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Abstract

This thesis falls in the general category of computer vision. In particular, it regards

the study of the reconstruction and analysis of 3D models problems with a focus

on two different domains: autonomous vehicles and the manufacturing industry.

Computer vision is a research topic deeply studied in the last decades with

great interest from both researchers and industries. Contrary to image processing,

computer vision aims to extract 3D structures and semantic means from images

for a rich and complete understanding. The development of Convolutional Neu-

ral Networks (CNNs), allowed computer vision to face up new complex problems

reaching impressive results.

But computer vision does not regard only bi-dimensional images but also multi-

dimensional data. Indeed, the diffusion of new sensors such as Lidars and 3D

scanners requested the design of new algorithms to deal with their data structures.

In fact, point clouds - the classic data produced by 3D sensors - have a really

different nature compared with images.

Autonomous driving represents a domain in which computer vision finds a wide

range of applications. Furthermore, to safely move in the urban environment,

driverless cars need an accurate and rich perception of the environment. For this

reason, data from different sensors are fused to create a 360° 3D representation of

the scene.

On the other hand, the manufacturing industry can leverage computer vision

approaches, in synergy with other technologies, to automate and facilitate several

processes to make lean the production chain. In particular, quality control and

warehouse management processes can leverage robotics, 3D scanning, and mixed

i
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reality to facilitate human work.

In this thesis, several contributions mainly based on computer vision are pro-

posed in both domains. It investigates the power of computer vision leverag-

ing both bi-dimensional and tri-dimensional data peculiarity in different identified

tasks typical of both domains. Experimental results shown, analyzed, and dis-

cussed in this thesis, support the effectiveness of each proposed method.
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Chapter 1

Introduction

1.1 Motivation

Computer vision is a research topic deeply studied in the last decades with great

interest from both researchers and industries. With computer vision, we mean the

set of processes that aim to create an approximation of the 3D real world from

images. Its goal is to emulate the human visual system by understanding the

semantic means of digital images and automating tasks.

Computer vision research began in the late 1960s as a building block for giv-

ing robots intelligent behavior. Different from the image processing fields, in that

case, the aim was the extraction of 3D structures from images to a complete scene

understanding. Since then, computer vision has always been a research field very

active finding applications in a wide range of fields. Up to the present day, when

the rapid deep learning development allowed us to face up really complex prob-

lems reaching impressive results. In particular, the use of Convolutional Neural

Networks allowed us to automatically learn from images addressing many tasks

quite unattainable before, such as classification, semantic segmentation, object

detection, object recognition, object tracking, etc.

Computer vision image data can take many forms, such as multiple camera

views, multi-dimensional data, video sequences, etc. The diffusion of new sensor

types, such as time of flight sensors, presented researchers with new challenges.

1
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Indeed, to exploit the accuracy of the 3D data that these sensors are able to

provide, new approaches are necessary. As a matter of fact, point cloud data, are

really different from images given their unorganized structure. Their nature, for

instance, does not permit to use of classical discrete convolutional operations -

typically used in CNNs - directly on raw point cloud forcing to a pre-processing

step (with a loss of information) or to develop new deep learning architectures.

Deep learning on 3D data is a very innovative and largely studied research topic

in the last few years.

This work falls into the general computer vision field with a focus on the re-

construction and analysis of 3D models. In particular, new efficient and reliable

approaches are proposed to face up several tasks into two main fields with the

common aim to exploit bi-dimensional and tri-dimensional data to model and

understand the acquired scene. In particular, two main research lines are investi-

gated.

First, computer vision in autonomous vehicles is analyzed. Autonomous driving

is one of the fields that more take advantage of computer vision since driverless cars

need to accurately perceive and reconstruct the environment to perform their tasks

and safely navigate the environment. Usually, they leverage both cameras and time

of flight sensors fusing their data to create a rich and complete representation of

the scene. Here, two main challenging objectives have been set. First, an effective

deep learning method for car tracking exploiting 3D point clouds will be proposed

and tested. Then, a new deep learning efficient methodology to infer depth on

single-view images will be presented.

Secondly, the manufacturing industry field is explored and new computer vision

and AR/VR approaches to facilitate and speed up their processes. With the In-

dustry 4.0 revolution, emerging technologies are adopted in industries to improve

their processes. The synergy of computer vision, robotics, and AR/VR can deeply

automate some processes in the production chain. In this work, three different

manufacturing processes are analyzed proposing as many contributions to auto-

mate and facilitate them. Two of these contributions aim to improve the control

quality process in the aerospace industry, while the third exploits computer vision
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to automate the movement of goods leveraging mobile robots.

In summary, the aim of this thesis is the design and development of new meth-

ods to reconstruct, analyze, and understand scenes exploiting both 2D and 3D

data. This drive the research to propose new efficient and reliable algorithms to

face up to the identified tasks as well as the improvement of those already present

in the literature. Effective algorithms are developed and tested to tackle very

challenging problems in the two analyzed fields.

1.2 Overview

This thesis is organized as follows:

• Chapter 1 presents motivation and publications related to this thesis.

• Chapter 2 introduces the visual feature concept analyzing standard meth-

ods for local features detection and description in 2D domain.

• Chapter 3 introduces Neural Networks with a focus on Convolutional Neu-

ral Networks (CNNs).

• Chapter 4 introduces Point Clouds analyzing their acquisition methods,

standard methods for local features detection and description in 3D domain,

and deep learning on these data structures.

• Chapter 5 describes how autonomous vehicles can take advantage of 2D

and 3D computer vision and deep learning with a focus on 3D car tracking

and monocular depth estimation methods.

• Chapter 6 describes different methods based on computer vision and AR/VR

to improve processes in the manufacturing industries.

• Chapter 7 provides overall conclusions of the work presented in this thesis

and future work.
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2021, May
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Optical Engineering

2022



Chapter 2

Features in Computer Vision

Computer vision applications are really varied and obviously strictly dependent

on the specific goal. Generally, computer vision tasks include: object detection,

object classification, object segmentation etc. Notwithstanding these great variety,

it is possible to recognize a typical sequence of steps to analyze images, referred

to as computer vision pipeline [1].

Figure 2.1: The typical computer vision pipeline. It takes input images, pre-process it, extracts

features and finally send the processed information to the Machine Learning Model.

As represented in Figure 2.1 the pipeline takes in input one or more images,

pre-processes them, extracts relevant features and finally uses the latter to train

a machine learning model. This chapter will focus on the features mean and on

methods to automatically extract them from images.

In Computer Vision, a feature is a piece of more high level information ex-

tracted from image raw data regarding his content which is important to solve a

task related to a specific application. It can be different structures such as points,

6
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objects, lines or curves. Furthermore, features can be also the result of neighbor-

hood operations. A good feature permits to distinguish object one another. For

this reason, it is desirable that a feature satisfies at least several of the following

characteristics:

• Informativeness: feature significantly differ from his spatial neighborhood

• Invariance: to certain transformations as scale and rotation

• Robustness: it has to be identifiable even in presence of noise, blur, dis-

cretization and compression

• Efficiency: for some application the features detection has to be executed

in real-time

• Distinctiveness: individual features can be matched in a large database of

objects

• Relevance: with respect to the specific application. For different object

classes, features should provide small variance on the same class objects and

large variance when compared with object from different classes

Figure 2.2: Example of features extraction. The algorithm finds patterns within the image to

create the feature vector.

Figure 2.2 shows an example of possible features extracted from a car image.

It is possible to note that the features detection algorithm chooses elements such

as wheels, headlights, turn signal light and antenna as features. Indeed, these

elements are more peculiar to distinguish cars.
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2.1 Local Features Detection

Several approaches to account local features detection were proposed in literature.

The most commonly used ones are presented in the following subsections.

2.1.1 Harris Corner Detector

In 1988, Chris Harris and Mike Stephens [2] presented a corner detection operator

widely used in computer vision algorithms. It leverage the intuition behind the

Moravec corner detector [3] which considers local image patches and the average

change of intensity resulting from its small shifts in both directions. For this

measure the Sum of Squared Differences (SSD) between the two considered patches

is used. Let be I(x, y) the image pixel values and w(x, y) the window centered in

position (x, y), the SSD value E(u,v) resulting from shifting the considered patch

by (u, v) is defined as:

E(u,v) =
∑
(x,y)

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (2.1)

In this scenario, the goal is to maximize the term [I(x + u, y + v) − I(x, y)]2.

Using Taylor series to approximate that term, it is possible to rewrite the Equation

2.1 in the form:

E(u,v) ≈
[
u v

]
M

[
u

v

]
(2.2)

where M is the so-called auto-correlation matrix:

M =
∑
(x,y)

w(x, y)

[
I2x(x, y) Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) I2y (x, y)

]
(2.3)

where Ix(x, y) and Iy(x, y) are the partial derivatives of the image respectively on

x and y directions. The eigenvalues λ1 and λ2 of M are used to discriminate corner

regions from non-corner ones. More precisely:

• Both eigenvalues are small, this indicates little changes in E(u,v) shifting the

window. Therefore, it denotes an approximately constant intensity in the

local neighborhood. This is a flat zone.
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• One eigenvalue is high and the other one is small, this indicates little changes

in E(u,v) shifting the window only in one direction (i.e. along the edge). This

is an edge.

• Both eigenvalues are high, this indicates high changes in E(u,v) shifting the

window in both directions. This is a corner.

Given these assumptions, a score R is defined as:

R = det(M)− k(trace(M))2 (2.4)

where:

det(M) = λ1λ2

trace(M) = λ1 + λ2

k represent a sensitive parameter. By thresholding the R score it is possible to

detect corner windows. This allows to avoid the eigenvalues calculus, improving

the algorithm performances.

2.1.2 SIFT Detector

The Scale Invariant Features Transform (SIFT) algorithm was first presented in

1999 [4] and then improved in 2004 [5] by D. Lowe. In contrast to Harris corner

detector, SIFT algorithm was meant to be scale invariant. The SIFT detector is

based on an approximation of Laplacian function and it is manly composed by two

steps: scale-space extrema detection and keypoints localization.

Scale-space Extrema Detection

It is obvious that it is not possible to use the same searching window to detect

features with different scales in an image. For this reason, scale-space filtering is

used. The scale-space of an image is a well-known concept in Computer Vision and

it is a function L(x, y, σ) that is produced using a Gaussian convolutional kernel

at different scales of the image. Scale-spaces is divided in octaves, which number

depends on the image resolution, each with half the resolution compared to the
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previous one. In each octave, the image is progressively convolved with a Gaussian

kernel with different σ values in order to create a list of blurred images.

Subtracting neighboring images in the same octave, yields the so-called Difference-

of-Gaussians (DoG) pyramid, represented in Figure 2.3. DoG images permit to

find interesting points in images. It is obtained as the difference of Gaussian

blurring of an image with two different σ, let it be σ and kσ.

Figure 2.3: The set of scale space images on the left, the Difference-of-Gaussians pyramid on

the right.

Once created the DoG pyramid, DoG images are used to found local extrema

over space and scale. As shown in Figure 2.4, each pixel in each image is compared

with its eight neighbours in the same image and with its nine neighbours in previous

and next scale. If the pixel is a local extrema, it is a potential keypoint and it

means that this is better represented in the identified scale.

Keypoint localization

Once potential keypoints are found, they have to be filtered and their location

improved to subpixel accuracy to get better results. A Taylor series expansion of
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Figure 2.4: Detection of local extrema

scale-space allows to interpolate the local extrema location and all extrema are

filtered by their intensity value. Indeed, since DoG has an high response also for

edges, an approach similar to the Harris corner detector is used to reject them.

2.1.3 SURF Detector

In 2006, Bay et al. [6] introduced a new features detector, SURF (Speeded Up

Robust Features), to speed up the SIFT detector enabling real-time applications

such as tracking and object recognition.

As shown in the previous section, SIFT approximates the Laplacian of Gaussian

function with Differences of Gaussian. The core idea behind SURF, instead, is to

approximate it with Box Filters. An advantage of this is that convolution with

box filters can be easily calculated exploiting the integral images.

An integral image is an image I∑ in which each pixel p = (x, y)T represents

the sum of all pixels in the original image I within the rectangular region formed

by the origin and the pixel p. More precisely:

I∑(p) =

u≤x∑
u=0

v≤y∑
v=0

I(u, v) (2.5)

It allows the fast computation of box convolutional filters and it permits to use only

three additions to compute the sum of the intensities over any upright rectangular
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area independently from its size.

Indeed, SURF rely on the determinant of the Hessian matrix for both location

and scale. In particular, the determinant of the Hessian matrix is used to measure

the local change around pixels. Points where the determinant is maximum are

chosen as interesting points. SURF uses the determinant of the Hessian matrix

also for the scale selection.

Given the pixel p = (x, y), the Hessian matrix H(p, σ) in p at scale σ is defined

as:

H(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)

Lxy(p, σ) Lyy(p, σ)

]
(2.6)

where Lxx(p, σ) is the convolution of the Gaussian second order derivative in the

horizontal direction, with the image I in p, similarly for Lxy(p, σ) and Lyy(p, σ).

SURF approximates the second order Gaussian derivatives as in Figure 2.5. This

permits to evaluate the convolution with a very low computational effort using

integral images. Denoting the approximated second order Gaussian derivatives as

Figure 2.5: Up row: the second order Gaussian derivatives Lxx, Lyy and Lxy. Down row: their

respective approximations Dxx, Dyy and Dxy. Here the mid-grey denote the 0 value.

Dxx, Dyy and Dxy, the determinant of the approximated Hessian matrix can be

expressed as:

det(Happrox) = DxxDyy − (0.9Dxy)
2 (2.7)
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2.1.4 FAST Detector

As just seen, SURF with its approximations, represent a good features detector

with reasonable computational requirements. In computer vision, there are some

real-time applications that need to use limited computational resources. One of

best example can be SLAM (Simultaneous Localization and Mapping), that often

need to be executed on mobile robots hardware. For applications like that, SURF

is not fast enough. FAST [7], Features from Accelerates Segment Test, is a corner

detector born to face up tasks with high performance requirements.

FAST algorithm is based on comparisons of each pixel with its local neigh-

borhood. In particular, FAST detector uses the pixels on a Bresenham circle [8]

of radius r = 3 centered on the pixel, considering therefore only 16 pixels. The

intensity of each pixel I(p) of the image, is compared with his 16 pixels on his

surrounding Bresenham circumference (as shown in Figure 2.6).

Figure 2.6: FAST corner detector segment-test. The numbered pixels are used in the FAST

algorithm. p is the candidate keypoint.

