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ABSTRACT Advanced large-scale environmental monitoring systems relying on the emerging aerial/
terrestrial technologies of wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs), and mobile
crowdsensing, impose strong requirements on the reliability of the collected data. Unfortunately, sensing
units can suddenly suffer unexpected anomalies due to accidental faults ormalicious causes. Outlier detection
methods have been widely employed to identify and discard unreliable measurements from large data sets,
but further improvements in the sensing processes can be obtained by adopting advanced signal processing
algorithms that take full advantage of all the collected information without rejecting the measurements.
In this paper, we propose a novel unified Bayesian framework that enable simultaneous estimation of a
common parameter of interest and identification of multiple and possibly different types of anomalies
that can affect sensors in environmental sensor networks. Specifically, we consider two rather general
error models based on Gaussian mixtures able to capture different variations affecting the quality of the
collected measurements. For each model, we illustrate the optimal joint maximum-likelihood and maximum
a-posteriori (ML-MAP) estimation method, which represents the benchmark for the problem at hand, and
propose novel reduced-complexity two-step algorithms able to achieve almost the same performance of
the joint ML-MAP, but at a fraction of its computational cost. The derivations of all the algorithms are
also extended to handle the more general case in which the probability of occurrence of anomalies is
unknown and should be inferred from the data using an Empirical Bayes approach. Extensive performance
analyses using both synthetic and real experimental data acquired in a network of environmental monitoring
stations deployed in the Apulia region, south of Italy, demonstrate the effectiveness of the proposed
framework.

INDEX TERMS Anomaly detection, Gaussian mixture models, maximum-likelihood and Bayesian estima-
tion, outlier detection, sensor networks.

I. INTRODUCTION
Enabling large-scale, continuous, and pervasive monitoring
of the environment in all its different dimensions (air, land,
and water) requires that a number of fundamental parame-
ters such as temperature, humidity, pressure, water turbidity,
PMx and VOCs concentrations are accurately estimated and
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analyzed over time [1], [2], [3], [4]. To complement the
limited capabilities of traditional monitoring systems [5],
[6], the emerging technologies of wireless sensor networks
(WSNs) [7], unmanned aerial vehicles (UAVs) [8], and
mobile crowdsensing [9] can be exploited to achieve a per-
vasive and fine-grained monitoring, by means of a larger
number of low-cost sensing units. In fact, by providing a
more capillary coverage of the target areas and increased
sensing rates, such technologies are able to correctly capture
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the spatio-temporal variations of the physical phenomena of
interest even over very small scales, so acting as enablers of
integrated and large-scale environmental monitoring [10].

Given the expected increased complexity of next-
generation monitoring systems, guaranteeing a strong reli-
ability of measurements collected by the heterogeneous
sensor nodes is of utmost importance. In particular, fixed
monitoring stations or WSN nodes can suddenly experience
failures that may severely compromise their ability to provide
accurate measurements, especially when they operate in
hostile environments (e.g., in presence of high-temperatures
or wildfires, under flooding conditions, etc.) [11]. UAV
platforms typically experience significant geometric and
spectro/radiometric limitations, which result in frequent mis-
calibrations of the onboard sensors [12]. On the other hand,
crowdsensing nodes (such as smartphones, smartwatches,
common transportation systems) represent a valuable source
of additional environmental perception, but at the same
time pose severe risks related to the possibility that users
contribute with unreliable data and potentially jeopardize
the sensing campaign. Generally, two main possible cases
are distinguished: in a first case, similarly to WSNs and
UAVs, data unreliability is mainly due to faults/defects or
miscalibrations in the users devices, which unintentionally
provide corrupted data. In other cases, malicious users may
contribute with fake sensing data (e.g., fake GPS readings,
alterated measurements) just to earn the rewards associated
to the crowdsensing tasks, affecting in turn the integrity of
the data collected by the monitoring system [13], [14].

To handle the different nature of anomalies that can impair
the sensing capabilities of sensor nodes involved in next-
generation monitoring systems, advanced signal processing
algorithms need to be conceived. The main goal consists in
estimating the relevant parameters of interest, while at the
same time identifying the possible presence of different types
of faults (either accidental or intentional) and weighting the
corresponding contributions accordingly.

A. RELATED WORK
In estimation theory, whenever measurements are used to
estimate a quantity of interest, measurement errors must be
adequately accounted for, and the statistical properties of
these errors identified to enable robust estimation by either
discarding the unreliable measurements or byweighting them
differently in the estimation algorithms. In the specific sce-
nario we are considering, we need to process data acquired
from different monitoring systems and sensors and the noise
affecting the measurements can be drastically heterogeneous
and, more importantly, its distribution may be unknown.
In addition, as is the case with most large data sets, some
data may be farther from the sample mean than it might be
expected. Outliers in the data can be due to various reasons:
a) they could simply be due to chance, i.e., some measure-
ments produced data that are far from the mean values; or
b) systematic errors occurred in the data collection.

1) OVERVIEW ON OUTLIER/ANOMALY DETECTION
The general literature on outlier/anomaly detection is quite
vast and contains several different algorithms whose main
objective is to identify and discard spurious measurements.
One of the most popular techniques is the Random sample
and consensus, also known as RANSAC [15]. This is an iter-
ative algorithm able to estimate parameters of a mathematical
model with a certain fidelity degree also when the number
of outliers is significant. The tricky point of this method
is the choice of the number of iterations: if the number of
iterations is limited, there are no guarantees on the optimal-
ity of the solution, as the latter can depend on the specific
considered scenario such as type of sensor and number of
parameters to estimate in the model. Methods mainly based
on non-convex optimization that alternate consensus steps
withminimization of convex norms of the residuals have been
also widely considered. We refer the interested reader to [16]
for more details on robust estimation. These methods exhibit
local convergence, but the robustness of the solution depends
on the quality of the initial guess. Moreover, their computa-
tional cost often becomes unaffordable as the number of data
increases.

More advanced solutions for outliers’ identification and
mitigation have been devised in literature, as for instance
those based on clustering techniques. One of the most
popular clustering algorithm used for outlier detection is
the density-based clustering non-parametric algorithm, also
known as DBSCAN [17]. The algorithm starts with a given
set of points in some space and groups points with many
nearby neighbors, and reject points that lie in low-density
regions. Another interesting family of techniques consists
in a modern approach to outlier rejection based on linear
programs. The idea is to avoid hard binary classifications
(‘‘outlier’’ or ‘‘inlier’’), and look for the largest set of mea-
surements that are internally ‘‘coherent’’. The problem, posed
as a linear program, can be solved via convex relaxation.
The simulations provided in [18] in a different context show
promising results in selecting good measurements, allowing
to obtain a global solution by not relying on the availability
of an initial guess.

Anomaly/outlier detection methods based on the outlier
probability have been also considered in literature to improve
the process of excluding unreliable measurements from the
subsequent elaboration steps. These techniques have been
successfully applied, for instance, for online distributed struc-
tural identification following a hierarchical approach in [19].
The same idea has been then used to enhance the stability of
dynamic filtering approaches such as the extended Kalman
Filter (EKF), when applied for online structural monitoring
and damage detection [20], [21]. To solve the instability prob-
lems of traditional EKF implementations, these algorithms
carefully assign the noise covariance matrices at each filter
update step by using real-time estimates of the noise param-
eters, followed by suitable mechanisms to remove abnormal
measurements. Very similar principles have been adopted to
deal with the presence of outliers in marine robotics, mainly
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for navigation and model identification tasks. More specif-
ically, robust state estimation algorithms based on modified
versions of the KF, Luenberger observer, and Rauch-Tung-
Striebel smoother have been proposed and validated under
different operational scenarios [22], [23].

