big size and all its components except the 

back-head, which is made of ductile cast iron, are made of steel. This hydraulic 

hammer has a maximum power between 160 and 200 bars and the oil flow rate is 

between 1340-600 l/min, depending on operating conditions. The main components 

of the breaker are shown in Figure 2-4. 
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Fig 2- 4. The hydraulic hammer is used in the experiments, showing a sectioned view at a center 

plane. 

Indeco hydraulic hammers are an outstanding expression of Italian high-tech 

and construction quality applied to demolition. In-depth research into hydraulic 

systems, materials, heat treatment and accessories have enabled Indeco to establish 

a reputation on markets throughout the world for product excellence. With its many 
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different models, divided into large, medium and small and available in various 

versions, Indeco has the widest range of hammers available anywhere in the world. 

This provides end-users with a huge choice, ensuring that they can find the ideal 

hammer/excavator match. All Indeco hammers have a special intelligent hydraulic 

system |1|, enabling them to automatically vary the energy and frequency of the 

blows according to the hardness of the material being demolished. 

This optimizes the hydraulic pressure delivered by the machine, thus improving 

productivity and enhancing the overall performance. Exclusive features such as the 

synchronized internal distributor |2| aligned with the piston, the oil cushions |3| for 

vibration dampening and the short hydraulic flow pattern |4| make it possible to 

completely do away with seals in the distribution area, a decisive factor in extending 

the working life of the hammer and significantly reducing downtimes. The use of 

special low-alloy steels, exclusively manufactured according to Indeco's own 

formula greatly lengthen the average working life of the major hammer 

components. The housing |5| is made out of extra-strength HARDOX® steel wear 

plates, which eliminate buckling. 

The piston |6| is divided into two parts, for greater impact energy and lower 

operating costs. The centralized greasing system |7| enables the sliding parts to 

remain lubricated even when the hammer is operating horizontally, thus 

considerably reducing wear and tear on components and extending product lifetime. 

The “quick change” interchangeable bushing |8| is available in various materials for 

different jobs; it is inserted into the lower tool bushing where the tool moves, and 

reduces maintenance times and costs, by cutting out the long machine downtimes 

needed to replace the traditional fixed bushing. 

All carriers which mount Indeco hammers benefit from the Indeco dual shock-

absorption system |9|: an internal hydraulic one and a mechanical one, located 

outside the body, which substantially reduce the vibrations transmitted to the 

excavator. The excavator boom is also subject to lower stress levels, as Indeco 

hammers are considerably lighter under working conditions than rival makes in the 

same class. Alongside the standard versions there is also a super-soundproofed 

Whisper version, whose body is lined internally with sound-absorbent material |10| 

and an “anti-rumble” paint, which – combined with a few modifications to the 

bushing – enable noise emission levels to be considerably reduced. By lowering 

pressure peaks, the rechargeable hydraulic/nitrogen accumulator |11| also reduces 

stress in the excavator hydraulic circuit, keeps the gas charge and energy per blow 

constant, and reduces maintenance and operating costs. 
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The ABF (Anti Blank Firing) system |12|, installed as standard on all of the 

mediumand large-range Indeco hammers, cuts out blank fire by eliminating any 

down pressure from the hammer whenever the tool is not resting firmly on the 

surface to be demolished. This increases the service life of all components subject 

to wear and tear, as well as reducing stress to the hammer body and excavator arm. 

As well as being efficient and reliable, Indeco hydraulic hammers are now proving 

to be even more environmentally-friendly and low on fuel consumption. With a 

now even more efficient hydraulic system |13|, the HP series has now also become 

FS (Fuel Saving). 

The crucial component of a hydraulic hammer is the piston, which is driven by 

the hydraulic system. The hydraulic system generates high-pressure oil flow that is 

directed to the back head of the hammer, where it pushes the piston forward, 

creating a powerful impact force. Other important components of a hydraulic 

hammer include the front head, which houses the chisel or working tool, and the 

housing, which contains the hydraulic system and supports the hammer during 

operation. The front head and the chisel are designed to withstand the high impact 

forces and vibrations generated during operation. 

The hydraulic system itself is also a crucial component, consisting of a 

hydraulic pump, control valves, and hoses that direct the flow of oil to the back 

head of the hammer. The design and efficiency of the hydraulic system play a 

significant role in the performance and effectiveness of the hydraulic hammer. 

Overall, the successful operation of a hydraulic hammer depends on the 

effective integration and interaction of all these components, each of which plays a 

critical role in delivering the required impact force and achieving the desired results. 

 

2.3 Technical and Design Requirements  

The technical and design requirements serve as a crucial foundation for the 

development and implementation of a product or system. They provide a 

comprehensive outline of what needs to be constructed and the manner in which it 

should be constructed. 

    Technical requirements specify the technical aspects of the product or system. 

These include things like software or hardware components, programming 

languages, data structures, security requirements, and performance criteria. 

Technical requirements ensure that the product or system is reliable, efficient, and 

safe. 
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    Design requirements, on the other hand, specify how the product or system 

should look and function from the user's perspective. This includes elements such 

as the user interface, navigation, and user experience. Design requirements ensure 

that the product or system is user-friendly, intuitive, and aesthetically pleasing. 

    Technical and design requirements are crucial for ensuring that the end product 

or system satisfies the needs and expectations of users. The absence of such 

requirements may result in misunderstandings, delays, and increased expenses for 

the development team. Furthermore, these requirements play a significant role in 

making sure that the product or system can be easily scaled, maintained, and 

adjusted to accommodate evolving user needs and advancements in technology. 

Therefore, A test rig is an essential tool for evaluating the performance and 

functionality of products and systems, including hydraulic hammers. The 

importance of a test rig can be summarized as follows: 

• Performance testing: A test rig allows for accurate and repeatable testing 

of the hydraulic hammer's performance, including impact frequency, energy 

output, and hydraulic pressure. This helps to ensure that the hammer meets 

design specifications and customer requirements. 

• Quality control: A test rig is used to verify the quality of the hydraulic 

hammer and identify any potential defects or weaknesses in the design or 

manufacturing process. This helps to ensure that the product is safe and 

reliable. 

• Design optimization: By using a test rig, manufacturers can evaluate the 

impact of design changes on the performance of the hydraulic hammer. This 

helps to optimize the design and improve performance, while reducing the 

time and cost associated with physical prototyping. 

• Cost savings: A test rig can help to identify potential problems early in the 

design or manufacturing process, reducing the risk of costly recalls or 

warranty claims. 

• Customer satisfaction: A test rig helps to ensure that the hydraulic hammer 

meets customer requirements and is reliable and safe to use. This can lead 

to increased customer satisfaction and loyalty. 

Overall, a test rig is an essential tool for manufacturers of hydraulic hammers, 

helping to ensure quality, optimize design, reduce costs, and improve customer 

satisfaction. 

The first stage of the study involves examining several parameters of the 

hydraulic hammer, including its vibration, oil flow, oil temperature, and oil pressure 

in the cylinder, during idle, standard, and high operations. The experiments are 
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carried out using an in-house test rig located in the Research and Development 

laboratory of Indeco Ind. SpA company. Due to Indco's corporate policy, it is not 

possible to depict the in-house test stand and measuring equipment. But Figure 5-2 

shows the experimental measurement setup schematically. 

 
 

Fig2- 5. Schematics of the experimental measurement set-up. 

To ensure the accuracy of the results, the hydraulic hammer is used in a 

laboratory environment, and a steel test rig is used to mount the hammer. To 

minimize any errors that may arise from the interaction between the hammer and 
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the ground, a vibration-damping system is employed to isolate the hammer from 

the ground. The hydraulic hammer is mounted on the steel block using a rigging 

tool known as an anvil. In engineering and construction, it is common to use 

damping layers to reduce the transmission of stress waves and vibrations. When an 

object is subjected to a sudden impact or vibration, stress waves travel through the 

object, causing it to vibrate and potentially leading to damage or failure. 

In the case of an anvil, a damping layer can be placed between the anvil and its 

resting surface to absorb the stress waves and reduce the amount of vibration 

transmitted to the surface below. This can help to reduce noise, prevent damage to 

the surface, and improve the overall stability and longevity of the anvil. 

Common materials used as damping layers include rubber, cork, and other 

resilient materials that can absorb the shock and dissipate the energy of the stress 

wave. The thickness and composition of the damping layer will depend on the 

specific application and the level of vibration that needs to be dampened. In this 

study, a damping layer thickness of 12 mm is used for hydraulic hammers with 200 

bar power. This thickness provided adequate protection to the testing surface and 

absorb enough energy to reduce the amount of vibration transmitted. 

In order to study the various parameters of hydraulic hammers and select 

appropriate sensors, it is important to minimize ambient vibrations that could 

interfere with the measurements. In this framework, a layered damping approach is 

used along with supporting steel balls that takes into account the dimensions and 

weight of both the hammer and the test rig. 

A force of 24 kN is applied to the top plate of the frame via the hydraulic system 

to ensure that the hydraulic hammer remains in a constant position during impacts. 

This helps to reduce the possibility of measurement deviations caused by the 

movement of the hammer during operation. 

To measure pressure and oil flow during operation, high pressure and oil flow 

sensors are mounted directly on the structure. Placing the sensors in this manner 

helps to maintain operating conditions with the least possible error. Since the 

highest pressure in hydraulic breakers occurs in a cavity in the rear of the head, the 

sensors are placed in this location to obtain the most accurate pressure 

measurements. A number of different sensors were mounted on the hydraulic 

hammer to register its characteristic behavior, see Table 2-1. The position of each 

sensor is indicated by a number. Figure 2-4 shows the position of each number in 

the hydraulic hammer. 
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Table 2- 1 Signals and sensors on the hammer. 

Position Type Sensor 

Piston (6) Position Laser 

Housing (5) Position Laser 

Housing (5) Acceleration Accelerometer 

Housing (5) Stress Strain gauge 

Control Valve (1) Position Capacitive 

Tool Stress Strain gauge 

Inlet Oil pressure Pressure 

Outlet Oil pressure Pressure 

Intelligent Hydraulic system (1) Oil pressure Pressure 

synchronized internal distributor (2) 

 

Oil pressure Pressure 

The requirements for the design and selection of sensors and other components 

for the operation of hydraulic hammers in harsh conditions have been evaluated. 

Based on the studies, the requirements for the design and selection of sensors, 

batteries, and other factors that affect the manufacturing of the remote monitoring 

device are identified and are listed below: 

 

• Working pressure: P: 0 ÷ 100; 0 ÷ 250; 0 ÷ 350 bar. 

• Temperature: T: -20 ÷ 120 ° C. 

• Flow detection system: 0-200 l / min. 

• GSM data transmission system or other similar technologies (3G / 4G). 

• GPS position detection system. 

• Impact and vibration resistance: 10-100 m / s2. 

• Operating temperature Tmax: 50-100 ° C. 

• IEC 60068-2-6; IEC 60068-2-27; EN837. 

• External mounting resistance class min IP66. 

• Acceleration Range:  ±200 g. 

• Vibrating proof casing. 
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2.4 Conceptual Design and System Architecture 

Conceptual design and system architecture are two key aspects of the early stages 

of a technology project, whether it's for software or hardware. While the two 

concepts are related, they refer to different aspects of the development process. 

     Conceptual design involves the creation of a high-level vision for the 

technology. At this stage, the focus is on understanding the problem that the 

technology is meant to solve and defining the goals of the project. This includes 

defining the target audience, understanding the user's needs, and identifying the key 

features and functionalities that the technology should have. The output of the 

conceptual design phase is usually a concept or a proposal document that outlines 

the vision and goals for the project. 

    System architecture, on the other hand, refers to the overall structure and 

organization of the technology. This includes the design of the different 

components of the technology, how they interact with each other, and how they 

work together to achieve the project goals. System architecture involves making 

decisions on the hardware and software components of the technology, the 

communication protocols, and the data flows. The output of the system architecture 

phase is usually a high-level system diagram that shows the different components 

and how they interact with each other. 

     Both conceptual design and system architecture are important aspects of the 

development process, and they are often interconnected. A strong conceptual design 

will help to guide the system architecture, while a well-designed system 

architecture will help to bring the conceptual design to life. Together, these two 

aspects of the development process lay the foundation for a successful technology 

project. 

2.4.1  Proposed System Architecture 

The growth of open source software and hardware over the past decade has 

democratized technology, making it more accessible and affordable to the public. 

Open source software refers to software whose source code can be modified and 

shared by anyone, while open source hardware refers to the physical components 

of a technology that can also be modified and manufactured by anyone. open-source 

hardware has allowed for the creation of a range of new technologies, from 3D 

printers to cyber-physicl system (CPS). With the availability of open-source 

hardware, anyone with the knowledge and resources can now create their own 

hardware, modify existing designs, or contribute to the development of new 

technology. 
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A cyber-physical system (CPS) is a type of system that integrates physical and 

computational elements to achieve a specific goal. CPSs combine hardware, 

software, and communication components to control and monitor physical 

processes, often in real-time. They typically involve the use of sensors, actuators, 

and other physical devices that interact with the environment to gather data and 

perform actions. 

A key feature of a CPS is its sensing or monitoring part. The demand for remote 

monitoring and control of industrial processes, equipment, and machinery in a short 

time will grow rapidly due to the increasing use of technology and Internet access. 

The remote monitoring system provides data that can be used to optimize 

production and perform predictive maintenance. 

CPSs can be found in a wide range of applications, such as industrial control 

systems, smart grids, autonomous vehicles, medical devices, and smart homes. 

They are designed to improve efficiency, reliability, and safety in various domains 

by automating processes and providing real-time feedback. 

There are a variety of data loggers on the market today. A data logger is an 

electronic device that is used to collect and record data from various sources over 

time. It can be standalone or part of a larger system, and typically includes sensors 

or inputs that measure and record parameters such as temperature, humidity, 

pressure, voltage, current, or other environmental or system variables. The 

architecture of the proposed system is presented in Figure 2-6. 

 
Fig2- 6.  System Architecture. 
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Data loggers can store data locally in their internal memory or external memory 

devices, and can also transmit the data wirelessly to a computer or other data 

acquisition system for further analysis or processing. They are commonly used in a 

wide range of applications, such as monitoring environmental conditions in 

scientific research, tracking energy usage in buildings, logging flight data in 

aircraft, or monitoring production processes in industrial settings. 

More specifically, the proposed system provides several advantages for 

monitoring. First, the engineer can observe the current status of each hydraulic 

breaker almost instantaneously. In addition, the data can be displayed graphically 

using appropriate programming libraries. For example, Figure 2-7 shows the 

accelerometer performance of a model HP6000 hydraulic breaker between January 

2022 and February 2023. From this graph, it is clear that this device is utilized and 

used the most in January and February 2022. And this hydraulic breaker was used 

with very low work intensity in April and November 2022. (According to the 

accelerometer results, only the hydraulic hammer was moved between April and 

November). 

 
Fig2- 7. The accelerometer performance diagram for a hydraulic breaker model HP6000. 
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In terms of predictive maintenance, the algorithms can estimate likely future 

failures by considering the remaining useful life (RUL) of the hydraulic breaker's 

major components. Currently, the end-user interface displays the data only in 

graphical form, but further development of the framework will enable visualization 

of the data using augmented reality. 

2.4.2  System Design and Development 

Data loggers play a critical role in IIoT by monitoring and collecting data from 

various industrial processes, equipment, and systems in real-time. In the case of 

monitoring hydraulic hammers in harsh environments, a data logger can provide 

valuable information about the hammer's performance, including impact force, 

frequency, duration, and energy. This information can be used to optimize the 

hammer's performance, prevent downtime, and improve safety. 

    In harsh environments, such as those found in mining, construction, or offshore 

drilling, data loggers are particularly important as they can operate reliably in 

extreme temperatures, humidity, and vibrations. A data logger can be designed with 

a rugged enclosure that can withstand the harsh conditions, ensuring that the device 

remains operational and continues to collect data. 

    To monitor hydraulic hammers in harsh environments, the data logger can be 

connected to sensors that measure various parameters of the hammer's operation. 

The logger can then collect and store this data, which can be analyzed later to 

identify patterns or trends that may indicate maintenance or repair needs.  

To design a data logger for IIoT (Industrial Internet of Things), you will need 

a combination of a sensor, a microprocessor, battery, SD memory card, and 

GSM/GPS module.  

2.4.3  Sensor 

The selection of the right sensor for a data logger is crucial to the success of the 

data logging process. The sensor is responsible for measuring the physical or 

chemical parameter that you are interested in logging, such as temperature, 

pressure, humidity, or light. Choosing the right sensor is important for several 

reasons: 

• Accuracy: The accuracy of the sensor is critical in ensuring that the data 

collected by the data logger is reliable. A sensor that provides inaccurate 

readings can lead to incorrect conclusions and bad decisions. 

• Range: The range of the sensor is also important, as it determines the upper 

and lower limits of the parameter that can be measured. If the range of the 
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sensor is too narrow, it may not be able to capture all the variations in the 

parameter that you are interested in. 

• Sensitivity: The sensitivity of the sensor is another important factor to 

consider. A highly sensitive sensor can detect small changes in the 

parameter being measured, while a less sensitive sensor may not be able to 

detect subtle changes. 

• Durability: The durability of the sensor is important, especially in harsh 

environments. The sensor should be able to withstand extreme 

temperatures, humidity, and vibrations. 

• Cost: Finally, the cost of the sensor is also an important consideration. You 

want to choose a sensor that provides the required accuracy, range, and 

sensitivity, while still being cost-effective. 

    When evaluating sensors, it's important to consider factors such as accuracy, 

resolution, range, linearity, and sensitivity, as well as any calibration or correction 

factors that may be required. It's also important to consider the physical size and 

design of the sensor, as well as its power requirements and communication 

interface. Considering the importance of sensors in the accuracy and final 

performance of the data logger, a large portion of industrial sensors available on the 

market were studied. Sensors are evaluated based on performance accuracy and pre-

determined design requirements.In accordance with company, marketing, and 

copyright policies, it is only possible to provide technical details with limitations. 

 Therefore, three different models were examined for each sensor type, as shown in 

Table 2-2. An example of these sensors is also shown in Figure 2-8. In general, all 

of these sensors met all of the design requirements for hydraulic breakers and were 

mounted with minor modifications to the location of the sensors. The only 

important factors are the dimensions, price and size of the pressure and flow 

sensors, which, as mentioned earlier, require that these two sensors be installed 

directly on a portion of the hydraulic system. It is important to ensure that the 

sensors are installed in a location that is easily accessible for maintenance and 

calibration. Additionally, the sensors should be protected from damage and 

excessive vibration, which can affect their accuracy. 
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Table 2- 2 The list of sensors under consideration for monitoring hydraulic hammers. 

Sensor ID Brand  Temperature pressure Flow  Acceleration  Out Put Signal size 

CAT34TS02 

VP2GT4C 

ON 

Semiconductor 

-25  ̊c ~ 125   ̊c  
 

 I²C 

/SMBus 

Digital 2 x 3 x 0.75 mm 

LM95010CIMM 

NOPB 

Texas 

Instruments 

-25  ̊c ~ 125   ̊c  
 

 I²C / 

SMBus 

SensorPath  

Digital 12 x 21 x 2 mm 

ADT7408CCPZ-

REEL7 

Analog 

Devices Inc. 