The investigated pixel is a potential keypoint if the intensities of at least 12

contiguous pixels are above I(p) + t or below I(p) − t, there t is a threshold. To

optimize this test it is possible to first compare I(p) with the opposite vertical

and horizontal pixels in the circumference to check if at least 3 of these pixels

satisfy the constraint. A non-maximum suppression algorithm, at the end, filter

out multiple keypoints on adjacent locations.
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2.2 Local Features Description

After the features detection, it is fundamental to describe each feature based on

its neighborhood to give a meaning to each of them. This allow, indeed, to match

features across images to perform tasks like object recognition, image retrieval,

image stitching, etc.

A descriptor is a vector that describes in some way the local appearance around

each feature. Ideally it is distinctive and invariant to changes in illumination, scale

and rotation. Descriptors can be classified based on:

• Neighborhood shape: the shape of the area around the feature considered

to calculate the descriptor vector. It can be rectangular or circular;

• Sampling type: the sampling technique used to choose pixels in the con-

sidered neighborhood in the descriptor vector computation. There are two

possible approaches:

– Dense: all neighboring pixels are considered;

– Sparse: only some neighboring pixels are considered;

• Used values: the values that can be assumed by each component of the

descriptor vector. It can be binary or scalar.

In the following subsections, a review of some of the most famous feature descriptor

algorithms is proposed.

2.2.1 BRIEF Descriptor

BRIEF (Binary Robust Independent Elementary Features), was introduced in 2010

by Calonder at al. [9] and it is considered the first and simplest binary features

descriptor.

BRIEF descriptor is based on comparisons at pixel level, for this reason it is

noise sensitive. To reduce this sensitivity, the algorithm uses a Gaussian convolu-

tional filter to smooth the image.
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The algorithm compose a binary vector by comparing a relatively small number

of pixel intensities. More specifically, authors defines a binary test τ on a patch h

of size SxS as:

τ(h;x, y) :=

 1 if p(x) < p(y)

0 otherwise
(2.8)

where p(x) represents the pixel intensity at x = (u, v)T location. Choosing a

set of nd location pairs uniquely defines a set of binary tests. The result is an

nd-dimensional bitstring:

fnd
(h) :=

∑
1≤i≤nd

2i−1τ(h;xi, yi) (2.9)

This approach leaves many options for selecting the nd location pairs in the

SxS patch. Authors propose five possible sampling patterns shown in Figure 2.7.

Let assume the SxS patch h centered in the detected feature:

• G I: (X, Y ) ∼ i.i.d. Uniform(−S
2
, S
2
)

• G II: (X, Y ) ∼ i.i.d. Gaussian(0, 1
25
S2)

• G III: X ∼ i.i.d. Gaussian(0, 1
25
S2), Y ∼ i.i.d. Gaussian(xi,

1
100

S2)

• G IV: (xi, yi) are randomly sampled from discrete locations of a coarse polar

grid

• G V: ∀i : xi = (0, 0)T and yi takes all possible values on a coarse polar grid

BRIEF has the advantage to be a simple and fast to compute since it relies

on a small number of intensity difference tests. Indeed, given the binary nature of

the resulting descriptor, it is memory efficient and fast to match.

2.2.2 SIFT Descriptor

The SIFT algorithm, after the feature detection, provides also a feature descriptor

part. SIFT calculate the descriptor in two steps:
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Figure 2.7: Different pattern to choose the test locations.

Orientation assignment

As seen before, the output of the SIFT features detection is a set of local features

with a known scale. The goal of this step is to assign an orientation to each

detected feature to achieve the rotation invariance.

For this purpose, a neighborhood centered in each detected feature location is

considered depending on the scale. In that region, the gradient magnitude and

direction is calculated. A 36 bins orientation histogram covering 360° is created.
The highest peak in the histogram describes the orientation of a keypoint and,

for any other peak above 80% of it, an additional keypoint with the corresponding

orientation is generated.

Generation of keypoint descriptors

The next step involves the computation of a compact and distinctive descriptor

vector to each keypoint. At this point, the algorithm knows location, scale and ori-

entation of each keypoint. The aim of this step is to compute an highly distinctive

vector invariant (as much as possible) to changes in illumination and viewpoints

for each of them.

To this aim, a 16x16 pixel window centered in each keypoint is taken and
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it is dividend into 16 4x4 sub-blocks. In order to achieve rotational invariance,

it is rotated and aligned with the assigned keypoint orientation. For each 4x4

sub-block, an 8 bin orientation histogram is created. This yields a local image

descriptor with 128 elements for each detected feature. Finally, the descriptors are

normalized to reduce the effects of illumination changes.

SIFT is one of the most powerful algorithm for features extraction, but it is

computationally onerous. SIFT descriptors are scalar, for this reason they gener-

ally have higher memory footprint compared with binary ones. To compare SIFT

descriptors it is possible to leverage the Euclidean distance.

2.2.3 SURF Descriptor

Exactly as SIFT, also SURF algorithm offers a feature descriptor and also in this

case the algorithm cover the same two steps.

Orientation assignment

In order to reach the rotation invariance, SURF descriptors are aligned to the

dominant orientation of the detected keypoints. The dominant orientation is cal-

culated using Haar wavelet responses in both x and y direction in a circular region

around the keypoint location. The wavelet responses are weighted by a Gaussian

centered on the keypoint and represented as 2D points. Then, all points in a slid-

ing orientation window of 60° are summarized in a vector and the orientation that

reach the maximum value is chosen as dominant one.

Generation of keypoint descriptors

The orientation calculated in the previous step is used to construct an oriented

square region around each keypoint which is then splitted into 4x4 sub-regions. For

each sub-region, the Haar wavelet responses at 5x5 regularly spaced sample points

are calculated in both x and y local directions, called respectively dx and dy. To

increase the robustness both dx and dy are weighted using a Gaussian centered in

the keypoint. Then, the sums over dx and dy and the sums over their absolute
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Feature Detector Type Rotation Inv. Scale Inv. Time Eff.

Harris corner + - ++

SIFT blob (corner) + + ++

SURF blob (corner) + + +++

FAST corner + - +++

Table 2.1: Qualitative comparison of presented feature detectors

values are calculated to create four characteristics values in each sub-region. The

concatenation of these values results in a descriptor vector of lenght 64 which is

finally normalized to increase the robustness to illumination changes.

2.3 Comparison of Feature Detectors and De-

scriptors

In this section a qualitative comparison of analyzed feature detector and descriptor

is presented [10].

The performances of feature detectors and descriptors are strongly depend-

ing on the specific application, data and requirements. Table 2.1 and Table 2.2

show respectively a qualitative comparison of the presented feature detectors and

descriptors.

Feature Descriptor Size Descriptor Type Time Efficiency

BRIEF 32 binary +++

SIFT 128 scalar +

SURF 64 scalar ++

Table 2.2: Qualitative comparison of presented feature descriptors

To measure and compare the various approaches the most used metrics are:

• Repeatability: measures to what extent the detected regions overlap the

same scene region by matching detected features in two images representing
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the same scene

• Matching score: measures the capability to correctly match features. It

also involves the similarity of the respective feature descriptors.
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Deep Learning

Deep Learning (DL) is a subset of Machine Learning (ML) which leverage several

representation levels to represent information, where higher level information is

defined on the lower one.

The history of deep learning begin in 1943 when Warren McCulloch and Walter

Pitts created the first computer model based on neural networks inspired by the

human brain. They used a combination of mathematics and algorithms to mimic

the thought process, they called it threshold logic. Since then, deep learning has

constantly evolved, over the years with two significant breaks in its development.

In 1960, Henry J. Kelley laid the foundation of a continuous Back Propagation

Model. Stuart Dreyfus, in 1962, simplify Kelley’s idea proposing a new version

based only on the chain rule.

This chapter will explain the fundamental concepts behind Deep Learning with

a particular focus on Convolutional Neural Networks (CNNs).

3.1 Single Neuron Model

Exactly as for the human brain, the basic unit of a neural network is the neuron,

also called node or unit. It takes a series of inputs x1, x2, ..., xn from other neurons

or from an external source and computes the output. To each input, the single

neuron has an associated weight w which represents the importance of that input

20
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in relation to others. The output is given by the function f applied to the weighted

sum of inputs. As shown in figure 3.1, the output y is computed as:

 

Output

Bias

Activation
Function

Inputs

Weights

Figure 3.1: Single neuron’s structure.

y = f(
n∑

i=0

wixi + b) (3.1)

The represented neuron, takes the inputs x1, x2, ..., xn and has weights w1, w2, ..., wn

associated with each input. Furthermore, there is another input with value 1 and

the associated weight b. This is called bias and its role is to shift the activation

function f , to better fit the data.

The activation function f is non-linear and its aim is to introduce non-linearity

into the neuron. This is crucial to fit real data because real-world data are always

non-linear and the neuron has to learn these non-linear representations.

Different activation functions can be used in neural networks, as shown in

Figure 6.3. The most common are:

• Sigmoid

The sigmoid function is defined as:

ϕ(x) =
1

1 + e−x
(3.2)

It is especially used for models that predict a probability since its codomain

exists between 0 to 1. This function is differentiable and monotonic, unlike

its derivative.
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• Hyperbolic Tangent

The Hyperbolic Tangent (tanh) function is defined as:

tanh(x) =
e(2x) − 1

e(2x) + 1
(3.3)

This function is similar to the sigmoid, but it exists between -1 and 1. It is

particularly used in classification tasks. With the tanh function the negative

inputs are matted to strongly negative and the zero ones are mapped near

zero.

As sigmoid, tanh function is differentiable and monotonic while its derivative

is not monotonic.

• Rectified Linear Unit

The Rectified Linear Unit (ReLU) is one of the most used activation func-

tions in Deep Learning.

ReLU(x) = max(0, x) (3.4)

ReLU function exists in the range [0,+∞). It maps all negative values to

0 decreasing the model ability to fit properly from the data. ReLU and its

derivative both are monotonic.

• Leaky Rectified Linear Unit

LeakyReLU is similar to ReLU and is defined as:

LeakyReLU(x) = max(ax, x) (3.5)

where the a value is 0.01. Contrary to ReLU , it is defined in the range

(−∞,+∞). As ReLU , LeakyReLU and its derivative both are monotonic.

3.2 Neural Networks

Neural Networks are mathematical models that use learning algorithms inspired

by the biological neural networks of the human brain. Nowadays, they can to reach
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Figure 3.2: Activation functions. (a) Sigmoid; (b) Hyperbolic Tangent; (c) Rectified Linear

Unit; (d) Leaky Rectified Linear Unit

impressive results in a wide range of tasks covering a highly variegated range of

fields as computer vision, natural language processing and speech recognition.

Artificial Neural Networks (ANN) are composed of a large number of intercon-

nected neurons working together to solve a single task. As human brain, ANNs

learn by example to carry out a specific task.

As shown in Figure 3.3 neurons in ANNs are organized in layers with edges

between them. Generally there are three type of layers:

• Input layer: provides raw information from the external world to the net-

work. It does not have an associated activation function.

• Hidden layer: is the layer in the middle, for this reason does not have
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Input Layer

Hidden Layers

Output Layer

Figure 3.3: Artificial Neural Network structure.

connections with the external world (because of this it is called ”Hidden”). It

applies weights to the inputs and direct them through an activation function

to the output.

• Output layer: is responsible for producing and direct out from the network

the final result. It takes the result of layer before it, performs the calculation

via its neurons and return the final result to the real world.

3.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a particular type of Artificial Neural

Network commonly used for computer vision tasks. In fact, CNNs are particularly

useful to detect pattern in images in order to recognize objects.

In 1980 Fukushima et al. [11] laid the foundation of the research around CNNs.

Then, in 1989 LeCun et al. [12] applied backpropagation to train a CNN to rec-

ognize pattern on series of handwritten zip codes. After that, in 1998 he proposed
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LeNet-5 [13], a CNN architecture to document recognition. Later, with the in-

troduction of datasets as MNIST and CIFAR10, several new CNNs architectures

were introduced.

As shown in Chapter 2, before CNNs development, manual and time-consuming

algorithms were used to extract features from images. CNNs provide an innova-

tive approach to computer vision problems which, leveraging linear algebra, can

automatically learn features from examples reaching better results.

Input Conv + RELU Pooling Conv + RELU Pooling Flatten Fully
Connected Softmax

0
1
2
3
4
5
6
7
8
9

FEATURE LEARNING CLASSIFICATION

Figure 3.4: Convolutional Neural Network structure. It is an example of a possible CNN

structure to classify handwritten digit.

As it is possible to notice in Figure 3.4, commonly a CNN is mainly composed

from three different layers:

• Convolutional layer: is the core layer in a CNN. It has a series of kernels,

with a predefined size, and apply convolution between kernels and input data

in order to extract visual features. By stacking up a series of convolutional

layers is possible to impose a hierarchical structure in the CNN so that each

layer can see pixels within the receptive fields of the previous one. In this way,

first layers can detect simpler features, e.g. brightness or edges, while later

filters can detect more complex features to uniquely recognize the object.

• Activation function: the commonly used activation function after convo-

lutional layer is the ReLU. As shown before, it maps negative values to zero

and maintains only positive values from the input data.

• Pooling layer: performs a non-linear downsampling, reducing the parame-
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ters that the network has to learn. Similar to the convolutional layer, it uses

a shifting window on the input to aggregate values inside that. Based on the

aggregation function, it is possible to choose different types of pooling layers

as max pooling and average pooling.
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Point Clouds

Nowadays, a great number of tools able to improve not only industries and pro-

duction processes but also everyday life, need a three-dimensional inspection of

the environment. With the development of new technologies, several new sensors

have been made available.

3D data were first used in robotics where a detailed 3D representation of the

surrounding environment is necessary to perform tasks such as self-localization and

mapping (SLAM) [14, 15, 16], path planning [17, 18, 19] and obstacle avoidance

[20, 21, 22].

After that, these technologies attracted the attention of researchers and com-

panies working on autonomous driving [23, 24] and quality control fields [25, 26].

As for robotics, autonomous cars need to carefully reconstruct the environment to

plan the path and to reach the high level of safety needed while driving.

Furthermore, industries take great advantage of 3D data. These technologies

can drastically improve manufacturing processes, like quality control processes,

providing higher accuracy and performances compared with the human counter-

part. Finally, in the last years, other fields have benefited from three-dimensional

data, just thinking of all the possible applications in agriculture [27, 28], medicine

[29, 30], archaeology [31, 32] and geology [33, 34].

3D data can have really different nature, but the most diffused data commonly

returned by the sensors are the so-called point clouds. A point cloud is a set of

27
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points in 3D space, all expressed in the same Cartesian reference system, where

each point represents the three-dimensional coordinates of a location on a real-

world object’s surface.

Using a mathematical definition:

P = {(xi, yi, zi)|i ∈ N} (4.1)

where P is the point cloud, x, y and z are the coordinates and N is the number

of points contained in P . That definition represents the most basic form of point

cloud. There are other information that can be stored for each points based on the

sensor such as: color, normal to the surface, information about meshes (vertices

and edges) and intensity of return. In Figure 4.1 are shown two example of point

clouds.