2) OVERVIEW ON JOINT ESTIMATION AND
ANOMALY DETECTION
Although outlier/anomaly detection methods as those dis-
cussed above provide satisfactory performance in a number of
different application scenarios, by discarding the unreliable
measurements they do not take full advantage of all the infor-
mation available in the collected data. To fill this gap, tech-
niques that simultaneously identify anomalies and estimate
the parameters of interest without rejecting the measurements
have been conceived, known as joint estimation and anomaly
detection. Far less works fall in this category compared to
the huge literature on outlier/anomaly detection, despite the
existing references point out very promising performance
improvements. For instance, in [24] the joint problem of
hypothesis testing and parameter estimation, which typically
arises in radar and cognitive radio contexts, is addressed.
Using a Bayesian estimation cost function that depends on
both the detection result and the estimation scheme, a novel
optimal joint detector and estimator is devised that, taking
into account the coupling nature of the two subproblems,
achieves superior performance compared to methods that
treat detection and estimation separately. A similar problem
is also considered in [25], where the additional presence
of uncertainties in the guessed prior probability is explic-
itly taken into account at the algorithms design stage. Joint
reconstruction and anomaly detection methods have been
also successfully applied in remote sensing applications to
reconstruct hyperspectral images from compressed observa-
tions [26]. Interestingly, experimental analyses conducted
on real data confirm that joint approaches provide supe-
rior performance compared to standalone reconstruction and
anomaly detection algorithms.

Focusing on the specific topic of monitoring using sen-
sor networks, joint estimation and detection algorithms have
been developed using mixtures probability models, such as
Laplacian and Gaussian mixtures models. Under this frame-
work, the existing approaches have been designed mainly
for distributed contexts where estimation of common param-
eters and classification of sensor states are collaboratively
performed by all the nodes in the network. Suchmethods con-
sider distributed versions of joint maximum likelihood (ML)
and maximum a-posteriori (MAP) estimators, and include
additional communication constraints imposed by the net-
work. The interested reader is referred to [27] and [28] for
more details on the theory behind joint ML-MAP estimation,
which is completely general and can be applied to a numerous
engineering contexts involving joint decision and estimation
processes, where qualities of decision and estimation affect
each other (e.g., target detection and tracking).

The constrained maximisation of the log-likelihood func-
tion for a mixture model, due to its combinatorial nature,
is an NP-hard problem and there is no closed form solution
for the model parameters. In order to overcome this issue,
in [29], [30], [31], and [32] different iterative techniques are
proposed that try to approximate the optimal (centralized)
solution of the joint ML-MAP estimator. A common point
of the strategies is to consider the complete log-likelihood
function based on the missing data. After choosing some ini-
tial values for the mixture parameters, the following updates
are alternated: in the first step, current values are used for the
parameters to estimate the signal and to evaluate the posterior
distribution type of measurement (inlier or outlier); in the
second step these probabilities are used to re-estimate the
mixture parameters. Besides the design of the algorithms,
the contribution in [29] and [32] includes rigorous proofs of
convergence that make the distributed techniques well-suited
to work when nodes can cooperate among each other and the
communication to a central processing unit is not allowed.

B. MAIN CONTRIBUTION AND OUTLINE OF THE PAPER
From the analysis of the above literature, it emerges that there
is a lack of a general framework able to properly handle the
joint estimation of common parameters of interest and iden-
tification of multiple and possibly different types of sensor
anomalies in environmental sensor networks. More specifi-
cally, [29] mainly deals with anomalies that introduce only a
deterministic bias in the measurement errors, modeled using
a Gaussian mixture model. For this model, an iterative, dis-
tributed, consensus-like algorithm based on ML estimation is
proposed, which tries to approximate the optimal centralized
ML. Authors in [30] extend the previous model to the case
in which the additive bias can take on two different values
based on a (possibly unknown) Bayesian prior. The key
contribution is a distributed estimator based on gossip-like
communications that approximates the optimal centralized
joint ML-MAP. On the other hand, in [31] sensor anomalies
that impact only on the variance of themeasurement errors are
considered, assuming that the probability of occurrence of an
anomaly (i.e., the hyperparameter of the Bayesian prior) is
perfectly known a priori. The main goal is the development
of a distributed, iterative procedure which copes with the
communication constraints imposed by the network, and tries
to approximate the optimal solution of the joint ML-MAP
using input driven consensus algorithms. Considering the
same model for the anomalies, [32] deals with the problem of
joint estimation and anomaly detection starting from relative
measurements (expressed as difference between two individ-
ual measurements) given as inputs. The optimal centralized
joint ML-MAP estimator is illustrated and an approximated
distributed version with some convergence guarantees is also
provided.

In this work, we take a different path and investigate
the applicability of techniques based on Gaussian mixtures
probability models under the framework of a (possibly large-
scale) environmental monitoring systemwhere sensing nodes
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may not communicate and/or interact among each other (as
is the case of crowdsensing nodes, but also of WSNs and
UAVs nodes when energy-saving is a priority) and all the
collected measurements need to be processed at a centralized
unit. Compared to the most closely related works discussed
above [29], [30], [31], and [32], we aim at advancing the
literature by proposing a novel theoretical framework that
simultaneously handles anomalies of different nature affect-
ing either the mean or the standard deviation of the mea-
surement errors, and additionally deals with the most general
cases in which the hyperparameter of the Bayesian prior
describing the probability of occurrence of anomalies is com-
pletely unknown. More precisely, the following contributions
are provided:
• a unified Bayesian framework for joint estimation of
common parameters and detection of sensors anomalies
that considers two rather general error models based on
Gaussian mixtures able to capture variations affecting
the quality of the measurements due to different anoma-
lous operational conditions (accidental or intentional);

• for both the considered error models, we start by illus-
trating the optimal joint ML-MAP estimators already
discussed in [29] and [30] for the case of anomalies
introducing an additive bias and in [31] for the case of
anomalies affecting the variance of the errors, which rep-
resent the benchmark for the specific problem at hand.
Then, we propose novel reduced-complexity two-step
methods able to achieve almost the same performance
of the joint ML-MAP but at a fraction of its computa-
tional cost, as demonstrated by means of a theoretical
cost analysis. We also extend the derivations of all the
approaches to the case in which the hyperparameter of
the Gaussian mixture is unknown and should be inferred
from the data using an Empirical Bayes approach;

• an exhaustive performance analysis is conducted to test
the algorithms effectiveness in terms of performance,
robustness to potential mismatches and to increasing
percentages of anomalous nodes in the network, scala-
bility, and computational cost. The assessment is con-
ducted under different sensors anomalous conditions,
both on simulated data as well as on experimental data
collected by a monitoring network deployed in the Apu-
lia region, south of Italy.

The paper is organized as follows. In Sec. II we formally
present general observations models for acquisition of a
common physical quantity in an environmental monitoring
network and we distinguish two separate cases for modeling
anomalies (multiplicative and additive models). Sec. III is
devoted to the algorithms designed for themultiplicative error
model, whereas Sec. IV presents the algorithms based on
the additive error model. In Sec. V we conduct a theoretical
cost analysis to discuss the complexity of the considered
algorithms. Section VI contains an extensive performance
assessment both on simulated and real scenarios. Finally,
summary and some concluding remarks completes the paper
in Section VII.

FIGURE 1. General scenario of an environmental monitoring network
including sensors with different anomalous operational conditions.