-25  ̊c ~ 125   ̊c  
 

 I²C / 

SMBus 

Digital, local 3  × 3 ×1 mm  

ADXL372BCCZ-

RL7TR-ND 

Analog 

Devices Inc. 

-40  ̊c ~ 105   ̊c  
 

±200 g SPI/I²C Digital 3  × 3.25  × 1.06 

mm 

 

3038-0200 

TE 

Connectivity 

Measurement 

Specialties 

-55  ̊c ~ 125   ̊c  
 

±200 g Analog 

voltage 

Analog  7.5 × 13  × 3 mm 

ADXL375BCCZ-

RL 

Analog 

Devices Inc. 

-55  ̊c ~ 125   ̊c  
 

±200 g SPI/I²C Digital 3  × 5  × 1 mm 

PTE7100 

SERIES 

Sensata 

Technologies 

-40  ̊c ~ 100   ̊c 0-600 bar   Analog 

voltage 

Analog 24  × 24  × 63 

mm 

PT5400 ifm efector, 

inc. 

-40  ̊c ~ 100   ̊c 0-400 bar 
 

 Analog 

voltage 

Analog 19  × 19  × 66 

mm 

803145 Amphenol i2s -40  ̊c ~ 125   ̊c 0-400 bar 
 

 Analog 

voltage 

Analog 27  × 27  × 65 

mm 

FD-H series keyence -10  ̊c ~ 180   ̊c  0 ~ 300 

LPM 

 Analog 

voltage 

Analog/Digital 120  × 980  × 90 

mm 

SU9004 ifm efector, 

inc. 

-10  ̊c ~ 80   ̊c  0 ~ 200 

LPM 

 Analog 

voltage 

Analog 130  × 100  × 90 

mm 

SM2000 ifm efector, 

inc. 

-10  ̊c ~ 80   ̊c  5 ~ 600 

LPM 

 analogue  Analog/Digital 200 × 100  × 103 

mm 

 

The best location for a pressure sensor in a hydraulic hammer will depend on 

several factors, including the design of the hammer, the type of application, and the 

    Temperature Sensor 

    Acceleration Sensor 

    Pressure sensor 

     Flow Sensor 
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specific measurement requirements. In general, a pressure sensor should be located 

in a position that is representative of the hydraulic pressure within the hammer 

during operation. This may be at a point close to the hydraulic fluid inlet or outlet, 

or at a point where the pressure is known to be high. One common location for a 

pressure sensor in a hydraulic hammer is in the hydraulic circuit that controls the 

striking action. This can provide valuable feedback on the pressure and force 

generated during the hammer's operation, allowing operators to monitor and adjust 

the performance of the hammer as needed. 

  

(a) (b) 

 

 

 

(c) (d) 

Fig 2- 8 A sampling of the sensors used in the Indeconnect data logger. (a) Temperature, (b) 

Acceleration, (c) Pressure Sensor, (d) Flow Sensor. 

     As mentioned before, Since the highest pressure in hydraulic breakers occurs in 

a cavity in the rear of the head, the sensors are placed in this location to obtain the 

most accurate pressure measurements. It must be emphasized that all sensors were 

tested for accuracy and performance at Indco's test facility. Figure 2-9 shows 

Keyence's Ultrasonic clamp-on flow meters technology flow sensor tested for 

accuracy, performance, and potential uses of the sensor. Ultrasonic clamp-on flow 
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meters are widely used in various industries to measure the flow rate of fluids, 

including gases and liquids, in closed pipes without the need for invasive 

installation. 

    The working principle of ultrasonic clamp-on flow meters is based on the transit-

time method, where two ultrasonic sensors are placed on the exterior surface of the 

pipe, facing each other, at a specific angle. One sensor acts as the transmitter, and 

the other acts as the receiver. The transmitter sends ultrasonic pulses that travel 

through the fluid and reach the receiver, where they are detected. The time it takes 

for the ultrasonic pulses to travel from the transmitter to the receiver, both upstream 

and downstream, is measured and used to calculate the flow rate of the fluid. 

   Ultrasonic clamp-on flow meters are known for their high accuracy, non-invasive 

nature, and the ability to measure bidirectional flow, making them suitable for a 

range of applications, including industrial processes, water and wastewater 

treatment, and hydraulic systems. 

 
Fig 2- 9. Keyence FD-H series for monitoring the inlet of hydraulic hammers in the Indeco test 

bench house. 

 



26 

 

 

2.4.4  Microcontroller 

A microcontroller is a type of small computer designed for specific embedded 

applications. It contains a microprocessor, memory, and input/output peripherals on 

a single chip, making it a highly integrated and compact solution. Microcontrollers 

are commonly used in a variety of electronic devices, such as appliances, 

automotive systems, medical devices, and industrial control systems, to provide 

control and monitoring functions. 

    Microcontrollers come in a variety of types, with different specifications and 

capabilities. Some of the factors to consider when selecting a microcontroller 

include: 

• Processing power: The processing power of the microcontroller determines 

its ability to execute instructions and perform tasks quickly and efficiently. 

• Memory: The amount and type of memory on the microcontroller is an 

important consideration when designing an embedded system, as it affects 

the program and data storage capabilities of the device. 

• Peripherals: The types and number of input/output peripherals on the 

microcontroller determine its ability to interface with external devices, such 

as sensors, actuators, and communication modules. 

• Power consumption: Power consumption is a critical factor in battery-

powered devices, as it affects the device's operating time. 

• Cost: The cost of the microcontroller is an important consideration when 

selecting a device for an embedded system, as it affects the overall cost of 

the product. 

 

    Today, two controllers are typically used in IIoT devices: ARM (Advanced RISC 

Machines) and FPGAs (Field-Programmable Gate Arrays). ARM controllers and 

FPGAs are both types of integrated circuits used in electronic devices, but they 

differ in their architectures, design philosophies, and applications. 

    ARM (Advanced RISC Machines) controllers are a type of microcontroller that 

is widely used in embedded systems and IoT devices. They are based on a Reduced 

Instruction Set Computing (RISC) architecture, which simplifies the instruction set 

and execution pipeline, resulting in high performance and low power consumption. 

ARM controllers are typically designed for specific applications and offer a range 

of features, such as multiple cores, advanced interrupt handling, and 
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communication interfaces. They can be programmed using a variety of 

programming languages and development tools, and are suitable for a wide range 

of applications, including data logging. 

    FPGAs (Field-Programmable Gate Arrays) are hardware devices that can be 

programmed to implement specific logic functions. They offer high processing 

speeds, low latency, and a high degree of parallelism, making them suitable for 

high-speed data logging applications. FPGAs are highly configurable, making it 

possible to implement custom logic functions in hardware, resulting in highly 

optimized and efficient data logging systems. 

     In general, ARM controllers are more flexible and easier to program than 

FPGAs. Therefore, ARM controllers are more commonly used in IIoT devices than 

FPGAs due to their ease of programming and lower cost. In addition, ARM 

controllers are a good choice for data logging applications that require low power 

consumption and a high degree of programmability. 

    The microcontroller used is a STM32L496RET6 ARM-Cortex®- manufactured 

by ST (see Figure 2-10). It communicates with the server using Serial 

communication through a USB-to-serial bridge. The STM32L496RET6 is a 

microcontroller unit (MCU) based on the ARM-Cortex-M4 architecture. It is a 32-

bit MCU with a core voltage of 1.7 volts and a clock speed of up to 80 MHz. The 

STM32L496RET6 features 512KB of flash memory and 320KB of SRAM, 

providing ample space for program and data storage, also features a range of 

peripherals, including up to 3 I2C, 3 USART, 4 SPI, 4 16-bit timers, and a real-time 

clock. It also includes advanced features such as a digital signal processor (DSP), 

an analog-to-digital converter (ADC) with up to 16-bit resolution, and a hardware 

encryption accelerator. 

 

Fig 2- 10. Microcontroller STM32L496RET6 ARM-Cortex®-M4.  
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2.4.5  GSM/GPS Module 

GPS (Global Positioning System) and GSM (Global System for Mobile 

Communications) are two distinct technologies that are commonly used in mobile 

devices and other applications. GPS is used for location tracking and navigation, 

while GSM is used for communication with cellular networks. In certain 

applications, GPS and GSM may be used together for location tracking and data 

transmission purposes. In the Industrial Internet of Things, (GPS and GSM 

technologies can be used to enable location tracking and remote communication for 

industrial equipment and devices. For example, GPS can be used to track the 

location of mobile assets such as vehicles or containers, while GSM can be used to 

transmit data from sensors or control systems to a central server or cloud-based 

platform. By integrating GPS and GSM into IIoT systems, businesses can improve 

operational efficiency, monitor assets in real-time, and enable remote management 

and control of industrial equipment.  

The requirements for GPS/GSM modules in IIoT devices depend on the 

specific use case and application. Some of the common requirements may include: 

• Location accuracy: GPS modules should provide accurate location data to 

enable real-time tracking and monitoring of assets. 

• Network coverage: GSM modules should be compatible with the local 

cellular networks and provide reliable connectivity. 

• Low power consumption: IIoT devices may be deployed in remote 

locations or have limited power sources, so GPS/GSM modules should be 

energy-efficient to prolong battery life. 

• Security: GPS/GSM modules should have built-in security features to 

protect against unauthorized access or tampering of data. 

• Integration: GPS/GSM modules should be compatible with the device's 

hardware and software architecture to enable easy integration and data 

transfer. 

• Update Rate: The update rate refers to the frequency at which a GPS or 

GNSS module calculates and reports its position. Typically, devices have a 

standard update rate of 1Hz, which means that they update and report their 

position once every second. However, higher update rates of 5-10Hz may 

be necessary for faster-moving vehicles, although this is not typically 

required in most real-world scenarios. 

• Antenna: It's important to keep in mind that the GPS module is receiving 

signals from satellites that are located approximately 12,000 miles away in 
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the sky. In order to ensure the best possible performance, it's important to 

have an unobstructed path between the antenna and most of the sky. While 

weather conditions like clouds and snowstorms generally don't affect the 

signal, trees, buildings, mountains, and even the roof over your head can all 

create unwanted interference that can lead to decreased GPS accuracy. 

Therefore, selecting the right antenna is critical to achieving optimal 

performance. 

• Cost: The cost of GPS/GSM modules should be reasonable and affordable 

to ensure cost-effective deployment and scalability of IIoT solutions. 

    There are various types of GPS and GSM modules available in the market 

for IIoT devices, each with their own features and capabilities. Here are some 

examples: 

GPS Modules: 

1. Standalone GPS modules: These are self-contained GPS units that 

provide location data without requiring any external components or 

connections. 

2. GPS receiver modules: These modules receive GPS signals from 

satellites and provide location data to the device's microcontroller for 

further processing. 

3. Assisted GPS (A-GPS) modules: These modules use cellular network 

data to assist in GPS signal acquisition and improve location accuracy. 

GSM Modules: 

1. 2G GSM modules: These modules use the second generation of GSM 

technology and provide basic voice and data connectivity. 

2. 3G GSM modules: These modules use the third generation of GSM 

technology and offer higher data transfer rates and improved network 

coverage. 

3. 4G GSM modules: These modules use the fourth generation of GSM 

technology and provide even higher data transfer rates and better 

network efficiency. 

4. Narrowband IoT (NB-IoT) modules: These modules use low-power, 

wide-area (LPWA) cellular networks to provide low-cost, low-

bandwidth connectivity for IIoT devices. 
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   Considering that Internet coverage is now 3Gand 4G in most areas, the design 

and construction of the Indeconnect data logger used 3G and 4G module and A-

GPS to improve location accuracy. However, since hydraulic breakers are used in 

uninhabited and remote areas where Internet access may be impossible, an external 

storage option was also provided to ensure that data could be collected and stored 

even when an Internet connection was not available. Since data is typically 

evaluated on a daily or weekly basis, there should be sufficient time to transfer the 

data from the external storage card to the cloud once Internet connectivity is 

restored. With this approach, you can ensure that important data is not lost even if 

the Internet connection is limited [34].  

 The GSM/GPS module used is SIM7600EI 4G / 3G / GSM / GPRS / GPS 

UART Modem–rhydoLABZ (Figure 2-11). The SIM7600EI 4G/GSM/GPRS/ GPS 

UART modem is a high-quality commercial grade product from rhydoLABZ, 

professionally developed with impedance-matched RF PCB designs and equipped 

with a multi-band LTE-TDD /LTE-FDD/HSPA+/UMTS/EDGE/GPRS/GSM 

module solution in an LCC type that supports LTE CAT1 with up to 10Mbps for 

downlink and 5Mbps for uplink data transfer.  

 
Fig 2- 11. GPS/GSM module: SIM7600EI rhydoLABZ. 

     The SIM7600EI with its compact and unified form factor is compatible with 

SIMCom HSPA+ SIM5360 module/LTE CAT3SIM7100 and LTE CAT4 

SIM7600E-H module, so you only need to design your application once for 

different technologies and can benefit from great time saving in development. This 

3G and 4G Modem is coming with selectable interfacing voltage, which allows you 
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to connect 2V8 to 5V, including 3V3. Microcontroller can directly connect without 

any extra level conversion chips irrespective of voltage level. Onboard TXB0108 

voltage level translator IC which helps us to interface with 2.8V to 5V Micro 

Controllers. 

2.4.6 Source Power 

     "Source power" generally refers to the power supply that provides electrical 

energy to a device or system. It can be a battery, an AC or DC power outlet, or any 

other source that is capable of delivering the required voltage and current to power 

the device or system. When selecting a battery for an Industrial Internet of Things 

(IIoT) device, several factors must be considered, including the power requirements 

of the device, the expected usage pattern, and the environmental conditions in 

which the device will be used. Here are some guidelines to help you choose the 

right battery for your IIoT device: 

• Determine the power requirements: The first step in choosing a battery is 

to determine the power requirements of the device. It  needs to know the 

voltage and current that thew device needs to operate, and the amount of 

power it will consume over time. 

• Consider the expected usage pattern: How often will the device be used, 

and how long will it need to operate on a single charge? Will it be used 

continuously or intermittently? These factors will help to determine the size 

of the battery we need and how frequently it will need to be recharged. 

• Choose the right chemistry: There are several types of batteries available, 

including lithium-ion, nickel-cadmium, and lead-acid. Lithium-ion batteries 

are a popular choice for IIoT devices because they offer high energy density, 

long life, and low maintenance requirements. 

• Consider the environmental conditions: The environment in which 

device will be deployed can affect the performance and lifespan of battery. 

For example, extreme temperatures, humidity, and vibration can all affect 

battery performance.  

• Consider the cost: The cost of the battery is an important factor to consider, 

as it will affect the overall cost of IIoT device. Lithium-ion batteries tend to 

be more expensive than other types of batteries, but they also offer longer 

life and higher energy density. 

Due to the high voltage and current requirements of pressure and flow sensors, 

the use of a large battery is required. To solve this problem and improve system 
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performance, a smaller battery is considered to support the system while the data 

logger is connected directly to the power source of the excavator or backhoe loader 

to operate the sensors. The battery is used to transfer data to the cloud when the 

machine is off. The battery life used by GPS, the accelerometer, the temperature 

sensor and the GSM/GPS module for data transmission is as follows: 

❖ Rechargeable Li-Polymer 4800 mAh/3.7V battery 

❖ Standby Time (2 hours active tracking per day) 

❖ Every10 minutes reporting: 170 days 

❖ Every 5 minutes reporting: 90 Days 

❖ Every 1 minute reporting: 35 Days 

2.4.7 IIoT enclosure 

An IIoT enclosure is a protective casing that houses and protects electronic 

components and devices that are used in industrial settings for IIoT applications. 

These enclosures are designed to protect the electronic components from 

environmental factors such as dust, water, heat, and humidity. 

    IIoT enclosures play a crucial role in ensuring that IIoT devices function 

optimally in harsh industrial environments. They provide protection against 

physical damage, as well as electromagnetic interference and radio frequency 

interference. In addition to protecting the devices, IIoT enclosures also help to 

ensure the safety of workers by preventing accidental contact with live electronic 

components.  

    IIoT enclosures come in different sizes and shapes to accommodate different 

types of devices. Some enclosures are also designed to be mounted on walls or poles 

for easy installation. IIoT enclosures can be made from a variety of materials, 

depending on the specific requirements of the application. Some of the most 

common materials used for IIoT enclosures include: 

1. Plastic: Plastic enclosures are lightweight and can be easily molded into 

different shapes and sizes. They are also resistant to corrosion and can 

provide good protection against water and dust. 

2. Stainless Steel: Stainless steel enclosures are strong, durable, and resistant 

to corrosion. They can withstand high temperatures and harsh 

environmental conditions, making them ideal for use in industrial settings. 

3. Aluminum: Aluminum enclosures are lightweight, easy to work with, and 

have excellent thermal conductivity. They can also provide good protection 

against electromagnetic interference (EMI) and radio frequency 

interference (RFI). 
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4. Fiberglass: Fiberglass enclosures are strong, durable, and resistant to 

corrosion. They can provide good protection against UV radiation, making 

them ideal for outdoor use. 

    The choice of material for an IIoT enclosure will depend on factors such as the 

environment in which it will be deployed, the size and weight of the device, and the 

level of protection required.  

    The IP (Ingress Protection) rating system is a standard used to classify the degree 

of protection provided by an enclosure against the entry of foreign objects, such as 

dust and water. The first digit of the IP rating indicates the level of protection 

against solid objects, while the second digit indicates the level of protection against 

liquids. When an IIoT enclosure is required to have a minimum IP66 rating for 

external mounting, this means that the enclosure must provide a high level of 

protection against the ingress of dust and water. 

An IP66 rating means that the enclosure is dust-tight and can withstand powerful 

water jets from any direction without water entering the enclosure. This level of 

protection is suitable for outdoor applications where the enclosure is exposed to 

harsh environmental conditions. 

    To achieve an IP66 rating for an IIoT enclosure, the enclosure must be designed 

to meet specific criteria for ingress protection, such as having a gasket or seal to 

prevent water and dust from entering the enclosure, and having a robust 

construction that can withstand external impacts and vibration. 

    The indeconnect data logger with standard IP 66 housing is shown in Figure 2-

12. The IIot enclosure is made of corrosion, water and dust resistant plastic by 

Trusted global company (Trusted A/S). 

    Figure 2-13 illustrates the placement of the Indeconnect data logger on the 

exterior of the machine, which makes it susceptible to damage from the harsh work 

environment. To safeguard against this, a protective fiberglass case was designed 

and fabricated. The case is intended to shield the data logger from potential harm 

caused by impacts, external vibrations, dust, and water. The key aspect of the case 

design is that it does not obstruct direct contact between the data logger and the 

machine, enabling the sensors, including accelerometers and vibration sensors, to 

function without interference. 
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Fig 2- 12. The Indeconnect data logger, manufactured by Trusted Global Denmark. 

