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Abstract

Viscoelasticity, friction and geometry: which is their role in governing the behav-
ior of adhesive systems? Despite the long standing effort on these issues, cap-
turing and modeling dissipative phenomena and non-linearities inherent in real
processes is a tough challenge, leaving several questions and problems unresolved.
This thesis explores some of these particular aspects in soft contact mechanics
with a primary emphasis on peeling processes. In the first part, an overview of
the peeling mechanism is provided where the most important results and mod-
els are discussed. Main concepts of linear viscoelasticity are also given to define
the mathematical framework for analyzing viscoelastic peeling. We address the
single peeling of thin viscoelastic tapes in the case of stuck and frictional sliding
interfaces. While a Kendall-like behavior is predicted in the absence of slippage,
when considering frictional dissipation in the model sensible differences emerge.
Higher peeling forces are observed at low peeling angles and the system toughness
becomes velocity-dependent in agreement with experimental observation and phe-
nomenological models. We also investigate the V-peeling configuration addressing
the nonsteady propagation which occurs as the effect of time-dependent mate-
rial behavior and system geometry variation. Non monotonic evolution of peeling
quantities results from the continuous creep of tape during the detachment process
which can also arrest for particular combinations of initial parameters and loading
conditions. Interestingly, for impact loading conditions an enhancement of peel re-
sistance is predicted suggesting that viscoelasticity could be crucial for the superior
adhesive performance of natural peeling systems. In the last part, we discuss an
experimental study on sliding contact between a spherical glass robe and a PDMS
substrate carried via an ad hoc device which allows for the measure of surface in-
plane displacements. We consistently observe a contact area reduction and a shape
asymmetry as a possible effect of geometrical and material non-linearities arising in
the tensile/compressive zone at the trailing and leading edge, respectively, where
high levels of strain are achieved and normal-tangential uncoupling predicted from
linear-elasticity is broken. Mechanical confinement also leads to a modification
of coupling behavior with respect to infinite contact conditions, suggesting that
geometrical aspects are pivotal to better understanding frictional adhesive contact.

Keywords: peeling, adhesion, viscoelasticity, friction, sliding contact, soft con-
tact, elastomer.
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Results refer to ṽc >> 1. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Measures of the peeling force as a function of the peel velocity. (a)
Results for the peeling of cellulose nitrate from glass where the two
asymptotic limit are well identified. Adapted from [117]. (b) Ex-
periments of a PVC film peeling from a glass substrate. Theoretical
predictions are shown for comparison. Adapted from [64]. . . . . . . 46

4.1 Double (V-shaped) peeling scheme of a viscoelastic tape adhering to
a rigid substrate, where vc is the peeling front propagation velocity
and vP is the pulling velocity (i.e., the velocity of the tape tip).
The lower part shows the undeformed initial configuration, as well as
those associated with the propagation start, and with a generic time
instant during the peeling process evolution. Qualitative diagrams
of the stress σ (blue) and deformation ε (orange) are also shown for
the latter case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 A schematic of the tape mesh: at the generic j-th time instant, the
tape mesh is updated by including a freshly detached element of
undeformed length ∆λ = [vc]j ∆t. . . . . . . . . . . . . . . . . . . . 51

4.3 The initial P̃0 and long-term P̃S dimensionless peeling force as func-
tions of the dimensionless adhesion energy γ̃0 (a), the viscoelastic
parameter κ = E∞/E0 (b) and the dimensionless peeling front ve-
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Two different initial configurations are considered: θi = 60 (solid
lines), and 30 (dashed lines). The circles indicate the instant of
propagation start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 (a) Effect of interfacial tangential force on the contact area for a
smooth PDMS/glass sphere/plane contact in full stick condition.
Adapted from [132]. (b) Normalized vertical surface displacement
for a nearly incompressible ( ν = 0.49 ) half-space loaded by a ho-
mogeneous tangential traction over a circular area for neo-Hookean
model (solid lines) and linear elastic case (dashed line). Adapted
from [138]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 (a)Static indentation response in linear elastic range of S184 (red)
and S184:S527 (blue). Solid line: linear fit to Eq (5.1) with E =1.93 MPa
and w =33 mJm−2 for S184 and E =0.94 MPa and w =26 mJm−2

for S184:S527. (b) Nominal stress as a function of stretch ratio for
S184 (red line) under uniaxial tension. The green line corresponds
to a fit to neo-hokean model with C10 = 0.526 MPa. The blue line
is a fit to Yeoh model with C10 = 0.526 MPa, C20 = -0.036 MPa,
C30 = 0.357 MPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Preparation of bulk and thin PDMS specimens. Liquid PDMS is
molded on a resin template obtained by microlithography technique.
This process produces a square network of small cylindrical holes. . 66

5.4 Simplified scheme of the home made set-up used for the experiments. 67

5.5 Typical tangential force Ft as a function of the imposed displace-
ment during a sliding experiment. Even in the early stages of the
experiment, the asymmetry in the contact shape can be observed. . 68

5.6 Average shear stress τ as a function of the nominal contact pressure
pm for S184 (closed symbols) and S184:S527 (open symbols). Blue:
R = 5.2 mm; green: R = 9.33 mm, red: R = 20.75 mm. . . . . . . . 69

5.7 Superimposition of contact pictures corresponding to static inden-
tation (delimited by the dotted lines) and steady-state sliding (av-
eraged contact images). (a) S184, R = 20.7 mm, FN = 5 N; (b)
S527:S184, R = 5.2 mm, FN = 1.9 N. The silicons substrate is
moved from right to left with respect to the fixed glass lens. . . . . 70

5.8 Contact aspect ratio b/a as a function of the nominal contact pres-
sure pm for S184 (closed symbols) and S184:S527 (open symbols).
Blue: R = 5.2 mm; green: R = 9.33 mm, red: R = 20.75 mm. . . . 71

5.9 Displacement field of S184 during steady-state sliding (P = 1 N,
R = 20.7 mm. (a) displacement component along the sliding di-
rection, (b) displacement component perpendicular to the sliding
direction. The rubber substrate is moved from right to left with
respect to the fixed spherical probe. . . . . . . . . . . . . . . . . . . 71



viii LIST OF FIGURES

5.10 Non-dimensional longitudinal displacement (top) and logarithmic
strain (bottom) profiles taken across the contact for increasing nor-
mal load FN for the bulk S184 substrate (R = 20.7 mm) . Both the
space coordinate x and the displacement component u are normal-
ized with respect to the static contact radius a0. . . . . . . . . . . . 72

5.11 Non-dimensional longitudinal displacement (top) and logarithmic
strain (bottom) profiles taken across the contact for increasing nor-
mal load FN for the bulk S184:S527 substrate (R = 9.3 mm).
FN = 0.8 N (blue), 1.1 N (red) and 2.2 N (green). Both the space co-
ordinate x and the displacement component u are normalized with
respect to the static contact radius a0. . . . . . . . . . . . . . . . . 73

5.12 Average frictional stress as a function of the nominal contact pres-
sure for a confined S184 layer (h = 2 mm). Red: R = 20.7 mm;
Green: R = 9.3 mm; Gray: data for bulk S184 (R = 20.7 mm and
R = 9.3 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.13 Contact aspect ratio as a function of the nominal pressure for a
confined S184 layer (h = 2 mm). Red: R = 20.7 mm; Green:
R = 9.3 mm; Gray: data for bulk S184 substrates (R = 20.7 mm
and R = 9.3 mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.14 Time-change in the indentation depth ∆z of a glass lens in a S184
layer during stiction at increasing applied normal forces FN from 0.1
to 8 N (R = 20.7 mm). Filled symbols correspond to the achieve-
ment of a full sliding condition at the glass/PDMS interface. . . . . 76

5.15 Magnitude ∆z∗ of the change in the indentation depth during stic-
tion for bulk (circle) and film (square) S184 specimens as a function
of the nominal contact pressure pm (R = 20.7 mm). . . . . . . . . . 76

5.16 non-dimensional longitudinal displacement (top) and logarithmic
strain (bottom) profiles taken across the contact for increasing nor-
mal load FN from 0.1 to 8 N for a confined contact with a S184
layer 2 mm in thickness (R = 20.7 mm). Both the space coordinate
x and the displacement u are normalized with respect to the static
contact radius a0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Introduction

Contact mechanics represents a fundamental branch of both physics and engi-
neering that delves into the study of interactions between solid surfaces upon
contact. Its significance extends across various domains, including materials sci-
ence, mechanical engineering, biology and biomimetics. Contact mechanics proves
invaluable due to its capacity to unveil the intricate behaviors of materials across
macroscopic, micro, and nanoscale dimensions, thereby shedding light on numer-
ous facets of our daily lives from multiple perspectives. For instance, the peculiar
behavior of certain biological tissues has inspired numerous studies aimed at inter-
preting and reproducing the adhesive [1, 2], self-cleaning [3], self-healing [4], drag
reduction [5], idrorepellant [6] and hydrophilic [7] properties exhibited by plants
and animals because of the potential practical applications in several technologi-
cal sectors, such as soft-robotics [8, 9], coating [10], manufacturing [11], construc-
tion [12] and medical industries [13]. Regarding this, the possibility of managing
the adhesive strength between mating surfaces is of primary concern for both bi-
ological processes and engineering applications, for vital functions and locomotive
purposes in the former case, for developing reliable, controllable and efficient sys-
tems in the latter. In facing these necessities, peeling represents one of the most
observed and exploited mechanisms of detachment, as it meets the requirements
of high adaptability, controllability and reliability.

Although adhesives have been used since ancient times, just in the second half
of the 20th century the research on this field experienced significant growth, co-
inciding with the widespread adoption of synthetic polymers and their significant
technological impact [14]. In this context, the first description of the peeling dates
back to 1944 with Rivlin’s study where a measure of the adhesion strength be-
tween surfaces was proposed by means of a simple peeling test [15]. Since then,
the effectiveness of the peeling test as a valuable method for the characterization
of materials properties, adhesive interfaces and delamination resistance of layered
materials has been witnessed by numerous standards based on different peeling
setup [16]. Concurrently, even physical models have been proposed to interpret the
behavior of peeling system and to interpret experimental evidences. Among them,
Kendall’s model [17] stands out as one of the most important contribution in the
field as, for the first time, the peeling process was described by energy arguments
under a fracture mechanics perspective. This groundbreaking approach paved the
way for an extensive research in this area aimed at enhancing peeling models in ef-
fectively reflecting the real behavior of adhesive systems. Many aspects have been
addressed by integrating into the formulation a series of parameters such as ge-
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ometry [18–20], properties of the backing and substrate [21–25], peel-rate [26–28],
and interfacial mechanisms such as stick-slip [29–31] and slippage [32–34]. In par-
ticular, much attention has been devoted to energy dissipation mechanisms due
to their potential to aid in understanding the rate-dependent behavior of peeling
systems and the origin of the high adhesive strength observed during debonding
processes [35]. Major sources of energy losses could arise both at the level of
material bulk where viscoelastic and plastic material responses could be triggered
during the debonding process, and at the interface where the rupture of interfacial
bonds and relative sliding tape-substrate could undergo non-conservative and fric-
tional dissipation. Although materials common in peeling systems usually exhibit
a certain degree of viscoelastic behavior, still viscoelasticity is poorly considered
in peeling model, especially in combination with other dissipative mechanisms and
more complicated peeling geometries. How does viscoelastic behavior impact the
peeling process? Is there a correlation between viscoelastic losses and non-steady
propagation behavior? When developing peeling models, is it necessary to take
slippage into account and how are viscous and frictional dissipation related?

This thesis will try to answer these questions by investigating the peeling mech-
anism of thin viscoelastic tapes from rigid substrates, seeking to understand the
contribution of local interface interactions and the system’s geometric arrangement
in governing the peeling behavior. In particular, in Chapter 1, an overview of the
peeling mechanism is presented: the first studies, the fracture mechanics energy
approach and the major results of the actual research are exposed. Chapter 2 in-
troduces the viscoelasticity and the basic constitutive models for linear viscoelastic
material. In Chapter 3, a model for the single peeling of thin viscoelastic tapes is
presented; an energy-based formulation is used to account for the interfacial slip-
page aiming at understanding the combined influence of frictional and viscoelastic
dissipation. Chapter 4 addresses the V-peeling of thin viscoelastic tapes; the gov-
erning equations are firstly derived by an energy-based approach, then integrated
through an ad hoc numerical procedure able to predict the time evolution of the
peeling process. In conclusion, Chapter 5 is dedicated to presenting some results of
sliding experiments between a smooth glass spherical probe and PDMS substrate
aiming at investigating frictional behavior in soft contact.



Chapter 1

Peeling: an overview

The peeling mechanism is a fascinating and intricate phenomenon that occurs
in a wide range of natural and man-made contexts. It can be defined as the
mechanism of detachment of thin bodies occurring via propagation of a peeling
front. Pulling off Scotch® tape from a surface, removing protective films or a
band-aid from the skin, or opening a package are some of everyday life situations
where we encounter peeling. However, peeling process is also pivotal for vital
functions of many animals and in governing the adhesion of biological systems.
Most important example is represented by the superior adhesive performance and
the ability to switch between firm attachment and effortless detachment of in-
sects, reptiles and amphibia [2,36,37] based on the possibility of exploiting peeling
actions at the level of toes which allows for a very efficient control of adhesive
forces on every surface in dry, wet, smooth and rough conditions [38]. This be-
havior has inspired engineers in developing so called climbing robots [39] which
emulate attachment/detachment mechanism of geckos both macroscopically, by
simulating digital hyperextension [40], and microscopically, with the presence of
micro-structured surfaces [41] also employed in reversible adhesive tapes used for
medical scope [38,42]. Beside the so called bioinspired applications, peeling is also
important in technological contexts, from painting and coating sectors, to trans-
fer printing [43, 44], or robotics in developing soft grippers [45], and its relevance
is also witnessed by peeling tests used for material characterization and adhesive
force measure [16, 46, 47]. For these reasons, investigating and characterizing the
peeling mechanism is not only of significant scientific interest but also holds prac-
tical implications in various fields, from biology and materials science to industrial
processes and everyday life problems (Fig. 1.1).

In this chapter, an overview of the peeling mechanism is presented. In the
first part, we present the theoretical-experimental background and the fracture
mechanics framework used for addressing the peeling problems. In the second part
most relevant studies and findings that have contributed to a better understanding
of the topic will be covered.
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Figure 1.1: (a) Example of everyday life peeling. From Google Images. (b) Stickybot
inspired by Gecko adhesion mechanism. Toes allow for digit hyperestension and have a
directional adhesive stalks on the surface for achieving high adhesion. Adapted from [39].
(c) Examples of micropatterned adhesive tapes. Adapted from [41, 42]. (d) Transfer
printing process where delamination force are controlled to transfer objects from a source
to a target surface. Credits photonics.com. (e) Soft gripper based on electroadhesive
tapes. Releasing is facilitated by peeling action. From [45].

1.1 Peeling as a fracture problem

Driven by practical motivations of interest of aeronautic and marine industries, at
the beginning of the XX century, a significant effort was dedicated to the char-
acterization of material behavior, with a particular focus on the initiation and
propagation of cracks and fractures. Trying to reconcile experimental observa-
tions and theoretical predictions of the critical stress needed to fracture metal and
glass, Griffith sensed that microdefects in the material could cause a concentra-
tion of stresses such as to reach locally values which trigger rupture. The needs of
a mathematical framework able to explain these phenomena, inspired Griffith in
developing a thermodynamic approach to address fracture problem.

Griffith theory [48], presented in 1920, is based on the concept of energy release
rate G, roughly speaking, the energy available to propagate a crack. If this energy
is higher or equal a critical value Gc, associated with the energy needed for the
creation of new free surfaces, fracture propagates. Thus, the so called Griffith
criterion for the crack propagation requires

G ≥ Gc (1.1)

In other words, according with the principle of minimum energy, a fracture prop-
agation is possible as far as the crack growth reduces the system’s energy by a
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quantity sufficient to overcome the fracture energy.
Griffith applied his intuition firstly on material assumed perfect elastic. In this

case, the equilibrium fracture condition can be expressed as

G = −
(

∂UP

∂a
+
∂Uel

∂a

)

= Gc (1.2)

where the two terms represent the variation of potential energy of the applied ex-
ternal forces UP , and elastic energy Uel, respectively, for an infinitesimal increment
of the crack size a. Although experiments carried out on glass specimens perfectly
fit theoretical predictions, for structural materials exhibiting a ductile behavior,
the actual level of energy needed to cause fracture was orders of magnitude under-
estimated. For this reason Griffith’s work was largely ignored by the engineering
community until the early 1950s [49], when Irwin work extended original formu-
lation for non brittle material by accounting for plastic deformation close crack
zone [50]. This intuition opened the way for an extensive application of the Grif-
fith energy approach where different sources of energy dissipation are considered
attempting to better describe real fracture phenomena.

1.1.1 Fracture mechanics perspective of adhesion

and debonding processes

From this perspective, a debonding process between two contact bodies can be
seen as the propagation of a crack within the contact interface and can be studied
in the context of fracture mechanics. In this case, the separation criterion requires
that G equals or overcomes the work of adhesion Γ.

Dupré work of adhesion

The thermodynamic (or Dupré) work of adhesion is a fundamental quantity in
contact and fracture mechanics and represents the reversible work required to
separate unit area of two phases in contact. It is given by

γ = γ1 + γ2 − γ12 (1.3)

where γ1 and γ2 are the surface energies of the two materials, and γ12 is the in-
terfacial energy. γ is an intrinsic property of materials and the specific interfacial
interaction they establishes when in contact. Depending on the essence of the in-
teracting surfaces, the adhesive forces can be classified into four main types [51]: a)
surface and field forces: are attractive or repulsive forces generated from distant de-
pendent interactions. They include short-range van der Walls forces, electrostatic
and magnetic forces. b) Material bridges arise from bond established at atomic
and molecular level. This is the case, for instance of, diffusion process observable
in polymers as chains’ entanglements process, or strong chemical (ionic, covalent,
metallic) bonds. Moreover, in wet conditions, capillary interaction could arise be-
tween two solids when a liquid forms capillary bridges between two surfaces. c)
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Mechanical interlocking established between surfaces thanks to pure shape effects
(e.g. hook-and-loop). d) Suction forces generated via pressure difference between
the internal and surrounding ambient. (See Fig. 1.2)

Van der Waals forces Electrosta�c forces Magne�c forces

Capillary forces Diffusion Chemical bond

Mechanical Interlocking

Suc�on forces

a)

b) d)

c)

Figure 1.2: Representation of different adhesive interaction: a) surface and field forces,
b) material bridges, c) mechanical interlocking, d) suction forces. Adapted from [51].