(a) (b)

Figure 4.1: Two examples of point clouds. (a) Represents a single object. (b) Point cloud

acquired outdoor representing a building.

Based on the organization of data, point clouds can be divided into two cate-

gories:

• Organized point clouds: data are organized, like an image, in a matrix

MxNxC where M is the number of rows, N is the number of columns and

C is the number of channels. This format is typically used in stereo cameras

and time-of-flight cameras.
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• Unorganized point clouds: data are not organized in a matrix but are

arranged in an unordered list of points. More precisely, data are given as

a list of M points with C channels each. This format is typical of LIDAR

sensors.

Nowadays, the market offers a great variety of very different sensors for 3D scan-

ning. Basically, all these sensors are based on one of the following principles.

Stereo vision

Stereo vision is a computer vision technique that mimics the human binocular

vision to extract 3D information from images. It is based on the use of two or

more cameras framing the same scene from different points of view at the same

time. The concept can be extended to the case of a single camera moving in

the scene acquiring images in different points of space and time (motion stereo,

structure from motion). Figure 4.2 illustrates the basic projection principle behind

stereo vision.

By comparing two images acquired with two cameras displaced horizontally

from one another, the depth information can be deduced in the form of a disparity

map. Disparity values are inversely proportional to the depth.

The comparison of the stereoscopic images can be mainly implemented with

two different techniques:

• Feature Matching: features extracted from the two images are matched

without constraints. The method allows to create a sparse reconstruction of

the scene.

• Rectified Stereo: stereo images are aligned by calibration so that cor-

responding pixels in the two images are on the same row, simplifying the

matching problem. The method allows to create a dense reconstruction of

the scene.

A necessary condition to reconstruct the scene using a stereo camera is the knowl-

edge of the intrinsic parameters of the cameras and their relative pose, both es-

timable with calibration techniques.
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Right Camera
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Figure 4.2: Example from the Middlebury Stereo Dataset ”cones” where a scene is imaged

with a stereo camera.

Structured light

Structured light 3D scanners are based on a quite simple concept: a known pattern

projected on a surface.

As shown in Figure 4.3, the system is composed of two main components: a

projector and a camera. The projector projects a light with a known pattern on

the scanned surface while the camera acquires an image. The vision system is

able to extract depth information by analyzing how the scanned surface distorts

the projected pattern. Different methods can use different patterns, e.g. stripes,

grids, points and others, or a sequence of them. Furthermore, the pattern can

be projected using different parts of the light spectrum, visible or invisible light,

based on the specific application. Moreover, it is possible to leverage more than a

single calibrated camera to reach higher reconstruction accuracy.

Structured light 3D scanners are widely diffused in industries to accomplish

tasks such as quality control, reverse engineering, measurements, and videogames.



Chapter 4. Point Clouds 31

Figure 4.3: A structured light system. The projector project a vertical strips pattern on the

scene. The pattern light is distorted by the sphere. The camera acquires an image of the scene

and can three-dimensionally reconstruct it leveraging the pattern distortion.

It can offer great precision in 3D reconstruction but its use is limited to indoor

scenarios given the nature of this technique. Indeed, the natural light can create

problems with the visibility of the projected patterns. The same can happen

scanning surfaces with high reflectivity. One of the most diffused structured light

sensors is the Microsoft Kinect v1. Born for gaming and consumer electronics, it

is used in a wide range of practical applications.

Time-of-Flight

Time-of-Flight (ToF) means the time taken by an object to travel in a medium

a particular distance. ToF sensors leverage this concept to measure depth and

distances and reconstruct the scene. As shown in Figure 4.4, a ToF camera is

composed of two main components: a light source and a ToF sensor. The light

source (it can be LED or laser) actively illuminates the scene with a modulated

light. The sensor captures the reflected light and measures the time delay ∆T

between the light emission and the reception of the backscattered signal. As shown

in Equation 4.2, this delay is proportional to twice the distance d between the
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camera and the target object:

d =
c∆T

2
(4.2)

where c is the light velocity. Nowadays, ToF cameras are really diffused, e.g. some

smartphones include a ToF sensor in their camera. One of the most diffused ToF

camera is the Microsoft Kinect v2, developed for gaming purposes but also used

in a wide range of applications.

Light
Source

Reference Light

Subject

ToF
Sensor

Reflected Light

Figure 4.4: A ToF sensor system. The system is composed by a light source and a ToF sensor.

The light source illuminates the scene while the ToF sensor acquire the reflected light. The depth

information is derived by measuring the time between light emission and its reception.

A particular sensor in this category is the LIDAR which uses laser light. Based

on the laser beam steering, it is possible to recognize two different LIDAR systems:

mechanical LIDAR and solid-state LIDAR. The farthest deflects the laser beam

using rotating mirrors to increase the field of view which usually reach 360° hori-
zontally. The use of rotating mirrors entails a high signal-to-noise ratio (SNR) and

a lower frequency in sampling a complete scene. Furthermore, mechanical LIDARs

are really expensive. To overcome the mechanical LIDARs issues, solid-state LI-

DARs have no mechanical parts, and are cheaper but, obviously, have a reduced

FOV. The reduced FOV problem can be simply solved by using several calibrated

LIDARs to cover 360°. Solid-state LIDARs can be based on different technologies

e.g. MEMs LIDAR, Flash LIDAR, OPA LIDAR, FMCW LIDAR. Explaining the

working principle of each of these technologies is out of the aim of this thesis.
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Another family of sensors based on ToF are Terrestrial Laser Scanners (TLS).

These are sensors particularly suitable to scan outdoor environments given their

high range. They are often used in geological and archaeological applications. The

main issues of these sensors reside in their dimensions, weight, cost and time to

execute a scan.

4.1 Local Features on 3D Point Clouds

As shown, also 3D data can be used for a wide range of very different tasks and

this means that, as for 2D data, the feature concept is fundamental even here.

Obviously, the algorithms described in Chapter 2 are not suitable for point clouds

since the different nature of data and their arbitrary topology.

In the last decades, with the spread of 3D sensors, new algorithms for feature

detection and description on point clouds were developed with the purpose of ad-

dressing tasks such as point cloud registration, object recognition and localization.

Here a brief overview of algorithms for both keypoint detection and feature de-

scription is reported. The described algorithms are all available in the Point Cloud

Library (PCL) which represents one of the more complete and used C++ library

for point cloud processing.

4.1.1 Keypoints detection

Harris3D

Harris3D [35] detector is an extension of the 2D Harris corner detector to three-

dimensional data. This method is based on the evaluation of the Harris operator

in Equation 2.4 which is based on the auto-correlation matrix.

More precisely, for each point v in the point cloud P is considered a neigh-

borhood on which a quadratic surface is fitted. First-term derivatives on x and y

directions in the point v are then calculated to compose the auto-correlation ma-

trix M . Finally, the Harris operator is evaluated at each point of P . The output

of these steps is a point cloud with a Harris operator value associated with each
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point. The authors propose two different ways to choose the keypoints. Firstly,

all local maxima points - i.e. all points with the maximum Harris operator value

in their neighborhood - are preserved. Then, one of the two following approaches

can be used:

• Select the points with the highest Harris response: it preserves a constant

fraction of points with the highest Harris operator value. This approach

keeps the most salient points, thus some portions of the point cloud do not

have keypoints.

• Representatives of Interest Points Clusters: it permits to have a better key-

points distribution. It consists of two steps: first points are sorted by their

Harris operator value, then they are clustered and keypoints are selected.

Normal Aligned Radial Feature

Normal Aligned Radial Feature (NARF) [36] is a keypoint detector designed to

work on range images. This is because on this data it is possible to translate 2D

computer vision methods in the 3D domain.

It is designed to detect keypoints that are able to take peculiar information

about borders and surface structure, easily recognizable from different points of

view and that are in positions able to provide a stable normal estimation.

The detection is composed of two steps. Firstly, the algorithm detects object

borders based on the distance between each point and its neighborhood. Then, to

achieve position stability, for each point in the range image, a score indicating the

number of surface changes and the dominant direction is calculated. Afterwards,

an interest value is calculated representing changes of directions and surface in the

local neighborhood. In the end, final interest points are chosen by smoothing the

interest values and performing non-maxima suppression.

Intrinsic Shape Signatures 3D

Intrinsic Shape Signatures detector was introduced by Zhong in 2009 [37].
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The method is based on a saliency measure, for each point in the point cloud,

based on the Eigenvalue Decomposition (EVD) of a weighted scatter matrix Σ(pi).

More precisely, for each point pi in the point cloud P , weight wi inversely pro-

portional to the number of points in its spherical neighborhood of radius r is

associated:

wi =
1

∥pj : |pj − pi| < r∥ (4.3)

this point-wise weight is useful to compensate for the irregular sampling of the

point cloud. Then, Σ(pi) is calculated as:

Σ(pi) =

∑
|pj−pi|<r wj(pj − pi)(pj − pi)

T∑
|pj−pi|<r wj

(4.4)

Let λ1(pi), λ2(pi), λ3(pi) its eigenvalues in decreasing order of magnitude, a pruning

phase is provided. All points whose ratio between two successive eigenvalues is

below a given threshold are retained:

λ2(pi)

λ1(pi)
< Thr12 ∧

λ3(pi)

λ2(pi)
< Thr23 (4.5)

Among other points, the saliency is definite as the magnitude of the smallest

eigenvalue λ3(pi) with the aim to choose points with a high variation on the other

two principal directions.

4.1.2 Features description

After the keypoint detection, a features description step is mandatory to create a

descriptor useful to allow tasks such as registration or object detection.

Usually, 3D local feature descriptors leverage histograms to summarize differ-

ent features in the local neighborhood of each keypoint. The used features can be a

combination of both topological and geometrical ones. In [38] authors classify 3D

feature descriptors into two categories: spatial distribution histogram and geomet-

ric attribute histogram based descriptors. The farthest represents the local surface

by creating a histogram using the spatial point distribution. Usually, they start

with the construction of a Local Reference Frame (LRF) with the origin in the

keypoint and they divide the space around it. Then the histogram is created by
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accumulating points in each sub-region. The geometric attribute histogram-based

descriptors represent the local surface by creating a histogram using geometric fea-

tures, such as normals or curvatures, of the points in the keypoint neighborhood.

3D Shape Context

The 3D Shape Context (3DSC) descriptor [39] is the 3D extension of the 2D version

[40]. It is a spatial distribution histogram-based descriptor.

The algorithm takes a spherical region around the keypoint p with its north

pole aligned to the estimated surface normal in p. This region is then equally

partitioned in the azimuth and elevation dimensions and logarithmically in the

radial one. From the resulting grid, a histogram is created associating each grid

sub-region to a bin. Each bin of the histogram contains a value calculated as the

weighted sum of the points falling in the corresponding sub-region. The weight

associated with the keypoint is inversely proportional to the local point density

and the sub-region volume to compensate the large variation in volume sizes with

radius and elevation. As said before, the spherical grid is aligned with the normal

in the keypoint, but there is no alignment on the normal plane. This is managed

by considering all the possible orientations as the azimuth subdivisions, resulting

in multiple descriptions of each keypoint.

Unique Shape Context

The Unique Shape Context (USC) descriptor [41] is an extension of the 3DSC and,

as it, it belongs to the spatial distribution histogram-based descriptor category.

The main difference between USC and 3DSC is that USC defines an LRF for

each keypoint with an unambiguous orientation. It is possible by yielding not only

the surface normal in the keypoint but also a unique couple of directions on the

tangent plane. This reduces the memory footprint and the ambiguity in matching

resulting in higher accuracy and efficiency. When the LRF is uniquely fixed, the

spherical grid is created and the descriptor is computed in the same way as 3DSC.
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Point Feature Histogram

Point Feature Histogram (PFH) [42] is a geometric attribute histogram-based de-

scriptor introduced in 2008 by Rusu et al.

It works with point pairs in a point neighborhood. For each couple of points

in the k-neighborhood of the point p, the Darboux frame is created leveraging the

surface normals and points’ position. Then, for each couple of points, four features

are calculated based on the Darboux frame, surface normals and point positions.

Thereafter, these features are accumulated in a histogram to create the descriptor.

The PFH descriptor dimension is dependent on the number of histogram bins

along each dimension.

Fast Point Feature Histogram

PFH descriptor is a good 3D feature descriptor, but its computational complexity

doesn’t make it suitable for real-time or near-real-time applications. For this

reason, in 2009 Rusu et al. [43] proposed the Fast Point Feature Histogram (FPFH)

descriptor, a more efficient version of the PFH.

The FPFH descriptor algorithm consists of two steps:

1. for each point, a Simplified Point Feature Histogram (SPFH) is created by

comparing it with his neighborhood exactly as in PFH. Unlike PFH, SPFH

uses only three features to create the descriptor.

2. FPFH descriptors are then created as a weighted sum of the pre-computed

SPFH descriptors of the keypoint and its neighbor points.

In this way, the complexity of FPFH is greatly reduced compared with the PFH

making it suitable for real-time applications.

Signature of Histograms of Orientations

Signature of Histograms of Orientations (SHOT) was first introduced in 2010 by

Tobari et al. [41] and finalized in 2014 by the same authors [44]. It is inspired by

the 2D SIFT descriptor.
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The algorithm defines an LRF invariant to rotations and translations and ro-

bust to noise and clutter in each keypoint. Then a spherical region is defined

and neighboring points inside the sphere are aligned to the respective LRF. The

sphere is divided into 32 bins: 8 along the azimuth, 2 along the radius and 2 along

the elevation. In each sub-region, a one-dimensional local histogram is computed

using as features the cosine of the angle between the normal of the keypoint and

the neighboring points in that volume. The final descriptor is created by stitching

all the computed local histograms and has a length of 352.

4.2 Deep Learning on Point Clouds

The keypoint detector and feature descriptor algorithms described before are gen-

erally handcrafted for specific tasks. With the diffusion of deep learning and the

success of CNN with images, several deep learning approaches to deal with point

clouds have been proposed.

Convolutional architectures require a regular data structure such as images or

3D voxels, in which data are organized respectively in a bi-dimensional or three-

dimensional grid. 3D point cloud data, on the contrary, are unorganized since they

are usually given as a set of measurements in a continuous domain. In [45], authors

individuate three main proprieties of 3D point clouds that need to be considered

in a deep learning approach:

• Unordered: a point cloud is a set of points without a specific order. For

this reason, a neural network that takes in input N points has to be invariant

to the N ! permutation of the same points.

• Interaction between points: The points measured in the space are not

isolated, but neighboring points form meaningful sets. This means that the

network has to be able to capture these structures since containing mean-

ingful information.

• Invariance under transformations: since data represent 3D objects, the

extracted features should be invariant to several transformations, such as
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changes of point of view.

