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Abstract: Anti-parity-time-symmetric Hamiltonians show an enhanced sensitivity to external
perturbations that can be used for high-performance angular velocity sensing. Dissipative
coupling is a valuable way for realizing anti-PT-symmetric Hamiltonians with optical resonators
and is usually obtained by means of auxiliary waveguides. Here, we model and experimentally
show the dissipative coupling between two counterpropagating modes of a single resonator, by
means of a Bragg-grating placed in the feeding bus. The proposed solution enables the possibility
of accurately designing the dissipative coupling strength in integrated non-Hermitian gyroscopes,
thus providing high flexibility in the design of the proposed sensor. Moreover, we theoretically
and experimentally demonstrate that the dissipative coupling between two counterpropagating
modes of the same resonant cavity can give rise to an asymmetric Fano resonance.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Non-Hermitian (NH) photonics has attracted a lot of attention in the recent research, because of
various properties of exceptional points (EPs). The major interest for NH photonics is related
to sensing [1] and non-reciprocal switching [2,3]. The attention for sensing applications has
been mainly oriented to angular velocity sensing [4–8] and particle sensing [9–15] applications.
Indeed, the existence of an EP leads to the high sensitivity of eigenfrequency response to external
perturbations applied to the system [1], that can be exploited in some sensing schemes. In
order to realize a non-Hermitian Hamiltonian, some specific conditions should be verified: a
parity-time (PT)-symmetric Hamiltonian should commute with the PT operator, whereas an
anti-PT-symmetric Hamiltonian should satisfy the anticommutation relation with the PT operator
[1].

Two directly coupled resonators with the same isolated resonances and balanced loss and
gain can realize a PT-symmetric Hamiltonian and exhibit an EP [1]. In the same way two
dissipatively coupled resonators with different isolated resonances can realize an anti-PT-
symmetric Hamiltonian and show an EP [16]. The dissipative coupling in anti-PT-symmetric
systems has been obtained in resonant optical systems by means of a tapered coupling fiber [6],
auxiliary external waveguides [7,8,16] or an auxiliary dissipative resonator [16].

In this work we realize the dissipative coupling between two counterpropagating modes of
a single integrated optical resonator by means of a Bragg grating placed in the feeding bus to
propose an integrated non-Hermitian gyroscope. Moreover, we theoretically and experimentally
demonstrate that this dissipative coupling can show a Fano-like asymmetric resonant line shape
(in agreement with the work recently published in [17]): Fano resonance is a type of resonant
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scattering phenomenon [18] giving rise to a generally asymmetric line-shape and representing an
attractive solution for slow light [19,20], switching [21,22,23] and high performance sensing
[24,25].

The proposed dissipative coupling mechanism is proposed here for an integrated non-Hermitian
optical gyroscope. The same concept can be extended to particle sensing, absorption, and
refractive index sensing [1].

2. Modelling

Let’s consider a single optical resonator, supporting only two counterpropagating optical modes.
The dynamic equations for the amplitude vector a= [a1, a2]T , (where a1 and a2 are the amplitudes
of the counterpropagating modes, normalized such that their squared norm represent the energy
stored in the corresponding mode), can be written as [26]:

da
dt
= (jW − Γ)a + DTsin (1)

sout = Csin + Da (2)

where sin= [sin,1, sin,2]T is the input vector, sout= [sout ,1, sout ,2]T is the output vector, and W and
Γ are 2× 2 Hermitian matrices, representing the resonant frequencies and the decay/coupling for
the supported modes respectively:

W =
⎡⎢⎢⎢⎢⎣
ω1 0

0 ω2

⎤⎥⎥⎥⎥⎦ , (3)

Γ =
⎡⎢⎢⎢⎢⎣

Γ11 Γ12

Γ21 Γ22

⎤⎥⎥⎥⎥⎦ . (4)

The resonant modes get excited by the incoming waves (modelled with the input vector sin) and
then couple with the outgoing waves (modelled with the output vector sout) at the output ports
according to the coupling matrix D:

D =
⎡⎢⎢⎢⎢⎣

D11 D12

D21 D22

⎤⎥⎥⎥⎥⎦ . (5)

For a lossless and reciprocal coupler, the matrix C needs to be unitary and symmetric. Here we
express C in a generalized way using the two parameters, ϕ and θ:

C = ejφ
⎡⎢⎢⎢⎢⎣

sin θ j cos θ

j cos θ sin θ

⎤⎥⎥⎥⎥⎦ . (6)

The scattering matrix C describes the direct pathway through which the incoming and outcoming
waves can couple [27].

The following relations hold between the defined matrices [26]:

D+D = 2Γ (7)

CD∗ = −D (8)

where the + represents the Hermitian transposed operator, and * designates the conjugate complex.
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In the following section we will demonstrate the possibility of realizing dissipative coupling
between the counterpropagating resonant modes of a single resonator, by means of a Bragg
grating placed in the feeding bus. To show this we analyze a Bragg-grating-coupled single
resonator, defined as “configuration A” and depicted in Fig. 1(a). Such a coupling method is
conceptually different from the direct coupling, occurring when the Bragg grating is placed
inside the resonator (configuration B, shown in Fig. 1(b)). The comparison between the two
configurations will be clear in the following sections.

Fig. 1. Schematic representation of the two configurations analyzed in this work: (a)
configuration A, realized with a racetrack resonator with a Bragg grating placed in the
feeding bus in a centered position with respect to the racetrack resonator; (b) configuration
B realized with a racetrack resonator with a Bragg grating inside the resonator itself.

Despite the focus of this work is on fully integrated sensors, the conclusions can be extended
also to microtoroids in Silica, externally coupled to Fiber Bragg Gratings (FBGs) [28].

It is worth noting that in our modelling the backscattering inside the resonator arising from the
nonidealities during propagation has not been taken into account, because it can be verified to be
negligible with respect to the backscattering due to the Bragg gratings in both configurations.

2.1. Bragg-grating-coupled single resonator

In the case of a Bragg-grating coupled resonator (Fig. 1(a)), there is no direct coupling effect
between the counterpropagating modes inside the resonator. Starting from Eq. (1) the coupled
equations result to be [26] (with a1 the counterclockwise mode and a2 the clockwise mode, sin,1
the excitation signal, and sin,2 = 0):

da1
dt
= (jω1a1 − Γ11a1 − Γ12a2) + D11sin,1 (9)

da2
dt
= (jω2a2 − Γ22a2 − Γ21a1) + D12sin,1. (10)

Because of the presence of the Bragg grating in the feeding bus, all the terms of matrix D can be
different from zero. Due to the symmetry of the architecture, D12=D21. If this happens, by using
the Eqs. (7) and (8), the parameters Γ12 and Γ21 are found to be non-zero and real. Moreover,
due to the symmetric architecture, Γ12= Γ21. They represent the dissipative coupling between a2
and a1 (and vice versa), due to the presence of the Bragg-grating in the feeding bus. In other
words, the dissipative coupling terms (Γ12 and Γ21) model the indirect coupling between the
counterpropagating modes a1 and a2 (see Fig. 1(a)). In the absence of the grating (as in the
configuration B) Γ12 = Γ21 = 0. In the presence of the grating, Γ12 ≠ 0 and Γ21 ≠ 0. In particular,
the term Γ12

2 (Γ21
2) is proportional to the power fraction of the circulating power in the resonator

that indirectly couples from the mode a2 (a1) into the mode a1 (a2) [29].
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The elements of the matrices Γ, D and C depend on the physical parameters of the Bragg
grating. Moreover, the spectral feature of the Bragg grating response is assumed to be much
broader than the spectral feature of the system modelled in (9) and (10), so the elements of the
matrices Γ, D and C do not depend on wavelength.

