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SUMMARY

In this paper, a multi-objective optimization of a single tuned mass damper is proposed at the aim to control
vibrations induced in building structures under low-moderate earthquakes. The optimum design is carried
out by considering both economic and performance criteria. The cost of the device is the economic objective
that is assumed directly related to its mechanical parameters. At the aim to control the damage level and the
behaviour of components and equipment, the ratio between the absolute accelerations of the protected struc-
ture and the unprotected one is assumed as the device performance. A multi-objective optimization is then
formulated, and Pareto optimum solutions are achieved by the Non-dominated Sorting Genetic Algorithm in
its second version. Finally, a sensitivity analysis of the optimum solution with respect to some input data is
carried out. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The limitation of vibrations effects due to environmental dynamic loads is a very important matter in
the design of civil and mechanical engineering structures. In this field, many different strategies have
been proposed also with regard to safety structural problems induced by random vibrations action
caused by natural or artificial loads, as for example earthquakes, wind pressure, traffic vibrations
and sea waves. Generally, four groups of control systems are distinguished in literature: active, hybrid,
semi-active and passive.

Among these, passive systems are the most unsophisticated and the cheapest ones. Passive systems
have been used with success in many real cases: among the numerous existing passive control devices,
the tuned mass damper (TMD) is frequently adopted both in mechanical systems and in civil struc-
tures, in new constructions as well as in retrofit interventions. In general, the purpose of installing a
TMD is to guarantee a suitable level of protection in the primary structure in order to assure an
adequate safety level, both for the structure and its contents, towards a defined limit state. Moreover,
a TMD is introduced at the aim to reduce the discomfort of occupants and/or to limit the damage of
equipments in particular in high-rise buildings (Marano and Greco, 2009) especially when low-
moderate (and frequent) seismic loads are assumed in the design process. This last aspect is becoming
extremely actual in civil engineering. Recent earthquakes have in fact shown that the damage in
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2 R. GRECO, G. C. MARANO AND A. FIORE

equipments and in building contents can have large economic consequences. For instance, in high-rise
buildings, a localized damage in several acceleration-sensitive non-structural systems (suspend
ceilings, light fixture, fire suppression piping systems, computer systems, emergency power generation
systems, elevators, etc.) can affect the functionality of large portions of the building. Therefore, struc-
tural seismic design should be applied not only in order to guarantee the life safety and to prevent
structural collapse but also in order to control the damage level and the behaviour of components
and systems.

A TMD, placed at the top of a structure, is designed to dissipate energy in a purely mechanical way.
The device is attached to the structure by a spring and a damper, in such a way that it oscillates at the
same frequency of the structure, but with a shift of phase. The main mechanism of reducing the detri-
mental oscillations of the structure is achieved by transferring its vibration energy to the TMD, so
dissipating the energy through the damping of the TMD.

With the purpose of maximizing TMD efficiency, over the years, numerous approaches have been
proposed for the optimum design of TMD. After the work of Ormondroyd and Den Hartog (1928),
several optimum design methods have been introduced in literature, aimed at minimizing the vibra-
tions induced in mechanical and structural systems by various types of excitation sources (Crandall
and Mark, 1973; Sadek et al., 1997; Rana and Soong, 1998; Hoang and Warnitchai, 2005; Rundinger,
2006; Hoang et al., 2008; Krenk and Hggsberg, 2008; Marano et al., 2010; Marano and Greco, 2011;
Greco and Marano, 2013). In most of the above studies, the main structure is generally represented by
an equivalent single degree of freedom system. Similarly, the performance of a TMD applied to a multi
degree of freedom (MDOF) structure and optimized to control only a single mode of vibration (usually
the fundamental one) has been investigated by various authors (Villaverde, 1985; Villaverde and
Koyama, 1993; Sadek et al., 1997). The optimal parameters of single and multiple TMDs for the
control of MDOF structures have been studied by several researchers in the last decades (Kareem
and Kline, 1995; Zuo and Nayfeh, 2005; Zuo and Nayfeh, 2006; Li and Ni, 2007; San Mateo et al.,
2011; Marano ef al., 2013; Mohebbi et al., 2013) also considering the uncertainties affecting structural
parameters (Greco et al., 2014a; Lucchini ef al., 2014).

The above studies mainly take as objective function (OF) the efficiency of the TMD expressed by a
performance index (PI) that generally is chosen as the ratio between the response (displacement, accel-
eration dissipated energy) of the unprotected system and the same quantity of the protected one.

However, although in recent years considerable efforts have been devoted to the mitigation of
earthquake/wind-induced motions in the field of structural optimization, implementations of TMD
vibration control technology on actual building design are limited. To a certain extent, impediments
to the application of these techniques are attributable to the preconception on the associated high
capital and on the long-standing maintenance costs of the auxiliary damping devices, due to the
absence of a comprehensive cost analysis in the optimum design process.