Effective fracture work

It is important to remark that Dupré energy corresponds to the work of adhesion
for an ideal reversible process and is the minimum work needed to separate two
surfaces. However, in real processes, the effective work needed for trigger debond-
ing Γ can largely exceed the Dupré work of adhesion γ, and therefore it results
to be not a merely intrinsic interface/material property. In fact, the surfaces sep-
aration process involves non-consevative phenomena responsible for an increases
of the real energy required for the debonding. These effects include both mecha-
nism occurring at the interface as friction, rupture of chemical bonds, polymer’s
chains pull-out, as well as in the material bulk as plasticity and viscoelasticity pro-
cesses [52]. Since formally including such effects in adhesion models could be very
challenging, empirical relations has been proposed to account for a comprehensive
dissipative effect contribution. According with the Gent and Shultz expression [53],
the effective fracture work is commonly expressed as sum of two terms

Γ = Γ0[1 + Φ(ȧ, T, etc.)] (1.4)

where Φ is the dissipative function and Γ0 is a constant term. Note that Φ mainly
depends on the rate of detachment ȧ and the temperature T , reflecting the domi-
nant influence of the viscoelastic and plastic effect on the overall energy loss. Even
if Γ0 may also depend on the particular debonding process [16], for many practical
application it is usually associated with the intrinsic adhesion energy γ exhibited
in quasi-static debonding conditions, thus Γ(ȧ→ 0) = Γ0 = γ.
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Figure 1.3: Scheme of Rivlin’s peeling test.

1.1.2 Energy model for peeling

Rivlin’s estimation of the adhesion energy

A first description of the peeling process within the context of fracture mechanics
was presented by Rivlin in 40’ [15]. He proposed a simple expression for quantifying
the adhesion strength between two bodies based on inextensible tapes peel test,
Fig. 1.3; in his model the force exercised by a dead weight of mass m is related to
the adhesion energy Γ trough

mg

w
=

Γ

1− cos θ
(1.5)

where θ is the peeling angle and w the tape width. This formula expresses an
equilibrium between the work of the peeling force mg (g is the gravitational accel-
eration) and the energy needed for detaching a tape strip of length a.

The Kendall’s model for elastic tape

However, the most successful peeling model is probably the one proposed by
Kendall in 1971 which extended the Rivlin’s formulation by accounting for the
tape deformability [17]. In his seminal work, the peeling of an elastic tape from a
rigid substrate is described through the balance of three energy contributions. See
Fig. 1.4 reporting the peeling scheme of an elastic tape with Young modulus E
and cross section At = wd under the action of the external force P . In steady-state
condition, the work done by the external force P for debonding a strip of length
a can be written as

UP = Pa(1− cos θ + ε) = Pa(1− cos θ +
P

EAt

) (1.6)
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Figure 1.4: Scheme of single peeling of an elastic tape from a rigid substrate.

where θ is the peeling angle and ε = P/EAt is the tape deformation. The elastic
energy stored in the debonded strip a is easily obtain as

Uel =
Pε

2
a =

P 2

2EAt

a (1.7)

Finally, the surface contribution given by the adhesion work Γ results

US = −Γwa (1.8)

The Griffith criterion for the debonding requires that the total energy release rate
is zero at the equilibrium, in this case dUT/da = d(UP + Uel + US)/da = 0. The
famous Kendall’s equation for peeling is therefore given by

P 2

2EAt

+ P (1− cos θ) = Γw (1.9)

In Fig. 1.5 typical peeling behavior predicted by Kendall model. In many
cases the tape stiffness largely exceed the tension E ≫ P/At so that the first term
becomes negligible and the Rivlin solution for inextensible tapes is recovered Eq.
(1.5). This is also usually observable for high value of peeling angle where low
level of deformation are expected as the peeling force is low as well. However, for
soft tapes or for low peeling angles, the first two term in Eq. (1.9) are comparable
as the effect of higher deformations. In this latter case, in the limit of θ → 0 the
maximum value of the peeling force is predicted from

P

w
=

√
2EdΓ (1.10)

1.2 Important results of peeling study

As the potential energy UP , the elastic energy Uel and the surface energy US are the
conservative contributions which are usually present in peeling processes, Kendall
formulation has represented the foundational framework for the development of
more sophisticated models that incorporate additional effects and dissipative phe-
nomena. In the following, we will present significant studies and findings in the
field of peeling, deepening some aspects and side-phenomena providing valuable
insights to better understand real debonding process.
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Kendall data

Kendall predic�on, Eq. (1.9)

Pure extension limit, Eq. (1.10)

Rivlin limit, Eq. (1.5)

Figure 1.5: The peeling force P/w versus the peeling angle θ: Kendall’s data points (blue
dots) and prediction (red curve). Black dashed curves refer to limit solutions. Adapted
from [54].

1.2.1 The effect of bending stiffness

In addition to the Kendall energy approach, beam model has also represented
a noteworthy theoretical framework for analyzing peeling phenomena. Here, thin
films are treated as slender beams, and the principles of pure bending beam theory
are employed to investigate the interfacial bonding and debonding mechanisms.
In this context, the first significant contributions to this approach was made by
Spies in his pioneering work [55], where an explicit solutions for peel force and
distribution of internal stress within the tape are calculated for 90◦ peeling of
pure elastic tapes and adhesive. Later, Kaelble presented a more comprehensive
model that addresses scenarios in which either the tape, the substrate, or both
are flexible and extends analysis for arbitrary peeling angles, offering a broader
perspective on the peeling process [56, 57]. Accounting for rheological behavior
of the adhesive layer, he identified two systems of forces involved in the peeling
mechanism: cleavage and shear forces, noting that only the former are responsible
for the debonding. In the region of the peeling front, the rotation of the ”stiff” peel
arm generates a lever-like mechanism and an associated tensional-compressional
stress distribution on the substrate (Fig 1.6). The resulting moment responsible
for the detachment is linked to the peeling force P , the peeling angle θ and the
tape bending stiffness EI (being E the elastic modulus and I the second moment
of area of the tape section) by

P =

∑

i(fixi)
2

EI(1− cos θ)
(1.11)

where fi is the generic local normal force (compressive fi > 0 or tensil fi < 0)
with xi arm of such force.
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Figure 1.6: Schematic representation of the peel profiles and experimental distribution
of normal stress on substrate surface. Adapted from [57].

Although rheological approaches offer an alternative method for studying the
peeling problem in terms of force and stress distributions, has been demonstrated
that conventional energy models are equally effective in predicting the dependence
of peel force on peel angle, even for large bending situations [21]. However, as
most of these works focuses on steady-state peeling process, for elastic films, the
elastic energy contribution associated with the tape bend is usually neglected as it
is constant dUb/da = 0 [17]. Nonetheless, when the transient process is considered,
the peeling mechanics is significantly affected by tape’s bending stiffness. Indeed
either experimental [58], theoretical [59,60] and numerical [61] investigations have
observed a non-stationary value of the peeling force during the early stages as the
effect of the increasing bending energy stored in the tape until the tangential angle
of the film approaches the peeling angle, where the peeling force is well predicted
by the Kendall’s model, insensitive to the bending stiffness. As transient value
of the peeling force can exceed the steady-state value, steady-state model could
result ineffective in predicting the effective force for achieving a complete tape
delamination (see Fig. 1.7).

The high curvature the tape experience very close to the peeling front, espe-
cially at high value of peeling angle, could induce high stress level which can trigger
plastic deformations. In this scenario, plastic dissipation could occur in two differ-
ent tape region during the peeling process [16,62]. The tape can plastically deform
firstly in the region close to the peeling front where the moment and curvature
are high (A-B region in Fig. 1.8). Then, because of the prior plastic deformation,
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Figure 1.7: Profiles of the deformed film (a) and the peeling force (b) during different
peeling moments. Adapted from [59].

the bent tape could undergo a reverse plastic bending which induce a reduction of
the tape curvature (E-F region). As a result, a residual curvature lasts after the
complete detachment process.

a) b)

Figure 1.8: (a)Regions of deformation of the peel arm. Dashed line suggests the fi-
nal shape of peel. (b) Normalized bending moment versus arm curvature during the
debonding process (M0 and κ0 refer to bending moment and elastic curvature limit,
respectively). From [16]

However, for viscoelastic tapes, the contribution of the bending stiffness is an
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important factor even in steady-state condition as it could lead to the emergence
of a rate-dependent behavior, triggered by dissipative effects close to the peeling
front. We will better discuss this aspect in the next section.

1.2.2 Viscoelasticity in peeling systems

Viscoelasticity is a prevalent source of energy dissipation in the peeling process,
occurring at the tape, foundation, and adhesive layer levels. The rate-dependent
performance of the peeling system is primarily influenced by the intrinsic viscous
behavior of the material, a problem extensively explored in numerous studies. Most
of them rely on empirical relations which implicitly consider an overall dissipative
contribution accounted in a peel-rate dependent dissipation function (See Eq. 1.4)
[26, 27, 44, 63]. In these models, the peeling the peeling force is usually described
by a power law expression of the kind

P

w
= C0 (1 + kvn) (1.12)

where where C0 and k are parameters related to the peeling angle, the thickness of
the viscoelastic thin-film and the contact adhesion energy, whereas n is a constant
related to the intrinsic property of the thin film [64].

In other works, the effect of tape viscoelasticity has been investigated with
rigorous analytical approaches by evaluating the viscoelastic energy loss due tensile
and/or bending stress contribution within the whole detached tape assumed as a
slender linear-viscoelastic beam [65]. An extensive and complete formulation is
provided by Chen [25]; in steady-state condition he recovered the bending moment
M and tensile T fields as a function of the peel rate and the mechanical properties
of the viscoelastic tape obtaining a close form solution for the energy release rate

G =
P

w
(1− cos θ) +

1

w

∫

∞

0

κ
dM

ds
ds+

1

w

∫

∞

0

εm
dT

ds
ds (1.13)

where, κ and εm are the tape curvature and the membrane strain, respectively.
He also observed that the tensile contribution is predominant over the bending
contribution which also vanishes for high value of the peeling force, the peel rate
and for thin tapes (Fig. 1.9b). However, for both empirical and analytical models
the peeling force is an increasing function of the peel rate (Fig. 1.9c) which also
affects the shape of the bend tape close to the peeling front becoming sharper for
a faster detachment (Fig. 1.9d).

Aiming at controlling peeling force and detachment velocity, many studies have
been dedicated at investigating the peeling behavior from compliant and stretch-
able substrate [21, 22, 66, 67]. In this matter, the problem of the peeling from
viscoelastic substrate has been addressed because the direct implications in medi-
cal applications such as band-aid and transdermal drug delivery systems used on
human tissues [68–70] (Fig. 1.10a).
Afferrante and Carbone have analytically investigated the peeling of elastic tapes
from a viscoelastic foundation by accounted for the contribution of the internal
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Figure 1.9: Peeling behavior of a PDMS viscoelastic tapes. (a) Schematic of forces within
a tape’s strip. (b) Typical trend of bending gb and membrane gm energy contribution
versus the normalized peel force (being vc the peel rate, τ the viscoelastic creep time,
E∞ the viscoelastic high frequency modulus, I the second area moment of the cross
section). (c) Energy release rate versus the peel-rate, experimental data and power law
fitting. (d) Tape profile for several normalized peel forces for vertical peeling. Adapted
from [25]

energy in the viscoelastic material by means of a Green function methodology [23].
They found that, contrary to the commonly observed one-to-one correspondence
between the peeling force and the detaching speed, in this case the systems allows
for multiple solutions. In particular it results that for relatively stiff elastic tapes
and small peeling angles, equilibrium is always possible for arbitrarily large values
of the external load. In this case, the detachment velocity can be conveniently
modulated in order to control the peeling process. By contrast, for high peeling
angles or relatively compliant tapes, stable detachment occurs as long as the ap-
plied force is smaller than a certain limiting value Plim whereas, for higher values,
equilibrium is no longer possible and unstable detachment occurs (Fig. 1.10b,d).
Later, Zhu and coworkers [71] extended this formulation including an rate-dependent
adhesion energy, showing that the controllable detaching speed range is substan-
tially enlarged and can be effectively tuned through modulating the substrate
viscoelasticity as well as the peeling angle (Fig. 1.10c).

Moreover, when dealing with viscoleastic material the temperature is a crucial
parameter as it significantly affects the rehological response. Local increasing of
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Figure 1.10: Peeling of an elastic tape from a viscoelastic substrate (a). The dimen-
sionless peeling force P̂ = P/Ewd is given as a function of the peeling angle θ (b) and
the dimensionless detachment front velocities V̂ = V τ/d (d) (being E the tape’s elastic
modulus, w and d tape width and thickness, respectively, τ the substrate viscoelastic
creep time). From [23]. (c) Phase diagram of control mode of peeling with considering
the speed dependence of the work of adhesion. From [71]

the temperature may rise as effect of bulk and interfacial dissipation resulting in
peculiar toughening effects and dynamic instabilities. These phenomena have been
addressed by Carbone and Persson in two works on the crack motion in viscoelastic
solids [72, 73]. They found that, during fracture propagation, the effective tough-
ness exhibits a non-monotonic trend in relation to the crack velocity, characterized
by the appearance of both local maxima and local minima which depend on the
value of the thermal diffusivity (Fig. 1.11).
This outcome could be directly implicated in stick-slip behavior common in peel-
ing systems [29–31]. Indeed, during crack propagation the available energy at the
crack tip could result higher of the effective fracture energy. This extra energy
is expressed as kinetic energy leading to an initial abrupt acceleration of crack.
However, as velocity unstably increases the energy required for stable crack prop-
agation overcome the available energy, resulting in the crack arrest. This cycle of
events is then repeated.
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a)

b)

Figure 1.11: (a) The effective energy γeff to propagate the crack as a function of the
crack velocity v for two different values of the dimensionless diffusivity ζ0. The dashed
line is obtained by neglecting the flash temperature effect.The non-monotonic behavior
of the γeff may result in crack motion instability. From [72]. (b) Experimental energy
release rate G function of the peeling rate. From [29]. Similar behavior is observed with
respect of Carbone et Persson prediction.

1.2.3 Peeling geometries

Beside the intrinsic physical-chemical characteristics of surface interactions, it is
widely acknowledged the fundamental role of geometry and topology in governing
the behavior of peeling systems. This is particularly evident if we examine the
remarkable adhesive mechanisms found in spiders, insects, and reptiles, directly
involved in their exceptional locomotion performance. The appendages of these
organisms exhibit a common pattern of fibrillar structures or hairs organized into
multiple hierarchical levels (as depicted in Fig. 1.12). This arrangement enables
them to achieve robust adhesion by conforming to diverse surface types, thereby
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250 nm

A

B

C

Figure 1.12: The hierarchical structure of gecko’s pad. The toe pads consist of a series
of lamellae (A) each of them covered with uniform arrays of thin, microscopic, hair-like
structure called setae (B), which branch at the extremity in multiple nanoscopic spatulae
terminations (C). Adapted from [36].

maximizing the contact area and facilitating the formation of chemical-physical
bonds. While the highest-level hierarchical structures responsible for contact may
significantly differ among species and vary considerably in size [2], the mechanism
through which these adhesive structures adhere and detach remains consistent to a
peeling mechanism. It has been proposed that the rapid detachment of their hier-
archically structured extremities relies on the exploitation of simultaneous peeling
processes, spanning from the macro-scale of the legs down to the nano-scale of the
spatula pads [74]. Indeed, the peeling theory has been applied to interpret the ad-
hesive forces exhibited by various animals across a broad spectrum of species and
dimensions. This interpretation reveals a linear correlation between the weight of
the organism and the total length of the peeling line (i.e., the sum of the widths of
all individual spatula involved in the contact)(Fig. 1.13), accordingly with Rivlin’s
model Eq. (1.5) [2].

However, relying on single peeling models it could be not sufficient to com-
pletely capture the global attachment/detachment behavior of these animals. De-
veloping the theory of multiple peeling [18], Pugno suggested that also the particu-
lar geometrical arrangement may play a key role. In this scenario, multiple peeling
fronts coexist and the peeling angle is no longer an predetermined parameter but
adapts accordingly with system characteristic. It is observed that an optimal peel-
ing angle, at which adhesion is maximized, exists, and this configuration can be
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a)

b)

c)

Figure 1.13: (a) Spatula structure of different animals. (b) Peeling scheme for multiple
spatula adhesion. (c) Total peeling line versus the body mass of different animals;
Rivlin’s model fit well experimental data. Adapted form [2].

attained simply by increasing the tensile force [18].
Later, Lepore et Al. [75] showed that the angles assumed by Tokay geckos at the
two characteristic sizes of feet and toe align excellently with Pugno’s prediction
of the maximal adhesion angle (Fig. 1.13a,b). Similarly, such ”self-optimizing”
configurations have also been observed in spiders’ webs [76] and byssus thread
networks of mussels [77], where the interplay between the peculiar system’s geo-
metrical arrangement and non-linear elastic response of the material has resulted
in being a key factor for their superior adhesive performance which permits them
to withstand the heavy action of wind and waves (Fig. 1.13e,f,g).
In a successive work Pugno and coworkers extended the multiple peeling theory
to a hierarchical configurations [20]. Through FEM simulation they observed that
increasing hierarchy increases the number of delamination points in the tape re-
sulting in a distribution and reduction of the stresses at the interface. This helps
in avoiding stress concentrations and an early onset of tape delamination. On the
other hand, tape deformation and internal stresses are generally greater, and the
displacement at full delamination is slightly smaller for hierarchical configurations
with respect to the non-hierarchical tape (Fig. 1.13c,d).
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Figure 1.14: (a) V-peeling configurations in geckos at level of legs and digits. (b) Maxi-
mum adhesion configuration are observed. Adapted from [75]. (d) Hierarchical peeling
geometries in spider web anchor [22] and (c) FEM simulation of stress distribution for
two hierarchical levels [20]. (e) Mussels attached to a rock through byssus. (f) Viscoelas-
tic behavior of a single byssus and (g) force vs. time within byssus threads under impact
loading. Adapted from [77].

