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A B S T R A C T

Offshore wind turbines are exposed during their serviceable lifetime to a wide range of loads from aero-,
hydro- and structural dynamics. This complex loading scenario will have an impact on the lifetime of the asset,
with fatigue remaining the key structural design driver for the substructure, e.g. the monopile. The ability to
monitor the progression of fatigue life of these assets has recently become an operational concern. To achieve
a monitoring alternative to strain gauges (cost-prohibitive farm-wide installation), supervisory control and
data acquisition (SCADA) systems, often coupled with acceleration measurements, have been used. Existing
work focused primarily on ten-minute fatigue load estimation. However, fatigue accumulates over time and
the ability to accurately monitor this accumulation of fatigue over a longer time-window is paramount. In this
contribution we investigate a novel approach using nine months of real-world SCADA and acceleration ten-
minute statistics as inputs of a neural network model for long-term DEM estimation. This is further enhanced
by including physical information relative to the problem at hand into the neural network model, in a so-called
physics-informed machine learning approach. Specifically, we employ a custom loss function – the Minkowski
logarithmic error – which prioritizes conservativeness (over-prediction of fatigue rates) and to embed the
damage accumulation into the machine learning model.

In the results and discussion section, we use Tower-TP interface load measurements for three real-world
turbines to demonstrate the concept. First a model is trained on one turbine, before being applied to all
three locations. The model performance is compared to direct measurements of fatigue progression at all
three locations and a control loss function (the mean squared logarithm error) in both the Fore-Aft and Side-
Side loading directions. The novel physics-informed model clearly outperforms the control loss function in
accumulated fatigue predictions with errors below 3% on accumulated damage equivalent moment estimates.
Additionally, the model’s long-term performance is checked according to varying timescales (hourly, daily,
weekly or monthly accumulation of DEM) and it is seen that the spread on the error rapidly reduces and
converges to zero. Finally, the long-term DEM is accumulated into a monthly accumulated fatigue damage.
We also see how the error on this begins to converge after 6+ months, which opens the door for extrapolation.
1. Introduction

1.1. Motivation

Recent years have seen a surge in the demand for wind energy
as societies attempt to transition to sustainable energy sources. To
meet the promised lowered costs, more cost-effective designs are be-
ing targeted. These cost-reductions are in part achieved through the
increased average wind turbine size (from 4.8 MW in 2016 to 11.2 MW
of average power rating of ordered offshore turbines by 2021 [1,2]).
In parallel, recent insights have identified (unintended) conservatism
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in older offshore wind farms, and updated design procedures (e.g.
PISA [3]) have allowed for more accurate predictions of structural
behaviour.

While offshore wind turbine design has seen much evolution, fatigue
has remained a key design driver [4]. During design substructure
dimensions are optimized for fatigue life to match the project’s intended
lifetime (typically 20–25 years) as close as possible. However, in
older designs, in particular those that are now reaching their intended
half-life, a structural reserve has been found. Real-world observations
through the use of Structural Health Monitoring (SHM) seem to
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Abbreviations and Nomenclature

Abbreviations

e.g. Exempli gratia (for example)
i.e. Ied est (that is)
ANN Artificial Neural Network
API Application programming interface
CI Confidence interval
CoE Cost of Energy
DEM Damage Equivalent Moment
EOP Environmental and Operational Parameters
FA Fore-aft
GELU Gaussian Error Linear Unit
KDE Kernel density estimator
LAT Lowest Astronomical Tide
ML Machine Learning
MLE Minkowski Logarithmic Error
MSLE Mean Squared Logarithmic Error
O&M Operation and Maintenance
OWT Offshore Wind Turbine
PDF Probability density function
PINN Physics-Informed Neural Networks
PSD Power spectral density
ReLU Rectified Linear Unit
RPM Rotations Per Minute
RUL Remaining Useful Lifetime
SCADA Supervisory Control and Data Acquisition
SHM Structural health monitoring
SN Stress-cycle curve
SS Side-to-side
T Training Turbine
TW-TP Tower-Transition Piece interface
XL Extra Large

Nomenclature

𝐘̂ Predicted values vector
𝐘 Measured values vector
𝛿 Long-term fatigue damage error
𝛿𝐿𝑇 Long-term DEM error
log Logarithmic function
R𝑛 𝑛-dimensional real vector space
 Dropout rate set
 Loss function
 Optimizer learning rate set
𝜔 Rotational speed of rotor (RPM)
𝑟𝑖 Mean residuals
𝛷 Physics-informed
𝜎 Stress range, standard deviation
𝜃 Yaw angle (◦)
𝑝𝑛(𝐲) Probability density function
𝐷𝐸𝑀𝐿𝑇 Long-term DEM
𝐿 Loss function
𝐿𝑝 Lebesgue space norm of 𝑝-dimension

suggest that fatigue life consumption is less than those computed during
design [5]. Motivated by a quest for greater cost-effectiveness, this
observation can optimize operation and maintenance (O&M), which
amounts to nearly a third of global costs [6]. It has been demonstrated
462
𝑚 Wöhler exponent
𝑀𝑡𝑙 Lateral bending moment
𝑀𝑡𝑛 Normal bending moment
𝑛 Number of cycles
𝑁𝑒𝑞 Equivalent number of cycles (predefined)
𝑝 Lebesgue space dimension
𝑃𝑛(𝐲) Cumulative distribution function
𝑅2 Coefficient of determination
𝑟𝑖 Residual
𝑟𝑖 TW/TP inner radius at strain gauge location
𝑟𝑜 TW/TP outer radius at strain gauge location
x Real number vector

that the initial capital expenditure required for SHM is quickly offset
by the reduction in operational expenditures [7], complemented with
the possibility of lifetime extensions or optimized usage.

In more recent projects this structural reserve has seemingly been
diminished as the design codes were optimized. As a result, operators
want to keep tabs on the fatigue progression of their assets to assure
intended project life can be reached. This, in particular when external
factors interfere with the normal operation of the assets, e.g. shutting
down a turbine to meet demands from the transmission system opera-
tor, but that might be detrimental to expected fatigue life. In absence
of any reserve, to monitor fatigue life has now become a operational
concern.

It should, however, be noted that fatigue monitoring is not a sub-
stitute, but rather a complement, of fault diagnosis/prognosis [8,9],
wherein the structural fatigue health monitoring allows operators to
make long-term decisions regarding their assets’ predicted life and fault
prognosis aids operators identifying problematic components and plan
maintenance ahead of time.

1.2. State-of-the-art in fatigue monitoring

The accurate monitoring of the remaining useful lifetime (RUL)
for every turbine within a given wind farm can thus help wind farm
operators of both older and newer farms to take informed decisions
regarding the operation of their assets.

Historically, this assessment has been performed by monitoring
the assets, either through physical inspections [10] or through strain
gauges, part of an SHM system, installed at the substructures’ interface
with the turbine, capable of capturing the turbines’ fatigue load his-
tory [11–13]. However, farm-wide physical inspections are costly and
workplace-accident prone. As for strain gauges, these remain labour
intensive to install and prone to failure within a wind turbine’s opera-
tional life. Installing and maintaining strain gauges on the substructure
of every wind turbine is considered cost-ineffective. As a consequence,
real-world examples known to the authors have less than 10% of
turbines in a farm equipped with a SHM system which includes strain
gauges.

