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OBIA approach for the analysis of medium resolution satellite data for environmental monitoring

EXTENDED ABSTRACT (eng)

The global expansion of photovoltaic (PV) installations continues to grow
in response to rising energy demand and the need for sustainable energy produc-
tion. However, large-scale solar farms require the use of large areas of land that
are diverted from food production, the demand for which has increased dramat-
ically in recent years, owing to the growing world population. To monitor the
rapid growth of solar farms, it is essential to collect data on the quantity, distri-
bution, and impact of these systems. Despite the many challenges in mapping PV
systems owing to the variety of materials and complexity of layouts, many re-
searchers are trying to improve this process using remote sensing techniques
combined with machine and deep learning. This study developed a comprehen-
sive framework for mapping and monitoring PV systems using open-source Sen-
tinel-2 (S2) satellite imagery and remote sensing techniques supported by ma-
chine-learning algorithms. The framework was applied to two study areas with
different characteristics by adopting an Object-Based Image Analysis (OBIA) ap-
proach to improve image segmentation and classification. The preliminary phase
included the analysis of the Normalized Difference Vegetation Index (NDVI) index
variation within the Ground Truth (GT) polygons, improving the segmentation
through the creation of image “composites.” During the feature extraction phase,
75 features were obtained from the segments, including spectral indices, such as
Enhanced vegetation index (EVI), Normalized Difference Tillage Index (NDTI), and
Normalized Difference Built-up Index (NDBI), which turned out to be the most

relevant. The Random Forest (RF) models obtained the best performance, with
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accuracies above 90% in the test areas and high F1l-scores. Support Vector Ma-
chine models also showed satisfactory results, whereas K-nearest neighbor mod-
els proved to be less effective. The analysis highlighted a trend towards land
transformation from agricultural to industrial, with a significant presence of veg-
etation under many PV arrays, suggesting the development of agrovoltaic plants.
The applied methodology represents a potentially valuable predictive tool for
monitoring land transformation and territorial planning. The continued availabil-
ity of high-resolution open-source satellite images, progress in computing capac-
ity, and advancements in image classification algorithms render this methodol-
ogy easily replicable for both academic and technical design purposes. The results
obtained lay the foundation for an approach to PV mapping, which is essential

for increasingly intense future monitoring.
keywords
Remote Sensing, OBIA, Photovoltaic, Solar Energy, Machine

Learning



OBIA approach for the analysis of medium resolution satellite data for environmental monitoring

EXTENDED ABSTRACT (ita)

L'espansione globale degli impianti fotovoltaici continua a crescere in risposta
all'aumento della domanda di energia e alla necessita di una produzione energe-
tica sostenibile. Tuttavia, i parchi solari su larga scala richiedono I'utilizzo di ampie
aree di terreno, sottraendole alla produzione alimentare, la cui domanda & au-
mentata notevolmente negli ultimi anni a causa della crescita della popolazione
mondiale. Per monitorare la rapida crescita dei parchi solari, € fondamentale rac-
cogliere dati sulla quantita, distribuzione e impatto di questi sistemi. Nonostante
le numerose sfide nella mappatura degli impianti fotovoltaici, dovute alla varieta
di materiali e alla complessita dei layout, molti ricercatori stanno cercando di mi-
gliorare questo processo utilizzando tecniche di telerilevamento combinate con
I'apprendimento automatico e I'apprendimento profondo. Questo studio ha svi-
luppato un quadro metodologico completo per la mappatura e il monitoraggio
degli impianti fotovoltaici utilizzando immagini satellitari open-source Sentinel-2
(S2) e tecniche di telerilevamento supportate da algoritmi di machine learning. Il
metodo é stato applicato a due aree di studio con caratteristiche diverse, adot-
tando un approccio basato sull'analisi delle immagini per oggetti (OBIA) per mi-
gliorare la segmentazione e la classificazione delle immagini. La fase preliminare
ha incluso I'analisi della variazione del Normalized Difference Vegetation Index
(NDVI) all'interno dei poligoni del Ground Truth (GT), migliorando la segmenta-
zione attraverso la creazione di "compositi" d'immagine. Durante la fase di estra-
zione delle caratteristiche, sono state ottenute 75 caratteristiche dai segmenti,
tra cui indici spettrali come Enhanced vegetation index (EVI), Normalized Diffe-

rence Tillage Index (NDTI), e Normalized Difference Built-up Index (NDBI), che si
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sono rivelati i piu rilevanti. | modelli Random Forest hanno ottenuto le migliori
prestazioni, con accuratezze superiori al 90% nelle aree di test e alti punteggi F1.
Anche i modelli Support Vector Machine hanno mostrato risultati soddisfacenti,
mentre i modelli K-nearest neighbor si sono dimostrati meno efficaci. L'analisi ha
evidenziato una tendenza alla trasformazione del suolo da agricolo a industriale,
con una significativa presenza di vegetazione sotto molti pannelli fotovoltaici,
suggerendo lo sviluppo di impianti agrovoltaici. La metodologia applicata rappre-
senta uno strumento predittivo potenzialmente utile per monitorare la trasfor-
mazione del territorio e per la pianificazione territoriale. La continua disponibilita
di immagini satellitari open-source ad alta risoluzione, i progressi nella capacita
di calcolo e I'avanzamento degli algoritmi di classificazione delle immagini ren-
dono questa metodologia facilmente replicabile in futuro sia per scopi accade-
mici che per la progettazione tecnica. | risultati ottenuti gettano le basi per un
approccio alla mappatura degli impianti fotovoltaici, essenziale per un monito-

raggio sempre pil intenso in futuro.

keywords
Remote Sensing, OBIA, Photovoltaic, Solar Energy, Machine
Learning
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INTRODUCTION

The planet has reached a critical juncture in the transition to sustainable
energy owing to the increasing depletion of fossil fuels and growing concerns
about climate change (Owusu and Asumadu-Sarkodie, 2016). More than 70% of
atmospheric carbon emissions originate from conventional fossil fuel-derived en-
ergy sources (Guney, 2022). To ensure that the increase in global temperature is
limited to manageable levels of 1.5 °C or less, the international community must
fully eliminate these greenhouse pollutants by no later than 2050. According to
the findings of the International Renewable Energy Agency (Irena), renewable
energy remains the only viable resource if we aspire to meet our extensive elec-
tricity demand while limiting further environmental degradation caused by hu-
man actions, given the recent significant advances in technological innovation
(Wang et al., 2023a).

Solar energy is gaining ground as one of the fastest-growing renewable
energy resources. Owing to its exceptional sustainability and quality, the energy
generated through PV panels has attracted increasing global interest because of
its tremendous prospects in terms of the growth and economics in energy pro-
duction (Parida et al., 2011). Unlike other sources, such as energy provided by
wind power, that from the sun is quiet in the production process and extremely
flexible in environmental applications where it is used (Wolniak & Skotnicka-
Zasadzien, 2022). As for the global statistics of the sector recorded at the end of
the period ending in 2022, the cumulative installed capacity amounted to more
than double the number reported only three years earlier, and from approxi-
mately 590 GW, we have risen to almost the upper 1000GW currently standing
at very high numbers (Kruzel & Helbrych, 2018).

However, the extensive land use for the construction of large-scale PV fa-
cilities has an environmental impact that must be considered. Construction of
such infrastructure can result in both alterations to perceived landscape values

and changes to ecological, hydraulic, and vegetative soil functions (Tawalbeh et
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al., 2021) The installation of PV systems exerts a significant influence on photo-
synthetically active radiation and the radiative budget; reducing surface albedo
while altering precipitation patterns (Choi et al., 2020). These changes have a
profound effect on local microclimates by affecting phenomena such as evapo-
ration rates, wind speeds, atmospheric temperature, moisture levels within soils,
or temperatures within them (Mustafa et al., 2020). Therefore, it is essential to
conduct meticulous mapping exercises that highlight the spatial arrangement of
the major PV stations.

Geographic data on their distribution play an essential role not only in as-
sessing potential power generation but also in examining the associated environ-
mental impacts from an operational perspective (Dunnett et al., 2020). In addi-
tion, exploiting efficient distribution patterns is a valuable resource when plan-
ning areas dedicated to landscape design principles, along with the energy de-
mands of urbanization (Ladisa et al., 2024a). Only a few countries have validated
databases established through voluntary contributions or collaborative mapping
activities (Kasmi et al., 2023).

Geomatics has addressed this topic over the past decade (T. Nguyen & M.
Pearce, 2013). For example, various investigations have used drones to map and
monitor the spatial distribution and diagnostics of PV cells (Kumar et al., 2018).
Thermal photogrammetry using drones has proven to be an interesting tech-
nique, particularly for solar panel diagnostics. Low-cost thermal sensors can also
be used for this purpose (Zhang et al., 2017a). However, when mapping large-
scale solar farms, field surveys can be both time-consuming and expensive
(Ladisa et al., 2022a). A more rapid and noninvasive approach to collecting spatial
data on such installations is satellite imaging (Ladisa et al., 2022b), which has the
added advantage of being able to collect information over larger areas and mon-
itor temporal patterns in the dynamics of expansion among major PV installations
(Xia et al., 2023).
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1.1. Previous Work on Detection of solar energy from PV by Remote Sens-

ing

In recent years, there has been a notable expansion in large-scale PV in-
stallations across multiple regions. Consequently, numerous studies have fo-
cused on mapping PV systems using remote sensing imagery. These investiga-
tions considered various input data types, image-processing methodologies, and
algorithms. Initial research using satellite imagery to detect solar panels primarily
relied on high-resolution satellite imaging or Deep Learning (DL) techniques.

(Jiang et al., 2021) recently developed a multi-resolution dataset that seg-
ments solar panels in commercial Gaofen-2 and Beijing-2 satellite images with
spatial resolutions as low as 0.8m; area images with an even finer resolution
down to 0.3 m; alongside drone-based pictures at depths reaching up to just
0.1m. The samples contained diverse installations across different terrains, such
as scrublands, grasslands, and agricultural fields. This study utilized a dataset to
assess the effectiveness of various deep networks for PV segmentation and ex-
plored the viability of incorporating cross-directional samples with varying reso-
lutions. The results revealed that different resolutions were more effective in
generating accurate results based on specific distributions within the PV arrays,
exhibiting an average metric accuracy exceeding 0.84. Moreover, our findings in-
dicate that integrating cross-direct sample applications does not produce favor-
able results; thus, precise calibration is crucial when utilizing pretrained networks
using target samples. Further research has concentrated on remotely mapping
large-scale solar power plants by transitioning from high-resolution commercial
imagery to medium-resolution open-source imagery because of the exorbitant
costs related to acquiring high-quality commercial images across the extensive
areas under investigation.

Recently, the National Aeronautics and Space Administration (NASA) and
ESA (European Space Agency) have initiated free-access services providing opti-
cal and radar satellite imaging at global coverage but limited resolution levels,

resulting in widespread use without any additional expenses incurred (Peters et

9



Claudio Ladisa | XXXVII cycle

al., 2018). Through the EU-led Copernicus program, the ESA has developed global
environmental monitoring services based on space technology to ensure auton-
omous observation capabilities of the Earth in Europe (Jutz & Milagro-Pérez,
2020).

The Copernicus program comprises a spatial component, basic services,
and in-situ measurements (Thepaut et al., 2018). The spatial component includes
a series of satellites called Sentinels, each with specific missions and instruments
for monitoring various aspects of the planet. In particular, multispectral optical
data at medium resolution provided by Sentinel-2 (S2) have been widely used in
applications such as vegetation monitoring, land-use analysis, and natural disas-
ter mapping (Gascon et al., 2017). These data have proven to be an excellent
alternative to NASA's Landsat product due to their higher quality geometric res-
olution, providing image resolutions up to ten meters compared to Landsat,
which is limited to only three times that amount, that is, 30 m.