A strengthening effect has been also observed by Menga et. Al in investigat-
ing the V-peeling behavior of a thin elastic tape from an elastic substrate with
finite [22] and non-finite thickness [66] (Fig. 1.15a). They found that an increase
in the system delamination resistance could rise as a consequence of elastic in-
teractions between adjacent peeling fronts. In particular an increasing of both
the elasticity ratio between the Young’s moduli of tape and substrate and the
spatial periodicity produces strong enhancement of the defect tolerance of the
system. Conversely, the peeling load can be minimized by tuning the substrate
thickness and system periodicity suggesting that this configuration can represents
an innovative optimization strategy to tailor the peel adhesion of several systems.
Incidentally, we observe that such strengthening effect has been also reported for
single peeling from elastic foundation where the influence of the peel arm bending
is explicitly considered in the problem formulation [21].

However, the main important feature of multiple peeling propagation is its in-
trinsic unsteadiness involving continuous variation of system geometry and peeling
force. Nonetheless, even in this case, a steady-state condition is usually achieved
after sufficient time with a settling of a peeling force and peeling angle on an
asymptotic value. In particular Afferrante et Al. [19] showed that the V-peeling
propagation of an elastic tape is characterized by a monotonic increase of the
pull-off force up to a critical value, above which an unstable delamination of oc-
curs. Interestingly, in the same study, they reported the results for the circular
peeling of a flat elastic membrane, where the mechanism of detachment differs
significantly. In this case, the peeling line increases linearly with the radius of the
detached area, resulting in a quasi-proportional increasing in the supported load
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and a stable propagation behavior (Fig. 1.15b).
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Figure 1.15: (a)The periodic V-peeling of an elastic tape from an elastic substrate with
adjacent peeling fronts interacting. The effect of the peeling spatial periodicity λ and
substrate thickness h on the critical detached length lcr, at fixed load. From [66]. (b)
Peeling of an axisymmetric membrane. The dimensionless peeling force P̂ as a function
of the dimensionless detached length âeq for different values of the dimensionless work
of adhesion γ̂: analytical solution (solid lines) and FEM results (dots). From [19].

Moreover, it is worth to report that tests based on V-peeling and, in general,
shallow peel angle configurations (e.g. ASTM Loop Tack test) are in some cases
preferred over standard 90◦-180◦ peel tests [46, 47] as they allow for a simplified
set-up and reduce the possible effect of tape bending [16].

1.2.4 Slippage and friction effects

In peeling processes, evidences of slippage between film and substrate near the edge
of the contact interface have been consistently observed in numerous experimen-
tal investigations [32,34,52,78–82], suggesting that possible interfacial dissipative
phenomena could be tightly involved in governing the adhesion strength exhibited
in debonding processes largely exceeding predictions based on the sole reversible
adhesion energy.

Mixed-mode fracture analysis

This problem has been approached in the context of a mixed-mode fracture frame-
work where the contribute of interfacial frictional dissipation induced by slippage
is not explicitly modeled but it is accounted in an mixed-mode interface toughness.



20 Peeling: an overview

Here, the crack is subjected on a combination of two in-plane load states: tensile
stress normal to the plane of the crack (Mode I), shear stress acting parallel to
the plane of the crack and perpendicular to the crack front (Mode II). The phase
angle is used to express which fracture mechanism in predominant in governing
the crack propagation and is defined as

ψ = tan−1(KII/KI) (1.14)

with KI and KII being the stress intensity factor for Mode I and Mode II, re-
spectively. The mixed-mode approach was firstly proposed for modeling the crack
propagation in layered structured by Suo and Hutchinson [83], and then formu-
lated for peeling system by Thouless and Jensen [84]. In the case of peeling of
thin elastic film from a infinite rigid substrate KI and KII are given by Collino et
Al. [34]
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√
6M0

d3/2
sinω

KII = − P√
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(1.15)

where P is peel force, d is the tape thickness,M0 is the moment resultant acting at
the crack tip and ω is a so-called phase factor depending on the elastic mismatch
between solids (for a the peeling system considered ω = π/4). Evaluating the
moment M0 in moderate rotation plate theory, the energy release rate results

G =
P 2

2Edw2
+

P

2w
θ2 tanh2

[

√

12PL2

Ewd3

]

(1.16)

with w being the tape width, E the elastic modulus and L the length of the
detached portion. Interesting, for very thin tapes, the bending contribution on
the stress intensity factors is negligible and the phase angle resemble the definition
given by Begley [85] specifically for peeling system ψ = tan−1(Px/Py) = π/2 − θ,
where Px = P cos θ and Px = P sin θ are the peel force component tangential and
orthogonal to the substrate, respectively. Experimental results have shown that
as the peeling angle decreases, an asymptotic increasing of the interface toughness
emerges underling the dominant shear mode influence on the crack propagation
(very low phase angle) associating with high frictional losses. However, for low θ
(high ψ), KI becomes negative resulting in a closed region immediately adjacent
to the crack tip (see Fig. 1.16). Although, the authors present the possibility
to extend the range of permissible phase angles to include region with negative
KI , they also emphasize the potential risk of surpassing the constraints of fracture
mechanics. Indeed, it has been noted that, if for relatively stiff materials, frictional
sliding occurs over very small distances compared with the feature dimensions
of the system, when dealing with the peeling of soft tapes, sliding is no longer
confined in a narrow zone close to the propagation front and could extend over
larger length scales. In this case, the original assumptions underlying the standard
fracture theory are violated, the toughness becomes specimen-dependent and the
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Tape thickness

Figure 1.16: Mixed-mode fracture analysis of peeling. (a) Mode-I and mode-II stress
intensity factors, (b) Phase angle and (c) apparent interface toughness as a function
of phase angle evaluated from experimental peel force for three tapes with different
thickness. From [34].

fracture process zone is influenced by behaviours outside the regions of KI and KII

dominance. For this reason a certain skepticism about the validity of a mixed-mode
approach lasts [16, 34, 85,86].

Energy model for frictional peeling

Concurrently, energy based approaches have emerged effective in modeling slip-
page in peeling system. In this sense, the Kendall’s formulation is extended by
accounting for frictional losses generated in the contact region close to peeling
front where a certain amount of slippage between tape and substrate arises. For
soft materials, experimental analyses have demonstrated that the local interfacial
shear stress f is independent on the contact pressure [87–89] and exhibits little to
no dependence on the sliding velocity [90]. According with this evidences, uniform
shear stress models have been proposed for single peeling [86,91], wherein a linear
displacement field within the sliding zone arises from the force equilibrium equa-
tion of plate elements dσ/dx = −f/d between tensil σ and shear f stress. Such
analysis results in a Kendall like expression in the form

P 2

2Edw
(1− cos2 θ) +

P

d
(1− cos θ) = Γw (1.17)

where the additional term P 2cos2θ/2Edw emerges from frictional energy dissipa-
tion

UF = −w
∫ 0

−a

u(x)fdx (1.18)

where u(x) is the tape displacement field in the slippage zone of extension a.
Large deformations and V-peeling configuration have been later studied by

Begley et Al. [34,85] whose findings have been used for the interpretation of peel-
ing experiments on a thin PDMS tape adhering to a glass substrate through van
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der Waals interactions [34]. Across all these studies, it has been consistently ob-
served that high peeling forces are reported for low peeling angles, far beyond the
Kendall frictionless prediction (see Fig. 1.17a), reflecting the non-negligible role
of frictional sliding in governing delamination strength of peeling systems. More-
over, through digital image correlation (DIC) the displacement field in the contact
zone was measured, suggesting that sliding is likely confined to a region within
two film thicknesses of the peel front, and that a strain exponential decay is well
consistent with theoretical predictions derived from large deformation arguments
(Fig. 1.17b). Similarly, a power low decay for displacements in sliding region

Crack front

Fracture energy

tape thickness = 50μm
peel angle = 9.2°

tape thickness = 50μm

a) b)

Figure 1.17: Peeling with frictional sliding interface. (a) Peel force as function of peeling
angle: experimental data are compared with stuck and sliding models for small and large
deformation. (b) Displacements in the adhered region of the film near the crack front
measured via DIC and decay function fitting of the data. Adapted from [34].

has been predicted using a velocity-dependent shear stress model by Newby and
Chaudhury [79] which well fitted measurements conducted using tapes marked
with fluorescent particles. This same power law has been also observed in the
relationship between peeling force and peel rate. Such a result suggests that inter-
facial frictional dissipation could be directly involved in the peel rate toughening
effect commonly observed in peeling systems.
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Concepts of linear viscoelasticity

Viscoelastic materials exhibit an intermediate behavior between elastic solids and
viscous fluids. Elastic materials can store mechanical energy when subjected to
stress/strain actions. Their response does not depend on the dynamic of the
excitation and, in the limit of linear elasticity, their behavior is just governed by the
Young’s modulus E which relates stress and strain through the well known Hooke’s
law σ = Eε. On the contrary, viscous fluids have the capacity for dissipating energy
under non-hydro-static stress states, but not to store it. For many viscous fluids,
the constitutive relation is described by Newton’s law of viscosity σ = µε̇ (with
µ being the viscosity coefficient). The combination of these two characteristics
gives to viscoelastic materials a particular time-dependent behavior which is highly
affected by the magnitude and the rate of the excitation they are subjected to.

Understanding and modeling viscoelasticity is of primary interest in several
contexts ranging from biology, medicine to engineering. For instance, structural
materials such as concrete, wood, stone, glass and metals naturally have a vis-
coelastic behavior which has to be accounted for during the design stage in order
to prevent failure or collapse of structures as a result of excess deformation. This
is crucial for the design, for instance, of seawall or asphalt subjected to static and
dynamic loads respectively [92,93]. The marked viscoelastic response of metals at
high temperatures must be considered in several applications including heat ex-
changers, furnace linings, boiler baffles, bolts at high temperatures, power plants,
exhaust systems [94]. An example is represented by the turbine blades in jet en-
gines subject to large tensile stress of centrifugal origin, and high temperature.
The pursuit of ever higher performance achievable by forcing operation to higher
temperatures has driven the development of specific cooling technologies and creep-
resistant alloys [95].

The pursuit of ever higher performance, achieved by operating at increasingly
higher temperatures, has driven the development of specific cooling technologies
and creep-resistant alloys

Moreover, the capacity to recover strain exhibited from human tissues has been
studied with the aim of developing specific treatment as in the case of abnormal
head-shape correction in infants [96,97], for diagnostic purposes [98–100], or for the
design of prostheses which can accurately reproduce the behavior of the original

23
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biological structures they are replacing [101–103].
Moreover, studying viscoelastic mechanisms is important not just for under-

standing existing materials, but is also fundamental to guide the synthesis of new
materials tailored on specific needs. In this aspect, polymers are probably the class
of materials that stands out the most. Their chemical and mechanical behavior
can be tuned by adjusting the chemical composition, molecular weight, and pro-
cessing conditions [104,105] to meet diverse industrial and scientific requirements.
Look, for instance, at dumping materials used to design shock-absorbing elements
(e.g. in helmets or vehicles’ structure), reducing noise and vibration [106–108].
Moreover, rubbery materials are commonly used for seals and gaskets to prevent
leakage of fluids. Thanks to their deformability and viscoelasticity can adapt to
changing of gap between components securing sealing and reducing stress or fric-
tional losses in case of sliding joints [109–111]. Tapes, and in particular adhesive
tapes, represent a noteworthy application of tailored viscoelastic properties both
at the level of the tape material and adhesive itself. These tapes are designed
with specific characteristics which enable a solid adhesion while maintaining flex-
ibility and durability. Understanding their viscoelastic behavior is essential for
optimizing performance in packaging, construction, or even medical applications
like wound dressings.

In this chapter we will present the most important notions and mathemati-
cal models for linear viscoelasticity that will be used for the formulation of the
viscoelastic tapes peeling behavior.

2.1 Creep and Stress-relaxation

The main features of a viscoelastic response can be draw through a simple step
excitation analysis. Consider a viscoelastic material subjected to a step stress σ(t)
applied at time t = 0 with magnitude σ0; this can be mathematically expressed as

σ(t) = H(t)σ0 (2.1)

where H(t) is the Heaviside step function defined as

H(t) =

{

0 if x < 0

1 if x ≥ 0
(2.2)

In a viscoelastic material the strain is observed increasing with time. This
effect is called Creep, namely the deformation of a material undergone constant
load. Thus the relation between load and deformation can be expressed through
creep compliance (or creep function) J (t) as

ε(t) = J (t)σ0 (2.3)

This behavior is graphically depicted in Fig.
Consider now to apply a step strain ε of magnitude ε0 was time history is

described by
ε(t) = H(t)ε0 (2.4)
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In a viscoelastic material a stress relaxation, thus a gradual decrease of stress when
the material is held at constant strain, is observed. This is shown in Fig. 1.7b
Now, a Hooke-like equation describes the stress-strain relation

σ(t) = R(t)ε0 (2.5)

with R(t) being the relaxation modulus (or relaxation function), which can be
interpreted as a time-dependent elastic modulus.
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Figure 2.1: Typical viscoelastic response to step excitation. (a) Creep and (b) stress
relaxation.

In a linear viscoelastic material both creep compliance J and relaxation func-
tion R are assumed independent of stress and strain level respectively and are
function of time alone.

2.2 Boltzmann superposition principle

Step excitation experiments are also used to model and characterize the a linear
viscoelastic material. The response to any stress or strain history can be extended
from a simple step response by means of the Boltzmann superposition principle,
which states that the effect of a compound cause is the sum of the effects of the
individual causes. Consider a response y(t) to a generic input x(t) described by a
linear operator L as

y(t) = L{x(t)} (2.6)

which satisfy the following assumptions:

• Linearity: the output generated from a linear combination of inputs can be
expressed as a linear combination of the outputs of single inputs

ax1(t) + bx2(t) = aL{x1(t)}+ bL{x2(t)} = ay1(t) + by2(t) (2.7)
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• Time invariance: the output signal does not depend on the absolute time.
In other words, if for some input signal x(t) the output signal is y1(t) =
L{x(t)}, then a time-shift of the input signal creates a time-shift on the
output signal, i.e.

y2(t) = L{x(t− t0)} = y1(t− t0) (2.8)

• Casuality: the output of the system does not depend on future inputs, but
only on past input. It is the cause-effect principle which governs real physical
phenomena.

We consider now a linear viscolastic material where all these assumptions are
assumed fullfilled. The response to a generic deformation ε(t) is a stress σ(t) given
by

σ(t) = L{ε(t)} (2.9)

Suppose the deformation being a linear combination of step signal of magnitude
εk occurring at time tk, thus

ε(t) =
∑

k

εkH(t− tk) (2.10)

𝜀(𝑡)

𝑡0

Δ𝑡
𝜀0 𝜀1
𝑡0 𝑡1 𝑡2

Figure 2.2: Decomposition of a continuous strain signal into step functions.

See now Fig. 2.2. An arbitrary signal can be decomposed into step functions
occurring with uniform time-steps ∆t. With reference to a step strain, in the limit
of ∆t→ 0, a continuous signal is obtained as

ε(t) =
∑

k

ε̇(tk)H(t− tk)∆t (2.11)

For the linearity and time invariance principles we can write the stress response
σ(t) as

σ(t) = L
{

∑

k

ε̇(tk)H(t− tk)∆t

}

=
∑

k

ε̇(tk)L{H(t− tk)}∆t (2.12)
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From Eq. (2.5), the viscoelastic response to a unitary step-strain is expressed by
the relaxation modulus; the last equation becomes

σ(t) =
∑

k

ε̇(tk)R(t− tk)∆t (2.13)

Finally, since ∆t→ 0, passing to integrals we obtain

σ(t) =

∫ t

−∞

R(t− τ)ε̇(τ)dτ (2.14)

Following the same arguments, the strain response to a generic stress input is given
by

ε(t) =

∫ t

−∞

J (t− τ)σ̇(τ)dτ (2.15)

Eqs. (2.14,2.15) let us to obtain the viscoleastic response to an arbitrary input
history as a function of a convolution where the kernel is represented by the step-
input response. Note that the Bolzamann superposition is not just valid for input
expressed as a combination of step-signals, but is valid for every input ascribable
to a sum of elementary functions (ramp, sine, cosine, etc.). For each elementary
functions will correspond a different kernel L(t).

2.3 Rheological models

To comprehend and characterize the complex viscoelastic behavior, a common ap-
proach relies on the use of rheological models. These models serve as tools for
quantifying the response of viscoelastic materials to external forces, temperature
variations, and time-dependent deformations. In particular, the use of discrete
mechanical element like Hookean springs (elastic element), and Newtonian dash-
pots (pure viscous element), combined in series or parallel has resulted powerful
for this purpose.

2.3.1 Voigt model

σε
𝜇
E

Figure 2.3: Scheme of the Voigt model
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The Voigt model represented in Fig. (2.3) consists of spring and dashpot in
parallel so that they both experience the same strain ε and the total stress σ is
the sum of the stress in each element.











σ = σel + σvis

σel = Eε

σvis = µε̇

(2.16)

Assuming the strain being an unit step-function ε(t) = H(t), the response of the
system represent the relaxation function, so that

R(t) = EH(t) + µδ(t) (2.17)

where we have used Ḣ(t) = δ(t).
Consider now a unit step change of stress σ(t) = H(t) is applied, so that the

strain response of the system represents the creep function. From Eq. (2.16) we
have

µJ̇ (t) + EJ (t) = H(t) (2.18)

Since this is a first-order complete linear differential equation, the general solu-
tion J is obtained by adding the general solution of the associated homogeneous
equation Jo to the particular solution Jp

J (t) = Jo(t) + Jp(t) (2.19)

Without entering in details, the homogeneous equation has the note solution

Jo(t) = Ae−
t
τ (2.20)

where we have defined the creep time τ = µ/E, and A is a constant we will find
by imposing initial conditions. The particular solution can be found by observing
that, after sufficiently time (t → ∞) the stress application the system achieve an
equilibrium condition (J̇ = 0) where the contribution of the dashpot is null and
only the elastic element reacts to the applied stress; from Eq. (2.18) we have

Jp(t) =
1

E
(2.21)

We fulfill the Cauchy problem noticing that, just after the stress application
J (0+) = 0, as the dashpot avoids instantaneous deformations. Solving Eq. (2.20),
we obtain the value of the constant A = −1/E.