In effect, often, especially for new and notably important buildings or in the case of retrofitting of
existing constructions, the containment of costs is one of the most important target in the design of
the protection system. Therefore, the individualization of a reliable and representative cost function
and its introduction in the optimum design is a very important issue, especially in order to not only
compare the effectiveness of systems in terms of performance but also verify the economic gain
achieved through a particular design strategy rather than another one.

Differently from previous studies in this field, in this paper, an optimum design of a single TMD
installed on the top floor of a structure modelled by a linear MDOF system is carried out at the aim
to simultaneously minimize the protection system cost and maximize a direct index of performance
of the TDM. Therefore, both a cost function and a PI are introduced in the optimum design strategy
of the TMD. A multi-objective problem is so formulated, since there are two conflicting OFs: the PI
and the cost of the device. In this context, the standard optimization approach, in which the optimum
solution coincides with the minimum or the maximum value of a scalar OF, is inapplicable, and there-
fore Pareto optimum solutions (Zitzler and Thiele, 1999) are obtained. At this aim, the Non-dominated
Sorting Genetic Algorithm II—NSGA-II—is adopted (Deb et al., 2000).

Moreover, the study is developed in a stochastic way, by introducing a Gaussian non-stationary
filtered stochastic process to model the ground motion at the base of the structure. An extensive
sensitivity analysis of the optimum solution in function of some input data is finally carried out.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
DOLI: 10.1002/tal



TUNED MASS DAMPER OPTIMIZATION 3

2. ANALYTICAL FORMULATION OF THE TUNED MASS DAMPER PROBLEM FOR MULTI
DEGREE OF FREEDOM SYSTEMS SUBJECTED TO RANDOM LOADS

A TMD can be modelled as a mass—dashpot—spring system (the secondary system) attached gener-
ally at the top of a MDOF oscillator (which represents the primary system), aimed at reducing in
this one the detrimental vibrations induced by seismic actions. In engineering applications, the os-
cillator could be a building, a bridge, an offshore platform or mechanical equipment located on a
vibrating support, and the use of a TMD would be intended to reduce the induced undesirable
vibrations.

In this study, the problem of a single TMD positioned at the top of a main structure modelled as a
linear viscous elastic MDOF system is analysed. Even if for high values of the displacement the
structure may experience inelastic deformations that may induce inelastic nonlinear response (Fiore
and Monaco, 2010; Fiore and Monaco, 2011; Fiore et al., 2013), the assumption of linear behaviour
is quite accurate, since the TMD is designed to minimize the response, so avoiding large
displacements.

A deterministic second-order mechanical linear system with 7+ 1 degree of freedom is herein con-
sidered and described by using lumped masses, as shown in Figure 1. Under the hypothesis of random
dynamic inputs, the dynamic system of motion can be written as

MX + KX + CX = ~MrX,, 1)

where M, C and K are, respectively, the deterministic mass, damping and stiffness matrices (as de-
tailed in appendix); X = (1, X2, X X7) 7> X = (¥155%2; eveydi, X7)" and X = (£, X2, ..., X, X7)" are
the tuned-structure relative displacement, velocity and acceleration vectors referred to each degree

XT
€ Tuned Mass
Ky Damper
% ——

Damping

Stiffiness

A

Figure 1. Multi degree of freedom system equipped with a tuned mass damper.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
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4 R. GRECO, G. C. MARANO AND A. FIORE

of freedom; r=(1...,1)7; X »(t) is the seismic action and, since it is mathematically described by a
stochastic process, many advantages can be reached by modelling it through a filtered white noise.

For base random accelerations modelling, a wide adopted model in both stationary and non-
stationary cases is those obtained by a simple linear second-order filtering of a white noise process.
It is able to characterize input frequency modulation for a wide range of practical situations, and in
case of non-stationary input, it is able to model not only amplitude but also time variation of fre-
quency contents. In this study, the non-stationary Kanai Tajimi process is used to model the seis-
mic action X (¢):

Xy =X +wV(0) = — (260X + 02Xy ) )
so that the filter acceleration is
X?:f@&uQQW@fWW& (3)

where w is the stationary Gaussian zero mean white noise process with intensity Sy, supposed gen-
erated at the bed rock; wy is the filter frequency, given by

k
w; = \/mii; )

<
=i Tt 5)
The Jennings modulation function V(#) (Jennings et al., 1968; Greco et al., 2014b) is adopted in
this study. Then, the filter-structure system of Eq. (1) can be rewritten as

&y is the filter damping, given by

By introducing the space state vector, defined as follows:

X
Xy
Z= X | (7
Xy
Eq. (6) can be rewritten in the state space as
Z=AZ+F ®)

In the above expression, the state system matrix A has the following form:

A= ’L ©)
‘HK 'Hc i
the two submatrices Hx and Hc are, respectively, given by
B 1
' 2
v Oy
| e
(M-lK)(n+|)(n+|) ' T’ (10)
1
H, = o
L2
______________ LY
1
| 0 0} ~aj
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
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i 25,0
(M-lc)(n+1)(u+1) i 25/‘@/‘
H, = |
. L 26,0,
0 .. 020,

The following vectors are then introduced:

o [m mr
#_ ml cee cee mn

7= [c_l

cr
2\/k1m1 2\/kTmT:|

(11)

(12)

13)

(14)

where mr, k7 and cr are the mass, the stiffness and the damping of the TMD, respectively.