In harsh environments, data loggers used for monitoring hydraulic hammers 

may experience several external threats, such as: 

• Extreme temperatures: Data loggers may be exposed to extreme 

temperatures, either hot or cold, which can cause damage to the device or 

reduce its battery life. High temperatures can cause the device to 

malfunction or even stop working, while low temperatures can cause the 

battery to drain quickly. 

• Moisture and humidity: Data loggers used in harsh environments may 

be exposed to moisture and humidity, which can cause corrosion or 

damage to the device. Moisture can also affect the accuracy of the 

readings, especially if the device is not properly sealed. 

• Vibration and shock: Hydraulic hammers generate high levels of 

vibration and shock, which can affect the accuracy of the data logger's 

readings. The device may need to be designed to withstand these 

conditions or secured in a protective casing. 

• Dust and debris: Dust and debris can accumulate on the sensors of the 

data logger, leading to inaccurate readings. The device may need to be 

designed with a protective covering or shield to prevent dust and debris 

from entering the sensors. 

• Electromagnetic interference: In harsh environments, there may be 

high levels of electromagnetic interference (EMI) from other nearby 

equipment, which can interfere with the device's sensors and affect the 

accuracy of the readings. The device may need to be designed with special 

shielding or filters to prevent EMI from affecting the readings. 
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Fig 2- 13. the positioning of the data logger on the hydraulic equipment and the protective 

cover for the data logger. 

Due to Indeco's and Trusted global's business policy, it is not possible to publish 

the serial number of the devices as well as the components and the circuit board. 

But the basic electronic and schematic diagrams of the Indeconnect device are 

depicted in Figure 2-14. This device was outsourcing  to Trusted Global to complete 

the final stages of product development and manufacturing. 
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                       Fig 2-14. The Electronic Diagrams and Schematics of the INDECONNECT data logger. 
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2.5  A Cloud Architecture for Device monitoring  and Data 

Collection  

In the last decade, the growth of open source and hardware has led to technology 

playing an important role not only in industry but in all aspects of human society. 

A key feature of a cyber-physical system is its sensing or monitoring part. The 

demand for remote monitoring and control of industrial processes, equipment, and 

machinery in a short time will grow rapidly due to the increasing use of technology 

and Internet access. The remote monitoring system provides data that can be used 

to optimize production and perform predictive maintenance. 

     The cloud architecture for device monitoring and data collection typically 

involves the use of a cloud platform to collect and process data from connected 

devices. The devices are usually equipped with sensors that gather data on various 

parameters such as temperature, pressure, and flow rates. The data is then 

transmitted to a cloud-based platform where it is stored and processed using a 

variety of tools and services. 

     The cloud architecture typically consists of three main layers: the device layer, 

the communication layer, and the cloud layer. The device layer includes the 

connected devices and the sensors used to gather data. The communication layer 

facilitates the transfer of data from the devices to the cloud platform using wired or 

wireless connections. The cloud layer includes the various services and tools used 

to process and analyze the data collected from the devices. 

      Some of the key components of the cloud architecture for device monitoring 

and data collection include data storage and management systems, data analytics 

tools, machine learning algorithms, and visualization tools. These components 

work together to enable the collection, processing, and analysis of data from devices 

in real-time, which can help improve operational efficiency, reduce downtime, and 

optimize performance. 

It is emphasized that the architecture is designed with sensors and data 

acquisition modules on each hydraulic control unit. Data transmission is one of the 

most important parts of the design of this device. For this purpose, the gateway is 

equipped with appropriate protocols. This device uses the gateway with the 

protocols IEEE 802.15.4 and IEEE 802.11 for communication between both sides 

of the connection. IEEE 802.15.4 and IEEE 802.11 are two data transmission 

protocols used in wireless communication. 

IEEE 802.15.4 is a low-power, low-data-rate wireless communication protocol 

designed for low-cost, low-complexity applications. It operates in the 2.4 GHz band 

and uses a star or mesh network topology. It is commonly used in wireless sensor 

networks, industrial control, and home automation applications. The protocol 



38 

 

supports data rates of 20, 40, or 250 kbps and can operate at distances of up to 100 

meters. 

IEEE 802.11, on the other hand, is a more powerful wireless communication 

protocol designed for higher data rates and more complex applications. It is 

commonly used in local area networks (LANs) and supports a wide range of 

devices, including laptops, smartphones, and tablets. It operates in the 2.4 GHz and 

5 GHz bands and uses a peer-to-peer or infrastructure network topology. The 

protocol supports data rates of up to 10 Gbps and can operate at distances of up to 

100 meters.  

 
Fig 2- 15. Architecture overview. 

When it comes to data transmission protocols for IIoT (Industrial Internet of 

Things) devices, there are several options available, each with its own advantages 

and disadvantages. Some of the most commonly used data transmission protocols 

for IIoT devices include: 

1. MQTT (Message Queuing Telemetry Transport): MQTT is a 

lightweight and efficient publish-subscribe messaging protocol designed for 

use in IoT applications. It is ideal for low-power devices and can handle 

low-bandwidth networks. MQTT is widely used in IIoT applications, 

particularly those involving machine-to-machine communication. 

2. CoAP (Constrained Application Protocol): CoAP is a lightweight 

application-layer protocol designed for use with constrained networks and 

devices. It is particularly useful for low-power devices with limited 

processing power and memory. CoAP is used in IIoT applications that 

require real-time communication and efficient use of network resources. 
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3. OPC UA (Open Platform Communications Unified Architecture): OPC 

UA is a standardized communication protocol designed for industrial 

automation applications. It provides a platform-independent way to 

exchange data between devices and systems, making it an ideal choice for 

IIoT applications. 

4. AMQP (Advanced Message Queuing Protocol): AMQP is a message-

oriented middleware protocol that provides reliable, asynchronous 

communication between devices and systems. It is particularly useful in 

IIoT applications that require high reliability and fault-tolerance. 

5. DDS (Data Distribution Service): DDS is a middleware protocol designed 

for real-time, high-performance communication between devices and 

systems. It is particularly useful in IIoT applications that require real-time 

control and monitoring. 

When choosing a data transmission protocol for IIoT devices, it is important to 

consider factors such as the type of application, network bandwidth, device 

capabilities, and the level of security and reliability required.  

In this study, Message Queuing Telemetry Transport system is used for data 

transmission. Generally, It's difficult to say that MQTT is "better" than other data 

transmission protocols, as each protocol has its own strengths and weaknesses and 

is suited to specific use cases. However, MQTT is a popular choice for many IoT 

applications and has several advantages that make it a strong contender in the IIoT 

space. 

Some of the advantages of MQTT include: 

• Lightweight and efficient: MQTT is designed to be lightweight and 

efficient, which makes it well-suited for use in IoT applications. It uses a 

publish/subscribe model, which reduces network traffic and makes it more 

efficient than other protocols. 

• Low bandwidth requirements: MQTT requires very little bandwidth to 

operate, which makes it ideal for use in low-power, low-bandwidth 

environments. This also makes it an ideal choice for remote devices that 

may have limited network connectivity. 

• Quality of Service (QoS) levels: MQTT provides several different QoS 

levels, which allow devices to prioritize the delivery of messages based on 

the importance of the data being transmitted. This ensures that critical data 

is delivered in a timely and reliable manner. 
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• Wide availability: MQTT is widely available and supported by a large 

number of IoT platforms and devices. This makes it easy to integrate with 

existing systems and ensures that it will be supported for years to come. 

• Security: MQTT provides several security features, including encryption 

and authentication, which help to protect data as it is transmitted over the 

network. 

2.5.1 IoT Cyber Security Challenges 

The idea of the Internet of Things is to connect every object to make these processes 

more efficient, provide more comfort, and improve our business and personal lives. 

But connecting objects such as cars, homes, and machines also exposes lots of 

sensitive data. Some of this data is not meant for the public and should be protected 

by the pillars of information security: confidentiality, integrity, and availability.  

    The challenges of data leaks, insecure communications, and software and 

firmware vulnerabilities are all significant risks facing Industrial Internet of Things 

(IIoT) systems. These risks can lead to data breaches, loss of sensitive information, 

and damage to a company's reputation and financial standing. 

    Software and firmware vulnerabilities are security weaknesses that can be 

exploited by attackers to gain unauthorized access to a system or device. These 

vulnerabilities can be caused by errors in the design, development, or 

implementation of software or firmware. 

    Software vulnerabilities can occur in any software application, including 

operating systems, databases, web applications, and mobile apps. Common 

software vulnerabilities include buffer overflows, SQL injection, cross-site 

scripting (XSS), and insecure authentication and authorization mechanisms. 

    Firmware vulnerabilities, on the other hand, are specific to embedded systems 

and IoT devices, which often run on specialized firmware. Firmware vulnerabilities 

can be caused by flaws in the firmware design or implementation, or by the use of 

insecure communication protocols or default passwords. 

   Both software and firmware vulnerabilities can be exploited by attackers to gain 

unauthorized access to a system or device, steal data, install malware, or launch 

other attacks. 

To mitigate the risk of software and firmware vulnerabilities, it is important to 

implement security best practices throughout the software development and 

deployment process. This can include using secure coding practices, performing 

regular vulnerability assessments and penetration testing, keeping software and 
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firmware up to date with the latest security patches, and implementing proper access 

control and authentication mechanisms. Additionally, it is important to have a plan 

in place for responding to security incidents and to regularly review and update 

security policies and procedures. 

    Insecure communications refer to the transmission of data over a network or 

communication channel in an unencrypted or poorly secured form, which can be 

intercepted and read by attackers. Insecure communications can occur in various 

forms of communication, including email, instant messaging, file sharing, and web 

browsing. 

     One of the most common examples of insecure communication is the use of 

unencrypted HTTP (Hypertext Transfer Protocol) for web browsing, which can 

allow attackers to intercept and read data transmitted between a user's browser and 

a web server. To address this issue, many websites now use HTTPS (HTTP Secure), 

which encrypts data transmitted between the user's browser and the web server. 

     Insecure communications can also occur in IoT devices and systems. For 

example, many IoT devices use unencrypted communication protocols, such as 

MQTT or CoAP, which can be intercepted and read by attackers. To address this 

issue, it is important to use secure communication protocols, such as TLS 

(Transport Layer Security), which encrypts data transmitted between devices. 

To mitigate the risk of insecure communications, it is important to implement 

encryption and other security measures throughout the network and communication 

channels. This can include using secure communication protocols, implementing 

proper access control and authentication mechanisms, and regularly reviewing and 

updating security policies and procedures. It is also important to educate users and 

employees about the risks of insecure communications and how to avoid to data 

leaks. 

    Data leaks from Industrial Internet of Things (IIoT) systems can be a significant 

cyber security risk, as they can result in the unauthorized disclosure of sensitive or 

confidential data. These data leaks can occur in various ways, including through 

accidental disclosure, insider threats, and external attacks. 

    Accidental disclosure can occur when sensitive data is inadvertently made public 

or shared with unauthorized individuals, such as through misconfigured servers, 

unsecured file transfer protocols, or human error. Insider threats, on the other hand, 

can result from employees or contractors who have access to sensitive data and 

intentionally or unintentionally disclose it. External attacks, such as hacking, 

malware, or phishing attacks, can also result in data leaks from IIoT systems. 
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    The consequences of a data leak can be severe, including damage to the 

company's reputation, loss of intellectual property, regulatory penalties, and 

financial loss. To mitigate the risk of data leaks from IIoT systems, it is important 

to implement comprehensive security measures, such as access control, encryption, 

and data loss prevention (DLP) technologies. It is also important to conduct regular 

vulnerability assessments and penetration testing to identify and address potential 

vulnerabilities. 

2.5.2  MQTT (Message Queuing Telemetry Transport) 

MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe 

messaging protocol designed for efficient communication between devices in an 

IoT (Internet of Things) network. It was developed in 1999 by Andy Stanford-Clark 

and Arlen Nipper, and later became an OASIS standard in 2014. 

     MQTT uses a publish-subscribe model, where publishers send messages, or 

"publish" data, to a broker, and subscribers receive messages, or "subscribe" to 

specific topics on the broker. The broker acts as a mediator between publishers and 

subscribers, managing the flow of messages. 

      The MQTT protocol is based on TCP/IP (Transmission Control 

Protocol/Internet Protocol). Both the MQTT client and the broker need to have a 

TCP/IP stack to communicate with each other over a network [35]. 

     TCP is a reliable, connection-oriented protocol that provides guaranteed 

delivery of data, while IP is a connectionless, best-effort protocol that provides the 

basic routing and addressing functions for data transmission over the internet. 

Together, these two protocols form the foundation of the internet and are widely 

used for communication between devices on local and wide area networks. 

     MQTT is designed to be a lightweight protocol that uses minimal bandwidth and 

is well-suited for use in resource constrained IoT devices. It uses the TCP/IP stack 

to provide reliable delivery of messages between the MQTT client and broker, 

while also supporting features such as quality of service (QoS) levels and persistent 

sessions.  

    In the MQTT protocol, communication is always between a client and a broker. 

Clients never connect to each other directly. To initiate a connection, the client 

sends a CONNECT message to the broker, which includes the client's 

identification, username, password (if required), and the level of quality of service 

(QoS) required for the connection. The CONNECT message also specifies whether 

the connection is a clean session or a persistent session (see figure 2-16). 
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    Once the broker receives the CONNECT message, it performs authentication and 

authorization checks, and then responds with a CONNACK message. The 

CONNACK message contains a status code that indicates whether the connection 

was successful or not, and if not, what the reason was. 

     Once the connection is established, the client can then send and receive 

messages from the broker using the PUBLISH, SUBSCRIBE, and 

UNSUBSCRIBE messages. The broker is responsible for routing the messages to 

the appropriate clients based on the topics to which they have subscribed, and for 

ensuring that messages are delivered according to the specified QoS level. Figure 

2-17 shows the content of a connection message sent by an MQTT client. 

 

 

 

 

 MQTT Client  MQTT Broker  

      Fig 2- 16. The MQTT connection between client and broker. 

 
       Fig 2- 17. A MQTT client-connect message. 
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  When an MQTT client connects to an MQTT broker, it sends a CONNECT 

message to initiate the connection. The CONNECT message contains various 

parameters and options that the client uses to specify its connection details and 

configuration. Here is an example of a typical CONNECT message: 

10 22 00 04 4D 51 54 54 04 C2 00 3C 00 0A 74 65 73 74 5F 63 6C 69 65 6E 74 00 

05 61 64 6D 69 6E 00 05 70 61 73 73 77 64 

The message is made up of several fields, each with its own purpose: 

Byte 1: Control Packet type (0x10 for CONNECT) 

Byte 2: Remaining Length (22 bytes) 

Byte 3-4: Protocol Name (0x00 0x04 for MQTT) 

Byte 5: Protocol Version (0x04 for MQTT version 3.1.1) 

Byte 6: Connect Flags (0xC2 - this sets Clean Session flag and specifies Will Flag, 

Will QoS, and Will Retain Flag) 

Byte 7-8: Keep Alive Timer (in seconds) 

Byte 9-10: Client Identifier Length (0x00 0x3C or 60 bytes) 

Byte 11-70: Client Identifier (in this case, "test_client") 

Byte 71-72: Will Topic Length (0x00 0x05 or 5 bytes) 

Byte 73-77: Will Topic (in this case, "admin") 

Byte 78-79: Will Message Length (0x00 0x05 or 5 bytes) 

Byte 80-84: Will Message (in this case, "passw") 

    The CONNECT message is the first step in establishing an MQTT connection 

and is essential for configuring the connection parameters and ensuring that the 

client and broker are able to communicate effectively. 

      MQTT provides security measures that are divided into multiple layers, with 

each layer designed to prevent different types of attacks. The goal of MQTT is to 

provide a lightweight and easy-to-use communication protocol for the Internet of 

Things, while also ensuring that the data transmitted over the protocol is secure. 

The security measures in MQTT are divided into the following layers: 

• Authentication: MQTT implementations can provide mechanisms for 

authenticating clients and brokers, such as through the use of usernames and 
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passwords or digital certificates. This ensures that only authorized clients 

and brokers are able to connect and communicate over the MQTT network. 

• Transport Layer Security (TLS): This layer provides encryption and 

authentication of data between the MQTT client and server. It is based on 

the SSL/TLS protocol, and provides protection against eavesdropping, 

tampering, and other types of attacks. 

• Access Control: This layer provides authentication and authorization of 

clients based on their identity and permissions. It allows MQTT brokers to 

control which clients can access which topics, and what actions they can 

perform. 

• Message Filtering: This layer provides the ability to filter messages based 

on content and topic, and can be used to prevent malicious messages from 

reaching subscribers. It is particularly useful for preventing attacks such as 

denial of service (DoS) attacks and message flooding. 

• Logging and Auditing: MQTT implementations can provide mechanisms 

for logging and auditing MQTT communication, such as through the use of 

log files or event records. This can help identify and investigate security 

incidents or anomalies in the network. 

• Payload Encryption: This layer provides encryption of the message 

payload, which contains the actual data being transmitted. This layer can be 

used to protect sensitive data from being intercepted or modified. 

   Overall, MQTT can be used to send sensor data to the cloud with high security 

and reliability. By using MQTT in combination with secure authentication and 

encryption mechanisms, sensor data can be transmitted securely over the 

internet to cloud-based servers for storage and analysis. 

   For instance, a typical IoT system using MQTT might include sensors that 

gather data, an MQTT client that sends the data to an MQTT broker, and a 

cloud-based server that subscribes to the data and stores it for later use. To 

ensure the security of the data being transmitted, the MQTT client might use a 

secure authentication mechanism such as username/password or digital 

certificates to authenticate itself to the MQTT broker, and encryption such as 

TLS/SSL to protect the data being transmitted. 

    Once the data is received by the cloud-based server, it can be stored and 

analyzed using cloud-based data processing and analytics tools. The data can 

also be shared with other systems and applications using MQTT or other 

communication protocols, allowing for interoperability and integration with 

other systems. 
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2.5.3  API (Application Programming Interface) and Data 

visualization 

Providing an API (Application Programming Interface) means making it available 

to other applications or users. To do this, the API must be made accessible on a 

server or cloud platform, from where it can be accessed via HTTP requests. 

Deploying an API typically involves configuring the code that defines the API to 

run in a server environment that clients can access over the Internet. 

    The deployment process often involves setting up infrastructure components 

such as web servers, load balancers, and databases to support the API, as well as 

configuring security and access controls to protect the API from unauthorized 

access. It may also involve packaging the code into a deployable format, such as a 

Docker container or a zip file, and deploying it to the target environment using tools 

like Git, Jenkins, or AWS Code Deploy [36]. 

    Once an API is deployed, other applications and developers can access it via 

HTTP requests. This allows other applications to interact with the API's functions 

and data, and the API provides a standard interface for integration with other 

systems. By using an API, developers can provide a reliable and scalable platform 

for accessing their services and data and facilitate integration with other 

applications and services [37].  

    Data visualization by MQTT API involves using MQTT protocol to receive real-

time data from IIoT devices and visualizing it in real-time on a dashboard.  