Using Eqs. (9) and (10), it is possible to obtain the solution for a1 and a2, in the angular
frequency (ω) domain, as:

a1 =
−Γ12D12 + (jω − jω2 + Γ22)D11

[(jω − jω1 + Γ11)(jω − jω2 + Γ22) − Γ2
12]

sin,1 (11)

a2 =
−Γ21D11 + (jω − jω1 + Γ11)D12

[(jω − jω2 + Γ22)(jω − jω1 + Γ11) − Γ2
12]

sin,1 (12)

and for the output signal at the output port as:

sout,1 = C11sin,1 + D11a1 + D12a2. (13)

In this configuration (A), θ and ϕ (see Eq. (6)) depend on the grating; in the absence of the
grating, no reflections could happen in the direct pathway, implying cos(θ)= 0 (e.g., θ =π/2).
For a fully reflective Bragg grating, |cos(θ)|=1 (e.g., θ = 0, there is not any direct pathway from
sin,1 to sout ,1, but sin,1 is still coupled to sout ,1 by means of the resonant modes). The transmission
spectra of this configuration are shown in Figs. 2(a), 2(b), 2(c) and 2(d) for four different values of
the parameter θ, with D11 =D22 = 2·105 (rad/s)1/2 (being ω0= (ω1 +ω2)/2) and with additional
propagation loss ΓADD = 109 rad/s (added to the main diagonal elements of the matrix Γ). The
other parameters are calculated using Eqs. (7) and (8). The transmission spectra are shown
in the absence of perturbation (ω1=ω2, forced by design), so all the spectra shown in Fig. 2
are in the unbroken anti-PT-symmetric phase. In Figs. 2(a), 2(b) and 2(c), different values
of ϕ are simulated. It is immediately shown that both asymmetric Fano resonant line shapes
(Figs. 2(b) and 2(c)) and electromagnetic induced transparency (EIT) (Fig. 2(a)) can be induced.
In particular EIT occurs when |cos(θ)|=1 (e.g., θ = 0, corresponding to a fully reflective Bragg
grating). In the absence of the grating (e.g., θ =π/2 and D12 =D21= 0, and ϕ=π is forced by
Eq. (8)) (Fig. 2(d)) the spectrum corresponds to the one of a classical all-pass ring resonator.
Asymmetric line shapes appear for intermediate values of |cos(θ)| (Fig. 2(b) and 2(c)).

With coupled equations similar to (9) and (10), in [30] it has been demonstrated that it is
possible to show a Fano-like resonant line shapes in a single ring resonator supporting two
copropagating optical modes with ω1 ≠ ω2. In our case, the condition ω1 =ω2 is forced by
design (same TE transverse mode propagating in opposite directions) when the system is at rest
(no angular rotation). Nevertheless, we have shown that is possible to exhibit Fano-like resonant
line shapes even with ω1 =ω2, by properly designing the elements of matrix D.

Furthermore, the eigenfrequencies (ωA1,2) of the system are found to be:

ωA1,2 =
ω1 + ω2

2
+ j

Γ11 + Γ22
2

±
1
2

√︂
−(j(ω1 − ω2) + (Γ22 − Γ11))

2 − 4Γ2
12 (14)

An exceptional point (EP) arises for:

(j(ω1 − ω2) + (Γ22 − Γ11))
2 = −4Γ2

12 (15)

So, an EP is achievable only for Γ22 = Γ11 and ω1 ≠ ω2, such that:

ω1 − ω2 = (ω1 − ω2)EP = ±2|Γ12 |. (16)

If the system is set to work at the EP and a perturbation is applied to ω1 – ω2, the eigenfrequency
splitting shows a highly sensitive dependence on the perturbation.
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Fig. 2. Simulation results: plot of the simulated transmission spectrum |sout,1/sin,1 |
2

as a function of the normalized frequency detuning for the configuration A, for different
values of θ, and with D11 =D22 = 2·105 (rad/s)1/2 and with additional propagation loss
ΓADD = 109 rad/s. In (a), (b) and (c), different values of parameter ϕ are simulated.