The two submatrices M~'C and M~'K are given in Appendix 1.

Under the assumption that the system, in this form, is linear and that the input function is a Gaussian

zero mean process, the response is a Gaussian zero mean process too. It follows that the knowledge of
the covariance matrix Rzz allows to completely defining the space state of the statistic response. Then
the probabilistic analysis is performed by solving the following non-stationary Lyapunov matrix dif-

ferential equation (Marano et al., 2015):

Rzz = ARzz + RzzA" + B (15)
The matrix B has all null elements except one: 5
[B], 11 = 228077 (0) (16)
Eq. (15) allows to determine the covariance matrix and finally to solve the motion equations.
The covariance matrix Rzz can be represented as
R xR 17
7 Ryx Ry (17

Rxx, Ry, Rgx and Ry being the submatrices of R

The absolute acceleration covariance matrix Ryy= (YYT) is linearly related to the covariance matrix

Rzz as follows:

X = —HgX + HcX + rX,, (18)
Y = (X +rX,) = —HgX + HeX, (19)

Y representing the absolute acceleration of the system.

QD) 1 {i2ne2)
A=|____________ Comeeee By introducing the unprotected system state vectors
-Hy + -He
U= (X ,X,)" and D= [HK Hc},where

Xo = (x1,%2, ooy )"y Xo = (61, %2, ooy X)) (20)

Eq. (19) can be rewritten as

Copyright © 2016 John Wiley & Sons, Ltd.
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6 R. GRECO, G. C. MARANO AND A. FIORE

Y = DU 21

So the acceleration covariance matrix can be related to the system state covariance
matrix Ryy= (UUT) by the expression

Ryy = DRyyD’. (22)

3. MULTI-OBJECTIVE CRITERIA FOR TUNED MASS DAMPER MECHANICAL
PARAMETERS

Standard optimization problem finds the optimum solution that coincides with the minimum or the
maximum value of a scalar OF. The first problem definition of structural optimization was proposed
by Nigam (1972), in which constraints were defined by using probabilistic indices of the structural re-
sponse and the OF was defined by the structural weight. This led to a standard nonlinear constrained
problem. However, the standard optimization problem does not usually hold correctly many real struc-
tural problems, where often different and conflicting objectives may exist. In these situations, the stan-
dard optimization problem is utilized by selecting a single objective and then incorporating the other
objectives as constraints.

The main disadvantage of this approach is that it limits the choices available to the designer. This
makes the optimization process a difficult task. Instead of unique standard optimization problem solu-
tion with a single given constraint, a set of alternative solutions can be usually achieved, known as Pa-
reto optimum solutions. These represent the best solutions in a wide sense that means they are superior
to other solutions in the search space, when all objectives are considered. If any other information
about the choice or preference is given, no one of the corresponding trade-offs can be said to be better
than the others.

In this section, a multi-objective optimization of a TMD installed on a MDOF system is formulated
as the search of a suitable set of design variables, collected in the so called design vector (DV) be (),
), being the admissible domain, which minimize two OFs.

With regard to the selection of design variables, one should point out that in the optimum design of
TMD, it is common to consider only the TMD frequency and damping ratio as design variables (ref).
The TMD mass or the ratio u between the main system mass and the TMD mass is usually assumed as
a constant parameter, which is defined in a pre-design stage (Marano et al., 2010). In this study, the
authors analyse two cases: a two dimension DV b=(wr,£7) and a complete design, which assumes
in the DV b= (wz, &7,4) also the mass ratio.

Concerning the selection of the OFs, the effectiveness of a seismic control device, such as a TMD, is
usually measured in terms a PI that is selected to adequately estimate the reduction of seismic demand
in the protected structure. The optimum properties of the TMD are those corresponding to a minimum
or maximum value of the PI. Different performance indices can be used to evaluate the effectiveness of
a control strategy, and based on the selected index, different solutions can be obtained. The PI may be
defined in terms of floor accelerations, story drifts, base shear and other response quantities of interest.
In this study, the acceleration is used as a measure of damages of non-structural components.

The first OF to be minimized is therefore the ratio between the standard deviation of the top floor
absolute acceleration of the protected structure o, and the one of the unprotected structure %5 :

oF, = 1, = 2b) (23)

0 ..
o YN

This function represents a direct stochastic index of vibration protection effectiveness, coherently
with the strategy to reduce those structural detrimental vibrations that can induce damages in contents
and equipment, as required in operational performance level. This parameter shows protection effec-
tiveness when its value is smaller than one. At the same time, a value of the OF close to the unit indi-
cates practically negligible effects in vibration control (greater values are for negative TMD effects,
increasing structure acceleration).