In literature, several surveys reviewing deep learning approaches for 3D point

clouds were proposed [46, 47, 48, 49]. A diffused classification method is based on

the input data representation and network structure [50].

Based on the input data representation, it is possible to divide it in:

• Projection-based Networks: these methods project the unstructured

point cloud on an intermediate representation and leverage 2D or 3D convo-

lution to learn features. These methods can be subdivided into:

– Multi-view representation: [51, 52, 53, 54, 55] these methods project

the point cloud or the three-dimensional mesh into multiple 2D images

acquired from different points of view and use standard CNNs to ex-

tract features from that. These methods achieved good results in shape

classification and retrieval tasks but it is difficult to extend them to

scene understanding.

– Volumetric representation: [56, 57, 58] these methods leverage the vox-

elization operation - which transforms a raw point cloud in an organized

3D voxel grid - and use 3D convolutions to extract features. They suffer

from data sparsity and are computationally expensive.

• Point-based Networks: these networks are able to directly consume raw

point clouds and can use different methods to extract features from a single

point. Methods in this category can be divided into:

– Point-wise Multi-Layer Perceptron Networks: [59, 60, 61] these methods

extract features from each point using MLP layers and then aggregate

point-wise feature vectors to obtain a global descriptor. They can guar-

antee permutation invariance but not all the relationships among points

are considered. Pioneer works in this category are PointNet [45] and its

extension PointNet++ [62].
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– Convolution-based Networks: these methods compute 3D convolutions

directly on the points. Approaches of this type can use continuous [63,

64, 65] or discrete [66, 67, 68] convolutional kernels.

– Graph-based Networks: these methods model the point cloud as a graph

in which each point represents a node and edges are generated by defin-

ing a neighborhood function. Features can be learned in the spatial [69,

70, 71] or spectral [72, 73, 74] domain.

– Data-indexing based Networks: [57, 75, 76] these methods leverage dif-

ferent data indexing structures - as kd-tree or octree - to learn features

in a hierarchical way.



Chapter 5

Computer Vision for Autonomous

Vehicles

The development of driverless cars has the potential to revolutionize the future

mobility of people and goods.

Self-driving cars represent a field in which we are witnessing rapid evolution in

the last decades. This evolution affects not only academic research - in which is

a very hot topic - but also car manufacturers and mass production. A driverless

car means a car with a given level of automation can move with low or no human

interaction. To this aim, driverless cars are equipped with a great variety of sensors,

such as cameras, lidar, radar, GPS, IMU. An advanced control system fuses the

data from all sensors to perceive the surrounding environment extracting higher

level information to identify the more appropriate navigation path and react to

outside situations. In this scenario, it is easy to imagine how computer vision has

a fundamental role.

Nowadays, all cars on the market are equipped with many ADAS (Advanced

Driver Assistance Systems). These are systems able to assist humans while driving

with the aim to make cars safer. The Society of Automotive Engineers (SAE)

defines 6 levels to categorize vehicle autonomy. These levels can be understood

as: Level 0 - no driving automation; Level 1 - driver assistance; Level 2 - partial

automation; Level 3 - conditional automation; Level 4 - high driving automation

41
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and Level 5 - full driving automation.

This chapter will present two works in the autonomous vehicles field. Both

will exploit neural networks to handle two different computer vision tasks. In

particular, the first one [77] faces up the problem of tracking a car on point clouds

while the second one [78] will treat the monocular depth estimation task.

5.1 Car Tracking on Lidar Point Clouds

The introduction of driverless cars on today’s cities implies the sharing of roads

with many other elements such us pedestrians, cyclists and other not autonomous

vehicles. For this reason, understanding the behaviour of each element in the road

is a fundamental requirement for an autonomous vehicle to reach higher safety

level. To drive in a correct and safe way, autonomous vehicles need to perform

several tasks. For instance, road detection and road sign recognition are useful

to understand where and how to drive, object detection is crucial to collision-free

path planning while object tracking serves to predict other road agents’ motion to

avoid dangerous situations.

Driverless cars need to leverage both geometrical and appearance features of

the surrounding environment to extract high level and precise information from the

scene. Most autonomous driving applications leverage RGB images because these

contain important appearance features and it is easy to recover the geometric ones

by inferring depth using stereo rings or a single camera. RGB cameras, however,

are really susceptible to unfavorable weather and conditions. On the other hand,

lidars are able to produce point clouds with really accurate geometric features, they

have a larger FOV and are more robust to light and weather untoward conditions

but at a cost of loss in appearance features.

Object tracking is a long-studied problem in computer vision and robotics fields

because it allows some more complex tasks such as multi-robot cooperation and

human-robot collaboration. Object tracking goal is the estimation of a target

object state through time. It is usually modeled as a search for the candidate that

best match a model.
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All the object tracking algorithms are susceptible to error drift over time. Usu-

ally, they are modelled as feed-forward algorithms since there is no way to correct

the estimation. Several object tracking using point cloud data have been proposed

in literature. Most state-of-the-art algorithms are on tracking-by-detection meth-

ods, which work by detecting the object first and then solving a data association

problem. The aim of this work is to leverage this idea to increase the accuracy of

an out-of-shell 3D car tracker.

This section aims to explain a possible method to mitigate the consequences

of the error drift over time in a 3D car tracker developed to track a single car

in a point cloud tracklet. The proposed solution uses a detection algorithm to

correct the tracking estimation with a given frequency that can be flexibly tuned

by the system designer. In particular, a new system which introduces a detection

branch to an out-of-shell 3D car tracking algorithm is proposed. The experiments

will demonstrate how this approach can mitigate the tracker error drift. The

introduction of the detection branch implies the tuning of a new parameter, but

it is indispensable for real applications.

5.1.1 Related Work

3D Object Detection

A 3D object detector is a system that aims to detect all the objects of a given

category in an input point cloud. The output of this system is a list of oriented

3D bounding boxes, each containing one of the detected objects.

Yulan Guo et al. [50] divide 3D object detection methods into two categories:

region proposal-based and single-shot methods. The former methods propose sev-

eral regions (called proposals) that probably contain objects and then classify ob-

jects contained in every proposal. Usually, these methods are time-consuming and

greedy for resources. Single-shot methods, instead, directly calculate probabilities

and regress 3D bounding boxes, without the need for the region proposal step.

MV3D [79] represents a milestone in 3D Object Detection. This approach lever-

age both RGB images and lidar point clouds. It uses a multiview encoding of the
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input point cloud by projecting it on both Bird’s Eye View (BEV) and front view

images. BEV image is used to create the 3D proposals which are then projected

in all other views. Then, a deep fusion network is used to combine region-wise

features which are finally used to predict the oriented 3D bounding box and the

object class.

In [80] authors proposed an object detection method based on RGB-D data.

The algorithm leverage the best features of both RGB images and 3D data. The

authors exploit a mature 2D object detection method based on CNN to generate

proposals and classify objects. Then, the proposals’ projection on 3D space defines

a frustum that delineates the 3D searching space. Finally, using a PointNet-like

[45] neural network authors perform an instance segmentation of points inside the

searching area and estimate the 3D bounding box.

VoteNet [81] is another approach proposed by Qi et al. that uses Hough voting

to detect objects in indoor scenarios. Authors propose a 3D extension of Hough

voting based on neural networks to estimate objects’ virtual center points from

point clouds and generate proposals.

3D Object Tracking

Based on the addressed problem, it is possible to recognize two different categories

of object tracking algorithms: Single-Object Tracking (SOT) and Multiple-Object

Tracking (MOT). SOT methods’ goal is to estimate - in each frame - the state of

a single specific object given its state in the first frame. MOT methods, on the

contrary, points to estimating - in each frame - the state of all the objects of the

same category in the scene. This task is usually tackled with the before mentioned

tracking-by-detection.

In 2018, Lou et al. proposed Fast and Furious [82], an approach able to jointly

handle 3D object detection, tracking and motion forecasting on 3D data. The

authors used a deep neural network that performs 3D convolutions across space

and time on BEV projections of 3D data. The resulting method is very fast and

robust to occlusions and data density.

Complexer-YOLO [83] fuses deep-learning-based 3D object detector and se-
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mantic segmentation to perform 3D object detection and tracking in autonomous

driving scenarios. It leverages a voxel-based version of the previous work Complex-

Yolo [84] which is a 3D extension of YOLOv2 [85]. Complexer-YOLO is a MOT

method which leverages both RGB images and point clouds acquired in the same

scene with temporal information to increase accuracy and robustness.

To reach a higher level of efficiency, in 2020 qi et al proposed Point-to-box

(P2B) [86]. This method uses Hough voting to localize potential targets by centers,

avoiding Kalman filtering or the exhaustive search that represents the bottleneck

of most tracking methods in terms of performance. Then it performs jointly target

proposal and verification by clustering detected centers neighborhoods.

In [87] a more probabilistic approach to MOT problem is proposed. It follows

the classic tracking-by-detection approach. It uses a Kalman filter in which the

observations are given by the detection. For data association, the authors propose

to use the Mahalanobis distance because more suitable than 3D-IoU.

3D-SiamRPN [88] is a SOT system based on a Siamese Network. The network

is composed by two sub-networks. The first sub-network uses PointNet++ [62]

architecture to extract features from the input point cloud and fuses them using

two cross-correlation modules. The second one is a region proposal network (RPN)

and uses the features from the previous step to regress a 3D bounding box.

5.1.2 Proposed Approach

The error drift problem is common to all object tracking algorithms. To better

highlight this, in Figure 5.1 the center location error and the IoU of a state-of-the-

art 3D car tracking algorithm [89] - on a single point clouds sequence - are plotted.

The center location error is defined as the Euclidean distance between the centers

of the ground truth bounding box and the estimated one. It is easy to note that

the error increases over time. As explained before, here a new 3D SOT system is

proposed. It add a detection branch to an out-of-shell 3D tracking algorithm with

the aim of reduce the error accumulated over time. Figure 5.3 shows the proposed

system pipeline which performs 3D car tracking on point clouds and is composed

by two main modules: the tracker and the detector.
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(a) (b)

Figure 5.1: Example of error drift of a state-of-the-art object tracking algorithm in a single

sequence. (a) Plot of the distance between the center of the estimated object’s bounding box

and the ground truth one. It increases with the increasing of the frames. (b) Intersection over

Union between the estimated object’s bounding box and the ground truth one. It decreases with

the increasing of the frames reaching zero.

Tracking branch: This branch has the aim to perform tracking of the specific

car in the frame ft given his state (expressed as a bounding box) given his state

in the frame ft−1. In particular, let xt−1 the bounding box estimated in previous

frame, x̂t−1 the model point cloud obtained by aggregating all cropped points

inside x0,...,t and pt the point cloud acquired at time t. The bounding box x0 is

assumed to be known. Given pt there are several techniques - such as: Bayesian

filters (Kalman filter or Particle filter), Exhaustive Search or RPN - to regress a

given number of proposal bounding boxes around xt−1. The points inside each

proposal bounding box are cropped and features are extracted. By comparing the

features extracted from each proposal with which extracted from the model x̂t−1 it

is possible to choose the best match. The bounding box of the best match is chosen

as the tracking result xt and its relative points are used to update the model x̂t.

Detection branch: This branch has the aim to detect all cars in the scene

and choose the tracked one. As shown it contemplate two steps: detection and

data association. First, the detection step regress a bounding box around each

car in the point cloud pt. To do it is possible to use a state-of-the-art detector.

Then it is possible to use a metric to choose which of these bounding boxes is more
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Figure 5.2: A flowchart representing the pipeline of the proposed system.

probably to be the target one xt. Then the points inside xt are aggregated in the

the model x̂t. Given the independence of this branch from the estimation xt−1 it

reinitialize the tracker reducing the accumulated error drift.

At each time instant t, only one branch is executed. Which of the two branch

execute is given by a predefined reset frequency.

5.1.3 Used Architecture

Both tracking and detection branches can be made in really different ways and can

follow very different logic. To implement and validate the proposed method, two

out-of-shell approaches present in literature have been used. For both branches,

methods using only point clouds as input data have been chosen.

The approach proposed by Giancola et al. [89] is used for the tracking branch.

It is a SOT method based on a PointNet-like Siamese Network. The system pro-

posed takes as input a tracklet in which in each frame the target object exists.

Given the point cloud pt, it uses an Exhaustive Search (also Bayesian filters can

be used) to sample proposals around the bounding box xt−1. Points inside each

proposal are cropped and encoded in a latent vector zc. The model x̂ is maintained

over time. It is obtained by accumulating points of the estimated bounding box in

each time instant. The cosine similarity is used to compare each encoded proposal

with the encoded model ẑ in the latent space. The bounding box relative to en-
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coded vector zc that maximizes the cosine similarity is chosen to be the output of

the system at time t. Moreover, this method leverages shape-completion regular-

ization to embed generative features in the latent vectors, useful in discrimination.

For the detection branch, PointVoxel-RCNN (PV-RCNN) [90] is used. This

approach integrates both 3D voxel CNN and PointNet++[62] set abstraction to

increase detection performance. It leverages a 3D voxel CNN with sparse con-

volution to multi-scale semantic features encoding and proposal generation. The

proposal generation follows an anchor approach by projecting the output of the 3D

sparse convolution-based encoder into a BEV feature map. The features extracted

by the encoder are then summarized in a small set of keypoints through the voxel

set abstraction (VSA) module. VSA acts as a bridge between the 3D voxel CNN

features encoder and the proposal refinement network. With an approach similar

to set abstraction layer of PointNet++ [62], VSA can represent the scene thought

local features. After the scene is encoded using a small set of keypoints, in order

to perform proposal refinement, they are weighted. Intuitively, keypoints belong-

ing from background should contribute less than ones belonging from foreground.

For this reason, Predicted Keypoint Weighting (PKW) module is used to weight

keypoints by segmentation extra-supervision. At this point, a RoI-grid pooling

module is used to aggregate keypoints features to the RoI-grid points with mul-

tiple receptive fields by set abstraction. Given the RoI features of each bounding

box, the proposal refinement network learns to predict bounding box residuals and

a confidence score based on the IoU between the estimated and ground-truth 3D

bounding box.

5.1.4 Experiments

Here the experimental setup used to test the proposed approach is described.

Dataset. All the experiments fundamental to testing the developed system were

executed on KITTI dataset [91]. As in [89] only its training set was used splitting

it in the following way: scenes from 0 to 16 to training the system, scenes 17-18 for

validation and scenes 19-20 as test set. The dataset was adapted for SOT systems

creating a single tracklet for each car identified in the scene.
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Reset Frequency Success Precision Cost

1 45.53 59.547 98.132

1/2 42.6813 55.2459 48.6457

1/5 42.5988 54.4742 18.9134

1/10 36.6999 45.5273 9.0286

1/15 38.6761 49.9222 5.7752

1/25 31.32 39.1131 3.0199

1/50 26.7987 33.3134 1.183

1/100 25.2444 31.7466 0.4202

Only tracking 24.0823 30.007 0

Table 5.1: Experimental results. Success and Precision are defined as in the One-Pass Evalua-

tion. The Cost is defined as the percentage of the number of frames in which detection is used

on the total number of frames.