II. GENERAL SCENARIO AND OBSERVATION MODELS
We consider an environmental monitoring network (EMN)
comprising N sensing devices (e.g., fixed monitoring sta-
tions, WSN nodes, UAV platforms, crowdsensing nodes),
available at different locations in a surveyed area and each
measuring an unknown global environmental parameter θ .
Individual sensors make local, noisy measurements of the
phenomenon of interest, as shown in Fig. 1. Accordingly,
each measurement yi carried out by the i-th sensor is
expressed as

yi = θ + xi, i = 1, . . . ,N (1)

where xi denotes the local measurement error, modeled as a
Gaussian random variable with mean ai and standard devia-
tion bi, namely xi ∼ N (ai, b2i ). In this respect, the param-
eter θ can be interpreted as a global value capturing the
average magnitude of a given phenomenon of interest (e.g.,
temperature, pressure, pH, PMx concentration, . . . ). Small
local deviations from such a mean value will be treated as
fluctuations and thus included in the additive noise term xi.
In this work, we propose a unified estimation and anomaly

detection framework that includes two different and rather
general error models, able to capture possible variations
(associated to a sensor abnormal condition) either in the local
parameter ai or bi. More specifically, in the first model the
mean of the error term xi, namely ai, is zero while the standard
deviation can take on two possible values, i.e., bi ∈ {α, β},
with β > α (with α typically small, related to the sensor
precision). The lower value of the standard deviation α repre-
sents the normal operational behavior of the sensor, whereas
β is indicative of an anomalous condition, e.g. a misfunction-
ing or degradation of the sensor, or a deliberate attack. On the
other hand, in the second model the mean of the measurement
error can take on two possible values, ai ∈ {γ, ν} with ν > γ
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(with γ typically zero in sensors with no bias), while the
standard deviation bi is fixed to σ , the latter representing
the intrinsic sensor precision. Accordingly, the additive error
terms xi, i = 1, . . . ,N can be expressed as

xMUL
i = bini, bi ∈ {α, β}

xADD
i = ai + σni, ai ∈ {γ, ν} (2)

with ni ∼ N (0, 1). From (2), it can be easily observed that
the term bi acts as a multiplicative error factor, whereas ai
introduces an additive shift in the measurement error. Given
their different nature, such models will be denoted as the
multiplicative and additive error model, respectively.
To account for the inherent randomness of failures that can

occur on sensors, we assume that ai in the additive model and
bi in the multiplicative model follow a discrete probability
distribution B(q, s, p) such that, denoting by χ a random
variable distributed according to B(q, s, p), we have that

χ =

{
q with probability 1−p
s with probability p

. (3)

The above probability distribution represents a prior infor-
mation that will be exploited within a Bayesian framework to
perform estimation and anomalous sensors detection tasks.
Accordingly, the two models can be summarized as

Multiplicative Model: ai = 0 bi ∼ B(α, β, p)
Additive Model: ai ∼ B(γ, ν, p) bi = σ

The considered models are very versatile and can represent
measurement errors due to sensor failures (e.g., systematic
or stochastic errors) as well as cyber attacks (e.g., byzan-
tine attack) or malicious alterations of data. As in typical
environmental monitoring systems, each sensor sends the
measurements to a fusion center as soon as they are ready.
In this work, the fusion center has a twofold goal: recovering
the value of the global parameter θ from sensor’s measure-
ment streams while detecting, at the same time, the possible
presence of faulty sensors. In the following, we separately
deal with the two measurement error models. More specif-
ically, we start from the multiplicative model, which has
been also considered in a different distributed context in [31]
and [32], and illustrate both a joint ML-MAP approach and
a novel two-step algorithm able to attain the same estima-
tion and detection performances of the joint ML-MAP, but
at a reduced computational cost. We then extend the two
approaches to the case in which the hyperparameter p of the
prior distribution is unknown and should be inferred from
the data using an empirical Bayes approach. Then, we focus
on the additive error model and, similarly, illustrate both the
joint ML-MAP estimator and a reduced-complexity two-step
algorithm, for both the cases of known (fixed as a design
parameter) and unknown hyperparameter p.

III. BAYESIAN ALGORITHMS FOR THE MULTIPLICATIVE
ERROR MODEL
Starting from the model described in the previous section,
each sensor measurement yi is a Gaussian mixture distributed

according to the probability density function (pdf)

f MUL(yi) = (1− p)f MUL(yi|θ, α)+ p f MUL(yi|θ, β)

=
1− p
√
2πα

e−
(yi−θ)

2

2α2 +
p
√
2πβ

e
−

(yi−θ)
2

2β2 (4)

being each conditional pdf given by

f MUL(yi|θ, bi) =
1

√
2πbi

e
−

(yi−θ )
2

2b2i , bi ∈ {α, β} . (5)

A. JOINT ML-MAP ESTIMATION
The goal is to estimate the global parameter θ and the specific
state of each sensor bi using a Bayesian inference framework.
In [31], the value of the hyperparameter p used to characterize
the multiplicative error model is assumed perfectly known
a priori. However, in most practical cases the value of p,
which determines the probability of having a faulty sensor,
is generally unknown. To deal with such a more realistic
condition, in our framework we investigate two different
scenarios: in the first case, p is considered a design parameter
to be tuned according to some a-priori (coarse) information
about the quantity of faulty sensors extracted, e.g., from
experimental data on the network. In the second case, p is
treated as a completely unknown parameter that should be
inferred from the data.

1) CASE OF p AS A DESIGN PARAMETER
Let us start with the former case and denote with f MUL(y, b|θ )
the joint distribution of the sensors measurements y =
[y1 · · · yN ]T and of the sensors state b = [b1 · · · bN ]T

(interpreted as a density in y and probability in b), given
the parameter θ and considering a fixed design parameter
p = pd . Notice that the latter can be arbitrarily different from
the true value of p. The optimal solution for the problem at
hand would be to consider a joint ML-MAP approach [27],
which consists in maximizing f MUL(y, b|θ ) with respect to
both θ and b. More specifically, the whole maximization
is partly ML in the deterministic parameter θ , and partly
MAP in the discrete random vector b. The underlying idea
behind this joint estimation procedure consists in finding b
which has the maximum posterior joint probability with θ ,
and the corresponding θ which maximizes that probability.
In doing so, the mutual dependency between estimation and
decision processes and the way they affect each other are
explicitly taken into account. In formulas, the joint ML-MAP
estimation problem can be expressed as

(θ̂MUL
JML,pd , b̂

MUL

JML,pd ) = argmax
θ,b

`MUL(θ, b) (6)

where `MUL(θ, b) denotes the log-likelihood of f MUL(y, b|θ )
and

`MUL(θ, b) ∝
∑
i∈Nα

log

{
(1− pd )
α

e−
(yi−θ )

2

2α2

}

+

∑
i∈N \Nα

log

{
pd
β
e
−

(yi−θ)
2

2β2

}
(7)
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with N = {1, 2, . . . ,N } the set containing all the indexes
of sensors in the network, while Nα = {i ∈ N |bi = α}. It is
not difficult to show that the inner maximization wrt b in (6)
can be carried out separately for each bi, i = 1, . . . ,N , and
is solved by directly comparing the log-likelihood function
evaluated in the two possible values {α, β} each bi can takes
on. After some calculations, we then obtain

b̂MUL
i,JML(θ ) =

{
α if |yi − θ | < δMUL

β otherwise
(8)

where

δMUL
=

√√√√
2
log
( 1−pd

pd
β
α

)
α−2 − β−2

. (9)

Accordingly, the final joint ML-MAP solution can be
derived by plugging the closed-form estimate of the vector
b̂
MUL

JML,pd (θ ) = [b̂MUL
1,JML

(θ ) · · · b̂MUL
N ,JML

(θ )] obtained using (8) back

into `MUL(θ, b̂
MUL

JML,pd ) and by solving the outer maximization
wrt the remaining parameter θ as

θ̂MUL
JML,pd = argmax

θ
`MUL(θ, b̂

MUL

JML,pd (θ )),

b̂
MUL

JML,pd = b̂
MUL

JML,pd (θ̂
MUL
JML,pd ). (10)

Some important aspects are now discussed in order. First,
it is worth observing that though the problem is generally cast
as an estimation problem, the nature of the involved optimiza-
tion variables, that is, the global environmental parameter θ
and the sensors states bi, i = 1, . . . ,N , is different being the
former a continuous variable and the latter binary variables.
In this regard, estimation of θ is carried out following the ML
rationale encoded through the log-likelihood function in (7),
which depends on the unknown sensors state bi’s. However,
since the latter variables take on binary values (either α or
β in this case), their ‘‘estimation’’ practically coincide with
a decision/detection among two possible states, which is
performed through the MAP classifier reported in (8), using
as a threshold for the decision the expression in (9). It can be
noticed that also the MAP classifier depends in turn on the
unknown value of θ , justifying the joint ML-MAP optimal
approach where the way estimation and decision processes
affect each other is explicitly taken into account in solving
the problem.

Second, it should be noted that `MUL(θ, b̂
MUL

JML,pd (θ )) is differ-
entiable except at a finite number of points, and between two
successive non-differentiable points the function is concave.
Therefore, the local maxima of the function coincide with its
critical points. Given its nature, this strategy can be consid-
ered a joint decision and estimation approach [28].

