Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

The Brezis-Nirenberg type problem for the p-laplacian ($1<p<2$): Multiple positive solutions

This is a pre-print of the following article

Original Citation.
The Brezis-Nirenberg type problem for the p-laplacian (1p2): Multiple positive solutions / Cingolani, Silvia; Vannella, Giuseppina. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 266:8(2019), pp. 45104532. [10.1016/j.jde.2018.10.004]

Availability:
This version is available at http://hdl.handle.net/11589/160096 since: 2022-06-03
Published version
DOI:10.1016/j.jde.2018.10.004

Terms of use.
(Article begins on next page)

THE BREZIS-NIRENBERG TYPE PROBLEM FOR THE p-LAPLACIAN $(1<p<2)$: MULTIPLE POSITIVE SOLUTIONS

SILVIA CINGOLANI AND GIUSEPPINA VANNELLA

Abstract. In this paper we consider the quasilinear critical problem

$$
\left(P_{\lambda}\right) \begin{cases}-\Delta_{p} u=\lambda u^{q-1}+u^{p^{*}-1} & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary, $N \geq p^{2}, 1<p<2$ and $p \leq q<p^{*}, p^{*}=N p /(N-p), \lambda>0$ is a parameter. In spite of the lack of C^{2} regularity of the energy functional associated to problem $\left(P_{\lambda}\right)$, we employ new Morse techniques to derive a multiplicity result of solutions. We show that there exists $\lambda^{*}>0$ such that, for each $\lambda \in\left(0, \lambda^{*}\right)$, either $\left(P_{\lambda}\right)$ has $\mathcal{P}_{1}(\Omega)$ distinct solutions or there exists a sequence of quasilinear problems approximating $\left(P_{\lambda}\right)$, each of them having at least $\mathcal{P}_{1}(\Omega)$ distinct solutions. These results complete those obtained in [23] for the case $p \geq 2$.

1. Introduction

Since the pioneer work of Brezis and Nirenberg [8], there was a large amount of results dealing with semilinear problems involving critical Sobolev exponent. We mention the well known papers [11, 12, 5, 30, 7]. In the last twenty years, a lot of efforts have been made to obtain similar results for the quasilinear critical problem

$$
\left(S_{\lambda}\right) \begin{cases}-\Delta_{p} u=\lambda u^{q-1}+u^{p^{*}-1} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary, $N \geq p^{2}, 1<p \leq q<p^{*}$, $p^{*}=N p /(N-p), \lambda>0$ is a parameter.

By using the concentration compactness principle, the results of [8] were extended to the quasilinear cases by Azorero and Peral [3, 4] and Guedda Veron [27], independently. Precisely they proved that if $N \geq p^{2}, p=q$, then $\left(S_{\lambda}\right)$ has a positive solution if $\lambda \in\left(0, \lambda_{1}\right)$ where λ_{1} is the first eigenvalue of $-\Delta_{p}$ with Dirichlet boundary condition and no positive solution for $\lambda \geq \lambda_{1}$ or $\lambda \leq 0$ and Ω starshaped. The case $q \in\left(p, p^{*}\right)$ has been studied by Azorero and Peral, who proved the existence of a positive solution for any $\lambda>0$.

Only a few years ago, Degiovanni and Lancelotti [24] extended the results in [11] by proving the existence of a nontrivial solution for $\left(S_{\lambda}\right)$ with $p=q$ when $N \geq p^{2}$ and $\lambda>\lambda_{1}$ is not an eigenvalue, and when $N^{2} /(N+1)>p^{2}$ and $\lambda \geq \lambda_{1}$.

Recently, in [10], Cao, Peng and Yan extended the results [12] to the quasilinear case $\left(S_{\lambda}\right)$ with $p=q$ proving that if $1<p<N$ there exist infinitely many solutions to (S_{λ})

[^0]for $\lambda>0$ and $N>p^{2}+p$. By using the Picone identity, it can be proved that every nonzero solution of $\left(S_{\lambda}\right)$ is sign-changing for $\lambda>\lambda_{1}$.

Concerning the effect of the domain topology on the existence of positive solutions for the quasilinear critical problem, the first multiplicity result is due to Alves and Ding [2]. They proved that if $N \geq p^{2}$ and $2 \leq p \leq q<p^{*}$, then there exists $\lambda^{*}>0$ such that for each $\lambda \in\left(0, \lambda^{*}\right)$ the problem

$$
\left(P_{\lambda}\right) \begin{cases}-\Delta_{p} u=\lambda u^{q-1}+u^{p^{*}-1} & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has at least $\operatorname{cat}(\Omega)$ solutions, where $\operatorname{cat}(\Omega)$ denotes the Ljusternik- Schnirelmann category of Ω in itself.

From $[5,7]$, it is well known that if Ω is topologically rich, one can derive better information on the number of solutions by means of Morse theory and domain topology instead of the Lusternick-Schrnirelmann category. However the extension of the results in $[5,7]$ to quasilinear problems remained for a long time an open field of investigation, since it leads to the applicability of Morse techniques in a Banach (not Hilbert) variational framework.

Some years ago, in [23], we obtained a first result, which correlates the topological properties of the domain and the number of solutions of $\left(P_{\lambda}\right)$, counted with their multiplicities.

Let us introduce the classical topological definition.
Definition 1.1. Let \mathbb{G} be an abelian group. For any $A \subset \mathbb{R}^{n}$, we denote $\mathcal{P}_{t}(A)$ the Poincaré polynomial of A, defined by

$$
\mathcal{P}_{t}(A)=\sum_{k=0}^{+\infty} \operatorname{dim} H^{k}(A, \emptyset) t^{k}
$$

where $H^{k}(A, \emptyset)$ stands for the k-th Alexander-Spanier relative cohomology group of the pair (A, \emptyset), with coefficients in \mathbb{G}.

In [23, Theorem 1.4] we proved the following topological result:
Theorem 1.2. Assume that $N \geq p^{2}, 1<p \leq q<p^{*}, p^{*}=N p /(N-p)$. There exists $\lambda^{*}>0$ such that, for any $\lambda \in\left(0, \lambda^{*}\right),\left(P_{\lambda}\right)$ has at least $\mathcal{P}_{1}(\Omega)$ solutions, possibly counted with their multiplicities.

Clearly Theorem 1.2 does not guarantee an effective multiplicity result, since all the solutions could collapse into the same critical point, having multiplicity $\mathcal{P}_{1}(\Omega)$. Hence the interpretation of the multiplicity of the solutions is a crucial and challenging issue in a Banach space. If $p \neq 2$, a lot of conceptual difficulties arise in the passage from semilinear elliptic equations to quasilinear elliptic ones. Firstly we notice that the solutions of $\left(P_{\lambda}\right)$ correspond to critical points of the energy functional $I_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by setting

$$
\begin{equation*}
I_{\lambda}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{q} \int_{\Omega}\left(u^{+}\right)^{q} d x-\frac{1}{p^{*}} \int_{\Omega}\left(u^{+}\right)^{p^{*}} d x \tag{1.1}
\end{equation*}
$$

and every critical point of I_{λ} is degenerate in the classical sense given in a Hilbert space, namely the second derivative is never an isomorphism between the space $W_{0}^{1, p}(\Omega)$ and its dual one. Moreover in a Banach framework we also lose the Fredholm properties of the second derivatives at the critical points.

In [23], for $p \geq 2$, we furnished an interpretation of the multiplicity of a critical point of I_{λ} in terms of distinct critical points of functionals approximating I_{λ}, and having nondegenerate critical points in a weak sense, namely the second derivative in the critical point has a trivial nullspace. For each nondegenerate critical point of the approximating functional we can apply the estimates in $[19,20,22]$ and compute the critical groups of such approximating functional in the nondegenerate critical point by means of its Morse index, so that its multiplicity is exactly one. We underline that for $p \geq 2$ we can take advantage of the fact that the energy functional I_{λ} is C^{2} and the Morse index at each critical point u_{0}, denoted by $m\left(f, u_{0}\right)$, is well defined.

In the present paper we are interested to derive an interpretation of the multiplicity of a solution of $\left(P_{\lambda}\right)$ when $1<p<2$, which remained an open and difficult problem in literature. In this case we emphasize that the energy functional I_{λ} is never C^{2}, since $u \in W_{0}^{1, p}(\Omega) \mapsto \int_{\Omega}|\nabla u|^{p} d x \in \mathbb{R}$ is not C^{2}. The lack of regularity of I_{λ} is even greater when in addition $q \leq 2$, as the function $G_{0}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $G_{0}(s)=\frac{\lambda}{q}\left(s^{+}\right)^{q}+\frac{1}{p^{*}}\left(s^{+}\right)^{p^{*}}$ is not C^{2}.

We will face this problem via suitable approximations of the functional I_{λ}, as in [23]. Unfortunately when $1<p<2$, the approximating functionals continue to be C^{1}, not C^{2}, so that the results in $[19,22]$ cannot be applied. The main idea of this work consists in the introduction of some bilinear forms definited on a Hilbert space, which are inspired by the formal second derivatives of the approximating functionals. In this way we are able to compute the critical groups of the approximating functionals, by means of some differential notions, which have the same roles of the Morse indices in a regular setting, so that the multiplicity of a nondegenerate critical point is exactly one. This can be done, exploiting some recent results contained in the paper [16]. Despite these difficulties, we obtain the following multiplicity result of solutions for problem $\left(P_{\lambda}\right)$ with $1<p<2$, for small value of parameter λ, via the Morse relations and the domain topology. We extend the multiplicity result in [23, Theorem 1.6] to $1<p<2$, showing that the problem $\left(P_{\lambda}\right)$ has, for λ small, at least $\mathcal{P}_{1}(\Omega)$ distinct solutions or is near, in a suitable sense, to a quasilinear elliptic critical problem having at least $\mathcal{P}_{1}(\Omega)$ distinct solutions.

In what follows, we say that $\partial \Omega$ satisfies the interior sphere condition if for each $x_{0} \in \partial \Omega$ there exists a ball $B_{R}\left(x_{1}\right) \subset \Omega$ such that $\overline{B_{R}\left(x_{1}\right)} \cap \partial \Omega=\left\{x_{0}\right\}$.