In a recent study conducted by Costa et al. (2021)), various combinations
of DL models were evaluated to classify PV plants using S2 imagery at 10m reso-
lution in the visible near-infrared bands. The analysis included four architectures,
U-net, DeeplLabv3+, FPN, and PSPNet, along with four backbones, ResNet-50,
ResNet101, Eff-b0, and Eff-b7, resulting in 16 potential model combinations. No-
tably, the performance of all variants was surpassed by U-net using an Efficient-
Net B7 backbone, achieving an exceptional accuracy above 98%. While highlight-
ing the unique spectral features inherent to its imagery that facilitate detection
capability for PV panels, challenges associated with significant computational
costs coupled with lengthy processing times complicate this phase of exploration,
rendering machine learning (ML) algorithms more favorable compared to DL
techniques, considering their minimal usage requirements regarding training set
guantities as well as reduced computation demands.

Moreover, Zhang et al. (2022) presented a novel workflow integrating
ML-based methodology specifically employing pixel-oriented Random Forest (RF)

augmented through visual interpretation practice on Landsat L8 satellite data,

10
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helping create solar power plant datasets covering approximately 2917 km?
across China until the FY21-end showed overall accuracies surpassing or equating
up-to-the-mark threshold levels exceeding 96%. However, there are noteworthy
complexities arising from difficulties encountered in mapping numerous sources
depicting such stations, including those noted due to spatial proximities and
structural similarities between panel roofs located atop warehouses, which pose
hurdles against uninterrupted growth activities, further degrading the soil quality
surrounding sites, which inevitably accompanied regional variations, impacting
the station layout, and adversely imbibing complexity into tracking growth as-
pects effectively at scale, requiring tailored solutions to balance desired out-
comes comprehensively within a reasonable time parameter upheld.

Wang et al. (2022) used multi-source remote sensing data, including S2
reflectance and Sentinel-1 (S1) polarization, to investigate the transferability of
the model between rural and urban landscapes. Using the Google Earth Engine
(GEE), an RF classification model was developed based on both the input infor-
mation from S2 and S1 and spectral indices, such as the Normalized Difference
Vegetation Index (NDVI), Normalized Difference Built-Up Index (NDBI), and tex-
ture values, such as entropy correlation and contrast. The results showed that a
classifier trained in an urban landscape had a higher accuracy with a higher trans-
ferability rate of 97.24% compared to a classifier trained in a rural context. The
overall maximum accuracy reached 98.90% using samples obtained from the ar-
eas of interest in both regions, whereas incorporating VIIRS nighttime light data
was found to help improve the predictions by correcting errors in bare rocks or
shadowed mountain slopes.

Chen et al. (2022) used Landsat 8 imagery to develop PV identification
models by combining spectral features, including the Normalized Difference Till-
age Index (NDTI), NDVI, Built-Up Area Index (BUAI), and Normalized Difference
Water Index (NDWI), with terrain features and comparing various ML algorithms,
including RF, and support vector machine (SVM). The present study introduces a

novel approach using spectral curves to discern PV arrays from other land cover

11
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types, thereby enabling the development of a multiclass classification model as
opposed to the binary models employed in previous studies. Notably, our inves-
tigation revealed that PV arrays are easily distinguishable from water bodies,
snow cover, vegetation, and built-up areas but share certain features with barren
lands and roads within river valleys. NDTI proved instrumental for detecting PV
arrays, whereas additional indices such as Band Intensity (Bl), NDVI and Enhanced
Vegetation Index (EVI) facilitated their differentiation from urbanization or other
forms of vegetation.

Classification of diverse land types using ML algorithms, such as SVM and
RF. Current research has significantly improved the capabilities of algorithms,
demonstrating high levels of accuracy over larger geographic ranges, even when
subjected to limited computational resources. Surprisingly, this was achieved us-
ing fewer DL techniques than would normally be required, which is a remarkable
advancement.

The uniqueness of this study lies in the sampling phase. As suggested by
(Colditz, 2015) for optimal results, the training sample area was approximately
0.25% of the total study area. Furthermore, a combination of high-resolution
Google images and multispectral RGB images was used during the sample-label-
ing process to minimize the temporal disparity between the samples and images.
This approach was effective in reducing the classification errors. In this case, the
RF classifier was selected because of its fast processing of multi-source data. The
results show that the main sources of error include different spectra of the same
object and those of different objects. Differences in the installation direction and
distance led to significant variations in the spectral and structural information
within the PV arrays, hindering complete recognition. For example, panels in-
stalled horizontally over long distances have distinct features compared to those
on a slope with minimal differentiation between rows. In addition, the spectral
information for PV panels located on complicated surfaces, such as agricultural
greenhouses, is affected by complex background pixels, resulting in significantly

divergent NDVI and NDBI values when comparing these surface-mounted solar

12
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modules. The overall accuracy (OA) achieved in this study was 94.31%. In addition
to mapping solar installations, this study examined how PV systems affect
changes in local landscapes. Special attention was given to the analysis of vege-
tation change before and after PV system installation by examining the annual
averages of the NDVI values. Different types of PV panels have been observed to
have varying effects on the vegetation in different climatic regions. In many
cases, these panels tend to reduce the surface green cover; however, their use in
temperate zones can promote plant growth.

Pixel-based (PB) image processing is the most commonly used approach
in all studies mentioned here, which involves assigning classifications to each in-
dividual pixel present in a particular analyzed image. Although it is a simple im-
plementation, this method can produce results with a " salt-and-pepper effect
without insufficient consideration of pixel-to-pixel relationships or geometric fea-
tures of the training sample. Despite this limitation, object-based image analysis
(OBIA) has been used alone or in conjunction with other methods, particularly
those that rely heavily on semi-spectral classifiers for interpretation. OBIA relies
primarily on segmentation algorithms designed to transform covered pixels into
homogeneous objects before classification, based on specific spatiotemporal and
geometric attributes. These alternative approaches achieve excellent results
overall compared to the conventional techniques that preceded them, largely be-
cause of the increased efficiency that helps to understand the complex remote
sensing procedures related to plant health practices.

For instance, Xia et al. (2022) adopted an OBIA approach by merging seg-
mentation algorithms in the eCognition Developer software with object-based
classification algorithms within GEE. Specifically, they used the maximum annual
value of the NDBI spectral index obtained from Landsat 8 bands as input and em-
ployed a multi-resolution segmentation (MRS) algorithm implemented in eCog-
nition 9.5 (Trimble, Sunnyvale, CA, USA). The MRS algorithm was used to acquire
homogenous objects based on three parameters: shape, scale, and compactness.

The bottom-up regional fusion technique starts with singular pixel objects and
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then merges smaller ones into larger ones iteratively, according to Chirici and
Travaglini (2003). For this case study, setting the scale parameter values to ap-
proximately 30, while compaction values for both shapes should be approxi-
mately one or five, based on interpretation via visual image analysis, were con-
sidered acceptable choices. The OBIA approach was used in this study. The RF
classifier was trained using the mean and standard deviation of pixels within sam-
ple objects from the Red, Near Infrared-1 (NIR1), Near infrared-2 (NIR2),
Shortwave Infrared-1 (SWIR1), and Shortwave Infrared-2 (SWIR2) bands over a
year, plus two shape features (compactness and landscape shape index). The
overall classification accuracies for 2013 and 2019 were 85.8% and 92.8%, re-
spectively, with kappa coefficients of R0.84D and RORD86. Misclassifications
mainly occur between PV power plants and some bare rocks owing to their simi-
lar spectral characteristics and segmentation issues related to shapes. The pro-
posed method is computationally efficient, even though it involves time-series
analysis, which significantly improves the accuracy levels during testing. The data
obtained indicated a significant increase in the area of PV power plants in China
between 2007 and 2019, with rapid growth observed from 2013 to 2019.
Another study that favored the OBIA approach over PB was conducted by
Plakman et al. (2022). In this study, unlike the previous one, segmentation was
carried out using Simple Non-Iterative Clustering (SNIC) within GEE, utilizing both
the S2 optical and S1 radar input data. As Mahdianpari et al. (2018) and Achanta
& Susstrunk (2017) demonstrated earlier, the SNIC algorithm is highly suitable for
segmenting S2 images in terms of processing time compared to other compara-
ble algorithms. Furthermore, the GEE application has an added benefit as it does
not require computing resources from users. Statistics such as the mean value,
standard deviation, and median were calculated for all resolution bands compris-
ing each segmented object. Objects possessing these characteristics were ex-
ported from GEE into the RStudio environment, where they were used for train-
ing validation among the various RF models. The present procedure was per-

formed because of RStudio's advantage of allowing the preservation and
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application of distinct classification models, a functionality unavailable in GEE.
The ability to employ such models on other datasets enhances their potential for
study and analysis, which focuses on understanding the knowledge transferabil-
ity associated with the considered models. In this study, efforts were made to
balance the sample quantity per category within the training dataset. An imbal-
ance exists between objects labeled as solar panels and designated non-solar
panels, necessitating oversampling and undersampling algorithm implementa-
tion possibilities. It should be noted that the vulnerability of machine-learning-
based algorithms lies primarily in their tendency to adapt predominantly towards
majority classes, which magnifies the significance of our chosen sampling proce-
dures. Hence, various models were executed and compared using the RStudio
environment. The training data were manipulated through oversampling or un-
dersampling, or left unaltered to achieve balance. Based on the results of these
methods, it is evident that an RF model equipped with both spectral and
backscatter properties has tremendous potential for automatically identifying so-
lar farm objects subjected to segmentation. Models augmented via oversampled
datasets outperformed their counterparts trained using undersampled versions,
demonstrating superior classification accuracy ratings of 99.97% (Kappa = 0,90).
Remarkably, although not surprisingly observed during this experimentation pro-
cess, when retrieving details essential for imparting insights into suitable training
samples due to insufficient gathered information following downsizing proce-
dures reflective of undersampling techniques had eliminated said critical obser-
vations entirely from consideration, as expected results indicated so thereafter
retrospectively analyzed consequences' post-hoc evaluation phase concluded
positively supporting the aforementioned speculation describing ramifications
associated with lacking necessary foresight requisite proficiency levels appropri-
ate handling analytical tools emerging technologies pass substantial merits pro-
moting allocation of sufficient resources, advancing research developments en-
trenched in sustainable approaches towards improving global energy ecosys-

tems. In any case, the precision metrics obtained for both the validation and test
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data demonstrate that the proposed technique is well-suited for use in transfer
learning. Moreover, because the S1 and S2 satellites offer global coverage as
open-source platforms, this approach can be easily replicated beyond the de-
fined study area to obtain spectral and backscatter features.

(Ladisa et al., 2022b) research provides further insight into PV panel seg-
mentation by comparatively evaluating two methods: eCognition Developer's
multi-resolution algorithm versus Orfeo Toolbox's mean-shift algorithm on ex-
traction from S2 imagery. The distinguishing aspect of their analysis entails de-
termining the optimal parameters using the AssesSeg command-line software,
which calculates the Euclidean distance (ED) between segmentations produced
by each method. In terms of PV system segmentation purposes, it was observed
that although the OTB generated larger total areas collectively within its poly-
gons, optimization utilizing parameter selection techniques suggests that eCog-
nition more accurately captures the ground truth (GT) with greater intersection
outputs than OTB. This phenomenon is substantiated by relatively high median
values engendered by polygon size output through a mean shift when compared
with low standard deviations, affirming that a tendency exists, thus ensuring re-
producibility across various sample groups while accounting for limitations asso-
ciated with currently available algorithms regarding feature input selection prob-
lems.