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
DOLI: 10.1002/tal



TUNED MASS DAMPER OPTIMIZATION 7

The second objective is to minimize the cost related to the use of a TMD system. Frequently, espe-
cially for new and notably important buildings or for retrofitting of existing constructions, the contain-
ment of costs is one of the most important targets in a protection system design. Therefore, the
individualization of a reliable and representative cost function is very important, especially in order
to not only compare the effectiveness of systems in terms of performance but also verify the economic
gain achieved in a particular design strategy rather than another. For this purpose, first of all, it is nec-
essary to define the meaningful cost components. For a TMD protection strategy, the greatest portion
of the installation cost is related to the mechanical characteristics of the system. Moreover, other cost
parameters should be considered (for instance, control and maintenance costs), but the impact of sen-
sors, computer control systems and future regulations in passive devices is drastically reduced (and
practically negligible) in comparison with active or hybrid ones. Therefore, in this paper, only the cost
associated with the mechanical characteristics is considered.

Two different situations are herein analysed.

a) As a first case, it is assumed that the mass ratio u is a fixed quantity; therefore, for each possible
DV, in this context defined as

b = (w7, &) (24)

without loss of generality, it is assumed that the cost of the TMD is expressed as a linear function of the
mechanical design parameters k7 and cr, respectively, so that

Ch =kr +acer (25)

where o is the cost parameter. Moreover, by considering that the damping device has in general a dif-
ferent (higher) unit cost in comparison with the stiffness one, the cost parameter o is defined as the
ratio between these two unitary costs:

_ cost(cr = 1)

¢ S coutlhr = 1) -

Introducing in Eq. (25) the terms: kr = wZTmT, u=mgmg and cy=2&wpny, Eq. (25) can rearranged
as below:

Ci(b) = ums|w} + 2acéror] @7)
The protection system cost for a unit system mass mg, finally, is given by
CL(b
OF; = I¢1(b) = ;(S ) _ plor + 2acéror] (28)

b) As a further design case, also the mass ratio x can be assumed as a design variable. Therefore, by
assuming that the structural mass mg is known, the mass of the TMD m is the new variable introduced
in the evaluation of the cost of the protection system. The cost of a TMD in this situation depends on
kr, ¢z, mr and the new DV b as follows:

C%w(b) =kr +oaccr + Ormy 29)
where b can be expressed as
b = (wﬂfr»#)r (30)
while #7 is a new cost parameter defined as

_cost(mp = 1)

=— 31
" Cost(ky = 1) 6D
In the same way, as previously explained, relation Eq. (29) can be reorganized as
CH(b) = pms[w] + 2acéror + 7] (32)
The protection system cost for a unit mass mg finally is given by
Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
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—. (b
OF, =102 (b) = ’Tn(s ) = u[wy + 2acéror + O] (33)

Finally, the following multi-objective optimum design problems are formulated:a) Find

b = (or,&r)" (34)
that minimizes OF;, OF5;b) Find

b= (or,&ru)’ (35)

that minimizes OF;, OF,.

In the case of conflicting objectives, such as the analysed case, it is not possible to obtain a single
optimum solution but rather a set of alternative solutions. These are the best possible solutions mean-
ing that it is impossible to make any of the OFs better off without making the other worse off. These
solutions, in accordance with the definitions and principles of Pareto dominance and Pareto optimality
(Srinivas and Deb, 1994), are usually called Pareto optimum solutions. The Pareto optimal solutions
can be identified using Evolutionary Multi-objective Optimization algorithms (Fiore et al., 2012;
Quaranta et al., 2014; Fiore et al., 2015). One of them is the Strength Pareto Evolutionary algorithm,
which is based on the theory of Evolution Strategies. Its most important feature is that it preserves the
diversity in the population, so that a well-distributed widespread trade-off front is obtained by
preventing premature convergence to a specific part of the Pareto front. In addition, it uses clustering
in order to reduce the number of non-dominated solutions representing the whole Pareto front. In al-
ternative, the NSGA (Srinivas and Deb, 1994) could be adopted.

4. AN OVERVIEW ON MULTI-OBJECTIVE OPTIMIZATION USING GENETIC ALGORITHM

Many real engineering problems often involve several OFs, each other in conflict. In these situations, it
is not possible to define a universally approved criterion of ‘optimum’ as in single objective optimiza-
tion. Instead of aiming to find a single solution, one can try to produce a set of good compromises. In a
typical multi-objective optimization by genetic algorithm minimization-based multi-objectives optimi-
zation (MOOP), given two candidate solutions {b;, by}, if

Vie{l,...,M}, OFi(b;) < OF;(bs)AZi€ {1, ...,M} : OF;(b;) < OFi(by) (36)
and defined the two objective vectors

v(b;) = {OF (b)), ..., OF (b))} (37)

v(bi) = {OF (by), ..., OF sy (by)}, (38)

the vector v(b)) is said to dominate vector v(b) (denoted by v(b)) < v(by)).