Precisely, we prove the following main result.
Theorem 1.3. Assume that $\partial \Omega$ satisfies the interior sphere condition and that $N \geq p^{2}$, $1<p<2, p \leq q<p^{*}, p^{*}=N p /(N-p)$. There exists $\lambda^{*}>0$ such that, for any $\lambda \in\left(0, \lambda^{*}\right)$, either $\left(P_{\lambda}\right)$ has at least $\mathcal{P}_{1}(\Omega)$ distinct solutions or, if not, for any sequence $\left(\alpha_{n}\right)$, with $\alpha_{n}>0, \alpha_{n} \rightarrow 0$, there exists a sequence $\left(f_{n}\right)$ with $f_{n} \in C^{1}(\bar{\Omega}),\left\|f_{n}\right\|_{C^{1}} \rightarrow 0$, such that problem

$$
\left(P_{n}\right) \begin{cases}-\operatorname{div}\left(\left(|\nabla u|^{2}+\alpha_{n}\right)^{\frac{p-2}{2}} \nabla u\right) & \\ =\lambda u^{1+\alpha_{n}}\left(\alpha_{n}+u^{2+\alpha_{n}}\right)^{\frac{q-2-\alpha_{n}}{2+\alpha_{n}}}+u^{1+\alpha_{n}}\left(\alpha_{n}+u^{2+\alpha_{n}}\right)^{\frac{p^{*}-2-\alpha_{n}}{2+\alpha_{n}}}+f_{n} & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has at least $\mathcal{P}_{1}(\Omega)$ distinct solutions, for n large enough.
Theorem 1.3 is quantitative and variational in nature. We remark that if Ω is obtained by an open contractible domain cutting k holes we derive that the number of solutions of $\left(P_{\lambda}\right)$ is affected by k, whereas the category of Ω is 2 .

The previous result has been announced, without proof, in [35].
Remark 1.4. If we add the assumption $q>2$ to the previous ones, Theorem 1.3 still holds replacing $\left(P_{n}\right)$ with the simpler

$$
\left(\bar{P}_{n}\right) \begin{cases}-\operatorname{div}\left(\left(|\nabla u|^{2}+\alpha_{n}\right)^{\frac{p-2}{2}} \nabla u\right)=\lambda u^{q-1}+u^{p^{*}-1}+f_{n} & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Throughout the paper we use the following notations:
(1) $\|\cdot\|$ denotes the usual norm both in $W_{0}^{1, p}(\Omega)$ and in $W^{-1, p^{\prime}}(\Omega)$;
(2) $\|\cdot\|_{1,2}$ denotes the usual norm in $W_{0}^{1,2}(\Omega)$;
(3) $\|\cdot\|_{\infty}$ denotes the usual norm in $L^{\infty}(\Omega)$;
(4) $|\cdot|_{r}$ denotes the usual norm in $L^{r}(\Omega)$;
(5) $\|\cdot\|_{C^{1}(A)}$ denotes the usual norm in $C^{1}(A, \mathbb{R})$, where $A \subseteq X$ and X is a Banach space;
(6) $\langle\cdot, \cdot\rangle: W^{-1, p^{\prime}}(\Omega) \times W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ denotes the duality pairing;
(7) $B_{r}(u)=\left\{v \in W_{0}^{1, p}(\Omega):\|v-u\|<r\right\}$, where $u \in W_{0}^{1, p}(\Omega)$ and $r>0$.

2. Critical groups estimates via approximating functionals

In this section we introduce a class of functionals approximating the C^{1} energy functional $I_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by setting

$$
\begin{equation*}
I_{\lambda}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{q} \int_{\Omega}\left(u^{+}\right)^{q} d x-\frac{1}{p^{*}} \int_{\Omega}\left(u^{+}\right)^{p^{*}} d x \tag{2.1}
\end{equation*}
$$

associated to problem $\left(P_{\lambda}\right)$.
For any $\alpha>0$ and $f \in C^{1}(\bar{\Omega})$ we define

$$
\begin{align*}
J_{\alpha}(u)= & \frac{1}{p} \int_{\Omega}\left(\left(\alpha+|\nabla u|^{2}\right)^{\frac{p}{2}}\right) d x \\
& -\frac{\lambda}{q} \int_{\Omega}\left(\alpha+\left(u^{+}\right)^{2+\alpha}\right)^{\frac{q}{2+\alpha}} d x-\frac{1}{p^{*}} \int_{\Omega}\left(\alpha+\left(u^{+}\right)^{2+\alpha}\right)^{\frac{p^{*}}{2+\alpha}} d x \tag{2.2}\\
& J_{\alpha, f}(u)=J_{\alpha}(u)-\int_{\Omega} f u d x .
\end{align*}
$$

For any $\alpha \geq 0$ let us introduce $\Psi_{\alpha}: \mathbb{R}^{N} \rightarrow \mathbb{R}, G_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ and $g_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\begin{gather*}
\Psi_{\alpha}(\xi)=\frac{1}{p}\left(\alpha+|\xi|^{2}\right)^{\frac{p}{2}} \\
G_{\alpha}(t)=\frac{\lambda}{q}\left(\alpha+\left(t^{+}\right)^{2+\alpha}\right)^{\frac{q}{2+\alpha}}+\frac{1}{p^{*}}\left(\alpha+\left(t^{+}\right)^{2+\alpha}\right)^{\frac{p^{*}}{2+\alpha}} \tag{2.3}\\
g_{\alpha}(t)=G_{\alpha}^{\prime}(t) .
\end{gather*}
$$

Note that $\Psi_{\alpha} \in C^{2}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and $G_{\alpha} \in C^{2}(\mathbb{R}, \mathbb{R})$ when $\alpha>0$, while ψ_{0} is just C^{1} when $p \in(1,2)$ and G_{0} is C^{1} when $q \leq 2$.

It is immediate that

$$
I_{\lambda}(u)=\int_{\Omega} \Psi_{0}(\nabla u) d x-\int_{\Omega} G_{0}(u) d x, \quad J_{\alpha}(u)=\int_{\Omega} \Psi_{\alpha}(\nabla u) d x-\int_{\Omega} G_{\alpha}(u) d x
$$

By basic computations we infer the following lemma.
Lemma 2.1. If $p>1, r \in\left[p, p^{*}\right]$ and $\alpha>0$, let us denote by $P_{\alpha}, P, A_{\alpha}$ and A the functionals defined by

$$
\begin{array}{ll}
P_{\alpha}(u)=\int_{\Omega} \Psi_{\alpha}(\nabla u) d x & P(u)=\int_{\Omega} \Psi_{0}(\nabla u) d x \\
A_{\alpha}(u)=\frac{1}{r} \int_{\Omega}\left(\alpha+\left(u^{+}\right)^{2+\alpha}\right)^{\frac{r}{2+\alpha}} d x & A(u)=\frac{1}{r} \int_{\Omega}\left(u^{+}\right)^{r} d x
\end{array}
$$

Then P_{α}, P and A are in $C^{1}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right), A_{\alpha}$ is in $C^{2}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right)$, and, for any bounded $B \subset W_{0}^{1, p}(\Omega)$, we have

$$
\lim _{\alpha \rightarrow 0}\left\|P_{\alpha}-P\right\|_{C^{1}(B)}=0, \quad \lim _{\alpha \rightarrow 0}\left\|A_{\alpha}-A\right\|_{C^{1}(B)}=0
$$

Through the previous Lemma, we obtain the following result.
Theorem 2.2. Let $\lambda^{*}>0$ be defined by Theorem 1.2. If $\lambda \in\left(0, \lambda^{*}\right), p>1, q \in\left[p, p^{*}\right)$, $f \in C^{1}(\bar{\Omega})$ and $\alpha>0$, then J_{α} and $J_{\alpha, f}$ are $C^{1}\left(W_{0}^{1, p}(\Omega)\right)$ functionals and, for any bounded $B \subset W_{0}^{1, p}(\Omega)$, we have

$$
\begin{gathered}
\lim _{\alpha \rightarrow 0}\left\|J_{\alpha}-I_{\lambda}\right\|_{C^{1}(B)}=0 \\
\lim _{\|f\|_{\infty} \rightarrow 0}\left\|J_{\alpha, f}-J_{\alpha}\right\|_{C^{1}(B)}=0 .
\end{gathered}
$$

We now aim to prove that, for any $\alpha \in[0,1]$ and $f \in C^{1}(\bar{\Omega}), J_{\alpha, f}$ satisfies a local compactness condition. We begin to recall a classical definition in a reflexive Banach space, taken from [9, 31] and a recent result, established in [17, Proposition 3.5].
Definition 2.3. Let X be a reflexive Banach space and $D \subset X$. A map $H: D \rightarrow X^{\prime}$ is said to be of class $\left(S_{+}\right)$, if, for every sequence $\left(u_{k}\right)$ in D weakly convergent to u in X with

$$
\limsup _{k \rightarrow \infty}\left\langle H\left(u_{k}\right), u_{k}-u\right\rangle \leq 0,
$$

we have $\left\|u_{k}-u\right\| \rightarrow 0$.
Proposition 2.4. Let $f: X \rightarrow \mathbb{R}$ be a function of class C^{1}. Assume that f^{\prime} is of class $(S)_{+}$on $C \subset X$, then
(a) if C is bounded, then f satisfies (P.S.) condition on C;
(b) if C is closed and convex, then f is sequentially lower semicontinuos on C with respect to the weak topology;
(c) if C is closed and convex and if $\left(u_{k}\right)$ is a sequence in C weakly convergent to u with

$$
\limsup _{k \rightarrow \infty} f\left(u_{k}\right) \leq f(u)
$$

then $\left\|u_{k}-u\right\| \rightarrow 0$.

Next result provides a uniform local compactness property of the approximating functionals $J_{\alpha, f}$. It is based on [1, Theorem 3.4] (see also [15, Theorem 2.1]). For reader's convenience, we sketch the proof.
Theorem 2.5. For any $p>1$, there exists $R>0$ such that, for any $\alpha \in[0,1], f \in$ $C^{1}(\bar{\Omega}), \bar{u} \in W_{0}^{1, p}(\Omega)$, the functional $J_{\alpha, f}^{\prime}$ is of class $\left(S_{+}\right)$on $\overline{B_{R}(\bar{u})}$.

Proof. Once fixed $\alpha \in[0,1]$, let $H_{\alpha}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}$ denote the map

$$
H_{\alpha}(u)=\left\langle J_{\alpha}^{\prime}(u), \cdot\right\rangle
$$

so that $H_{\alpha}(u)=-\operatorname{div}\left(\nabla \Psi_{\alpha}(\nabla u)\right)-g_{\alpha}(u)$, where Ψ_{α} and g_{α} are defined by (2.3).
It is easy to see there exists $C>0$ such that

$$
\begin{array}{cl}
\left|\nabla \Psi_{\alpha}(\xi)\right| \leq|\xi|^{p-1} & \left|g_{\alpha}(s)\right| \leq C+C|s|^{p^{*}-1} \\
\nabla \Psi_{\alpha}(\xi) \cdot \xi \geq 1 / 2|\xi|^{p}-C & -g_{\alpha}(s) s \geq-C-C|s|^{p^{*}}
\end{array}
$$

for any $\alpha \in[0,1], \xi \in \mathbb{R}^{N}, s \in \mathbb{R}$.
Moreover, by the monotonicity of the real function $t \in \mathbb{R} \mapsto t\left(\alpha+t^{2}\right)^{\frac{p-2}{2}}$, we infer that

$$
\left(\nabla \Psi_{\alpha}(\xi)-\nabla \Psi_{\alpha}(\eta)\right) \cdot(\xi-\eta)>0
$$

for any $\xi, \eta \in \mathbb{R}^{N}$ with $\eta \neq \xi$.
This means that $\nabla \Psi_{\alpha}$ and $-g_{\alpha}$ satisfy the assumptions required by Theorem 3.4 in [1], so there exists $R>0$ such that H_{α} is of class $\left(S_{+}\right)$on $\overline{B_{R}(\bar{u})}$. Hence, for any $f \in C^{1}(\bar{\Omega})$, it is immediate that $J_{\alpha, f}$ is of class $\left(S_{+}\right)$on $\overline{B_{R}(\bar{u})}$.