Without formalism, for t ≥ 0 , the relaxation and creep functions of the Voigt
model are, respectively







R(t) = E + µδ(t)

J (t) =
1

E

[

1− e−
t
τ

] (2.22)

In Fig. 3.4a are shown creep and relaxation function for the Voigt model. It
is important to notice that, the creep time τ = µ/E is the characteristic time of
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the system, so that the viscoelastic behavior of the system appears just on time
scales in the order of t ≈ τ . For t≪ τ , the Voigt model response is almost rigid as
J = 0. Moreover, at time t = 0, the relaxation function diverges as the dashpot
requires infinite stress to be stretched instantaneously. For this reasons, this model
is unable to properly represent the elastic behavior of a viscoelastic material at
short time. Whereas, for longer time scales the creep behavior arises, and the
response became purely elastic for t≫ τ .𝒥(𝑡)

𝑡0

1𝐸

(a)

ℛ(𝑡)

𝑡0

𝐸

(b)

Figure 2.4: Creep function J (t) (a) and stress relaxation function R(t) (b) for the Voigt
model.

2.3.2 Maxwell model
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Figure 2.5: Scheme of the Maxwell model

The Maxwell model consists of a spring and a dashpot in series (see. Fig. 2.5).
Here, each element is subjected to the same force, thus











σ = σel = σvis

σel = Eεel

σvis = µε̇vis

(2.23)

where εel = ε − εvis and εvis are the deformations of the elastic and dashpot
elements, respectively. Derivating with respect of time σel, and substituting ε̇vis
given from σvis we obtain







σ̇ = E(ε̇− ε̇vis)

ε̇vis =
σ

µ

→ σ̇ +
E

µ
σ = Eε̇ (2.24)
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Consider firstly a unit step of deformation as input ε(t) = H(t) so that the
stress response represents the relaxation function of the model. We have

Ṙ(t) +
E

µ
R(t) = EḢ(t) = Eδ(t) (2.25)

With similar arguments to those provided above, we have

Ro(t) = Ae−
t
τ (2.26)

with τ = µ/E being the relaxation time. Whereas for the particular solution Rp(t)
observe that, after sufficient time (t→ ∞), all the imposed deformation has been
recovered by the dashpot and the system is completely relaxed so that

Rp(t) = 0 (2.27)

Considering that at time t = 0+, since the dashpot acts as a rigid body to impulsive
deformation, the strain is entirely absorbed by the elastic element so that R(0+) =
E; it results A = E. The relaxation function for a Maxwell model is given by

R(t) = Ee−
t
τ (2.28)

Consider now the system is excited by a unit step stress σ(t) = H(t). The
strain response represent the creep function of the model; Eq. (2.25) becames

J̇ (t) =
1

E
Ḣ(t) +

1

µ
H(t) (2.29)

which integrated gives

J (t) = H(t)
1

E

[

1 +
t

τ

]

+ A (2.30)

Since J (0+) = 0, A = 0.
Without formalism, for t ≥ 0, the relaxation and creep function are, respec-

tively










R(t) = Ee−
t
τ

J (t) =
1

E

[

1 +
t

τ

]

(2.31)

In Fig. (4.4) are shown the creep and relaxation function for the Maxwell
model. Note that this model provides a vanishing residual stress for t → ∞, so
that all the imposed deformation is dissipated in the dashpot. For short time
scale this model acts as an elastic solid. When subjected to a constant stress,
Maxwell model behaves like a viscous fluid showing a continuous deformation with
a constant rate equal to 1/µ.

2.3.3 Standard linear model

Since both Voigt and Maxwell model have limits in properly represent the vis-
coleastic behavior at short or long time scale, respectively, combinations of both
models have been proposed to better represent the viscoelastic response. The stan-
dard linear solid (SLS) model shown in Fig. (2.7) is based on an elastic element
in parallel with a Maxwell element.
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Figure 2.6: Creep function J (t) (a) and stress relaxation function R(t) (b) for the
Maxwell model.
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Figure 2.7: Scheme of standard linear solid model (SLS), Maxwell representation.

Relaxation function

We consider firstly the relaxation function of the system R(t). For this model,
each element is subjected to the same strain ε(t) = H(t), so that the total stress
is the sum of the stress in each branch. Recalling the relaxation function for the
Maxwell model (Eq. (2.34)), we have

R(t) = R0(t) +R1(t) =

= E0 + E1e
−

t
τ

(2.32)

Often, it is useful referring to the material stiffness exhibited at short time scale
t→ 0 (fast excitation) E∞ and long time scale t→ ∞ (slow excitation) E0. Note
that subscript refers to the excitation frequency. For very fast excitation it results
E∞ = E0 + E1, so that

R(t) = E0 + (E∞ − E0)e
−

t
τr (2.33)

Observe that the relaxation time is τr = µ/E1 = µ/(E∞ − E0).



32 Chapter 2

Creep function

The creep function of the system will be given by a step function as stress input.
By considering the components in each branch of the system, it is possible to write



















σ0(t) = E0ε0

σ1(t) = E1ε1,el

σ1(t) = µε̇1,vis

σ(t) = σ0(t) + σ1(t)

(2.34)

with σ(t) = H(t) and ε(t) = J (t). After some algebraic calculations involving
transformations already seen previously (see Section 2.3.2), we get the following
differential equation

E∞

µ1

E1

J̇ (t) + E0J (t) =
µ1

E1

Ḣ(t) +H(t) (2.35)

By substituting τ = µ1/E1, and defining the viscoelastic factor κ as

κ =
E∞

E0

(2.36)

we obtain

J̇ (t) +
1

κτ
J (t) =

1

E∞

[

δ(t) +
1

τ
H(t)

]

(2.37)

Also in this case we can obtain the solution as the sum of the homogeneous and
particular solutions; we have

Jo(t) = Ae−
t
κτ (2.38)

As after sufficiently time the dashpot is completely relaxed, all the deformation is
sustained from the elastic element, thus the particular solution can be given as

Jp(t) =
1

E0

(2.39)

The constant A is obtained imposing the initial condition. For t→ 0+ the system
reacts to the step strain as the parallel of the springs E0 and E1 so that

J (0+) =
1

E0 + E1

=
1

E∞

(2.40)

We finally get the relaxation function

J (t) =
1

E0

+

(

1

E∞

− 1

E0

)

e−
t
τc (2.41)

with τc = κτ being the creep (or retardation) time.
Observe that the creep time is not equal to the relaxation time but it is larger.

The ratio of creep to relaxation times depends on the relaxation strength ∆, which,
in terms of creep compliance, is given by the general form [112]

∆ =
J (∞)− J (0)

J (0)
(2.42)
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Figure 2.8: Creep function J (t) (a) and stress relaxation function R(t) (b) for the
Standard solid model in Maxwell representation.

so,
τc = τr(1 + ∆) = κτr (2.43)

In Fig. 4.6 are shown trend of J (t) and R(t) for a SLM. This model is able
to capture the typical viscoelastic behavior at both small and long time scales.
Indeed, the creep function exhibit a step change for t = 0 as soon the stress is
applied (pure elastic behavior), followed by a finite increase during the creep stage
until the asymptotic limit is achieved 1/E0 where the system behaves as a solid
but with lower stiffness. For the relaxation we observe the highest value E∞ for
t = 0, when all the elastic component of the system is stressed. For increasing
time, a stress relaxation toward the asymptotic value E0 occurs, so that the system
maintains an elastic response.

Generalized SLS model

This model based on the simple combination of one Maxwell and one elastic el-
ement shows a single characteristic time so that undergoes creep and relaxation
over about one decade in time scale. In fact, real viscoelastic materials relax and
creep over many decades. In order to account for this behavior, starting from the
SLS model a more general model can be considered where several Maxwell element
are combined in parallel with a pure elastic element (see Fig. 2.9). In particular,
when the input force or displacement occurs, only a few Maxwell branches are
involved in the system response: only those having a characteristic time of the
same order of magnitude of the frequency of the input; not all the time scales are
then considered. The relaxation and creep function for these general models can
be expressed with the following series as a combination of the response of each
element



















R(t) = E0 +
∑

k

Eke
−

t
τk

J (t) =
1

E0

+
∑

k

1

Ek

(

1− e
−

t
τk

) (2.44)
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Figure 2.9: Scheme of generalized SLS model in Maxwell representation.
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Peeling of viscoelastic tapes: the

role of frictional sliding

Following evidences of sliding between tape and substrate near the crack front
during peeling propagation [32,34,80,82], many studies have tried to consider this
behavior relying on mode-mixity approaches or energy based formulation which
extends Kendall’s original model by accounting for frictional dissipation energy
contribution (refer to Section 1.2.4 for a more comprehensive discussion,). In
the latter scenario, this problem has been addressed within the context of linear
elasticity considering both small and large deformations, as well as single and V-
peeling configurations [34, 81, 85, 91]. Theoretical and experimental investigations
have consistently concluded that, as expected, the presence of frictional sliding
at the interface enhances the peeling resistance of the system, resulting in higher
peeling forces, which may theoretically diverge at vanishing peeling angles. Nev-
ertheless, while this dissipation mechanism appears to be pivotal for gaining a
deeper understanding of peeling phenomena, it is often ignored and it has not
been comprehensively explored, particularly when combined with the viscoelastic
material response commonly exhibited by polymer tapes frequently employed in
peeling processes.

In this chapter, we present a theoretical model of the behavior of a thin vis-
coelastic tape peeled away from a rigid substrate. Specifically, we aim at inves-
tigating the combined effect of frictional interfacial sliding occurring during the
detachment process and the energy dissipation associated with the viscoelastic
behavior of the tape. In order to better outline the interplay between these mech-
anisms of energy dissipation, two models will be discussed: (i) stuck model, where
a rigid constraint avoids any possible interfacial displacement between the tape
and the substrate, so that no additional energy contribution is present at inter-
face beside the change in the energy of adhesion; then (ii) we consider the sliding
case, where energy dissipation occurs due to frictional relative sliding in the tape
elongated region.

35
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3.1 Stuck model

We consider a viscoelastic tape of thickness d and transverse width w (cross-section
At = wd), baked onto a rigid substrate with no relative sliding at the interface.
As shown in Fig. 4.1, the tape is peeled away at an angle θ under a constant force
P . We assume a stationary peeling process, with the propagation front moving
on the left at a constant velocity vc relative to the substrate. Conveniently, the
process is observed in the peeling front, so that the substrate moves on the right
at speed vc as shown in Fig. 4.1. 𝑃

𝜃𝑣𝑐

𝑥0

𝜀𝜎0
𝑦 𝑥
𝑦

𝑣𝑃
Stuck Interface

𝑑

Figure 3.1: The scheme of the peeling process of a thin viscoelastic layer from a rigid
substrate in the presence of stuck adhesion at the interface, so that no relative sliding
occurs. In the lower part, qualitative diagrams of the tape stress σ (red) and deformation
ε (blue) are shown.

Under steady state conditions, the Griffith criterion for the peeling condition
can be referred to an energy balance per unit time in the form

WE +WI +WS = 0 (3.1)

where WE is the work per unit time of the external forces acting on the tape, WI

is work per unit time done by tape internal stresses, which takes into account for
both the change in the stored elastic and viscous energy dissipation in the tape,
and WS is the work per unit time done by interfacial forces. Notably, in this
formulation we neglect any other source of energy dissipation, such as acoustic or
thermal emissions.

The term WE in Eq. (3.1) can be calculated considering the external forces
acting on the system, which are the remote load P acting on the detached tape
tip, and the corresponding opposite substrate reaction force −P cos θ acting on
the peeling front. We have

WE = PvP − Pvc cos θ = σ0vcAt

(

1 +
σ0
E0

− cos θ

)

(3.2)

where we defined σ0 = P/At, and E0 is the low frequency viscoelastic modulus.
Moreover, the mass balance of the tape gives vP = vc(1 + σ0/E0). Notably, in
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Eq. (3.2) we assumed that the tape tip (where the force P is applied) is located
sufficiently far from the peeling front, so that complete viscoelastic relaxation
occurs in the detached tape.

The surface termWS in Eq. (3.1) represents the energy per unit time associated
with the rupture of interfacial adhesive bond. Although the work of adhesion
may also depend on the peeling rate as effect of dissipative surface phenomena
(see Chapter 1), in this model we neglect such effects, thus assuming a constant
work of adhesion independent on vc coinciding with the Duprè adhesion energy γ.
Therefore, we can write

WS = −wγvc (3.3)

As mentioned above, the term WI in Eq. (3.1) takes into account for both the
elastic energy stored in the tape, and the bulk energy dissipation occurring due
to viscoelastic creep in the detached strip. Moreover, observing that the bending
stiffness of the tape depends on the third power of thickness d, and considering
that we focus on very thin tapes, the bending contribution to WI can be neglected
(see also Refs. [25, 113]). Hence we write

WI = −vcAt

∫ +∞

−∞

σ(x)ε′(x) dx (3.4)

where ε′(x) is the spatial derivative of the strain ε (x). Note that, in Eq. (3.4), we
used ε̇(x) = vcε

′(x), with ε̇(x) being the time derivative of ε (x).
Since in this section we assume no interfacial sliding between the adhering tape

and the rigid substrate, the stress distribution in the viscoelastic tape can be given
by σ(x) = σ0H(x), with H(x) being the Heaviside step function (see the diagram
in Fig. 4.1). In the framework of linear viscoelasticity and steady state conditions,
the deformation field can be calculated as (see Chapter 2)

ε(x) =

∫ x

−∞

J (x− s)σ′(s) ds (3.5)

where J (x) is the spatial transformation of the viscoelastic creep function, that
for a single creep time τ , is given by

J (x) =
1

E0

− e−x/λ

E1

(3.6)

where λ = vcτ is the creep length, and E−1
1 = E−1

0 − E−1
∞

with E0 and E∞ being
the low and very high frequency viscoelastic moduli, respectively. For the case at
hand, Eq. (3.5) gives ε(x) = σ0J (x), which substituting into Eq. (3.4), after some
algebra, gives

WI = −vcAtσ
2
0

(

1

E0

− 1

2E∞

)

= −vcAtσ
2
0

2

(

1

E0

+
1

E1

)

(3.7)

where the strain value in the crack section (x = 0) is made well-designed through
ε(0) = 1

2
[ε (0−) + ε (0+)] = 1

2
ε (0+) [114,115]. Note that the two terms in Eq. (3.7)
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represent the elastic energy per unit time stored in the system and the viscoelastic
dissipated energy per unit time, respectively

Uel =
vcAtσ

2
0

2E0

Ds =
vcAtσ

2
0

2E1

(3.8)

Finally, substituting Eqs. (3.2,3.3 ,3.7) into Eq. (3.1) we have

σ2
0

2E∞

+ σ0(1− cos θ) =
γ

d
(3.9)

which represents the peeling equilibrium condition. Interestingly regardless of the
peeling velocity vc, Eq. (3.9) is identical to the Kendall equation (1.9) with the
elastic modulus given by the high frequency viscoelastic modulus E∞. Notice that
Eq. (3.9) can be rephrased as

1

2

(

σ0
E0

)2

+ κ
σ0
E0

(1− cosθ) = κ
γ

E0d
(3.10)

where we have defined the viscoelastic factor as κ = E∞/E0. For θ = 0, we get

σK =

√

2κE0γ

d
=

√

2E∞γ

d
(3.11)

so that, in this case, the peeling is much more tough than in the (low frequency)
elastic case as the effective work of adhesion is κ-times larger than γ.

In order to explain the appearance of the high-frequency viscoelastic modulus
E∞ in Eq. (3.9) we note that, because of the stuck condition assumption (no
relative sliding at the tape-substrate interface), the tape is subjected to an abrupt
stretching in the peeling section (see Fig. 4.1). For this reason, regardless of the
peeling velocity vc, the material response close to the peeling front is governed by
the high-frequency viscoelastic response, which makes the tape locally behave as
a perfectly elastic material with elastic modulus E∞.

Notably, in real conditions, the abrupt change of the tape stress during peeling
would be smoothed, as it must occur on a finite length scale across the peeling
section. Since the size of this transition zone can be estimated of order unity of
the tape thickness d (see also Refs [23, 34]), the tape excitation frequency during
peeling is ω ≈ vc/d, so that at very low peeling velocities, i.e. when vc ≪ d/τ ,
the tape response would be governed by the low-frequency viscoelastic modulus
E0. However, since we usually expect that vc ≫ d/τ , this would not qualitatively
affect the physical picture of the peeling behavior provided so far.

3.2 Frictional sliding interface

The discussion provided in the previous section is based on the assumption that
the tape firmly sticks to the rigid substrate, and the tangential component of
the peeling force P , remotely acting on the tape tip, is locally balanced by a
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point reaction force acting in the peeling section. However, as discussed before, it
has been shown that a certain amount of relative sliding occurs in real interfaces
[32,34,79,80], so that the tangential component of the peeling force P is balanced
by the frictional shear stresses arising at the interface between the tape and the
rigid substrate. In this case, we consider an interfacial model where slip occurs
if the interfacial shear stress is higher than a critical value f , which maintains
uniform within the whole sliding length a, [91]. The force equilibrium of a plate
element inside tape strip requires

dσ

dx
= −f

d
(3.12)

which, integrated according with the force at the edge of the sliding region σ(−a) =
0 and σ(0) = σ0cosθ, gives the extension of the sliding length. Thus, during the
peeling process, a portion of the adhering tape of length

a =
σ0cosθ

f
d =

Pcosθ

wf
(3.13)

is gradually stretched and slides against the substrate. Such a physical scenario is
shown in Fig. 4.2. 𝑃
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Figure 3.2: The scheme of the peeling process of a thin viscoelastic layer from a rigid
substrate in the presence of relative sliding at the interface. Notably, f is the frictional
shear stress. In the lower part, qualitative diagrams of the tape stress σ (red) and
deformation ε (blue) are shown.