2) CASE OF UNKNOWN HYPERPARAMETER p
The above approach can be naturally extended to the case
in which the hyperparameter p is completely unknown and
should be inferred from the collectedmeasurements. To solve

the problem in such a case, we can adopt a joint parameter-
hyperparameter ML-MAP Bayesian estimation approach

(θ̂MUL
JML , b̂

MUL

JML , p̂
MUL
JML ) = argmax

θ,b,p
`MUL(θ, b, p). (11)

The maximization of the log-likelihood `MUL(θ, b, p) follows
the same rationale of the approach devised for the case of
fixed p = pd , except for the last maximization wrt θ in
(10) that is instead replaced by a maximization over the joint
space (θ, p). Again, the computational cost increases from a
1D search in case of fixed p = pd to a 2D search for the
case of unknown p. It is worth noting that it is not evident ex
ante which of the two approaches generally provides the best
performance, therefore the two variants of the algorithm will
be thoroughly compared later in the performance evaluation
provided in Sec. VI.

B. REDUCED-COMPLEXITY TWO-STEP ESTIMATION AND
SENSORS CLASSIFICATION
In this section, we derive a novel two-step algorithm able to
perform estimation of the global parameter θ and classifica-
tion of the sensors state {bi}Ni=1, but at a reduced cost com-
pared to the optimal joint ML-MAP algorithm illustrated in
the previous section. The idea behind the proposed two-step
algorithm is to first obtain an estimate of the global param-
eter θ , and then to use its estimated value to perform a clas-
sification of the sensors state {bi}Ni=1 in a second step. Given
the processing chain underlying this strategy, the proposed
algorithm will be denoted as estimation-then-classification
(EC) approach [28].

1) ESTIMATION STEP
To obtain an estimate of the global parameter θ , we propose
a maximum likelihood (ML) approach based on the uncon-
ditional distribution of the whole collected sensors measure-
ments, i.e.,

θ̂MUL
EC,pd =argmax

θ∈R

N∏
i=1

f MUL(yi)=
N∏
i=1

∑
bi∈{α,β}

f MUL(yi|bi)f (bi)

(12)

with f (bi) denoting the probability mass function of the ran-
dom variable bi (which we recall is distributed according
to the discrete distribution B(α, β, p)) and p = pd fixed
as a design parameter. It is worth noting that the estimator
in (12) performs a marginalization wrt to the distribution of
the sensors state parameters {bi}Ni=1, so as to get rid of their
unknown values. It is not difficult to show that the above
problem is equivalent to the following optimization problem

θ̂MUL
EC,pd = argmax

θ∈R

N∑
i=1

`MUL(θ; yi)

=

N∑
i=1

log

{
1− pd
α

e−
(yi−θ )

2

2α2 +
pd
β
e
−

(yi−θ)
2

2β2

}
(13)
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where `MUL(θ; yi) denotes the log-likelihood of the uncondi-
tional distribution f MUL(yi).

The above approach can be extended also to the case in
which the hyperparameter p of the B distribution is com-
pletely unknown. In this case, a natural solution would be to
infer its value from all the collected measurements by using
a joint parameter-hyperparameter ML estimation approach

(θ̂MUL
EC , p̂MUL

EC ) = argmax
θ∈R, 0<p<1

N∑
i=1

`MUL(θ, p; yi). (14)

Solving the above problem requires that a two dimensional
(2D) search over the joint (θ, p) space is performed, while the
optimization problem in (13) for the case of fixed p involves
only a one dimensional (1D) search over the space of θ .
In practical scenarios, one can choose which of the two

variants of the proposed Bayesian algorithms can be more
convenient based on the possible availability of some a-priori
information about the percentage of faulty sensors. For the
case of WSN nodes, for instance, the value of pd can be
coarsely inferred from experimental fault tests on the net-
work. Nonetheless, we anticipate that the value of pd is
not very critical for the proposed algorithms: in Sec. VI we
will show that the algorithms indeed possess an inherent
robustness against erroneous values of pd . Clearly, when the
chosen pd is very close to the true proportion of anomalies,
the proposed algorithms will disclose their best performance.
On the other hand, when no a-priori information on the per-
centage of faulty nodes is available, the novel extensions of
the algorithms that infer p from data (following an empirical
Bayes approach) allow to overcome the need of choosing
a specific value for pd , though at the price of an increased
computational cost.

2) CLASSIFICATION STEP
Once the global parameter θ (and possibly the hyperparam-
eter p) has been estimated, in a second step we can retrieve
the state of each sensor—which for the multiplicative model
is represented by the two possible values of bi (either normal
or faulty) — by adopting a Bayesian maximum a-posteriori
(MAP) classifier. To this aim, we first derive the correspond-
ing MAP distribution

f (bi|yi) =
f MUL(yi|θ̂ , bi)f (bi)

f MUL(yi)

=

1
bi
e
−

(yi−θ̂ )
2

2b2i

[
p
β
bi−α
β−α
−

1−p
α

bi−β
β−α

]
1−p
α
e−

(yi−θ̂ )
2

2α2 +
p
β
e
−

(yi−θ̂ )
2

2β2

(15)

using the previously estimated value of θ . Then, by com-
paring the MAP distribution f (bi|yi) evaluated in the two
possible values of bi, we obtain the MAP classifier for the
state condition of the i-th sensor node, which has exactly the
same form of (8), but uses the value of the global parameter θ̂
estimated in the previous step. Notice that, given the order
of the two processing steps discussed above, the proposed

algorithmfirst tries tomake the best estimation θ̂ of the global
parameter θ , and then do decision based on the estimation
as if it was the true value. This is tantamount to replacing
the original composite distribution f MUL(yi|θ, bi), for θ ∈ R,
with its single (simple) most likely version f MUL(yi|θ̂ , bi) =
maxθ f MUL(yi|θ, bi). The latter is then used as a surrogate to
construct the MAP distribution and perform the classification
task in the second step. In this respect, thus, the novel two-step
EC approach decides on the sensors state using aMAP classi-
fier with posterior distribution given in (15), but using as input
an estimate of θ (either θ̂MUL

EC,pd or θ̂MUL
EC ) obtained in the first

step through an unconditional ML estimation process with
log-likelihood function expressed by (13).

IV. BAYESIAN ALGORITHMS FOR THE ADDITIVE
ERROR MODEL
With the same rationale of Sec. III, in this section we illustrate
the optimal joint ML-MAP estimator and propose an alterna-
tive reduced-complexity two-step algorithm for the additive
error model discussed in Sec. II. According to this error
model, each sensor measurement yi is a Gaussian mixture
distributed according to the pdf

f ADD(yi) = (1− p)f ADD(yi|θ, γ )+ p f ADD(yi|θ, ν)

=
1− p
√
2πσ

e−
(yi−γ−θ)

2

2σ2 +
p

√
2πσ

e−
(yi−ν−θ )

2

2σ2 (16)

where

f ADD(yi|θ, ai) =
1

√
2πσ

e−
(yi−ai−θ)

2

2σ2 , ai ∈ {γ, ν} . (17)

A. JOINT ML-MAP ESTIMATION
Also in this case, the goal is to estimate the global parameter
θ and the specific state of each sensor ai, in the two different
cases of p fixed as a design parameter (p = pd ) or p unknown.