Remark 2.6. Taking account of (a) in Proposition 2.4, the previous theorem assures there exists $R>0$ such that $J_{\alpha, f}$ satisfies (P.S.) condition in $\overline{B_{R}(\bar{u})}$, for any $\alpha \in[0,1]$, $f \in C^{1}(\bar{\Omega})$ and $\bar{u} \in W_{0}^{1, p}(\Omega)$.

Now let us consider a critical point u_{0} of $J_{\alpha, f}$, with $\alpha \geq 0$ and $f \in C^{1}(\bar{\Omega})$. According to [16, 17] and references therein, $u_{0} \in C^{1, \delta}(\bar{\Omega})$, for some $\delta \in(0,1]$. It is crucial to give a notion of Morse index, which is not standard, as $J_{\alpha, f}$ is not of class C^{2}.

If $p \in(1,2), \alpha>0$ and $u \in W^{1, \infty}(\Omega)$, let us denote by $B_{\alpha}(u)$ the bilinear form on $W_{0}^{1,2}(\Omega)$ defined by

$$
B_{\alpha}(u)\left(z_{1}, z_{2}\right)=\int_{\Omega} \Psi_{\alpha}^{\prime \prime}(\nabla u)\left[\nabla z_{1}, \nabla z_{2}\right] d x-\int_{\Omega} g_{\alpha}^{\prime}(u) z_{1} z_{2} d x
$$

so that

$$
\begin{aligned}
B_{\alpha}(u)\left(z_{1}, z_{2}\right) & =\int_{\Omega}\left(\alpha+|\nabla u|^{2}\right)^{\frac{p-2}{2}}\left(\nabla z_{1} \mid \nabla z_{2}\right) d x \\
+(p-2) & \int_{\Omega}\left(\alpha+|\nabla u|^{2}\right)^{\frac{p-4}{2}}\left(\nabla u \mid \nabla z_{1}\right)\left(\nabla u \mid \nabla z_{2}\right) d x \\
& -\lambda \int_{\Omega}\left(\alpha+\alpha^{2}+(q-1)\left(u^{+}\right)^{2+\alpha}\right)\left(\alpha+\left(u^{+}\right)^{2+\alpha}\right)^{\frac{q-4-2 \alpha}{2+\alpha}}\left(u^{+}\right)^{\alpha} z_{1} z_{2} d x \\
& -\int_{\Omega}\left(\alpha+\alpha^{2}+\left(p^{*}-1\right)\left(u^{+}\right)^{2+\alpha}\right)\left(\alpha+\left(u^{+}\right)^{2+\alpha}\right)^{\frac{p^{*}-4-2 \alpha}{2+\alpha}}\left(u^{+}\right)^{\alpha} z_{1} z_{2} d x
\end{aligned}
$$

In addition, we introduce $Q_{u}^{\alpha}: W_{0}^{1,2}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
Q_{u}^{\alpha}(z)=B_{\alpha}(u)(z, z) .
$$

The definition of $B_{\alpha}(u)$ is inspired by the formal second derivative of $J_{\alpha, f}$ in u.
Let us point out that, as $p<2$, for any $u \in W^{1, \infty}(\Omega), B_{\alpha}(u)$ and Q_{u}^{α} are well defined on $W_{0}^{1,2}(\Omega)$, but not on $W_{0}^{1, p}(\Omega)$. In particular, $Q_{u_{0}}^{\alpha}$ is a smooth quadratic form on $W_{0}^{1,2}(\Omega)$ and we define the Morse index of $J_{\alpha, f}$ at u_{0} (denoted by $m\left(J_{\alpha, f}, u_{0}\right)$) as the supremum of the dimensions of the linear subspaces of $W_{0}^{1,2}(\Omega)$ where $Q_{u_{0}}^{\alpha}$ is negative definite and the large Morse index of $J_{\alpha, f}$ at u_{0} (denoted by $\left.m^{*}\left(J_{\alpha, f}, u_{0}\right)\right)$ as the supremum of the dimensions of the linear subspaces of $W_{0}^{1,2}(\Omega)$ where $Q_{u_{0}}^{\alpha}$ is negative semidefinite. We clearly have $m\left(J_{\alpha, f}, u_{0}\right) \leq m^{*}\left(J_{\alpha, f}, u_{0}\right)<+\infty$.

The introduction of a suitable notion of Morse index will be crucial to derive estimates of some topological objects, like the critical groups. For reader's convenience, we recall some definitions (see [13, 14]).
Definition 2.7. Let \mathbb{G} be an abelian group, X be a Banach space, $f \in C^{1}(X, \mathbb{R})$ and u a critical point of f. The k-th critical group of f at u is defined by

$$
C_{k}(f, u)=H^{k}\left(f^{c}, f^{c} \backslash\{u\}\right)
$$

where $k \in \mathbb{N}, c=f(u), f^{c}=\{v \in X: f(v) \leq c\}$ and $H^{k}\left(f^{c}, f^{c} \backslash\{u\}\right)$ stands for the k-th Alexander-Spanier cohomology group of the pair $\left(f^{c}, f^{c} \backslash\{u\}\right)$ with coefficients in $\mathbb{G}($ see $[32])$.
Definition 2.8. We denote $i(f, u)(t)$ the Morse polynomial of f in u, defined by

$$
i(f, u)(t)=\sum_{k=0}^{+\infty} \operatorname{dim} C_{k}(f, u) t^{k}
$$

We call multiplicity of u the number $i(f, u)(1) \in \mathbb{N} \cup\{+\infty\}$.
Next result gives a description of the critical groups of the functional $J_{\alpha, f}$ at u_{0} in terms of the Morse index. The proof derives directly from [17, Theorem 2.3] (see also [16, Theorem 1.3]).

Theorem 2.9. Let $p \in(1,2), q \in\left[p, p^{*}\right), \lambda>0, f \in C^{1}(\bar{\Omega})$ and $\alpha>0$. If u_{0} is a critical point of $J_{\alpha, f}$ and

$$
m\left(J_{\alpha, f}, u_{0}\right)=m^{*}\left(J_{\alpha, f}, u_{0}\right),
$$

then u_{0} is an isolated critical point of $J_{\alpha, f}$ and we have

$$
\begin{cases}C_{m}\left(J_{\alpha, f}, u_{0}\right) \approx \mathbb{G} & \text { if } m=m\left(J_{\alpha, f}, u_{0}\right) \\ C_{m}\left(J_{\alpha, f}, u_{0}\right)=\{0\} & \text { if } m \neq m\left(J_{\alpha, f}, u_{0}\right)\end{cases}
$$

Remark 2.10. If the assumptions of the previous theorem are satisfied, then the multiplicity of u_{0} is 1 , namely $i\left(J_{\alpha, f}, u_{0}\right)(1)=1$.

In order to prove Theorem 1.3, we recall an abstract theorem, proved in [18] (see also [6] and [13]).

Theorem 2.11. Let A be a open subset of a Banach space X. Let f be a C^{1} functional on A and $u \in A$ be an isolated critical point of f. Assume that there exists an open neighborhood U of u such that $\bar{U} \subset A, u$ is the only critical point of f in \bar{U} and f satisfies the Palais-Smale condition in \bar{U}.
Then there exists $\bar{\mu}>0$ such that, for any $g \in C^{1}(A, \mathbb{R})$ such that

- $\|f-g\|_{C^{1}(A)}<\bar{\mu}$,
- g satisfies the Palais-Smale condition in \bar{U},
- g has a finite number $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ of critical points in U,
we have

$$
\sum_{j=1}^{m} i\left(g, u_{j}\right)(t)=i(f, u)(t)+(1+t) z(t)
$$

where $z(t)$ is a formal series with coefficients in $\mathbb{N} \cup\{+\infty\}$.

3. The finite dimensional reduction

From now on, we assume that $p \in(1,2)$. Let $\lambda \in\left(0, \lambda^{*}\right)$, where $\lambda^{*}>0$ is defined by Theorem 1.2. If $\left(P_{\lambda}\right)$ has at least $\mathcal{P}_{1}(\Omega)$ distinct solutions, then the assert of Theorem 1.3 is proved, otherwise I_{λ} has a finite number of isolated critical points $\bar{u}_{1}, \ldots \bar{u}_{k}$ having multiplicities $\bar{m}_{1}, \ldots \bar{m}_{k}$ where

$$
1 \leq k<\mathcal{P}_{1}(\Omega) \quad \text { and } \quad \sum_{j=1}^{k} \bar{m}_{j} \geq \mathcal{P}_{1}(\Omega)
$$

Let $\left(\alpha_{n}\right)$ be a sequence such that $\alpha_{n} \rightarrow 0$ and $J_{\alpha_{n}}$ be defined by (2.2). If $J_{\alpha_{n}}$ has at least $\mathcal{P}_{1}(\Omega)$ distinct critical points, then we just choose $f_{n}=0$, otherwise $J_{\alpha_{n}}$ has $h_{n}<\mathcal{P}_{1}(\Omega)$ isolated critical points $u_{1}, \ldots u_{h_{n}}$, having multiplicities $m_{1}, \ldots m_{h_{n}}$.