2.1.1. Anti-PT-symmetric gyroscope

An integrated optical gyroscope can be immediately realized with the configuration A, to sense
the Sagnac-induced perturbation, ω1 – ω2 ∝ Ω [7], being Ω the rotational speed of the device
around an axis perpendicular to the surface of the device, as in Fig. 1(a). Its maximum sensitivity
would be around a non-zero value of Ω [6]. However, in most of the applications where optical
gyroscopes are used, high sensitivity is required for low angular velocities. So, in order to realize
an integrated non-Hermitian optical gyroscope with improved performance using the proposed
configuration A (Fig. 1(a)), two possible solutions can be implemented:

- either spinning the resonator at a known velocity in order to meet Eq. (16) [12];

- or inducing a non-reciprocal phase shift between the two counterpropagating modes inside the
ring resonator, again to meet Eq. (16).

In both cases, the eigenfrequency splitting of the proposed gyroscope is found to be:

∆ωAPT ,Ω ≈ 4
√︃
|Γ12 |

2πAΩ
λPneff

, (17)

where A is the area enclosed by the resonator, P is the perimeter of the resonator, neff is the
effective index of the transverse mode in the resonator.
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It can be noticed that the eigenfrequency splitting depends on the square root of the angular
velocity, thus guaranteeing high sensitivity of the gyroscope for small angular velocities. Since
Γ12 is related to the reflectance of the Bragg grating, the proposed configuration provides high
flexibility in the sensor design. The sensitivity of the gyroscope is proportional to the square root
of the dissipative coupling term, which in turn depends on the Bragg grating. Figure 3 shows the
eigenfrequency splitting as a function of the angular velocity Ω, with A= 13710 µm2, P= 417 µm
(same values used in the experimental configurations), at λ=1.55 µm and with neff = 2.39.

Fig. 3. Eigenfrequency splitting of the anti-PT-symmetric gyroscope as a function of the
angular velocity, for different values of the dissipative coupling term, Γ12.

2.1.2. Other sensing applications

It is worth noting that by using one of the proposed solutions (non-reciprocal phase shift or
externally induced rotation) to set the system at the EP, other sensing applications can be
implemented with the configuration A:

- particle sensing: the presence of a particle interacting with the counterpropagating modes
inside the resonator also induces a direct coupling strength (jk12), which the eigenfrequency
are highly sensitive to. In this case the eigenfrequency splitting would be equal to (assuming
k12= k21) [12]:

∆ωAPT ,P ≈ 2
√︁

2jΓ12k12 (18)

- Bragg-grating-based refractive-index sensing: the Bragg grating represents a sensing element
that can be used for sensing (i.e., refractive-index-based sensing). In fact, by defining a
perturbation applied to the Bragg grating (such that the perturbed dissipative coupling
strength is equal to Γ12 – ∆κB), the eigenfrequency splitting is found to be:

∆ωAPT ,B ≈ 2
√︁

2Γ12∆κB (19)

The square root dependence on the perturbation ∆κB implies an increased sensitivity for the
Bragg grating sensor. Also in these two cases, the sensitivity of the sensor is proportional to the
square root of Γ12.

2.2. Bragg-grating inside the resonator

The dissipative coupling shown in the previous section is conceptually different from the direct
coupling occurring between two counterpropagating modes in a resonator, in the presence
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of backscattering between counterpropagating modes. In order to underline the difference
between the two coupling mechanisms, we also model the waveguide-coupled resonator with
Bragg-grating inside the resonator (see Fig. 1(b)). We would like to emphasize that the aim of
the modelling and experimental verification of the configuration B is to highlight the differences
occurring in placing the Bragg grating inside (direct coupling) or outside (dissipative coupling)
the resonator.