Recursive Feature Elimination (RFE) has proven superior to leave-one-out
(LOO) in terms of computational efficiency. RFE works iteratively to select the
most relevant features. It begins by training the model on all available data and
gradually removing the least significant features in each iteration. This elimina-
tion process continued until the desired number of features remained. As shown
in Ladisa et al. (2024b), this methodology is not only faster than LOO, but also

optimizes the feature set, improving the accuracy of RF classification models.
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1.2. Thesis aim

The main objective of this thesis is to propose an OBIA framework for
mapping PV parks using remote sensing images, particularly S2, in two different
study areas. Solar energy plays a crucial role in renewable energy production and
has seen an exponential growth in PV installations over the past 15 years. How-
ever, the rapid expansion of solar technology in rural areas poses environmental
issues, such as soil loss and habitat modification, leading to changes in landscape
characteristics.

Monitoring spatial expansion over time by analyzing its potential environ-
mental impact is essential, and it is crucial to further understand which types of
land cover are being transformed through the introduction of solar energy. The
adopted OBIA framework comprises three main phases: image segmentation,
feature extraction, and object/image classification. However, a literature review
highlighted the lack of application of classification models tested on recent and
past images to analyze plant progress over time and soil category transfor-
mations.

Additionally, integrating OBIA with next-generation ensemble learning
approaches is a promising but underexplored approach in land-use analysis. The
specific objectives of this thesis are: (i) to study the spectral characteristics of S2
time-series data corresponding to PV plants, (ii) to improve the segmentation
phase, (iii) to determine which algorithm is most effective in reducing the feature
space during feature selection, (iv) to test different learning algorithms for clas-
sification performance and compare results across various study areas, and (v) to
analyze how spatial distribution patterns have changed since the first year of
availability using S2 data by examining changes in land cover in two selected re-

gions.
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1. DATASET AND STUDY AREAS

1.1. Study area

Two study areas, one in Montalto di Castro (VT, Italy) and the other south
of Seville (Spain) (Fig.1), covering a rectangular region were chosen to conduct
the trials, as indicated in Fig. 2 and 3. Montalto di Castro is 7.5 km from north to
south and 5.5 from east to west. km in the region south of Seville is 7.5 km in
north-south direction and 5.5 km in the east-west direction. Measurements were
taken to ensure that the study areas were as homogeneous as possible in terms
of land cover classes. However, it is important to note that PV plants represent
only a minority of the total coverage in both areas. These two study areas were

selected to compare the same methodology in two different regions with varying

vegetation, climate, and PV characteristics.
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Fig. 1 - Study area location WGS84 reference system (EPSG:4326). Source: ESRI World View.
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1.1.1. Montalto di Castro (Viterbo, Italy)

Montalto di Castro is situated in the region of Lazio, specifically within the
Province of Viterbo, located centrally within Italy. This area has a multitude of
diverse landscapes, including coastal regions, hillsides, and volcanic and moun-
tainous zones (Manrai et al.2017).

In particular regard to Montalto di Castro's location lies its position within
Maremma Laziale, an idyllic coastal zone renowned for possessing iron-sand
beaches complemented by pristine pine forests that are traversed by not only
one but three distinct waterways: The Fiora River and Arrone and Chiarone
streams respectively (Schirru, 2019). Sprawling plains are based on abundant
sunlight, and the convenient accessibility of Tuscia makes it an optimal zone for
the expansion of PV plants. (Chatenoud et al., 2005). Montalto di Castro boasts
78% of all ground-mounted facilities within this region. The inception phase cul-
minated in 2009, with a complete capacity of 24 MegaWatts (MW), followed by
a commissioned second stage appraised at 8 MW implemented later that year.
(Cristina Volpe Rinonapoli, 2023). Subsequently, both the third and fourth phases
were finalized in December of the same year, resulting in an aggregate output
potential rating of up to 44 MW. Thus far, the entire solar park has attained 285
MWop of power generation capacity, allocating sufficient energy supply round-
the-clock to approximately twenty-four thousand urban dwellers.

In addition, this extensive facility occupies roughly two hundred eighty-
three hectares. Plants can be differentiated based on their pattern and arrange-
ment (Andrea Pietrarota, 2023). Close to the Terna substation located in Mon-
talto lies the Cassiopea solar park, which has one of the highest densities among
all plant areas. The characteristic fragmented texture comprises PV arrays aligned
north-south and organized into multiple groups within this area. Positioned in
the northwest direction here is Andromeda's solar park, which presents two dis-
tinct compact shaped clusters, unlike its counterpart Cassiopea's layout, produc-
ing a total energy output of 51 MW with an average spacing distance between

each array of approximately 2 m, giving rise to square forms formed by a
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clustered arrangement design (Cristina Volpe Rinonapoli, 2023). Other power-
generating parks spread throughout our research site exhibit variations in the in-
terstitial distances separating them, and surface types beneath these structures
are seen more prominently during the winter/spring months, creating non-uni-
form morphological features displaying irregular geometries, where consolida-
tion is not always present.

7/11600E  714600E
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Fig. 2 - Study area location Montalto di Castro. WGS84/
UTM Zone 32N reference system (EPSG:32632). Source:
ESRI World View.
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1.1.2. Sevilla (Spain)

In the southern area of Seville, between Dos Hermanas and Utrera, a sig-
nificant cluster of PV plants has been developed in terms of both size and solar
energy production. (Ridao et al., 2007). This territory, characterized by one of the
highest solar radiation levels in Europe, boasts numerous plants that maximize
available solar resources. (Chapman, 2008). Among these, La Isla PV Park is a no-
table example. Located in the northernmost part of the study area, La Isla covers
520 ha and produces 157.5 MW. (NOVASOL, 2017).

In an area that receives over 1,920 h of sunshine per year, the park’s effi-
ciency is optimized owing to a fairly spaced arrangement of arrays, with approx-
imately 4 m of separation between rows. This configuration allows for good air
circulation and reduces the shading effect between the panels. Additionally, the
perimeter of the plant was compact and there was no vegetation under the solar
panels, which facilitated maintenance and reduced fire risks. A little further
south, we found Don Rodrigo Solar Park, a historically significant plant and the
first large-scale PV plant in Europe. With a total capacity of 175 megawatt-peak
and an annual performance of 300 gigawatt-hours (GWh), Don Rodrigo Park can
meet the annual energy needs of approximately 93,000 average Spanish house-
holds (Global Energy Monitor Wiki 2024).

The plant uses polycrystalline silicon modules mounted on closely spaced
horizontal arrays, thereby optimizing the available space. In addition, there was
no vegetation under the panels, and the perimeter of the plant closely followed
the morphological conformation of the terrain, minimizing the environmental im-
pact. Despite their technical and structural differences, these two PV parks rep-
resent symbols of innovation and sustainability in energy production, and make

up most of the solar resources in the Seville region. (Ordéfiez et al., 2010).
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Fig. 3 - Location of the study area in Sevilla. WGS84/
UTM Zone 30N reference system (EPSG:32630).
Source: ESRI World View.

1.2. Dataset

This thesis used medium-resolution images from the S2 satellite and ESRI
World Satellite Imagery imagery visualization service.
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1.2.1. ESRI World Satellite

The ESRI World Imagery provides satellite and aerial imagery of one meter
or better quality for most global landmasses, while also providing low-resolution
satellite imagery worldwide (Venter et al., 2022). The current sources contrib-
uting to this map are as follows. TerraColor imagery at a 15 m resolution is avail-
able worldwide for application at small to medium map scales. (ESRI, 2009).
Maxar offers several global-scale image-based mapping products. (Smith et al.,
2021). The GIS User Community has provided valuable contributions in the form
of high-resolution aerial photography. These images span 30 cm to 3 cm in reso-
lution, and collaborative mapping stakeholders are encouraged to share them
with Esri via shared contributions for broad dissemination. (Ladisa et al., 2024a).

In this thesis, this layer was used to identify the GT features in both study areas.

1.2.2. S2 imagery

The S2 mission involves simultaneous and continuous monitoring of ter-
restrial and coastal areas through two identical satellites: Sentinel-2A (S2A) and
Sentinel-2B (S2B) (Spoto et al., 2012). These satellites employ a Multispectral In-
strument (MSI) sensor that captures images from the visible to the shortwave
infrared regions of the electromagnetic spectrum. (Wang et al., 2016).

Their temporal resolution is five days owing to their dual-satellite config-
uration with a swath width of 290 km, capturing images in 13 spectral bands with
varying spatial resolutions S2 Products Specification Document, 2021) (Phiri et
al., 2020). Additionally, Level-2A (L2A) S2 products provide atmospherically cor-
rected surface reflectance derived from Level-1C (L1C) products or top-of-atmos-
phere (TOA) radiance reflectance (Spoto et al., 2012).

To generate such data using the Sentinel-Toolbox or the standalone ‘Sen-
Cor’ processor (Main-Knorn et al., 2017), users can first generate L1C data; this
processing follows two fundamental phases: scene classification and atmos-

pheric correction, which produces pixel classification maps identifying features
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such as clouds/shadows, vegetation, land/desert cover, and water under various

surfaces (Aguilar et al., 2020).

Atmospheric correction transforms TOA reflectance into surface reflec-

tance (SR). (Wang et al., 2016). During L2A processing, defective, non-existent,

and saturated pixels were excluded. The SR is calculated at the native resolution

of the products, which varies depending on the band (10, 20, and 60 m) (Szantoi
& Strobl, 2019). The specifications of S2A and S2B are presented in Tab. 1.

Tab.1 — Bands specifications S2 MSI

S2A S2B
Band Band Spatial
Band Band Name Cer;:cral Width CentralA  Width :s:‘o(l:)
(nm) (nm) (nm) (nm)
B2 Blue 496.6 98 492.1 98 10
B3 Green 560.0 45 559.0 46 10
B4 Red 664.5 38 665.0 39 10
Red-edge 1
B5 703.9 19 703.8 20 20
(RE1)

B6 RE2 740.2 18 739.1 18 20
B7 RE3 782.5 28 779.7 28 20
B8 NIR1 835.1 145 833.0 133 10
B8A NIR2 864.8 33 864.0 32 20
B11 SWIR1 1613.7 143 1610.4 141 20
B12 SWIR2 2202.4 242 2185.7 238 20

This study used 22 S2 L2A (surface reflectance) images without clouds, corre-

sponding to 12 images for Sevilla and the same number for Montalto di Castro.

In both areas, 10 cover an annual period of 2023 (Tab. 2), whereas the
other two were published in 2018 (Table. 3). From the bands provided by the S2

products, only those with geometric resolutions of 10m and 20 m were selected.
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This is because the 60m bands have a resolution too coarse to be used in this

application context.

Tab.2 —S2 Usage Dates Time Series 2023

Study area Acquisition date and sensor
10.01.2023 (S2A) —14.02.2023 (S2B) — 16.03.2023 (S2B) -
Montalto di 03.04.2023 (S2A) — 27.06.2023 (S2B) — 19.07.2023 (S2A) —
Castro 23.08.2023 (S2B) —30.09.2023 (S2A) — 02.10.2023 (S2B) —
19.11.2023 (S2A)
13.01.2023 (S2A) — 05.02.2023 (S2B) — 02.03.2023 (S2A) —
11.04.2023 (S2A) — 11.05.2023 (S2A) — 25.06.2023 (S2B) —

Sevilla
07.07.2023 (S2A) — 14.08.2023 (S2B) — 13.09.2023 (S2B) —
17.11.2023 (S2A)
Tab.3 —S2 Usage Dates Time Series 2018
Study area Acquisition date and sensor
Montalto di
10.08.2018 (S2A) — 25.12.2028 (S2A)
Castro
Sevilla 12.01.2018 (S2A) —12.08.2018 (S2A)

25



Claudio Ladisa | XXXVII cycle

2. METHODOLOGY
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Fig. 4 - Thesis methodology workflow
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A methodological flowchart of this study is shown in Fig. 4. Initially, data
essential for analytical purposes, as outlined in the preceding section, were col-
lected and subjected to a pre-processing phase. Thereafter, the methodology en-
compassing the study was divided into several stages.