For simplicity, we will often omit the dependence from n of u_{i} and their related objects. Let R be defined by Theorem 2.5, $R_{1} \in(0, R]$ be such that, the sets $\overline{B_{R_{1}}\left(\bar{u}_{j}\right)}$ are pairwise disjoint, and denote by

$$
\begin{equation*}
A=\bigcup_{j=1}^{k} B_{R_{1}}\left(\bar{u}_{j}\right) \tag{3.1}
\end{equation*}
$$

Theorems 2.2, 2.11 and Remark 2.6 assure that, if n is sufficiently large, then $h_{n} \geq k$, any $u_{i} \in A$ and

$$
\begin{equation*}
\sum_{i=1}^{h_{n}} m_{i} \geq \sum_{j=1}^{k} \bar{m}_{j} \geq \mathcal{P}_{1}(\Omega) \tag{3.2}
\end{equation*}
$$

For any $i \in\left\{1, \ldots h_{n}\right\}$, the derivative of the smooth quadratic form $Q_{u_{i}}^{\alpha_{n}}: W_{0}^{1,2}(\Omega) \rightarrow \mathbb{R}$ is a compact perturbation of the Riesz isomorphism, so it is standard that there exists a direct sum decomposition

$$
W_{0}^{1,2}(\Omega)=V_{i} \oplus \widehat{W}_{i}
$$

such that

$$
\begin{array}{ll}
\operatorname{dim} V_{i}=m_{i}^{*}=m^{*}\left(J_{\alpha_{n}}, u_{i}\right)<+\infty, & \\
\widehat{W}_{i}=\left\{w \in W_{0}^{1,2}(\Omega): \int_{\Omega} v w d x=0 \text { for any } v \in V_{i}\right\}, & \\
Q_{u_{i}}^{\alpha_{n}}(v+w)=Q_{u_{i}}^{\alpha_{n}}(v)+Q_{u_{i}}^{\alpha_{n}}(w) & \text { for any } v \in V_{i} \text { and } w \in \widehat{W}_{i}, \\
Q_{u_{i}}^{\alpha_{n}}(v) \leq 0 & \text { for any } v \in V_{i}, \\
Q_{u_{i}}^{\alpha_{n}}(w)>0 & \text { for any } w \in \widehat{W}_{i} \backslash\{0\} .
\end{array}
$$

Moreover, either $V_{i}=\{0\}$ or $V_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{m_{i}^{*}}\right\}$ and, for any $j=1, \ldots m_{i}^{*}$, there is $\lambda_{j} \leq 0$ such that $e_{j} \in W_{0}^{1,2}(\Omega) \backslash\{0\}$ is a solution of

$$
B_{\alpha_{n}}\left(u_{i}\right)\left(z, e_{j}\right)=\lambda_{j} \int_{\Omega} z e_{j} d x
$$

for any $z \in W_{0}^{1,2}(\Omega)$. Hence e_{j} weakly solves the equation

$$
-\operatorname{div}\left[\Psi_{\alpha_{n}}^{\prime \prime}\left(\nabla u_{i}\right) \nabla e_{j}\right]-g_{\alpha_{n}}^{\prime}\left(u_{i}\right) e_{j}=\lambda_{j} e_{j} \quad \text { in } W^{-1, p^{\prime}}(\Omega)
$$

where $\Psi_{\alpha_{n}}$ and $g_{\alpha_{n}}$ are defined according to (2.3).
Therefore we have

$$
\int_{\Omega} \Psi_{\alpha_{n}}^{\prime \prime}\left(\nabla u_{i}\right)\left[\nabla e_{j}\right]^{2} d x-\int_{\Omega} g_{\alpha_{n}}^{\prime}\left(u_{i}\right) e_{j}^{2} d x=\lambda_{j} \int_{\Omega} e_{j}^{2} d x \leq 0 .
$$

On the other hand
$\Psi_{\alpha_{n}}^{\prime \prime}(\nabla u(x))[\xi]^{2} \geq \frac{(p-1)}{\left(\alpha_{n}+\|\nabla u\|_{\infty}^{2}\right)^{\frac{2-p}{2}}}|\xi|^{2} \quad$ for a.e. $x \in \Omega$ and $\forall \xi \in \mathbb{R}^{N}, \quad$ if $\|\nabla u\|_{\infty}<+\infty$,
whence

$$
\frac{(p-1)}{\left(\alpha_{n}+\left\|\nabla u_{i}\right\|_{\infty}^{2}\right)^{\frac{2-p}{2}}} \int_{\Omega}\left|\nabla e_{j}\right|^{2} d x-\int_{\Omega} g_{\alpha_{n}}^{\prime}\left(u_{i}\right) e_{j}^{2} d x \leq 0 .
$$

Since $g_{\alpha_{n}}^{\prime}\left(u_{i}\right) \in L^{\infty}(\Omega)$, it is standard (see e.g. [28]) that $e_{j} \in L^{\infty}(\Omega)$, whence $V_{i} \subseteq W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega) \subseteq W_{0}^{1, p}(\Omega)$, as $p<2$.

Now we introduce

$$
\widetilde{W}_{i}=\left\{w \in L^{1}(\Omega): \int_{\Omega} v w d x=0 \quad \text { for any } v \in V_{i}\right\},
$$

then any \widetilde{W}_{i} is a closed linear subspace of $L^{1}(\Omega)$ and

$$
L^{1}(\Omega)=V_{i} \oplus \widetilde{W}_{i} .
$$

Set $W_{i}=\tilde{W}_{i} \cap W_{0}^{1, p}(\Omega)$ which is a closed linear subspace of $W_{0}^{1, p}(\Omega)$, we infer

$$
W_{0}^{1, p}(\Omega)=V_{i} \oplus W_{i} .
$$

Therefore for any $i=1, \ldots h_{n}$, there are V_{i} and W_{i} subspaces of $W_{0}^{1, p}(\Omega)$ such that

- $W_{0}^{1, p}(\Omega)=V_{i} \oplus W_{i}$;
- $V_{i} \subset L^{\infty}(\Omega) \cap W_{0}^{1,2}(\Omega) \subset W_{0}^{1, p}(\Omega)$ with $\operatorname{dim}\left(V_{i}\right)=m^{*}\left(J_{\alpha_{n}}, u_{i}\right)$;
- $\int_{\Omega} v w=0$ for any $v \in V_{i}, w \in W_{i}$.

According to [27, 25, 29, 33, 34], $u_{i} \in C^{1, \beta_{i}}(\bar{\Omega})$ for some $\beta_{i} \in(0,1]$ (see also Theorems 3.1 and 3.2 in [23]), then we infer that $e_{j} \in C^{1}(\bar{\Omega})$ (see Theorem 8.8 and Theorem 8.10 in [26]), so that $V_{i} \subset C^{1}(\bar{\Omega})$.

Setting

$$
\begin{equation*}
V^{n}=V_{1}+V_{2}+\cdots+V_{h_{n}} \quad \text { and } \quad W^{n}=\bigcap_{i=1}^{h_{n}} W_{i} \tag{3.4}
\end{equation*}
$$

we still have:

- $W_{0}^{1, p}(\Omega)=V^{n} \oplus W^{n}$;
- $V^{n} \subset C^{1}(\bar{\Omega})$ is finite dimensional and $W^{n} \subset W_{i}$ for any $i=1, \ldots h_{n}$;
- $\int_{\Omega} v w=0$ for any $v \in V^{n}, w \in W^{n}$.

We recall the following regularity results (see Theorems 3.1 and 3.2 in [17]).
Theorem 3.1. For every $u_{0} \in W_{0}^{1, p}(\Omega)$, there exists $r>0$ such that, for any $u \in W_{0}^{1, p}(\Omega)$ and $f \in L^{\infty}(\Omega)$ satisfying

$$
\left\{\begin{array}{l}
\int_{\Omega}\left[\nabla \Psi_{\alpha_{n}}(\nabla u) \cdot \nabla v-g_{\alpha_{n}}(u) v\right] d x=\int_{\Omega} f v d x \quad \forall v \in W_{0}^{1, p}(\Omega) \\
\left\|\nabla u-\nabla u_{0}\right\|_{p} \leq r,
\end{array}\right.
$$

we have $u \in L^{\infty}(\Omega)$ and

$$
\|u\|_{\infty} \leq C\left(\|f\|_{\infty}\right)
$$

Theorem 3.2. Assume that $\partial \Omega$ is of class $C^{1, \delta}$ for some $\delta \in(0,1]$. Then there exists $\beta \in(0,1]$ such that any solution u of

$$
\left\{\begin{array}{l}
u \in W_{0}^{1, p}(\Omega), \\
-\operatorname{div}\left[\nabla \Psi_{\alpha_{n}}(\nabla u)\right]=w_{0}-\operatorname{div} w_{1} \quad \text { in } W^{-1, p^{\prime}}(\Omega),
\end{array}\right.
$$

with $w_{0} \in L^{\infty}(\Omega)$ and $w_{1} \in C^{0, \delta}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$, belongs also to $C^{1, \beta}(\bar{\Omega})$ and we have

$$
\|u\|_{C^{1, \beta}} \leq C\left(\left\|w_{0}\right\|_{\infty},\left\|w_{1}\right\|_{C^{0, \delta}}\right)
$$

Lemma 3.3. There are $\tilde{R}>0, M>0$ and $\beta \in(0,1]$ such that for any $i \in\left\{1, \ldots h_{n}\right\}$ and $v \in V^{n} \cap \overline{B_{\tilde{R}}(0)}$, the derivative of the functional $F_{n, i, v}: W^{n} \rightarrow \mathbb{R}$ defined by

$$
F_{n, i, v}(w)=J_{\alpha_{n}}\left(u_{i}+v+w\right)
$$

is of class $(S)_{+}$in $W^{n} \cap \overline{B_{\tilde{R}}(0)}$ and if $w \in W^{n} \cap B_{\tilde{R}}(0)$ is a critical point of $F_{n, i, v}$, then $v+w \in C^{1, \beta}(\bar{\Omega})$, with $\|v+w\|_{C^{1, \beta}} \leq M$.
Moreover the sets $\overline{B_{2 \tilde{R}}\left(u_{i}\right)}$ are disjointed and $\bigcup_{i=1}^{h_{n}} \overline{B_{2 \tilde{R}}\left(u_{i}\right)} \subset A$, where A is introduced by (3.1).