In this case it is necessary to include the terms jk12 and jk21 in the coupled mode theory to
take into account the direct coupling strengths between the two counterpropagating modes inside
the resonator [26]. In this case it is immediate to note the cross-diagonal elements of the matrix
D are null and, consequently, the cross-diagonal elements of matrix Γ are null. The symmetry of
the architecture further suggests D11=D22 and k12 = k21. The temporal coupled mode equations
can be now written in terms of the amplitude vector b= [b1, b2]T (with b1 the counterclockwise
mode and b2 the clockwise mode, sin,1 the excitation signal, and sin,2 = 0):

db1
dt
= (jω1b1 − Γ11b1 + jk12b2) + D11sin,1 (20)

db2
dt
= (jω2b2 − Γ22b2 + jk21b1) (21)

So, it is possible to obtain the expression for b1 and b2:

b1 =
(−Γ12 + jk12)D12 + (jω − jω2 + Γ22)D11

[(jω − jω1 + Γ11)(jω − jω2 + Γ22) − (Γ12 − jk12)(Γ21 − jk12)]
sin,1 (22)

b2 =
−(Γ21 − jk21)D11 + (jω − jω1 + Γ11)D12

[(jω − jω2 + Γ22)(jω − jω1 + Γ11) − (Γ12 − jk12)(Γ21 − jk12)]
sin,1 (23)

Thus, we obtain:
sout,1 = C11sin,1 + D11b1 (24)

The simulated transmission spectrum of this configuration is shown in Fig. 4, for different values
of k12.

Fig. 4. Simulation results: plot of the simulated transmission spectrum |sout,1/sin,1 |
2 as a

function of the normalized frequency detuning for the configuration B, for different values
of the direct coupling strength k12.
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Furthermore, the eigenfrequencies of the modelled system are obtained as:

ωB1,2 =
ω1 + ω2

2
+ j

Γ11 + Γ22
2

±
1
2

√︂
−(j(ω1 − ω2) + (Γ22 − Γ11))

2 + 4k12k21 (25)

An exceptional point is obtained for:

(j(ω1 − ω2) + (Γ22 − Γ11))
2 = 4k12k21 (26)

So, this can only be achieved with ω1 =ω2 (forced by design) and non-reciprocal loss/gain
(Γ22 ≠ Γ11). Such an approach can be used to realize a non-Hermitian Hamiltonian for a high-
performance gyroscope [31].

3. Experimental results

Both the proposed configurations, shown in Figs. 1(a) and 1(b), have been designed, realized
and optically characterized. The devices were fabricated with silicon-on-insulator technology,
using 450 nm× 250 nm strip waveguides (by e-beam lithography). The racetrack resonator has
been designed with a curvature radius of 60 µm and the straight sections 20 µm long. The Bragg
grating has been designed to be placed in two different positions, in the feeding bus for the
configuration A (Fig. 5(a)), and inside the resonator for the configuration B (Fig. 5(b)). In
both cases, the Bragg grating is designed with 25-nm wide teeth on each side, 42 periods, 50%
duty cycle and 310 nm period, corresponding to a simulated Bragg wavelength of 1530 nm and
maximum power reflection of 55% (when only the Bragg grating is simulated). Moreover, we
verified with numerical simulations of the coupling region of the configuration A, that Γ12

2

increases while increasing the number of grating periods from 0 to 60. In the configuration A
(Fig. 5(a)), the resonator-bus waveguide gap is 250 nm, while in the configuration B (Fig. 5(b)),
the bus-resonator gap is 300 nm.

Fig. 5. Two microscope pictures of the devices realized according to configurations A (a)
and B (b). The insets in each picture show the detail of the Bragg grating in each of the
designs according to the layout that has been used for the fabrication.

Figures 5(a) and 5(b) show two microscope pictures of the devices realized according to
configurations A and B, respectively. The insets in each picture show the detail of the relevant
Bragg gratings.