Moreover, if no feasible solution, v(by), exists that dominates solution v(b;), then v(b;) is classified
as a non-dominated or Pareto optimal solution. The collection of all Pareto optimal solutions is known
as the Pareto optimal set or Pareto efficient set, instead, the corresponding objective vectors are de-
scribed as the Pareto front or Trade-off surface. Unfortunately, the Pareto optimum concept typically
does not give a single solution, but a set of possible solutions that cannot be used directly to find the
final design solution by an analytic way. On the contrary, usually the decision about the ‘best solution’
to be adopted is formulated by so-called (human) decision maker (DM). On the other hand, several
preference-based methods exist in literature. A more general classification of the preference-based
method is considered when the preference information is used to influence the search (Kaufmann
and San Francisco, 2000). Thus in a priori methods, DM’s preferences are incorporated before the
search begins. Therefore, based on the DM’s preferences, it is possible to avoid producing the whole
Pareto optimal set. In progressive methods, the DM’s preferences are incorporated during the search:
this scheme offers the advantage of driving the search process, but the DM may be unsure of his or her

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
DOLI: 10.1002/tal



TUNED MASS DAMPER OPTIMIZATION 9

preferences at the beginning of the procedure and may be informed and influenced by information that
becomes available during the search.

A last class of methods is a posteriori: in this case, the optimiser carries out the Pareto optimal set,
and the DM chooses a solution (‘searches first and decides later’). Many researchers view this last cat-
egory as standard, so that in the greater part of the circumstances, a MOOP is considered resolved once
that all Pareto optimal solutions are recognized.

In the category of a posteriori approaches, several methods are available in literature to treat multi-
objective optimization problems using conventional single objective algorithms. The so-called e-
constraint method, due to its simplicity, is one of the most used techniques. This method is based
on minimizing a single OF and considering the other objectives as constraints bound by some admis-
sible levels . Another way to treat multi-objectives optimization by a standard SOP is by weighting
the different OFs by normalized coefficients.

Moreover, it has been stated that this algorithm may find weakly non-dominated solutions, so that
the more common way to approach MOOP is by using different Evolutionary Algorithms. Adopted
algorithms are the Multiple Objective Genetic Algorithm (Fonsecam and Fleming, 1993) and the
NSGA (Srinivas and Deb, 1994). In this work, the NSGA-II (Deb et al., 2000) is adopted in order
to obtain the Pareto sets and the corresponding optimum DV values for different systems and input
configurations. Particularly, the Real Coded Genetic Algorithm (Raghuwanshi and Kakde, 2004),
Binary Tournament Selection (Blickle and Thiele, 1995), Simulated Binary Crossover (Deb and
Agrawal, 1995) and polynomial mutation (Raghuwanshi and Kakde, 2004) are used (Appendix 2:
Genetic operators adopted in NSGA-II).

5. CASE OF STUDY

In this section, a numerical analysis has been carried on a case study consisting in a 10-storey building
equipped at the top floor with a TMD. Mechanical properties of the structure are given in Table 1.

Two different multi-objective problems are considered: problem a), in which the cost function is
Ier (b) and problem b), in which the cost function is / c (b). Different design variables are assumed:
the first case includes only the frequency and damping of the TMD; the second one also the mass ratio
4.

To achieve the Pareto solutions, the NSGA-II is adopted (Deb et al., 2000). Setup parameters used
in the analysis are given in Table 2. These have been obtained trial and error, where the choice derives
from considerations about the equilibrium between computing cost and solution stability. The popula-
tion size is 500, which is adequate to obtain a continuum Pareto front. The maximum iteration number
is 100.

The proposed multi-objective optimization method was applied to an assigned structure and for a
given stochastic model of the earthquake; therefore, the numerical results have the limitation of being
valid for that earthquake and for that structure. However, because the proposed method is general, this
can be applied to other cases of study, suitably modelling the structure to be analysed and the
earthquake.

e Problem a)

The first multi-objective optimization of a TMD concerns the search of the Pareto front and of the
optimum DV b= (onEPT by assuming Eqgs. (23) and (28) as OFs.

Seismic model parameters are given in Table 3.

Figure 2 shows that the variability of OF; and OF, is the space of the frequency ratio p, = Z’)—T (i.e.
the TMD frequency over the main system fundamental frequency) and the TMD damping ratio £7. By
comparing these surfaces, it is quite evident that they show an opposite behaviour: as OF; decreases
until a minimum point (this corresponds to the best TMD performance), OF, monotonically increases.
This consideration confirms the impossibility to achieve the multiple OF minimization in an absolute
sense, both in terms of structural performance, minimizing the absolute acceleration, and of protection
cost minimization.

Copyright © 2016 John Wiley & Sons, Ltd. Struct. Design Tall Spec. Build. 2016;
DOLI: 10.1002/tal



10 R. GRECO, G. C. MARANO AND A. FIORE

Table 1. Main structure mechanical characteristics.