     Here are the general steps involved in data visualization by MQTT API: 

1. Set up an MQTT broker: The first step is to set up an MQTT broker that 

will receive, and store messages sent from IIoT devices. There are several 

open-source MQTT brokers available, such as Mosquitto and HiveMQ, or 

can be used a cloud-based MQTT broker like AWS IoT or Google Cloud 

IoT. 

2. Connect to the MQTT broker: Once the MQTT broker has been set up, it 

needs to be connected to using an MQTT client, and authentication 

credentials will need to be provided to connect to the broker. Several MQTT 

clients are available in different programming languages, such as Python's 

Paho and Java's Eclipse.. 

3. Subscribe to MQTT topics: To receive data from IIoT devices, it  needed 

to subscribe to MQTT topics. Topics are essentially channels on which 

messages are published. Topics related to the specific data that needs to be 
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visualized, such as temperature, pressure, or vibration data, can be 

subscribed to. 

4. Receive and process data: Once the relevant MQTT topics have been 

subscribed to, data will start to be received in real-time, and it will need to 

be processed and prepared for visualization. This could involve data 

cleaning, preprocess, feature engineering, … .  

There are also general procedures for displaying data via the cloud for IIoT devices: 

• Identifying the data to be visualized: The type of data that needs to be 

visualized from the cloud for IIoT devices should be identified first, and it 

can include sensor data, machine logs, or any other type of data that requires 

analysis. 

• Choosing a cloud-based visualization tool: There are several cloud-based 

visualization tools that can be used to visualize IIoT data, such as AWS 

QuickSight, Microsoft Azure and Google Data Studio.  

• Connect to the cloud-based data source: Connect to the cloud-based data 

source where the IIoT data is stored. Depending on the data source, it may 

be needed to authenticate or provide other credentials to access the data. 

• Retrieving the data: Retrieve the relevant data from the cloud-based data 

source. Depending on the data source, this can be done using SQL queries, 

RESTful APIs, or other methods of data retrieval. 

• Pre-process the data: Pre-process the data, if necessary, to format it and 

remove missing or incorrect data points. This step could include filtering, 

sorting, grouping, and aggregating the data. 

• Create the visualization: use the selected cloud-based visualization tool to 

create visualizations of the IIoT data. In doing so, you can create charts, 

graphs, maps, or any other type of visualization that best represents the data. 

Experiment with different types of visualizations to find the most effective 

way to communicate insights. 

• Publish the visualization: publish the visualization on a dashboard or in a 

report that other team members or stakeholders can access. You can also set 

up real-time streaming of IIoT data to automatically update the visualization 

with new data as it arrives. 

 

    In this project, for security and marketing reasons, the company Indeco has 

created its own application and website for the visualization of data and direct 
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communication with customers. You can download the applications of this project 

through the following links: 

https://play.google.com/store/apps/details?id=com.teseo.indeconnect&hl=it&gl=

US 

https://apps.apple.com/gb/app/indeco/id1207350218?l=it 

This program allows us to easily display the data received from the Indeconnect 

data logger device in graphs and tables. Below is an example of data visualization 

in this application. As you can see in Figure 2-18, each hydraulic hammer device 

has a dashboard that consists of different sections such as: Data Section, Location, 

Temperature, and Remaining Battery Charge, etc. 

 
          Fig 2- 18.  On the Indecconect application dashboard, the data for the hydraulic hammer can be visualized. 

      By selecting the data section, you can access the data received from the sensors. 

Two examples of the sensors' performance can be seen in Figure 2-19. Due to the 

corona virus and the difficulty of the production process, the final product of the 

Indeconnect data logger has not been put into service at the time of writing, so the 

results of the pressure and flow sensor data are not available. However, the type 

and model of sensors, their requirements, and their locations have been discussed 

and described in detail in this thesis. 

https://play.google.com/store/apps/details?id=com.teseo.indeconnect&hl=it&gl=US
https://play.google.com/store/apps/details?id=com.teseo.indeconnect&hl=it&gl=US
https://apps.apple.com/gb/app/indeco/id1207350218?l=it
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Fig 2- 19. Diagram of the accelerometer and the temperature sensor of the Indeconect data logger 

between January 2022 and March 2023. 
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    In addition, in the section on utilization through accelerometer data analysis, the 

operating time of each hydraulic breaker can be easily viewed, and the results can 

be extracted as graphs and PDF files (see Figure 2-20). 

 
       Fig 2- 20. charts of the running hours of the hydraulic hammer HP 12000 based on days and minutes. 
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2.6  Conclusion  

The need for monitoring and controlling industrial processes, equipment, and 

machinery from a distance has increased rapidly due to advancements in technology 

and the availability of the Internet. Additionally, industrial devices are often used 

in challenging environments and are highly sensitive. As a result, a study was 

conducted to develop a data logger for remote monitoring of hydraulic hammers. 

This involved integrating sensors, meeting specific requirements, and utilizing 

platforms for data analysis and maintenance prediction, in collaboration with the 

Research and Development of INDECO Ind. SpA and Trustedglobal (Trusted A/S) 

company, all the required and effective parameters were determined by the test 

bench and the sensors were selected accordingly.  

      The Indeconnet data logger monitors key system parameters such as vibration 

rate, operating hours, pressure and flow intensity, oil temperature, and location. In 

modern equipment management, it is very important to determine the operating 

hours of the equipment. In fact, the operating hours are the actual usage and 

operation of machinery and equipment. Here are some of the most important 

advantages. 

• By calculating the operating hours based on the actual usage of the machines 

and studying the maintenance standards of the equipment, the expected 

maintenance of the machines can be predicted. 

• Avoid machine and critical equipment failures. Overuse of equipment is 

prevented by calculating actual operating hours. 

The advantages of indeconnect are briefly listed below: 

1. Productivity monitoring: Make sure each tool is working as planned. 

2. Control of operations: Check in real time the different parameters 

internal and external to the equipment to make sure it is working in 

optimal conditions and appropriately. 

3. Greater security: Remotely check the position of tools through the 

GPS geo-localisation. An actual anti-theft system. 

4. Maintenance: Monitor the health of tools in real time, order spare parts 

and plan maintenance to minimise machine downtime. 

     In addition, data collection can help improve maintenance by using machine 

learning and deep learning algorithms to analyze the data collected and make 

predictions. Collecting data via sensors, blueprints, and observation by the operator 
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can provide a more comprehensive view of a system or process, which can lead to 

more accurate analysis and better decision-making. 

     sensors can collect real-time data on various parameters such as temperature, 

pressure, and flow rate. This data can be automatically logged by Indeconnect data 

logger, providing a continuous record of the system's performance. This can help 

identify trends and anomalies that may be missed through manual observation 

alone. Also, bservation by the operator can provide valuable insights into how the 

system is actually being used in practice. This can help identify issues that may not 

be apparent from sensor data or blueprints alone, such as operator error or 

unforeseen circumstances. 

    As a result, by collecting data via sensors, blueprints, and observation by the 

operator, the Indeconnect data logger can provide a more complete picture of the 

system's performance, allowing for more accurate analysis and better decision-

making. 

    Finally, the next section discusses the use of data analysis techniques and 

artificial intelligence algorithms, data visualization, statistical analysis, and finally 

comparing the results of different predictive maintenance models. 
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Chapter 3 

Artificial Intelligence Algorithms 

for Fault Detection 

3.1 State of the Art 

This chapter describes the background and literature on various machine learning 

and deep learning algorithms for predictive models for maintenance. The 

preprocessing of data, feature engineering, feature selection, hyperparameters, data 

visualization and the results of each algorithm are examined. An innovative method 

to overcome the limitations of an imbalanced data set is also presented. 

3.1.1 Introduction 

Systems operating in industrial environments require a high level of availability and 

reliability. This applies to complex machinery used in processes such as production 

lines, oil and gas wells, and Hydraulic hammer facilities. Unplanned maintenance 

can result in lost production revenue, along with other consequences such as 

increased expenses for repairs and cleanup. In more severe cases, malfunctions can 

also pose risks to people and the environment. Reliability engineering has been 

employed for some time to minimize the likelihood of such failures occurring in 

these domains. About one-third of equipment maintenance expenditures in the 

United States are unnecessary and only drive up costs [38]. Thus, maintenance 

directly affects human resources and material consumption and is a major concern 

of the fourth industrial revolution [12]. 

In industry, four types of maintenance are generally distinguished: "reactive 

maintenance," "preventive maintenance," "predictive maintenance," and 

"predictive maintenance." One type of maintenance performed after equipment 

failure is called reactive maintenance [39]. Although reactive maintenance is one 

of the simplest and oldest maintenance methods, but large and global companies 

have completely abandoned this method due to its cost and reliability [40]. Figure 

3-1 shows schematically the reactive maintenance.  Then, in the early 1960s, 

preventive maintenance was explored, involving regular equipment inspection and 
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maintenance [39]. This method reduces the risk of failure and increases the 

equipment's life. Today, reactive and preventive maintenance are less important for 

large and global companies due to low reliability and high maintenance costs.  

 
Machine 1                                                  

                                                            
 
Machine 2                                                   

                                                                              
 
Machine 3                                                  

                                                
 
Machine 4                                                  

                                                                                                 

 

As part of preventive maintenance management, machine repairs or overhauls 

are planned on the basis of MTTF (Mean Time to Failure)  statistics. The MTTF 

curve, also known as the bathtub curve, states that a new machine is likely to fail 

during its first few weeks of operation due to installation problems. After this initial 

phase, the probability of failure is relatively low for an extended period of time. 

After this normal life of the machine, the probability of failure increases rapidly 

over time. How can we determine the ideal time to maintain a system with 

numerous interdependent components so that no components need to be replaced 

prematurely and the system as a whole continues to function reliably, given that 

predictive maintenance cannot completely eliminate failures due to the complexity 

of the machine? Predictive maintenance (PdM), where we try to build predictive 

models based on observational data such as vibration, pressure, stress, equipment 

metadata, etc.  Building predictive models that quantify the risk of failure of a 

machine at a given point in time and using this information to improve maintenance 

planning should provide an answer to this question. 

In the 1980s, technological advances made it possible to monitor equipment 

and collect data. As a result, a new condition-based method called predictive 

maintenance was introduced [41, 42]. Also, the method reduces maintenance costs 

and increases reliability by accurately estimating equipment downtime and 

remaining useful life (RUL) [39]. 

Fig 3- 1. Schematic representation of reactive maintenance 
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Fig 3- 2. Typical bathtub curve . The 'bathtub curve' hazard function (blue, upper solid line) is a 

combination of a decreasing hazard of early failure (red dotted line) and an increasing hazard of 

wear-out failure (yellow dotted line), plus some constant hazard of random failure (green, lower 

solid line) [43]. 

 

 
Machine 1                                                  

                                             
 
Machine 2                                                   

                                                           
 
Machine 3                                                  

                                   
 
Machine 4                                                  

                                                                                 

 

Proactive maintenance is a maintenance method that investigates and identifies 

the causes of system failures and eliminates failure factors. Today, this method is 

highly valued in conjunction with predictive maintenance [44].  

Fig 3- 3. Schematic representation of predictive maintenance. 
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As a result, the Internet of Things (IoT) is playing a key role in industry due to 

its ability to continuously monitor machines and devices, collect data, and use it as 

a critical factor in evaluating system performance. In addition, predictive 

maintenance (PdM) analysis, which uses data-driven techniques such as machine 

learning and deep learning to predict quality in the manufacturing and industrial 

complex, is an essential tool [13, 14].  

Therefore, artificial intelligence tools, particularly machine learning and deep 

learning, due to their great potential in creating automatic models for Big Data 

analysis, allow us to reduce repair and maintenance costs, maximize components’ 

working lives, reduce machine downtime, increase performance and operational 

safety, and improve decision-making capabilities regarding the ideal timing and 

actions for machine maintenance [15, 16, 17].  

Many articles work on PdM, which can be divided into three parts based on the 

system prediction method: physical, data-driven, and hybrid models [45] : Physical 

model approaches use prior knowledge of the system to create a mathematical 

description of the system degradation [46, 47, 48, 49]. The system concept 

(Physical meaning) is simple but challenging to execute when it is complicated. 

Data-driven methods use computational functions, algebraic rules, algorithms, 

and artificial intelligence methods, as well as state analysis and monitoring, where 

the solution is learned from historical data to predict the state of a system [50, 51, 

52].  This method does not require understanding the operation of the system, which 

makes it suitable for complex systems. However, it is usually difficult to relate the 

results to the physical meaning. 

The hybrid approach considers and combines both previous methods [45, 53]. 

The Industry 4.0 revolution in machine monitoring and continuous data acquisition 

is critical for data-driven methods, especially machine learning and deep learning 

which has opened the possibility of developing PdM models and increasing their 

accuracy [19]. The flowchart of machine learning and deep learning is shown in 

Figure 3-4. 

As shown in Figure 3-5, the data-driven PdM system is divided into two phases. 

First, a learning procedure (i.e., training the model) using previous raw sensor data 

is required. The trained model is then used to anticipate goals and make decisions. 

Each step typically consists of one of the three sub-processes listed below: 



58 

 

1. data acquisition and preprocessing, which can be single sensory or 

multisensory; 

2. feature engineering, which contains feature extraction, concatenation, 

and selection; and 

3. model training and predicting, in which a well-trained model will be 

generated with the optimal parameters 

To train models, traditional ML approaches such as logistic regression (LR), 

decision trees (DT), and random forests (RF) often require the collection of a 

significant amount of data from various failure events [54, 55]. The device state 

representation is then trained using features extracted from the time, frequency, and 

time-frequency domains. Deep learning , on the other hand, applied to a variety of 

neural networks (NNs), avoids the complex feature engineering described above 

and can be learned with an end-to-end learning strategy achieved by adding deep 

layers between the raw input and the prediction output. This is the main difference 

between ML and DL, and deep models can be considered as a "black box" that 

outputs the prediction result directly from the input. Because of all these factors, 

both ML and DL are widely used in PdM applications. 

 

 
 

Machine learning Flow 

 
 

                                                                     Deep Learning Flow 

Fig 3- 4. Flow Chart of ML and DL. 

In this work, a set of data, coming from different sources, available online [18] 

was evaluated. First, 10 of the most popular machine learning algorithms used in 

various works for PdM were applied. Machine learning algorithms used: 
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• Random Forest Classifier (RFC); 

• eXtreme Gradient Boosting Classifier (XGB Classifier); 

• Logistic Regression (LR); 

• Extra Trees Classifier; 

• Bagging Classifier;  

• Support Vector Classifier (SVC); 

• Linear Support Vector Classifier (Linear SVC); 

• Stacking Classifier; 

• Adaptive Boosting Classifier (AdaBoost); 

• Decision Tree Classifier.  

 

 
Fig 3- 5.  Flowchart of the data-driven method for predictive maintenance (PdM) [56]. 

Second, an innovative Deep Learning method was applied to the dataset. In this 

work, two types of Deep Learning algorithms are used: 

 

• Convolutional Neural Networks (CNN); 

• Long Short-Term Memory networks (LSTM); 
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First, the results of the Machine Learning algorithms and Deep Learning 

models were compared and discussed over the next 24 hours. In today's industrial 

landscape, the maintenance and repair of equipment is an essential aspect of 

ensuring the smooth functioning of industrial processes. However, it can also be a 

time-consuming and complex process that requires careful attention and planning. 

This is particularly true in cases where the equipment is located in remote areas, 

such as road construction machinery or hydraulic breakers. One of the biggest 

challenges of maintaining and repairing industrial equipment in remote areas is the 

procurement and supply of spare parts. In many cases, the parts required to repair 

the equipment may not be readily available in the local area, which can cause delays 

and disrupt the repair process. This can lead to prolonged downtime, decreased 

productivity, and increased costs. [19].  

Predictive maintenance can help reduce the downtime of equipment by 

identifying potential failures before they occur. This allows technicians to plan and 

schedule maintenance activities in advance, thereby reducing the need for 

emergency repairs and minimizing the impact of equipment failure on operations. 

predictive maintenance can also help extend the lifespan of equipment in remote 

areas. Equipment in remote areas is often subject to harsh environmental 

conditions, which can lead to premature wear and tear. By identifying potential 

failures before they occur, predictive maintenance can help address issues before 

they cause permanent damage to the equipment, thereby extending its lifespan. In 

addition, the availability of spare parts and skilled technicians in remote areas can 

be a challenge. Predictive maintenance can help optimize the use of available 

resources by identifying the most critical equipment that requires maintenance and 

prioritizing repairs accordingly. This helps ensure that the limited resources 

available are utilized in the most effective manner. Therefore, we improved PdM 

models with traditional learning machines and Deep Learning algorithms for up to 

7 days and compared the results.  

3.1.2 Challenges 

With technological advances in Industry 4.0, sensors, and the Internet of Things, a 

new concept called condition-based maintenance (CBM) has been considered. In 

this approach, inspections performed by engineers and technicians are 

automatically performed by tools and devices that measure industrial physical 

parameters such as flow, vibration, pressure and temperature signals [57].  
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As a result, interference and measurement errors are much lower, and by defining 

the operating range for each sensor, necessary action is taken when system 

performance is reported outside that range. Although a more effective and 

sophisticated approach CBM is used in the industry today, such as predictive 

maintenance, which uses data from sensors, cyber-physical systems , maintenance 

and fault reports [58]. It analyzes the process using machine learning and deep 

learning algorithms. It predicts the failure and remaining useful life (RUL) of 

machines and components and schedules maintenance and replacement of 

components [59].  

    One of the biggest challenges in predicting maintenance considering harsh 

industrial environments is the integrated collection of industrial data. In industrial 

environments, the likelihood of sensor errors and noise in the data is high [60]. In 

addition, the amount of data in industrial equipment monitoring is very large, so it 

is necessary to develop a suitable architecture for real-time processing of data sets 

for data analysis. Another challenge in maintenance forecasting is the collection of 

information on equipment replacement and repair by technicians.  

    This portion of the data is typically gathered by operators, resulting in a higher 

likelihood of errors. Furthermore, the maintenance forecast dataset is intrinsically 

imbalanced. Machines typically experience failures in less than 2% of their 

lifespan, meaning that the data collected from machines mainly consists of 98% of 

regular machine operations and less than 2% of instances of failure or errors. This 

imbalance disrupts the algorithm's training and significantly impacts the eventual 

outcomes. 
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3.2 Data Set 

Despite the growth of IIoT and sensors, access to datasets is difficult and rare due 

to security and business competition. However, Microsoft has published 

maintenance data from a large industrial project as a dataset [18]. The dataset 

consists of five subsets: 

• real-time telemetry; 

• error log; 

• maintenance history; 

• fault history; and 

• Metadata of Machines 

 

This dataset refers to 100 machines monitored in real-time for one year (be-

tween 2015-01-01 and 2016-01-01) with four pressure, stress, vibration, and 

rotation sensors. Each machine has four main parts that need repair and 

maintenance. 876.100 hourly telemetry records were collected for the machines. 

The number of fault records is 3919, and the number of maintenance records is 

3286. In addition, five types of errors and a total of 3920 errors were recorded for 

the machines.  