Several researchers have therefore previously suggested to rely
instead on the data obtained from the supervisory control and data
acquisition (SCADA) system installed in every turbine [14–16]. Their
strategy typically comprises in training models to predict fatigue loads
as measured on turbines with a SHM system from SCADA data. As
SCADA is available on every turbine, one can use said models to
estimate fatigue life on every location [17,18] .[18] performs a com-
parative study between different sensor setups for fatigue estimation,
considering varying quality of SCADA and accelerations, results show
a strong improvement in the ability to estimate fatigue rates when
tower acceleration data was considered. This result may come to no
surprise as both tower accelerations and fatigue cycles follow the same
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equations of motion of the OWT [19]. Currently, the cost of farm-
wide deployment of high quality accelerometers has dropped far below
that of a farm-wide deployment of strain gauges or inspection-based
monitoring. Moreover, as accelerometers are a reliable technology,
it does not requires periodic inspections carried out by technicians
(reducing workplace accident probability).

In parallel, an increased use of machine learning (ML) algorithms
and other data-driven techniques has been noted, producing promising
results. These have included proofs of the reliability of data-driven
fatigue estimators serving the entirety of the turbine’s operational
life [20], the quality of SCADA-based artificial neural network (ANN)
models in different flow conditions for blade flap- and edgewise bend-
ing moment fatigue load estimation [21,22], the use of ANNs for blade
root flapwise fatigue loads and their connection to turbine failure [23],
Gaussian process regression time-series modelling to evaluate the in-
fluence so-called EOPs (Environmental and Operational Parameters)
have on the features of the vibration response of the wind turbine
blades [24], the use of conditional variational auto-encoders to esti-
mate the probability distribution of the accumulated fatigue on the
root cross-section of a simulated wind turbine blade, enabling long-
term probabilistic deterioration predictions based on historic SCADA
data [25,26] or of graph neural networks [27], the use of long-term
SCADA from onshore wind turbines to estimate the tower fore-aft
bending moment [28], the use of Gaussian processes for damage de-
tection [29] and the use of SCADA and acceleration data to predict
the fatigue loads at tower-transition piece on a ten-minute level and
provide insight into feature selection, the performance of different
sensor setups and a tentative farm-wide employment [18].

A caveat of the aforementioned research is that predictive quality
of the models is assessed on typically a ten-minute basis. I.e. a model
quality is evaluated by its ability to predict ten-minute damage rates.
However, in offshore wind, the evaluation of fatigue life is not primarily
performed on a ten-minute basis, but rather by assessing the total ac-
cumulation of the fatigue damages over the project life and quantifying
residual life [5,30]. The present contribution will show that the ability
to predict ten-minute fatigue rates well, does not guarantee neither
an accurate nor a conservative outcome when these predictions are
accumulated into a fatigue life estimation. To resolve this caveat the
present contribution will introduce physics-informed machine learning
models (𝛷-ML) [31] to significantly improve the accuracy of fleet-wide
fatigue life predictions by incorporating damage accumulation into the
ML model itself. Simultaneously, conservatism is introduced into the
predictions by using the properties of the logarithmic function.

For this objective, data collected from XL monopile foundations is
utilized; this represents a radical departure in terms of the structure’s
dynamics when compared to smaller monopiles or jackets, with an
increased importance of side-to-side loading and loading under idling
conditions [32,33]. As such, an added focus will be given to the
performance of the proposed methodology’s in diverse operational
conditions.

1.3. Physics-informed machine learning

The recent increase in monitoring data availability has led to a
predominance of data-driven approaches in SHM, the inability for these
approaches to properly extrapolate or to explicitly take into considera-
tion specific physical relationships of the underlying problem limit their
applicability. This as lead to the rise of physics-guided machine learning
(Φ-ML) approaches.

In Φ-ML, hybrid models are generated which are not completely
data-driven and include some underlying physical knowledge of the
problem at hand. As good as purely data-driven models may fit the
training data, some predictions may be physically nonsensical or incon-
sistent. This can be due to extrapolation (for which ML is not usually
adequate) or observational biases that may lead to poor generaliza-
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tion [31]. Therefore, a drive for fundamental physical laws integration
and domain knowledge has recently risen, wherein ML models are
taught the governing physical laws which provide ‘informative priors’
in the form of strong theoretical constraints and inductive biases on
top of the observational ones [31].

More generally, one can understand Φ-ML as corresponding to a
series of methods halfway in the spectrum between ‘white-box models’
(purely physics-based models, as partial differential equations or finite
element methods) and ‘black-box models’ (where the model structure is
purely data-driven). Therefore, several authors have spoke of ‘grey-box’
or hybrid models [34].

As mentioned, there is a spectrum of approaches between physics-
principled models and data-driven models, from residual models and
hybrid architectures to physics-guided learning. A quick subdivision
of these diverse approaches can be performed by grouping these by
the type of bias they incorporate: Observational biases, where reli-
able, high-quality data that embodies the underlying physics (through
sensors) and carefully crafting input augmentation procedures (such
as metrics, statistics and nonlinear transformations); inductive biases,
where prior assumptions are incorporated by tailored interventions
to an ML model architecture, such that the predictions sought are
guaranteed to implicitly satisfy a set of given physical laws, typically
expressed in the form of certain mathematical constraints. Albeit the
most principled Φ-ML implementation, it often leads to complex im-
plementations of difficult scalability [31]; and learning biases – the
focus of this contribution – which consist in appropriately choosing
loss functions, constraints and inference algorithms that modulate the
training phase to explicitly favour convergence towards solutions that
adhere to the underlying physics. Therefore, a flexible soft constraint
platform which approximately satisfies the underlying physics is intro-
duced, incorporating physics-based biases, e.g. physics-informed neural
etworks (PINNs [35]), as will be discussed in this contribution.

This approach is particularly relevant for our application, as we
re attempting to have similarly acceptable results for ten-minute
redictions and the long-term accumulation of these predictions. Ad-
itionally, when we consider a fleet-leader model (i.e. when a model

trained on one turbine is considered representative of the entire fleet
and used for farm-wide estimation [17]), the successful transferability
of a model trained on an individual turbine will depend on the simili-
tude of the input variable space throughout the farm. The additional
stability/robustness added by Φ-ML may allow to extend machine
learning into extrapolation scenarios.

1.4. Article structure and main contributions

The current article presents as its main contributions the develop-
ment of a data-driven methodology which is able to tackle different
timescales for DEM estimation (10-minute and long-term accumula-
tion) through physics-guided learning by implementing a custom loss
function. The structure of the article is divided into five individual
sections, with the current section consisting in the introduction. In
Section 2 the data and fatigue calculation methodology are presented,
firstly by focusing on the data acquisition systems (Section 2.1) and
after by introducing the mathematical background behind damage
equivalent loads and fatigue life estimation (Sections 2.2 and 2.3).
Section 3 describes the methodology for long-term fatigue estimation
using physics-informed neural networks, with a greater focus on the
loss function (Section 3.1). Section 4 presents the results of this contri-
bution along with its discussion. More specifically, Section 4.1 focuses
on the ten-minute level performance, Section 4.2 focusing on the long-
term performance and Sections 4.2.1 and 4.2.2 focus on identifying the
sources of model shortcomings. Section 4.3 presents the performance
for different operational conditions, Section 4.4 for different timescale
accumulations and Section 4.5 show the long-term fatigue damage
accumulation. Finally, in Section 5 the conclusions and future work are

discussed.
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Table 1
Description of datasets from the measurement campaign. Note the conflicting sampling frequencies. Each data-type is processed into 10-min
target statistics.