Being vs (x) = vcε (x) the sliding velocity distribution at the interface, de-
rived from the tape mass conservation, the work per unit time done by interfacial
frictional stresses is calculated as

WT = −
∫ 0

−a

vs(x)fwdx = −fwvc
∫ 0

−a

ε(x)dx (3.14)

Of course, both the stress and deformation distributions along the tape are
modified due to the presence of the tangential tractions f . Indeed, from Eq.
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(3.12), we have

σ (x) =
f

d
(x+ a) ; −a ≤ x < 0 (3.15)

σ (x) = σ0; x > 0

where σ0cosθ = fa/d. Similarly, from Eq. (4.4), recalling, Eq. (3.5), one obtains

ε(x) =
f

E0d
(a+ x)− fλ

E1d

[

1− exp

(

−x+ a

λ

)]

; −a ≤ x < 0

ε(x) =
σ0
E0

− σ0
E1

{

1− fa

σ0d
+
fλ

σ0d

[

1− exp
(

−a
λ

)]

}

exp (−x/λ) ; x > 0

(3.16)

Recalling Eq. (3.14) and using Eqs. (4.4, 3.16) we have

WT = −Atvc
σ2
0

2E0

cos2 θ

{

1− 2
κ− 1

κ

λ

a

[

1− λ

a
+
λ

a
exp

(

−a
λ

)

]}

(3.17)

where a/λ = In Eq. (3.17), we note that for a/λ→ ∞ we get
WT → −1

2
Atvc(σ

2
0/E0) cos

2 θ, which involves the low frequency modulus E0; whereas,
for a/λ → 0 we get WT → −1

2
Atvc(σ

2
0/E∞) cos2 θ, which involves the high fre-

quency modulus E∞. Moreover, WT (a/λ→ ∞) = κ WT (a/λ→ 0). It is worth to
note that, just for θ → π/2, WT vanishes. In particular, even in the limit of f → 0
a non-negligible dissipative contribution associated with interfacial shear stresses
lasts. This can be explained considering that, in such case, the force equilibrium
Eq.(3.13) requires a→ ∞, so that, even if infinitesimal, frictional losses occur over
an infinite area, resulting in a finite value of WT . Of course, for real system where
tapes have a finite length, the maximum a value is limited by the adhering tape
portion length ac. It results that, as long as a ≤ ac the system is in equilibrium
as the tangential component of the external force (Pcosθ) is entirely balanced by
frictional stresses; as soon as a > ac, Pcosθ is no longer balanced and the tape
entirely slides in the pulling direction. On the other side, in the limit of f → ∞ the
sliding region is reduced to an infinitesimal length where all the frictional losses
are concentrated, andWT ̸= 0. In light of this, the stuck case can not be recovered
as a limit case of the sliding model.

This time, the work per unit time done by tape internal stresses is

WI = −wdvc
∫ +∞

−∞

σ (x) ε′ (x) dx = (3.18)

− wdvc
σ2
0

2E0

cos2 θ

{

2

κ
− 1− 2

κ− 1

κ

λ

a

[

λ

a
−
(

1 +
λ

a

)

e−
a
λ

]}

(3.19)

+ wdvc
σ2
0

2E0

{

2
κ− 1

κ

[

3

2
− cosθ

(

1− λ

a

(

1− e−
a
λ

)

)]}

(3.20)
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Finally, recalling that, in this case, Eq. (3.1) modifies in

WE +WI +WS +WT = 0 (3.21)

and using Eqs. (3.2,3.3,3.17 ,3.18) into Eq. (3.21), the final peeling equilibrium
equation for a viscoelastic tape in the presence of frictional sliding at the interface
is given by

σ2
0

2E0

{

(

1− cos2 θ
)

− κ− 1

κ
(1− cos θ)

(

1 + 2 cos θ

[

λ

a

(

1− exp
(

−a
λ

))

− 1

2

])}

(3.22)

+σ0(1− cos θ)− γ

d
= 0

3.3 Models comparison

3.3.1 Dimensionless analysis and limit solutions

In this section will be discussed the main outcomes of the peeling models pro-
posed above. In order to simplify the interpretation of the results, we introduce
the following dimensionless parameters: P̃ = P/(AtE0) = σ0/E0, f̃ = f/E0,
γ̃ = γ/ (E0d) and ṽc = vcτ/d. In our calculation, reasonable value of dimen-
sionless parameters are assumed accordingly with experimental value taken from

the literature [17, 79–81]. Note that a/λ = P̃ cos θ/
(

ṽcf̃
)

. Therefore, Eq. (3.22)

becomes

P̃ 2

2

{

(

1− cos2 θ
)

− κ− 1

κ
(1− cos θ)

(

1 + 2 cos θ

[

ṽcf̃

P̃ cos θ

(

1− exp

(

− P̃ cos θ

ṽcf̃

))

− 1

2

])}

(3.23)

+P̃ (1− cos θ) = γ̃

In the limiting cases of ṽc ≫ 1 and f̃ ≫ 1, Eq. (3.22) gives

1

2

σ2
0

E∞

(

1− cos2 θ
)

+ σ0(1− cos θ) =
γ

d
(3.24)

which clearly differs from Eq. (3.9), showing that the energy dissipation due to
frictional sliding at the interface is proportional to 1

2
(σ2

0/E∞) cos2 θ, which leads
to much tougher peeling behavior at small peeling angle, as the peeling stress σ0
diverges as σK/θ. This result has been already observed in Refs. [85,91] for purely
elastic tapes (E is replaced by E∞), and it can be interpreted as the emergence
of an infinitely tough peeling behavior. Incidentally, it is worth noticing that
ultratough peeling has been also predicted to occur when the tape is elastic and
the substrate viscoelastic [23, 67].
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Similarly, in the limiting case of ṽcf̃ ≪ 1 with ṽc ≫ 1 (i.e. vc ≫ d/τ), Eq.
(3.22) becomes

1

2

σ2
0

E0

(

1− cos2 θ
)

− [σ0 (1− cos θ)]2

2E1

+ σ0(1− cos θ) =
γ

d
, (3.25)

where the tape response in the adhered portion subjected to frictional shear stresses
is governed by the low frequency viscoelastic modulus E0. However, in Eq. (3.25),
the additional term

Df =
σ2
0 (1− cos θ)2

2E1

= (1− cos θ)2Ds (3.26)

represents the viscoelastic energy dissipation per unit time, triggered by the stress
step change σ = σ0 − σ0 cos θ, which still occurs at the peeling front. Indeed,
this time Eq. (3.8) is still valid provided that σ0 is replaced by σ. Notice that,
as already discussed before, for ṽc ≪ 1 (i.e. vc ≪ d/τ) the term Df must also
vanish, as even in the peeling section the tape behaves elastically with modulus
E0. Therefore, for f̃ ≪ 1 and ṽc ≪ 1 (i.e. vc ≪ d/τ), Eq. (3.22) becomes

1

2

σ2
0

E0

(

1− cos2 θ
)

+ σ0(1− cos θ) =
γ

d
(3.27)

which holds true for purely elastic tapes (with elastic modulus E = E0) in the
presence of interfacial frictional sliding (see Refs [81, 85, 91]).

3.3.2 Effect of viscoelastic parameter and adhesion energy
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Figure 3.3: The dimensionless peeling force P̃ as a function of the peeling angle θ, for
different values of (a) the viscoelasticity parameter κ = E∞/E0; and (b) the dimension-
less energy of adhesion γ̃. The dashed curves refer to the case of stuck interface between
the tape and the rigid substrate, whereas continuum curves refer to frictionally sliding
interfaces.
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Figure 3.6 shows the dimensionless peeling force P̃ as a function of the peeling
angle θ, for both stuck and sliding interfaces and different values of the parameter
κ = E∞/E0 (Fig. 3.3a), and of the energy of adhesion γ (Fig. 3.3b).

As already discussed, in the stuck case (dashed lines in Figure 3.6) we recover
the well-known elastic Kendall’s solution, where the elastic modulus is replaced
by the high-frequency viscoelastic modulus E∞ [see Eq. (3.9)]. Given the values
of the low-frequency viscoelastic modulus E0, the peeling angle θ and work of
adhesion γ, the peeling force increases with the parameter κ = E∞/E0.

On the other hand, in case of frictional sliding at the interface a very different
scenario emerges. This time, the peeling process is governed by Eq. (3.22), which,
regardless of the κ value, leads to unbounded peeling forces for vanishing peeling
angle θ (see continuous lines in Figure 3.6). In this case, the dimensionless peeling
force obeys the equation P̃ =

√
2γ̃/θ for θ → 0. Interestingly, such a result is

in agreement with several experimental observations on the peeling behavior of
insects pads in the presence of relative frictional sliding between the fibrils and the
substrate [34, 36, 116]. Figure 3.6 presents the effect of the dimensionless energy
of adhesion γ̃ on the peeling behavior. As expected, regardless of the specific
interface behavior, increasing γ̃ leads to an overall tougher peeling behavior, as
the necessary stress P̃ to sustain the peeling process increases [54]. Moreover,
for relatively high peeling angles, the peeling force predicted by stuck and sliding
models is comparable; conversely, as θ decreases, difference in P̃ increases due to
the energy dissipation within the sliding region. Interestingly, higher the value of
γ̃, a more pronunced disparity between the two models becomes evident for higher
angles. This is a consequence of the fact that high adhesion energies require greater
forces to trigger the detachment, which in turn will increase the length of the shear
sliding zone and thus increase the amount of frictional work that must be overcome
to peel the tape.

3.3.3 Effect of velocity parameter

Figure 3.4a shows the dimensionless peeling force P̃ as a function of the peeling
angle θ. This time, different values of the dimensionless velocity parameter ṽcf̃ are
considered. In the same figure, we also report purely elastic (with elastic modulus
E = E0) solution in presence of frictional sliding Eq. (3.27). We observe that, for
relatively small values of the parameter ṽcf̃ and moderately large peeling angles
θ, the value of P̃ , observed in presence of frictional sliding, is lower than the value
predicted in the case of stuck interface (see ṽcf̃ = 0.1 curve in Fig. 3.4a). This is
related to the different mechanisms of energy dissipation occurring in each case.
In order to clarify this point, we refer also to Fig. 3.4b where are shown the
dimensionless dissipative energy terms as a function of the dimensionless velocity
parameter for the stuck and sliding case.

For a stuck interface, the only source of energy dissipation arises from the
viscoelastic creep occurring in the detached branch of tape (i.e. for x > 0), which
is independent on θ and ṽcf̃ (see D̃S curve in Fig. 3.4b). On the contrary, when
dealing with interfaces where frictional relative motion occurs between the tape and
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Figure 3.4: (a) The dimensionless peeling force P̃ as a function of the peeling angle θ, for
different values of the dimensionless parameter ṽcf̃ . The dashed curve refers to the case
of stuck interface between the tape and the rigid substrate, whereas continoum curves
refer to frictionally sliding interfaces. In the same figure, we also plot for comparison
the behavior of an elastic tape in frictional sliding. Results refer to ṽc >> 1. (b)
Dimensionless dissipative terms for the stuck and sliding model as a function of ṽcf̃

the substrate, two additional sources of energy dissipation can be identified: (i) the
work done by the frictional shear stress at the interface; and (ii) the viscoelastic
creep occurring in the portion of the tape stretched by the interfacial frictional
shear stresses (i.e. for −a ≤ x < 0). However, for ṽcf̃ ≪ 1 and for 0 ≪ θ ≲ π/2,
no viscoelastic creep occurs in the adhered sliding portion of the tape (i.e. the
tape response is governed by E0, see Eq. (3.22)) and the term cos2θ → 0 has a
low influence on the overall energy balance. Therefore, under these conditions,
even in the case of frictionally sliding interfaces, the only sources of the energy
dissipation is the viscoelastic creep occurring in the detached tape, which can be
quantified as Df through Eq. 3.26) (see D̃f and W̃T curves in Fig. 3.4b). Since
Df = (1− cos θ)2Ds < Ds for θ < π/2, a lower peeling force is predicted in the
frictional sliding case compared to stuck interfaces. Notably, the effect of the
energy dissipation term Df on the overall peeling behavior can be appreciated by
comparing the low speed viscoelastic case (blue curve) against the elastic limit
(black continuous curve) in Fig. 3.4b. As already discussed in commenting Eq.
(3.22)), a physical explanation of this phenomenon can be found by observing
that, in the case if frictional sliding interfaces, the step change occurring in the
tape stress at the peeling front is lower than in the case of stuck interfaces, as in
the former case the in the adhered portion close to the peeling front is pre-stressed
by frictional shear stress by a quantity σ0cosθ. Thus, since for ṽcf̃ < 1 the tape
pre-stress occurs at a very low excitation frequency (i.e. the tape response does not
present any creep), the resulting energy dissipation due to the viscoelastic creep
(only occurring in the detached strip) is smaller for frictional sliding interfaces
compared to the stuck case, in turn leading to smaller peeling forces.

Figure 4.3 shows the dimensionless peeling force P̃ as a function of the dimen-
sionless parameter ṽcf̃ for a given value of θ. All the cases refer to ṽc > 1. As
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Figure 3.5: The dimensionless peeling force P̃ as a function of the dimensionless param-
eter ṽcf̃ , for different values of the parameter κ = E∞/E0. In the figure, both the high
and low speed plateau are highlighted. Results refer to ṽc >> 1.

expected three different regimes can be observed depending on the value of ṽcf̃ .
For ṽcf̃ ≪ 1 an asymptotic plateau for P̃ is observed as predicted by Eq. (3.25),
which depends on the value of κ (the tape response in the peeling section is still
governed by E∞). For ṽcf̃ ≫ 1, the peeling behavior is governed by Eq. (3.24)
and depends on the high frequency viscoelastic modulus E∞. Again, a plateau
is observed for P̃ , whose value saturates as for κ → ∞ as the Rivlin’s solution
is approached in the case of infinitely stiff tapes. At intermediate values of ṽcf̃
the hysteretic viscoelastic behavior of the tape plays a key role so that, in this
transition region, the peeling force increases with the peeling rate by following a

power law P̃ ≈
(

ṽcf̃
)n

where the exponent n depends on the parameter κ.

This result is in agreement with experimental evidences where a velocity-
dependent peeling force in the form predicted by our model is recovered. See,
for instance, Fig. 3.6a where the three regions are well identified from peel-test
results of a cellulose nitrate tape debonded from a glass substrate [117]. In partic-
ular, the power law as been largely employed for fitting measures of peeling force
(e.g. see fig. 3.6b [64]) and it is also extensively recovered by means of empirical
formulations where the contribution of energy dissipation is modeled following the
Gent and Shultz power law formalism for the energy release rate or the adhesion
energy [27, 28, 44, 53, 63, 118]. However, as far as we know, this is the first time
that a velocity-dependency of this kind has been obtained as just a result of an
analytical model where no a priori assumptions have been made on the dissipative
contributions and their form.

3.4 Conclusions

In this study, we investigate the peeling behavior of a thin viscoelastic tape peeled
away from a rigid substrate. Specifically, we consider two alternative scenarios:
one, with the interface between the tape and the rigid substrate under stuck ad-
hesion (i.e. no sliding occurs); the other, assuming relative sliding on a portion of
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(a) (b)

Figure 3.6: Measures of the peeling force as a function of the peel velocity. (a) Results
for the peeling of cellulose nitrate from glass where the two asymptotic limit are well
identified. Adapted from [117]. (b) Experiments of a PVC film peeling from a glass
substrate. Theoretical predictions are shown for comparison. Adapted from [64].

the interface in the presence of frictional shear stresses.
We found that, in stuck interfaces, the overall viscoelastic peeling behavior

is independent of the peeling velocity, provided that the peeling velocity vC ≫
d/τ (where d is the thickness of the tape and τ is the creep characteristic time
of the viscoelastic material), and the peeling force takes the value predicted by
Kendall’s peeling model with the elastic modulus given by the high-frequency
viscoelastic modulus E∞ of the tape material. Under these conditions, the energy
dissipation associated with the viscoelastic creep of the tape is entirely localized
in the detached portion of the tape.

In the presence of frictional sliding at the interface additional sources of energy
dissipation come into play, which are associated with both the work done by fric-
tional shear stress and the viscoelastic hysteresis occurring in the portion of the
adhering tape subjected to frictional shear stresses. In such conditions, the peeling
force is predicted to continuously increase as the peeling angle is decreased, leading
to unbounded value for a vanishing peeling angle. Also, the viscoelastic hysteretic
behavior of the tape strongly affects the dependence of the peeling force on the
peeling velocity. Indeed, for any given value of the peeling angle, three regions
can be identified: (i) the low velocity region, where a low plateau is reported for
the peeling force; (ii) the transition region, where the peeling force increases as a
power law of the peeling velocity, and (iii) the high velocity region, where a high
plateau of the peeling force occurs.

Our analysis can enhance our comprehension of the role played by specific
dissipative phenomena in governing the peeling behavior. It can also help us
understand how these phenomena are interrelated and how they affect the overall
debonding resistance of the system.
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Nonsteady peeling of viscoleastic

tapes

Most of the existing peel tests and theories usually refer to a single peeling configu-
ration, where the pulling force acting on the free edge of the tape and the tape are
oriented in the same prescribed direction (i.e. the peeling angle equals the force an-
gle). Moreover, they mostly focus on steady-state propagation condition where the
values of peeling quantities remain constant throughout the delamination process.
While valuable insights on peeling systems could be inferred from this analysis,
there are many practical applications where the delamination process is intrinsi-
cally non-stationary and characterized by continuous variation of geometry, load
condition and propagation velocity. In order to assess these scenarios, so called
shallow-angle configurations are employed. Among others, V-peeling configuration
is particularly studied as it allows for a simplified testing condition [16] and as it
is widely encountered in natural bonding/debonding processes (see Section 1.2.3).
Moreover, although time-dependent viscoelastic behavior intrinsic to biological
tissues as well as engineering material used for adhesive tapes and membranes
could introduce additional nonsteady contribution to global peeling behavior, the
V-peeling of viscoelastic tape is still an unexplored problem.

In this chapter, we present a model for the V-peeling process of viscoelas-
tic tapes backed onto rigid substrates. Since the process under investigation is
non-steady, we first set the theoretical energy-based framework and derive the
governing equations, then we outline a numerical procedure to predict the process
evolution over time in terms of the peeling load, the peeling angle, and the de-
tached tape length. In presenting our model results, we consider three possible test
procedures: (i) constant peeling-front velocity, (ii) constant peeling load, (iii) con-
stant pulling velocity), each of which leads to different time-histories allowing to
highlight the interplay between complex peeling geometry and tape viscoelasticity.