1. Analysis of spectral signatures and examination of seasonal trends
2. Segmentation and evaluation of segmentation

3. Extraction and computation of features

4. Implementation of the classification models

5. Analysis of PV change detection (CD).

2.1. Pre-processing phase

As outlined in the preceding section, the S2 L2A multispectral images
were subjected to atmospheric correction. Following this, a nearest-neighbor ap-
proach was utilized to resample all 20-meter resolution bands to retain geomet-
ric information at a higher spatial resolution of 10 m. Finally, selection areas for
the study were delimited within the confines of pertinent S2 tiles using QGIS soft-

ware tools.

2.2. Extraction of reference PV polygons

A GT dataset corresponding to the study sites of Montalto di Castro and
Sevilla, as shown in Fig. 5 and 6, was extracted from OpenStreetMap by filtering
all geometries using only the key:plant: method among the tags. The other ge-
ometries that were not updated on OpenStreetMap were manually digitized
based on the ESRI Worldlmage map. Because of the resolution of the S2 imagery,
array clusters at a distance greater than 10m were considered as two distinct

reference geometries.
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Fig. 5 - PV GT Montalto di Castro WGS84/ UTM Zone
32N reference system (EPSG:32632). Source ESRI
World View.
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Fig. 6 - PV GT Sevilla WGS84/ UTM Zone 30N
reference system (EPSG:32630). Source: ESRI World

View.
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2.3. Spectral signature analysis

Spectral signature analysis was performed on the pixels within the GT pol-
ygons once they had been extracted to obtain a detailed understanding of the
multispectral properties of PV installations. Using the 2023 time series, spectral
signature analysis was performed for both research locations to determine any

seasonality and obtain a signature for each month.

Montalto di Castro Spectral Sighature
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Fig. 7 — Spectral signatures time series 2023 Montalto di Castro.
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Sevilla Spectral Signature
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Fig. 8 — Spectral signatures time series 2023 Sevilla.

The spectral characteristics of the time series for the two research regions
are shown in Fig. 7 and 8, respectively. It is evident from an analysis of the Mon-
talto di Castro site that spectral signatures follow a seasonal rhythm. The spectral
signatures exhibited an essentially continuous increasing trend during the sum-
mer and fall, rising from relatively low values in the blue band to higher values in
the NIR2. A distinct peak was observed in the SWIR1 band, which was particularly
noticeable in July and August. Following this peak, the spectral values in the
SWIR1 band drop again, creating a "triangle" pattern that connects the NIR2,
SWIR1, and SWIR2 bands. During the winter and spring months, the spectral be-
havior exhibited markedly different characteristics.

In the visible region up to the RE1 band, the PV signature showed lower
values compared to the summer and autumn months, with a slight peak in the
green band, akin to the average spectral signature of vegetation (Moroni et al.,
2019). Between the RE1 and RE2 bands, a pronounced increase in reflectance

values was observed, followed by an almost linear growth towards the NIR2
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band. From the NIR2 band to the SWIR1 band, the spectral behavior during the
winter and spring months was notably heterogeneous; in certain months, such
as January and February, a slight increase was evident, whereas in other months,
such as March and April, a decrease was noted. Finally, from the SWIR1 band to
the SWIR2 band, a sharp decline in the spectral values was recorded, analogous
to that observed in other months. Although less evident, slight seasonality can
also be observed in the spectral signatures of the Seville area, as shown in the
figure, within the time series. All spectral signatures exhibited a peak in the
SWIR1 band, like that observed during the summer and autumn months in the
Viterbo study area.

However, in general, Seville shows higher reflectance values than Viterbo
owing to the different geographical and climatic characteristics of the area. In the
summer months, higher peaks were recorded in SWIR1 compared to the winter
months, and the trend of the signatures from B to NIR grew in an almost linear
manner. However, in the winter and spring months, the signatures exhibited
more variable slopes. From both study areas, it is possible to observe a general
spectral signature with rather low values compared with the classic spectral sig-
nature curves of other coverages found in the literature and other studies (van
Dijk et al., 2021).

In the Seville area and during the summer and autumn months in Mon-
talto di Castro, the spectral curves were characterized by high reflectance in the
SWIR1 bands, while other bands (visible and NIR) exhibited very low values. This
behavior is attributed to the properties of the materials used in the solar panels,
which are designed to absorb most of the solar radiation in the visible and NIR
bands to convert solar energy into electricity (Wang et al., 2023b). Consequently,
these materials reflect less in these bands, whereas the surfaces of the panels
can more effectively reflect the SWIR wavelengths (Deepak et al., 2022). The
SWIR bands of S2 are particularly sensitive to material composition, and PV pan-
els, primarily made of silicon or other semiconductor materials, tend to reflect a

significant portion of SWIR radiation compared to vegetation or water, which
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absorb these wavelengths to a greater extent (Kumar & Thakur, 2021). During
the winter and spring months in Montalto di Castro, the change in the shape of
the curve occurs because the signatures show higher values in the NIR, RE1, RE2,
and RE3 bands, which may indicate the presence of vegetation beneath the ar-
rays. Vegetation has a characteristic spectral reflectance that significantly in-
creases in the NIR bands and RE1, RE2, RE3 bands, reflecting these wavelengths
more than the visible bands (Moroni et al., 2019). Suppose that the solar panels
are primarily reflected in the SWIR, and the reflectance values of the NIR and red-
edge bands increase during winter. In that case, it is plausible that the underlying
vegetation influences the spectral signature (van Dijk et al., 2021).

It would be helpful to compute the NDVI for each month of the time series
and visually examine the results to better observe this type of occurrence. An
indicator that is frequently used to track the density and overall health of vege-
tation over time. Temporal grouping can benefit from the identification of sea-

sonal patterns using NDVI trend analysis (Pettorelli et al., 2005).

2.4. Seasonal variation analysis of PV NDVI

Through the analysis of the spectral signatures presented in the previous
section, it was observed that in both study areas, some installations exhibited
variability in spectral values during different seasons of the year. This phenome-
non, in addition to the presence of vegetation beneath the arrays, can also be
attributed to the excessive distance between the arrays, causing the pixels to
contain both parts of the array and soil, thus varying seasonally.

Considering these observations, to better manage and address the tem-
poral variations in the data, it was decided to group the months with similar sea-
sonal characteristics by analyzing the NDVI trends for both study areas. This
method was adopted to create image composites that represented homogene-
ous seasonal periods, which were subsequently used in the segmentation and
classification phases. The challenge of this study was to use composites as a start-

ing point for segmentation to improve the image classification process.
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Composite images are useful because they typically reduce the noise caused by
temporal, meteorological, or atmospheric variations and can provide a more sta-
ble and representative image for each seasonal cluster (Yang et al., 2020). This
could make classification easier because you will be working with more robust
average images rather than single snapshots, reducing intermonthly variability
and focusing on clearer seasonal patterns (Kaplan & Avdan, 2018).

The methodology for grouping months to create composites was not
based on the simple seasonal division of the calendar (e.g., from June 21 to Sep-
tember 21 for the summer composite), but was determined by the internal pixels
of the GT present in both study areas. The NDVI values were then calculated. This
process was performed for all images in the 2023 time series, as illustrated in Fig.
9 and 10. For each image in the 2023 time series, the average NDVI values of
pixels within the PV installations were calculated. These average NDVI values
were subsequently used as inputs for the unsupervised K-means classification al-
gorithm to obtain clusters of months in which the images exhibited spectral sim-
ilarities.

From Fig. 9, it is evident that there is clear seasonality in the data at Mon-
talto di Castro, attributable to the presence of vegetation beneath some PV in-
stallations. The NDVI values were relatively high from January to April, consist-
ently exceeding the threshold of 0.3. During the summer months, the NDVI values
decreased significantly, rising again in November. Unfortunately, it was not pos-
sible to analyze this trend in May because of the lack of cloud-free S2 images
within the study area. In Seville, as shown in the figure, a trend similar to that
observed in Viterbo was evident. The index values remained high (greater than
0.2) from January to May with a slight decrease. From May to September, the
NDVI values were lower, increasing again in November. Unfortunately, images
from September, October, and December were not available because of the

dense presence of clouds.
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Fig. 9 - NDVI Montalto di Castro 2023 trend values.

NDVI - SEVILLA

0.4
0.35
0.3
0.25

0.2
0.15
0.1
0.05

A ¥ > & & N

Fig. 10 - NDVI Sevilla 2023 trend values.
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2.4.1 K-Means

An essential unsupervised ML technique for data grouping is K-means
clustering (Umargono et al., 2020). Using this method, a dataset is divided into
"K" clusters and each data point is assigned to the closest centroid cluster.
"Mean" refers to the centroids inside each group; in the context of ML, "clusters"
are groups of data points that are more similar to each other than to those in
other groups (Sammouda & El-Zaart, 2021).

The process of starting a k-means analysis involves selecting a set of cen-
troids at random, from which all other calculations are conducted. These calcu-
lations are typically performed using the ED technique, which finds the greatest
match between the combined data points as individual records for each cluster
(Ahmed et al., 2020). The centroids are then recalculated by iterative cycles until
convergence, going over the record set using predetermined repetition settings.
This procedure requires the employment of a fresh cluster centroid determina-
tion algorithm, which is used automatically until no further iterations within pre-
determined tolerance levels are possible, yielding a stable result (SAPUTRA et al.,
2020). The initial determination of the value of "K" is a crucial factor to consider
when applying the K-means clustering algorithm. However, choosing the appro-
priate number of clusters is not always straightforward, as the optimal number
often depends on the dataset and specific task (Sammouda & El-Zaart, 2021).

Various methods can be used to determine the optimal value of ( K );
among them, the most commonly used method is the “Elbow Method” (Syakur
et al., 2018). This method proposes an appropriate number of clusters by tracking
the inertia explained by different numbers of clusters and identifying the “elbow”
point, where the rate of inertia decreases abruptly and stabilizes (Umargono et
al., 2020). In the K-means elbow method, inertia is the sum of the squared dis-
tances between each point and the centroid of the cluster to which it belongs
(Marutho et al.2018). Low inertia indicates that points are very close to their cen-

troids, suggesting that the clusters are compact and well-defined, whereas high
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inertia indicates that points are farther from their centroids, suggesting that the

clusters are more dispersed (Nainggolan et al., 2019).

2.4.1 Clustering results and composites creation

Fig. 10 and 11 illustrate the application of the elbow method in both the
study areas. It is observed that the slope from 1 to 2 of ( k) is very steep and then
almost completely stabilizes in both areas. The inertia values of the graph for the
Seville area are significantly lower than those of the Montalto di Castro area, thus
indicating more compact clusters and closer to the centroids than Montalto di
Castro. Therefore, in both study areas, we proceeded with the clustering algo-
rithm using ( k =2 ), and the results are shown in Tab. 4.

The results of this algorithm suggest the creation of two composite im-
ages for each study area. These results were consistent with those of the analysis
previously performed on the signatures shown in Fig. 7 and 8. In particular, in
Lazio, the results propose the creation of a composite (Composite1M) for Janu-
ary, February, March, April, and November and another composite (Compo-
site2M) for June, July, August, September, and October. In Seville, the situation
is similar, as the algorithm proposes to create a composite (CompositelS) for Jan-
uary, February, March, and April and another composite (Composite2S) for June,
July, August, and September. Composite images were created in a Python envi-
ronment using the Rasterio package, which allows the manipulation of geospatial
data.