Mode/level

1 2 3 4 5 6 7 8 9 10
T.(s) 13444 05064 0.3127 02299 0.1855 0.1584 0.1396 0.1245 0.1113  0.0987
k(Nm) 4510% 4110®° 3810° 3510° 32108 2810% 2510%° 2210% 1.810° 15108
c(Nmfs) 1.2510° 1.2110° 1.16 10° 1.11 10° 1.0510° 0.99 10° 0.93 10° 0.87 10° 0.80 10° 0.72 10°
mikg) 3510° 3510° 3510° 3510° 3.510° 3510° 3510° 3510° 3510° 3.510°

Table 2. Input data for GA.

Input data for GA
Maximum generation 500
Population size 100
Crossover probability 0.9
Mutation probability 0.1

Table 3. Input data, problem a).

wf éf SO y22 ac
9rradls 0.4 300 cm?/s® 2% 50
L ",
m..
=0
=
Q D
k]

18" T
¥ = 08

pﬁ 0s . G &T

[+

a) oo b)

Figure 2. OF; (a) and OF; (b) versus {7 and pw .

In Figure 3, the optimum design variables and the contour lines of OF surfaces are plotted over-
lapped, in order to more clearly observe the location of Pareto solutions with respect to the single
optimization one.

Figure 4 shows the Pareto front (b) and the corresponding optimum DV components &7 ’Z{” (a).

In particular, Figure 4b points out an asymptotic limit, which simultaneously corresponds to the
highest effectiveness of the TMD and the highest cost / g{; T, This means that the advantage in terms
of increase of TMD performance is negligible in comparison with the cost growing.

By analysing the Pareto front and the optimum design variables, two different strategies can be
distinguished with the aim to optimize the TMD.
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Figure 4. Optimal tuned mass damper parameters (a) and Pareto front (b).

* Strategy 1: corresponds to the Pareto front region between the pink star and the brown rhombus (re-
gion A) concerning low-medium TMD costs. In this region, the TMD increases the vibration protec-
tion efficiency essentially working by means of the tuned frequency. Starting from a low TMD cost
(the lowest protection level represented by the rhombus symbol) and moving towards higher costs,
the optimum TMD frequency ratio increases obtaining higher protection levels, whereas the TMD
optimal damping ratio is almost constant and equal to its minimum value, as clearly indicated by
the location of the optimal solutions in Figure 4 (a). Besides in this region, it is worth to note that
this important protection increase, due to the increase of the optimum frequency ratio, does not lead
to a relevant increase of cost. This is a direct effect of the circumstance that increasing only the TMD
frequency is cheaper than increasing the damping, as a consequence of the definition of the factor a¢
in Eq. (26), which is assumed to be greater than one.
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Strategy 2: in region B (the front portion between the green square and the red circle) characterized
by high-medium costs, the reduction of vibration levels in the main structure can be achieved by
tuning the TMD frequency to the main structure one (as indicated in Figure 4 (a), p is about 0.9 at
the level of the pink star). The tendency demonstrates that the best structural protection performance
(indicated by the Red Circle) can be achieved by applying tuned masses with high tuned damping
and frequency larger than the system one. This gain in terms of protection efficiency is paid by a very
high increasing of cost. In fact, it is quite clear that the most significant reductions of vibration ef-
fects on the main structure are obtained working mainly on the TMD damping that essentially in-
creases the energy dissipation. In this case, a cost increase takes place. It is also important to
remark that, in this situation, with an increase of the optimal TMD damping ratio, only a moderate
increasing of TMD efficiency is achieved. As a consequence, this approach cannot be considered
economically convenient because the cost increase reaches a percentage equal to about 70% whereas
the efficiency increase does not exceed the 7%. Then, starting from p equal to about one, the increas-
ing of cost prevails on the protection efficiency improvement.

The two opposite above described strategies are synthesized in Table 4.
In the following figures, the Pareto front sensitivity versus different parameters is also shown. More

precisely, the analysis is developed by varying the mass ratio u (Figure 5), the cost parameter ac¢
(Figure 6), the structure—earthquake frequency ratio y,, (Figure 7) and the structural damping coeffi-
cient &; (Figure 8). In these figures, all constant parameters are assumed to be the same of the previous

analysis.
Table 4. Main trend of extreme data.
Front portion Kind of strategy Tuned efficiency
A Strategy 1 High-protection performance increasing in comparison
to cost increasing
Based on increasing of Strategy economically convenient
tuning optimum frequency
B Strategy 2 High costs increasing in comparison with protection
increasing
Based on increasing of tuning Strategy economically not convenient

optimum damping
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Figure 5. Optimal tuned mass damper parameters (a) and Pareto front (b) for different values of the

mass ratio u (case a).
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Figure 6. Optimal tuned mass damper parameters (a) and Pareto front (b) for different values of the
cost factor 7.
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Figure 7. Optimal tuned mass damper parameters (a) and Pareto front (b) for different values of the
structure—earthquake frequency ratio w,,.