47
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Figure 4.1: Double (V-shaped) peeling scheme of a viscoelastic tape adhering to a rigid
substrate, where vc is the peeling front propagation velocity and vP is the pulling ve-
locity (i.e., the velocity of the tape tip). The lower part shows the undeformed initial
configuration, as well as those associated with the propagation start, and with a generic
time instant during the peeling process evolution. Qualitative diagrams of the stress σ
(blue) and deformation ε (orange) are also shown for the latter case.

4.1 Analytical formulation

We consider the peeling configuration shown in Fig. 4.1, where a thin viscoelastic
tape of thickness d and width w (cross-section At = wd) adhering to a rigid
substrate is pulled away by a vertical force 2P . As illustrated in the figure, film
detachment occurs via propagation of two opposite peeling fronts, resulting in an
overall V-shaped peeling geometry. However, the particular symmetry of such
configuration allows limiting the study to half of the system. Moreover, since
θ depends on the tape deformation and instantaneous system configuration, V-
peeling propagation is, in general, a transient process.

Referring to Fig. 4.1, we define a fixed reference frame λ along the undeformed
tape (at rest), so that λc (t) and vc (t) = −dλc/dt are the peeling front coordinate
and velocity, respectively, at a generic time t. As the peeling front moves to the left,
a tape portion of length sd (t) =

∫ t

0
vc (t) dt is debonded, so that the instantaneous
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peeling angle θ (t) is given by

cos θ =
sd + Li cosφ

Li + sd +∆L
(4.1)

where Li is the undeformed length of the initially non-adhering tape, and ∆L (t) =
∫ λc+sd+Li

λc
ε(λ, t)dλ is the elongation of the overall detached tape, with ε(λ, t) being

the extensional deformation field in the tape. Notably, as shown in Fig. 4.1, θ = φ
at rest (i.e., for P = 0).

The instantaneous energy balance governing the peeling evolution is

WE +WI +WS = 0 (4.2)

where WE (t) is the work per unit time done by the peeling force P (t), WI (t) is
the work per unite time done by the internal stress field, and WS (t) is the rate of
the surface adhesion energy. In Eq. (4.2), minor energy contributions ascribable
to acoustic emissions and heat transfer are neglected, as well as dynamic and
inertial effects which might lead to stick-slip unstable delamination [29,31,80,119,
120]. Moreover, we assume a fully stuck adhesion between the tape and the rigid
substrate in the adhering region, thus no friction energy dissipation occurs due to
relative sliding, as instead considered in Ch. 3.

The term WI (t) is associated with both the rate of elastic energy stored in the
detached tape and the viscoelastic energy loss occurring during the tape relaxation.
Large deformations can be reasonably expected for soft polymeric tapes; however,
both numerical [121] and experimental [34] studies have clearly shown that real
systems exhibiting strains as large as beyond 60% can still be both qualitatively
and quantitatively described in linear theory approximation, especially at relatively
large peeling angles [24]. Moreover, we assume purely extensional stress σ(λ, t) and
deformation ε(λ, t) fields, as experiments have shown that bending effects vanish
for very thin tapes [122] (i.e., the tape bending stiffness depends on d3). Therefore,
we have

WI = −At

∫ λc+Li+sd

λc

σ(λ, t)
∂ε

∂t
(λ, t)dλ (4.3)

with ε(λ, t) = σ(λ, t) = 0 for λ < λc (adhering tape) and σ(λ, t) = σ(t) =
P/ (At sin θ) for λ > λc (detached tape). In the peeling section (i.e., for λ = λc),
a step change of the stress occurs (see Chapter 3), so that

σ(λ, t) = σ(t)H[λ− λc(t)] (4.4)

where H is the Heaviside step function. In the framework of linear viscoelasticity,
the deformation field within the tape is given by

ε(λ, t) =

∫ t

−∞

J (t− t′)
∂σ

∂t′
(λ, t′)dt′ (4.5)

where J is the viscoelastic creep function. For a single characteristic creep time
τ , is given by (see Chapter 2)

J (t) =
1

E0

− e−t/τ

E1

(4.6)
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where E−1
1 = E−1

0 − E−1
∞

, with E0 and E∞ being the low and high frequency
viscoelastic moduli, respectively.

The term WE (t) in Eq. (4.2) is given by

WE = P vP = σAtvP sin θ (4.7)

where

vP =
dh

dt
= vc tan θ +

sd + Li cosφ

cos2 θ
θ̇ (4.8)

is the pulling velocity (see Fig. 4.1).
Finally, in Eq. (4.2),WS (t) represents the energy per unit time associated with

the rupture of interfacial bonds between the tape and the rigid substrate; being γ
the work of adhesion1, we have

WS = −vcwγ (4.9)

As mentioned so far, the the work of adhesion γ might, in general, depend on
the peeling velocity, as the results of non-conservative interfacial or bulk-processes
ascribable to viscous/viscoelastic mechanisms (see Chapter 1). Here, we precisely
model the tape viscoelastic creep, thus the latter effect is intrinsically accounted
for. However, as pointed out by Marin & Derail [28] with ad hoc tests on inex-
tensible tapes, velocity-dependent power loss is also localized in the thin adhesive
layer between the tape and the substrate. Thus, in order to account for the pure
interfacial loss contribution, we model a velocity-dependent work of adhesion as

γ = γ0

[

1 +

(

vc
vγ

)n]

(4.10)

where γ0 is the adhesion energy for vc ≪ vγ, with vγ being a reference peeling
velocity, and n being a constant which depends on the properties of the adhesive
(typically in a range of 0.3÷0.7) [28, 44,64].

At any given time t, Eqs. (4.1,4.2) allow to calculate the critical condition for
peeling propagation.

We remark that, in the present formulation, we assumed that the stress and
deformation fields present a step-change in the peeling section (i.e., for λ = λc).
However, the real deformation process of the initially undeformed adhering tape
is continuous and occurs in a small adhering region very close to the peeling front,
with the stress gradually increasing from 0 to σ value. Physical arguments suggest
that the size of such a region is of the same order of magnitude as the tape thickness
d [23, 66]. The excitation frequency in this portion of material as ω ≈ vc/d;
therefore, depending on the value of vc, three viscoelastic regimes can be identified.
At extremely low peel-rate (i.e., for vc ≪ d/τ and ω ≪ 1/τ), the response of the
tape very close to the peeling section is elastic and governed by the low-frequency
modulus E0. In this case, no relaxation (i.e., no viscoelastic dissipation) occurs

1Unlike as Chapeter 1, here we use γ symbol to indicate the work of adhesion instead of Γ.
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in the tape and the peeling behavior is governed by the well-known Kendall’s
theory [17], so that

σ2

2E0

+ σ (1− cos θ)− γ

d
= 0 (4.11)

For vc ≈ d/τ (i.e., ω ≈ 1/τ), the tape response close to the peeling section
is governed by viscoelasticity. In this case, energy dissipation occurs even at the
small-scale, which strictly depends on the specific trend of stress increase from 0
to σ value; therefore, ad Hoc solid mechanics formulations are required to properly
account for this effect.

The formulation and the results presented in this study focus on the third
case, i.e. for vc ≫ d/τ and ω ≫ 1/τ . Under this condition, the tape close to the
peeling front behaves elastically, with high frequency elastic modulus E∞. The
whole viscoelastic loss occurs in the detached tape relatively far from the peeling
front. We observe that, since in common practice adhesive tapes can be as thin
as 10÷100 µm with principal viscoelastic relaxation times ranging in the order of
seconds, the threshold velocity is in the range of d/τ ≈ 10−5

÷10−4 m/s, thus being
significantly lower than the usual peeling front velocity in real-life applications.

4.2 Numerical implementation
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Figure 4.2: A schematic of the tape mesh: at the generic j-th time instant, the tape mesh
is updated by including a freshly detached element of undeformed length ∆λ = [vc]j ∆t.

The process evolution can be calculated by numerical integration of Eqs. (4.2,
4.1). However, dealing with a viscoelastic tape, the governing equations depend
on the entire time-history of the process and the solution of Eqs. (4.2, 4.1) must
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be iteratively sought by successively updating the system configurations as the
propagation advances.

The numerical method is based on uniform time discretization, with time step
∆t≪ τ , and non-uniform tape mesh. In the following discussion, the notation ηkj
represents the discrete value of the generic quantity η at the j-th time instant in
the k-th tape element. Only the non-adhering tape is discretized and the mesh is
updated at each time step so that, at the generic time tj = j∆t, an element of
(undeformed) length ∆λ = [vc]j ∆t is added to take into account for the additional
detached tape resulting from the peeling front advancement. The resulting non-
uniform ”incremental” mesh has two primary advantages: (i) the total number
of elements does not need to be fixed a priori; (ii) only the non-adhering tape is
discretized and the computational cost is reduced. More in details, referring to Fig.
(4.2), Nj = j+1 is the total number of tape elements at the j-th time instant, with
the first element ∆λ1 being the initial non-adhering tape (i.e., ∆λ1 = Li) and the
N -th element ∆λNj being last detached element (∆λNj = ∆t [vc]j−1

). Therefore,
the detached tape projection sj is given by

sj = Li cosφ+ [sd]j = Li cosφ+

Nj
∑

k=2

∆λk (4.12)

The discrete form of Eqs. (4.9,4.7) is

[WS]j = − [vcγ]j w (4.13)

[WE]j = At [vPσ]j sin θj (4.14)

where, from Eq. (4.8),

[vP ]j = [vc]j tan θj +
sj

cos2 θj

θj − θj−1

∆t
(4.15)

Integrating by parts, Eq. (4.5) is rewritten as

ε(λ, t) =
σ(λ, t)

E∞

+

∫ t

−∞

J̇ (t− t′)σ(λ, t′)dt′ (4.16)

where we used J (0) = E−1
∞

, and σ(λ,−∞) = 0; the discrete form of Eq. (4.16)
gives the elongation of the generic k-th element of the non-adhering tape at the
j-th time instant as

εkj =
σk
j

E∞

+∆t

j
∑

h=0

J̇j−hσh (4.17)

with σk
j = σj = Pj/ (At sin θj) for all the tape elements.

To calculate WI , we observe that the term ∂ε/∂t(λ, t) diverges at the peeling
front (i.e., for λ→ λc (t)), as we assume a step-change in the tape stress σ. In this
case, the discretized form of Eq. (4.3) can be conveniently rewritten as

[WI ]j
At

= −σj ε̇Nj ∆λN − σj

N−1
∑

k=1

ε̇kj∆λ
k (4.18)
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where, as already done in Ch. 3, according to [114, 115], since vc ≫ d/τ , the first
right-hand side term can be calculated as

σj ε̇
N
j ∆λ

N =
[σ2vc]j
2E∞

(4.19)

Combining Eqs. (4.18, 4.19), the discretized form of Eq. (4.3) is

[WI ]j
At

= −
[vcσ

2]j
2E∞

− σj

N−1
∑

k=1

[

εj − εj−1

∆t
∆λ

]k

(4.20)

Finally, using Eqs. (4.13,4.14,4.20) in Eq. (4.2) gives the discrete form for the
instantaneous energy balance equation

[WE]j + [WI ]j + [WS]j = 0 (4.21)

and, from Eq. (4.1) we have

sj
cos θj

=
N
∑

k=1

(

1 + εkj
)

∆λk (4.22)

where
(

1 + εkj
)

∆λk is the deformed length of the generic k-th element at the j-th
time instant.

In what follows, we consider three different scenarios, each associated to a
specific controlled parameter: (i) constant peeling front velocity vc; (ii) constant
peeling force P ; and (iii) constant pulling speed vP . An iterative algorithm, based
on the Newton-Rapshon method, is employed at each time instant to solve Eqs.
(4.21,4.22) for the unknown peeling quantities.

4.2.1 Steady-state long-term propagation limit

Although the V-peeling process is non-stationary, a steady-state regime is asymp-
totically approached in the long term limit [19], when the non-adhering tape is
sufficiently long to ensure complete viscoelastic relaxation. In this case, the peel-
ing angle θS is constant, and the energy balance equation recovers the viscoelastic
single peeling form Eq. (3.9) as

σ2
S

2E∞

+ σS (1− cos θS)−
γ

d
= 0 (4.23)

where σS = PS/ (At sin θS) and θS are the long-term steady-state asymptotic limits,
and γ depends on the peeling front velocity vc through Eq. (4.10). Moreover, since
sd ≫ Li and ε(λ, t) ≈ εS = σS/E0, Eq. (4.1) can be rewritten as

1− cos θS
cos θS

=
σS
E0

(4.24)
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Furthermore, since θ̇S ≈ 0, Eq. (4.8) modifies as

vP = vc tan θS (4.25)

Notably, under force-controlled conditions (i.e., given P = PS), Eqs. (4.23,4.24,4.10)
allow to calculate the peeling front velocity vc and, through Eq. (4.25), the pulling
velocity vP . On the contrary, under velocity controlled conditions (i.e., given vc or
vP ), the value of PS can be calculated by Eqs. (4.23,4.24,4.10).

4.3 Simulation results and discussion

In this section, we discuss the peeling behavior of a viscoelastic tape arranged in
double (V-)peeling configuration. To simplify the interpretation of the results, we
refer to the following dimensionless quantities t̃ = t/τ , γ̃ = γ/E0d, ṽc = vcτ/d,
ṽP = vP τ/d, P̃ = P/dwE0 = σ sin θ/E0. In our calculations, we assume a tape
thickness d ≈ 100 µm, E0 = 10 MPa and a relaxation time τ = 1 s. The adhesion
of real tapes has been measured by specific peeling tests in Ref. [28]: referring to
Eq. (4.10), they found vγ ≈ 0.1 mm/s, γ0 ≈ 20 J/m2 and n = 0.5. Therefore,
in our calculations, set γ̃0 = γ0/E0d = 0.02 and ṽγ = vγτ/d = 10. It is worth
to note that experimental tests reported in Ref. [28] are based on tapes with
aluminum backing, so that the effect of tape viscoelasticity can be neglected, and
the dependence of γ on the peeling front velocity vc must be only ascribed to local
non-conservative phenomena.

4.3.1 Constant peeling front velocity

We firstly consider the peeling process occurring at constant peeling front velocity
vc. Although this case may result far from usual test conditions and practical
application (as both the corresponding peeling force P and pulling velocity vP are
time-varying), important insights on the overall system behavior can be inferred
from this analysis. Moreover, in long-term steady-state limit, from Eq. (4.25) we
have that constant vc entails constant vP .

In order to initialize the iterative calculation scheme described in Sec. 4.2, we
need to calculate the peeling force P0 = At σ0 sin θ0 able to trigger the peeling
propagation at constant peeling front velocity vc. Specifically, with reference to
Fig. 4.1, we assume that P0 is instantaneously applied at time t = 0 to the tape,
thus leading to a step change of the non-adhering tape deformation from ε = 0 (i.e.,
undeformed) and tape angle φ at time t→ 0− to ε = σ0/E∞ and tape angle θ0 at
time t→ 0+ (i.e., when the peeling front propagation starts). Moreover, since the
viscoelastic threshold velocity d/τ ≈ 10−4 m/s is of poor interested for practical
applications, we consider vc ≫ d/τ . Under these conditions, since at t = 0 no
viscoelastic loss occurs, the critical values of σ0 and θ0 for peeling initiation are
given by the Kendall’s equation for a tape with elastic modulus E = E∞

σ2
0

2E∞

+ σ0 (1− cos θ0)−
γ

d
= 0 (4.26)
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and, from Eq. (4.1) with sd = 0

cosφ− cos θ0
cos θ0

=
σ0
E∞

(4.27)

Once the viscoelastic relaxation starts (i.e., for t > 0), the peeling process
evolution can be calculated by means of the procedure outlined in Sec. 4.2.

s

(a)

s

(b)

s

(c)

Figure 4.3: The initial P̃0 and long-term P̃S dimensionless peeling force as functions of
the dimensionless adhesion energy γ̃0 (a), the viscoelastic parameter κ = E∞/E0 (b)
and the dimensionless peeling front velocity ṽc (c). In figure (c), the rate-dependent
dimensionless adhesion energy γ̃ is also shown for comparison (dashed line). Notably,
κ = 1 corresponds to the elastic tape limit.

Comparing the initial and long-term limiting behavior allows to highlight some
peculiar features of viscoelastic V-peeling. This is done in Figures 4.3, showing
the dimensionless values of the peeling force in the initial P̃0 and long-term P̃S

limits as functions of (a) the dimensionless adhesion energy γ̃0, (b) the viscoelastic
parameter κ = E∞/E0, and (c) the dimensionless peeling front velocity ṽc. First,
we observe that P̃0 can be either larger or smaller than P̃S, depending on the
specific combination of the peeling parameters γ̃0, κ , and ṽc. This is strictly
related to tape viscoelasticity and relaxation, as in the case of elastic V-peeling
we always have the toughest peeling condition associated with the long-term limit
and the smallest peeling angle (see also κ = 1 in Fig. 4.3b). As expected, Figs.
4.3 also show that reducing φ tougher peeling initiation is achieved, regardless
of the other parameters. Similarly, from Figs. 4.3a,4.3c it follows that peeling
toughness increases with γ̃0 and ṽc, as in both cases the adhesion energy γ in
Eqs. (4.9,4.23,4.26) increases. In Fig. 4.3b, we observe that the stiffer the tape,
the larger the peeling force is, in agreement with theoretical predictions [17] and
experimental results [123]; however, at very large values of κ, the tape response
asymptotically approach the rigid limit, and the peeling behavior resembles the
Rivlin prediction [15].

Figures 4.4 show the time-history of peeling process evolution in terms of (a)
the normalized peeling force P̃ /P̃0 and (b) the peeling angle θ, for different di-
mensionless peeling front velocity ṽc (notably, P̃0 also depends on ṽc, as shown in
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Figure 4.4: The time-history of the normalized dimensionless peeling force P̃ /P̃0 (a) and
the peeling angle θ (b) for different values of the peeling front velocity ṽc.