Composites were generated by calculating the median of the image bands
within each cluster. The median, rather than the mean, was chosen to avoid the
influence of outlier pixels in the final data. Fig. 13, 14, 15, 16, 17 and 18 show
CompositelM, Composite2M, CompositelS, Composite2S, CompositeALLM, and
CompositeALLS, respectively. The last two are composites containing all months
of the year 2023 for the individual study areas and were compared with the other

composites mentioned above.
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Fig. 11 - Elbow method results in Montalto di Castro.
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Elbow Method (Sevilla)
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Fig. 12 - EIbow method results in Sevilla.
Tab.4 — K-means results
Montalto di Castro
Month Cluster Month Cluster
January 1 January 1
Febraury 1 February 1
March 1 March 1
April 1 April 1
June 0 May 0
July 0 June 0
August 0 July 0
September 0 August 0
October 0 September 0
November 1 November 1
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Fig. 13 - S2 Composite1M. WGS84/ UTM Zone 32N
reference system (EPSG:32632).
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Fig. 14 - S2 Composite2M. WGS84/ UTM Zone 32N
reference system (EPSG:32632).
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Fig. 15 - S2 CompositelS. WGS84/ UTM Zone 30N
reference system (EPSG:32630).
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Fig. 16 - S2 Composite2S. WGS84/ UTM Zone 30N
reference system (EPSG:32630).
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Fig. 17 - S2 CompositeALLM. WGS84/ UTM Zone 32N
reference system (EPSG:32632).
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Fig. 18 - S2 CompositeALLS. WGS84/ UTM Zone 32N
reference system (EPSG:32630).
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2.5. Segmentation

The first crucial stage in the OBIA approach is the segmentation phase
(Watkins & van Niekerk, 2019). In this procedure, an image is divided into objects
that are groups of uniform and semantically significant pixels (Labib & Harris,
2018). Color, geometric traits, and spectral properties can influence item division.

Despite the presence of numerous image processing segmentation algo-
rithms, the multi-resolution segmentation (MRS) algorithm has been widely used
in various remote sensing applications (Tian & Chen, 2007). This particular algo-
rithm is available in the eCognition software (Trimble, Munich, Germany) and has
shown excellent results when applied to tasks such as mapping of plastic green-
houses (Aguilar et al., 2016); (Jiménez-Lao et al., 2022). It has also been success-
fully applied to the mapping of PV plants, demonstrating superior performance
compared to other segmentation algorithms used in the same context (Ladisa et
al., 2022b); (Ladisa et al., 2022a). In this study, the MRS algorithm was selected
for the segmentation phase. The results produced by the algorithm depend on
multiple parameters that require optimization by users (Graf et al., 2020). The
research objectives influence the choice of these parameters because different
terrestrial objects or segments exhibit both spectral and structural variations, im-
plying that the optimal segmentation values may differ between various terres-
trial objects (Benz et al., 2004).

However, selecting the best segmentation is a complex task, as blurry
edges or image noise can hinder optimal segmentation, even for a single terres-
trial object. In such cases, it is necessary to establish a framework through which
the quality of the resulting segmentation can be evaluated to ensure generaliza-
bility across different images. Therefore, iterative evaluations can determine
when the best-fit segmentations have been obtained before implementation.
Therefore, the parameters for selecting the MRS algorithm were based on an it-

erative process for evaluating and improving overall segmentation quality.
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2.5.1 MRS

The MRS method represents a bottom-up region-fusion approach in
which smaller objects (e.g., pixels) are combined to form larger objects through
several iterative steps (Benz et al., 2004). The outcome of the process is influ-
enced by three main components: the shape, scale parameter, and compactness.
The scale parameter refers to the maximum heterogeneity allowed per segment,
whereas the compactness determines the weight assigned to the smoothness
criteria (Baatz et al., 2008). The shape governs the weighting variables of the tex-
tural and chromatic features (Tian & Chen, 2007). In addition to these parame-
ters, it is necessary to determine band combinations in advance to ensure the
efficiency of the MRS algorithm. In this study, eCognition v10.v1 was specifically
used to perform this algorithmic operation.

The required outputs were generated along with the results of the exer-
cises obtained using the same software platform. In theory, the optimization
method minimizes the weighted heterogeneity of the image objects throughout
the fusion process, resulting in a combination of neighboring image objects. (Ji-
ménez-Lao et al., 2022). The heterogeneity gain, f (Equation 1), is determined by
color and shape, with wcolor and wshape contributing to the heterogeneity ad-
justment (Benz et al., 2004).

f = Weolor X Ahcolor + Wshape X Ahshape' € [0'1']'

(1)

Wshape € [0,1,], Weoror + Wshape = 1

Ahcolor, representing the variations in spectral heterogeneity, allows for
multivariate segmentation using the weighting of image channels, wc (Equation
2) (Benz et al., 2004).
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Ahcolm‘ - Z we X (nmerge X O-cmerge - (nobjl X Ucobjlc + nobjz X Ucoij)
c

()

Where n is the total number of pixels, g is the standard deviation within
the object, the indices c refer to the channel, objl and obj2 refer to the objects
to be merged, and merge refers to the merged object. The shape heterogeneity
Ahshape (Equation 3) is described by the compactness (Equation 4) and smooth-
ness (Equation 5) of the object’s shape, and it refers to the improvement of the
shape.

Ahspape = Weomp X Ahcomp + Wsmootn X ARsmooth,

(3)

Weomp + Wemooth = 1

lmer e lobjl lobjz
Ahcomp = Nmerge - Nopj1 + Nopj2 77— (4)
\V bmerge \V bobjl Y, bobjz

l Lobi Lopi

_ merge obj1 obj2

Ahsmooth = Nmerge b — | Mobj1 b + Nobj2 b (5)
merge obj1 obj2

Where | is the perimeter of the object and b is the perimeter of the ob-
ject’s bounding box. The merging process stops if the smallest growth described
by f is greater than the limit set by the scale parameter.
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2.5.2 Experimental design for the image segmentation phase

The experiments in the segmentation phase were conducted as follows.
Once the composites were generated, they were subjected to the iterative pro-
cess of the MRS algorithm, thereby obtaining different vector layers in the output
with varying combinations of shape and scale. Specifically, based on the different
sizes of the GTs in the two study areas, it was decided to analyze the scale range
from 20 to 80 in Montalto di Castro and from 40 to 180 in Seville. The shape range
was analyzed from 0.1 to 0.9, and the compactness was maintained at 0.5, which
was analyzed for both study areas. Finally, the various outputs were compared
with GT objects to evaluate the segmentation accuracy through metrics. The nov-
elty of this study lies in comparing the best metric results for segmentation accu-
racy among the different composites, and obtaining the layer with the best com-

bination of MRS parameters to proceed with the subsequent OBIA phases.

2.5.3 Segmentation quality assessment

Quality assessment was conducted using a supervised methodology. The
difference between a collection of reference polygons and image segments algo-
rithmically forms the basis of supervised evaluation techniques (D’agostino,
2014). Conversely, unsupervised techniques evaluate the quality of segmenta-
tion by examiinter-classclass and inter-class variability and homogeneity (Jozdani
& Chen, 2020). Research has shown that supervised assessment techniques that
consider geometric boundary correctness are more suitable for artificial target
recognition (Chen et al., 2018). Consequently, choosing the optimal segmenta-
tion algorithm or determining the segmentation parameter for a certain segmen-
tation method may be performed successfully using supervised evaluation tech-
niques (Zhang et al., 2015).

Additionally, factors such as the variability of soil types beneath PV sys-
tems and variations in perimeter configurations affect the intraclass homogene-
ity within a particular PV segment. Conversinter-classclass heterogeneity can be

influenced by regions with high concentrations of PV installations (Ladisa et al.,
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2022b). These factors may render unsupervised evaluation techniques unsuita-
ble for assessing the accuracy of PV segmentation (Senel et al. 2023). When the
intersection area between a reference polygon and candidate segment exceeds
50% of the total area of the polygon or candidate segment, the candidate seg-
ment can be described as a corresponding segment according to the area overlap
criterion (D’agostino, 2014).

(Liu et al., 2012) proposed the Euclidean Distance 2 (ED2), based on area
overlap criteria, which evaluate both geometric and arithmetic discrepancy crite-
ria. The ED2 measure calculates the quality of segmentation in two-dimensional
Euclidean space using the potential segmentation error (PSE) and the number of
segments ratio (NSR) (Witharana & Civco, 2014). However, Jozdani and Chen
(2020) reported that ED2 does not always correctly identify optimal segmenta-
tion results. Yang et al. (2014) proposed advanced segmentation evaluation met-
rics such as ED3 to address this issue. ED3 integrates the geometric and arithme-
tic discrepancies (Equation 6).

052,)% + (US2;;)>
o3, = J( W US2)

,Where

area(x; N y;)
052y =1 — ——L_21),
Y area(x;) (6)

area(x; Ny;)
US2,;; =1——— =, y:. € Y..UY,.
Y area(y;) Vi i - Tdi

While the range of this metric varies between zero and one, a perfect
match is represented by zero (Yang et al., 2015). When the number of reference
polygons increases, reference polygons without corresponding segments can be
formed because the rule of at least one 50% overlap ratio is not met. In this case,
the number of reference polygons used is lower than the original number. There-

fore, by altering the ED2 measure, (Novelli et al., 2017) established PSQnew and
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NSRnew to prevent biases in the calculation of both PSE and NSR. The modified
ED2 (MED2) formula is given in Equation 7.

The number of excluded reference polygons is denoted by n, the maxi-
mum segment for a single reference polygon is indicated by max (| si-rk|), and
the maximum number of corresponding segments in a single reference geometry
is indicated by vmax. A greater MED2 value implies an arithmetic and/or geo-
metric mismatch, whereas an MED2 value of zero indicates a perfect match be-
tween the segmentation and the reference dataset.

ED2 = \[PSE2_+ NSR?

PSE =Z|si—rk|+nxmax(|si—rk|) (7)
new erkl
NSR zlm—v—nxvmaxl
new m-n

In this study, the MED2 metric was calculated using the open-access com-
mand line tool (AssesSeg) developed by Novelli et al. (2017). For the metrics cal-
culation, 50% of the reference polygons were used randomly to avoid making the
segmentation result too dependent on the GT, as has already been suggested in

previous studies.

2.6. Extraction Features

The multiple features outlined in Tab. 5 were computed within the seg-
mentation output objects to evaluate the effects of various spectral characteris-
tics on PV segmentation. These included spectral features (encompassing mean,
minimum, maximum, range, and standard deviation of all S2 bands), texture fea-
tures from the gray-level co-occurrence matrix (GLCM) (such as angular second
moment, contrast, correlation, dissimilarity, entropy, and homogeneity), spectral
indices, and geometric object features (such as shape index and pixel width).

To examine the impacts of spectral indices, several indices were em-
ployed in the thesis: NDVI (Pettorelli et al.,, 2011), NDBI (He et al., 2010) ,
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Normalized Difference Water Index (NDWI) (Gao et al., 1996), NDTI (Kassouk et
al., 2020), Modified Normalized Difference Water Index (MNDWI) (Singh et al.,
2015), Enhanced Vegetation Index (EVI) (JIANG et al., 2008), and BUAI (Zha et al.,

2003). These indices were selected primarily based on a literature review of PV

mapping; their formulations are provided in Tab. 5.

Tab.5 — Extracted features for the image segments.