As shown in Table 3-1 , the sensors monitor all four parts of each machine in 

real-time and report the average of the measurements for each hour. The 

implementation described in this chapter is carried out in Python programming 

language using the Matplotlib, Numpy, Pandas, and Scikit-Learn packages [61, 62]. 

 
Table 3- 1 An example of a real-time telemetry recording. 

 Datetime Machine 

ID 

Volt Rotate Pressure Vibration 

15429 2015-06-10 

00:00:00 

 

2 166.553160 442.727933 115.759418 41.81844021 

15430 2015-06-10 

01:00:00 

 

2 183.765522 293.171668 114.854098 35.66955239 

15431 2015-06-10 

02:00:00 

 

2 210.505958 403.550754 102.978774 42.85403616 

15432 2015-06-10 

03:00:00 

 

2 180.469035 484.030160 88.0963987 50.50278907 

15433 2015-06-10 

04:00:00 

2 188.328311 441.091774 90.4839496 42.02409627 
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3.2.1 Exploratory data analysis of the telemetry 

Exploratory Data Analysis (EDA) is a type of data analysis in which an analyst 

investigates, summarizes, and visualizes data to gain insights, understand patterns, 

and uncover relationships. It is an iterative process that involves cleaning and 

transforming the data, identifying trends, and creating visualizations to 

communicate findings. EDA is an important step in the data science process, as it 

helps to develop hypotheses, validate assumptions, and identify potential areas for 

further analysis. 

The automatic exchange of data from many sources is called telemetry. In 2015, 

hourly averages of voltage, rotation, pressure, and vibration were collected from 

100 machines. For a better understanding of the behavior of each sensor, a simple 

statistical study is performed in Table 3-2. Where in it, the parameters for voltage 

("Volt"), rotation ("Rotate"), pressure ("Pressure") and vibration ("Vibration") 

between 01/01/2015 and 01/01/2016 are given, as well as their mean values, 

standard deviations, minimum and maximum values. As an example, Figure 3-6 

shows the graphical evolutions of the voltage (Figure 3-6a), rotation (Figure 3-6b), 

pressure (Figure 3-6c), and vibration (Figure 3-6d) for machine 20 (machineID =20)  

Table 3- 2 Statistical analysis of telemetry data in real time. 

 
count mean std min 25% 50% 75% max 

MachineID 876100 50.5000 28.8660 1.0000 25.7500 50.5000 75.2500 100.0000 

volt 876100 170.7777 15.5091 97.3336 160.3049 170.6073 181.0044 255.1247 

rotate 876100 446.6051 52.6738 138.4320 412.3057 447.5581 482.1766 695.0209 

pressure 876100 100.8586 11.0486 51.2371 93.4981 100.4255 107.5552 185.9519 

vibration 876100 40.38500 5.37036 14.8770 36.7772 40.2372 43.7849 76.791 
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(a) Volt Signature 

 

(b) Rotate Signature 

 

(c) Pressure signature 
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(d) Vibration signature 

             Fig 3- 6.  Evolution of Telemetry data for the machine 20. 

    The voltage of the machines does not change during the month, as shown by the 

plot of the voltage distribution over the different months (Figure 3-7). Since we 

only have data for one day in 2016, we can discard the 2016 entry. 

 

Fig 3- 7. plot the distribution of voltage across various months. 
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     To verify the voltage distribution over the machines, the plots of the normal 

distribution were examined (Figure 3-8a). The voltage distribution resembles the 

normal distribution, but for further investigation, the Anderson-Darling test and the 

quantile-quantile (QQ) plot are required (Figure 3-8b). 

 

(a) 

 

(b) 

      Fig 3- 8. QQ and distribution of Voltage plots across Machines. 
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    The distribution of vibration, rotation, voltage, and pressure appears normal. 

However, after applying the Anderson-Darling test and reviewing the QQ plots, it 

was found that the data for rotation, pressure, voltage, and vibration data do not 

belong to the normal/Gaussian distribution. 

3.2.2 Exploratory data analysis of the error 

The error logs contain errors that do not immediately cause the system to fail, 

but the investigation showed that the failure occurred shortly after the errors in 

many cases. These are operational errors experienced by machines that do not result 

in machine shutdowns and are recorded with rounded time stamps due to the hourly 

telemetry data collection. This system contains five types of errors: error 1, error 2, 

error 3, error 4, and error 5. See Table 3-2 for an example of a documented error. 

   Table 3- 3 An example of a errors recording. 

 Datetime Machine ID ErrorID 

0 2015-06-10 00:00:00 

 

1 Error2 

1 2015-06-10 01:00:00 

 

1 Error1 

2 2015-06-10 02:00:00 

 

1 Error2 

3 2015-06-10 03:00:00 

 

1 Error3 

4 2015-06-10 04:00:00 1 Error3 

     The histogram of errors and distribution of errors based on the Machine types is 

displayed on Figure 3-9. It can be concluded from reviewing the diagrams and 

analyzing the error data: 

1. Type 1 and Type 2 errors are the most frequent, occurring more than double 

the number of Type 5 errors. 

2. Machine ID 22 has the highest number of errors, approximately 60, with the 

highest frequency of Type 4 errors (15 occurrences). The lowest frequency 

of errors was Type 5 with 9 occurrences. 

3. An average of 12 errors per day occur across the 100 machines. 
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4. The highest number of errors (less than 25) occurs across days. In 2016 and 

2015, only one error occurred on a given day. 

5. An average of 12 errors per day occur across the 100 machines. 

 

 

                                      Fig 3- 9. The histogram of errors and distribution of errors based on the Machine types. 
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3.2.3 Exploratory data analysis of the Maintenance 

The dataset also includes records of maintenance, component replacements, and 

regular and unscheduled inspections. In the case of maintenance performed due to 

failure, there is an entry in the log. Each machine has four parts: comp1, comp2, 

comp3, and comp4. Figure 3-10 indicates that component replacements for all four 

parts of the machines were almost equal in 2015. 

 

 

 

Fig - 10. Histogram diagram of replaced components by type and number of maintenance records across 

months. 
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It can be concluded from reviewing the diagrams and analyzing the 

maintenance data: 

1. All four types of components were replaced approximately 800 times 

each. 

2. Maintenance records are available from June 2014 to January 2016. 

3. The number of components replaced in 2015 was significantly higher 

compared to 2014. 

4. In 2015, the highest number of maintenance records were in the months 

of May and July. 

5. The data for 2016 can be disregarded since there is only one day's worth 

of data. 

6. Machine ID-66, 68 & 70 are the highest number of Maintenance 

Records machines. 

3.2.4 Exploratory data analysis of the Machines 

The dataset contains information about the machines, such as model type and years 

in operation. The histogram of the machines' metadata is shown below. 

 

Fig 3- 11. Histogram of metadata of machines, by model. 

The analysis of the data suggests that the number of failures is slightly 

correlated with the age of the machine. The information from Table 13 and the 

correlation values supports the conclusion that the number of failures is linked to 

both the number of errors and the machine's age. 
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Fig 3- 12. plots of the number of failures, errors, and maintenance logs over the life of the 

machine. 
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Table 3- 4 correlation of the different parts of the data to each other. 

 machineID age num_errors num_maint num_failure 

machineID 1.000000 0.100196 0.107982 0.077903 0.096496 

age 0.100196 1.000000 0.106931 0.075445 0.476459 

num_errors 0.107982 0.106931 1.000000 0.026558 0.483735 

num_maint 0.077903 0.075445 0.026558 1.000000 -0.030258 

num_failure 0.096496 0.476459 0.483735 -0.030258 1.000000 

 

3.2.5 Exploratory data analysis of the Failures 

This maintenance data describes the replacement of components due to failures and 

is collected on an hourly basis. The data has been rounded to the nearest hour, 

indicating that it is a summarized version of the raw data. The maintenance data is 

a subset of the larger data set, which likely contains additional information about 

component maintenance and repair. 

     Understanding the correlation between the different parts of the maintenance 

data can provide valuable insight into the causes of component failures and inform 

preventive maintenance strategies to reduce the frequency of replacement. The 

number of records due to failures for all four machine components in 2015 was 761. 

The histogram of component failures is shown on Figure3-13.  
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Fig 3- 13. Histogram diagram of failures records. 

The histogram in Figure 3-13 provides valuable information about the 

frequency of component failures. The data shows that component-2 experiences the 

most failures, with the number of failures more than double those of component-3. 

This highlights the importance of focusing on understanding the root cause of 

component-2 failures in order to minimize equipment failures overall.  

By addressing the root cause of component-2 failures, it may be possible to 

reduce the frequency of replacements and improve the reliability of the equipment. 

This information can be used to inform maintenance strategies, such as regular 

inspections or preventative maintenance procedures, that can reduce the likelihood 

of future component failures. 
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3.3  Analytics Methodology 

Predictive maintenance (PdM) models are machine learning and deep learning 

algorithms that use data from various sensors, such as temperature, pressure, 

vibration, and others, to predict equipment failures. The goal of PdM is to avoid 

unscheduled downtime and reduce maintenance costs by only performing 

maintenance on equipment when it is actually needed, rather than on a 

predetermined schedule. PdM models can be either supervised or unsupervised, and 

can be built using techniques such as regression, classification, or clustering. The 

quality of a PdM model depends on the availability and quality of the data used to 

train it, as well as the choice of algorithms and hyperparameters. 

Here are several challenges and problems associated with predictive maintenance 

(PdM) models: 

1. Data quality: The accuracy of PdM models depends on the quality of the 

data used to train them. If the data is noisy or incomplete, the model may 

not accurately predict equipment failures. 

 

2. Data availability: PdM models require large amounts of data to train 

effectively. If data is not available for all equipment or for all possible 

failure modes, the model may not be able to make accurate predictions. 

 

3. Overfitting: Overfitting occurs when a model is too closely fit to the 

training data and does not generalize well to new data. This can be a problem 

for PdM models, as it can lead to false positive predictions. 

 

 

4. Model interpretability: Some machine learning models, such as neural 

networks, can be difficult to interpret. This can make it challenging to 

understand why a model is making a particular prediction, and to identify 

potential biases in the data. 

 

5. Data privacy and security: PdM models often require access to sensitive 

equipment data, which can pose privacy and security concerns. Ensuring the 

protection of this data is critical to the success of a PdM program. 
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6. Cost: Implementing a PdM program can be expensive, as it requires 

investment in hardware, software, and personnel. Additionally, the cost of 

maintaining and updating the models over time must also be considered.  

      For predictive maintenance analysis, we need to create a framework that fits 

the data set and algorithms. we consider the goal variables and outcomes, the 

predictive variables, and the algorithms for model building and model 

validation. Based on this, we need to convert the dataset into a machine-

learning-friendly format. In this study, the rows represent the examples of the 

dataset to be predicted or learned from, while the columns represent the target 

and predictive variables. This framework is one of the most common formats 

for implementing various machine learning and deep learning algorithms. 

      By analyzing the data set and looking at predictive maintenance from an 

industry perspective, we have established two target variables. The first step is 

to determine the prediction of machine failures. In this case, we can predict 

machine failures only 24 hours and 7 days in advance. Since each machine 

consists of four different components, the objective of the second step is to 

determine which component of the machine will fail. As for the timing, the 

predictions were studied in two time periods: in the next 24 hours and in the 

next 7 days. In this research, 10 common and standard machine learning 

algorithms and two deep learning methods, CNN and LSTM, were used. 

    The target variable chosen plays a key role in the size of the training data set 

and affects the performance of the predictive models. A larger dataset usually 

leads to better models because better predictive models can be trained and more 

iterations are possible [63]. With the above goals in mind, our task is to 

determine/predict which machine and which component will fail in the next 24 

hours and 7 days. A closer look at the dataset shows that we are dealing with an 

unbalanced dataset; for example, 98.11% of the data (Table 3-5) fall into the 

"Stable" category (failure = none), meaning that there were no failures. 

Table 3- 5 Example of the imbalance between the different classes for the ‘failure’ feature in the 

total data set. 

 Failure % 

none 285,684 98.06 

Comp1 1464 0.50 

Comp2 1985 0.68 

Comp3 968 0.33 

Comp4 1240 0.43 
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    Dealing with imbalanced datasets is a common challenge in predictive 

maintenance (PdM) applications. An imbalanced dataset is one where the 

number of instances belonging to the minority class (equipment failures) is 

much smaller compared to the majority class (normal operations). 

 This imbalance can result in several problems for PdM models: 

• Biased models: Models trained on imbalanced datasets can be biased 

towards the majority class and under-predict the minority class, leading to 

a high rate of false negatives. 

 

• Inefficient use of data: The majority class may dominate the training data, 

which can lead to the model not effectively learning the patterns in the 

minority class. 

 

• Unreliable performance metrics: Common metrics such as accuracy can 

be misleading when evaluating models trained on imbalanced datasets, as 

they do not take into account the imbalance in the data. 

There are several methods to address class imbalance in PdM datasets, 

including: 

• Undersampling: This involves randomly removing instances from the 

majority class to balance the classes. 

 

• Oversampling: This involves randomly replicating instances from the 

minority class to balance the classes. 

 

• Synthetic oversampling: This involves generating new synthetic instances 

of the minority class using methods such as SMOTE (Synthetic Minority 

Over-sampling Technique). 

 

• Weighted loss functions: This involves assigning different weights to the 

loss function for each class, to emphasize the importance of correctly 

classifying instances from the minority class. 

     In this study, for short-term behavior, a 3-hour time window is used, for 

long-term behavior a 24-hour time window, but for seven-day forecasting, a 

different time frame is needed that covers more than 24 hours. The issue is that 

this results in some failure data being ignored and that this can negatively 

impact the accuracy of machine learning algorithms when training them. 



77 

 

      Due to the imbalance of the data, methods for balancing datasets such as  

RUSBoost [64] and SMOTEBoost [65] have been studied in Python language 

programming.  

    The term "RUSTBoost imbalance dataset" likely refers to a dataset that has 

an imbalanced class distribution, meaning that the number of samples in 

different classes is not equal. In such a dataset, one class may have significantly 

more samples than others. This can cause problems in machine learning as 

algorithms may tend to predict the majority class more often, leading to poor 

performance on the minority class. The "RUSTBoost" part of the term could 

refer to a method for handling imbalanced datasets, such as the "Random 

Under-Sampling and Synthetic Over-sampling Technique (RUSBoost)" 

algorithm.  

    SMOTEBoost is an ensemble learning algorithm for binary classification 

problems that combines the Synthetic Minority Over-sampling Technique 

(SMOTE) with boosting. SMOTE is a data augmentation method used to 

balance the class distribution of an imbalanced dataset by synthesizing new 

samples for the minority class. Boosting is an ensemble learning technique that 

trains multiple weak learners in a sequential manner, where each subsequent 

learner focuses on the misclassified samples from the previous learner. By 

combining these two techniques, SMOTEBoost aims to improve the accuracy 

of classifiers on imbalanced datasets by balancing the class distribution and 

reducing overfitting. 

    SMOTEBoost and RUSBoost are two popular ensemble techniques for 

addressing class imbalance in machine learning tasks. However, these 

techniques may not work well for time-series datasets in predictive maintenance 

tasks due to several reasons [64] [65] : 

• Bias towards the majority class: Even after over-sampling the minority 

class and under-sampling the majority class, the model may still exhibit a 

bias towards the majority class due to the larger number of samples. 

 

• Overfitting: Over-sampling the minority class may lead to overfitting, 

especially if the number of synthetic samples generated is large. 

 

• Loss of information: The under-sampling step in RUSBoost discards a 

portion of the majority class samples, which may result in a loss of 
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important information. The synthetic samples generated in SMOTE may not 

accurately reflect the real-life distribution of the minority class, which can 

also result in a loss of information. 

 

• Difficulty in selecting appropriate parameters: The choice of the ratio of 

samples to be under-sampled and over-sampled, as well as the choice of the 

over-sampling method, can greatly affect the performance of these 

algorithms, and finding the optimal combination of parameters can be 

challenging. 

 

• Temporal dependencies: In time-series data, observations are ordered by 

time, and there is often a temporal dependence between observations. This 

means that oversampling or resampling techniques that randomly duplicate 

or remove observations can break the temporal dependence and lead to 

unrealistic data distributions. 

 

• Limited data availability: In predictive maintenance tasks, data is often 

scarce, and collecting more data is expensive or impossible. Oversampling 

and resampling techniques require duplicating or removing observations, 

which can be problematic when data is limited. 

 

• Potential data leakage: Oversampling and resampling techniques may 

introduce data leakage, where information from the future is used to predict 

the past. This can lead to overestimating the performance of the model 

during testing. 

 

• Outlier removal: Resampling techniques such as undersampling can 

remove rare events that are critical for predictive maintenance tasks. These 

rare events may provide important insights into the health of the system and 

their removal may hinder the performance of the model. 

     These problems can be mitigated by using techniques such as cross-

validation and hyperparameter tuning to find the optimal parameters, and by 

combining these algorithms with other techniques to get better results. In 

addition, Studies have shown that these methods affect the time factor in the 

dataset, so they did not improve the performance of machine learning 

algorithms results. In this study, two strategies are used to solve the problem of 

predictive maintenance models for more than 24 hours: 
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1. For predictions longer than 24 hours, machine learning algorithm results 

are given as a weighted average. As mentioned earlier, machine learning 

algorithms perform poorly on imbalanced datasets and biased class data. 

However, when training algorithms on unbalanced datasets with skewed 

distributions, we can apply the concept of weighting to improve this 

problem. In this case, the weighting difference is used to classify the 

classes in the training models.  

The goal is to correct the misclassification of the minority class by 

increasing its weight and decreasing that of the majority class. It should 

be emphasized that the weighting of each class must be applied 

appropriately and carefully, since a high weighting of the minority class 

(in this dataset, the failures) risks that the algorithm toward the minority 

class and increases the errors of the majority class. Fortunately, we can 

make appropriate and optimal use of minority class weighting by 

integrating modeling libraries such as sklearn, catboost, and LightGBM 

into Python scripts. 

 

2. Predictive maintenance utilizes deep learning and machine learning as 

key techniques to forecast equipment failures and perform maintenance 

in a timely manner. This helps to minimize downtime and prolong 

equipment lifespan. Deep learning trains artificial neural networks on 

large data sets to identify patterns and make predictions, particularly in 

condition monitoring by examining sensor data for anomalies. On the 

other hand, machine learning uses algorithms to analyze data and make 

predictions.  

In predictive maintenance, machine learning algorithms are used to 

study patterns in historical equipment maintenance data to predict future 

failures. Both of these techniques offer valuable insights for improving 

equipment reliability and reducing maintenance costs. Figure 3-14 

shows the differences between artificial intelligence, machine learning, 

and deep learning. 
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In this study, LSTM networks and CNN algorithms were employed to 

predict maintenance operations for the next 7 days based on the dataset. 