Fig. 4.3c). First, in Fig. 4.4b, we observe that the peeling angle θ0 associated
with peeling initiation increases with ṽc. This can be easily explained by observ-
ing that, from Eq. (4.27), θ0 increases with P̃0 and, from Fig. 4.3c, P̃0 increases
with ṽc. Surprisingly, the main qualitative feature shown in Figures 4.4 is that
in viscoelastic V-peeling both θ and P̃ /P̃0 may present non-monotonic trends, in
contrast with the elastic case. Focusing first on the θ time-history, this is mostly
ascribable to the interplay of two phenomena (see also Eq. (4.1)): first, the peel-
ing front advancement, causing a linear increase of sd; second, the tape relaxation,
affecting the term ∆L. For t̃ ≪ 1 (i.e., t ≪ τ), a rough estimation of θ̇ can be
derived from Eq. (4.1) as θ̇ ∝ d (∆L) /dt − βvc, with β = β (θi) ≈ 1 for θi ≫ 0;
therefore, depending on the value of vc, the peeling angle θ at t̃ ≪ 1 can either
show a decreasing (at high velocity, i.e. ṽc ≈ 1000) or increasing (at low velocity,
i.e. ṽc ≈ 10) trend, as indeed shown in Fig. 4.4b. However, the long-term limit
θS is approached for t̃ ≫ 1, thus θ (t) may experience a non-monotonic trend,
depending on the specific value of θS. As expected [17,19], the values of P̃ /P̃0 and
θ are correlated, as high values of θ lead to low values of P̃ /P̃0 and vice-versa;
therefore, non-monotonic trends of θ also entail non-monotonic trends of P̃ /P̃0.

4.3.2 Constant peeling force

In this section, we investigate the viscoelastic peeling V-peeling behavior under a
constant peeling force P , which means that the peeling front can either start and
indefinitely propagate, start and stop at some point, or not start at all, depending
on the value of P , given a generic initial undeformed configuration (i.e., the value
of φ). However, since in this case the peeling front velocity vc (t) is not know
a priori and depends on the process evolution through Eqs. (4.1,4.2), we need
to outline three qualitative physical scenarios. First, for vc ≫ vγ ≫ d/τ , the
limiting force for peeling initiations and long-term steady-state propagation are
P0 and PS, respectively, as predicted by Eqs. (4.26,4.27) and Eqs. (4.23,4.24).



Chapter 4 57

Second, for d/τ ≪ vc ≪ vγ, the peeling behavior is still governed by the tape
high-frequency elastic modulus E∞, but the critical values P1 of the peeling force
for peeling initiations and P2 for long-term steady-state propagation are given by
Eqs. (4.26,4.27) and Eqs. (4.23,4.24), respectively, with γ ≈ γ0. Finally, for vc ≪
d/τ ≪ vγ, the tape deformation once moving across the peeling section is a slow
continuous process rather then a step-change, and the tape response is governed
by the low-frequency elastic modulus E0. In this latter case, we the limiting
values P3 and P4 for peeling initiation and long-term steady-state propagation are
given, respectively, by Eqs. (4.26,4.27) and Eqs. (4.23,4.24), with γ ≈ γ0 and E∞

replaced by E0.
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Figure 4.5: The state map of the possible peeling behavior as a function of the dimen-
sionless applied peeling force P̃ and undeformed tape angle φ. The definitions of the
dimensionless limiting loads P̃1, P̃2, P̃3, P̃4 are given in the body text.

The map in Fig. 4.5 shows the possible qualitative peeling behaviors, depending
of the dimensionless applied peeling force P̃ and undeformed tape angle φ. Notably,
the dimensionless critical loads for peeling initiation P̃1 and P̃3 depend on the
undeformed tape angle φ; whereas, the long-term steady-state dimensionless limits
P̃2 and P̃4 do not. Three main regions can be identified: the peeling does not
propagate (region I); the peeling propagation starts and then stops after some
time (II-III); the peeling propagates indefinitely (VI and VII, together with IV
and V where the long-term velocity is very low though). The model presented in
this study is able to rigorously predict the peeling behavior in regions I and VII;
however, qualitative insight can also be inferred for regions III and V (as a velocity
of about d/τ ≈ 10−5 m/s in the long-term limits qualitatively correspond to the full
stop case III), and region VI, as vc quickly increases after the low velocity peeling
initiation. Regions II and IV cannot be accounted for in the present framework
as the specific viscoelastic behavior close to the peeling front does really matter
throughout the whole process evolution; however, since d/τ ≈ 10−4 m/s is a very
low value, these are of little interest. In most cases, real systems belong to the



58 Chapter 4

first scenario, with vc ≫ vγ ≫ d/τ.
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Figure 4.6: The time-history of the peeling angle θ (a) and the normalized peeling front
velocity ṽc/ [ṽc]0 (b), for different values of the dimensionless peeling force P̃ .

Fig. 4.6 shows the time-history of the peeling angle θ and normalized peeling
front velocity ṽc/ [ṽc]0 for different values of P̃ (in regions V and VII), where [ṽc]0
is the peeling front velocity when propagation initiates. Firstly, in Fig. 4.6a
we note that increasing P̃ leads to increasing values of θ0, as the detached tape
experiences higher elongation when the process initiates. As discussed so far, non-
monotonic trends occur due to interplay between tape relaxation and peeling front
advancement, with key features localized at t̃ ≈ 1. Specifically, in Fig. 4.6b, we
observe that complete delamination up to the long-term steady-state condition
occurs when load conditions fall in region VII (i.e., P̃ > P̃1 as for orange and
green curves), whereas vc reduces to very low values eventually for conditions
corresponding to region V (i.e., blue curve). Interestingly, both the magnification
of peel strength in steady peeling over a certain range of velocity and the slowing
or stopping of the debonding process have been already experimentally observed
by Kendall [35] and have been interpreted as the effect of viscoelastic energy loss
in the bulk of the peeling film.

The energy loss in the bulk of the peeling film introduces two additional effects:
a magnification of the peel strength in steady peeling over a certain velocity range,
and a slowing down or stopping of peeling as transient relaxation occurs shortly
after the application of the peel force.

4.3.3 Constant pulling velocity

Lastly, we consider the case of a tape pulled at a constant velocity vP (see Fig. 4.1),
so that the deformation ε(t) and stress σ(t) in the non-adhering tape monotonically
increase before peeling front propagation initiates. In this case, rather than at
t = 0, peeling front propagation occurs at a certain time t∗ when σ (t∗) = σcr (t

∗),
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with σcr depending on the energy balance

σ2
cr

2E∞

+ σcr[1− cos θ] =
γ0
d

(4.28)

Until peeling front propagation occurs, the peeling angle can be calculated as

tan θ =
Li sinφ+ vP t

Li cosφ
(4.29)

where vP t is the tape edge displacement at a generic time t (see also Fig. 4.7a).
Since Li + ∆L = Li cosφ/ cos θ is the deformed tape length, the tape uniform
deformation before peeling propagation is

ε(t) =
Li +∆L

Li

− 1 =
cosφ

cos θ
− 1 (4.30)

Finally we can calculate the stress in the detached tape as (see Chapter 2),

σ(t) =

∫ t

−∞

R(t− t′)ε̇(t′)dt′ (4.31)

where R is the stress-relaxation function given by (see Chapter 2)

R(t) = E0 + (E∞ − E0)e
−t/τr (4.32)

with τr = τ/(1 + ∆) = τ/κ being the relaxation time, where ∆ = E∞/E0 − 1 is
the relaxation strength.
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Figure 4.7: (a) A schematic of the system in the initial undeformed condition, and at a
generic time t < t∗ before the peeling propagation starts. (b) The dimensionless tensile
stress σ̃ in the tape and the critical tensile stress σ̃cr to start the peeling propagation
(dashed curves) as functions of the dimensionless time t̃ for different dimensionless tape
tip velocity ṽP . The circles indicate the instant of propagation start.

The peeling propagation start is then obtained by simultaneously solving Eqs.
(4.28-4.31). Once the peeling front propagation starts, the numerical algorithm
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described in Section 4.2 can be used to calculate time evolution of the peeling
process with t∗ corresponding to j = 0. Regarding the value of the peeling front
velocity vc (t

∗) associated with the start of the peeling propagation, it cannot be
exactly determined in the framework of the present model. However, after the
very early stages of peeling, we rapidly have vc > d/τ , as we assumed vP/ tan θS =
[vc]S ≫ d/τ . Therefore, we set ṽc (t

∗) ≈ 1.
In Figure 4.7b we show the time-history of σ̃ (t) and σ̃cr(t), for different dimen-

sionless pulling velocity ṽP . Increasing ṽP leads to higher stress in the viscoelastic
tape, thus peeling propagation starts sooner.
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Figure 4.8: The time-history of the dimensionless peeling force P̃ (a), the peeling angle θ
(b) and the dimensionless normalized peeling front velocity ṽc/ṽP for different values of
the dimensionless pulling velocity ṽp. Two different initial configurations are considered:
θi = 60 (solid lines), and 30 (dashed lines). The circles indicate the instant of propagation
start.

In Figs. 5.2, we show the time-history of P̃ , θ and ṽc/ṽP , for different values
of the dimensionless pulling velocity ṽP and initial angles θi. Of course, reducing
θi leads to a longer time interval before propagation occurs, as Eq. (4.28) predicts
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tougher peeling behavior. Steady-state propagation regime is always recovered in
the long-term limit, with [vc]S /ṽP = 1/ tan θS (see Eq. (4.25). However, depending
on the pulling velocity ṽP , the peeling force P̃ may present a maximum just after
the peeling propagation start (see Fig. 4.8a). Such a peculiar feature may relate to
the superior adhesive performance of natural systems, such as spider webs [76] and
mussels byssus [77], under the action of high-speed (impact) loading conditions.
In the latter case, for instance, Cohen at Al. [124] have shown that the single
byssus highly stretchable response can be ascribed to the heterogeneity of the
filament structure (a system of nonlinear swollen springs); here, we suggest that
the interplay between byssus rheology and the multiple V-shaped threads geometry
may also contribute to the observed tougher adhesive response under dynamic
loads [77].

4.4 Conclusions

In this study, we investigate the peeling behavior of a viscoelastic thin tape
arranged in double V-shaped peeling configuration. Specifically, the velocity-
dependent condition for peeling front propagation is found in terms of energy
balance between the work per unit time done by the internal stress in the tape,
the external forces acting on the system, and the surface adhesion forces. An ad hoc
numerical procedure is derived to model the time-evolution of the peeling process,
taking into account for the time-varying viscoelastic relaxation of the detached
tape. We consider three possible scenarios, associated with different controlled
parameters: the peeling front velocity, the peeling force, and the pulling velocity
at the tape tip.

In the long-term limit, the peeling propagation asymptotically approaches a
steady-state elastic-like behavior, regardless of the specific controlled parameter.
However, the initial transient peeling behavior is strongly affected by the tape vis-
coelasticity and undeformed geometry, and presents non-monotonic time evolution
of the peeling toughness (and angle). Under given peeling force conditions, the
peeling propagation can either start and indefinitely continue, start and succes-
sively stop, or even not start at all, depending on the peeling force and undeformed
geometry. More surprisingly, when the pulling velocity at the tape tip is assigned,
as in the case of impact loads, the time required to trigger the peeling propagation
may significantly vary due to viscoelastic relaxation, and the time evolution of
the resulting peeling force may present a maximum. This mechanism might be
qualitatively related to the high-speed superior adhesive performance observed in
several natural systems.
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Frictional contact on rubber: an

experimental study

Ever since, friction is one of the most addressed fundamental problems in the
field of tribology. It is an ubiquitous phenomenon in every contact pair, influ-
enced by the mechanical properties of materials, the geometrical characteristics
of surfaces (e.g. roughness) and the physico-chemical behavior of interfaces (e.g.
adhesive/repulsive interactions). Because of the complex interconnection between
these factors, despite the long-stand effort, friction is still a partially unresolved
problem. In particular, due to its significance in various engineering applications,
such as sealing [125], wear resistance [126], lubrication [127], and electrical/thermal
insulation [128], the relationship between adhesion, friction and contact area in soft
contact context stands as a primary focus of research.

Starting from common observations of changing in the contact shape in fric-
tional contact problems, different mechanisms have been proposed to unravel the
origin of this evidence. Theoretical and experimental investigations on elastomeric
sphere/plane contacts have indicated that the presence of tangential displacement
at the interface leads to a reduction of the contact area, which may also lose its
circular symmetry (see Fig. 5.1a). This phenomenon, known as friction-induced
adhesion weakening, has been interpreted using fracture mechanics adhesion mod-
els [129–133] for full stick conditions (i.e. in the presence of uniform tangential
displacement at the contact interface). However, conflicting evidences could arise
when considering the gross slip contact regime, where the contact area is observed
to remain unchanged, or even to increase at moderate slip velocities [134,135].

Although soft materials can easily achieve high levels of strain outside linear
elastic range during frictional contact conditions [136], most of the theoretical
models are grounded in linear elastic frameworks. In this case, for perfect incom-
pressible material (Poisson modulus ν = 0.5), a fully uncoupling between nor-
mal and in-plane response is expected [137]. However, when dealing with nearly-
incompressible materials (ν ≲ 0.5), a certain degree of coupling emerges even
within the linear elastic range. This coupling becomes increasingly pronounced
and anisotropic at higher deformations when the nonlinear material response is
triggered [138]. In this context, contact area reduction and shape asymmetry re-
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1 mm

(a) (b)

Figure 5.1: (a) Effect of interfacial tangential force on the contact area for a smooth
PDMS/glass sphere/plane contact in full stick condition. Adapted from [132]. (b)
Normalized vertical surface displacement for a nearly incompressible ( ν = 0.49 ) half-
space loaded by a homogeneous tangential traction over a circular area for neo-Hookean
model (solid lines) and linear elastic case (dashed line). Adapted from [138].

sult from a sinking and a lifting of the soft material’s surface at the trailing and
leading edges of contact, respectively (see Fig. 5.1b).

In this regard, recent investigations have shown that coupling could affect sig-
nificantly gap topography and sliding behavior of rough contact pairs resulting in
a friction reduction [125]. Moreover, confinement could induce a coupling effect
which, on contrary lead to friction to increase [125,139].

In the following, we present an experimental study aimed at investigating the
contribution of material non linearities and the mechanical confinement on the
size and shape of the contact area under steady-state sliding. Friction experiments
within smooth contact interfaces between silicon substrates and glass spheres have
been carried out on an homemade set-up which allows for the measure of in-plane
displacements and tangential force.

5.1 Experimental details

5.1.1 The substrate

Material

The experiments were carried out using two different formulations of Polydimethyl-
siloxane (PDMS) rubber to vary the extent of material non-linearities effect:

• Sylgard 184 mixed in a 10:1 ratio with its hardener; this system will be
denoted as S184.
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• A mixture of Sylgard 184 and Sylgard 527 in a 1:1 ratio; this system will be
denoted as S184:S527.

These rubbers were characterized in the range of linear elastic behavior in term of
the elastic modulus E and the adhesion energy γ through static indentation test
carried on bulk specimens with a glass lens of radius R = 9.33 mm. The applied
normal load FN is increased step by step from 50 N to 1.5 N. At each load step,
the contact radius is measured after an equilibrium time. Data are analysed using
the following linearized form of the JKR theory [140]:

a3/2

R
=

1

K

FN

a3/2
+

√

6πw

K
(5.1)

with K = 16/9E. In fig. 5.2a, a3/2/R is plotted as a function of FN/a
3/2. A

linear fit to Eqn 5.1 provides E =1.93 MPa and w =33 mJm−2 for S184 and
E =0.94 MPa and w =26 mJm−2 for S184:S527, in agreement with measures
present in literature [141]
Additionally, the deviation from linear elastic behavior for higher deformations is
shown in Fig. 5.2b for S187 rubber specifically . Experimental strain-stress curve
(red line) under uniaxial tension is fitted with two different hyperelastic models:
neo-hookean (blue line Eq. 5.2) and Yeoh (blue line Eq. 5.3) laws, respectively

σ = 2C10

(

λ− 1

λ2

)

(5.2)

σ = 2

(

λ− 1

λ2

)

[

C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2
]

(5.3)

where I1 = λ2+ 2

λ
is the first invariant and C10, C20 and C30 are material constants.

Specimen preparation

Bulk specimens are prepared with S187 and S184:S527 with dimensions 6-3,5-1,5
cm, approximately, to ensures that semi infinite contact conditions are achieved
during sliding experiments (i.e. the ratio of the substrate thickness to the contact
radius is greater than ten [15]). In addition, a S184 PDMS layer 2 mm in thick-
ness was also manufactured to investigate the effects of mechanical confinement.
This layer was glued on a glass substrate to prevent any interface slippage at the
interface with during sliding experiments.

In order to monitor contact induced surface displacements, a square network of
small cylindrical holes (20 µm in diameter and a mesh size of 400 µm) is produced
on the PDMS. Under transmitted light observation conditions, such holes act as
markers which are easily detectable using image processing. In order to elaborate
these marked PDMS surfaces, a resin template with a network of cylindrical pillars
is firstly realized on a silicon wafer by means of soft microlithography. The PDMS
mixture is then directly molded in resin template and cured in an oven for 48 hours
at 70 ◦C (see. Fig. 5.3).
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Figure 5.2: (a)Static indentation response in linear elastic range of S184 (red) and
S184:S527 (blue). Solid line: linear fit to Eq (5.1) with E =1.93 MPa and w =33 mJm−2

for S184 and E =0.94 MPa and w =26 mJm−2 for S184:S527. (b) Nominal stress as
a function of stretch ratio for S184 (red line) under uniaxial tension. The green line
corresponds to a fit to neo-hokean model with C10 = 0.526 MPa. The blue line is a fit
to Yeoh model with C10 = 0.526 MPa, C20 = -0.036 MPa, C30 = 0.357 MPa.
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Figure 5.3: Preparation of bulk and thin PDMS specimens. Liquid PDMS is molded
on a resin template obtained by microlithography technique. This process produces a
square network of small cylindrical holes.

5.1.2 The set-up

The sliding experiments have been conducted between a spherical glass lens (static
element) and the PDMS substrate (sliding element) displaced by means of a linear
translation stage. Two different home-made set-up have been used differing in how
the normal load is applied

• a device where the normal load (between 0.8 and 2.1 N) is applied by means
of a dead weight arrangement

• a device where a constant normal load (between 0.1 and 10 N) is achieved
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by means of an actuator which continuously adjust the vertical position of
the probe during the experiments.

In both cases, contact visualization is performed through the transparent PDMS
substrate by means of a zoom lens and a CMOS camera (2048x2048 pixels, 8
bit resolution) operated in a light transmission mode. The selected radii of the
glass spherical lenses were R = 5.2, 9.33 and 20.75 mm. The tangential force Ft

generated during the sliding contact is measured with a load cell and a lateral
displacement is monitored using a non contact laser transducer. Simplified scheme
of the two device in Fig. 5.4.

linear

actuator

light

cameracamera

dead

weight

Sliding support Sliding support

PDMS

lens

PDMS

lens

DEAD WEIGTH SET -UP FORCE/DISPLACEMENT CONTROLLED SET -UP

light

Figure 5.4: Simplified scheme of the home made set-up used for the experiments.