Feature

Description or formula

Spectral infor-
mation

Geometric in-

formation

Texture infor-

mation

52

Mean

Minimum

Maximum

Median

Standard Deviation

Difference

Shape index

Width pixel

GLCM ASM

GLCM CON

GLCM COR

GLCM DIS

GLCM ENT

GLCM HOM

Mean values of bands for each image object
Minimum values of bands for each image object
Maximum values of bands for each image object

Median values of bands for each image objects

The standard deviation of bands for each image

Difference between previously calculated maxi-

mum and minimum

The smoothness of an image object border

Width of the object in pixel unit

The angular second moment of all directions

The contrast of all directions

Correlation of all directions
Dissimilarity of all directions
The entropy of all directions

Homogeneity of all directions
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Normalized Differ-

ence Vegetation In- NDVI — (NIR1 — Red)
dex (NDVI) "~ (NIR1 + Red)
Normalized Differ- (SWIR1 — NIR1)
Builtup Ind NDBI =
ence (;ID;S naex (SWIRL + NIR1)
Normalized Differ- (Green — NIR1)
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Enhanced Vegeta- ., _ . (NIR1 — Red)
tion Index (EVI) B (NIR1+ C1 x Red — C2 X Blue + L)
B“"t'u(%ﬁz;" Index BUAI = NDBI — NDVI

In the feature-extraction phase, 75 characteristics were evaluated. These
included 60 spectral features (derived from 10 bands with six statistics each), 6
textural features, 2 geometric information points, and 7 spectral index character-

istics.

2.6.1 Feature Optimization Method

Decreasing the number of features reduces model redundancy, as most
features tend to be correlated (Yan & Zhang, 2015). Additionally, the increased
diversity of features in OBIA complicates their subjective selection (Granitto et
al., 2006). To address this issue, the RFE method was implemented to evaluate
and extract the most suitable features for PV recognition. This was accomplished
using the scikit-learn library, which is accessible through Python. This algorithm
was chosen over other methodologies based on the positive results previously

achieved in this field of application.
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2.6.2 RFE

RFE aims to select features by gradually reducing the number of consid-
ered characteristics, employing an external estimator that assigns weights to
each feature (Darst et al., 2018). Initially, the importance of every feature was
evaluated by training the estimator on the entire dataset. Subsequently, the least
significant features are eliminated. This process was repeated until a final set of
selected features was obtained (Bahl et al., 2019). In the thesis, two different

methods were employed as external estimators for feature weighting: RF.

2.7. Classification Modeling

The third stage of OBIA involves a classification model that is regularly
trained to categorize objects in the images. (Kucharczyk et al., 2020) divided this
phase into three subsections: sampling design, object labeling, and classification.
The sampling design involves generating training data and verifying sample loca-
tions.

An ideal test set should include as many high-quality samples as possible,
with an equal number of samples for each class. Labeling involves assigning all
objects from the training and test samples, produced or collected during the sam-
pling design phase, to two classes. Reference data were chosen using S2 images
and the ESRI World Imagery Service. The final subsection, classification, includes
the model training and object classification in the images. There are various clas-
sification approaches, such as rule-based or supervised methods. (Ma et al.,
2017) noted that supervised object-based classification techniques have been a
crucial component of remote sensing research for land cover mapping since
2010. Recently, in addition to traditional ML algorithms such as RF, SVM, or K-
nearest neighbor (KNN), newer ensemble learning algorithms have been increas-
ingly used in OBIA. Consequently, this thesis tested several methods, including
KNN, SVM, and RF, for PV mapping.
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2.7.1 KNN

KNN is a neighbor-based classification algorithm categorized as instance-
based or non-generalizing learning (Zhang & Zhou, 2007). This approach retains
the training data instances without generating a comprehensive internal model.
Classification is determined through a straightforward majority vote among the
nearest neighbors of each point, and an unknown object is assigned to the most
prevalent data class among its closest neighbors. (Zhang et al., 2017b). The out-
comes of this algorithm are primarily affected by parameter k, which is heavily
dependent on the data. It has been noted that a higher k value diminishes the
impact of noise, but simultaneously blurs the boundaries of classification. (Zhang
et al.,, 2018).

2.7.2 SVM

The SVM is one of the most widely used kernel-based statistical learning
algorithms. As a non-parametric method, the SVM is not affected by the under-
lying data distribution. The primary goal of the SVM algorithm is to determine a
hyperplane that divides the dataset into a specific number of classes in line with
the training samples. (Patle & Chouhan, 2013). Kernel functions can mitigate the
increase in the computational complexity caused by dimensionality. (Yue et al.,
2003) The selection of the kernel is vital for SVM applicability, as it directly im-
pacts the classification process outcomes. Various kernel types are employed in
SVMs, including linear, polynomial, radial basis function, and sigmoidal kernels
(Haifeng Wang & Dejin Hu, 2005). In this thesis, linear and radial basis function

kernels, which are commonly used in the remote sensing literature, were tested.

2.7.3 RF

The RF algorithm was one of the earliest successful bagging approaches,
combining bagging sampling, random feature selection, and random decision
trees (Gislason et al., 2006). Building on the concept of classification and regres-

sion trees, RF employs multiple self-learning tree ensembles, referred to as
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forests (Chen & Ishwaran, 2012). The classification performance of a single tree
is enhanced through the bagging approach, which uses bootstrap aggregation for
each tree. Additionally, trees are constructed using a random subset of features
at each split node, substantially reducing overfitting and decreasing inter-tree
correlation (Belgiu & Dragut, 2016). This process effectively eliminates overfit-
ting, leading to improved final predictions for classification problems (Chen & Ish-
waran, 2012).

2.7.4 Cross-validation and hyperparameter tuning

This thesis employed the stratified k-fold technique to divide the training
and test datasets for model performance evaluation. This approach segments the
cross-validation process into stratified folds across n iterations. (Zhang & Liu,
2023). Each k-fold set contains a roughly equal proportion of samples from every
class. The study utilized a stratified k-fold with 10 folds repeated 3 times (Mo-
rales-Barquero et al., 2019). The stratified k-fold was implemented using the sci-
kit-learn library in Python 3.7. To determine the optimal hyperparameters for the
algorithms described earlier, the GridSearchCV function from sci-kit-learn was
used. This function conducts a comprehensive search for hyperparameter selec-

tion, focusing on parameters that are not learned by the classification algorithm.

2.7.5 Accuracy assessment

The confusion matrix (error matrix) serves as the foundation for various
descriptive and analytical statistical methods (Lyons et al., 2018). An error matrix
was developed to evaluate the accuracy of the thematic maps generated via OBIA
and several metrics were derived. To evaluate the effectiveness of the mapping
techniques under consideration, error matrices were constructed for each sce-
nario and accuracy evaluation metrics were calculated (Cai et al., 2018). These
metrics include OA, producer accuracy (PA), user accuracy (UA), and F1 score
(F1). These metrics were calculated using specific formulas in Equations 8, 9, and
10.
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A = TP
~ (TP +FP) 8)
oA = TP
" (TP +FN) (9)
. (UA x PA)
B (UA + PA) (10)

In this context, TP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative, respectively. TP indicates the sum of correctly
identified PV pixels, whereas FP signifies the total number of non-PV pixels mis-
takenly classified as PV. Additionally, FN represents PV pixels erroneously labeled
as non-PV pixels, and FP denotes non-PV pixels incorrectly categorized as PV pix-
els. These metrics range from 0 to 1, with higher values indicating a superior clas-
sification accuracy. Throughout this thesis, the F1 metric was primarily employed

to assess the precision of the PV mapping capabilities of the algorithms.

2.8. PV CD

The main objective of this last phase of the thesis is to evaluate the impact
of PV plant land consumption from 2018 to 2023 in the two study areas using the
best classification models obtained from the previous phase of the thesis. At a
practical level, the images of 2018 were segmented with the parameters ob-
tained from the MRS evaluation, and the best-performing classification models
classified the objects obtained. It is evident that, after training the models using
composite images, each model was applied exclusively to the months included in
the time interval of the composite images. For example, the best model devel-
oped by CompositelM was applied only to images related to the months included
in the composite. This approach allowed the analysis of how PV expansion has
varied in recent years in terms of area and to know what changes in the soil have

occurred.
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2.8.1. Corine Land Cover (CLC)

To analyze land occupation by PV panels classified according to land
cover, we employed CLC cartography. CORINE, an acronym for the COoRdination
of Information on the Environment, has been an international operational pro-
ject since 1985 that has addressed various environmental issues. One of its pri-
mary features is "a land cover inventory divided into 44 classes, presented as a
cartographic product at a scale of 1:100,000, available for most areas of Europe’
(SEE, 1995). Specifically, we considered the third level of classification of CLC data
updated to 2018, which provides a highly specific characterization. For instance,
agricultural areas represent the first level of classification (code 2), permanent
crops the second level (code 2.2), while olive groves constitute the third level
(code 2.3.3).
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3. RESULTS AND OBSERVATIONS

3.1. MRS Results and Evaluation

MRS analysis was conducted for each composite image derived from veg-
etation variation analysis at two study sites (Montalto di Castro and Seville) using
S2 satellite imagery and reflectance storage scales (percentage and 32-bit). The
segmentation phase was performed a semi-automatic eCognition rule set, main-
taining a compactness of 0.5, following 's approach for plastic greenhouse (No-
velli et al., 2017). In this thesis, segmentation was performed using all available
bands, as they are considered useful for PV mapping. Notably, the band weights
were treated as equal. Fig. 19, 20, and 21 show the results of the segmentation
evaluation based on the MED values for CompositelM, Composite2M, and Com-

positeALLM, respectively.
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Fig. 19 - Composite 1M segmentation evaluation chart.
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Fig. 20 - Composite 2M segmentation evaluation chart.
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Fig. 21- CompositeALLM segmentation evaluation chart.
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In all figures, the x-axis depicts the scale interval, and the y-axis shows the
MED?2 values. The various curves in the figures represent different shapes. For all
three composite images, at lower scale values, MED2 values were notably high
for shape values between 0.1 and 0.6, owing to the creation of objects smaller
than the reference geometry. As the Scale values increase, the MED2 values grad-
ually decrease for shape curves from 0.1 0.6. The shape curves from 0.7 to 0.9
exhibit an almost opposite trend. Fig. 22, 23, and 24 show the segmentation eval-
uation results based on the MED values for CompositelS, Composite2S, and

CompositeALLS, respectively.
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Fig. 22 - CompositelS segmentation evaluation chart.
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Fig. 23 - Composite2S segmentation evaluation chart.
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Fig. 24 - CompositeALLS segmentation evaluation chart.
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The MED2 trends in Seville's study area resemble those of Montalto di
Castro, but with a wider range and higher values owing to the presence ofFig.r
areas of plants. Tab. Figure 6 shows the optimal MED2 values for each composite
image in both study areas. Despite the previously noted differences in Montalto
di Castro, the best MED2 values were relatively consistent across composite im-
ages. Nevertheless, Composite2M vyielded the most effective segmentation
based on the MED2 results. Consequently, objects derived from the MRS with
scale parameters of 52, 0.6, and 0.5, extracted from Composite2M, were utilized
in subsequent phases for the Montalto di Castro study area. Seville generally ex-
hibited superior MED2 values across all the three composite images. However,
unlike Montalto di Castro, CompositelS produced the best MED2 value, favoring
winter months. As a result, the subsequent thesis phases for the Seville study
area proceeded using objects obtained from the MRS with a scale parameter of
105 and a shape of 0.8.

Tab.6 - MED2 best values.