However, due to limitations in the data, a two-step approach was taken 

in which the dataset was divided into two classes. The two-step 

technique for deep learning predictive maintenance involves using two 

separate steps to analyze and predict equipment failures. The first step 

only analyzed the data between the two classes using artificial 

intelligence algorithms, showing the probability of failure for each 

machine in the next 7 days. In the second step, the data is further divided 

and analyzed to improve the accuracy of the prediction, taking into 

account the prediction errors from the first step. This two-step approach 

is used to ensure more accurate predictions and to maximize the 

efficiency of the predictive maintenance process. In the initial step, 

classes 0 to 3 linked with components 1 to 4 were merged into one class. 

Only AI algorithms were employed in this step to study the data between 

the two classes, and the results only displayed the likelihood of failure 

for each machine in the subsequent 7 days. The division of the dataset 

into these two classes is depicted in Figure 3-15.  

  

Artificial intelligence (AI): the 

science and technology of intelligent 

machines that mimic human 

intelligence and behavior [66]. 

 

Machine Learning (ML): 

Algorithms that extract patterns 

from structured data and use them to 

predict results [67]. 

 

Deep Learning (DL): As a subclass 

of ML, it analyzes data using 

multiple levels and layers of 

nonlinear information processing 

[68]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Artificial Intelligence 

Machine Learning 

Deep Learning 

Fig 3- 14. Onion diagram for AI, ML, DL . 
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Fig 3- 15 Amount and percentage of data divided between classes 1 and 2. 

    The maintenance department's work is time-sensitive, so accurately 

predicting and identifying the component in need of maintenance is crucial. 

This allows the maintenance team to obtain the necessary resources and support 

for repairing or replacing the component. In the second step, the algorithms are 

trained, tested, and validated using the hourly and daily (windowing) data from 

the second class and the prediction errors from the first class. Windowing 

involves dividing the time-series data into fixed-length windows and treating 

each window as a separate instance. This technique can help to increase the 

number of instances in the failure or maintenance class and improve the balance 

of the dataset. 

3.3.1 Data partitioning 

Data partitioning is the process of dividing a dataset into separate subsets for 

training, validation, and testing. The goal of data partitioning is to create a more 

accurate and reliable machine learning model by preventing, overfitting and 

ensuring that the model is generalizable to new, unseen data. Splitting the data 

set into smaller subsets can improve algorithm efficiency and performance and 

reduce the risk of overfitting. In fact, overfitting occurs when an algorithm is 

too tightly fitted to the training data. The dataset can be split randomly or used 

special techniques such as stratified sampling to ensure that the data is 

representative of the entire dataset.  
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  Here are some reasons why data partitioning is important: 

• Improved performance: When working with large datasets, 

processing all the data at once can be time-consuming and 

computationally intensive. By partitioning the data into smaller subsets, 

it becomes possible to process each subset independently and in parallel. 

This can lead to significant performance improvements, as each subset 

can be processed more quickly and efficiently. 

• Scalability: Data partitioning also enables scalability. As the dataset 

grows in size, it may become impractical or impossible to process it all 

at once. By partitioning the data, it becomes possible to distribute the 

processing across multiple machines or nodes in a distributed system, 

allowing for greater scalability. 

• Reduced memory usage: Partitioning can also help reduce the amount 

of memory required to process the data. By processing only one subset 

at a time, the amount of memory needed to hold the data in memory is 

reduced, making it possible to work with larger datasets on machines 

with limited memory. 

• Improved data quality: In some cases, partitioning can also help 

improve the quality of the data. By partitioning the data into smaller 

subsets, it becomes easier to identify and correct errors or 

inconsistencies in the data. 

• Simplified maintenance: Finally, data partitioning can simplify 

maintenance tasks, such as backups and data migration. By dividing the 

data into smaller subsets, it becomes possible to perform these tasks 

more efficiently and with less disruption to ongoing processing. 

     As shown in Figure 3-16a, the data set is usually randomly partitioned into 

three parts to evaluate the models for predicting future 24-hour maintenance 

(short-term): training set (64%), test set (20%), and validation set (16%). For 

the two-step mode (the models to predict the next 7 days, long-term),  we split 

the data into two parts, as shown in Figure 3-16b. Binary dataset partitioning 

involves dividing a dataset into two parts. This technique is widely used in 

machine learning to create separate training and testing sets. The training set is 

used to train the model, and the testing set is used to evaluate its accuracy and 

performance. This type of partitioning is effective in dividing the data into 

distinct sets for more efficient machine learning algorithm training and testing. 
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                             (a) (b) 

Fig 3-16. Amount of data attributed to each of the sets. (a) short-term, (b) long-term. 

3.3.2 Normalization 

Normalization is a pre-processing stage of any type of problem statement. Indeed, 

Normalization is an important technique in data science that can help to improve 

the accuracy, efficiency, performance, interpretability, and compatibility of data. 

By transforming data into a common scale, normalization can help data scientists 

to extract valuable insights and knowledge from complex datasets. 

There are different techniques and types of normalization that can be used in 

data analysis, depending on the nature of the data and the objectives of the analysis. 

Here are some common normalization techniques and types used in data analysis: 

• Min-max normalization: This technique scales the data to a range between 

0 and 1. It involves subtracting the minimum value of the data and dividing 

by the range (maximum value - minimum value). 

• Z-score normalization: This technique transforms the data into a standard 

normal distribution with a mean of 0 and a standard deviation of 1. It 

involves subtracting the mean of the data and dividing by the standard 

deviation. 
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• Decimal scaling normalization: This technique involves scaling the data 

by dividing each value by a power of 10. The power of 10 is chosen such 

that the largest absolute value in the data is less than 1. 

• Log transformation: This technique involves taking the logarithm of the 

data values. This can be useful for data that has a wide range of values or is 

skewed. 

• Unit vector normalization: This technique scales each row or column of 

the data to have a unit length. It involves dividing each value by the 

Euclidean norm of the row or column. 

• Softmax normalization: This technique is commonly used in classification 

problems where the data represents probabilities. It scales the data such that 

the sum of the probabilities in each row is equal to 1. 

These are just a few examples of the normalization techniques and types used 

in data analysis. The choice of normalization technique depends on the nature of 

the data and the objectives of the analysis. The goal of normalization is to transform 

the data into a common scale that facilitates better comparison and analysis. 

     Min-max scaling normalization is a data normalization technique used in data 

preprocessing to scale numerical features to a fixed range [69, 70]. The goal of this 

technique is to transform the data so that it has a similar scale and distribution, 

which can improve the performance of some machine learning algorithms [71]. 

  In min-max scaling normalization, each feature is scaled to a fixed range, usually 

between 0 and 1. The formula for min-max scaling normalization is shown in 

Equation 3-1 : 

 x_scaled = (x - x_min) / (x_max - x_min) (Equation 3-1) 

 

where x is the original feature value, x_min is the minimum value of the feature, 

and x_max is the maximum value of the feature. 

Considering this, min-max normalization is a simple and straightforward 

normalization technique that can be beneficial for data with a well-defined 

range of values, as well as for some machine learning and data visualization 

algorithms. Min-max normalization can also be used for data sets with a known 

range of values, non-normal distributions, and non-binary and non-negative 

data that are not sensitive to outliers. In this study, min-max normalization was 

used to preprocess the data. 
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3.3.3 Model Creation 

This section presents how the ML and DL model should be trained and tested. 

model parameter tuning is an essential step in the development of machine learning 

and deep learning models. It involves defining a performance metric, choosing a 

search algorithm, defining a search space, conducting the search, and validating the 

results. With careful parameter tuning, the performance of a model can be 

significantly improved, leading to more accurate and effective predictions. In 

greedy search optimization, all the possible combinations of hyperparameters for 

the ML and DL models are tested, while in randomized search a randomly 

generated set of combinations is considered and evaluated. This step is crucial to 

obtain an optimized ML and DL models to handle the PdM problem. 

As soon as the most appropriate hyperparameters are identified, the model is 

fine-tuned using all available data in real-world applications. In contrast, in research 

studies, data are often split to evaluate the performance of the model. In the training 

phase of the model, the training set is used, while the test set is used to evaluate the 

effectiveness of the model.  

In the next step, the test set created in the previous step is used. There is no one-

size-fits-all approach for evaluating machine learning (ML) and deep learning (DL) 

models. The choice of evaluation metrics depends on the problem being solved and 

the nature of the data. However, there are four common metrics used to evaluate 

ML and DL models:  

• Accuracy: Accuracy is the most basic evaluation metric, and it 

measures the proportion of correctly classified samples. It is calculated 

as the number of correctly classified samples divided by the total 

number of samples (Equation 3-2). 

 Accuracy = 
1

  𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ (

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1
�̂�𝑖 = 𝑦𝑖)  (Equation 3-2) 

• Precision: Precision is the proportion of true positive samples among 

all positive samples, and it is a useful metric when the cost of false 

positives is high. It is calculated as the number of true positive samples 

divided by the sum of true positive and false positive samples (Equation 

3-3). 
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Precision = 

𝑡𝑃

𝑡𝑃+𝑓𝑃
 

(Equation 3-3) 

• Recall: Recall is the proportion of true positive samples among all 

actual positive samples, and it is a useful metric when the cost of false 

negatives is high. It is calculated as the number of true positive samples 

divided by the sum of true positive and false negative samples (Equation 

3-4). 

 
Recall = 

𝑡𝑝

𝑡𝑃+𝑓𝑛
 

(Equation 3-4) 

• F1 score: The F1 score is the harmonic mean of precision and recall, 

and it is a useful metric when the classes are imbalanced. It is calculated 

as 2 * (precision * recall) / (precision + recall) (Equation 3-5). 

 
F1= 2*

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 

(Equation 3-5) 

where yˆi is the predicted class, yi is the expected class, tp stands for true 

positives, fp for false positives, and fn for false negatives. 
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3.3.4 Machine Learning and Deep Learning Algorithms 

Algorithms are a crucial component of machine learning as they determine how the 

model will learn from the data and make predictions. In essence, an algorithm is a 

set of instructions that a computer uses to perform a specific task. In the context of 

machine learning, algorithms are used to train models on data and make predictions 

based on that training. There are many different algorithms that can be used for 

machine learning, and the choice of algorithm will depend on the problem being 

solved and the characteristics of the data.  

     The importance of choosing the right algorithm lies in its ability to learn 

effectively from the data and make accurate predictions. A well-chosen algorithm 

can lead to better model performance and more accurate predictions, while a poorly 

chosen algorithm can lead to overfitting, underfitting, or poor performance. It is 

also important to keep in mind that no single algorithm is the best for all problems, 

and that it is often necessary to try several different algorithms and evaluate their 

performance to determine the best one for a specific problem. Additionally, 

different algorithms may be more or less computationally expensive, and the trade-

off between accuracy and computational cost should be considered when selecting 

an algorithm. In this work, a set of data, coming from different sources, available 

online [18] was evaluated. First, 10 of the most popular machine learning 

algorithms used in various works for PdM were applied. Machine learning 

algorithms  are used: 

• Random Forest Classifier (RFC):  

 

Random Forest Classifier (RFC) is a popular machine learning 

algorithm used for classification tasks. It is an ensemble learning 

method that combines multiple decision trees, where each tree is built 

using a different subset of the training data and a random subset of the 

features [72]. The RFC algorithm works by creating a forest of decision 

trees, where each tree is built using a random subset of the training data 

and a random subset of the features. Each tree is trained using a different 

subset of the data, which helps to reduce overfitting and improve the 

accuracy of the model. 

During prediction, the RFC algorithm combines the predictions of all 

the trees in the forest and returns the class with the most votes. This 

approach helps to improve the accuracy of the model and reduce the 

risk of overfitting. 
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• eXtreme Gradient Boosting Classifier (XGB Classifier):  

 

eXtreme Gradient Boosting Classifier (XGB Classifier) is a powerful 

machine learning algorithm used for classification and regression tasks. 

It is a variant of the gradient boosting algorithm that uses a tree-based 

approach to build a predictive model. 

The XGB Classifier works by iteratively building an ensemble of 

decision trees, where each tree is built to correct the errors made by the 

previous tree. It uses a gradient descent optimization algorithm to train 

each tree, which helps to improve the accuracy of the model and reduce 

overfitting. 

The XGB Classifier is a popular algorithm because of its ability to 

handle large datasets with a high number of features. It is also known 

for its speed and scalability, making it a popular choice for solving 

problems related to image and speech recognition, text classification, 

and anomaly detection. One of the key advantages of the XGB 

Classifier is its ability to handle missing data and outliers. It also 

supports a wide range of loss functions and can be customized to handle 

specific problems [73]. 

 

• Logistic Regression (LR): 

 

Logistic Regression (LR) is a popular machine learning algorithm used 

for classification tasks. It is a statistical model that is used to estimate 

the probability of a binary outcome based on one or more input 

variables. 

In LR, the output variable is binary (i.e., it can take one of two possible 

values), and the algorithm estimates the probability of the output 

variable taking a particular value based on the input variables. The LR 

algorithm models this relationship using a logistic function, which is a 

special type of S-shaped curve. One of the advantages of LR is that it is 

a relatively simple algorithm that is easy to implement and interpret. It 

also performs well on small to medium-sized datasets with a moderate 

number of input variables. However, it may not be suitable for complex 

problems or datasets with a large number of features [74]. 
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• Extra Trees Classifier:  

 

Extra Trees Classifier is a machine learning algorithm that is similar to 

the Random Forest Classifier (RFC). Like RFC, it is an ensemble 

learning method that combines multiple decision trees to make 

predictions. The Extra Trees Classifier algorithm works by creating a 

forest of decision trees, where each tree is built using a random subset 

of the training data and a random subset of the features. However, 

unlike RFC, the Extra Trees Classifier algorithm selects the splitting 

points for each node of the decision tree randomly, without considering 

the optimal split. This approach helps to reduce the variance of the 

model and can improve the performance of the algorithm, especially 

when dealing with noisy data. 

During prediction, the Extra Trees Classifier algorithm combines the 

predictions of all the trees in the forest and returns the class with the 

most votes, similar to RFC. One of the key advantages of the Extra 

Trees Classifier algorithm is its ability to reduce overfitting by 

randomly selecting the splitting points of the decision trees. It is also a 

relatively fast algorithm, making it a good choice for large datasets with 

many features [75]. 

 

• Bagging Classifiers: 

 

Bagging Classifier is a machine learning algorithm that is used for 

ensemble learning, similar to the Random Forest Classifier and Extra 

Trees Classifier. Bagging stands for Bootstrap Aggregating, which 

refers to the technique of sampling the training data with replacement 

to create multiple subsets of the data, and then training a separate 

classifier on each subset. One of the key advantages of Bagging 

Classifier is its ability to reduce overfitting, which is a common problem 

in machine learning. By training multiple classifiers on different subsets 

of the data, Bagging Classifier can produce a more stable and robust 

model that generalizes well to new, unseen data. 

One limitation of Bagging Classifier is that it can be computationally 

expensive, especially when dealing with large datasets or complex 

models. It also requires careful selection of hyperparameters to ensure 

optimal performance [76]. 
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• Support Vector Classifier (SVC):  

 

Support Vector Classifier (SVC) is a type of supervised machine 

learning algorithm that can be used for classification tasks. It is a type 

of Support Vector Machine (SVM) algorithm that finds a hyperplane in 

a high-dimensional space that maximally separates the data into 

different classes. 

The main goal of SVC is to find the best possible decision boundary 

that separates the data into different classes. It does this by first 

transforming the data into a higher dimensional space, where it is easier 

to find a hyperplane that separates the data. The decision boundary is 

then chosen as the hyperplane that maximizes the margin, which is the 

distance between the hyperplane and the closest data points from each 

class. SVC can handle both linearly separable and non-linearly 

separable data by using different types of kernel functions, such as 

linear, polynomial, radial basis function (RBF), and sigmoid. The 

kernel function is used to transform the data into a higher dimensional 

space, where it may be easier to find a hyperplane that separates the data 

[77]. 

 

• Linear Support Vector Classifier (Linear SVC):  

 

Linear Support Vector Classifier (Linear SVC) is a variant of the 

Support Vector Machine (SVM) algorithm used for solving linearly 

separable classification problems. Linear SVC aims to find the optimal 

hyperplane that separates the training data points into different classes 

in a linearly separable manner. The hyperplane is chosen such that it 

maximizes the margin, which is the distance between the hyperplane 

and the closest data points from each class. 

Linear SVC works by finding the weights and biases that define the 

hyperplane equation. The training process of Linear SVC involves 

minimizing the sum of squared weights subject to the constraint that all 

data points are correctly classified. This optimization problem is solved 

using the Lagrange multiplier method, resulting in a set of coefficients 

that can be used to define the hyperplane. 

Unlike the regular SVM algorithm, Linear SVC is more efficient and 

faster for large-scale datasets, as it doesn't require transforming the data 



91 

 

into a higher-dimensional space. It can handle a large number of 

features and is robust to noise and outliers in the data [78]. 

 

• Stacking Classifier: 

 

A stacking classifier is a type of ensemble learning algorithm that 

combines multiple individual classifiers or models to make a final 

prediction. The idea behind stacking is to use the outputs of individual 

classifiers as input features for a final classifier, which then makes the 

final prediction. 

Stacking can be used for a variety of tasks, including classification and 

regression. It is particularly useful when the base classifiers have 

different strengths and weaknesses, as combining them can lead to 

better overall performance. 

One potential issue with stacking is overfitting, where the model 

performs well on the training data but poorly on new, unseen data. To 

address this, it is important to use cross-validation during training and 

to ensure that the base classifiers are diverse enough to capture a wide 

range of features in the data [79]. 

 

• Adaptive Boosting Classifier (AdaBoost): 

 

Adaptive Boosting Classifier, also known as AdaBoost, is a popular 

ensemble learning algorithm that combines weak classifiers to form a 

strong classifier. AdaBoost works by iteratively training a sequence of 

weak classifiers on the same dataset, each time giving more weight to 

the misclassified samples from the previous iteration. In this way, 

AdaBoost focuses on the hard-to-classify examples and trains the weak 

classifiers to perform better on those examples.  

AdaBoost is a versatile algorithm that can be used with any 

classification algorithm as long as it can handle weighted examples. 

Some popular base classifiers used with AdaBoost include decision 

trees, SVMs, and neural networks. One of the key benefits of AdaBoost 

is that it can achieve high accuracy with a relatively small number of 

weak classifiers, making it computationally efficient. 

However, AdaBoost is sensitive to noisy data and outliers, which can 

reduce its performance. To address this, techniques such as outlier 

detection and data preprocessing can be used. Additionally, AdaBoost 
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can be prone to overfitting, so it is important to use cross-validation to 

select the optimal number of weak classifiers and to avoid overfitting 

[80]. 

 

• Decision Tree Classifiers: 

 

A Decision Tree Classifier is a supervised learning algorithm used for 

classification and regression tasks. It is a tree-structured model that 

partitions the input space into disjoint regions and assigns a class label 

or regression value to each region. The decision tree algorithm works 

by recursively splitting the input space into smaller regions based on the 

values of input features. The splitting is performed based on the features 

that provide the most information gain, which is a measure of the 

reduction in entropy or impurity of the data. 