Evaluation Metrics. To evaluate the complete system, as common in literature,

the One Pass Evaluation (OPE) is used [92]. It uses the IoU to measure the overlap

between the estimated and the ground truth bounding boxes, and the error as the

center location error between the same bounding boxes. Success and Precision

metrics are defined as the Area Under the Curve (AUC) of respectively IoU and

distance error (from 0 to 2m). Furthermore, a normalized Cost is defined by the

number of frames in which the detection was used. It is useful to express, in a

simple way, a measure of the efficiency of each experiment to perform a comparison

between them.

5.1.5 Results Discussion

In Table 5.1 are reported the experimental results. It can be noted that both

success and precision metrics are directly proportional to the reset frequency. In-

deed, an increase in the reset frequency corresponds to an increase in performance.

This result is interesting because confirms the importance of reinitialization in the

tracking task to reduce the error drift. On the other hand, as shown by the cost

metric, the detection branch can introduce a cost in terms of efficiency that ob-
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viously increase with the reset frequency. For this reason, for real applications,

the reset frequency has to be accurately chosen as trade-off between performance

and efficiency. It is, thus, strictly dependent on the specific task and the available

computational resources. This commonly involves the investigation of several pa-

rameters such as the inference time of both tracking and detection modules, their

performances, the task requirements and the used hardware.

Just as an example, based only on the experiments performed on KITTI with

the described setup, it is possible to identify the reset frequency of 1/15 as a good

trade-off. In fact, the performance slightly increases compared with 1/10 and the

cost is lower (the detection is used only on about 5% of the total frames).

5.1.6 Summary

In this work, the importance of reinitialization in a tracking algorithm is shown.

First, the problem is highlighted by testing a 3D car tracking algorithm on a

dataset with long sequences. Then an approach to solving it by using a detection

branch is proposed. In particular, the proposed method leverage a 3D point cloud

car detector to reset the tracking module with a given frequency. With large-scale

experiments on KITTI dataset, the advantages of this approach are shown by

reaching good improvements compared with the baseline. Finally, the importance

of reinitialization in real applications is highlighted and the way to choose a good

reset frequency is explained.

Future work will include the investigation of methods to execute detection only

when strictly necessary with the aim of increasing system efficiency. Moreover,

given the generality of the proposed pipeline, further works will also include the

use of different sensor data to take advantage of the different features of each of

them.

5.2 Monocular Depth Estimation

In Chapter 4 several sensor families to perceive 3D data are described. An accurate

environment perception is at the earth of all applications characterized by a system
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that moves in the 3D real-world. All sensors shown before have advantages and

disadvantages. Because of this, the system designer has to carefully choose the

sensor that better fits requirements. For instance, lidars are really accurate sensors,

but they are generally expensive and do not represent a good choice for low-cost

vehicles and robots. Moreover, for autonomous driving applications, they have

to be mounted in a particular position that does not permit integration on the

car changing both the appearance and the aerodynamics. For this reason, most

autonomous driving applications are based on other sensors such as RGB cameras

or radars.

There are several methods to infer depth from RGB cameras such as stereo

cameras and structure from motion. It is obvious that the depth estimation from

a single image is an ill-posed problem since the decay of the epipolar geometry

constraints. Humans are able to perform well this task by unconsciously making

assumptions to respect objects’ dimensions [93].

Recently, a huge number of works has been proposed in literature that aims to

use deep learning to address the monocular depth estimation problem. Many of

these are supervised approaches [94, 95] which rely on annotated datasets. Even if

they are able to reach amazing results, collecting a large and varied dataset with

precise depth annotation is, in practice, challenging and labor-expensive. For this

reason, some works propose leveraging the photometric reprojection constraints

to develop self-supervised methods. Unlike supervised approaches, self-supervised

ones need multi-views images - e.g. acquired with stereo cameras - of the same

scene and thus do not need precise round truth depth data. This type of data is

simple to acquire and its annotation requires less effort.

Most of the methods present in literature use very deep CNN that can learn a

high number of parameters to learn important generative features. However, these

methods are power- and resource- consuming and need high-end GPUs to produce

results in real time.

In this section, a new self-supervised approach based on knowledge distillation

is proposed. The aim is to exploit the knowledge guarded in a deep pre-trained

CNN to transfer it to a smaller one.
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5.2.1 Related Work

Estimation of depth from a single image represents an ill-posed problem since a

single image is available at inference time and it is not possible to rely on geo-

metrical constraints. For this reason, it is a deeply studied topic for several years.

Most works focused on the use of stereo images [96], multiple monocular images

acquired from different points of view [97], at different time instants [98] or making

some assumption about the scene, e.g. static scene [99] and viewpoint with differ-

ent light [100]. Here a brief review of Supervised and Self-supervised methods is

reported.

Supervised Monocular Depth Estimation

Supervised learning for monocular depth estimation need ground truth depth maps

to train the model. The aim of the training is to minimize a loss function mainly

based on the similarity between the ground truth and estimated depth maps.

One of the first models proposed in this category is Make3D [101]. It leverages

the over-segmentation of the input image to estimate 3D local location and ori-

entation of local planes that compose the scene. This method, however, tends to

fail with thin structures and does not consider the global structure of the scene.

In [95] a CNN model was proposed to deal this task, while Ladicky et al. [102]

leverage semantic information to improve the results. Karsch et al. [103] account

the problem as an image matching problem using temporal information to refine

results.

Eigen et al. [94] proposed a multi-scale CNN trained following the supervised

paradigm. Differently from most of work explained until now, this approach in-

fers depth from the raw pixels without leverage any segmentation or hand-crafted

features. Relying on Deep3D [104], Luo et al. [105] modeled the monocular depth

estimation problem leveraging stereo geometry, creating the right view in a syn-

thetic way. DepthNet [106] rely recurrent neural networks (RNN) to learn spatio-

temporal information to predict depth maps from monocular video sequences.

In [107], authors aim to tackle the problem for a real world applications point

of view. They account the task as a image-to-image translation problem. The
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proposed method is based on an adversarial network trained on synthetic data

able to generalize enough to be domain independent.

Other proposed approaches aim to jointly face up monocular depth estimation

with other tasks. DeMoN [108] is a model based on a chain of encoder-decoder net-

works able to jointly estimate both depth and ego-motion from monocular videos.

Chen et al. [109] developed a model to jointly estimate depth and semantic segmen-

tation while ViP-DeepLab [110] estimate it jointly with panoptic segmentation.

All this reviewed methods need large datasets composed by images with their

respective ground truth depth maps. The creation of these datasets is not trivial,

therefore often it is preferable to explore other possibilities.

Self-supervised Monocular Depth Estimation

To overcome the problem of dataset creation of supervised learning methods and

utilize relative cheap data, many works proposed to self-supervised methods. In

2016, Flynn et al. proposed DeepStereo [111] which is trained in an unsupervised

way relying images representing the scene from different points of view. Since

it needs multiple images also in inference phase, it is not suitable for monocular

depth estimation task. Deep3D [104] meets the novel view estimation problem in a

binocular setup. It leverages an image reconstruction loss generate the right view

from the left one in the 3D movies domain.

Zhan et al.[112] proposed an encoder-decoder network for monocular depth

estimation on a stereo setup trained to minimize a reconstruction loss. Their

image synthesis is not fully differentiable, for this reason they linearized the loss

using a Taylor approximation making the training more difficult. This problem is

overcome in Monodepth [113] by using bi-linear sampling. It consist in a model

that, at training time, estimates depth from both left and right images in a stereo

setup to rely on left-right consistency. Inspired by it, Aleotti et al. [114] proposed

an adversarial training to face up this task, while Poggi et al. [115] proposed a

thin network to deal the same task using the CPU in a trinocular configuration.

Zhou et al. [116] proposed an approach to synthesize depth-maps on monocular

videos. In the training it aims to minimize a reconstruction loss between temporal
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Figure 5.3: Proposed method for Knowledge Distillation to monocular depth estimation. The

method uses the output of a pre-trained network as supervision signal. In particular, a pre-

trained model of Monodepth2 was used as teacher network. The student network (DeepLabv3+)

was trained from scratch relying on a simple L1-loss between the output of the teacher network

and the one of the student network.

subsequent frames. Furthermore, it train a pose network to estimate the relative

camera pose between them.

With a similar goal, Mahjourian et al. [117] introduced an ICP-based loss to

jointly estimate depth and ego-motion from monocular videos.

Later, Godard et al. [118] extended their previous work. Here, they use a

model trainable on both stereo pairs and monocular video configuration. The

focus of this work is on artifacts mainly due to occlusions and moving objects.

5.2.2 Proposed Method

Here the knowledge distillation [119] concept is explained with a particular focus on

vanilla distillation which is used in the proposed method. Then the two networks

used respectively as teacher and student models will be reviewed. Figure 5.3

represents the pipeline used to train the student model.

Knowledge Distillation

Knowledge distillation represents one of the most effective techniques to compress

and accelerate deep-learning models. It is based on the idea of inferring the knowl-
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edge acquired by a very deep neural network - the teacher model - in a smaller

one, the so-called student model. This technique is particularly useful when there

is the need to use deep models on devices with limited resources such as mobile

devices or embedded systems.

Gou et al. [119] classify knowledge distillation algorithms from the perspec-

tive of knowledge categories, training schemes, teacher-student architecture, and

distillation algorithms.

In this work, an offline distillation scheme is used where the knowledge is

transferred from a pre-trained teacher network to a student one. The training

process consists of two steps:

• Teacher training: the teacher is trained on a set of training data.

• Student training: the student model is trained from scratch with the supervi-

sion of the teacher model. The knowledge extracted from the teacher model

can be in the form of intermediate features or the output of the model.

In this work, the vanilla knowledge distillation scheme is adopted which pro-

vides the use of the teacher output as supervision signal to train the student model.

In particular, the student network is trained to minimize the L1 loss between the

output depth map of the teacher and student networks.

Let FT the teacher model, FS the student model and I the input image, the

L1-loss is defined as:

L1 =
1

N

N∑
p=0

|FT (I)p − FS(I)p| (5.1)

where p is the pixel index, N is the total number of pixels in the image, FT (I)p

and FS(I)p represent the p-th pixel of the output image respectively of the teacher

and the student model.

Teacher Network

As mentioned in the previous sections, the adopted knowledge distillation pipeline

uses an offline training approach transferring the teacher’s knowledge to the stu-
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dent network. Here as teacher network, a pre-trained model of Monodepth2 [118]

is used.

Monodepth2 was presented in 2019 by Godard et al. as an extension of their

previous work [113] reaching good results on the monocular depth estimation task.

The aim is to train a CNN in a self-supervised setup to estimate an accurate depth

map given a single image in both stereo and monocular setups. The approach

accounts the learning problem as a new view-synthesis task, in which the network

is trained to synthesize the appearance of a target image that represents the same

scene from a different point of view. In other words, the method accounts the

monocular depth estimation task as a photo-metric reprojection error minimization

problem.

Let Tt→t′ the relative pose between the input image I ′t pose w.r.t. the target

image It one. The model has to predict the depth map Dt that minimizes the

photometric reprojection error Lp defined as:

Lp = min
t′

pe(It, It→t′) (5.2)

with

It→t′ = It′⟨proj(Dt, Tt→t′ , K)⟩ (5.3)

where pe is the photo-metric reconstruction error, proj(.) is the projection of the

depth map Dt in It′ , the ⟨.⟩ operator indicates the bi-linear sampling operator

[120] while K is the camera intrinsics matrix. To calculate pe, authors rely on L1

and SSIM [121] errors:

pe(Ia, Ib) =
α

2
(1− SSIM((Ia, Ib)) + (1− α)∥Ia − Ib∥1 (5.4)

where α = 0.85. Furthermore, in the training authors used a smoothness loss Ls

defined as:

Ls = |δxd∗t |e−|δxIt| + |δyd∗t |e−|δyIt| (5.5)

where d∗t represent the mean-normalized inverse depth [122]. The final objective

function used during the training is given by a weighted sum of the two defined

terms:

L = µLp + λLs (5.6)
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The proposed architecture supports three different training modalities. It can

be trained with stereo images, where It′ and It are the two images of the stereo

pair. It can also be trained using a monocular setup, in which the two frames

adjacent to It are used as source images. Since, in this case, the relative pose

between frames Tt→t′ is not known, a pose estimation network is used to predict

it. Finally, a mixed training setup is possible, where It′ includes both temporally

adjacent images and the second view of the stereo setup.

Student Network

As student network, to reach the aim of realizing a model to tackle monocular

depth estimation task using limited computational resources, DeepLabv3+ [123]

has been chosen. It is a network specially designed for mobile systems born to deal

with the image semantic segmentation task. This network extends DeepLabv3

[124] by adding a simple decoder to it in order to obtain an encoder-decoder

structure, useful to refine results, especially on boundaries.

The main intuition behind Deeplabv3 is the use of the so-called Atrous Spatial

Pyramid Pooling (ASPP). It is composed of several parallel atrous convolutions

with different rates to extract features at multiple scales.

Atrous convolution is a generalization of the standard convolution operation

which allows to control the resolution of features computed by CNN and adjust

filter’s field-of-view to capture multi-scale information. More precisely, in the case

of bi-dimensional signals, for each position i on the output features map y, given

the input x and the kernel w, atrous convolution is calculated as:

y[i] =
∑
k

x[i+ r · k]w[k] (5.7)

where r is the atrous stride, that determines the stride with which the input

features map is sampled.

In DeepLabv3, ASPP is implemented after a backbone network that is used to

extract features. In DeepLabv3+ the last feature map before logits of DeepLabv3

is used as encoder output; this feature map contains 256 channels. The decoder is
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very simple; it first upsamples by a factor of 4 the encoder output and then con-

catenates it with the corresponding low-level features from the backbone network

with the same resolution. Before the concatenation, a point-wise convolution is

applied to the low-level features from the backbone just to reduce the channels

number. After the concatenation, a few 3x3 convolutions are applied, and finally

a 4x bilinear upsampling.

This architecture leverages both the spatial pyramid pooling module and the

encoder-decoder structure. The former is useful to capture contextual information

at different resolutions while the latter permits to obtain sharper boundaries.

5.2.3 Experiments

Here the experimental setup used to test the proposed approach is described.

In all experiments, the pre-trained model of Monodepth2 [118] trained with the

monocular and stereo setup (MS) was used as teacher network. The choice fell on

this model because it achieved the best results on the selected dataset. All models

were trained and tested on KITTI 2015 [125] dataset using an image resolution of

1024x320 by resizing the input images.