Sensor Sampling frequency Variable Units
In

pu
t

SCADA 1 Hz

Rotational speed rpm
Yaw angle deg
Pitch angle deg
Power kW
Wind speed m s−1

Wind direction deg

Target statistics (10-min): mean, minimum, maximum, standard deviation.

Wave buoy 10-min

Wave height cm
Average wave period s
High frequent wave direction deg
Low frequent wave direction deg
Tidal level cm
10% highest waves cm
Height waves with period > 10 s cm

Target statistics (10-min): mean.

Accelerometers
⎧

⎪

⎨

⎪

⎩

16 m LAT
69 m LAT
97 m LAT

⎫

⎪

⎬

⎪

⎭

12.5 Hz

FA acceleration g

SS acceleration g

X (225◦) acceleration g

Y (225◦) acceleration g

Target statistics (10-min): mean, minimum, maximum, root mean square.

Ta
rg

et Strain gauges 30 Hz Normal bending moment (𝑀𝑡𝑛) MNm
Lateral bending moment (𝑀𝑡𝑙) MNm

Target statistics (10-min): damage equivalent moments (𝐃𝐄𝐌𝐭𝐧 and 𝐃𝐄𝐌𝐭𝐥).
2. Sensors, data and methodology

2.1. Sensors and data

In the present contribution, data from a measurement campaign on
real-world offshore wind turbines with XL monopile foundations (9.5
MW turbines and water depths of up to 36 m) located in the Belgian
North Sea was used. This is highly relevant, as the vast majority of
offshore wind turbine foundations are monopiles (up to 80% [36])
and the increase in size of wind turbines, enabled by improvements
in manufacturing processes, has led to the existence of very large
monopiles — XL monopiles. A lower threshold of 8 m diameter (capable
of supporting a 7–8 MW turbines) can be set for this term [37].

The growing size of turbines has led to a novel paradigm for the
industry, as the natural frequencies of turbines with XL monopile
foundations are getting increasingly closer to the wave frequency spec-
trum [38]. This, combined with a larger surface area for hydrodynamic
loads and deeper locations, has led to a greater impact of the wave
loading on fatigue [32]. This in turn has resulted in the increased
importance of idling operational conditions and the inclusion of side-
to-side (SS), or cross-wind, damage calculations. As all of this can be
linked to the structural dynamics of the turbines, acceleration data has
become paramount to understand the broader fatigue picture [33].

The measurement campaign was based on data collected by three
types of sensors: 6 axial strain gauges used to calculate the bending
moments (𝑀𝑡𝑛, 𝑀𝑡𝑙) and installed along the inner circumference at
the interface between the turbine tower and the transition piece (TW-
TP), three dedicated tower bi-axial accelerometers installed at three
different levels in the bottom, middle and top of the turbine tower and
SCADA data collected at nacelle-level. The yaw angle (from SCADA)
can be used to convert the bending moments from the strain gauges into
FA (𝑀𝑡𝑛) and SS (𝑀𝑡𝑙) directions, as these are the ‘primary’ directions
of the structure, with dynamics clearly being different between these
two primary directions. It should be noted that the data was collected
by third-parties, namely the operator when it comes to SCADA and a
specialized monitoring company for the monitoring data. Throughout
the monitoring data collection, extensive calibration and quality checks
were performed. Some periods had no collected data due to power
464
Fig. 1. Illustration of the sensor setup.

outage which does not have an impact in this contribution’s objec-
tives; however, it should be considered when extrapolating in time. A
schematic representation of the setup can be seen in Fig. 1.

The signals of the various sensors are collected at various sampling
frequencies and transformed in ten-minute time instances of diverse
statistics of the signals. A full description of the various parameters
and their original sampling frequency can be found in Table 1. It
should be noted that, albeit the sampling frequency for SCADA is 1 Hz,
only ten-minute statistics are available (due to data storage consider-
ations). [39] addressed the shortcomings a mean ten-minute SCADA
approach might entail, however, the inclusion in this contribution of
additional statistics such as minima, maxima and standard deviation
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serves to rectify some of these by increasing the valuable information
stored from SCADA signals.

Three turbines were instrumented, each representing one of the
design clusters in the original detailed design of the wind farm. We can
see the use of data from three turbines of different design clusters as a
step in the direction of the farm-wide implementation of a fleet-leader
model. The data collected in these locations was further enhanced by
the addition of wave and tidal data, attained from a public Flemish
maritime database (Meetnet Vlaamse Banken [40]), with a measuring
station in the Belgian North Sea at the Westhinder site.

2.2. Damage equivalent moments

The strain gauges installed along the inner circumference at the
TW-TP interface level enable the calculation of the bending moments
in FA (𝑀𝑡𝑛) and SS (𝑀𝑡𝑙) directions, through the ten-minute average
yaw angle from the SCADA. Given the timeseries of bending moments,
one can then employ a rainflow counting algorithm [41,42], which
counts the number of cycles within a given stress range. Then, holding
the linear damage accumulation hypothesis as true (Palmgren-Miner’s
rule) [43] and through the employment of the Wöhler exponent (the
negative inverse slope of the SN curve) [44], the damage equivalent
moments (DEM) are calculated for any ten minute window. A more
detailed discussion of this procedure can be found in [45]. These DEMs
will become the input for a fatigue assessment of the asset and are fairly
widely adopted among load engineers to quantify fatigue rates (over
e.g. damage). As DEMs are also widely used in design, results can be
compared with design results (when available).

The equation for the DEM is given in Eq. (2.1), as defined by [46]
(here presented for the stress ranges), wherein 𝑚 is the inverse slope of
the SN curve, or Wöhler exponent [42], 𝑛𝑖 is the number of cycles of
a given stress range, 𝜎𝑖, 𝑟𝑜 and 𝑟𝑖, are respectively the TW/TP outer
and inner radii at strain gauge locations. For this contribution, and
following the farm’s design documentation, the value of 5 was used
for 𝑚 and 𝑁𝑒𝑞 = 107, a predefined number of cycles.

𝐷𝐸𝑀 = 1
𝑁𝑒𝑞

⋅

(

∑

𝑖
𝑛𝑖 ⋅

(

𝛥𝜎𝑖 ⋅
𝜋
2 ⋅ (𝑟4𝑜 − 𝑟4𝑖 )

𝑟𝑜

)𝑚)1∕𝑚

(2.1)

The DEMs are calculated for both the FA (𝐷𝐸𝑀𝑡𝑛) and SS (𝐷𝐸𝑀𝑡𝑙)
directions using the respective timeseries.

As explained above, the DEM calculation hinges upon the bending
moments estimated from the strain gauges’ readings. As these are not
available farm-wide, our strategy is based on the use of not only
SCADA, but also accelerations. Accelerometers have proven to be a far
more reliable sensor compared to strain gauges over past SHM projects.
Moreover, unlike strain gauges, their installation is fairly simple and
post-processing is straight-forward, without the need for temperature
compensation or calibration. The strong correlation between strain
and accelerations (there is a link between the measured horizontal
accelerations and the bending stresses [19], and as seen in Fig. 2)
allows us to justify this approach, as the influence of the fatigue damage
on the structure appears to also be captured by accelerometers. In
Fig. 2(b) we can see how the first order dynamics dominate both the
accelerometer’s and the strain gauge’s signals.

2.3. Fatigue life estimation

DEMs are a valuable property when discussing a lifetime assessment
procedure. Nonetheless, just calculating these on a ten-minute basis is
not enough to actually provide an insight into the fatigue life of an
asset. For this, short-term ten-minute DEMs have to be added up.