1) CASE OF p AS A DESIGN PARAMETER
Let us consider the former case and denote with f ADD(y, a|θ )
the joint distribution of the sensors measurements y and of
the sensors state a = [a1 · · · aN ]T (interpreted as a density
in y and probability in a), given the parameter θ , with p = pd .
The joint ML-MAP estimation problem can be formulated as

(θ̂ADD
JML,pd , â

ADD

JML,pd ) = argmax
θ,a

`ADD(θ, a) (18)

where `ADD(θ, a) denotes the log-likelihood of f ADD(y, a|θ ) and

`ADD(θ, a) ∝
∑
i∈Nγ

log

{
(1− pd )e

−
(yi−γ−θ)

2

2σ2

}

+

∑
i∈N \Nγ

log

{
pde
−

(yi−ν−θ)
2

2σ2

}
(19)

withNγ = {i ∈ N |ai = γ }. The inner maximization wrt a in
(18) can be carried out separately for each ai, i = 1, . . . ,N ,
and is solved by directly comparing the log-likelihood func-
tion evaluated in the two possible values {γ, ν} each ai can
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takes on. After some calculations, we then obtain

âADD
i,JML(θ ) =

{
γ if θ − yi > δADD

ν otherwise
(20)

where

δADD =
σ 2

ν − γ
log

(
pd

1− pd

)
−
ν + γ

2
. (21)

Accordingly, the final joint ML-MAP solution can be
derived by plugging the closed-form estimate of the vector
âADD

JML,pd (θ ) = [â1(θ ) · · · âN (θ )] obtained using (20) back
into `ADD(θ, â) and by solving the outer maximization wrt the
remaining parameter θ as

θ̂ADD
JML,pd = argmax

θ
`ADD(θ, âADD

JML,pd (θ )),

âADD

JML,pd = âADD

JML,pd (θ̂
ADD
JML,pd ). (22)

Following a reasoning similar to that in Sec. III-A, also in
this case estimation of θ is carried out following the ML
rationale encoded through the log-likelihood function in (19),
which depends on the unknown sensors state ai’s. The latter
variables take on binary values (either γ or ν in this case),
hence their estimation coincide with a decision among two
possible states, which is performed through the MAP classi-
fier reported in (20), using the threshold given in (21). From
a quick inspection, it emerges that also `ADD(θ, â(θ)) is differ-
entiable except at a finite number of points, and between two
successive non-differentiable points the function is concave.
Therefore, the local maxima of the function coincide with its
critical points.

2) CASE OF UNKNOWN HYPERPARAMETER p
The above approach can be analogously extended to the
case in which the hyperparameter p is completely unknown.
Using a joint parameter-hyperparameter ML-MAP estima-
tion approach, it follows that

(θ̂ADD
JML , â

ADD

JML , p̂
ADD
JML ) = argmax

θ,a,p
`ADD(θ, a, p). (23)

Again, the maximization of `ADD(θ, a, p) follows the same
rationale of the approach devised for the case of fixed p,
except for the last maximization wrt θ in (22) that is instead
replaced by a maximization over the joint space (θ, p).

B. REDUCED-COMPLEXITY TWO-STEP ESTIMATION AND
SENSORS CLASSIFICATION
We now illustrate a two-step algorithm able to perform esti-
mation of the global parameter θ and classification of the
sensors state {ai}Ni=1, but at a reduced cost compared to the
optimal joint ML-MAP algorithm derived in the previous
section.

1) ESTIMATION STEP
Assuming the hyperparameter p = pd to be a fixed design
parameter, we first obtain an estimate of the θ parameter using

a ML approach based on the unconditional distribution of the
whole data as

θ̂ADD
EC,pd =argmax

θ∈R

N∏
i=1

f ADD(yi)=
N∏
i=1

∑
ai∈{γ,ν}

f ADD(yi|ai)f (ai)

(24)

with f ADD(yi|ai) given in (17) and f (ai) the probability mass
function of the random variable ai (which we recall is dis-
tributed according to the discrete distribution B(γ, ν, p)).
After simple calculations, the above optimization problem
can be more conveniently expressed as

θ̂ADD
EC,pd = argmax

θ∈R

N∑
i=1

`ADD(θ; yi)

=

N∑
i=1

log

{
(1− pd )e

−
(yi−γ−θ)

2

2σ2 + pde
−

(yi−ν−θ)
2

2σ2

}
(25)

where `ADD(θ; yi) denotes the log-likelihood of the uncondi-
tional distribution f ADD(yi). Also in this case, the proposed
estimator lends itself to be naturally extended to the case in
which p is unknown, using a joint parameter-hyperparameter
ML estimation approach

(θ̂ADD
EC , p̂

ADD
EC ) = argmax

θ∈R, 0<p<1

N∑
i=1

`ADD(θ, p; yi). (26)

2) CLASSIFICATION STEP
In the second step, we use the estimate θ̂ of the global
parameter (and possibly the estimate of p) to derive a MAP
classifier able to discriminate the state of each sensor. To this
aim, we construct the corresponding MAP distribution

f (ai|yi) =
f ADD(yi|θ̂ , ai)f (ai)

f ADD(yi)

=

e−
(yi−ai−θ)

2

2σ2
[
(ai − γ )

p
ν−γ
− (ai − ν)

1−p
ν−γ

]
(1− p)e−

(yi−γ−θ)
2

2σ2 + pe−
(yi−ν−θ)

2

2σ2

. (27)

By comparing the MAP distribution f (ai|yi) evaluated in the
two possible values of ai, we obtain the final MAP classifier
whose expression is the same as that in (20) using (21), except
for the value of θ that is replaced by its estimate θ̂ . The
two-step EC approach thus performs a decision on the sensors
state using a MAP classifier with posterior given in (27),
using as input an estimate of θ (either θ̂ADD

EC,pd or θ̂
ADD
EC ) obtained

in the first step through an unconditional ML estimation
process with log-likelihood given in (25).

V. COST ANALYSIS
In this section, we investigate in detail the computational
complexity of the novel two-step EC algorithms proposed in
Secs. III-B (multiplicative model) and IV-B (additive model),
in comparison to the optimal joint ML-MAP estimators

234 VOLUME 11, 2023



A. Fascista et al.: Unified Bayesian Framework for Joint Estimation and Anomaly Detection

illustrated in Secs. III-A (multiplicative model) and IV-A
(additive model). Let us start by considering the case in
which the hyperparameter of the Gaussian mixtures is set
to a fixed design value p = pd . Asymptotically speaking,
the complexity in performing the optimization required by
the optimal joint ML-MAP estimators (please refer to (6)
and (18)) can be expressed as the sum of the following
terms

O(PN + PN + P logP) (28)

where P denotes the number of evaluation points used to per-
form the 1D search over the space of θ . The first two addends
represent the cost required to construct and evaluate the log-
likelihood function, and to jointly perform a classification
of the N sensors states (as either regular or anomalous) for
each of the P individual trial values. The third term instead
indicates the complexity required to select the best candidate
trial value (among the P) corresponding to the maximum of
the log-likelihood function.

On the other hand, by analyzing the different steps involved
in the proposed two-step EC algorithms, it emerges that the
overall asymptotic complexity is given byO(PN +P logP+
N ). The first term represents the cost associated to the esti-
mation step, which involves P-times an evaluation of the
log-likelihood function, followed again by a search for the
trial value corresponding to its maximum. The third addend
represents instead the complexity required by the subsequent
classification step, which in this case is performed only once
using the value of the global parameter θ̂ estimated in the
previous step as it if was the true one. In doing so, the
two-step EC algorithms are able to reduce the complexity
required by the jointML-MAP algorithms, which instead per-
form P different classifications, one for each individual trial
value.

The complexities of the extended versions of the joint
ML-MAP (please refer to (11) and (23)) and two-step EC
algorithms (please refer to (14) and (26)) that also estimate
the hyperparameter p from the data can be obtained by incor-
porating in the above expressions the cost related to an addi-
tional 1D search over the space of p. Assuming for the sake
of the exposition that the number of evaluation points used to
perform such an additional search is also P, we end up with a
complexity in the order ofO(P2N +P2N +P2 logP2) for the
jointML-MAP algorithms, and ofO(P2N+P2 logP2+N ) for
the two-step EC algorithms. Clearly, the big-O notation may
hide constants that can impact onto the actual computational
cost. Therefore, to corroborate the above asymptotic analysis,
in the next section we will also compare the average runtimes
of all the algorithms when executed on the same hardware
platform.

VI. PERFORMANCE ASSESSMENT AND RESULTS
In this section, we assess the performance of the unified
Bayesian framework by testing all the presented algorithms
on synthetic data, as well as on timeseries of real sensors
data (temperature measured by a network of fixed monitoring

stations deployed in the south of Italy) accounting for the
presence of an anomalous stream coming from a faulty
sensor.