Proof. Let $R>0$ be introduced by Theorem 2.5 and $R_{2} \in(0, R / 2]$ be such that $\bigcup_{i=1}^{h_{n}} \overline{B_{2 R_{2}}\left(u_{i}\right)} \subset A$ and

$$
i_{1} \neq i_{2} \quad \Rightarrow \quad \overline{B_{2 R_{2}}\left(u_{i_{1}}\right)} \cap \overline{B_{2 R_{2}}\left(u_{i_{2}}\right)}=\emptyset .
$$

As $2 R_{2} \leq R$, Theorem 2.5 assures that $J_{\alpha_{n}}^{\prime}$ is of class $(S)_{+}$in any $\overline{B_{2 R_{2}}\left(u_{i}\right)}$. Hence, for any $i \in\left\{1, \ldots h_{n}\right\}$ and for any $v \in V \cap \overline{B_{R_{2}}(0)}$, the derivative of the functional

$$
w \in W \quad \mapsto \quad J_{\alpha_{n}}\left(u_{i}+v+w\right) \in \mathbb{R}
$$

is of class $(S)_{+}$in $W \cap \overline{B_{R_{2}}(0)}$.
Let $\bar{n}=\operatorname{dim} V^{n}$ and $\left(\bar{e}_{j}\right)_{1 \leq j \leq \bar{n}}$ be an orthonormal basis of V^{n} according to the L^{2} norm. There is $K>0$ such that

$$
\begin{equation*}
\left\|\sum_{j=1}^{\bar{n}}\left\langle J_{\alpha_{n}}^{\prime}(u), \bar{e}_{j}\right\rangle \bar{e}_{j}\right\|_{\infty} \leq K \quad \forall u \in \bigcup_{i=1}^{h_{n}} \overline{B_{2 R_{2}}\left(u_{i}\right)} . \tag{3.5}
\end{equation*}
$$

If $i \in\left\{1, \ldots h_{n}\right\}, v \in V^{n} \cap \overline{B_{R_{2}}(0)}$ and $w \in W^{n} \cap B_{R_{2}}(0)$ is a critical point of $F_{n, i, v}$, then for any $u \in W_{0}^{1, p}(\Omega)$

$$
\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+w\right), u\right\rangle=\int_{\Omega} f_{i}(v, w) u d x
$$

where $f_{i}(v, w)=\sum_{j=1}^{\bar{n}}\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+w\right), \bar{e}_{j}\right\rangle \bar{e}_{j} \in L^{\infty}(\Omega)$ and by $(3.5)\left\|f_{i}(v, w)\right\|_{\infty} \leq K$. Hence, by Theorem 3.1, there is $\tilde{R} \in\left(0, R_{2}\right]$ such that if $\bar{v} \in V^{n} \cap \overline{B_{\tilde{R}}(0)}$ and $\bar{w} \in$ $W^{n} \cap B_{\tilde{R}}(0)$ is a critical point of $F_{n, i, \bar{v}}$, then $u_{i}+\bar{v}+\bar{w} \in L^{\infty}(\Omega)$ and $\left\|u_{i}+\bar{v}+\bar{w}\right\|_{\infty} \leq C(K)$. So, applying Theorem 3.2 with $w_{1}=0$, the proof is completed.

Lemma 3.4. For any $M>0$, there exist $r, \delta>0$ such that

$$
B_{\alpha_{n}}(u)(w, w) \geq \delta \int_{\Omega}|\nabla w|^{2} d x
$$

for every $u \in \bigcup_{i=1}^{h_{n}} \overline{B_{r}\left(u_{i}\right)} \cap W^{1, \infty}(\Omega)$ such that $\|u\|_{\infty}+\|\nabla u\|_{\infty} \leq M$ and every $w \in$ $W^{n} \cap W_{0}^{1,2}(\Omega)$.

Proof. By contradiction, let $i \in\left\{1, \ldots h_{n}\right\}, M>0,\left(v_{k}\right)$ in $W_{0}^{1, p}(\Omega) \cap W^{1, \infty}(\Omega)$ and $\left(w_{k}\right) \subset W^{n} \cap W_{0}^{1,2}(\Omega)$ be such that $v_{k} \rightarrow u_{i},\left\|v_{k}\right\|_{\infty}+\left\|\nabla v_{k}\right\|_{\infty} \leq M$ and

$$
\begin{equation*}
B_{\alpha_{n}}\left(v_{k}\right)\left(w_{k}, w_{k}\right)<\frac{1}{k} \int_{\Omega}\left|\nabla w_{k}\right|^{2} d x . \tag{3.6}
\end{equation*}
$$

Without loss of generality, we may assume that $\left|\nabla w_{k}\right|_{2}=1$. Then, up to a subsequence, $\left(w_{k}\right)$ is weakly convergent to some w in $W_{0}^{1,2}(\Omega) \cap W^{n}$. Since $\left\|v_{k}\right\|_{\infty} \leq M$ and $\left(w_{k}\right)$ strongly converges to w in $L^{2}(\Omega)$, by Lebesgue's dominated convergence theorem, we infer

$$
\int_{\Omega} g_{\alpha_{n}}^{\prime}\left(u_{i}\right) w^{2} d x=\lim _{k \rightarrow \infty} \int_{\Omega} g_{\alpha_{n}}^{\prime}\left(v_{k}\right) w_{k}^{2} d x
$$

Combining with Fatou's Lemma and (3.6), we get

$$
0 \leq B_{\alpha_{n}}\left(u_{i}\right)(w, w) \leq \liminf _{k \rightarrow \infty} B_{\alpha_{n}}\left(v_{k}\right)\left(w_{k}, w_{k}\right) \leq \limsup _{k \rightarrow \infty} B_{\alpha_{n}}\left(v_{k}\right)\left(w_{k}, w_{k}\right) \leq 0
$$

whence, in particular, $w=0$.
As $\left\|\nabla v_{k}\right\|_{\infty} \leq M$, taking account of (3.3), there is $c=c\left(\alpha_{n}, p, M\right)>0$ such that

$$
c\left|\nabla w_{k}(x)\right|^{2} \leq \Psi_{\alpha_{n}}^{\prime \prime}\left(\nabla v_{k}(x)\right)\left[\nabla w_{k}(x)\right]^{2} \quad \text { a.e. in } \Omega .
$$

Since $\left|\nabla w_{k}\right|_{2}=1$, a contradiction follows as

$$
c \leq \lim _{k \rightarrow \infty} \int_{\Omega} \Psi_{\alpha_{n}}^{\prime \prime}\left(\nabla v_{k}\right)\left[\nabla w_{k}\right]^{2} d x=\lim _{k \rightarrow \infty}\left(B_{\alpha_{n}}\left(v_{k}\right)\left(w_{k}, w_{k}\right)+\int_{\Omega} g_{\alpha_{n}}^{\prime}\left(v_{k}\right) w_{k}^{2} d x\right)=0
$$

We recall a result relating the minimality in the C^{1}-topology and that in the $W_{0}^{1, p}$ topology. For the proof, involving Theorem 3.2, see Theorem 3.6 in [17] and references therein.

Theorem 3.5. Assume that $\partial \Omega$ of class $C^{1, \beta}$ and that $u_{0} \in W_{0}^{1, p}(\Omega) \cap C^{1, \beta}(\bar{\Omega})$ for some $\beta \in(0,1]$. Suppose also that $W_{0}^{1, p}(\Omega)=V \oplus W$, where V is a finite dimensional subspace of $W_{0}^{1, p}(\Omega)$, W is closed in $W_{0}^{1, p}(\Omega)$ and the projection $P_{V}: W_{0}^{1, p}(\Omega) \rightarrow V$, associated with the direct sum decomposition, is continuous from the topology of $L^{1}(\Omega)$ to that of V.

If u_{0} is a strict local minimum for the functional $J_{\alpha_{n}}$ along $u_{0}+\left(W \cap C^{1}(\bar{\Omega})\right)$ for the $C^{1}(\bar{\Omega})$-topology, then u_{0} is a strict local minimum of $J_{\alpha_{n}}$ along $u_{0}+W$ for the $W_{0}^{1, p}(\Omega)$ topology.
Lemma 3.6. If $u, v \in W^{1, \infty}(\Omega)$, then

$$
\begin{gather*}
J_{\alpha_{n}}(v)=J_{\alpha_{n}}(u)+\left\langle J_{\alpha_{n}}^{\prime}(u), v-u\right\rangle+\int_{0}^{1}(1-t) B_{\alpha_{n}}(u+t(v-u))(v-u, v-u) d t \tag{3.7}\\
\left\langle J_{\alpha_{n}}^{\prime}(v)-J_{\alpha_{n}}^{\prime}(u), z\right\rangle=\int_{0}^{1} B_{\alpha_{n}}(u+t(v-u))(v-u, z) d t \quad \forall z \in W_{0}^{1,2}(\Omega) . \tag{3.8}
\end{gather*}
$$

Proof. Let $\Psi_{\alpha_{n}}$ and $G_{\alpha_{n}}$ be defined according to (2.3), by Lemma 2.1

$$
\begin{equation*}
z \in W_{0}^{1, p}(\Omega) \mapsto \int_{\Omega} G_{\alpha_{n}}(z(x)) d x \quad \text { belongs to } C^{2}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right) \tag{3.9}
\end{equation*}
$$

As $\Psi_{\alpha_{n}} \in C^{2}\left(\mathbb{R}^{N}, \mathbb{R}\right)$, for any $\xi, \eta \in \mathbb{R}^{N}$

$$
\Psi_{\alpha_{n}}(\eta)=\Psi_{\alpha_{n}}(\xi)+\left(\nabla \Psi_{\alpha_{n}}(\xi) \mid(\eta-\xi)\right)+\int_{0}^{1}(1-t) \Psi_{\alpha_{n}}^{\prime \prime}(\xi+t(\eta-\xi))[\eta-\xi]^{2} d t
$$

so, a.e.in Ω

$$
\begin{aligned}
& \Psi_{\alpha_{n}}(\nabla v(x))=\Psi_{\alpha_{n}}(\nabla u(x))+\left(\nabla \Psi_{\alpha_{n}}(\nabla u(x)) \mid(\nabla v(x)-\nabla u(x))\right) \\
& +\int_{0}^{1}(1-t) \Psi_{\alpha_{n}}^{\prime \prime}(\nabla u(x)+t(\nabla v(x)-\nabla u(x)))[\nabla v(x)-\nabla u(x)]^{2} d t .
\end{aligned}
$$

As $(x, t) \mapsto(1-t) \Psi_{\alpha_{n}}^{\prime \prime}(\nabla u(x)+t(\nabla v(x)-\nabla u(x)))[\nabla v(x)-\nabla u(x)]^{2}$ belongs to $L^{1}([0,1] \times \Omega)$, Fubini's Theorem gives that

$$
\begin{gathered}
\int_{\Omega} \Psi_{\alpha_{n}}(\nabla v(x)) d x=\int_{\Omega} \Psi_{\alpha_{n}}(\nabla u(x)) d x+\int_{\Omega}\left(\nabla \Psi_{\alpha_{n}}(\nabla u(x)) \mid(\nabla v(x)-\nabla u(x))\right) d x \\
\quad+\int_{0}^{1}\left(\int_{\Omega} \Psi_{\alpha_{n}}^{\prime \prime}(\nabla u(x)+t(\nabla v(x)-\nabla u(x)))[\nabla v(x)-\nabla u(x)]^{2} d x\right) d t
\end{gathered}
$$

so, by (3.9), we infer (3.7).