As seen in the previous section, DEMs translate the damage caused
by a dynamic load history into the single-amplitude equivalent load
which would cause the same damage. By Palmgren-Miner’s rule, we can
further combine 𝑛 equivalent load ranges that have been derived for the
465
Fig. 2. Exemplary datasets of both the bending moment (orange) and the top level
accelerations (blue) for a turbine in parked conditions. In (a), signals’ timeseries, in
(b) their corresponding power spectral densities (PSD). It can be clearly be observed
that the two signals show a very similar behaviour, illustrating the strong link between
the acceleration and fatigue data.

same reference cycle number and Wöhler exponent through the 𝑚-root
of the weighted summation of the 𝑚-power DEM instance [47], as seen
in Eq. (2.2). Here 𝐷𝐸𝑀𝐿𝑇 represents the long-term DEM accumulation
of 𝑖 ten-minute DEM instances. In this equation every 𝑖 ten-minute
time-instance DEM represents a damage load with identical occurrence
probability of 1∕𝑛 [48].

𝐷𝐸𝑀𝐿𝑇 = 𝑚

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
𝐷𝐸𝑀𝑚

𝑖 (2.2)

As we can seen, whatever the desired target long-term timescale
might be, the combination of DEMs will always re-scale these into
the timescale of 𝐷𝐸𝑀𝑖 (all 𝑛 instances of 𝐷𝐸𝑀𝑖 must have the same
timescale and have been calculated for the same Wöhler exponent, 𝑚).
This allows to compare long-term effects of different timescales and
easily add these by applying a timefactor. To translate the accumulated
DEM (𝐷𝐸𝑀𝐿𝑇 ) into accumulated fatigue damage (𝐷), one must simply
re-instate Palmgren-Miner’s rule and bring DEMs back into damage, as
shown in Eq. (2.3).

𝐷 =
𝐷𝐸𝐿𝑚 ⋅𝑁𝑒𝑞

𝑎̄
=

𝑁𝑒𝑞

𝑎̄
⋅
(

𝐷𝐸𝑀 ⋅ 𝑟𝑜
𝐼

)𝑚
, (2.3)

where 𝐼 is the area moment of inertia [13,49].
All of these quantities are known and have been introduced in

previous sections apart from the intercept of the SN curve, 𝑎̄. This
value can easily be consulted in the corresponding SN-curve tables used
during design [49]. In this case, we take the 𝑎̄ value from the SN curve
D for seawater environment with cathodic protection, with 𝑎̄ = 15.606.
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Fig. 3. Schematic of methodological approach.
Finally, we can translate the accumulated fatigue damage into the
remaining useful lifetime through Eq. (2.4), where 𝑡𝑜𝑝 is the number of
years the wind turbine has already operated [13].

RUL =
𝑡𝑜𝑝
𝐷

− 𝑡𝑜𝑝, (2.4)

3. Long-term fatigue estimation using physics-informed neural
networks

In the present contribution, nine months worth of data from one
real-world turbine (OWT1) is used to train ANNs in order to predict
the DEMs affecting offshore wind turbine structures at TW-TP interface
level for FA and SS directions. This mirrors the methodology prescribed
in [18]. The full methodology can be seen in Fig. 3 and is applied to
both FA (𝐷𝐸𝑀𝑡𝑛) and SS (𝐷𝐸𝑀𝑡𝑙) independently.

As can be seen in Fig. 3, variable-space dimensionality reduction
on half of the available data from the reference (OWT1) was per-
formed. [50] performed a systematic comparative study of different
feature selection algorithms and explains the coalescing into the best
performing feature selection algorithms, namely, Borutashap [51] and
Recursive Feature Elimination [52], with the latter producing a smaller
number of explanatory features, and thus being the selected algorithm.

The features selected for each of the two direction differed. Both FA
and SS had accelerations highly represented, respectively relying on FA
and SS accelerations. In the FA direction additional selected features
were more related to the output of the turbine (such as wind speed,
power, etc.), whereas SS fatigue loads are more defined by wave-related
parameters (as high frequent wave direction, wave height and tidal
level). A more detailed discussion on the use of feature selection can
be consulted in previous works [18,53].

The general architecture of the machine learning model is that of
a feed-forward artificial neural network (ANN). Using the keras-
tuner package, three hyperparameter optimization algorithms (Ran-
dom search [54], Hyperband [55] and Bayesian optimization [56]) are
466
tested, with the best model architecture being obtained with Bayesian
optimization [57] with a mean squared error objective using the
keras-tuner package [58]. The topology of the network consisted in
5 hidden layers, with the number of neurons varying between 32 and
512, rectified linear unit (ReLU) [59] and Gaussian error linear unit
(GELU, a smoothing of ReLU using 𝛷(𝑥), the cumulative distribution
function of the Gaussian distribution [60]) activation functions. The
dropout rate could be chosen from the set  = {0, 0.1, 0.2, 0.3} and the
learning rate of the optimizer (Adam) from  = {1 ⋅ 𝑒−2, 1 ⋅ 𝑒−3, 1 ⋅ 𝑒−4}.
The mean squared error and mean absolute error were the monitored
metrics.

For training, half of the available data of the reference turbine
is bootstrapped and the neural network model trained using a k-fold
cross-validation [61] with 5 folds and a 70–30 validation split. A fixed
threshold of 100 epochs is given and an early stop callback employed.

After training, the FA and SS ANNs were used to estimate the DEM
both for the full dataset of the reference (training) turbine, OWT1,
but also for two additional fully instrumented turbines (OWT2 and
OWT3). Additionally, the sum of all the 10-min DEL estimations (and
measurements) was scaled into a 10-min lifetime DEL (cf. Eq. (2.2),
derived from [48]).

3.1. Loss functions

In Section 2.2 we have seen how damage equivalent loads on a
ten-minute level can be accumulated and re-scaled back in order to
compare fatigue damage throughout any timescale by a so-called long-
term DEM (𝐷𝐸𝑀𝐿𝑇 ). While previous research focused on accuracy at
a ten-minute level [18], the current contribution prioritizes instead
the performance on long-term DEM. This, while attempting to retain
accuracy on a ten-minute level and keeping a reasonable degree of
conservativeness. Simultaneously an inherently conservative strategy is
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desired, in which an overestimation of fatigue damage (and therefor
an underestimation of RUL) is highly preferred over underestimating
fatigue damage.

This multi-timescale (ten-minute predictions, long-term accumu-
lation) is a highly complex problem statement, and a common ML
approach will not be able to capture all the dynamic relationships
between the many physical variables varying across space and time at
different scales [62]. Therefore, in order to reflect the focus on long-
term DEM estimation, a physics-informed machine learning approach
is required, by guiding the learning process of the neural network, as
introduced in Section 1.3.

In this section, two loss functions are selected and compared: the
mean squared logarithmic error, a commonly available loss function
which will serve as the control function, and a loss function, named
Minkowski logarithmic error, custom-developed as to contain some phys-
ical information inherent to the problem at hand and reflect the priority
given to long-term DEM estimation. Both functions employ the logarith-
mic function, which will inherently favour overpredictions, rendering
the models conservative when used for a fatigue life assessment.

3.1.1. Mean squared logarithmic error
The mean squared logarithmic error (MSLE) can be interpreted as a

measure of the ratio between the true and predicted values and employs
the logarithmic function to the mean squared error loss function (see
Eq. (3.1), where 𝐘, 𝐘̂, with 𝐘 = (𝑦1,… , 𝑦𝑛) and 𝐘̂ = (𝑦̂1,… , 𝑦̂𝑛) are the
real and predicted values vectors).