Decision Trees are powerful algorithms that can handle both categorical 

and continuous input features, and can handle missing values. They are 

also interpretable, meaning that the learned model can be easily 

visualized and understood by humans. Additionally, decision trees can 

handle non-linear relationships between input features and the output 

variable. 

However, decision trees can be prone to overfitting, where the model 

performs well on the training data but poorly on new, unseen data. To 

address this, techniques such as pruning, setting a minimum number of 

samples per leaf node, or using ensemble methods such as Random 

Forests can be used [81]. 

 

Second, innovatives Deep Learning method was applied to the dataset. In this 

work, two types of Deep Learning algorithms are used:  

• Convolutional Neural Networks (CNNs): 

 

Convolutional Neural Networks (CNNs) are a type of deep learning 

algorithm that is particularly well-suited for image recognition tasks. 

CNNs use a hierarchical architecture of layers that learn increasingly 

complex features from the input image data. The key innovation of 

CNNs is the use of convolutional layers, which apply a set of filters to 

the input image and produce feature maps that capture local patterns 

and structures. The basic steps of a CNN algorithm are as follows: 
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1. Convolutional Layers: Applying a set of convolutional filters to the 

input image to produce feature maps that capture local patterns and 

structures. 

 

2. Pooling Layers: Reduceing the dimensionality of the feature maps by 

downsampling them using techniques such as max pooling or average 

pooling. 

 

3. Activation Layers: Applying a non-linear activation function to the 

pooled feature maps to introduce non-linearity into the model. 

 

4. Fully Connected Layers: Combining the output of the activation layers 

into a vector and pass it through a series of fully connected layers to 

make the final classification decision. 

 

CNNs are particularly well-suited for image recognition tasks and time 

series because they can capture local patterns and structures in an image, 

regardless of their location. This allows the model to be invariant to 

small shifts and distortions in the input image. 

However, training a CNN can be computationally intensive and requires 

a large amount of labeled training data. Additionally, CNNs are often 

considered to be black box models, making it difficult to understand 

how the model is making its decisions [82]. 

 

• Long Short-Term Memory networks (LSTM):  

 

Long Short-Term Memory networks (LSTMs) are a type of recurrent 

neural network (RNN) that is particularly well-suited for modeling 

sequential data, such as time series or natural language text. LSTMs use 

a memory cell and a set of gates to control the flow of information 

through the network over time, allowing it to selectively remember or 

forget information as needed. 

The basic components of an LSTM network are: 

 

1. Memory Cell: Stores information over time. 
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2. Input Gate: Controls which information is allowed into the 

memory cell. 

 

3. Forget Gate: Controls which information is discarded from the 

memory cell. 

 

4. Output Gate: Controls which information is output from the 

memory cell. 

 

The LSTM network is trained on a sequence of input data and learns 

to predict the output at each time step. During training, the weights 

of the network are adjusted to minimize the difference between the 

predicted output and the actual output. 

LSTMs are particularly well-suited for tasks such as speech 

recognition, language translation, and sentiment analysis because 

they can capture long-term dependencies in the input sequence. 

Unlike traditional RNNs, which can suffer from the "vanishing 

gradient" problem, LSTMs use gates to selectively control the flow 

of information through the network, making them more effective at 

capturing long-term dependencies. 

However, training an LSTM can be computationally expensive and 

requires a large amount of training data. Additionally, LSTMs are 

often considered to be black box models, making it difficult to 

understand how the model is making its predictions. 

Overall, the key to choosing a good AI algorithm for predictive maintenance is 

to have a clear understanding of the problem and the data, and to evaluate different 

algorithms based on their performance, scalability, and interpretability. 
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3.4   Feature Engineering 

Feature engineering is one of the most important steps in machine learning and deep 

learning. Feature engineering directly affects code execution time and results. 

Feature engineering is the process of selecting, transforming, and creating features 

from the raw data that are relevant and informative for a machine learning or deep 

learning model. Feature engineering is a critical step in the machine learning and 

deep learning pipeline because the quality of the features can have a significant 

impact on the performance of the model. 

    Initially, statistical and machine learning approaches are utilized to scrutinize the 

features and correlations of all the variables. Afterward, the procedure of feature 

selection is executed. In this stage, depending on the dataset, unsuitable and 

irrelevant features are disregarded. Essentially, feature engineering is the utilization 

of statistical methods and techniques to analyze the data and the relationships 

between variables and transform them into features that are appropriate for machine 

learning and deep learning algorithms [83]. 

In machine learning, feature engineering typically involves selecting a subset 

of the input features that are most relevant for the prediction task and transforming 

them into a more useful representation. For example, if the input data includes a 

date field, feature engineering might involve extracting the day of the week or the 

time of day as separate features [84]. 

In deep learning, feature engineering can involve using pre-trained models such 

as CNNs or LSTMs to extract high-level features from the raw input data. These 

pre-trained models are often trained on large amounts of data and can capture 

complex patterns and structures in the input data that are difficult to extract 

manually [85]. 

In this data set, especially telemetry data, the data is recorded in real time by 

the sensors and reported as an hourly average. One of the appropriate techniques to 

reduce the effects of undesirable factors and minimize noise is to use a time 

window. Given the dataset and the project requirements, we need to determine how 

large the lookback should be for the model, which is called lag features. In this 

work, two different time windows are used: 3 hours (short-term) and 24 hours 

(long-term). An example of lag features for real-time telemetry data can be found 

in Table 3-6. 
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Table 3- 6 An example of Lag Features (short-term) for telemetry data.. 

 

Finally, the records related to machines, such as the error log and the mainte-

nance log, as well as the model and years of operation of each machine, can be used 

as features. It should be noted that while the error log is associated with date/time, 

unlike telemetry data, it is categorical and not numerical. Therefore, averaging over 

time intervals should not be carried out. Instead, we count the number of errors in 

each category in a lagging window. 

Also, the different parts of this dataset allow us to extract new features; For 

example, the maintenance log contains information about replacing different parts 

of the machine, but we know from experience and industry knowledge that the 

longer a component is used, the more likely it is to fail. This type of feature 

engineering, which leads to creating specific and relevant features using 

engineering knowledge, plays a crucial role in predictive maintenance models.  

After developing the features, it is important to select the most relevant features 

for the analysis or model building. However, before the feature selection step, it is 

essential to integrate and consolidate the data from different subsets and data 

collection conditions.  

Data integration involves combining data from different sources, such as 

databases, files, or web services, into a single, unified dataset. This process may 

involve resolving differences in data structures, formats, or naming conventions 

across different sources. Data consolidation involves cleaning and transforming the 

data to make it consistent and usable for analysis or modelling. This may involve 

removing duplicates, filling in missing values, or transforming data into a common 

format. 

 Machine 

ID 
Datetime 

Volt  

min_3h 

Rotate 

min_3h 

Pressur

e 

min_3h 

Vibration 

min_3h 

Volt 

max_3h 

Rotate 

max_3h 

Pressure 

max_3h 

Vibration 

max_3h 

0 1 
1/2/2015 

6:00  
158.2714 403.2359 92.4391 32.5168 200.8724 495.7779 96.5354 52.3558 

1 1 
1/2/2015 

9:00  
160.5288 384.6459 86.9442 29.5276 197.3631 486.4590 114.3420 42.9925 

2 1 
1/2/2015 

12:00  
147.3006 412.9656 90.7113 34.2030 173.3945 439.5794 110.4089 37.1171 

3 1 
1/2/2015 

15:00  
152.4207 385.3549 99.5068 30.6651 185.2053 497.8406 105.9932 47.8624 

4 1 
1/2/2015 

18:00 
145.2484 424.5426 93.7438 37.4222 180.0307 495.3764 111.9505 43.0997 
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After the data integration and consolidation steps, the next step is to select the 

most relevant features for analysis or model building. This can help to reduce the 

complexity of the dataset and improve the accuracy and interpretability of the 

analysis or model. As mentioned earlier, there are various methods for feature 

selection, and the choice of method depends on the specific problem and dataset. It 

is important to evaluate the performance of the selected features on a validation set 

to ensure that the selected features are robust and generalize well to new data [86]. 

Figure 3-17 shows the linear correlation between variables. Feature correlation 

is a statistical measure that describes the degree of association or relationship 

between two or more variables in a dataset. In machine learning and data analysis, 

feature correlation is often used to identify which variables are strongly related to 

each other, and which variables are less related or unrelated. There are several 

methods to measure feature correlation, including: 

• Pearson correlation coefficient: This method measures the linear 

relationship between two continuous variables. It ranges from -1 to 1, 

where -1 indicates a perfect negative correlation, 0 indicates no 

correlation, and 1 indicates a perfect positive correlation. 

• Spearman's rank correlation coefficient: This method measures the 

monotonic relationship between two variables, which means that it 

measures whether the variables tend to increase or decrease together, 

but not necessarily at a constant rate. 

• Kendall's rank correlation coefficient: This method also measures the 

monotonic relationship between two variables, but it is less sensitive to 

outliers than Spearman's method 

 From this plot, it is clear that the correlation between variables and features is 

very low and the correlation coefficient of a large number of features is close to 

zero (less than 0.01).  

In order to select the appropriate features, various minimum correlation 

coefficients have been studied. Research has shown that prediction models using 

machine learning and deep learning perform better when features with a correlation 

coefficient greater than 0.01 are used. In this article, 34 features were selected. To 

improve the performance of artificial intelligence algorithms, we used statistical 

concepts in this article to create additional features for the telemetry features over 

a 3-hour and a 24-hour lag window for the dataset: 
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• Minimum values; 

• Maximum values; 

• Mean values; 

• Standard deviation; 

 

                              Fig 3-17.  Features correlation. 

 

3.5   Deep learning model construction  

As mentioned earlier, the dataset is a time series where the data was recorded in 

real time. Two powerful deep learning algorithms for time series data that are 

commonly used for modeling PdM are CNN and LSTM. A brief introduction to the 

structure of the deep learning model used in this article follows.  
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Convolutional Neural Networks (CNNs) is a multilayer deep learning 

algorithm commonly used for PdM models and image classification. The CNN 

model consists of three layers: Convolutional Layer, Pooling Layer and Flattening 

Layer [87]. Here is a CNN model structure for predictive maintenance: 

1. Input layer: This layer takes in the time series sensor data from the 

equipment as input. 

2. Convolutional layers: These layers apply a set of learnable filters to 

the input data, producing a set of feature maps that capture different 

aspects of the data. The filters are designed to detect patterns in the 

sensor data that are indicative of impending equipment failures. Each 

filter performs a convolution operation on the input data, which 

involves sliding the filter over the time series data and computing the 

dot product between the filter weights and the corresponding data 

points. The output of a convolutional layer is a set of feature maps that 

are then passed through activation functions such as ReLU to introduce 

non-linearity. 

3. Pooling layers: These layers reduce the temporal resolution of the 

feature maps by performing a downsampling operation, such as max 

pooling or average pooling. The purpose of pooling is to reduce the 

amount of data that the network needs to process while preserving the 

important patterns in the data. 

4. Fully connected layers: These layers perform a matrix multiplication 

between the flattened feature maps and a set of learnable weights to 

produce the final output. These layers are used to make a prediction 

about the likelihood of an equipment failure based on the patterns 

detected in the input data. 

5. Dropout layers: These layers randomly drop out a fraction of the 

neurons in the previous layer during training, which helps to prevent 

overfitting. 

6. Batch normalization layers: These layers normalize the activations of 

the previous layer to improve the stability and speed of training. 

7. Output layer: This layer produces a binary prediction (failure or non-

failure) based on the output of the fully connected layers. 

The overall architecture of a CNN for predictive maintenance typically consists 

of multiple convolutional and pooling layers, followed by one or more fully 

connected layers and an output layer for prediction. The exact number and size of 

the layers depend on the specific equipment and sensor data being used for 
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prediction. Training a CNN for predictive maintenance requires a large amount of 

historical data from the equipment to learn the patterns that are indicative of 

equipment failures. Once trained, the CNN can be used to make real-time 

predictions about the likelihood of equipment failures based on the latest sensor 

data. Figure 3-18 shows the structure and details of the CNN network used in 

Python and in this work. 

 

Fig 3- 18. Details of CNN model structure and layers. 

The Long Short-Term Memory (LSTM) algorithm is one of the most 

commonly used algorithms for PdM models. LSTM is a type of recurrent neural 

network (RNN) that is commonly used for predictive maintenance tasks involving 

time series data. Feedback connections are the most important aspect of LSTM 

models, and unlike recurrent neural networks, RNNs can maintain time 

dependencies between input data over time. Because of these characteristics, LSTM 

algorithms are incredibly effective at processing time series data [88]. Here is a 

LSTM model structure for predictive maintenance: 

1. Input layer: This layer takes in the time series sensor data from the 

equipment as input. 

2. LSTM layers: These layers contain memory cells that allow the 

network to retain information over time and make predictions based on 

the history of the data. Each LSTM cell contains a set of learnable 

weights that determine how the input data and the previous cell state are 

combined. The cell state can be updated or reset based on the input data 
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and the output of the previous cell. The output of an LSTM layer is a 

set of hidden states that capture the relevant features of the time series 

data. 

3. Fully connected layers: These layers perform a matrix multiplication 

between the hidden states and a set of learnable weights to produce the 

final output. These layers are used to make a prediction about the 

likelihood of an equipment failure based on the patterns detected in the 

input data. 

4. Dropout layers: These layers randomly drop out a fraction of the 

neurons in the previous layer during training, which helps to prevent 

overfitting. 

5. Batch normalization layers: These layers normalize the activations of 

the previous layer to improve the stability and speed of training. 

6. Output layer: This layer produces a binary prediction (failure or non-

failure) based on the output of the fully connected layers. 

Figure 3-19 shows the structure and details of LSTM used in Python and this 

article. 

 

      Fig 3- 19. Details of CNN and LSTM model structure and layers. 
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3.6   Results 

In recent years, PdM models, ML algorithms and techniques have greatly 

improved. However, it is still a big challenge for companies and organizations. 

This is because the implementation of PdM models requires extensive and 

meticulous planning between hardware and software and requires detailed 

training of personnel to accurately record all details related to maintenance, such 

as faults, periodic and non-periodic replacement of equipment and components, 

component downtime, and errors. Therefore, even when outsourcing to expertise 

companies, many requirements should be met, such as: 

• Identification of critical and sensitive components for the performance of 

the system and their monitoring 

• Determination of parameters affecting the performance and their 

measurement with sensors 

• Selection of the best technique and ML and DP models. 

• Determining the location(s) of sensor(s) 

     In addition, it is important to consider that in each company different influencing 

factors can affect the preference of models and hyperparameters. For example, the 

price of each component and the time required to replace and access each 

component can significantly influence feature selection and algorithm performance.    

    In this paper, we compare the performance of different ML and deep learning 

models in two time periods of 24 hours and seven days ahead. The results are 

divided into short-term (24 hours) and long-term (seven days) predictive 

maintenance models. 

3.6.1 Short-term predictive maintenance models 

In this study, ten different machine learning algorithms by examining the dataset, 

the features, and the selection of appropriate hyperparameters are investigated. 

Table 3-7 and Figure 3-20 show the results of the models based on accuracy, recall, 

precision, and F1 score with minimum-maximum scaling normalization. The 

results show that the machine learning models based on the identified features for 

time windows of three hours (3h) and twenty-four hours (24h) predict well the 

failure probability for each component. 
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Table 3- 7 Performance of ML models with min-max scaling normalization. 

ML Model Accuracy Precision Recall F1 

Random Forest Classifier 

 

0.9987   0.966 0.9775 0.9714 

Stacking Classifier  

 

0.9987 0.9635 0.9786 0.9709 

Extra Trees Classifier 

 

0.9986 0.9658 0.9776 0.9715 

SVC 

 

0.9984 0.9519 0.9783 0.9649 

Bagging Classifier 

 

0.9983 0.9507 0.9762 0.9632 

XGB Classifier 

 

0.9984 0.9615 0.9775 0.9714 

Linear SVC 

 

0.9959 0.8807 0.9830 0.9259 

Decision Tree Classifier 

 

0.9985 0.9661 0.9578 0.9619 

Logistic Regression 

 

0.9896 0.7466 0.9730 0.8348 

AdaBoost Classifier 0.9589 0.6423 0.9003 0.6886 

In general, the value of the recall parameter is essential for predictive 

maintenance. The value of the recall parameter (and consequently F1) indicates the 

number of real failures that AI models can predict [89]. This parameter is more 

critical when we are dealing with an unbalanced dataset and the number of actual 

failures that the algorithm cannot predict (false negative) is higher than the number 

of failures that the algorithm incorrectly predicts (false positive) [90]. Since the 

occurrence of failures during the life cycle of a machine is very small compared to 

normal operation without failures (Table 3-5), we are constantly faced with an 

unbalanced data set in maintenance prediction. This imbalance of data, which 

appears as an imbalance between classes, causes a disturbance (illusion) of the 

algorithms. In fact, algorithms tend to create an equilibrium between the classes. 

Since the value of the failure class is much lower, they split some of the most 

frequent examples (normal operation of the machine) into rare examples 

(occurrence of failure ). As a result, the value of accuracy can be high compared to 

recall. 
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Fig 3- 20. Diagram of ML models performance with min-max scaling normalization for short-time prediction. 

     Comparing the results of the short-term machine learning predictive 

maintenance models in Table 3-7 and Figure 3-20, it is clear that the performance 

of the algorithms (based on recall and F1) was excellent except for two algorithms, 

the AdaBoost classifier and logistic regression. The three algorithms Random 

Forest Classifier, Stacking Classifier, and Extra Trees Classifier have similar and 

better performances than the other machine learning algorithms. Since machine 

learning models are excellent for predicting component failures, deep learning 

methods were not used for maintenance prediction. 

Table 3-8 shows the recall values for each component. In this paper, we 

considered the importance of all four components to be equal because information 

such as the price of each component, the time required for replacement, the 

importance of each component in the process, and access to spare parts are not 

available, but in industry, these factors can be effective in analyzing the results and 

making the final decision on the maintenance plan. 
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Table 3- 8 Performance of the ML models (short-term) with min-max scaling normalization for 

components based the on Recall parameter. 

ML Model Comp1 Comp2  Comp3 Comp4 None 

Random Forest Classifier 

 

0.9840 0.9862 0.9483 0.9697 0.9993 

Extra Trees Classifier   

 

0.9491 0.9977 0.9909 0.9610 0.9992 

Stacking Classifier 

 

0.9423 0.9954 0.9818 0.9740 0.9993 

Decision Tree Classifier 

  

0.9487 0.9724 0.9331 0.9351 0.9996 

XGB Classifier       

 

0.9423 1.00 0.9301 0.9784 0.9991 

Logistic Regression    

 

0.9519 0.9677 0.9909 0.9913 0.9899 

Bagging Classifier     

 

0.9153 0.9977 0.9970 0.974 0.9989 

SVC          

   

0.9263 0.9954 0.9970 0.9740 0.9989 

Linear SVC   

       

0.9487 0.9977 0.9939 0.9784 0.9963 

AdaBoost Classifier 0.8045 0.9424 0.9240 0.8701 0.9605 
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3.6.2     Long-term predictive maintenance models 

As mentioned earlier, imbalanced datasets are a common challenge in predictive 

maintenance applications, where the number of failure cases is typically much 

smaller than the number of normal operating cases. This can lead to models that are 

biased towards the majority class, resulting in poor performance on the minority 

class. Based on Microsoft Azure Predictive Maintenance data set [18], a new time 

window needs to be created if predictions for more than 24 hours are desired It is 

shown in Tables 3-1 and 3-5 that the data related to failure accounts for less than 

2% and is presented as an hourly average. If the time window is extended beyond 

24 hours, a portion of the failure-related data will be missed, leading to a high 

imbalance between classes, which will disturb the algorithm and result in erroneous 

machine learning outcomes. Since timing is critical in Industry 4.0, this paper 

presents two methods, the weighted average factor (weighted loss functions), and 

the two-step method, for long-term predictive models for maintenance. 