Moreover there is $C=C\left(\alpha_{n}\right)>0$ such that

$$
\left|\Psi_{\alpha_{n}}^{\prime \prime}(\eta)\left[\xi_{1}, \xi_{2}\right]\right| \leq C\left|\xi_{1}\right|\left|\xi_{2}\right| \quad \forall \eta, \xi_{1}, \xi_{2} \in \mathbb{R}^{N}
$$

Hence, for any $u, v \in W^{1, \infty}(\Omega)$ and $z \in W_{0}^{1,2}(\Omega)$,
$(1-t) \Psi_{\alpha_{n}}^{\prime \prime}(\nabla u(x)+t(\nabla v(x)-\nabla u(x)))[\nabla v(x)-\nabla u(x), \nabla z(x)]$ belongs to $L^{1}([0,1] \times \Omega)$,
so (3.8) follows by Fubini's Theorem together with (3.9).
Theorem 3.7. For any $i \in\left\{1, \ldots h_{n}\right\}$, u_{i} is a local strict minimum point of $J_{\alpha_{n}}$ along $u_{i}+W^{n}$, according to the topology of $W_{0}^{1, p}(\Omega)$.

Proof. Let us fix $i \in\left\{1, \ldots h_{n}\right\}$ and $M_{i}>\left\|u_{i}\right\|_{C^{1}}$. According to Lemma 3.4, there are $r_{i}, \delta_{i}>0$ such that

$$
\begin{equation*}
B_{\alpha_{n}}(u)(w, w) \geq \delta_{i} \int_{\Omega}|\nabla w|^{2} d x \quad \forall u \in B_{r_{i}}\left(u_{i}\right) \cap C^{1}(\bar{\Omega}),\|u\|_{C^{1}} \leq M_{i} \tag{3.10}
\end{equation*}
$$

Let us choose $k_{i}>0$ so that

$$
\left\|u_{i}\right\|_{C^{1}}+k_{i}<M_{i} \quad \text { and } \quad\left\{u \in C^{1}(\bar{\Omega}):\|u\|_{C^{1}} \leq k_{i}\right\} \subset B_{r_{i}}(0) .
$$

If $w \in W^{n} \cap C^{1}(\bar{\Omega})$ and $\|w\|_{C^{1}} \leq k_{i}$, by (3.10) and (3.7) we infer

$$
J_{\alpha_{n}}\left(u_{i}+w\right)=J_{\alpha_{n}}\left(u_{i}\right)+\int_{0}^{1}(1-t) B_{\alpha_{n}}\left(u_{i}+t w\right)(w, w) d t \geq J_{\alpha_{n}}\left(u_{i}\right)+\frac{\delta_{i}}{2} \int_{\Omega}|\nabla w|^{2} d x
$$

so u_{i} is a local strict minimum point of $J_{\alpha_{n}}$ along $u_{i}+W^{n}$, according to the topology of $C^{1}(\bar{\Omega})$. Finally we apply Theorem 3.5.

Theorem 3.8. There exist $M, r>0, \beta \in(0,1]$ and $\varrho \in(0, r]$ such that for any $i \in$ $\left\{1, \ldots h_{n}\right\}$ and $v \in V^{n} \cap \overline{B_{\varrho}(0)}$ there exists one and only one $\psi_{i}(v) \in W^{n} \cap B_{r}(0)$ such that

$$
J_{\alpha_{n}}\left(u_{i}+v+\psi_{i}(v)\right) \leq J_{\alpha_{n}}\left(u_{i}+v+w\right) \quad \forall w \in W^{n} \cap \overline{B_{r}(0)}
$$

moreover $v+\psi_{i}(v) \in C^{1, \beta}(\bar{\Omega}),\left\|v+\psi_{i}(v)\right\|_{C^{1, \beta}(\bar{\Omega})} \leq M$ and $\psi_{i}(v)$ is the only element of $W^{n} \cap \overline{B_{r}(0)}$ such that

$$
\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+\psi_{i}(v)\right), w\right\rangle=0 \quad \forall w \in W^{n}
$$

Furthermore, denoting by

$$
\begin{equation*}
U_{i}=u_{i}+\left(V^{n} \cap B_{\varrho}(0)\right)+\left(W^{n} \cap B_{r}(0)\right), \tag{3.11}
\end{equation*}
$$

we have $\overline{U_{i}} \cap \overline{U_{j}}=\emptyset$ if $i \neq j$ and $\bigcup_{i=1}^{h_{n}} \overline{U_{i}} \subset A$, where A is the open bounded set defined by (3.1).
Finally, there exists $\delta>0$ such that

$$
\begin{equation*}
B_{\alpha_{n}}\left(u_{i}+u\right)(w, w) \geq \delta \int_{\Omega}|\nabla w|^{2} d x \tag{3.12}
\end{equation*}
$$

for every $\left(u_{i}+u\right) \in \bigcup_{i=1}^{h_{n}} \bar{U}_{i} \cap C^{1}(\bar{\Omega})$ such that $\|u\|_{C^{1}} \leq M$ and every $w \in W^{n} \cap W_{0}^{1,2}(\Omega)$. Proof. Let M, \tilde{R} and β be as in Lemma 3.3. By Lemma 3.4 there are $r \in(0, \tilde{R})$ and $\delta>0$ such that

$$
B_{\alpha_{n}}\left(u_{i}+u\right)(w, w) \geq \delta \int_{\Omega}|\nabla w|^{2} d x
$$

for every $u \in \overline{B_{2 r}(0)} \cap C^{1}(\bar{\Omega})$ such that $\|u\|_{C^{1}} \leq M$, every $w \in W^{n} \cap W_{0}^{1,2}(\Omega)$ and every $i \in\left\{1, \ldots h_{n}\right\}$. By Theorem 3.7 we can also assume that $J_{\alpha_{n}}\left(u_{i}\right)<J_{\alpha_{n}}\left(u_{i}+w\right)$ for every $w \in \overline{B_{r}(0)} \cap W^{n}$ with $w \neq 0$ and every $i \in\left\{1, \ldots h_{n}\right\}$. In particular, we get (3.11) and (3.12), for any arbitrary $\varrho \in(0, r]$.

We claim that there exists a suitable $\varrho \in(0, r]$ such that

$$
\begin{equation*}
J_{\alpha_{n}}\left(u_{i}+v\right)<J_{\alpha_{n}}\left(u_{i}+v+w\right) \tag{3.13}
\end{equation*}
$$

for every $i \in\left\{1, \ldots h_{n}\right\}, v \in V^{n} \cap \overline{B_{\varrho}(0)}$ and $w \in W^{n}$ such that $\|\nabla w\|_{p}=r$.
By contradiction, let $i \in\left\{1, \ldots h_{n}\right\},\left(v_{k}\right) \subset V^{n}$ and $\left(w_{k}\right) \subset W^{n}$ such that $v_{k} \rightarrow 0$, $\left\|\nabla w_{k}\right\|_{p}=r$ and $J_{\alpha_{n}}\left(u_{i}+v_{k}\right) \geq J_{\alpha_{n}}\left(u_{i}+v_{k}+w_{k}\right)$. Up to a subsequence, $\left(w_{k}\right)$ is weakly convergent to some $\bar{w} \in W^{n} \cap \overline{B_{r}(0)}$. Then $\left(u_{i}+v_{k}+w_{k}\right)$ is weakly convergent to $u_{i}+\bar{w}$ with

$$
\limsup _{k} J_{\alpha_{n}}\left(u_{i}+v_{k}+w_{k}\right) \leq \lim _{k} J_{\alpha_{n}}\left(u_{i}+v_{k}\right)=J_{\alpha_{n}}\left(u_{i}\right) \leq J_{\alpha_{n}}\left(u_{i}+\bar{w}\right) .
$$

Combining Proposition 2.4 with Lemma 3.3, we deduce that $\left(u_{i}+v_{k}+w_{k}\right)$ is strongly convergent to $u_{i}+\bar{w}$, whence $J_{\alpha_{n}}\left(u_{i}+\bar{w}\right)=J_{\alpha_{n}}\left(u_{i}\right)$ with $\|\nabla \bar{w}\|_{p}=r$, and a contradiction follows.

Again from Proposition 2.4 and Lemma 3.3 we know that $\left\{w \mapsto J_{\alpha_{n}}\left(u_{i}+v+w\right)\right\}$ is weakly lower semicontinuous on $W^{n} \cap \overline{B_{r}(0)}$ for any $v \in V^{n} \cap \overline{B_{\varrho}(0)}$. Therefore there exists a minimum point $\bar{w} \in W^{n} \cap \overline{B_{r}(0)}$ and by (3.13) $\bar{w} \in B_{r}$. So, in particular

$$
\begin{equation*}
\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+\bar{w}\right), w\right\rangle=0 \quad \text { for any } w \in W^{n} \tag{3.14}
\end{equation*}
$$

Let us assume $w_{1}, w_{2} \in B_{r}(0)$ be such that $\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+w_{1}\right), w\right\rangle=\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+w_{2}\right), w\right\rangle=0$ for any $w \in W^{n}$. Then, from Lemma 3.3, we infer that $v+w_{1}, v+w_{2} \in C^{1, \beta}(\bar{\Omega})$ with $\left\|v+w_{1}\right\|_{C^{1, \beta}},\left\|v+w_{2}\right\|_{C^{1, \beta}} \leq M$. Hence, by (3.12) and (3.8), we get

$$
\begin{array}{r}
\delta \int_{\Omega}\left|\nabla\left(w_{2}-w_{1}\right)\right|^{2} d x \leq \int_{0}^{1} B_{\alpha_{n}}\left(u_{i}+v+w_{1}+t\left(w_{2}-w_{1}\right)\right)\left(w_{2}-w_{1}, w_{2}-w_{1}\right) d t \\
=\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+v+w_{2}\right)-J_{\alpha_{n}}^{\prime}\left(u_{i}+v+w_{1}\right), w_{2}-w_{1}\right\rangle=0
\end{array}
$$

so there is only one $\psi_{i}(v)=\bar{w}$ satisfying (3.14), moreover $v+\psi_{i}(v) \in C^{1, \beta}(\bar{\Omega})$ and $\left\|v+\psi_{i}(v)\right\|_{C^{1, \beta}(\bar{\Omega})} \leq M$.