(𝐘, 𝐘̂) = 1
𝑛

𝑛
∑

𝑖=0
(log(𝑦𝑖 + 1) − log(𝑦̂𝑖 + 1))2 (3.1)

The introduction of the logarithm makes MSLE penalize underesti-
mates more than overestimates, introducing an asymmetry in the error
curve. This property is related to the slope of the logarithmic curve [63]
and provides the desired conservatism for the current application.

3.1.2. Minkowski logarithmic error
When the individual instances of ten-minute DEMs are aggregated

into a long-term DEM, as in Eq. (2.2), we can see this is performed
through a weighted Lebesgue, or 𝐿𝑝, space norm, a class of Banach
spaces [64], where 𝑝 coincides with the Wöhler exponent, 𝑚. Therefore,
the length of the vector 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) in the 𝑛-dimensional real vec-
tor space R𝑛 can be described for 𝐿𝑝 spaces as given by Eq. (3.2) [65].

‖𝐱‖𝑝 =
(

1
𝑛
∑

𝑛
|𝑥𝑛|

𝑝

)1∕𝑝

(3.2)

Thus, for the problem at hand, we can bring any timescale into the
10-min frame of reference through Eq. (2.2), a direct the application of
Eq. (3.2) for DEM with 𝑝 = 𝑚 = 5.

This equation is the point of departure for our physics-guided loss
function, as it is the underlying physical principle which drives the
long-term accumulation of DEMs. One could therefore reasonably place
a complete focus on the long-term ability of the model to predict
long-term, as seen in Eq. (3.3).

(𝐘, 𝐘̂) =
( 𝑛
∑

𝑖=0
| log(𝑦𝑖)|

𝑝

)1∕𝑝

−

( 𝑛
∑

𝑖=0
| log(𝑦̂𝑖)|

𝑝

)1∕𝑝

(3.3)

However, this approach would be detrimental, as it would mean
that during the learning phase instead of comparing the 𝐿𝑝 scaled
residuals (and thus focusing on the estimation error), it would compare
the residual of the 𝐿𝑝 scaled total (long-term) measurements and esti-
mations, which has no bearing on a ten-minute level. Therefore, if our
loss function is to reflect the long-term DEM in a flexible way (i.e. not
timescale-dependent), it must also remain able to estimate accurately
at a ten-minute level.

Thus, based on the 𝐿𝑝 norm and the logarithm function, and at-
tempting to maintain a ten-minute level prediction accuracy, we intro-
duce the Minkowski logarithmic error (MLE). This loss function can be
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Fig. 4. Time series of measurements (𝑦𝑖 or 𝐃𝐄𝐌𝐫𝐞𝐚𝐥, in red) and predictions (𝑦̂𝑖
or 𝐃𝐄𝐌𝐩𝐫𝐞𝐝, in blue) with 95% confidence interval bounds (1.96 𝜎, with 𝜎 standard
deviation) of the relative error for OWT1 FA using MLE. Predictions using MSLE (𝑦̂𝑖 in
orange).

seen as a extension of the logarithmic loss function to any 𝐿𝑝 metric,
also know as Minkowski distance [66]. Eq. (3.4) describes this function
mathematically, extended for 1 ≤ 𝑝 < +∞ in the 𝑛-dimensional vector
space R𝑛 for 𝐘, 𝐘̂. For our case the Wöhler exponent (𝑚 = 5) coincides
with 𝑝.

(𝐘, 𝐘̂) =
( 𝑛
∑

𝑖=0
| log(𝑦𝑖 + 1) − log(𝑦̂𝑖 + 1)|𝑝

)1∕𝑝

(3.4)

This loss function, as will be seen in Section 4, represents a fair
compromise between ten-minute DEM and long-term DEM estimation
and was implemented in the Keras framework. [67] provides an
extensive introductory guide into custom loss functions – including
physics-guided learning – for this specific Tensorflow API. A deeper
discussion on the Minkowski Logarithmic Error and its mathematical
development can be found in [68].

4. Results and discussion

As described in Section 3, the final architecture obtained through
hyperparameter tuning is used during the training of the model using
50% of OWT1’s data (of the available 9 months). The final PINN
model is used to estimate TW-TP ten-minute DEMs, which are then
accumulated into a long-term DEM for each of the three turbines (both
FA and SS) using nine months worth of data.

4.1. 10-minute level performance

We can begin inspecting the model’s performance on a ten-minute
level by observing a two-day timeseries of the FA predictions with a
95% confidence interval for OWT1 using the Minkowski logarithmic
error (MLE) loss function (MLE uses 𝑝 = 𝑚 = 5). The predictions using
the mean squared logarithmic function (MSLE; control function) have
also been added.

In Fig. 4 we can observe how all the measurements fall well within
the 95% confidence interval. More specifically, we can see how the
predictions are, on average, greater than the measurements. This is a
direct result of the inclusion of the logarithmic function in the MLE,
as it promotes over-prediction, introducing the desired conservatism to
the model. When compared with the predictions using the MSLE control
loss function, the overprediction incentive in these latter is not really
noticeable.

We can further confirm that the model using MLE is generally over-
predicting by plotting the predictions against the measurements (see
Fig. 5) by smoothing their bivariate distribution using a kernel density
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Table 2
Comparison of models’ performance for MSLE and MLE (coefficient of determination, 𝑅2, RMSE expressed as a percentage of the mean DEM
value, NRMSE (%) and long-term DEM error, 𝛿𝐿𝑇 , with 𝛿𝐿𝑇 = 100×(𝐃𝐄𝐌𝐫𝐞𝐚𝐥−𝐃𝐄𝐌𝐩𝐫𝐞𝐝)∕𝐃𝐄𝐌𝐫𝐞𝐚𝐥) for the three turbine in each direction (fore-aft,
FA, and side-to-side, SS). OW1 (T), training turbine.

OWT1 (T) OWT2 OWT3

FA SS FA SS FA SS

MSLE MLE MSLE MLE MSLE MLE MSLE MLE MSLE MLE MSLE MLE

𝑅2 0.85 0.87 0.95 0.98 0.86 0.85 0.94 0.98 0.85 0.88 0.94 0.98
𝑁𝑅𝑀𝑆𝐸 (%) 22.8 21.7 11.2 6.34 21.9 22.2 11.4 7.58 22.1 20.1 11.5 6.08
𝛿𝐿𝑇 (%) 7.99 1.25 9.01 2.21 6.95 −0.24 8.30 2.12 7.50 −0.87 9.38 2.83
Fig. 5. Bivariate probability density plot of measurements (𝑦𝑖 or 𝐃𝐄𝐌𝐫𝐞𝐚𝐥) and
predictions (𝑦̂𝑖 or 𝐃𝐄𝐌𝐩𝐫𝐞𝐝) with red line 𝑦𝑖 = 𝑦̂𝑖 for OWT1 FA using MLE. Colour scale
is the log-normal distribution of the PDF – 𝑝𝑛(𝐲;𝐇) – with 𝐇 the 2 × 2 positive definite
smoothing bandwidth matrix, selected through Scott’s rule (

√

𝐇𝑖𝑖 = 𝑛−1∕6𝜎𝑖) [71].

estimator (KDE) [69], wherein a multivariate gaussian kernel estimates
the probability density function (PDF) [70] non-parametrically.