Montalto di Castro Sevilla
Images MRS Para- MRS Para-
MED2 MED2
meters meters
) Scale = 69 Scale =105
Compositel 0.389 0.132
Shape =0.2 Shape =0.8
) Scale =52 Scale=79
Composite2 0.332 0.213
Shape = 0.6 Shape =0.9
) Scale =56 Scale =77
CompositeALL 0.364 0.176
Shape = 0.5 Shape =0.9

Fig. 25 and 26 show the segmentation results obtained using the opti-
mized MRS parameters for Montalto di Castro and Seville, respectively. Visual
examination corroborated the findings of the MED2 calculation. Seville's segmen-

tation outputs appear more uniform than those of GT, whereas Montalto di
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Castro exhibits excessive segmentation and merged geometries encompassing
multiple distinct GT objects. This discrepancy can be attributed to the differences
in both geometries and distribution patterns, which are characterized by smaller
sizes and greater dispersion in Montalto di Castro than in Seville.
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Fig. 25 - Output Segmentation Montalto di Castro: a) CompositelM; b) Composite2M; c)
CompositeALLM. WGS84/ UTM Zone 32N reference system (EPSG:32632).
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Fig. 26 - Output Segmentation Sevilla: a) CompositelS; b) Composite2S; c¢) CompositeALLS.
WGS84/ UTM Zone 30N reference system (EPSG:32630).

3.2. Feature Extraction

Following the image composite segmentation stage, optimal segmenta-
tion outputs were selected based on the initial phase results. The MRS segmen-
tation algorithm was applied with a fixed compactness of 0.5, utilizing all S2
bands. As indicated in Tab. 5, for the Montalto di Castro study area, the chosen
segmentation output had a scale of 52 and shape of 0.6, derived from Compo-
site2M (which uses summer months). In contrast, for the Sevilla study area, the
selected output had a scale of 105 and a shape of 0.8, originating from Compo-
site1S (which uses winter months).

Using the above procedure, 75 features were extracted from Compo-
sitelM, Composite2M, CompositelS, and Composite2S, encompassing spectral,
textual, geometric, and spectral indices. CompositeALL features were not ex-

tracted because they were unnecessary for developing models specific to the
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seasonal periods. The image segments were then manually labeled as PV or NO-
PV samples. After training the variables for all segmented objects, the RFE
method was employed to evaluate the feature space. Subsequently, PV classifi-
cation accuracy was assessed by training the RF classifier and calculating its F1
score. Before algorithm testing, hyperparameter optimization was conducted us-
ing the GridSearchCV function in Python 3.7.

The model evaluation utilized repeated stratified k-fold cross-validation
with ten splits and three repetitions. Tab. 7 presents the optimal hyperparame-
ters for the chosen RF algorithm determined using GridSearchCV.

Tab.7 - The Optimal parameters for the RF algorithm selected within Gridsearch.

Algorithm Parameter Optimal value
max_depth 10
RF min_samples_split 2
num_leaves 10
Tab.8 - Top 10 ranked features for Composites S2.
Feature Montalto di Castro Sevilla
Rank CompositelM Composite2M CompositelS Composite2S
1 EVI EVI NDBI NDBI
2 NDTI NDBI NDTI NDTI
3 Std Dev Blue NDTI BUAI Std Dev NIR1
4 Max SWIR2 Std Dev Blue EVI Std Dev RE3
5 Diff SWIR1 Std_Dev NIR2 Std Dev NIR1 BUAI
6 Std Dev RE1 BUAI Std Dev SWIR2 StdDev
7 NDBI Std Dev NIR1 Std Dev SWIR1 Std Dev RE2
8 Median Blu Std Dev RE3 Max RE3 Std Dev NIR2
9 Max RE1 Median Blue Diff RE3 Diff RE3
10 Diff Blue Max NIR2 Max SWIR2 Median Blu
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Tab. 8 reveals that the EVI index is most significant for Montalto di Castro,
whereas NDBI is most relevant for Sevilla. This indicates that vegetation is a key
distinguishing factor in Montalto di Castro, whereas built-up areas were more
prominent in Sevilla.

Despite this, it is noteworthy that the NDBI index, which ranks highest in
Sevilla, also achieves a good importance score in Montalto di Castro, ranking sec-
ond in Composite2M, and seventh in CompositelM. The NDTI index was the sec-
ond most important for both locations, highlighting the relationship between the
SWIR1 and NIR2 bands typical of PV, as previously observed in the spectral signa-
ture study. Another interesting aspect of this result is that the standard deviation
of various bands (Blue, NIR, RE) appears frequently in both locations, suggesting
that the spectral variability within objects is likely the most important among the
statistical values of the bands. Texture and geometric features did not achieve
high rankings. Some indices, such as BUAI and Max SWIR2, are present in both
locations, but with different priorities, indicating that specific local characteristics
influence the importance of these indices.

Fig. 27, 28, 29, and 30 illustrate the variation in accuracy, expressed as the
mean F1 scores based on 10-fold cross-validation repeated three times, as a func-
tion of the total number of features (ranging from 1 to 75) used to train the RF
classifier for the four composites under study Consequently, at the Montalto di
Castro study site, the maximum accuracy was achieved using the RFE method
with 33 features, yielding an F1 score of 97.89% for CompositelM, and with 54
features, yielding an F1 score of 98.13% for Composite2M. Regarding the Seville
study site, the maximum accuracy was attained with 54 features, achieving an F1
score of 97.1% for CompositelS and with 39 features, achieving an F1 score of
99.6% for Composite2S.
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Fig. 27 - RFE results Composite1M.
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Fig. 28 - RFE results Composite2M.
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Fig. 29 - RFE results CompositelS.
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Fig. 30 - RFE results Composite2S.
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3.3. Classification model results

Based on the results obtained in the preceding sections, image classifica-
tion and accuracy evaluation phases were conducted for the S2 composite im-
ages. As outlined in the previous section, the image segments obtained in the
MRS component and the extracted features based on these objects were used to
train the models (KNN, RF, SVM, and GB). Notably, the hyperparameters selected
through GridSearchCV, as reported in Tab. 9, were employed to train the algo-
rithms.

Furthermore, the hyperparameters listed in Tab. 7 were utilized for the
RF algorithm. Following the training process, the image objects were classified,
the accuracy of the models was evaluated by considering the stratified k-fold with
10 subdivisions and three repetitions, and F1 scores were calculated for each sub-
division. All experiments were conducted on a computer equipped with an 11th
generation Intel® Core™ i7-11370H processor, 16 GB of RAM, a base frequency
of 3.30 GHz, and a Windows 10 Pro (64-Bit) operating system. The analysis was

performed in Python 3.7 environment.

Tab.9 - Optimal hyperparameters for the algorithm selected within the Gridsearch.

Optimal value

£ ]
g g Montalto di Castro Sevilla
o ©
[oT] S . . .
= © Compositel Composite2 Compositel
< o P P P Composite2S
M M S
C 10 10 10 10
SVM
Kernel Poly Poly Linear Linear
KNN n_neig
5 5 5 5
hbors
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Accuracy results for the training objects were provided in Tab. 10 for both
study sites. The RF performed better in Montalto di Castro than in Sevilla. The F1-
Scores were higher for CompositelM and Composite2M than for CompositelS
and Composite2S, suggesting that the algorithm is more effective in the Montalto
di Castro area. SVM showed a slight variation in performance between the two
test sites.

In Montalto di Castro, SVM scored higher for Composite2M than for Com-
positelM, whereas in Sevilla, CompositelS scored slightly higher than Compo-
site2S. KNN performed slightly better in Montalto di Castro for Composite2M
than for CompositelM. In Sevilla, the scores were more balanced between Com-
positelS and Composite2S, with a slight preference for Composite2S. Overall, RF
demonstrated strong classification ability at both test sites. F1-Scores above 90%
in all categories indicated high accuracy.

The SVM algorithm achieved good results, with F1-Scores ranging from
87.36% to 93.67%. Although slightly lower than RF, these scores indicate good
classification ability. The KNN algorithm achieved the lowest F1-Scores among
the three algorithms tested, with values ranging from 86.05% to 90.24%.

Tab.10 — F1 — Score Training data

£ F1- Score (%)

e

5 Montalto di Castro Sevilla

20

< CompositelM Composite2M CompositelS Composite2S

RF 96.20 97.44 90.00 94.74
SVM 87. 36 93.67 89.47 92.31
KNN 86.05 90.24 87.18 87.80

Tab. 11 presents the test data results for the various classifiers. RF demon-
strated superior performance in Montalto di Castro compared to Sevilla. Compo-

sitelM and Composite2M achieved higher F1-Scores than CompositelS and
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Composite2S, indicating the algorithm's greater efficacy in the Montalto di Castro
area.

The SVM exhibits slight performance variations between the two test re-
gions. In Montalto di Castro, SVM attained a higher score for Composite2M than
for CompositelM, whereas in Sevilla, Composite2S marginally outperformed
CompositelS. KNN yielded superior results for CompositelS in Sevilla compared
to CompositelM in Montalto di Castro. However, KNN achieved a higher score
for Composite2M in Montalto di Castro than Composite2S in Sevilla.

The RF test data outcomes closely resembled those of previous results,
with minor fluctuations. In Montalto di Castro, CompositelM exhibited a slight
decrease, whereas Composite2M improved. Both the composites in Sevilla expe-
rienced minor declines. The SVM demonstrated a decreased performance on the
test data compared with the earlier results. KNN exhibited a substantial perfor-
mance reduction in the test data relative to the previous outcomes. These find-
ings suggest that RF is the most robust and effective algorithm for both Montalto
di Castro and Sevilla datasets, consistently performing well on both test and train-

ing data.
Tab.11 - F1 —Score Test data

£ F1- Score (%)

=

5 Montalto di Castro Sevilla

20

< CompositelM Composite2M CompositelS Composite2S

RF 95.95 97.67 89.47 92.31
SVM 84.85 89.87 82.67 88.89
KNN 76.47 85.71 82.50 83.33

In Fig. 31 and 32, the visual results of the classification for Montalto di
Castro and Sevilla are presented, respectively. Upon visual inspection, it is evi-

dent that the results obtained from the accuracy metrics are confirmed in both

72



OBIA approach for the analysis of medium resolution satellite data for environmental monitoring

study areas; specifically, the RF models demonstrate greater precision in PV clas-
sification. However, despite nearly identical accuracy results, the outcomes in Se-
villa appear to be more precise and better follow the contours of the plants.
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Fig. 31 - Montalto di castro classification model results: a) CompositelM RGB; b) Composite1M
RF classification; c) CompositelM SVM classification; d) CompositelM KNN classification; e)
Composite2M RGB; f) Composite2M RF classification; g) Composite2M SVM classification; h)
Composite2M KNN classification.
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Fig. 32- Sevilla classification model results: a) Composite1lS RGB; b) CompositelS RF classification;
c) CompositelS SVM classification; d) CompositelS KNN classi-fication; e) Composite2S RGB; f)
Composite2S RF classification; g) Compo-site2S SVM classification; h) Composite2S KNN

classification.

3.4. PV CD results

In the final section of the thesis, an analysis was conducted on the expan-
sion of areas containing PV installations from 2018 to 2023, as well as the changes

in land use types, using the most effective classification models obtained in the
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previous step. The RF model achieved the highest accuracy metrics for both study
areas, and was therefore chosen for appliFig. to the 2018 data. Tab. Figure 12
shows the Fl-score results obtained from the 2018 images. The 2018 images

were subjected to the same pre-processing phase as the 2013 time series.

Tab.12 — F1 — Score data 2018 imagery.

Study Area Imagery F1 score (%)
Montalto Di 10/08/2018 97,12
Castro 25/12/2018 98,34
12/01/2018 93,22 %
Sevilla
12/08/2018 86,19 %

For Montalto di Castro, the image acquired on August 10 was classified
using the RF classification model trained on the CompositelM image. Conversely,
the image from December 25 was analyzed using the RF model trained on the
Composite2M image. Regarding Seville, the image from January 12 was classified
using the RF model trained on the Compositel1S image, whereas the image from
August 8 employed the RF model trained on the Composite2S image. The results
obtained, measured through the F1-score, highlight the excellent adaptability of

the classification models in the respective study areas.