Now we introduce the functionals $\varphi_{i}: v \in V^{n} \cap \overline{B_{\varrho}(0)} \rightarrow \mathbb{R}$ defined by

$$
\varphi_{i}(v)=J_{\alpha_{n}}\left(u_{i}+v+\psi_{i}(v)\right)
$$

Since we aim to apply the Sard's Lemma to the reduction map φ_{i}, it becomes crucial to investigate the C^{2} regularity of φ_{i}. In the case $p \geq 2$, this fact is sharp, as the energy functional is C^{2} (see [21, Section 2]). Unfortunately, when $1<p<2$, the functionals I_{λ} and $J_{\alpha, f}$ are only C^{1}. Despite this fact, we derive the C^{2} regularity result of the reduction map φ_{i}.
Lemma 3.9. For any $i=1, \cdots h_{n}, \psi_{i}$ is continuous from $V^{n} \cap \overline{B_{\varrho}(0)}$ in $W^{n} \cap C^{1}(\bar{\Omega})$ and of class C^{1} into $W_{0}^{1,2}(\Omega)$. In addition,

$$
\begin{equation*}
B_{\alpha_{n}}\left(u_{i}+z+\psi_{i}(z)\right)\left(h+\left\langle\psi_{i}^{\prime}(z), h\right\rangle, w\right)=0 \tag{3.15}
\end{equation*}
$$

for any $z \in V^{n} \cap \overline{B_{\varrho}(0)}, h \in V^{n}$ and $w \in W^{n} \cap W_{0}^{1,2}(\Omega)$.

Moreover, for any $i=1, \cdots h_{n}$, the function φ_{i} is of class C^{2} and, for any $z \in$ $V^{n} \cap \overline{B_{\varrho}(0)}$ and $h, v \in V^{n}$

$$
\begin{gather*}
\left\langle\varphi_{i}^{\prime}(z), h\right\rangle=\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+z+\psi_{i}(z)\right), h\right\rangle \tag{3.16}\\
\left\langle\varphi_{i}^{\prime \prime}(z) h, v\right\rangle=B_{\alpha_{n}}\left(u_{i}+z+\psi_{i}(z)\right)\left(h+\psi_{i}^{\prime}(z) h, v\right) . \tag{3.17}
\end{gather*}
$$

Proof. Using the notations introduced in the previous Theorem, for any $i=1, \ldots h_{n}$, the map $v \mapsto v+\psi_{i}(v)$ is defined from $V^{n} \cap \overline{B_{\varrho}(0)}$ into

$$
K=\left\{u \in C^{1, \beta}(\bar{\Omega}):\|u\|_{C^{1, \beta}(\bar{\Omega})} \leq M\right\}
$$

which is a compact subset of $C^{1}(\bar{\Omega})$. As $J_{\alpha_{n}}$ is continuous, we infer that any ψ_{i} is continuous from $V^{n} \cap \overline{B_{\varrho}(0)}$ in $W^{n} \cap C^{1}(\bar{\Omega})$.

In the remainder of this proof we will refer to any $i \in\left\{1, \ldots h_{n}\right\}, z, z+h \in V^{n} \cap \overline{B_{\varrho}(0)}$ and $z_{1}, z_{2} \in W_{0}^{1,2}(\Omega)$.

Let us denote by $u_{z}^{i}=u_{i}+z+\psi_{i}(z)$ and $\omega_{h}=h+\psi_{i}(z+h)-\psi_{i}(z)$.
There exists $C>0$ such that, for any $\tau \in[0,1]$,

$$
\begin{equation*}
\left|B_{\alpha_{n}}\left(u_{z}^{i}+\tau \omega_{h}\right)\left(z_{1}, z_{2}\right)\right| \leq C\left\|z_{1}\right\|_{1,2}\left\|z_{2}\right\|_{1,2} \tag{3.18}
\end{equation*}
$$

As the map $z \mapsto \psi_{i}(z)$ is continuos from $V^{n} \cap \overline{B_{\varrho}(0)}$ into $C^{1}(\bar{\Omega})$, for any $\tau \in[0,1]$ we have

$$
\begin{equation*}
\lim _{\|h\| \rightarrow 0} \frac{\left|\left(B_{\alpha_{n}}\left(u_{z}^{i}+\tau \omega_{h}\right)-B_{\alpha_{n}}\left(u_{z}^{i}\right)\right)\left(z_{1}, z_{2}\right)\right|}{\left\|z_{1}\right\|_{1,2} \cdot\left\|z_{2}\right\|_{1,2}}=0 \tag{3.19}
\end{equation*}
$$

From (3.18) and (3.12) we infer that the bilinear form

$$
\left(z_{1}, z_{2}\right) \in W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega) \mapsto B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(z_{1}, z_{2}\right)
$$

is continuous and positive definite on $W^{n} \cap W_{0}^{1,2}(\Omega)$.
Therefore, for any $h \in V^{n}$, the functional

$$
w \mapsto B_{\alpha_{n}}\left(u_{z}^{i}\right)(w / 2+h, w)
$$

admits one and only one minimum point $L_{z} h \in W^{n} \cap W_{0}^{1,2}(\Omega)$, which satisfies

$$
\begin{equation*}
B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(L_{z} h+h, w\right)=0 \quad \forall w \in W^{n} \cap W_{0}^{1,2}(\Omega) \tag{3.20}
\end{equation*}
$$

Moreover the map $L_{z} h: V^{n} \rightarrow W_{0}^{1,2}(\Omega)$ is linear and continuous, as V^{n} is finite dimensional.

For every $w \in W^{n} \cap W_{0}^{1,2}(\Omega)$, (3.8) gives

$$
0=\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+z+h+\psi_{i}(z+h)\right)-J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), w\right\rangle=\int_{0}^{1} B_{\alpha_{n}}\left(u_{z}^{i}+t \omega_{h}\right)\left(\omega_{h}, w\right) d t
$$

while (3.20) gives

$$
B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(L_{z} h+h, w\right),
$$

so that

$$
\begin{aligned}
& \int_{0}^{1} B_{\alpha_{n}}\left(u_{z}^{i}+t \omega_{h}\right)\left(\psi_{i}(z+h)-\psi_{i}(z)-L_{z} h, \psi_{i}(z+h)-\psi_{i}(z)-L_{z} h\right) d t \\
&=\int_{0}^{1} B_{\alpha_{n}}\left(u_{z}^{i}+t \omega_{h}\right)\left(\omega_{h}, \psi_{i}(z+h)-\psi_{i}(z)-L_{z} h\right) d t \\
&+\int_{0}^{1}\left(B_{\alpha_{n}}\left(u_{z}^{i}\right)-B_{\alpha_{n}}\left(u_{z}^{i}+t \omega_{h}\right)\right)\left(L_{z} h+h, \psi_{i}(z+h)-\psi_{i}(z)-L_{z} h\right) d t
\end{aligned}
$$

Hence from (3.12) and (3.19) we infer

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|\psi_{i}(z+h)-\psi_{i}(z)-L_{z} h\right\|_{1,2}}{\|h\|}=0 .
$$

Therefore ψ_{i} is C^{1} from $V^{n} \cap \overline{B_{\varrho}}$ into $W_{0}^{1,2}(\Omega)$ and $\psi_{i}(z)=L_{z}$.
From (3.8) we infer that, for a suitable $s \in(0,1)$,

$$
\begin{aligned}
& \varphi_{i}(z+h)-\varphi_{i}(z)-\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), h\right\rangle \\
& \quad=J_{\alpha_{n}}\left(u_{i}+z+h+\psi_{i}(z+h)\right)-J_{\alpha_{n}}\left(u_{z}^{i}\right)-\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), h\right\rangle \\
& \quad=\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}+s \omega_{h}\right), \omega_{h}\right\rangle-\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), h\right\rangle \\
& =\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}+s \omega_{h}\right)-J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), h\right\rangle+\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}+s \omega_{h}\right)-J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), \psi_{i}(z+h)-\psi_{i}(z)\right\rangle \\
& =\int_{0}^{1} B_{\alpha_{n}}\left(u_{z}^{i}+t s \omega_{h}\right)\left(s \omega_{h}, h\right) d t+\int_{0}^{1} B_{\alpha_{n}}\left(u_{z}^{i}+t s \omega_{h}\right)\left(s \omega_{h}, \psi_{i}(z+h)-\psi_{i}(z)\right) d t .
\end{aligned}
$$

As the differentiability of ψ_{i} assures that $\left\|\psi_{i}(z+h)-\psi_{i}(z)\right\|_{1,2} \leq c\|h\|$, by (3.18) we get

$$
\lim _{\|h\| \rightarrow 0} \frac{\left|\varphi_{i}(z+h)-\varphi_{i}(z)-\left\langle J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), h\right\rangle\right|}{\|h\|}=0
$$

which proves (3.16).
Again by (3.8), for any $v \in V^{n}$

$$
\begin{gathered}
\left\langle\varphi_{i}^{\prime}(z+h), v\right\rangle-\left\langle\varphi_{i}^{\prime}(z), v\right\rangle-B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(h+\left\langle\psi_{i}^{\prime}(z), h\right\rangle, v\right) \\
=\left\langle J_{\alpha_{n}}^{\prime}\left(u_{i}+z+h+\psi_{i}(z+h)\right)-J_{\alpha_{n}}^{\prime}\left(u_{z}^{i}\right), v\right\rangle-B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(h+\left\langle\psi_{i}^{\prime}(z), h\right\rangle, v\right) \\
=\int_{0}^{1} B_{\alpha_{n}}\left(u_{z}^{i}+t \omega_{h}\right)\left(\omega_{h}, v\right) d t-B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(h+\left\langle\psi_{i}^{\prime}(z), h\right\rangle, v\right) \\
=\int_{0}^{1}\left(B_{\alpha_{n}}\left(u_{z}^{i}+t \omega_{h}\right)-B_{\alpha_{n}}\left(u_{z}^{i}\right)\right)\left(\omega_{h}, v\right) d t+B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(\psi_{i}(z+h)-\psi_{i}(z)-\left\langle\psi_{i}^{\prime}(z), h\right\rangle, v\right) .
\end{gathered}
$$

Finally, from (3.18), (3.19) and the differentiability of ψ_{i}, it follows that

$$
\lim _{\|h\| \rightarrow 0} \frac{\left|\left\langle\varphi_{i}^{\prime}(z+h), v\right\rangle-\left\langle\varphi_{i}^{\prime}(z), v\right\rangle-B_{\alpha_{n}}\left(u_{z}^{i}\right)\left(h+\left\langle\psi_{i}^{\prime}(z), h\right\rangle, v\right)\right|}{\|h\|}=0
$$

which proves (3.17).

4. Proof of Theorem 1.3

Let us denote by $V=V^{n}$ and $W=W^{n}$, the spaces introduced in (3.4) and let $\left\{\bar{e}_{1}, \ldots \bar{e}_{\bar{n}}\right\}$ be an L^{2}-orthonormal basis of V, where $\bar{n}=\operatorname{dim} V$. For any $v^{\prime} \in V^{\prime}$ we introduce the functional $L_{v^{\prime}}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
L_{v^{\prime}}(u)=\int_{\Omega}\left(\sum_{j=1}^{\bar{n}}\left\langle v^{\prime}, \bar{e}_{j}\right\rangle \bar{e}_{j}\right) u d x
$$

For any $i=1, \ldots, h_{n}$, let μ_{i} be defined by Theorem 2.11 relatively to $J_{\alpha_{n}}, u_{i}, A$ and U_{i}, where A is introduced in (3.1) and U_{i} in (3.11). Setting $\mu=\min \left\{\mu_{1}, \ldots \mu_{h_{n}}\right\}$, let $\varepsilon>0$ be such that, if $\left\|v^{\prime}\right\|_{V^{\prime}} \leq \varepsilon$, then $\left\|L_{v^{\prime}}\right\|_{C^{1}(A)}<\mu / h_{n}$.