In Fig. 5, we can see how the majority of values are rather small
when compared with the highest damage equivalent loads, being
concentrated in the lower left corner, close to the origin (in light
green/white). More interestingly, we can also see how there is a slight
upward skew in the PDF distribution in relation to the identity line for
𝑦𝑖 = 𝑦̂𝑖 (measurements equal predictions). This shows us how there is a
constant model overprediction (𝑦̂𝑖 > 𝑦𝑖).

4.2. Long-term level performance

As mentioned in preceding sections, the major goal of this contribu-
tion lies with the accurate characterization of long-term DEMs through
physics-guided learning by employing a custom-built loss function. In
order to assess this, we can take a look at the long-term (nine months
worth of data) results for the three turbines. This can be seen as a proof-
of-concept of the fleet-leader model through cross-validation, opening
the road for a farm-wide implementation. For this, we can inspect
Table 2, the errors of TW-TP DEM estimation by direction for 10-min
level through the coefficient of determination, 𝑅2 and the root mean
squared error, normalized as a percentage of the mean DEM value,
where 𝑁𝑅𝑀𝑆𝐸 = 100 ⋅ (1∕𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2)1∕2 ⋅𝐘, but also for the long-

term level (𝛿𝐿𝑇 ) for the Minkowski logarithmic error (MLE) compare
those control loss function, the mean squared logarithmic error (MSLE).

In Table 2 we can see how the introduction of a Φ-ML approach
for the loss function greatly improves the models’ performance on
the long-term accumulations of Eq. (2.2) (𝛿𝐿𝑇 ), whilst retaining and
even slightly improving the ten-minute estimation performance (𝑅2,
NRMSE). All errors on long-term DEM estimation are well below 3%.
These can be considered as excellent within the overall context of the
substructure’s design. There is usually an allowable error of similar
magnitude between the substructure designer’s and the wind turbine
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designer’s code. From real-world examples known to the authors, the
results present in Table 2 are well below this industry allowable error.
The ten-minute level improvement is more noticeable in SS, especially
if we consider the NRMSE (4%–5% improvement). Indeed, the MLE loss
function has not only meant improvements at 10-min and long-term
levels (with the latter improving from up to 9.4% error to less than 3%),
but has also prioritized overpredictions (a feature desired in order to
ensure some conservatism), represented by a negative 𝛿𝐿𝑇 , for OWT2
and 3 FA.

4.2.1. Side-to-side long-term error
However, despite the overall improvement of long-term perfor-

mance due to MLE, the expressed objective of forcing overprediction
(negative 𝛿𝐿𝑇 ), has not been attained for all SS cases and for OWT1
FA, with the long-term error being positive despite using the logarith-
mic in loss function to give incentive to overpredictions. In order to
understand this, we inspect Fig. 6a, where we plot the predictions (𝑦̂𝑖)
against the measurements (𝑦𝑖) for 𝐷𝐸𝑀𝑡𝑙 of OWT 2. Additionally, we
identify in purple the region (without balancing counterpart) where the
model is severely underpredicting (𝑦𝑖 ≫ 𝑦̂𝑖).

Here, we can see that the model is overwhelmingly accurate, as the
vast majority of values stick closely to the identity line (also given by
the 𝑅2 value in Table 2 of 0.98). However, there is indeed a region (in
purple) where the measured values are much greater than the predicted
values. We can additionally see how most of these values of the purple
shaded region can be mapped by time-instances where there is a sudden
variation in the yaw angle (𝜕𝜃∕𝜕𝑡𝑖−1 > 10◦, in orange).

In order to understand the rationale behind this mapping of the yaw
transient, we can start by taking a look at Fig. 6b, where the lateral
bending moment (𝑀𝑡𝑙) is plotted for an individual ten-minute time-
instance located in the underpredicting region. Here, we can indeed
see that there are two regions (identified in red), where there is a
sudden variation (in this case, a drop) in the lateral bending moment
(∇𝑀𝑡𝑙 ≫ 0) caused by a sudden variation in yaw. Therefore, we
can understand that the model is unable to accurately capture these
severe variations and, thus, underpredicts the fatigue loads. We can
furthermore see how these sudden variations on 𝑀𝑡𝑙 are preceded by an
equally sudden variation on the yaw angle (𝜃, in light blue in Fig. 6b).
Thus, there is a link between yaw and lateral bending moment variation
(𝜕𝜃∕𝜕𝑡𝑖−1 ≫ 0 ⇒ ∇𝑀𝑡𝑙 ≫ 0).

However the origin of these apparent large fatigue loads does not
come from an actual sudden, physical variation in the SS loads. Instead
it is due to one of the key assumptions of the global methodology [45]
being violated. In general one assumes a unique value for the yaw angle
for the whole of the ten-minutes. This assumption overwhelmingly
holds true. But Fig. 6b shows that once this assumption breaks down,
the bending moment calculation is not truthful to the physical reality
(the bending moment variation regions in red in Fig. 6b do not have
any physical meaning, they just are a result of the yaw angle not
remaining approximately constant). Therefore, we are in the presence
of a shortcoming of the decision to work with 𝑀𝑡𝑛 and 𝑀𝑡𝑙 bending
moments and not of the machine learning model.

It could be argued that one should not work with 𝑀𝑡𝑙 and 𝑀𝑡𝑛
loads and use the strain gauges directly or use 1s SCADA for the
yaw transformation. In Section 2.1 it was explained that working with
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Fig. 6. (a) DEM predictions (𝑦̂𝑖) vs measurements (𝑦𝑖). Red line identity (𝑦𝑖 = 𝑦̂𝑖). Region of severe underprediction (𝑦𝑖 ≫ 𝑦̂𝑖) in purple. Time-instances of severe yaw angle transient
(𝜕𝜃∕𝜕𝑡𝑖−1 > 10◦) in orange. (b) Ten-minute timeseries window of lateral bending moment at LAT016 (𝑀𝑡𝑙) strain values (in 𝑁𝑚). Zones of sudden and severe variation of the
lateral bending moment (∇𝑀𝑡𝑙 ≫ 0) identified in red. Yaw angle (𝜃) plotted in light blue.
𝑀𝑡𝑙 and 𝑀𝑡𝑛 made sense, as these are the ‘primary’ directions of the
structure, with dynamics clearly being different between these two
primary directions. When, alternatively, working with strain gauges
directly, the two primary directions would be mixed and additional
challenges to train a model would be posed. As for the use of 1s SCADA
for the yaw angle, this would be challenging, as time-synchronization
issues between the different systems would arise. Moreover, 1s SCADA
is not readily available for all turbines/sites, which would hinder the
widespread adoption of the current methodology.

4.2.2. Fore-aft long-term error
Similarly to Section 4.2.1, and as seen in Table 2, the issue of un-

derprediction is not constrained merely to SS, but also for FA, with FA
long-term error being positive (representing a global underprediction)
for OWT1.

In order to understand the causes behind this behaviour, we resume
the strategy of Section 4.2.1, this time by plotting ‖𝑦𝑖 − 𝑦̂𝑖‖5, the 𝐿5

norm of the errors, against the measurements for OWT1 FA, as shown
in Fig. 7. Above this figure, we additionally plot the probability density
function (PDF; see Fig. 5) and the cumulative distribution function
(CDF), the integration of the PDF, 𝑃𝑛(𝐲) = ∫ 𝑥

−∞ 𝑝𝑛(𝐲) 𝑑𝑦 [72].
In Fig. 7 we see the linear correlation between ‖𝑦𝑖 − 𝑦̂𝑖‖5 (hereafter

simply referred as errors) and 𝑦𝑖. If the errors are above the regression
line (the residual is positive), then 𝑦𝑖 > 𝑦̂𝑖, which means that the model
is underpredicting. As we can see, the mean residuals are above zero
(𝑟𝑖 > 0) to the right of the blue dashed line, representing less than
3% of the data. This can be further verified by observing the PDF and
CDF plots, in which the measurements’ distribution is overwhelmingly
concentrated on the lower band of the axis (to the left of the blue
dashed line). This indicates that for the vast majority of fatigue loads
the model is, as desired, overpredicting (left side of blue dashed line).
However, the average of the residuals is dragged up due to the model’s
behaviour for high load cases (which also represent a large role on the
total fatigue life).