A. STATE-OF-THE-ART COMPETITOR ALGORITHMS
We describe below additional state-of-the-art algorithms that
will be compared against the Bayesian algorithms. In this
respect, it is worth remarking that the joint ML-MAP
approach, which has been already illustrated in other similar
works dealing with joint estimation and anomaly detection
but in different distributed contexts [29], [30], [31], [32], rep-
resents the benchmark for the considered problem. Indeed,
it provides the optimal solution by seeking for the maximum
of the log-likelihood function (please refer to (7) for the mul-
tiplicative model and (19) for the additivemodel) with respect
to both the global parameter (estimation) and sensors states
(classification). More specifically, the whole maximization is
partly ML in the global parameter θ , and partly MAP in the
discrete random vector containing the sensors states (either
b or a according to the error model). In doing so, the joint
ML-MAP approach explicitly takes into account the mutual
dependency between estimation and decision processes and
the way they affect each other, thus representing the best
possible algorithm (i.e., any other possible algorithm could
only perform worse than it).

1) DBSCAN-BASED APPROACH
A natural competitor can be identified by considering a dual
approach in which classification of sensor nodes (as either
normal or anomalous) is performed in a first step, and then
an estimate of the global parameter θ is obtained in a second
step using the decisions made in the classification step as if
they were the true ones. To this aim, the sensors classification
problem can be interpreted as a clustering problem, where the
goal is to group together measurements yi’s coming from the
same distribution. A rather common clustering algorithm is
the k-means, which for the specific problem at hand would
have k = 2. However, k-means and other techniques such
as hierarchical clustering are not suitable for the considered
models for two main reasons: i) both the multiplicative and
additive model distributions have a non-convex shape; ii) the
typical low values1 of the hyperparameter p would make it
difficult to distinguish two different clusters, being in that
cases more appropriate to consider a single cluster with some
individual outliers.

To make a more fair comparison, for the classification step
we consider the well-known density-based spatial clustering
of applications with noise (DBSCAN, [17]). Compared to k-
means, DBSCAN does not need to assume a specific number
of clusters and is compatible with non-convex shapes in
general. Moreover, it is suitable for making decisions even
with low values of p, being its derivation inclusive of a notion
of ‘‘noise’’, and is also very robust to outliers. DBSCAN only

1Apart from extraordinary cases, it is reasonable to expect that in real
applications the probability of having faulty sensors is usually quite low.
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requires the definition of two design parameters, which can
be set according to the specific error model at hand:

• the neighborhood search radius ε, which in the follow-
ing is set to β/2 and |ν|/2 (i.e., half the entity of the
anomaly) for themultiplicative and additive error model,
respectively;

• the minimum number of neighboring points minPts
to elect a measure as a core point, which is set to
N/2 (i.e., half the dimension of the network) for both
models.

Once the classification step has been performed using
DBSCAN, it is possible to retrieve an estimate of θ using a
weighted least square approach for the multiplicative model,
and a corrected arithmetic mean for the additive model,
namely

θ̂MUL
DBSCAN =

∑N
i=1 yi/b̂

2
i,DBSCAN∑N

i=1 1/b̂
2
i,DBSCAN

(29)

θ̂ADD
DBSCAN =

1
N

N∑
i=1

(yi − âi,DBSCAN) (30)

where b̂i,DBSCAN and âi,DBSCAN are the outcomes of the clas-
sification step performed by DBSCAN based on the mul-
tiplicative and additive model, which reflect the estimated
operational state of the i-th sensor in the network. The spe-
cific order of the processing steps discussed above explains
the rationale for choosing the DBSCAN-based approach as
one of the considered competitors: indeed, it can be natu-
rally seen as the ‘‘dual’’ approach compared to the proposed
two-step EC algorithms, which we recall first perform esti-
mation of the global parameter, and then do sensor state
classification based on the estimation as if it was the true
value.

2) SIMPLE ESTIMATION AND CLASSIFICATION (SEC)
With the aim of understanding the potential advantages of
the Bayesian algorithms, we also consider a very simple
and lightweight estimation and sensor classification (SEC)
algorithm for both models:

• under the multiplicative model, the estimate of θ is
chosen as the median value of the measurements yi’s,
whereas a naive 3α threshold is adopted to make deci-
sion about the i-th sensor state: bi = α if |yi − θ̂ | < 3α;
bi = β otherwise;

• under the additive model, we consider the sample mean
as estimate of θ , and always decide for the normal
operational behavior of sensors, namely ai = γ,

∀i = 1, . . . ,N .

Both these approaches should be interpreted as the upper
bound for estimation (in terms of error) and the lower bound
for classification (in terms of accuracy), respectively. Meth-
ods providing lower performance than these simple algo-
rithms cannot be considered effective for the problem at
hand.

B. SIMULATION ANALYSIS
In this section, we conduct a simulation analysis to assess
the algorithms performance when operating on synthetically-
generated measurements. The numerical assessment is per-
formed under different sensors anomalous conditions (in
terms of both entity of the anomaly and number of anoma-
lous sensors), also taking into account possible mismatches
between the assumed and actual model parameters.

1) SIMULATION SETUP
The considered scenario consists of a network ofN = 20 sen-
sor nodes, which aims at estimating the average temperature
of a given region having a true value of θ = 10 ◦C. Under
regular operating conditions of all sensors, the values of the
standard deviations α and σ in the multiplicative and additive
error models are set to 1 (which means that the intrinsic
sensors precision is about ±3 ◦C), whereas the mean of the
measurement error in the additive model is set to γ = 0 (we
assume sensors with no bias). Such values are compatible
with the typical errors (in Celsius degree scale) experienced
by commercial temperature/humidity sensors. It is also worth
noting that we opted to conduct the performance evaluation
using a relatively small number of sensors (N = 20) for two
simple reasons: i) we want to consider conservative scenarios
where the number of active sensors that can effectively carry
out measurements over a given time window may be less
than the total number of nodes potentially available in the
network. Indeed, it is not infrequent to have situations where
part of the involved nodes are temporarily unavailable (e.g.,
set in power-saving mode as happens inWSNs, or voluntarily
switched-off as is the case of crowdsensing nodes).Moreover,
ii) having a larger number of sensor nodes in general would
be more beneficial (given the same amount of faulty nodes)
for all the algorithms, being the inference process (estimation
and classification) performed on a higher volume of mea-
surements. The latter point will be confirmed by some of the
results discussed in the following.

Some of the sensors may suddenly experience an undesired
anomalous condition, which in turn affects the quality of the
measurements they provide. In order to test the capability
of the algorithms to cope with different fault conditions,
we first introduce a quantitative metric that represents how
severe is an anomalous condition compared to the normal
operating condition of a sensor. To keep the analysis general
with respect to the value assumed by θ as well as to the
specific error model at hand, we adopt the ratio between
the root mean square (RMS) value of the observables yi’s
under anomalous and regular operating conditions (which
has the meaning of a ‘‘signal-to-noise’’ ratio), denoted in the
following as anomalous-to-regular condition ratio (ARR) and
defined (in dB units) as

ARR = 10 log10

(
µ2
1 + σ

2
1

µ2
0 + σ

2
0

)
(31)

where µ1 = E[yi|H1] (with µ1 = ν for the additive
model and µ1 = 0 for the multiplicative model) and

236 VOLUME 11, 2023



A. Fascista et al.: Unified Bayesian Framework for Joint Estimation and Anomaly Detection

σ 2
1 = VAR[yi|H1] (with σ1 = σ for the additive model

and σ1 = β for the multiplicative model), with E[·] and
VAR[·] denoting the statistical expectation and variance oper-
ators. Similarly, µ0 = E[yi|H0] (with µ0 = γ for the
additive model and µ0 = 0 for the multiplicative model)
and σ 2

0 = VAR[yi|H0] (with σ0 = σ for the additive model
and σ0 = α for the multiplicative model). As to H1 and H0,
they denote the anomalous and regular operating conditions,
respectively. The value of β in themultiplicativemodel and of
ν in the additive model are then varied so as to obtain different
ranges of the ARR. More specifically, low values of ARR
are representative of challenging scenarios where the fault is
hardly distinguishable from a normal operating condition; on
the other hand, increasing values of ARR will make the fault
condition progressively more evident.