Dataset. As in [113], here the KITTI dataset was used. It contains 61 scenes

with a total of 42.382 rectified stereo pairs 1242x375 pixels. All experiments were

performed using two different splits:

• Eigen split [94] uses a test split of 697 images from 29 different scenes.

The remaining 32 scenes are divided using 22.600 stereo images for training

and 888 for evaluation. To generate the ground truth, in this split, the

reprojection of lidar point clouds on the left RGB camera plane image was

used.

• Eigen Zhou [116] is suited for monocular training and removes from the

dataset all static frames. This split contains a total of 39.810 monocular

images for training and 4,424 for validation.

In all experiments, the same intrinsics were used. In all images, the principal

point has been assumed in the image center and the focal length has been set as
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the average of all the focal lengths on the KITTI dataset. The maximum admitted

depth was cropped to 80m, as a standard practice.

Evaluation Metrics. To evaluate the proposed approach, all trained models

were evaluated for both performance and efficiency. For the evaluation, the metrics

proposed by Eigen et al. [94] were used. This work uses different metrics like Abs

Relative difference, Squared Relative difference, RMSE, and RMSE (log) which

measure the difference in meter with the ground truth depth and other metrics

based on the percentage of depths that are within some threshold from the ground

truth value. This is useful because the non-thresholded metrics can be sensitive

to large errors caused by prediction errors in depth caused by predictions at small

disparity values. Furthermore, efficiency was evaluated by measuring the inference

time of each model on the different hardware setups. The inference time was

calculated as the average of times on 10 different executions. As a general-purpose

system, a PC with an Intel i7-5720K CPU which has 6 Cores with 3.30 GHz each,

and a GPU Nvidia GTX 970 was used. To test the performances on mobile, a

Xiaomi Poco X3 NFC - an Android 10 smartphone equipped with a Qualcomm

SM7150-AC Snapdragon 732G Octa-core - was used. For mobile experiments, a

simple application based on Pytorch Mobile [126] was created and the model uses

only the CPU with multi-threading.

5.2.4 Results and Discussion

In Table 5.2 are reported all the results obtained with the presented setup in com-

parison with the baseline that is represented by the pre-trained model used as

teacher network. The quantitative results show that using the proposed approach

with DeepLabv3+ [123] with ResNet101 [127] as backbone trained on Eigen split

[94] the results are very similar to the baseline overcoming it in some metrics.

Furthermore, as imaginable, using MobileNet [128] as backbone results are worse

than other architectures - because it uses fewer parameters - but they still remain

quite good. Table 5.2 compares all the analyzed architecture from an efficiency

point of view. In particular, there are shown, for each network architecture, the

number of trainable parameters and the inference time on different hardware ar-
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Architecture Split
Abs

Rel

Sq

Rel
RMSE

RMSE

log
δ<1.25 δ<1.252 δ<1.253

DeepLabv3+

w. MobileNet
Zhou 0.108 0.746 4.657 0.193 0.865 0.957 0.981

DeepLabv3+

w. ResNet50
Zhou 0.121 0.975 5.051 0.216 0.841 0.937 0.967

DeepLabv3+

w. ResNet101
Zhou 0.109 0.869 4.649 0.250 0.873 0.958 0.980

DeepLabv3+

w. MobileNet
Eigen 0.110 0.871 5.139 0.333 0.863 0.955 0.980

DeepLabv3+

w. ResNet50
Eigen 0.107 0.771 4.666 0.199 0.865 0.953 0.978

DeepLabv3+

w. ResNet101
Eigen 0.104 0.752 4.552 0.193 0.875 0.958 0.980

Monodepth2

(baseline)
Eigen 0.105 0.790 4.608 0.193 0.876 0.958 0.680

Table 5.2: Comparison of different models performance. Results on KITTI 2015 stereo dataset

with two different splits: Eigen [94] and Eigen Zhou [116]. Here, for the first four metrics lower

is better and for the last three higher is better.
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Architecture
# of trainable

parameters

Single

CPU [s]

Multi

CPU [s]

GPU

[s]

Mobile

[s]

DeepLabv3+

w. MobileNet
2643281 0.4231 0.1445 0.0161 1.429

DeepLabv3+

w. ResNet50
26609233 1.3956 0.3881 0,0369 4.65

DeepLabv3+

w. ResNet101
45601361 1.9663 0.5139 0.06051 9.425

Monodepth2

(baseline)
14842236 0.7365 0.2611 0.0123 1.099

Table 5.3: Inference time. The table shows the number of trainable parameters and the time

(in seconds) necessary to infer a single image with each architecture. The time is calculated as

the average of 10 consecutive executions.

chitectures. DeepLabv3+ with MobileNet as the backbone is the network with the

lower number of parameters. It has about six times fewer parameters with respect

to Monodepth2 architecture. As possible to see in the table, the DeepLabv3+

with MobileNet model is the fastest on single and multiple CPU setups. On the

contrary, on GPU and Mobile setup the faster architecture is Monodepth2 [118]

5.2.5 Summary

Here a technique to deal with the monocular depth estimation task with a self-

supervised approach on mobile systems was proposed. An out-of-shell pre-trained

model was exploited to train a simpler network in a knowledge distillation setup.

DeepLabv3+ architecture - which was born for semantic segmentation tasks - was

adapted to solve a monocular depth estimation problem in an automotive scenario.

Large-scale experiments were executed on different splits of KITTI dataset [125]

to compare several architectures from both performance and efficiency points of

view. It is possible to conclude that it is possible to deal with the monocular depth

estimation problem using the DeepLabv3+ architecture and the reached results are

comparable with the baseline. Unexpectedly, even if DeepLabv3+ model contains
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a lower number of parameters, it results slower on Mobile setup compared with

Monodepth2 because the latter is more optimizable for Mobile.

In the future will be useful to study a more complex method of knowledge

distillation between these two networks leveraging on connections between middle

layers and introducing other loss functions typical of this domain based on image

appearance and geometrical constraints. Furthermore, it can be interesting to

study a new custom model to deal with the monocular depth estimation task able

to run in real-time on mobile hardware and test it on different indoor and outdoor

datasets.



Chapter 6

Computer Vision and AR/VR in

Manufacturing Industry

Nowadays, in the Industry 4.0 era, industries are revolutionizing their processes

to make them automated and connect. Industries are investing to achieve leaner

and faster processes.

Emerging digital technologies are fundamental in this scenario since they are

exploited to improve industries’ processes. It is possible to recognize four different

development lines: the first one regards the use of data and connectivity which

covers big data, IoT, and cloud computing techniques; the second one regards the

analytics which means how to extract information from data; the third regards

the human-machine interaction; and finally the fourth digital and real worlds in-

teraction covering robotics, machine-machine interaction, additive manufacturing

and 3D printing.

Manufacturing industries are the ones that can take more advantage of the

new technologies to improve their production process, especially from the last two

development lines. Some sectors, like automotive, have achieved leaner and better

processes faster than other ones, like the aerospace industry. Furthermore, in the

production chain, a few stages gained more automation earlier than others. For

instance, assembly and inspection processes present some aspects that make them

risky to deal with them automatically. Moreover, with the last years’ advancements

63
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in mobile robotics, one of the processes that can gain high automation is surely

the warehouse management one.

This chapter will present three different works that exploit new technologies to

automatize different industrial processes. [129] and [130] will present two ap-

proaches for quality control in the aerospace field. The farthest will exploits

robotics and 3D computer vision methods to the control quality of a tail sta-

bilizer aircraft component. The latest will leverage AR and VR techniques for the

validation process of control quality results of aircraft interiors. Even if AR and

VR seem weakly correlated with computer vision, they often require a 3D scan of

the environment and the use of computer vision techniques for localization. Fi-

nally, [131] will review a deep learning approach to mobile robot localization in

a structured environment. An approach like this can strongly automatize a wide

range of processes in manufacturing industries. These three works are all part of

different research projects.

6.1 Hardware Calibration and Point Clouds Stitch-

ing in Aerospace Manufacturing

This section will present an innovative approach to solving a robot-sensor calibra-

tion problem. It is preparatory to the acquisition and stitching of point clouds to

the automatic control quality in the aerospace manufacturing industry.

This work is part of the ”Integrated Smart Assembly Factory” (ISAF) project

aims to integrate innovative technologies in aerospace factories to improve pro-

cesses’ efficiency and effectiveness.

Production processes in aerospace manufacturing can involve a wide range of

really different components. At the same time, it is easy to imagine the high safety

requirements and thus the high accuracy standards that must meet. Today, the

typical approach to quality control of these components is to manually-wise inspect

them only after their final assembly. This inspection is fundamental, indeed, for

instance, checking the gaps between some adjacent components is necessary to

avoid high pre-tension between them and to ensure the reliability of the whole
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structure. Possible gaps between assembled components are manually measured

and filled with special shims. Obviously, this procedure can be time-consuming

and costly, as well as weighing down the system.

The conducted analysis concerns the assembly of a horizontal stabilizer and the

measurement of the gaps between its components. The current procedure provides

that components are loaded and measured on a special jig, several times before

the stabilizer is completed. The proposed method aims to automatize this process

by adopting 3D scanning technologies. These solutions are easily available [132],

and they are already highly applied in manufacturing environments [133, 134, 135,

136, 137]. The idea is to use a mobile automated guided vehicle (AGV) with a

robotic arm mounted on the top equipped with a 3D sensor. The system will move

around the jig to scan the interesting areas. The acquired 3D data will be then

used to automatically measure the gaps and assess the need for shims.

This work focuses on the acquisition and stitching of the point clouds coming

from the 3D sensor. While the acquiring phase regards the robot’s programming

to perform the right movements and coordinate with the 3D sensor, the stitch-

ing phase is more complex. Many different works are available in the literature

on this topic [138]. Given the constraints to be met, the system characteristics,

and the features of the components to scan, a suitable approach has been devel-

oped. Specifically, a robot-sensor calibration problem has been solved to move the

acquired point clouds in a global reference system and stitch them together.

6.1.1 Materials and Methods

Hardware Setup

The adopted methodology provides the use of a mobile automated guided vehicle

(AGV) which mounts the Universal Robot UR10e [139] robotic arm and the LMI

Gocator 3210 [140] 3D sensor.

The AGV is an omnidirectional mobile platform, capable of navigating through

the space by localizing and following a QR-code tape properly placed on the

ground. It can be managed through an industrial PC installed on board.
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The UR10e [139] is a 6DOF robot arm, ideal for a wide range of applications

and widely used in industrial contexts. It has a payload of 12.5 kg and a 1300

mm reach. The UR10e is mounted on the top of AGV through a lift, that allows

placing the UR10e base at different heights.

An LMI Gocator 3210 [140] is fixed to the wrist of the robot. It is a 3D snapshot

sensor that leverages a stereo camera and a blue light projector to reconstruct the

scanned surface in the form of 3D point cloud data. It has a large field of view

and can acquire an area of 154x100 mm with a resolution of 34 µm returning a

point cloud of about 2.5 million of points in a single snapshot.

Methodology

The proposed methodology can be divided into three steps: calibration of the

system, acquisition of the components, and stitching of the point clouds.

The robot-sensor calibration aims to estimate all the 3D transformations to

express all the acquired point clouds, that are in the sensor reference system, in

a unique global reference system in order to stitch them together. Assuming the

UR10e base is stationary, it is possible to express them in a frame integral to it.

Figure 6.1 shows the hardware setup - without the AGV, which position is

assumed fixed in this phase - and all reference systems involved in calibration:

• {B} is the robot frame

• {F} is the UR10e flange frame

• {G} is the Gocator frame

• {T} is the target frame, an external reference system used in the Gocator

alignment procedure

In particular, {G} is the Gocator uncalibrated reference system, while the target

frame T is the calibrated one. It is found by leveraging a specific alignment

procedure.
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Figure 6.1: The hardware setup with the reference frames involved in the robot-sensor calibra-

tion step.

In this specific setup, the aim is the estimation of the fixed 3D transformation
B
GT , i.e. the transformation matrix that expresses points from the Gocator uncal-

ibrated frame {G} in the robot base one {B}. The proposed estimation method

leverages the whole transformation matrix and a global iterative approach.

Let TP a point in {T}, it is possible to express it in {B} using the following

equivalence:
BP = B

FT · F
GT · G

T T · TP (6.1)

It is important to note that, given the hardware setup, F
GT is the same in every

robot configuration. On the contrary, B
FT and G

T T change as the robot moves.

The approach for solving the problem requires performing several measurements

of the transformation pair (BFTi,
G
T Ti) with i = 1, . . . , k to iteratively compute the

transformation matrix F
GT that minimizes a custom-defined error function. The

estimation of (BFTi,
G
T Ti) pairs is straightforward:

B
FTi is given by the robot odome-

try, while, as mentioned before, G
T Ti can be estimated using the Gocator alignment

procedure. The alignment step is accomplished by using a metal calibration plate
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having two reference holes, one larger than the other. The Gocator system identi-

fies the center of the wider hole as the origin of the new coordinate system, while

the direction connecting the two centers of the holes determines the angle from

the Z axis.

After a set of (BFTi,
G
T Ti) pairs are acquired it is possible to define a grid of N

3D points in {T} and perform a global minimization algorithm to find the only

unknown transformation F
GT , based on basin hopping [141] method. In particular,

let TX ∈ R(4xN) be the matrix where each column represents one point of the

defined grid in homogeneous coordinates expressed in {T}, for each of the calibra-

tion pair (BFTi,
G
T Ti) the projection of the grid in {B}, BXi, is calculated using the

same F
GT . The result of this operation is a tensor Y ∈ R(4xNxk). The error function

used in the global minimization method is defined as the Frobenius norm of σ(Y ),

where the function σ(.) represents the standard deviation on the third axis. In

each iteration, the matrix F
GT is recalculated to minimize the error.

After the calibration step, possible workplans for performing the acquisitions

were defined. Workplan means the sequence of movements that the robot must

execute to correctly acquire a component of interest and its coordination with the

Gocator sensor. Obviously, given the limited scan area of the Gocator, most of the

components need more scans to be fully acquired. At first, the workplans have been

simulated in a virtual environment. This was useful to understand where to locate

the AGV with respect to the component, to define the initial joint configuration,

and thus to avoid singularity and collisions. Afterward, the movements have been

tested on the real setup. The results of this phase are the distinct point clouds

describing the component, and the related robot configurations.

To stitch together the acquired point clouds, for each of them G
T Ti is retrieved

from the UR10e inverse kinematics related to the i-th acquisition. Therefore, the

i-th point cloud can be moved into the UR10e base frame {B}, using Equation 6.1.

After this procedure for all the point clouds, the stitching phase is complete. The

result consists of the comprehensive point cloud representing the whole acquired

component. Finally, this is subject to an additional post-processing procedure, in

order to make the point cloud lighter in terms of number of points. Specifically,
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Figure 6.2: Histogram of the point-to-point Euclidean distances between the points of source

and the related closest points of target.

closest vertices are merged, outliers are detected through the local outlier proba-

bility (LoOP) approach [142] and then removed. After that, the resulting point

cloud is further filtered.