The measurements have been taken by sweeping the wavelength of a tunable laser source.
Figure 6(a) shows the measured spectrum of the device for configuration A. The measurements

are taken at rest, ω1 =ω2, thus implying that the anti-PT-symmetric system is in the unbroken
phase. In particular, it is possible to observe the Fano-like asymmetric line shapes of the
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resonances, as expected from Figs. 2(b) and 2(c). Figure 6(b) shows one measured asymmetric
line shape resonance and its fitted curve, using the analytical expression of Eq. (13) together with
(11)-(12). Table 1 shows the fitting of independent parameters, giving high agreement between
theory and experiments (R2= 0.9964). The remaining dependent parameters are obtained using
Eqs. (6), (7) and (8) (e.g., Γ12 = 3.5545 ·1010 rad/s).

Fig. 6. Experimental results: (a) measured transmission spectrum of the fabricated device
in configuration A; (b) zoom on a resonance of the transmission spectrum in configuration A
and fit with the proposed analytical model.

Table 1. Fitted parameters in configurations A and B

Symbol Configuration A Configuration B

D11 (= D22) 1.8849 ·105 (rad/s)1/2 3.4099 · 105 (rad/s)1/2

φ 2.7354 0

θ 1.1648 3/2 π

ω0 1.20836 · 1015 rad/s 1.206175 · 1015 rad/s

ΓADD 1.0497 ·109 rad/s 2.7160 ·1010 rad/s

k12 0 9.7884 · 1010 rad/s

R2 0.9933 0.9918

Figure 7(a) shows the experimental spectrum for the configuration B. It is possible to see
that each resonance shows two dips. This is in agreement with the theoretical results and the
simulations shown in Fig. 4, as expected. In Fig. 7(b) the fit of one resonance line shape of
the measured spectrum is sketched according to our modelling, by using Eq. (24) together with
Eqs. (22) and (23). The obtained fitting independent parameters are summarized in Table 1. The
good agreement between the model and the experimental results is proved by the value of R2 of
0.9917.

The experimental data of both configurations, fitted by the corresponding models, highlight the
different effects of dissipative and direct coupling on the output spectrum; in particular the good
agreement between theory and experiment confirms the validity of the proposed model for the
two configurations with the dissipative coupling and the direct one. The solution implementing a
Bragg grating in the feeding bus (configuration A) suggests a valuable possibility to realize the
dissipative coupling in a fully integrated anti-PT-symmetric gyroscope, with good flexibility in
the design of the dissipative coupling strength.

Finally, we would like to highlight that the proposed structure shows an important advantage
with respect to previously proposed architectures for anti-PT-symmetric gyroscopes [7,8], related
to the robustness to parameter fluctuations. Using a single resonator rather than two drastically
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Fig. 7. Experimental results: (a) measured transmission spectrum of the fabricated device
in configuration B; (b) zoom on a resonance of the transmission spectrum in configuration B
and fit with the proposed analytical model.

reduces the influence of differential perturbations on counterpropagating modes. Moreover,
dealing with noise (widely debated in the context of non-Hermitian photonics [32–36]), it has
been recently demonstrated that an enhanced signal-to-noise ratio can be achieved with respect
to classical sensing architectures, when working close to EPs below the lasing threshold [37,38].
The enhancement of the signal-to-noise ratio also occurs in the architecture proposed in this
manuscript for an anti-PT-symmetric gyroscope (configuration A).

4. Conclusions

We have modelled and experimentally measured the transmission spectrum of a Bragg-grating-
coupled optical resonator, able to realize an anti-parity-time symmetric optical gyroscope.

The highly accurate agreement between the theoretical modelling and the measurements
suggests the real possibility of realizing an integrated non-Hermitian optical gyroscope, by means
of dissipative coupling, enabled by a Bragg grating. This provides a useful way to realize the
desired the dissipative coupling for the sensitivity of the anti-parity-time-symmetric gyroscope.

Finally, the presented device has also theoretically and experimentally shown a typical
asymmetric Fano-like resonant line shape, that could be further useful for other sensing or
switching applications.
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