     The concept of weighting is one of the typical strategies for dealing with un-

balanced classes in a data set. In this dataset, class 4 (class without error=none) 

accounts for 98% of the data, while classes 0, 1, 2, and 3 (in conjunction with 

comp1, comp2, comp3, and comp4) account for the remaining 2%. The idea behind 

this technique is to give more importance to the minority class instances, so that the 

model can learn to better distinguish between the minority and majority classes. 

The minority group receives a higher weighting coefficient, while the majority 

group receives a lower one. There are various algorithms that support the use of the 

weighted average technique, such as decision trees, support vector machines, and 

neural networks. Additionally, some libraries, such as Scikit-learn in Python 

language programming, provide built-in support for weighted average 

classification. The weighting of each class is shown in Table 3-9.  

Table 3- 9 The average weight coefficients for each class. 

Components Class 

Label 

Class Weight 

Comp1 0 10.483 

Comp2 1 9.661 

Comp3 2 10.405 

Comp4 3 10.375 

None 4 0.217 
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    Generally, Machine learning algorithms often assume that the classes are 

balanced, meaning that there are roughly equal numbers of instances in each 

class. If the dataset is unbalanced, with a significant difference in the number 

of instances between classes, the model may be biased towards the majority 

class and may not perform well on the minority class. 

     The weighted average technique, also known as class weighting, is one 

approach to dealing with imbalanced datasets. Table 3-10 and Figure 3-21 show 

the results of using the weighted average technique in machine learning and 

deep learning, respectively. It's important to note that the effectiveness of this 

technique may vary depending on the specific dataset and the algorithm used. 

 

Table 3- 10  Performance of ML models for long-term prediction by using the weighted 

average technique. 

ML Model Accuracy Precision Recall F1 

Bagging Classifier 

 

0.93 0.92 0.93 0.93 

Stacking Classifier 

 

0.93 0.91 0.93 0.92 

Decision Tree Classifier 

 

0.92 0.92 0.92 0.92 

XGB Classifier 

 

0.93 0.90 0.93 0.91 

AdaBoost Classifier 

 

0.93 0.90 0.93 0.91 

Linear SVC 

 

0.90 0.92 0.90 0.91 

SVC 

 

0.92 0.85 0.92 0.88 

Random Forest Classifier 

 

0.92 0.87 0.92 0.89 

Extra Trees Classifier 

 

0.92 0.86 0.92 0.89 

Logistic Regression 0.88 0.93  0.88 0.90 

 

     The weighted average technique is a simple method that provides a good 

estimate of the probability of failure for the next seven days, but it is still not 

reliable for predicting component failures. Research has shown that this 

technique could only predict the failure of component 3 in the XGB Classifier 

and AdaBoost Classifier algorithms, while it has acceptable accuracy in 

detecting machine failures in the next seven days, as shown in Figure 3-22. The 
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weighted average coefficient is a statistical technique that affects the final 

results of machine learning algorithms and hyperparameters, While the 

weighted average coefficient can help to balance class distribution, it may not 

be effective in training the algorithms. The technique only adjusts the weight of 

the samples during training, but it does not change the underlying model 

structure or the way the model learns from the data. This means that if the 

underlying model is not able to capture the patterns and characteristics of the 

minority class, the weighted average coefficient may not be sufficient to 

improve the model performance, so the results may be accompanied by errors. 

     In addition, using the weighted average coefficient may introduce errors in 

the final results. For example, if the minority class is heavily underrepresented 

in the training set, the model may learn to overfit to the minority class and 

perform poorly on new data. This is known as the overfitting problem, and it 

can lead to poor generalization and unreliable results. Therefore, an innovative 

two-step method for predicting the maintenance of machines and components 

is investigated. 

 

Fig 3- 21. Performance of the ML models after applying different class weights. 
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Fig 3- 22. The performance of machine learning algorithms based on the recall parameter by using the weighted 

average technique. 

As mentioned earlier, we face many challenges in predicting machine and 

component failures due to the severe imbalance of the dataset. In this work, we used 

a two-step method. In the first step, we divided the dataset into two parts: the first 

class, the normal machine data without fault reports, while the second class, the 

dataset with reported faults for all machines and components. In fact, in the initial 

step, classes 0 to 3 linked with components 1 to 4 were merged into one class. Only 

AI algorithms were employed in this step to study the data between the two classes, 

and the results only displayed the likelihood of failure for each machine in the 

subsequent seven days.  
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The results of the machine learning and deep learning algorithms are shown in 

Table 3-11. 

 Table 3- 11 Performance of ML and DL models for long-term prediction in first step. 

ML Model Accuracy Precision Recall F1 

CNN 

 

0.95 0.95 0.95 0.95 

LSTM 

 

0.93 0.96 0.93 0.94 

Logistic Regression 

 

0.95 0.80 0.95 0.86 

Random Forest  Classifier 

 

0.97 0.89 0.89 0.89 

Stacking Classifier 

 

0.97 0.92 0.87 0.89 

Bagging Classifier 

 

0.97 0.88 0.88 0.88 

Linear SVC 

 

0.95 0.80 0.93 0.85 

Extra Trees Classifier 

 

0.97 0.93 0.86 0.89 

Decision Tree Classifier 

 

0.96 0.86 0.87 0.86 

XGB Classifier 

 

0.97 0.93 0.84 0.88 

AdaBoost Classifier 

 

0.96 0.85 0.87 0.86 

SVC 

 

0.97 0.93 0.84 0.88 

 

     Merging component classes into one class increases the amount of data in 

the minority class, which improves the conditions for the learning algorithms 

and increases the number of hyperparameters. The results in Table 3-11 show 

that all algorithms have acceptable performance in detecting the probability of 

failure in binary mode and the CNN and LSTM algorithms have the best 

performance in predicting the failure of machines in the next 7 days for the 

recall and F1 parameters. 

       The second step involves extracting the hourly and daily data from the 

second class, which pertains to reported failures, along with the prediction 

errors from the first class (also known as "class none"), based on the outcomes 

obtained in the previous step. The extracted data is used to investigate the 

features and hyperparameters in two-time windows of 3 hours and 24 hours. 
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The results of the machine learning and deep learning algorithms are shown in 

Table 3-12.  

Table 3- 10 Performance of ML and DL models for long-term prediction in second step. 

    ML Model Accuracy Precision Recall F1 

CNN 

 

0.95 0.89 0.98 0.94 

Extra Trees Classifier 

 

0.95 0.89 0.98 0.92 

Stacking Classifier 

 

0.95 0.89 0.98 0.92 

LSTM 

 

0.95 0.89 0.98 0.91 

Logistic Regression 

 

0.95 0.88 0.97 0.91 

Random Forest Classifier 

 

0.95 0.89 0.98 0.91 

Bagging Classifier 

 

0.95 0.88 0.98 0.91 

Linear SVC 

 

0.95 0.89 0.97 0.91 

Decision Tree Classifier 

 

0.95 0.89 0.98 0.91 

XGB Classifier 

 

0.97 0.91 0.98 0.93 

SVC 

 

0.95 0.89 0.98 0.91 

AdaBoost Classifier 0.95 0.88 0.97 0.91 

 

      As expected, changing the classification of the data from 5 classes (comp1, 

comp2, comp3, comp4, and None) to 4 classes and changing the dataset from an 

imbalanced dataset to a more balanced dataset significantly improved the results of 

the machine learning and deep learning algorithms in detecting faults in 

components. Table 3-12 and 3-13 show that the CNN algorithm performed slightly 

better than the other algorithms used in this work. 

     It is assumed that the importance of all four components is the same in terms of 

cost and performance in the machine, and the features and hyperparameters are 

selected based only on sensor data and technical data from maintenance, but in a 

real industrial application, many external factors can affect the selection of features 

and the final results of the algorithms. 
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Table 3- 13 Performance of the ML and DL models for the long-term prediction of 

components in the two-step procedure based on the recall parameter. 

ML Model Comp1 Comp2 Comp3 Comp4 

CNN 

 

0.99 0.99 1.00 0.98 

Extra Trees Classifier 

 

1.00 0.99 0.98 0.97 

Stacking Classifier 

 

0.99 0.99 0.98 0.98 

Logistic Regression 

 

0.97 0.99 1.00 0.96 

Random Forest Classifier 

 

0.98 0.99 0.98 0.98 

Bagging Classifier 

 

0.97 0.99 0.98 0.98 

Linear SVC 

 

0.99 0.99 0.98 0.95 

Decision Tree Classifier 

 

0.98 0.99 0.98 0.97 

XGB Classifier 

 

0.98 0.99 0.99 0.98 

SVC 

 

0.96 0.99 0.98 0.97 

LSTM 

 

0.97 0.98 0.99 0.98 

AdaBoost Classifier 0.95 0.99 0.96 0.95 

         The comparison of the results shows that the three algorithms CNN, Extra 

Trees Classifier and Stacking Classifier performed the best. A quick look at Table 

3-13 shows that all algorithms predicted the third component better than the other 

components. The best maintenance prediction for each component for the next 

seven days was provided by the CNN algorithm, which identified the third 

component with a recall value of 100%. The findings of the study show that the 

recall value for predicting the failure of the second component is consistently higher 

than for the other components. This could be due to the fact that the number of 

reported failures for this component is higher than for the others. Specifically, there 

were approximately twice as many reported failures for the third component 

compared to the second. 

Despite this disparity in the number of reported failures, all of the algorithms were 

still able to predict the probability of failure with an accuracy of 99%, with the 

exception of the LSTM algorithm. These results highlight the importance of having 
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accurate and comprehensive documentation of equipment failures, as it can provide 

valuable insights for predictive maintenance strategies. 

The ability of the algorithms to accurately predict equipment failures is promising, 

but it is important to note that they are only one part of an overall maintenance and 

risk management strategy. Other factors, such as regular inspections and preventive 

maintenance, should also be considered to ensure the safe and reliable operation of 

equipment. Nevertheless, the findings of this study emphasize the critical role of 

documentation in improving equipment reliability and reducing the likelihood of 

failures. 

3.7 Conclusion 

In this study, an imbalanced dataset published by Microsoft was used to implement 

several machine learning and deep learning algorithms. The codes were written in 

Python and run in the Google Collaboratory environment. The researchers studied 

10 different machine learning algorithms and two neural networks (CNN and 

LSTM). The results showed that the failure prediction for machines and 

components using machine learning algorithms was excellent, with three 

algorithms (Random Forest Classifier, Stacking Classifier, and Extra Trees 

Classifier) predicting failure probability with about 98% accuracy. However, due 

to the extreme imbalance of the dataset, some failure data were lost when the time 

window changed by more than 24 hours, which increased the imbalance of the 

dataset and led to many errors in training the algorithms. To overcome this issue, 

two methods were used for failure prediction for the next seven days: the weighted 

average coefficient method and the two-step method. 

    The weighted average coefficient method used different coefficients to reduce 

the difference between the minority and majority classes. It was good at predicting 

the probability of machine failure in the next seven days but poor at determining 

the failure class (component). In the two-step procedure, deep learning algorithms 

were also used to study the dataset. The goal of this method is to predict the failure 

of machines in the first step and the failure probability of each class (component) 

in the next step by modifying the dataset, features, and hyper-parameters. The 

results show that the two-step method is able to improve the results of machine 

learning and deep learning algorithms in general. The study showed that the CNN 

algorithm provided the best maintenance prediction for each component for the next 

seven days, with a recall value of 100% for the third component. Additionally, the 

recall value for predicting the failure of the second component was consistently 
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higher than for the other components, possibly due to the higher number of reported 

failures for this component. Despite this disparity, all algorithms were still able to 

predict the probability of failure with an accuracy of 99%, except for the LSTM 

algorithm. 

     These results emphasize the importance of maintaining accurate and 

comprehensive documentation of equipment failures, which can provide valuable 

insights for predictive maintenance strategies. While the algorithms used in the 

study show promise for predicting equipment failures, they should not be the only 

tool used for maintenance and risk management.  
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Chapter 4  

  Conclusion and Future Works 

The IIoT device for remote monitoring of hydraulic hammer is an innovative and 

effective solution for improving the performance, reliability, and safety of industrial 

machinery. Through the integration of advanced sensors, connectivity technologies, 

and data analytics, the device enables real-time monitoring of key operational 

parameters such as vibration, temperature, and pressure, which can help detect 

potential issues before they turn into major problems. Additionally, the device 

allows for remote monitoring and management of the equipment, enabling 

maintenance teams to access critical data and make informed decisions from 

anywhere, at any time. Additionally, data logging can aid in identifying patterns or 

trends in equipment usage, leading to improved operational efficiency and better 

decision-making. In harsh environments, where equipment is subject to extreme 

temperatures, vibrations, and other stresses, a robust data logger can provide critical 

insights into the health of the equipment and potential issues before they become 

major problems. 

Therefore, chapter 2 presents the design and development of a data logger for 

remote monitoring of hydraulic hammers based on the integration of sensors, 

requirements, and convenient platforms for data analysis and maintenance 

prediction, in collaboration with the Research and Development of INDECO Ind. 

SpA and Trustedglobal (Trusted A/S) company, all the required and effective 

parameters were determined by the test bench and the sensors were selected 

accordingly.  

There were many challenges in developing a remote control for hydraulic 

hammers. One of the most important challenges is defining the design requirements 

and selecting the sensors. The Indeco bench test was used to determine all the 

critical parameters for the design and selection of sensors, such as oil pressure, 

vibration, etc. The next step was to test the selection of sensors according to the 

design requirements. Another challenge was the selection of the location for the oil 

pressure sensor and the flow sensor, which was discussed in detail in Chapter 2. 
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The presented device is one of the best industrial Internet of Things devices for 

remote monitoring of equipment in harsh environments, which, depending on the 

application, provides the possibility of productivity monitoring, operation control, 

data acquisition, and finally the possibility of data verification, analysis, repair 

prediction and maintenance. The adaptability of these sensors is a significant 

advantage, indicating potential for numerous future applications, such as usage in 

challenging environments like mines or at sea. This suggests that point clouds will 

likely be generated with a greater number of samples, highlighting the need for 

research on appropriate processing methods to handle the challenges that will arise 

in the coming years. 

Chapter 3 demonstrates the effectiveness of using machine learning and deep 

learning algorithms in predicting maintenance needs in industrial settings on an 

imbalanced dataset published by Microsoft. Through the implementation of various 

models such as Random Forest, XGBoost, LSTM and CNN, we were able to 

accurately predict equipment failures and maintenance needs, thus minimizing 

downtime and reducing maintenance costs. 

The experiments conducted on real-world datasets show that deep learning 

algorithms such as CNN and traditional machine learning algorithms, achieving 

higher accuracy and lower error rates. The results also demonstrate the importance 

of feature selection and preprocessing techniques in improving the performance of 

predictive maintenance models. 

Moreover, this thesis presents a practical implementation of the predictive 

maintenance model, providing a user-friendly and accessible platform for 

maintenance professionals to utilize. This implementation can serve as a valuable 

resource for companies seeking to improve their maintenance practices and reduce 

costs. 

The research utilized Python and the Google Collaboratory environment to 

implement 10 distinct machine learning algorithms and two neural networks, 

namely Convolutional Neural Network and Long Short-Term Memory, in 

predicting failures for machines and components. The outcomes of the study were 

remarkable, and the three models, Random Forest Classifier, Stacking Classifier, 

and Extra Trees Classifier, achieved a failure probability prediction of 

approximately 98% within the next 24 hours. 
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However, the data is highly imbalanced, so that some failure data are lost if the 

time window changes by more than 24 hours. This imbalance leads to numerous 

errors in the training process of the algorithm. Therefore, two methods were 

implemented to predict failures within the next seven days: the weighted average 

coefficient and the two-step method. 

The weighted average coefficient approach applied various coefficients to 

decrease the variation between the majority and minority classes, resulting in good 

performance in predicting the probability of machine failure within the next seven 

days. However, this method was not effective in identifying the failure class or 

component. On the other hand, the two-step method demonstrated superior 

performance in predicting both the failure probability and the failure class for 

machines and components. The first step of the method deployed a binary 

classification algorithm to predict the machine's failure, while the second step used 

a multiclass algorithm to predict the component failure. The study aimed to 

compare the effectiveness of different machine learning algorithms in predicting 

equipment failures for a manufacturing plant. The results showed that the CNN 

algorithm provided the most accurate maintenance prediction for each component 

for the next seven days, achieving a recall parameter value of 100% for the third 

component. This means that the algorithm was able to correctly identify all 

instances of failures for this component. 

Additionally, the recall value for predicting the failure of the second component 

was consistently higher than for the other components, possibly due to the higher 

number of reported failures for this component. This finding approves that having 

more data on equipment failures can lead to more accurate predictions. However, it 

is important to note that the number of reported failures does not necessarily reflect 

the actual failure rate, as some failures may go unreported. 

Despite the high accuracy of the algorithms in predicting equipment failures, 

they should not be relied on as the only tool for maintenance and risk management. 

Other strategies, such as regular inspections, preventive maintenance, and 

contingency plans, should also be implemented to ensure the safe and reliable 

operation of equipment. These strategies can complement the predictive capabilities 

of the algorithms and provide a more comprehensive approach to equipment 

maintenance and risk management.  

The study also highlights the importance of maintaining accurate and 

comprehensive documentation of equipment failures. This documentation can 
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provide valuable insights for predictive maintenance strategies, such as identifying 

patterns in equipment failures and predicting future failures. Furthermore, having 

good documentation can also help to track the maintenance history of equipment 

and ensure that maintenance is carried out in a timely and effective manner. 

The presented work will serve as the foundation for further research and 

development in:  

• Providing standard technical information for different modes of hydraulic 

hammer. 

• Definition of fault detection, health monitoring, predictive maintenance 

techniques.  

• Definition of ITC maintenance systems for on-demand manuals and 

verification of predictive maintenance operations also with techniques of 

Augmented Reality (AR). 

• Innovative Big Data Analytics and Robust algorithms. 

• Consideration of the concept of "feature learning" instead of "feature 

engineering. 

• Investigation of the factors that cause the priority and importance of one 

component over another in the dataset (e.g., cost, ease of replacement) by 

combining CNN and LSTM. 
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