6.1.2 Experiments and Results

To evaluate the effectiveness of the proposed method, an analysis of results ob-

tained while stitching two consecutive point clouds is performed. The point dis-

tance in the overlapping area can be used to measure the stitching goodness.

Indeed, in case the point clouds are well overlapped, the point distance in that

area is expected to be the lowest possible, thus proving that the applied approach

is robust and effective. Figure 6.2 shows the achieved results for the considered

example. As one can notice, the distribution of the point-to-point distances is

similar to a Gaussian. In this specific case, it has a mean value of 0.1133 mm and

a standard deviation of 0.0372 mm. Looking at the cumulative distribution, the

90% of the point distances are lower than 0.15 mm, while the remaining 10% are

lower than 0.22 mm.

To analyze the results from a qualitative point of view, in Figure 6.3b the

comparison of the complete acquisition of a carbon angle profile with its CAD

model is shown. The acquisition of the entire component provided several single

snapshots. The resulting stitched model perfectly matches its CAD reference.
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Comparing the sizes of the two bounding boxes, they differ by 0.5 mm at most.

(a) (b)

Figure 6.3: Comparison between the acquisition (a) and the CAD model (b) of a carbon angle

profile

Given the nature of the components to be acquired - carbon fiber components

with a very regular surface, without any texture or particular features - no other

stitching approaches could be considered. For instance, the diffused ICP algorithm

would have failed. Just to completeness, in Figure 6.4 results obtained applying

the ICP algorithm with point-to-point [143] and point-to-plane [144] are reported.

(a) (b) (c)

Figure 6.4: Examples of: correct stitching achieved by adopting the proposed strategy (a), mis-

taken stitching achieved by applying ICP without initial transformation (b), mistaken stitching

achieved by applying ICP point-to-point with initial transformation (c).

Without specifying any initial transformation, the ICP fails. Adopting both

approaches, itcompletely overlaps the two point clouds, ignoring that one is shifted
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with respect to the other. The situation improves using the UR10e kinematics as

ICP initial transformation.

However, given the nature of the algorithm, the results are strongly input-

dependent and their repeatability is not guaranteed [145]. Moreover, the goal of

the quality control process is to identify gaps in the components. This information

could be lost by ICP algorithm. Finally, by knowing all the needed requirements,

the proposed approach is definitely more robust.

6.1.3 Summary

In this work, a strategy to point clouds acquisition and stitching for quality con-

trol in aerospace manufacturing is proposed. To stitch the acquired point clouds,

a preliminary robot-sensor calibration step is required. When all the needed trans-

formations are known, several workplans to scan each different component have

been defined. Once the acquisitions are completed, single scans point clouds are

stitched by moving each of them in the UR10e base reference system leveraging

the transformation estimated during calibration.

As future work, it is possible to deeply investigate the calibration problem

(for instance about the ideal number of the plate acquisitions or the optimization

algorithm). On the other hand, the point clouds acquired will be used for detecting

possible gaps and measuring the shims needed to fill them automatically.

6.2 AR/VR for Quality Control of Aircraft In-

teriors

Automated processes are at the base of modern production processes. The quality

control process is often human-performed with a low degree of automation. Usu-

ally, it is a time-consuming task requiring inspection officers to keep a high level of

attention. For instance, when inspecting the aircraft cargo and cabin lining, work-

ers are required to evaluate both the geometric and appearance aspects of all visible

panels. It means that, performing it manually, workers have to perform measure-
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ments between panels, like establishing that gap, step, and parallelism respect the

requirements. Cognitive fatigue is a common issue of quality control tasks, as well

as humans are not able to keep the same attention level for several hours with

the consequence of different judging at different times. Other factors have to be

considered such as the ergonomic condition forced by some environments. For in-

stance, in the cargo area, inspection workers have to work in a crouched position

given the low ceiling. These and other reasons justify the need for automation in

the control quality process for aircraft interiors. On the other hand, some tasks,

such as judging the appearance of panels, with all nuances intrinsic in this task,

suggest that keeping the human in the loop is important because it allows joining

the precision and accuracy of robotic inspection systems with the supervision of

highly skilled inspection officers.

This section will analyze an automatic inspection of aircraft interiors panel as-

sembly leveraging both human and robotic skills. This work is part of the ”Vision-

based Inspection Systems for automated Testing of Aircraft interiors” (VISTA)

project which required the development of an autonomous robot for scanning cargo

and cabin of aircraft and a method to process the 3D acquired data to detect de-

fects. The geometrical defects detection approach was analyzed in [26, 146] while

surface defects detection was proposed in [147]. In the following sections, an ap-

proach to facilitate the validation process of reported measurements and detected

defects is presented. The approach exploits virtual and augmented reality to make

the inspection officers’ validation more efficient and effective.

AR and VR are promising technologies allowing to improve the efficiency and

accuracy of several processes in which human work remains fundamental. These

technologies can help human work by offering a higher level of immersion improving

human-computer interaction. As explained in [148], these technologies joined with

artificial intelligence represent a very powerful tool applicable in a wide range of

fields.

Proposed solutions are developed to be suitable for different scenarios. In

particular, the proposed approach provides two different solutions: the VR-based

one which is more suitable for off-site applications while the AR-based one is
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applicable to the on-site validation process.

6.2.1 Related Work

Recently several literature reviews about augmented reality in the manufacturing

industry were proposed [149, 150]. In [151], papers published from 2006 to 2017 in

this field are reviewed. As shown in that review, most of the performed research

work is connected to the automotive industry with 11 papers, as opposed to just

3 papers dedicated to the aircraft/aerospace industry. This review gives a look

at the industrial field in opposition to the AR application. It shows that two of

these papers [152, 153] are related to the maintenance sector while one is related

to assembly operations [154]. But there are no papers about post-assembly control

quality.

In [155], Eschen et al., analyzed four use cases to use AR and VR for inspection

and maintenance in the aerospace field. An AR approach to process guidance in

inspecting and repairing scarf profiles of fiber composite parts through milling is

presented. It uses an Hololens headset using an image marker to register real and

virtual worlds.

An AR-assisted system for the inspection of aviation connectors has been pro-

posed by Li et al. [156]. Here, the users leverage AR glasses to inspect connectors

to detect mismatched or missing pins. It uses a client-server approach in which

images are sent to a separate computer for processing and results are sent back as

a list of misplaced-wire pins and missing-wire pins.

In summary, there are no previous works on AR/VR semi-automated quality

control of aircraft interior lining.

6.2.2 Geometrical and Surface Defects

In this project, two categories of defects that may be present while inspecting

aircraft interiors are considered: geometrical and surface defects.

Geometrical defects are related to the panels’ arrangement and to deformities

on the edges of single panels. Figure 6.5 illustrates geometrical defects considered
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(a) (b)

(c) (d)

Figure 6.5: Geometrical defects: (a) step, (b) gap, (c) mismatch, (d) parallelism

in the project, which are:

• Step: two adjacent panels, that should appear as continuous, have a mis-

alignment on the z-plane exceeding a given threshold.

• Gap: it is the distance between the closest ends of adjacent panels that

exceed a given tolerance.

• Mismatch of tolerances: it occurs in the proximity of multiple panels

(usually four) and it is related to different gaps between any adjacent pairs.

• Parallelism: it is related to the lack of parallelism between adjacent panels.

it appears as gap differences at extreme ends of the shared edge.

Surface defects are related to a single panel and appear as colors and roughness

changes on the surface. They are usually present before assembly. In this work,

only three types of surface defects are considered (which are shown in Figure 6.6):

• Scratches: linear damage of the surface panel, usually given by contact

with sharp objects.
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• Bumps/Dents: local concavity/convexity, usually rounded, which could be

caused by inappropriate assembly or impact with a non-sharp object causing

a local panel deformation.

• Color/Texture inhomogeneities: a change in color or texture on an oth-

erwise uniform panel part.

(a) (b) (c)

Figure 6.6: Surface defects: a) scratches, b) bumps/dents, c) color/texture inhomogeneities

Most of the presented defects must be corrected for safety, aesthetic, and com-

fort issues. However, it is important to keep a human inspector in the loop since,

often, the aesthetic considerations can involve more than automated measurements

for a correct judgment.

6.2.3 Reporting Sub-system

The proposed solution is based on a client-server architecture where the main

system - called ”supervisor” - handles the interactions with all the sub-systems

distributed among different devices. The supervisor has the aim to handle access

to a centralized database containing the state of the automated inspections, includ-

ing setup, configuration, acquired data, and processed data. The latter ones are

accessed through reporting clients, with the supervisor acting as the “middleman”

for data access.

It is possible to access the processing results through different means, including

but not limited to:
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• Tablet APP: reports are accessed through an Android or iOS application

with 3D representation of the aircraft interiors offered as CAD or scanned

data.

• Windows APP: reports are accessed through a Universal Windows Plat-

form (UWP) on Windows 10+.

• Hololens APP: reports are accessed through a UWP application devel-

oped for Hololens 1, with the possibility of overlay measurements of specific

defects.

It is important to highlight that, notwithstanding the project is focused on the

development of a Virtual Reality application using a mobile or desktop application,

it is preferred not to use specific VR devices as VR headsets. This is because the

immersion offered by these devices was perceived more akin to a “disconnection”

from the physical environment in the specific application. On the other hand,

providing contextual information in the real environment was perceived as useful

for the on-site scenario, leading to the development of the Mixed Reality solution.

All developed applications work in a similar way, but some differences are

present to leverage the different technologies’ features.

For instance, the mobile application exploits the inspection environment for

the camera setup, in order that the user can closely observe the panels to inspect.

Exploiting the landscape mode, the application can present a list of defects on a

left pane while, on the right pane, the 3D environment with the selected defect

properly highlighted. Users can move between different defects and move in the

virtual environment as well.

The selection of the inspection area (cargo or cabin) is handled differently in

the AR application. The Hololens app has to overlay synthetic information on

the real environment. For this aim, an image marker is used. This permits the

alignment of the real and virtual worlds for tracking initialization. If a 3D scan

of the scene is available, it can be shown in the Hololens view as well. A set of

graphical panes permits to modify color and transparency of the shown synthetic

data to improve the user experience.
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In all reporting clients, the user can express a judgment on each defect, val-

idating the results and potentially improving classification results in subsequent

inspections. The system is designed to be multi-user so that many opinions can

be considered. The communication between the server and clients is based on a

REST API using the JSON format for message exchange.

All the applications, developed for different devices, have been developed in

Unity to enable 3D environment visualization. However, Hololens app required a

more customized solution since the device nature. Indeed, the user interface had

to manage head-mounted display gestures and gaze. Moreover, it was important

to register the virtual representation of the scene with the real one for achieving

data overlay over panels, exploiting Hololens sensors for interpreting the scene and

tracking object positions.

Given the structured environment in which the proposed solution will be used,

the solution based on the image marker has been considered advantageous. Thus,

two different markers, one for the cargo and one for the cabin, were used at a known

distance from the inspected panels. Once the marker is identified, the Hololens can

track user pose leveraging its inertial sensors, depth, and color camera even with

the marker out of sight. A commercial off-the-shelf solution, Vuforia Engine [157],

which can be integrated into Unity, was used for handling the AR scenario, while

Vuforia Studio was exploited for creating the user interface based on the floating

window. Three ways are available to list the defects: as text; on a 3d model; or

over-imposed in augmented reality.

6.2.4 Results

The focus of this section is on facilitating reporting of quality control issues for

interior lining in single-aisle aircraft. The project includes the inspection of lining

and panels after mounting sidewalls and hatracks, but before installing airplane

seats, as Figures 6.7 and 6.8 of VR-like and AR prototypes show.

Reporting is weakly coupled with the inspection phase: it enables to visualize

inspection results and to express a judgment on them to permit officers to choose

what is correctly considered a defect and what was misclassified.
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Figure 6.7: Mobile devices interface. The left pane shows the list of defects and measurements

and on the right the 3D representation of the scene

Figure 6.8: AR interface. Floating window reporting the list of measurements in the event list

in the Hololens application
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All the developed applications provide a list of defects offered as a list view

reported after the user has selected a processing timeline to inspect. The user

can also enter into a 3D view mode that splits the screen into two panes showing

on the left the defects list and on the right the VR environment representation

(as shown in Figure 6.7). This VR-based application has been implemented for

analyzing the measurements when the user is away from the production site.

A mixed reality application was instead developed for on-site situations. This

leverage mixed reality devices, such as Microsoft Hololens, allowing the user to

freely move in the area to inspect and see in an augmented reality setup the

position of the possible defects over imposed on the real environment. Using the

application on Hololens, it is possible to visualize all information on the same

scene, projecting virtual objects floating in the space at a specified distance. As

shown in Figure 6.8, a floating window shows measurement data, while leaving

most of the view “free” for showing virtual markers and objects overlaid on the

real environment and panels.

6.2.5 Summary

Here a novel approach based on mixed reality was proposed for enabling the in-

spection officers to work better while analyzing geometrical and surface defects in

aircraft interiors. This is part of a bigger project that aims to improve the aircraft

lining assembly process using an autonomous platform to automatically perform

measurements and detect defects. The proposed approach enables inspection of-

ficers to validate them in both on-site and off-site scenarios allowing, moreover,

officers to avoid non-ergonomic work positions.

In the future, there are many points that can be investigated. It will be inter-

esting to experimentally quantify how the proposed approach can improve working

situations from both quality of life and productivity points of view. Furthermore,

the user interface can be improved after an experimental study of user experiences.

Finally, it can be useful to explore possible improvements in developing the AR

application on the new generation Microsoft Hololens 2.
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6.3 Optical Encoder for Robot Localization

Mobile robots are fundamental to accomplish several tasks in the manufacturing

industry. They are particularly useful to automatically move objects that can also

be really weighty. Mobile robots can automatize, for instance, warehouse manage-

ment [158] - which can be an heavy work for humans - making this process really

efficient and accurate. Obviously, robots, to autonomously coexist and navigate

an environment in a safe way, need accurate and reliable localization.

This section tackles the robot localization problem by deep learning means.

Accurate localization is fundamental for mobile robots since it is at the base of

most mobile robot applications. Autonomous navigation, which is one of the most

challenging requirements for mobile robots [159, 160], needs a reliable localization.

In literature, many solutions for robot localization have been proposed, using

different strategies [161] and sensors [162]. Localization methods are usually clas-

sified into two main categories: absolute and relative localization. In the farthest,

the robot pose is estimated with respect to a global reference system, while, in the

latest, the robot pose is derived by knowing its initial pose, and accumulating its

relative displacement over time. Here, an innovative relative localization approach

is discussed.