To further understand what is happening with the model in the
high load case region we can plot the predictions (𝑦̂𝑖) against the
measurements (𝑦𝑖), as shown in Fig. 8a.

In Fig. 8a we can again see that the model’s performance is over-
whelmingly accurate (most values are well within the 1.5𝜎 confidence
interval, CI, and closely follow the identity line, red). Therefore, the
model is accurately able to capture the underlying behaviour of the
turbine response, with it even overpredicting for small load values
(𝑦̂ > 𝑦 on bottom left corner of the figure). However, for a small subset
469

𝑖 𝑖
Fig. 7. 𝐿5 norm of the errors, ‖𝑦𝑖 − 𝑦̂𝑖‖5 vs measurements (𝑦𝑖 for DEM𝑡𝑛). 𝑟𝑖, residual,
𝑟𝑖, mean of residuals and the red line represents the fitted linear regression of the
distribution. Above, the PDF (𝑝𝑛(𝐲;𝐇), orange) and CDF (𝑃𝑛(𝐲), red) are plotted.

of data generally withstanding high fatigue loads, it is not capable of
doing so (purple region). In the case of ten-minute predictions this is
not as noticeable, as the 𝑅2 for Table 2 demonstrates. However, when
we accumulate and re-scale these errors, due to the presence of the
Wöhler exponent (𝑚 = 5), these gain a higher preponderance on the
overall long-term performance.

In the purple shaded region, the model is severely underpredicting
(𝑦𝑖 ≫ 𝑦̂𝑖), and it does not have a overpredicting counterpart to cancel
it out. If we take a look at an individual time-instance example outlier
(orange cross in Fig. 8a) we can better understand what is going on in
this region. In Fig. 8b we can see for this time instance how the model’s
DEM prediction (𝑦̂𝑖) is vastly inferior to the measurement (𝑦𝑖) when
plotted for the measured timeseries, when there is a drastic increase
in DEM in a spike without the model being capable of accurately
predicting this structural response. Further looking into Fig. 8c, where
the rotational speed (𝜔, in RPM) of the rotor is plotted and we can
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Fig. 8. (a) FA DEM (𝑀𝑡𝑛) predictions (𝑦̂𝑖) vs measurements (𝑦𝑖). Red line identity (𝑦𝑖 = 𝑦̂𝑖). 1.5𝜎 confidence interval (86,6%) signalled in blue and zone of severe underprediction
(𝑦𝑖 ≫ 𝑦̂𝑖) in purple. Time-instances of severe rotor rotational speed transient (|𝜕𝜔∕𝜕𝑡𝑖−1| > 3 RPM) in orange. (b) Outlier example (𝑦𝑖, red cross) plotted for measured DEM time
series (blue line) and predicted value for same time instance (𝑦̂𝑖, orange cross). (c) Same time series as (b), but for RPM.
identify the culprit for this underprediction: there is a severe and
sudden variation on the RPM which causes a sudden spike in DEM.

If we define a threshold of 3 RPM for the transient (absolute
variation considering the preceding time-instance, 𝑡−1) of the rotational
speed (|𝜕𝜔∕𝜕𝑡−1| > 3 RPM, a simple logical constraint), then we can
return to Fig. 8a and map these time-instances by overlaying them (in
orange). Indeed we can see that, when there is a severe and sudden
variation of the rotor speed, albeit for some cases the overlap is not
present, they are also able to correctly identify a good number of values
within the purple region.

The sudden variation on RPM represents a tentative rotor stop/start.
Thus, the PINN model appears not to be able to accurately replicate the
turbine’s structural response when the turbine’s rotor suddenly stops.
This is not wholly surprising as, due to the data quality and type, this
phenomenon might not be captured by the data available.

4.3. Operational conditions

We have seen above how a 𝛷-ML approach greatly improves the
model performance when DEMs are accumulated and re-scaled and
the areas where it is lacking, due to the quality of the available data
and some fundamental assumptions. In the present subsection, the
ten-minute DEM estimation error (expressed as a percentage of the
long-term DEM) is plotted for the mean squared logarithmic error
(MSLE, control) and Minkowski logarithmic error (MLE) loss functions
(for FA and SS) based on the operational cases: nominal (functioning
turbine) or idling. We do this because the accurate portrayal of the
fatigue loads faced during the different operating conditions a offshore
wind turbine experiences has arguably become as important as a good
general model. In modern monopile-foundation OWTs the complex
interplay of aero-, hydro- and structural dynamics has meant that there
is not one primary direction who is solely responsible for the fatigue
incurred by the structure. This becomes specially relevant for idling
conditions [33].

The performance of the MLE and MSLE models are presented in
Fig. 9 for nominal and idling operational conditions for Fig. 9(a),
fore-aft and Fig. 9(b), side-to-side.

In Fig. 9(a), we can see how the MLE loss function model has,
for all turbines, an error distribution whose mean is negative for
nominal operating conditions. This means that, on average, the model
is overpredicting, as intended. As for the whiskers, we can detect an
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Fig. 9. Model prediction error based on loss function (Minkowski logarithmic error,
MLE and mean squared logarithmic error, MSLE) expressed as a percentage of the long-
term DEM for nominal and operational conditions for (a) fore-aft and (b) side-to-side.
N.b. scales of (a) and (b) differ.

unbalance in OWT 1 (max above 150%, min below −150%), which
can be reflected in the global long-term error being positive and thus
indicating underprediction. As for the MSLE model, albeit the logarithm
is also used, this is less evident. What is however noticeable is that
the relative errors are much lower for idling, as fore-aft loads are
lower under this operating condition. We can nevertheless still see how,
specially for OWT 2 and 3, the MLE model is negatively skewed.

In Fig. 9(b) we can see how, for both nominal and idling conditions,
the MLE model has its error distribution centred around zero, whereas
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Fig. 10. Long-term DEM error (%) mean, 75% (darker blue) and 95% confidence interval bounds for different long-term DEM accumulation timescales for the three turbines.
the MSLE model has a positive bias. However, if we again take a look
at the whiskers, these are greater on positive errors than negative ones.

Thus, globally, we can affirm that the MLE PINN is able to have
a more accurate performance than a regular neural network approach
with MSLE and better able to incorporate the logarithm-induced con-
servatism for all operating conditions.

4.4. Timescale

The main focus of this contribution lies with the accurate prediction
of the long-term accumulation of DEMs. However, the long-term errors
shown in Table 2 condense into a single value the performance of the
PINN model, in which overpredictions and underpredictions on ten
minute level will cancel eachother out over 9 months of data. However,
we can accumulated the ten-minute DEMs into different timescales (1 h,
1 day, 1 week, 1 month) and it is relevant to understand how the error
propagates over these different timescales (see Fig. 10).