3.4.1 Calculating the area and type of soil changed

The areas encompassing objects classified as PV were calculated using the
results of the 2018 image classification. Tab. Fig. 13 shows the area values and
their corresponding percentage errors for the actual areas. In Montalto di Castro,
the area values were almost identical to the original values in both the images.
In Sevilla, however, the area is zero in the January image because there is a PV
plant. In the August image, the percentage error was quite high because of the

presence of false positives due to the construction sites of PV plants.
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Tab.13 — Areas calculation

percentage
Study Area Imagery Area (Ha)
error (%)
Castro 25/12/2018 256,3 2,71
12/01/2018 0 0
Sevilla
12/08/2018 13,1 19,63

Fig. 33 depicts the progression of the PV installation areas from 2018 to
2023. It is evident that in Montalto di Castro, despite the existence of installations
prior to 2018, there has not been a substantial growth in new PV facilities in re-
cent years. By contrast, Seville experienced a swift and extensive expansion of
new PV installations. At the beginning of 2018, no installations were present in
the entire study area, whereas by 2023, the total area covered was slightly over

600 ha, nearly twice the size of the area of Montalto di Castro.
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Fig. 33 - PV Areas trend.

3.4.2 Loss area for Land Use Class

The situation in Montalto di Castro and Seville was similar. In both solar
parks, the predominant land class before the development of new installations
was non-irrigated arable land, which belonged to the Level 1 macro-class of agri-
cultural areas. Therefore, in both cases, the areas designated for PV installations
were devoid of specific crops, such as vineyards and olive groves, which are par-
ticularly present in the surrounding areas of the study zone. None of the areas
where the installations were made were designated as industrial or commercial

units; thus, the impact of the installations was directly concentrated in agricul-

tural areas.
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4. DISCUSSION OF THE RESULTS

4.1. Spectral analysis and segmentation

The analysis of spectral signatures revealed distinct characteristics of the
PV installations in the two study areas. However, the seasonal variability in the
spectral signatures necessitated the grouping of months with similar features.
The segmentation results, evaluated using the MED2 metric, validated the effi-
cacy of creating image composites based on NDVI values. In Seville, MED2 values
were excellent for all compositions, including those encompassing all months.
This was primarily attributed to the different geometric characteristics of the in-
stallations in the two study areas. Seville's larger and more compact installations
are segmented with greater precision. In contrast, segmentation in Montalto di
Castro proved to be more challenging owing to its irregular geometry and smaller
size. Consequently, optimal segmentation parameters indicate higher scale val-
ues in Seville compared to Montalto di Castro. The MRS algorithm demonstrated
efficacy for this type of study owing to its ease of use in the eCognition Developer
software. The ability to extrapolate segmentation outputs for each scale and

shape combination iteratively facilitates an effective segmentation evaluation.

4.2. Features

The features extracted from each segment play a vital role in training the
classification algorithm and serve as explanatory variables. In this study, the RFE
algorithm was implemented to evaluate the feature space. To examine the ef-
fects of various characteristics, including spectral, textural, geometric, and spec-
tral indices, 75 features were extracted and assessed using feature space evalu-
ation methoTab.he findings presented in Table 5 reveal that among the top ten
most significant features, EVI and NDTI in the Montalto di Castro study site and
NDBI and NDTI in the Seville study site demonstrate considerable importance for
the RFE method. Research conducted by Ladisa et al., 2024b, involving a large

solar park in India, found that the most relevant features for PV mapping were
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NDTI and NDWI, confirming the effectiveness of the NDTI despite differences in
installation types, terrain morphology, and latitude. In Montalto di Castro, the
strong performance of the EVI index indicates that vegetation beneath PV array
installations is a key distinguishing factor. The significance achieved by the NDTI
in both study areas highlights the relevance of the relationship between the
SWIR1 and NIR2 bands, typical for PV pixels, as demonstrated during the spectral
signature analysis. Among the statistics of the individual S2 bands, it was ob-
served that the standard deviation of the Blue, NIR1, and NIR2 bands suggests
that spectral variability within PV objects is the most significant among the band
statistical values. Texture and geometric features did not perform well in either
study area, indicating less relevance compared to other characteristics. These ob-
servations demonstrate that while local features can significantly influence map-
ping accuracy, there are intrinsic characteristics of PV pixels that can be recog-

nized in any study area.

4.3. Classification

The overall results demonstrated that all algorithms achieved an average
F1 score of 90% or higher. The RF algorithm exhibited the best overall accuracy,
particularly in Montalto di Castro, with F1 scores exceeding 90% for both the im-
age composites. RF's performance confirms its effectiveness in PV mapping, as
also highlighted in the studies by Ladisa et al., 2022a and Plakman et al., 2022).
The SVM algorithm showed good results, slightly lower than RF but still superior
to other studies, with F1 scores ranging from 87.36% to 93.67%. The KNN algo-
rithm, which was used for the first time in PV mapping, obtained the lowest F1
scores among the three algorithms, ranging from 86.05% to 90.24%. Regarding
the study area, all algorithms performed better for Montalto di Castro than for
Sevilla. However, visual inspection of the results revealed that, despite slightly
lower accuracy scores, the installations in the Sevilla area were well classified
owing to the improved segmentation quality. Segmentation in Sevilla produced

far fewer objects than in Montalto di Castro owing to higher scale values; thus, a
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small number of false positives more easily compromised the accuracy values.
The use of the RFE algorithm for selecting the best features yielded higher accu-
racies than (Ladisa et al., 2024b) owing to a more precise segmentation phase

and deeper analysis of the seasonal variation in PV pixel values.

4.4. PV CD

The final stage of this research implemented classification models devel-
oped in the earlier phases. Notably, the RF classification models applied to the
2018 image data yielded outstanding accuracy, showing remarkable knowledge
transfer capability and avoiding overfitting. Regarding the land change analysis
results, the two study areas exhibited different new PV installation development
patterns from 2018 to 2023. In Montalto di Castro, the PV installation area
changed minimally (by 2%) during this period. The 2018 CLC data indicated that
most PV installation areas had already been classified, suggesting significant new
installation development over a decade ago, followed by a sharp slowdown. Se-
ville presents a contrasting scenario. The CLC data lacked information on PV in-
stallations in the study area; the classification results and area calculations re-
vealed ongoing work in 2018. Between 2018 and 2023, substantial new installa-
tion developments occurred, with PV installations occupying nearly 600 ha of
land. Both study areas shared a common soil type, classified in CLC data as "Non-
irrigated arable land." This category encompasses cultivated plots used for non-
irrigated agriculture with annual, non-permanent crops, typically in a crop rota-
tion system, including fallow land within this rotation. It also includes fields with
occasional sprinkler irrigation using non-permanent devnon-irrigatedort pre-

dominantly nonirrigated cultivation.
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CONCLUSIONS

The expansion of areas covered by large PV plants continues to grow
globally in parallel with the increase in population and energy demand. The
growing importance of renewable energy, particularly energy produced by PV
plants, and the drastic reduction in the use of fossil fuels, which are responsible
for over 70% of carbon emissions, has led the scientific community to focus more
on the rapid development of plants and their monitoring. Among the various
monitoring methods, such as in situ with drones, this study thoroughly explored
the mapping of PV plants using satellite images, making the majority of remote
sensing techniques supported by algorithms and the computing power of ML. In
particular, this thesis developed a comprehensive fpre-processing starts with the
preprocessing phase of satellite images (in this case, open-source S2 images) for
the analysis of PV change detection.

The framework was applied to two study areas with distinct
characteristics by comparing the differences and similarities in the results. The
main feature of this study was the adoption of the OBIA approach rather than
the PB approach. The choice to work with an OBIA approach stems from both the
good results obtained in the state-of-the-art on this topic and the need to include
and test additional features that objects offer compared to normal pixels. The
two study areas were selected to test the entire methodology for areas with
different characteristics in terms of latitude and land cover type. Moreover, the
type of PV plants in the two study areas varied significantly in terms of spatial
distribution, size, and type of material. The major novelty of this study is the
preliminary phase of analyzing the variation in NDVI within the GT polygons. This
type of analysis, in addition to allowing the study of the spectral characteristics
of PV pixels and their variations over time, improves the segmentation phase
through the creation of image composites that include images from months with
similar characteristics. This phase of the methodology was crucial for monitoring

the advancement of PV areas between 2018 and 2023, enabling the creation of
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classification models capable of operating effectively under all spectral
conditions typical of an entire year.

In the image segmentation phase, which is the first phase of the OBIA
approach, the freely available command-line tool AssesSeg was used to calculate
the MED2 metric, making it easy to access and evaluate the segmentation
accuracy. The use of eCognition Developer facilitated the study of segmentation
quality owing to the possibility of creating an iterative workflow process that
allowed different segmentation outputs for all combinations of scale and shape
parameters.

During the feature extraction phase, 75 features were obtained from the
segments, including spectral, textural, geometric, and spectral indices. The EVI,
NDTI, and NDBI indices were the most relevant in both study areas, according to
the RFE method. The use of this feature selection algorithm reduced the
dimensionality of the features while improving the accuracy in all case studies.

In the classification model development phase, the RF model achieved
the highest Fl-score values. In the composites of the summer months
(Composite2M and Composite2S), accuracies greater than 94% were achieved in
the validation objects and accuracies above 90% for the test areas. These results
confirm the excellent performance of the RF in satellite image classification, even
in the context of PV mapping. In light of these results, the best-performing RF
models in the test phase were used to classify the 2018 images. Despite the lower
values, the results of the SVM models were satisfactory, with F1-score values
around 89%. KNN instead achieved low values, which proved to be not ideal for
PV mapping in this case.

The final phase of this thesis completed the entire development of the
classification models by applying them to the 2018 S2 images. This phase of the
methodology provides a simple yet effective overview of land consumption
trends in both study areas. Although at different speeds and quantities, all areas
transformed into PV plants belong to the non-irrigated arable land class,

confirming the trend of land use transformation from agricultural to industrial in
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recent years. However, the seasonal behavior of the PV pixels addressed in this
thesis indicates the presence of vegetation in many PV arrays (especially in the
Montalto di Castro area). The presence of vegetation instead of bare soil under
the PV arrays indicates a trend towards developing agrivoltaic plants rather than
photovoltaic plants, thus maintaining local habitats and reducing land
consumption.

Therefore, this methodology represents a potentially valuable predictive
tool for planning and decision-making. In general, a large-scale map of
photovoltaic parks could offer an opportunity to study land transformation or
potential land-use conflicts between land-based economies and existing
ecosystem services. This approach could be particularly useful when a rapid
assessment is required, such as in the early stages of territorial planning for
approximate analyses, or when systematic monitoring and detailed data sources
are scarce. This could be the case during rapid photovoltaic expansion or in many
developing economies, where unique and reliable data sources are sometimes
lacking. In such cases, the absence of a data-sharing culture, rather than a digital
divide, could be a more significant factor in undermining the reliability and
applicability of this methodology.

Overall, this thesis presents a detailed and innovative PV mapping process
owing to its completeness. This study demonstrated excellent applicability.
Excluding the segmentation part, the entire process was conducted using open-
source data, all within the Python environment. The OBIA technique was of great
support for the ML phase in both feature selection and image classification. This
thesis lays the foundation for frameworks that are suitable for PV park mapping.
The continuous availability of increasingly high-resolution open-source satellite
images, progress in computing power of new hardware, and advancement of
image classification algorithms will certainly improve this methodology.
However, an initial approach to monitoring the advancement of PV areas is

fundamental for future monitoring and will undoubtedly be increasingly intense.
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