6.3.1 Related Work

In the last few years, advances in computer vision have favorite the emergence

of new localization methods for robot navigation and localization [163, 164, 165].

One of the most popular computer vision methods for relative robot localization

is, without any doubt, visual odometry [166, 167, 168]. It leverages one or multiple

cameras to estimate robot movements.

Given the deep learning success in all computer vision tasks, recently some deep

learning approaches for visual odometry have been proposed [169, 170]. In [171], a

CNN was proposed with the aim of predicting velocity and direction changes from

stereo images. The synchrony detection method aids in detecting visual motion

and depth representations, then the CNN can correlate these local depths and
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motion representations to indirectly perform visual odometry. In 2017, Muller at

al. proposed Flowodometry [172], which developed three different network archi-

tectures for robust ego-motion estimation. They are able to extract new visual

features starting from a dense optical flow as input. Moreover, robustness against

blur, luminance, and contrast anomalies is proven. A similar approach was pro-

posed in [173], where a CNN was used to estimate the rotation and displacement

information between frames from optical flow data. Posenet [174], uses a CNN

to estimate, in real-time, the 6-DOF camera pose in both indoor and outdoor

environments.

Recurrent Neural Networks (RNN), were also used for visual odometry [175].

They allow both to learn an effective feature representation for visual odometry

applications and to model sequential relations and dynamics implicitly. In [176]

an unsupervised learning approach was proposed. Moreover, it uses additional

depth information to reach better results since classic monocular odometry needs

prior information about the absolute scale. [177] uses a combination of CNN

and RNN to retrieve the monocular camera ego-motion from optical flow data.

This method can learn the scale without having knowledge about the intrinsic

camera parameters. In [178] an unsupervised approach for visual odometry using

a downward-facing camera is proposed. Nevertheless, the used loss function does

not permit to estimate rotations with good accuracy.

Analyzing the literature, it is possible to notice the important deep learning

role for the visual odometry task. However, in some cases, the networks need to

be retrained or fine-tuned to be used in a different environment. In some cases,

additional data or an image pre-processing step are required to correctly estimate

the movements.

6.3.2 Proposed Approach

Here OE-Net - the proposed CNN framework for monocular visual odometry - is

presented. It is inspired by FlowNetS [179]. The proposed CNN is able to extract

visual features for the relative motion estimation of robot.
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Figure 6.9: OE-Net architecture. It takes in input a tensor of two temporally following images

and estimates the relative pose composed of translation and rotation. OE-Net is composed of

two branches: the first one estimates the translational components, and the second one estimates

the rotational one.

OE-Net Architecture

OE-Net is a CNN architecture proposed with the aim of performing monocular

visual odometry tasks. It leverages images of a camera oriented toward the ground

floor fastened on a robot.

OE-Net architecture is shown in Figure 6.9. It takes in input two temporally-

consecutive images. It is composed of two branches: the first one estimates δx

and δy, the planar translational information, while the second branch estimates

the rotational information δϑ. Before it, a network with a single branch solving

for both translation and rotation was developed. This solution was not able to

provide satisfying results.

Table 6.1 reports all OE-Net’s configuration parameters. The two branches

work in parallel on the same input tensor. The translational branch is composed

of three convolutional layers followed, each followed by a RELU. Their kernel size

gradually decreases from 17x17 to 9x9 and then to 5x5. It was observed that

using smaller kernels, such as 3x3, provides worse results in motion estimation.
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Indeed, in the case of relatively large motions, the features to be correlated over

the images might be scattered over different receptive fields of the convolutional

layer, thus the accurate motion estimation could not be attained effectively. In

effect, small kernels are less receptive than large kernels. When small kernels are

used, large motions might be detected only by the inner layers of the network as

the output tensor from previous layers decreases its spatial size by means of the

pooling layers. The first layers could not be able to detect the motion, and part

of the information could be lost. Therefore, 17x17 kernels having higher receptive

fields than 3x3 kernels have been introduced in the first convolutional layer to

ensure more accurate estimates.

The channels number of convolutional layers increases according to multiples

of base 2. The zero-paddings and the strides are introduced to change the spatial

dimension of activation tensors after the convolution step. All the max-pooling

layers halve the spatial dimension of input tensors preserving the cardinality of

channels. The output of the translation branch is a tensor of two elements con-

taining the relative planar translation between the two input images.

The rotational branch, as the translational one, contains three convolutional

layers followed by RELUs. The main difference is that here the kernel size is kept

fixed to 5x5. It was experimentally proven that an higher kernel size does not

provide significant improvements. This is because, in the experiments, a small

receptive field is usually sufficient to capture relevant information about the ro-

tation adequately. For this reason, since the different kernel sizes between the

two branches enables a better estimation of the different motion components, the

choice to use two sub-networks.

The concatenation layer allows merging the results of the two branches while

the regression layer provides the loss error to backpropagate to train the network.

As loss function, an MSE is considered. It is defined as:

MSE =
1

N

n∑
k=1

(vek − vgtk )
2 (6.2)

where N is the batch size, vek = [δxe
k, δy

e
k, δϑ

e
k]

T is the estimate relative motion

vector while vgtk = [δxgt
k , δy

gt
k , δϑ

gt
k ]

T is the ground truth one.
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Layer name Kernel size Stride Padding Channels Activation

InputLayer - - - - 64x64x2

T
ra

n
sl
a
ti
o
n
a
l
B
ra

n
ch

Conv1+ReLU1 17x17 1 2 32 52x52x32

MaxPool1 2x2 2 0 - 26x26x32

Conv2+ReLU2 9x9 1 2 64 22x22x64

MaxPool2 2x2 2 0 - 11x11x64

Conv3+ReLU3 5x5 1 1 128 9x9x128

MaxPool3 2x2 2 0 - 4x4x128

FC1 - - - 1024 1x1x1024

FC2 - - - 256 1x1x256

FC3 - - - 2 1x1x2

R
o
ta

ti
o
n
a
l
B
ra

n
ch

Conv1r+ReLU1r 5x5 1 2 32 64x64x32

MaxPool1r 2x2 2 0 - 32x32x32

Conv2r+ReLU2r 5x5 1 2 64 32x32x64

MaxPool2r 2x2 2 0 - 16x16x64

Conv3r+ReLU3r 5x5 1 2 128 16x16x128

MaxPool3r 2x2 2 0 - 8x8x128

FC1r - - - 256 1x1x256

FC2r - - - 32 1x1x32

FC3r - - - 1 1x1x1

Concat(FC3+FC3r) - - - - 1x1x3

RegressionLayer - - - - 1x1x3

Table 6.1: OE-Net configuration.
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Experimental Setup

Here the strategies to collect the synthetic data and train the proposed network

are discussed.

Dataset. Although the proposed OE-Net model will necessarily have to work in

a real environment, preliminary experiments on synthetic data are done. Several

advantages justify this choice. In particular, it is simpler to obtain ground truth

data, and it permits to study how variations in illumination, speed of movements,

floor materials, blurs, etc., affect the performance.

Synthetic data are generated using Blensor [180], an open-source simulation

toolbox. It is based on Blender, a 3D modeling, animation, and rendering soft-

ware. The Blensor package adds capabilities for exporting the simulated world as

it can simulate various types of range scanners and color cameras. The data are

collected by simulating a monocular camera moving in an environment with a tex-

ture on the floor, as shown in Figure 6.10. Floor images and ground truth motion

are collected and used to train the model. The camera frame rate is set to 60 fps,

which represents a good trade-off between motion accuracy and computational

costs. The camera focal length f is equal to 3.7 mm, whereas the diagonal field of

view (FOV) is dFOV = 189.7 mm by considering the distance of the camera from

the floor of h = 110 mm. The collected dataset includes a total of 10k samples.

Training. For the OE-Net training, the collected dataset had been divided using

the 80% of randomly chosen samples for the training and the remaining 20% was

halved between validation and test sets. Stochastic gradient descent with momen-

tum (SGDM) has been used as solver [181] with the momentum equal to 0.9. The

batch size was 256 m with shuffle mode activated. The system was implemented

using the Matlab framework [182] and trained on an NVIDIA GeForce RTX 3080

with 10 GB of memory.

6.3.3 Results

The results obtained performing the trajectory shown in Figure 6.10 are shown

in Figure 6.11. It is clear that OE-net is able to accurately estimate the right
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(a) (b)

Figure 6.10: Top view (a) and side view (b) of the simulated trajectory (in blue) that the

camera (in orange) follows in the Blensor framework. The images and the ground truth of

motion are collected during the simulation.

trajectory. On the test set, the RMSE was calculated to evaluate the system

performance. It was 6.49 ·10−2 mm and 6.03 ·10−2 mm for δx and δy, respectively.

While for the orientation δϑ is 0.51◦ These results suggest that OE-Net is very

accurate in translational estimation, but it makes more errors in estimating the

rotational component.

Figure 6.11 shows the comparison of the OE-Net estimated trajectory compared

with the ground truth one. As can be noticed, the two trajectories are very similar.

Obviously, since OE-Net estimates the relative pose between two time instants, it

suffers from cumulative errors. However, the two signals seem nearly equivalent.

This suggests that the rotational error involves this divergence. To demonstrate

this, the OE-Net projected trajectory using the ground truth rotational values is

also plotted in Figure 6.12. This trajectory perfectly overlaps the ground truth.

The trajectory total length is equal to 28.5783 m while the OE-Net estimated

one is 28.5741 m with an absolute difference of 4.19 · 10−3 m. The final absolute

positioning error is equal to 3.03 · 10−2 m.

Finally, in light of these results, it is possible to affirm that OE-Net is an

accurate and reliable system for visual odometry tasks.
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Figure 6.11: Relative pose estimates (in red) compared with the expected estimates (in blue)

for all the samples. The black dots indicate the samples belonging to the testing set.

Figure 6.12: Estimated trajectory (in red) obtained by cumulating all the relative poses com-

puted by the OE-net, compared with the expected trajectory (in blue). The green dashed signal

represents the reprojection of OE-net measurements by using the expected orientations.
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6.3.4 Summary

In this section, an innovative deep learning approach to visual odometry tasks has

been presented. OE-Net is able to estimate the relative planar camera movement

by analyzing two consecutive floor images. It is straightforward that by combining

these relative movements, it is possible to localize the camera. The proposed

network is composed of two branches that respectively estimate translational and

rotational movements in parallel. A synthetic dataset was created to train the

model. Both qualitative and quantitative results confirm the effectiveness of the

proposed method.

Future work will regard the improvement of the rotational component estima-

tion by investigating new network configurations and architectures. Other im-

portant aspects, such as variations in illumination, speed of movements, defocus

effects, and camera parameters will also be considered and evaluated using syn-

thetic data. Finally, real environment images will also be considered to validate

the OE-Net in real applications.



Chapter 7

Conclusions and Future Work

In this thesis, the problem of the reconstruction and analysis of 3D models was

analyzed in two different domains as autonomous vehicles and the manufacturing

industry. Several tasks are analyzed and faced up in the two domains, aiming to

provide new efficient and reliable methods as well as to improve of those already

present in the literature to face up the identified problems.

The work has been focused on the acquisition, processing, and exploitation of

both 2D and 3D data to extract important information useful for each analyzed

task. In particular, in both domains, new approaches based on both 2D and 3D

data are proposed to address different problems typical of the specific domain.

In detail, first in the autonomous driving domain has been analyzed setting

two main objectives:

• Design and development of a deep learning car tracking algorithm exploiting

3D data.

• Design and development of a deep learning approach to the monocular depth

estimation problem.

While, in the manufacturing industry domain, three main objectives were fixed

aiming to automate and facilitate as many industrial processes. In detail, the

following objectives were pursued:
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• Design and development of a robot sensor calibration and point cloud stitch-

ing method to automate control quality process in aerospace industries.

• Design and development of AR/VR based applications to facilitate the air-

craft interiors control quality keeping humans in the loop.

• Design and development of OE-net, a CNN model to address the visual

odometry problem for mobile robot localization.

Chapter 5 analyzes the autonomous driving domain with its open problems

that take advantage of computer vision. Here, two main problems are taken into

account proposing deep learning based approaches for both of them.

First, the single car tracking (SOT) problem was analyzed. It was noticed the

error drift over time problem typical of tracking systems. An approach to mitigate

it by adding a detection branch to that pipeline with the aim of resetting the

tracking branch with a given frequency was proposed. Both tracking and detection

branches consist of models previously proposed in the literature. The method has

been validated on a standard dataset and results confirm the effectiveness of the

method. Some insights on how to choose the reset frequency are given. Future

work will regard the investigation of methods to choose the best frames to execute

detection and the exploitation of different types of data/sensors to leverage their

different peculiarities.

Secondly, the monocular depth estimation task was considered. An efficient

CNN model to estimate depth from a single view image with a knowledge distilla-

tion approach was proposed. Here the aim was to develop a model able to perform

this task in systems with limited resources. Experiments tested the model from

both performance and efficiency points of view analyzing the latest on several hard-

ware architectures. Results confirmed the effectiveness of the approach since the

trained model reached performances comparable with the baseline. Future work

will regard the development of more advanced knowledge distillation pipelines to

facilitate the training and the design of a new customized deep learning model able

to run in real-time also with limited computational resources.



Chapter 7. Conclusions and Future Work 91

Chapter 6 inspects the manufacturing industry domain identifying several pro-

cesses that can be automated by leveraging emerging technologies.

Here, first, a new approach to quality control of specific aircraft components is

proposed. The approach uses a robotic platform composed of a mobile automated

guided vehicle (AGV), a robotic arm, and a 3D sensor to scan components and

stitch resulting point clouds. The aim is to measurements of possible gaps in the

assembly of an aircraft horizontal stabilizer. A preliminary robot-sensor calibration

step is required. Then, several workplans to scan each different component have

been defined. Once the acquisitions are completed, single scans point clouds are

stitched by moving each of them in a global reference frame. Results confirm the

effectiveness of the proposed approach that, in the specific scenario, results more

reliable than the baseline. In the future can be useful to investigate the calibration

problem more.

Then, a semi-automatic approach for quality control of aircraft interiors is pro-

posed. It leverages AR/VR technologies to facilitate the inspector officers’ defects

validation work. Different AR and VR based applications are proposed to account

for both on-site and off-site scenarios. Future work provides the experimental

quantification of how the proposed approach can improve working situations from

both quality of life and productivity points of view, and the improvement of AR

applications leveraging new generation helmets.

Finally, a deep learning approach to visual odometry based localization of

autonomous robots is proposed. Accurate localization is fundamental for mobile

robots since it is at the base of most mobile robot applications. OE-Net estimates

the relative planar camera movement by analyzing two consecutive floor images.

A synthetic dataset was created to train the model. Experimental results confirm

the effectiveness of the method. Future work regards the investigation of new

architectures to improve performances and the validation of the model on real-

world applications.
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