With the aim of evaluating the performance of the consid-
ered algorithms, the tests are conducted by means of M =
1000 Monte Carlo trials and the performance are measured
using the mean squared error (MSE) on the estimation of θ ,
corroborated by the accuracy, sensitivity, and specificity of
sensor fault detection. Without loss of generality, in the
following we assume a single measurement coming from
each individual sensor, which means that the total number of
processed data amounts to N .

2) RESULTS AND DISCUSSION
We start the evaluation by investigating the performance of
the algorithms designed for the multiplicative error model.
Multiplicative Model - Analysis in Absence of Anoma-

lies: in Fig. 2, we report the results obtained by consider-
ing a network operating with 0 faulty sensors. It is worth
noting that this represents a scenario of practical interest,
being it the most common operating condition of a properly
deployed sensing network. As it can be observed, in this
setup the MSEs of all the considered algorithms are almost
constant in the ARR range, with the two Bayesian algorithms
and the DBSCAN-based approach providing the best (com-
parable) performance, characterized by estimation errors
always below 0.06. All algorithms also generally provide
excellent sensors classification accuracy. In particular, the
DBSCAN-based and the SEC approaches guarantee a 100%
of classification accuracy, while the two Bayesian algorithms
experience practically negligible deviations from 1 (as high-
lighted by the insets of the figure) only when the probability
of sensor fault pd , used as a fixed design parameter, is set
to pd = 10−1. This behavior reveals an intrinsic robustness
of the two Bayesian algorithms to erroneous values of p: in
fact, they are still able to achieve an accuracy close to 100%
despite being fed with a value of pd significantly different
from the actual one (i.e., p = 0). On the other hand, when p
is inferred from the data (and can thus change across different
trials), the Bayesian algorithms correctly classify the sensors
state with practically 100% accuracy. Overall, it is interesting
to notice that the reduced-complexity EC algorithm provides
almost the same performance (in terms of both estimation and
anomaly detection) of the joint ML-MAP.

Multiplicative Model - Analysis in Presence of Anomalies:
Fig. 3 illustrates the results obtained when four faulty sensors
(i.e., 20% of the network size) are present. It is worth high-
lighting that the analysis is performed by keeping the number
of faulty nodes fixed over all the Monte Carlo realizations.
Therefore, the operating conditions are always mismatched
with respect to the statistical model assumed to derive the
Bayesian algorithms at the design stage. In this case, the
MSE of the DBSCAN-based approach worsens as the ARR
(namely, the value of β) increases. This counterintuitive trend
can be explained by noting that although DBSCAN is able to
correctly identify sensors operating under normal conditions
(specificity in Fig. 3 is always 1), it is not as effective in
revealing all the faulty ones, as confirmed by the low values
of the sensitivity achieving at most around 0.5. Such wrong
decisions negatively impact on the subsequent estimation step
performed using (29), with almost 50% of faulty sensors
that are erroneously weighted as if they were normal ones.
On the other hand, the SEC approach exhibits a rather good
estimation performance, due to the fact that the estimator of
θ based on the median value of the measurements is robust to
the presence of a few outliers. Remarkably, the two Bayesian
algorithms guarantee the best estimation performance, with
their MSEs that tend to decrease as the ARR increases,
attaining almost the same small errors provided in absence of
faulty sensors. Such algorithms are also effective in terms of
sensors classification, with an accuracy that is always above
90% even for hardly distinguishable faults (ARR lower than
5 dB), and rapidly increases as soon as the ARR increases.

Some interesting considerations can be drawn by com-
paring the curves of two Bayesian algorithms for different
settings of the design parameter pd . First, it can be noticed
that the overall performance in terms of both estimation and
sensors classification tends to improve as pd gets close to
the actual value of p = 2 · 10−1 (labeled as ‘‘matched’’ in
the legend). Second, the algorithms are still very robust to
erroneous settings of pd , with a difference in the achieved
performance that tends to vanish as the ARR increases. Third,
the variants of the Bayesian algorithms that additionally esti-
mate the hyperparameter p from the data exhibit performance
almost equal to that obtained in the case of perfect knowl-
edge of p. This excellent performance comes at the price of
an increased complexity of the resulting estimators, which
involve a 2D grid search instead of a 1D search, as discussed
in Sec. III-B. Not least, the Bayesian two-step EC algorithm
keeps providing almost the same performance of the optimal
joint ML-MAP, which is a remarkable fact.
Additive Model - Analysis in Absence of Anomalies: We

now consider the algorithms designed for the additive error
model. Fig. 4 shows the results obtained by considering a
network with 0 faulty sensors. As apparent from the MSEs,
in this case the SEC approach and the two Bayesian algo-
rithms generally provide the best performance, whereas the
DBSCAN-based approach starts to attain low values of the
MSE only for higher values of the ARR. Almost the same
behavior can be observed in terms of sensors classification,
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FIGURE 2. Performance of the algorithms for the multiplicative error model, in case of 0 faulty sensors in the
network.

FIGURE 3. Performance of the algorithms for the multiplicative error model, in case of 4 faulty sensors in the
network.

238 VOLUME 11, 2023



A. Fascista et al.: Unified Bayesian Framework for Joint Estimation and Anomaly Detection

FIGURE 4. Performance of the algorithms for the additive error model, in case of 0 faulty sensors in the
network.

FIGURE 5. Performance of the algorithms for the additive error model, in case of 4 faulty sensors in the
network.
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with the SEC algorithm and the two Bayesian approaches
exhibiting an accuracy close to 100%. The impact of the
pd parameter in the Bayesian approaches is similar to that
observed in Fig. 2, with the overall performance that tends to
improve as its setting gets close to the actual value of p = 0.
Compared to the multiplicative error case, somemoremarked
differences can be appreciated between the two-step and the
joint ML-MAP algorithms, with the latter exhibiting better
performance, especially for lower values of the ARR. The
same relative trend is confirmed when the hyperparameter p
is inferred from the data.
Additive Model - Analysis in Presence of Anomalies: In

Fig. 5, we report the results for the case of 4 faulty nodes
in the network. It can be seen that the SEC algorithm, which
was effective in absence of faulty sensors, has a MSE that
dramatically increases as the ARR increases. On the other
hand, the DBSCAN-based approach has a higher value of
MSE in the lowARR range, and tends to reduce its estimation
error only for ARR greater than 5 dB. The two Bayesian
algorithms instead tend to behave essentially the same and,
remarkably, achieve superior estimation and sensors classifi-
cation performance (compared to the other algorithms) either
when the value of pd approaches the actual one or when p is
inferred from the data (though at an increased computational
cost), with MSEs as low as 0.045 and accuracy close to 100%
already for ARR > 3 dB.
Sensitivity Analysis: The novel estimation and anomaly

detection approaches we propose rely on two different error
models based on Gaussian mixtures, summarized as follows:
i) themultiplicativemodel accounting for anomalies affecting
the variance of the measurement error; ii) the additive model
taking into account anomalies that introduce deterministic
biases in the mean of the measurement error. To inspect the
performance when the errors do not follow the exact distribu-
tion (with its related parameters) assumed at the design stage,
we perform a sensitivity analysis aimed at investigating the
algorithms robustness when they are fed with a value of the
distribution parameters encoding the entity of the anomaly
(namely β for the multiplicative model and ν for the additive
model) that differs from the actual one used to generate the
data. This is tantamount to assuming a misknowledge of the
actual entity of the anomaly affecting the sensors. In Fig. 6 we
report the results obtained for the multiplicative error model,
considering the more challenging case of 4 faulty sensors in
the network, for ARR = 5 dB. Remarkably, the two Bayesian
algorithms are very robust to mismatches, as revealed by
the corresponding curves exhibiting a rather constant trend
despite the increased mismatch between assumed and actual
value of β. Furthermore, they generally exhibit the best per-
formance both in terms of estimation and sensors classi-
fication. On the other hand, the DBSCAN-based approach
significantly suffers for the presence of a misknowledge on
β, with its MSE that significantly increases and the accuracy
that progressively decreases as the mismatch degree (encoded
through 1β) increases. As to the DBSCAN-based approach,
only the first MSE value corresponding to the lowest value on

the x-axis is actually visible in Fig. 6 for the chosen limits of
the y-axis, being all the remaining MSE values much larger
and therefore falling outside the considered range. This is due
to the fact that the DBSCAN-based approach significantly
suffers from mismatches on the assumed parameter encoding
the entity of the anomaly.