5.1.3 Friction experiments

After achieving contact between the glass lens and the PDMS substrate under the
applied normal load, the substrate is then moved at a predetermined velocity v.
Throughout the entire experiment, both the tangential force and contact images
are recorded. Since the friction is weakly (logarithmically) increasing with veloc-
ity [88, 89], it was decided to ignore the effect of this parameter and to carry out
experiments at a single imposed velocity, v = 0.1 mm s−1.
The surface displacement fields are measured from the continuous monitoring of
the position of the dot markers in the contact zone with respect to their position in
the undeformed grid. To ensure a proper tracking of the markers all the images are
treated from static to full sliding condition. The accumulation of about 400-600
images taken under steady-state sliding conditions allows to generate displacement
fields with more than 200,000 data points which are interpolated to provide images
of the displacements components u and v along and perpendicular to the sliding
direction, respectively.
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5.2 Results

In Fig. 5.5, the typical change in tangential force Ft as a function of the imposed
displacement is showed. Stiction represents the transition from static contact to
full sliding condition. The load peak is associated with the onset of the full sliding
at the contact interface. The following results will mostly refer to steady-state
sliding where stationary values of the tangential force is achieved. In a latter part,
in commenting the effect of the mechanical confinement, some insights will be
inferred from a stiction analysis.

Figure 5.5: Typical tangential force Ft as a function of the imposed displacement during
a sliding experiment. Even in the early stages of the experiment, the asymmetry in the
contact shape can be observed.

5.2.1 Unconfined contacts

Frictional stress and contact shape

Figure 5.6 shows the average frictional shear stress τ = Ft/A, where Ft and A are
the steady-state tangential force and contact area, respectively, as a function of
the nominal contact pressure pm = Fn/πa

2
0 (Fn and a0 are the normal load and

the static contact radius, respectively). In these experiments, the contact pressure
was varied by changing both the normal load and the radius of the spherical glass
probe. A weak dependence of the average frictional stress on the contact pressure
is observed for S184 with no measurable effects of the radius of the lens, consis-
tently with the adhesion model of friction for polymers proposed by Bowden and
Tabor [87]and previous literature evidences [88, 89].
For S184:S527 substrate, a significantly lower frictional stress is measured which
cannot be accounted for by a change in the adhesion energy γ which remains un-
changed with respect to S184. Instead, it may be due to the change in mechanical
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properties or in the interfacial properties (increased concentration of free surface
chains at the surface of the S184:S527 substrate). In addition, a slight increase
in the measured average shear stress τ is observed when the contact pressure is
increased. This could be tentatively attributed to the higher penetration depths
achieved for lower radii of curvature at given normal force, which increases the
’ploughing’ contribution to friction [142–144].
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Figure 5.6: Average shear stress τ as a function of the nominal contact pressure pm
for S184 (closed symbols) and S184:S527 (open symbols). Blue: R = 5.2 mm; green:
R = 9.33 mm, red: R = 20.75 mm.

Figure 5.7 shows typical examples of images of the contact area under steady-
state sliding for S184 and S184:S527 substrates. Images of the static contact area
(delimited by dashed lines) have also been superimposed to these pictures. The
main effect of sliding is to induce a contact area reduction as a result of a receding of
the contact edge at both rear/trailing and front/leading edges. This behavior could
in part be explained by assuming a normal-tangential coupling resulting from the
nearly-incompressible material response (Poisson modulus ν ≲ 0.5) [138]. At the
trailing edge, the in-plane tensile stretching of the substrate leads to a contraction
along the vertical direction which results in a peeling from the sphere. However,
the same Poisson effect should imply an extension of the contact at the leading
edge where the in-plane compression of the PDMS should induce a surface lifting.
In fact, the opposite occurs. Although for incipient sliding conditions experimental
and theoretical studies all conclude that the presence of friction at the interface
always leads to a reduction of the contact area, conflicting results emerge for
full sliding condition where also an increasing of contact area has been reported
at moderate velocities (refer to the introduction of this chapter for additional
info). However, our evidences seem to suggest a potential effect of friction in
weakening adhesion strength, even for gross slip contact, which overshadows a
normal-tangential coupling contribution at the leading edge. While this hypothesis
has not been validated yet, it could offer a potential solution to the observed
counterintuitive behavior.
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The contact asymmetry is quantified here from a measurement of the contact
radii a and b along and perpendicular to the sliding direction, respectively. Fig. 5.8
shows the change in the ratio b/a as a function of the contact pressure pm for both
the S184 and S527:S184 substrates. Within experimental accuracy, an unique
relationship is observed whatever the lens radius or the mechanical properties of
the substrate. The contact is becoming more and more symmetrical as the contact
pressure is increased.

direc✁on of PDMS

displacement

Figure 5.7: Superimposition of contact pictures corresponding to static indentation (de-
limited by the dotted lines) and steady-state sliding (averaged contact images). (a)
S184, R = 20.7 mm, FN = 5 N; (b) S527:S184, R = 5.2 mm, FN = 1.9 N. The silicons
substrate is moved from right to left with respect to the fixed glass lens.

Displacement and strain fields.

As a reference, we first focus on the steady state frictional response of the bulk
S184 substrate under increasing applied normal load (between 0.5 and 5 N) and for
a lens radius R = 20.7 mm. A typical example of the measured displacement fields
is shown in Fig. 5.9 for Fn = 1 N, where all the space coordinates are taken in the
reference, i.e. undeformed, space. The main displacement component is occurring
along the sliding direction (x axis) while the transverse displacement displays a
quadripolar symmetry as a result of Poisson’s effects. Profiles of the longitudinal
displacement field u and the corresponding logarithmic strain ln(1 + ∂u/∂x) across
the contact and along the sliding direction x are shown in Fig. 5.10, where both
the displacements and the space coordinates have been normalized with respect to
the to the static contact radius a0. As expected, compressive and tensile strains
are achieved at the front edge and the leading edge of the contact, respectively. For
the considered substrate modulus (E =1.93 MPa) and lens radius (R = 20.7 mm),
it can be seen that the displacement scales roughly to a0. Consequently, the
magnitude of the applied in plane surface strain is only weakly dependent on the
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Figure 5.8: Contact aspect ratio b/a as a function of the nominal contact pressure pm
for S184 (closed symbols) and S184:S527 (open symbols). Blue: R = 5.2 mm; green:
R = 9.33 mm, red: R = 20.75 mm.

Figure 5.9: Displacement field of S184 during steady-state sliding (P = 1 N, R =
20.7 mm. (a) displacement component along the sliding direction, (b) displacement
component perpendicular to the sliding direction. The rubber substrate is moved from
right to left with respect to the fixed spherical probe.

nominal applied normal stress pm which is ranging from 0.07 to 0.17 MPa when
the normal load is increased from 0.5 to 5 N. This is consistent with the finding
that a constant, pressure independent shear stress, is achieved within smooth
glass/PDMS contacts. It can also be noted the maximum tensile strain level at
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the trailing edge of the contact (between 0.35 and 0.4) is slightly outside the neo-
Hookean range.
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Figure 5.10: Non-dimensional longitudinal displacement (top) and logarithmic strain
(bottom) profiles taken across the contact for increasing normal load FN for the bulk
S184 substrate (R = 20.7 mm) . Both the space coordinate x and the displacement
component u are normalized with respect to the static contact radius a0.

Displacement and strain profiles for the softer S184:S527 substrate are shown
in Fig. 5.11 for increasing normal loads and a radius of the lens R = 9.33 mm.
As for S184, the strain amplitude is roughly independent on the nominal applied
contact pressure pm which is ranging from 0.8 to 0.12 MPa in these experiments.
The main difference with the stiffer substrate is the increased strain magnitude,
especially at the trailing contact edge where the maximum in-plane tensile strain
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is increased by a factor of 1.5 while the elastic modulus is decreased by a factor
2. Noticeably, this increase is achieved for a decreased frictional shear stress τ
as compared to the bulk S184 substrate (see Fig. 5.6). The shape of the strain
profiles is also altered: the main enhancement in the strain level is occurring in
tension at the contact trailing edge which is results in more asymmetric profiles.
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Figure 5.11: Non-dimensional longitudinal displacement (top) and logarithmic strain
(bottom) profiles taken across the contact for increasing normal load FN for the bulk
S184:S527 substrate (R = 9.3 mm). FN = 0.8 N (blue), 1.1 N (red) and 2.2 N (green).
Both the space coordinate x and the displacement component u are normalized with
respect to the static contact radius a0.
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5.2.2 Finite size contacts

Frictional stress and contact shape

The average frictional shear stress for confined contacts with the S184 layer 2 mm
in thickness is shown in Fig. 5.12 as a function of contact pressure and lens radius.
The gray symbols correspond to measurements with a bulk S184 substrate. As
opposed to semi-infinite contacts, the frictional shear stress is observed to decrease
with increased contact pressure (the difference between the lenses with R = 9.3
and R = 20.7 mm is not significant). In addition, the confinement seems to result
in an increase of the average shear stress at low contact pressures.
Regarding contact asymmetry, a significant effect of the lens radius is now ob-
served: the b/a ratio for the lens R = 9.3 mm is roughly independent on contact
pressure in the range 0.1-0.3 MPa. It is also lower than for the lens R = 20.7 mm.
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Figure 5.12: Average frictional stress as a function of the nominal contact pressure for a
confined S184 layer (h = 2 mm). Red: R = 20.7 mm; Green: R = 9.3 mm; Gray: data
for bulk S184 (R = 20.7 mm and R = 9.3 mm).

Changes in indentation depth during stiction

Evidences of a coupling between normal and lateral direction could be inferred by
a change in the indentation depth of the lens with respect to the static indentation
equilibrium. As detailed below, this coupling is occurring with both bulk PDMS
substrate and confined silicone layers but with opposite trends.

Fig. 5.14 shows the changes in the vertical position of the glass lens as a function
of time when a lateral motion is initiated from the static indentation equilibrium
in the case of a contact between a S184 layer and a lens (R = 20.7 mm) under
increasing applied normal loads. In this figure, the filled symbols correspond to
the onset of full sliding at the contact interface, assimilated to the time at which a
stiction peak force is observed A negative value of ∆z is indicative of a decrease in
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Figure 5.13: Contact aspect ratio as a function of the nominal pressure for a confined
S184 layer (h = 2 mm). Red: R = 20.7 mm; Green: R = 9.3 mm; Gray: data for bulk
S184 substrates (R = 20.7 mm and R = 9.3 mm).

the indentation depth. At low applied normal forces Fn, it turns out that the glass
lens is slightly lifted-up during stiction while at larger Fn it is deeply sinking-in in
the silicone substrate 1.

In Fig. 5.15 the magnitude ∆z∗ of the vertical displacement at the onset of
full sliding is reported as a function of nominal contact pressure pm for both the
bulk S184 substrate (circles) and the confined S184 layer (square). Two opposite
trends are clearly evidenced: while the glass lens tends to be lifted-up during
stiction of bulk substrates under a constant applied normal force, the reverse effect
is observed for confined contacts with silicone layers lying on a glass flat. In the
latter case, a transition from negative to positive ∆z∗ for increasing pm also reflects
the effect of the confinement, negligible at low normal load and becoming more
and more prominent for higher loads. Such a change in the indentation depth can
be arguably be attributed to coupling between the vertical and lateral direction
which are responsible for an overall lifting or sinking of the substrate surface for
bulk and thin specimen, respectively.

Displacement and strain fields

Figure 5.16 shows profiles of the non-dimensional longitudinal displacement and
strain across the confined contacts for increased applied normal forces. As com-

1After stiction, the observed drift of the vertical position of the lens is simply due to the
fact that the surface of the silicone specimen is not perfectly aligned with respect to the axis of
translation of the linear translation stage. As a result, the normal load actuator is continuously
adjusting the vertical position of the lens to maintain the constant prescribed normal load
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Figure 5.14: Time-change in the indentation depth ∆z of a glass lens in a S184 layer dur-
ing stiction at increasing applied normal forces FN from 0.1 to 8 N (R = 20.7 mm). Filled
symbols correspond to the achievement of a full sliding condition at the glass/PDMS
interface.
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Figure 5.15: Magnitude ∆z∗ of the change in the indentation depth during stiction for
bulk (circle) and film (square) S184 specimens as a function of the nominal contact
pressure pm (R = 20.7 mm).

pared to bulk substrates, the maximum strain achieved at the edges of the contact
is reduced by a factor of roughly two. This reduction can partially be attributed
to the measured decrease in the frictional shear stress by a factor of about 1.5 (see
fig. 5.12), and in part it is associated with the mechanical confinement which in-
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hibits displacements as effect of stiffening. Moreover, as compared to semi-infinite
contacts, we observed an enhanced dependence of the maximum strain achieved
at the contact edge on the normal load. The maximum strain saturates at high
normal load, and the strain shape evolves from asymmetric to symmetric for in-
creasing contact pressure. This observation aligns with the trend observed in the
bulk case, where a stiffer substrate tends to exhibit a more symmetric shape.
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Figure 5.16: non-dimensional longitudinal displacement (top) and logarithmic strain
(bottom) profiles taken across the contact for increasing normal load FN from 0.1 to
8 N for a confined contact with a S184 layer 2 mm in thickness (R = 20.7 mm). Both
the space coordinate x and the displacement u are normalized with respect to the static
contact radius a0.
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5.3 Conclusions

We conducted an experimental study on the frictional sliding contact between a
spherical glass probe and a smooth PDMS substrate. Both semi-infinite and con-
fined contact conditions have been investigated using a custom-made setup that
enables the measurement of substrate surface displacement. An asymmetry is sys-
tematically observed in the contact shape which is associated with a receding of
both trailing and leading edge. Large deformations, normal-tangential coupling,
and adhesion reduction have been proposed as responsible mechanisms. Indeed
tensile and compressive strains achieved at the trailing and leading contact edges,
respectively, are systematically lying outside the linear range and sometimes out-
side the neo-Hookean range. Moreover, changes in the indentation depth during
the onset of sliding evidenced a normal-tangential coupling which manifests oppo-
sitely with respect to contact confinement: for unconfined contact conditions, the
lens is lifted-up during stiction while it is sinking-in for confined contacts. This
study could provide new valuable evidence to better understand the mechanisms
behind the observed area reduction in frictional sliding contact. Additionally, ex-
amining the effects of confinement may help explain how material and geometrical
non-linearities can impact this phenomenon.



Conclusions

This thesis has addressed some opened problems in contact mechanics field in order
to foster the understanding on dissipative phenomena and geometrical aspects in
governing the behavior of adhesive and debonding systems.

As main focus of our study, a rounded overview on peeling mechanism has
been presented (Chapter 1). From the first approaches to current researches, we
have discussed theoretical and experimental frameworks for its analysis underlining
the importance of including viscoelasticity in peeling models as pivotal aspect of
real-life processes. To address this problem, basic notions linear viscoelasticity
have been introduced (Chapter 2) and creep and relaxation functions as well as
constitutive equations for viscoleastic models have been derived.

In Chapter 3 we have investigated the single peeling behavior of a thin vis-
coelastic tape peeled away from a rigid substrate. In a first scenario, stuck contact
condition have been assumed at the interface between tape and substrate. The
overall viscoelastic peeling behavior has resulted independent of the peeling ve-
locity, with the peeling force resembling the Kendall’s prediction for elastic tape,
with the elastic modulus given by the high-frequency viscoelastic modulus of the
tape material. Under these conditions, the energy dissipation associated with the
viscoelastic creep of the tape is entirely localized in the detached portion of the
tape. In a second scenario the presence of frictional sliding at the interface close
to the peeling front have been considered. Additional energy dissipation occurs,
associated with the work done by frictional shear stress and viscoelastic hysteresis
in the adhering tape section. The system’s delamination resistance appears en-
hanced for low peeling angle, with the peeling force diverging at vanishing peeling
angle. The interplay between these dissipative contributions results in a veloc-
ity dependent peeling behavior, in agreement with phenomenological models and
experimental observations.

Chapter 4 have investigated the V-peeling of a thin viscoelastic tape. Govern-
ing equations have been derived from energy balance and geometrical arguments
and a numerical procedure has been deployed to model the nonsteady peeling prop-
agation taking into account for the viscoleastic tape relaxation and the changing
in system’s arrangement. We have considered three possible scenarios, associated
with different controlled parameters: the peeling front velocity, the peeling force,
and the pulling velocity at the tape tip. Regardless of the specific controlled pa-
rameter, peeling propagation asymptotically approaches a steady-state elastic-like
behavior, while the initial transient peeling behavior is strongly affected by the
tape viscoelasticity and undeformed geometry, and could present non-monotonic
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time evolution of the peeling toughness (and angle). Under given peeling force
conditions, depending on the peeling force and undeformed geometry, the peeling
propagation can either start and indefinitely continue, start and successively stop,
or even not start at all. For imposed pulling velocity condition, the system can
exhibits peaks of peeling resistance especially for fast loading, as in the case of
impact loads.

Lastly, in Chapter 5 we have reported the main evidences of sliding contact
experiments between a PDMS rubber and a glass spherical probe aimed at investi-
gating the effect of material/geometric non-linearities and mechanical confinement
on the frictional contact behavior. A particular device has been employed for the
continuous recording of contact images which have been treated in order to ob-
tain a measure of surface displacements. Contact area reduction and asymmetry
is always encountered in frictional sliding condition as result of edge receding at
leading and trailing edge. This evidence, widely discussed for full-stick contact
condition, results not completely understood for gross slip situations. As large de-
formations outside the material linear elastic range are observed at contact edges,
non-linearities have been invoked for explaining this behavior. Moreover, semi-
infinite and confined contact condition resulted in opposite behavior with respect
of indentation depth during the stiction regime: for unconfined contact conditions,
the lens is lifted-up during stiction while it is sinking-in for confined contacts.

We hope that these findings could advance our understanding on the role of
particular aspects of contact systems in governing their overall behavior and could
help to unravel still unclear evidences observed in the natural world, in various
engineering applications, and everyday life experiences.
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