In Figure 5, the Pareto fronts obtained by assuming different mass ratios are depicted. The values
adopted for this parameter are 2%, 6% and 10%. It is clear that by varying the value of the mass ratio,
significant differences occur in the Pareto optimal set. If this parameter increases, as well known, also
the protection efficiency increases. At the same time, the TMD cost increases, this latter being indi-
rectly correlated to the mass ratio by the TMD frequency. So, if a protection level is obtainable with
different mass ratio values, the cheapest solution is achieved with the minimum x. Nevertheless, if a
very large reduction of system response is requested, it is necessary to adopt larger values of u.

In the DV space, it can be also noted that in the region of low protection level-low cost, it is not pos-
sible to identify a regular behaviour of the variation of DVs components as x varies.

Figure 6 shows the Pareto fronts obtained by varying the cost factor parameter oc. It is clear that this
variation does not modify the asymptotic protection level obtainable by adopting the TMD strategy,
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Figure 8. Optimal tuned mass damper parameters (a) and Pareto front (b) for different values of the
structural damping coefficient &;.

whereas total cost varies. In fact, the maximum effectiveness of TMD is only obtainable by increasing
the damping ratio, as shown in Figure 4.

Similarly for low protection level, the Pareto set does not show significant modifications as ac¢
varies, since the optimal solutions essentially depend on the TMD frequency.

In Figure 7, the results of the sensitivity analysis are shown in function of the structure—earthquake fre-
quency ratio, defined as the fundamental frequency of the main system ), over the filter frequency wy:

Vi = 7
wr

This parameter is assumed equal to 0.5, 1.0 and 5.0. By observing these plots, it can be deduced that the
change of this parameter induces serious modifications in the Pareto front, sensibly affecting the maxi-
mum efficiency obtainable by means of the TMD strategy. More in detail, results show that

* for v, <1, the optimal points in the DV space domain are well distributed, assuming a characteristic
‘handle’ shape. This particular shape suggests that, initially, the TMD mainly works by increasing
the frequency and successively (when the points turn on the right in Figure 7a) by increasing the
damping. The gain in terms of performance is very high, and a very little growing of cost takes place,
as demonstrated by the distribution of the Pareto fronts in Figure 7b.

* for w, > 1, the optimal points in Figure 7a appear very scattered but distributed along a straight line.
The corresponding Pareto front shows a very low reduction of the vibration level compared with an
immoderate increasing of cost.

These observations allow to state that the best protection performance is achieved when the main
system frequency is in the sensitive-acceleration region (at left of the resonance condition) or in the
resonance region.

Finally, in Figure 8, the results of a sensitivity analysis carried out by varying the structural damping
are presented. As well known, the variation of &; induces a relevant change in the maximum protection
level achieved by the optimum solution; the TMD strategy becomes more efficient for structures with a
low damping. Also in this situation, the differences are more evident in the left region of the Pareto set
and tend to vanish in the right side of it.

e Problem b)

In the following examples, the Pareto fronts are obtained by assuming also the mass ratio as a design
variable. Therefore, DV is b=(wz, &7, ,u)T, and the OFs are those reported in Eqgs. (23) and (33).
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Figure 9 shows the corresponding Pareto front and Figure 10 the space of the optimum DV compo-
nents. Input data are given in Table 5.

It can be noted that the Pareto set shape is strongly influenced by the strategy adopted to define the
DV optimum values. First of all, if also the mass ratio is optimized, a better performance can be
achieved. Starting from the points on the left of Figure 9b and observing Figure 10, it emerges that
the increase of the TMD efficiency is obtained before by the increase of only p?%”, then by a moderate
increase of £ and finally by the increase of u7"". Besides, some characteristics in Pareto set shown in
Figure 9a should be pointed out. Firstly, a quite short portion recognizable in the upper-extreme left

Figure 9.
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Pareto front (a) and optimal tuned mass damper parameters (b) by assuming also the mass
ratio as design variable (case b).
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Figure 10. Space of design vector components by assuming also the mass ratio as design variable (case b).
Table 5. Input data in problem b).
Input data for secondary and primary systems
) Sr So )4 Or Yr
Irradls 0.4 100 cm™/s 0.5 50
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region of the front corresponds to a moderate increase of TMD cost and structural efficiency. After
that, moving on the right of the Pareto set, a portion with a more significant increase of structural ef-
ficiency takes place, also with a quite linear low. Finally the lower-extreme right of the Pareto set is a
quite linear segment, due to a reduction of the set inclination compared with the previous one. This
portion is characterized by a worse performance.

CONCLUSIONS

In this work, a multi-objective optimum criterion for TDM device has been proposed, considering both
economic and performance indices. The ratio between the protected and the unprotected system abso-
lute accelerations has been considered as a first OF. A further objective, related to the cost of the pro-
tection system, has been further considered. These two OFs are antithetic, and therefore the NSGA-II
has been performed to achieve optimum Pareto solutions.

Pareto fronts show that two different strategies can be distinguished with the aim to optimize the TMD.