Denoting by $\varepsilon_{1}=\min \{\varepsilon, 1 / n\}$, by Sard's Lemma there exists $v_{1}^{\prime} \in V^{\prime}$ such that if $\left\|v_{1}^{\prime}\right\|_{V^{\prime}}<\varepsilon_{1}$ and $\varphi_{1}^{\prime}(v)=v_{1}^{\prime}$, then $\varphi_{1}^{\prime \prime}(v)$ is an isomorphism. Moreover there is $\beta_{1}>0$ such that if $v^{\prime} \in V^{\prime},\left\|v^{\prime}\right\|_{V^{\prime}} \leq \beta_{1}$ and $\varphi_{1}^{\prime}(v)=v_{1}^{\prime}+v^{\prime}$, then $\varphi_{1}^{\prime \prime}(v)$ is an isomorphism.
Analogously, for $i=2, \ldots h_{n}$, there exist $\beta_{i}>0, \varepsilon_{i}=\min \left\{\varepsilon_{i-1}, \beta_{i-1} /\left(h_{n}-i+1\right)\right\}$ and $v_{i}^{\prime} \in V^{\prime}$ such that $\left\|v_{i}^{\prime}\right\|_{V^{\prime}}<\varepsilon_{i}$ and if $v^{\prime} \in V^{\prime},\left\|v^{\prime}\right\|_{V^{\prime}} \leq \beta_{i}$ and $\varphi_{i}^{\prime}(v)=v_{1}^{\prime}+\ldots v_{i}^{\prime}+v^{\prime}$, then $\varphi_{i}^{\prime \prime}(v)$ is an isomorphism.

So we choose

$$
f_{n}=\sum_{i=1}^{h_{n}} \sum_{j=1}^{\bar{n}}\left\langle v_{i}^{\prime}, \bar{e}_{j}\right\rangle \bar{e}_{j} .
$$

Let $J_{n}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be defined by

$$
J_{n}(u)=J_{\alpha_{n}, f_{n}}(u)=J_{\alpha_{n}}(u)-\int_{\Omega} f_{n} u
$$

and $K_{n}=\left\{u \in \bigcup_{i=1}^{h_{n}} U_{i}: J_{n}^{\prime}(u)=0\right\}$.
Claim If there are $\tilde{u} \in K_{n}$ and $\bar{z} \in W_{0}^{1,2}(\Omega)$ such that $B(\tilde{u})(\cdot, \bar{z})=0$ in $W_{0}^{1,2}(\Omega)$, then $\bar{z}=0$.

As $f_{n} \in V$, for any $w \in W$ we have $\left\langle J_{\alpha_{n}}^{\prime}(\tilde{u}), w\right\rangle=\left\langle J_{n}^{\prime}(\tilde{u}), w\right\rangle+\int_{\Omega} f_{n} w=0$, so there are $i \in\left\{1, \ldots h_{n}\right\}$ and $\tilde{v} \in V \cap B_{\varrho}(0)$ such that $\tilde{u}=u_{i}+\tilde{v}+\psi_{i}(\tilde{v})$.

Recalling (3.16), for any $v \in V$

$$
\left\langle\varphi_{i}^{\prime}(\tilde{v}), v\right\rangle=\left\langle J_{\alpha_{n}}^{\prime}(\tilde{u}), v\right\rangle=\left\langle J_{n}^{\prime}(\tilde{u}), v\right\rangle+\int_{\Omega} f_{n} v=\sum_{i=1}^{h_{n}}\left\langle v_{i}^{\prime}, v\right\rangle
$$

so that $\varphi_{i}^{\prime}(\tilde{v})=v_{1}^{\prime}+\ldots v_{i}^{\prime}+\left(v_{i+1}^{\prime}+\ldots v_{h_{n}}^{\prime}\right)$. As, by construction, $\left\|v_{i+1}^{\prime}+\ldots v_{h_{n}}^{\prime}\right\|<\beta_{i}$, we get that

$$
\begin{equation*}
\varphi_{i}^{\prime \prime}(\tilde{v}) \text { is an isomorphism. } \tag{4.1}
\end{equation*}
$$

Let $\bar{z}=\bar{v}+\bar{w}$, where $\bar{v} \in V$ and $\bar{w} \in W$. By (3.15) we infer

$$
B_{\alpha_{n}}(\tilde{u})\left(v+\left\langle\psi_{i}^{\prime}(\tilde{v}), v\right\rangle, \bar{w}\right)=0 \quad \forall v \in V .
$$

Combining with (3.17), for any $v \in V$ we get

$$
\left\langle\varphi_{i}^{\prime \prime}(\tilde{v}) v, \bar{v}\right\rangle=B_{\alpha_{n}}(\tilde{u})\left(v+\left\langle\psi_{i}^{\prime}(\tilde{v}), v\right\rangle, \bar{v}\right)=B_{\alpha_{n}}(\tilde{u})\left(v+\psi_{i}^{\prime}(\tilde{v}) v, \bar{z}\right)=0
$$

thus (4.1) gives that $\bar{v}=0$, hence $\bar{z}=\bar{w} \in W$.
Moreover, from (3.12),

$$
\delta \int_{\Omega}|\nabla \bar{w}|^{2} \leq B_{\alpha_{n}}(\tilde{u})(\bar{w}, \bar{w})=0
$$

thus $\bar{w}=0$ and the claim is proved.
This assures that, if $u \in K_{n}$, then $m^{*}\left(J_{n}, u\right)=m\left(J_{n}, u\right)$, so multiplicity of any $u \in K_{n}$ is 1 (see Remark 2.10).

By Theorem 2.11 and (3.2), J_{n} has at least $\mathcal{P}_{1}(\Omega)$ distinct critical points.

References

[1] S. Almi, M. Degiovanni, On degree theory for quasilinear elliptic equations with natural growth conditions, in Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems (Perugia, 2012), J.B. Serrin, E.L. Mitidieri and V.D. Rădulescu eds. Contemporary Mathematics 595 (2013), 1-20 .
[2] C.O. Alves, Y.H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003), 508-521.
[3] J.G. Azorero, I. Peral, Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues, Commun. Partial Differ. Equations 12 (1987), 1389-1430.
[4] J.G. Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponents or with a symmetric term, Trans. Amer. Math. Soc. 323 (1991), 77-895.
[5] A. Bahri, J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.
[6] V. Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. 158 (1991), 231-305.
[7] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. P.D.E. 2 (1994), 29-48.
[8] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[9] F.E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 1-39.
[10] D. Cao, S. Peng, S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262 (2012), no. 6, 2861-2902.
[11] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 463-470.
[12] G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal 69 (1986), 289-306.
[13] K.C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, Boston-Basel-Berlin, 1993.
[14] K.C. Chang, Morse theory in nonlinear analysis, in Nonlinear Functional Analysis and Applications to Differential Equations, A. Ambrosetti, K.C. Chang, I. Ekeland Eds., World Scientific Singapore, 1998.
[15] S. Cingolani, M. Degiovanni, Nontrivial solutions for p-Laplace equations with right hand side having p-linear growth at infinity, Comm. Partial Differential Equations 30 (2005), 1191-1203.
[16] S. Cingolani, M. Degiovanni, G. Vannella, On the critical polynomial of functionals related to p-area $(1<p<+\infty)$ and p-Laplace $(1<p \leq 2)$ type operators, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), 49-56.
[17] S. Cingolani, M. Degiovanni, G. Vannella, Amann-Zehnder type results for p-Laplace problems, Annali di Matematica Pura ed Applicata, 197 (2018), 605-640.
[18] S. Cingolani, M. Lazzo, G. Vannella, Multiplicity results for a quasilinear elliptic system via Morse theory, Commun. Contemp. Math. 7 (2005), 227-249.
[19] S. Cingolani, G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 271-292.
[20] S. Cingolani, G. Vannella, Morse index computations for a class of functionals defined in Banach spaces, in "Nonlinear Equations: Methods, Models and Applications", (Bergamo 2001), D. Lupo,
C. Pagani and B. Ruf, eds., 107-116, Progr. Nonlinear Differential Equations Appl., 54 Birkhauser, Boston, 2003.
[21] S. Cingolani, G. Vannella, Marino-Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in Banach spaces, Ann. Mat. Pura Appl. 186 (2007), 157185.
[22] S. Cingolani, G. Vannella, Morse index and critical groups for p-Laplace equations with critical exponents, Mediterr. J. Math. 3 (2006), 493-512.
[23] S. Cingolani, G. Vannella, Multiple positive solutions for a critical quasilinear equation via Morse theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 397-413.
[24] M. Degiovanni, S. Lancelotti, Linking solutions for p-Laplace equations with nonlinearity at critical growth, J. Funct, Anal., 256 (2009), 3643-3659.
[25] E. Di Benedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827-850.
[26] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York, 1998.
[27] M. Guedda, L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. T.M.A. 13 (1989), 879-902.
[28] O.A. Ladyzhenskaya and N.N. Ural'tseva, "Linear and quasilinear elliptic equations", Nauka Press, Moscow, 1964. Academic Press, New York-London, 1968.
[29] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[30] O. Rey, The role of Green's function in a nonlinear equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1-52.
[31] I.V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Translations of Mathematical Monographs, 139, American Mathematical Society, Providence, RI, 1994.
[32] E.H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York, 1966.
[33] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.
[34] P. Tolksdorf, On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Part. Diff. Eqs. 8 (1983), 773-817.
[35] G. Vannella, Multiple positive solutions for a p-Laplace critical problem ($p>1$), via Morse theory, in Proceedings of Equadiff 2017 Conference (Bratislava, 2017), K. Mikula, D. S̆evčovič and J. Urbán eds. Slovak University of Technology, Spectrum Stu Publishing (2017), 89-96.

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via Orabona
4, 70125 Bari, Italy,
E-mail address: silvia.cingolani@uniba.it
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy,

E-mail address: giuseppina.vannella@poliba.it

[^0]: Date: June 12, 2018.
 2010 Mathematics Subject Classification. 58E05, 35B33, 35J60, 35J62, 35J92, 35B20.
 Key words and phrases. p-Laplace operator, critical Sobolev exponent, perturbation results, Morse theory.

 The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