Fig. 10 shows that the spread on the error vastly reduces with the
increasing timescale, rapidly converging, with it being centred around
zero (this is to be expected, as negative and positive errors cancel each
other out over time) for all turbines. We can observe, e.g., how for a
monthly long-term DEM accumulation the error spread 95% confidence
interval (1.96 𝜎) is within a rather acceptable ±5%. This has a practical
relevance, as the error spread provides the confidence bounds operators
must consider when comparing the accumulated DEMs over a given
timescale. These results suggest that the method is suitable for monthly
and even weekly fatigue accumulations, but might be insufficiently reli-
able for daily and hourly estimates. With SS estimates converging faster
than those in FA direction. We can also observe how the incentive for
overpredictions (reflected on the negative error mean) slowly converges
with the increasing timescale towards zero, without actually reaching it
(OWT 2 and 3) or slightly overpassing it (OWT 1). Interestingly enough,
we can also observe for smaller timescales (1 hour/1 day), the long-
term error seems to cap at around 15%. As for the SS error, we can
see that its spread is much smaller and centred around zero (hovering
slightly above it) for all timescales.

4.5. Fatigue damage accumulation

Finally, in Section 2.3 we have seen how the long-term DEM can be
brought into a accumulated fatigue damage through the employment of
Eq. (2.3). In this section, we show the results of the fore-aft and side-to-
side fatigue damage accumulation for every month of the nine months
of available data for the three turbines, whilst additionally presenting
the progression of the relative error. We can see these on Fig. 11.

The figure shows the fatigue damage progressively increasing both
fore-aft and side-to-side. We can see how, for OWT 2 and OWT 3 FA, the
predicted damage slightly surpasses the measured damage (as intended
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as per the inclusion of the safety-factor of the logarithm function in the
Minkowski logarithmic error). The same cannot be said of OWT 1, due
to the reasons explained in Section 4.2.2. Nevertheless, when we take a
look at the relative error on the accumulated fatigue damage, it is kept
within ±5% for all turbines.

More interestingly, we can see how, for all turbines, after the initial
months where there is a strong variation, the relative error on the
accumulated damage (𝛿, in green) begins to converge to a constant
value (after roughly 6+ months). This is consistent with [45], where
the same 9–12 months timeframe was identified until convergence. The
convergence on the error is essential if the developed model is to be
used in prognostic applications, extrapolating its predictions into the
future.

This variation on the error is less noticeable in the side-to-side
direction, but there is nevertheless, a stability. As seen in Section 4.2.1,
the relative error on the accumulated fatigue damage will be pos-
itive (between 10 and 15%), because the model is underpredicting
(measured damage is higher than the predicted). This might seem
inconsistent with Table 2, which showed SS long-term DEM errors
that are below 3%. However, accounting for power of 𝑚 in Eq. (2.3)
means a 3% error in 𝐷𝐸𝑀𝐿𝑇 results in a 15% error in fatigue damage.
The power of 𝑚 is also the reason why the ratio between FA and SS
increases: for DEMs this ratio (taken every month) is between 1.20 and
1.34, whereas for damage it is between 2.48 and 4.32 (1.205 and 1.345,
respectively).

5. Conclusions and future work

In this contribution, we propose and analyse the performance of a
data-based methodology formulated through physics-guided learning
for neural networks. This is used in a fleet-leader strategy for tower-
monopile transition piece interface fatigue loads long-term estimation.
The explicit objective of long-term estimation is stated by explaining
the rationale and procedure behind the accumulation of ten-minute
instances of damage equivalent moments (DEM) into a long-term DEM.
This metric is further brought into a fatigue damage value. The knowl-
edge required for the accumulation of 10-min DEM (by employing a
Lebesgue norm) is additionally used to shape a custom loss function –
the Minkowski logarithmic error (MLE) – which incorporates physical
knowledge of the problem and the properties of the logarithmic func-
tion, forcing the model to slightly overpredict and therefore adding an
element of conservativeness.

This approach involved the use of nine months of monitored data in
three real-world locations consisting of ten-minute statistics of SCADA,
wave, acceleration (inputs) and strain data (used as the target for the
neural network model). The available input data statistics were reduced
to a smaller number of explanatory features through the employment
of recursive feature elimination and the optimal neural network model
topology found through Bayesian hyperparameter optimization.
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Fig. 11. Accumulated measured (blue) and predicted (orange) fore-aft fatigue damage based on number of months. Relative error on damage, 𝛿, on right-hand axis with
𝛿 = 100 × (𝐃𝐫𝐞𝐚𝐥 − 𝐃𝐩𝐫𝐞𝐝)∕𝐃𝐫𝐞𝐚𝐥 for OWT 1, 2 and 3 (a), (b) and (c), respectively.
In the results section it was seen how the employment of the
Minkowski logarithmic error is able to accurately predict fore-aft and
side-to-side DEM timeseries on a ten-minute basis. Furthermore, the
MLE was favourably compared with a control loss function (mean
squared logarithmic error), with performance greatly increasing for
long-term DEM estimation. It was additionally noted that, for some
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cases, the model was still underpredicting (and therefore, contradicting
the rationale behind the use of the logarithm). The reason behind this
behaviour was scrutinized by inspecting the residuals and discovering
that, for the side-to-side direction, due to some fundamental assump-
tions on the bending moment calculation, the model was presenting
errors without an underlying physical explanation. The same analysis
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was done for the fore-aft direction, where it was seen that rotor stops
were not wholly captured by the model as it lacked data.

Additionally, the performance of the model was inspected in re-
lation to nominal and idling operational conditions, with a greater
performance over the board for the Minkowski logarithm error when
compared with the control loss function. Thereafter, the influence of
the timescale – hourly, daily, weekly and monthly accumulation –
on the long-term DEM prediction accuracy was inspected, with the
errors balancing each other out (centred around zero) and the spread
rapidly converging to towards zero. Finally, the long-term DEM was
translated into fatigue damage and its progressive accumulation and
error convergence verified. It was seen how these values compare
favourably in relation to industry practice.

The next logical step to be taken in this research is to apply this
fleet-leader model in a full farm-wide setting, and not just for turbines
instrumented with strain gauges where cross-validation is possible.
Such an implementation can be seen as pilot in what is hoped to
become a commonplace practice among wind farm operators in the
future. This is naturally dependent on farm-wide data availability, but,
in the case of the farm used for this study, farm-wide SCADA and
acceleration data will become a reality in the very near future, with
sensor installation already rolling out (at the time of writing). Cou-
pled with the farm-wide implementation, and in order to quantify the
uncertainty related to the predictive model and therefore, introduce a
metric of confidence one might have on said model, future research will
also focus on applying a neural network predicated upon a Bayesian
probabilistic framework to a farm-wide setting. The main advantage of
such a Bayesian neural network approach is the probabilistic output
(in the form of the mean and standard deviation of predicted DELs),
which can be leveraged to indicate the model’s confidence in its output
through the coefficient of variation.

Finally, a study quantifying event-related fatigue is also necessary.
If wind farm operators are to effectively understand the fatigue life
consumption of their assets and leverage this knowledge next to the
grid operator, they are required to quantify fatigue life consumption of
demand-induced events, such as stopping or curtailing rotor operation
due to grid requirements. The accurate translation of these events
into a fatigue consumption framework and further into an economical
impact metric through a value of information analysis is of the utmost
importance for a fair and informed negotiation between all wind energy
stake-holders.

In summation, in this contribution, it was shown how problem-
specific knowledge employed in physics-guided learning of neural net-
works greatly increases model performance for multi-timescale objec-
tives, the data quality dependant pitfalls and their probable solutions
and how the marriage between engineering knowledge and dedicated
sensor data are essential for modern structural health assessments in
offshore wind support structures.
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