* A first strategy based on the increase of TMD frequency. This strategy corresponds to a high TMD
performance in comparison with the cost, and therefore this strategy is economically convenient;

* A second strategy based on increasing the TMD damping. In this case, the increase of the costs is
high in comparison with the protection increase. This strategy is economically not convenient.

Moreover, it has been pointed out how some parameters as the input spectral content, the main struc-
tural frequency and the damping or tuned mass ratio can induce strong variations on the Pareto optimal
front and on the best TMD parameters.

More in detail, varying the mass ratio, significant differences occur in the Pareto optimal set. If this pa-
rameter increases, also the protection efficiency increases but at the same time, the TMD cost increases, this
latter being indirectly correlated to the mass ratio by the TMD frequency. The sensitivity analysis by varying
the earthquake frequency content has showed that the best protection performance is achieved when the
main system frequency is in the sensitive-acceleration region or in the resonance region. Finally, the varia-
tion of structural damping ratio induces a relevant change in the maximum protection level achieved by the
optimum solution, and the TMD strategy becomes more efficient for structures with a low damping.

The novelty of the proposed method is in using a multi-dimensional criterion for the design of TMD.
A possible future development of this research could consist in considering the uncertainty in structural
parameters and thus analyse their influence on the TMD optimum design.

LIST OF NOTATIONS

The following symbols are used in the paper:

X,  acceleration that excites the system at the base

), admissible domain of the design parameters

o, filter frequency

¢, filter damping

b design vector

Y(r) displacement process of the filter

v, frequency ratio

w;  main structural circular frequency

&y main structural damping

B null matrix of the Lyapunov equation for the protected structure
So  power spectral density intensity of white noise excitation at the bed rock
U ratio between the tuned and main masses

X + relative acceleration process of the filter

Xy velocity process of the filter
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X, displacement process of the filter

X(r) acceleration vector

X(#) displacement vector

R, state space covariance matrix of the protected structure

V4 state space vector of the protected structure

oy, standard deviation of the top floor displacement of the protected structure
6", standard deviation of the top floor displacement of the unprotected structure
A state matrix of the structure

w(f) stationary Gaussian zero mean white noise process

w7  tuned mass damper circular frequency

¢r  tuned mass damper damping

C damping system matrix

K stiffness system matrix

M mass system matrix

OF; §performance index

OF, cost function

Cl tuned mass damper cost function

CY  tuned mass damper cost function

ac  cost parameter

¥r  cost parameter

APPENDIX 1
THE DIAGONAL MATRIX M OF MASSES IS

m. 0 - - 0
0 noy ’ :
M = -
m, O
0 0 mr

THE THREE-DIAGONAL SYMMETRIC MATRIX K OF STIFFNESS IS

ki +ky  —ko 0
—ky kot ks . :
K= : —k3 . —k, :
: —kn kn+kr —kr
0 —kr kr

THE TWO (N+ 1)(N+1) SUBMATRICES M~'C AND M~'K ARE, RESPECTIVELY

(B +mBs —mbs 0 0 ]
B Btwh b
M 'K = 0 53 . 0
: Bo +u, B —Br
0 0 —B7 A7
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2y B + 10 2w0p, —U1 2955, 0 . 0
= 2y.5, 2P + w2y — 125 :
MIlC = 0 —2y30, .. 0
: .- 20, By M 29 B —2wBr
0 - 0 =2y Py 2yfr
APPENDIX 2

SIMULATED BINARY CROSSOVER

In Simulated Binary Crossover, the probability distribution used to create a child solution is derived to
have a similar search power as that in a single-point crossover in binary-coded genetic algorithms and
is given as follows:

1
S+ DBl i 0sp=

PB) =141 1 ) (A2.1)
5(710 +1) W otherwise

k

where 7. is the distribution index for crossover operator. Therefore, first, a random number u; < [0, 1] is
generated, and using expression (A2.1), f; is calculated with this formulation:

1

Qu)e T1 if u;<0.5

b = 1 ) (A2.2)
— & otherwise

201 - w)pre + 1

After obtaining £ from (A2.2), the children solutions are calculated as follows:

1
ik =5 [(1 —Bpi e+ (1 +ﬁk)l72,k] (A2.3)

1
Qi =5 (1 + B )pr s+ (1 *ﬁk)l?z,k] (A2.4)
In (A2.3) and (A2.4), ¢ is the i child with ¥” component and p; ; is the selected parent.

POLYNOMIAL MUTATION

Polynomial mutation is performed on one string as follows:

e =pi + (P} — Pi)dk (A2.5)

In (A2.5), py is the parent with p} and pfc are the upper bound and lower bound on the parent
component, ¢, is the child. Mutation operator is based on J; which is calculated from a polynomial
distribution. First, a random number r, [0, 1] is generated, and J;, is calculated with this formulation:

1

(2r) T + 1.1 if 1 <0.5
5 = : (A2.6)

-0 —r)im + 1 if 1205
In (A2.6), #,, is the mutation distribution index.
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