Fig. 7 reports the results for the additive error model,
assuming the same scenario with 4 faulty sensors and an
ARR = 2 dB. It is evident that the two Bayesian algorithms
and the DBSCAN-based approach are more sensitive to mis-
matches on the assumed ν, with MSEs and accuracy that get
worse as the mismatch degree 1ν increases. Nevertheless,
the Bayesian algorithms still outperform all the competitors,
with evident gaps especially when pd is chosen sufficiently
close to the actual p or when it is inferred from the data, and
the mismatch level is not too severe. Overall, these analyses
demonstrate the effectiveness of the unified Bayesian estima-
tion and classification framework, which correctly deals with
the different operating conditions experienced by the sensor
network and with partial or inaccurate a priori knowledge of
the parameters related to the anomaly.
Scalability Analysis: to further corroborate the above

results, we now investigate the scalability of the considered
approaches with respect to the size of the sensor network
N . The analysis is performed by varying N between 10 and
1000 and by keeping the percentage of anomalous sensors
fixed to 20% of the network size. In doing so, the number
of anomalous nodes increases proportionally to the network
size. The obtained results are reported in Fig. 8 and Fig. 9 for
the multiplicative and additive error model, respectively. It is
evident that the two-step EC and joint ML-MAP algorithms
keep superior performance in terms of both estimation and
anomaly detection compared to theDBSCAN-based and SEC
algorithms. In particular, their MSEs tend to decrease as the
network size increases, achieving values below 10−2 already
for N ≥ 120. Moreover, they guarantee very high levels of
accuracy over almost all the span of considered N , especially
when pd is not too far from the actual one or when p is inferred
from data, achieving in those cases around 100% accuracy.
These results are quite interesting since they demonstrate that
having an increased number of sensors is anyway beneficial
for the two Bayesian algorithms, despite for N = 1000 the
network accounts for the presence of 200 anomalous sensors.
Analysis for VaryingNumber of Anomalous Nodes:we now

conduct an additional analysis aimed at studying how the
number of faulty nodes impacts on the algorithms estima-
tion and detection performance. Considering the results for
different network sizes discussed above, for this analysis we
opted to keep N = 20 and varied the number of faulty nodes
from a lower percentage of 5% (compared to the 20% already
considered in the previous figures) up to a more challenging
percentage of 50%, i.e., when half of the sensor nodes in the
network is corrupted. In this case, thus, the true value of p
will change as the percentage of anomalous nodes increases.
We depict the obtained performance in Fig. 10 and Fig. 11
for the multiplicative and additive error model, respectively.
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FIGURE 6. Sensitivity analysis of the algorithms for the multiplicative error model, in case of 4 faulty sensors
in the network and for ARR = 5 dB.

FIGURE 7. Sensitivity analysis of the algorithms for the additive error model, in case of 4 faulty sensors in the
network and for ARR = 2 dB.

VOLUME 11, 2023 241



A. Fascista et al.: Unified Bayesian Framework for Joint Estimation and Anomaly Detection

FIGURE 8. Performance of the algorithms for the multiplicative error model as a function of the network
size N .

FIGURE 9. Performance of the algorithms for the additive error model as a function of the network size N .

242 VOLUME 11, 2023



A. Fascista et al.: Unified Bayesian Framework for Joint Estimation and Anomaly Detection

FIGURE 10. Performance of the algorithms for the multiplicative error model as a function of the percentage
of anomalous sensors in the network.

FIGURE 11. Performance of the algorithms for the additive error model as a function of the percentage of
anomalous sensors in the network.

VOLUME 11, 2023 243



A. Fascista et al.: Unified Bayesian Framework for Joint Estimation and Anomaly Detection

Remarkably, the two-step EC and joint ML-MAP outper-
form the SEC and DBSCAN-based approaches for all the
considered percentages of faulty nodes, with MSEs that
remain contained in the order of about 0.25 even in the worst
case of 50% of corrupted nodes in the network. The two-step
EC and joint ML-MAP algorithms also admit a quite intuitive
interpretation of their behavior with respect to the design
parameter pd : indeed, for small values of pd both the MSEs
and accuracy tend to be better in the lower region of the
x-axis, that is, when the pd is close to the actual p found in
the data. The opposite behavior can be observed instead for
higher values of pd , with better performance obtained in the
higher region of the x-axis. Interestingly, when p is estimated
via empirical Bayes from data, the two-step EC and joint
ML-MAP keep providing excellent performance. From this
analysis we can conclude that the two Bayesian algorithms
can correctly cope also with the presence of an increased
number of faulty nodes in the network.
Complexity Analysis: to conclude the numerical assess-

ment, we perform a complexity analysis to quantify the
required computational cost of each considered algorithm.
Specifically, we record the runtime of the algorithms when
executed on a standard laptop for 200 different trials and
compare the corresponding average runtimes, normalized by
the average runtime of the most costly algorithm, namely
the joint ML-MAP approach that also estimates p from data.
The obtained results are reported in Fig. 12. As it would be
expected, the SEC approach is the least complex, followed
by the DBSCAN-based approach that involves some addi-
tional processing in the first classification step. Remarkably,
the Bayesian two-step EC algorithm using pd as a design
tunable parameter has a complexity comparable to that of
the DBSCAN-based approach (with a normalized average
runtime below 5 · 10−4), while the joint ML-MAP approach
(with tunable pd ) has a complexity about an order of mag-
nitude greater. This outcome demonstrates the goodness of
the Bayesian two-step EC approach, which is able to attain
almost the same performance of the joint ML-MAP approach
in almost all operating conditions, but at a fraction of its
complexity. The advantages in terms of cost saving become
even more evident when the Bayesian algorithms infer the
value of p from data (which as shown generally leads to
performance as good as in case of perfect knowledge of p): in
this case, the two-step EC approach provides a complexity
reduction of about 80% compared to the joint ML-MAP
approach. From this analysis, it also emerges that having an
accurate prior knowledge of the hyperparameter p (which
avoids the need to estimate it from data) brings a significant
complexity reduction.

C. EVALUATION ON TEMPERATURE DATA FROM A REAL
SENSOR NETWORK
In this section, we test the algorithms effectiveness when
they are applied on timeseries of real data acquired by a
sensor network. As a practical case study, we consider a
network of environmental monitoring stations deployed in the

FIGURE 12. Normalized average runtimes of the considered algorithms
under both multiplicative and additive error models.

FIGURE 13. Anomalous temperature monitoring station near Torre
dell’Orso, south of Italy, in the month of May 2022 (source:
www.meteonetwork.eu).

province of Lecce, Apulia region, in the south of Italy. The
stations provide a real-time monitoring of several parameters
including temperature, humidity, pressure, and PMx concen-
trations, on a daily basis. In the month of May 2022, the
temperature sensor installed on a station near Torre dell’Orso
experienced an unexpected fault, resulting in a stream of
inaccurate measurements, as shown in the snapshot reported
in Fig. 13a.

For the sake of the analysis, we selected a subset of N =
20 monitoring stations (including the faulty one reported
in Fig. 13b, whose public identifier is IPUGLIAT20) and
retrieved the associated temperature measurements from the
WeatherUnderground database, which is publicly available
at https://www.wunderground.com. The monitoring stations
provide streams of data starting from the midnight every-
day, at regular intervals of 5 minutes. We processed all the
measurements collected on May 23, consisting in a time
series of 288 average temperatures from each station. The
algorithms are applied to the whole time series and return an
estimate of the average temperature over time, with associ-
ated classification of each monitoring station as either regular
or anomalous. Unless otherwise specified, the setting of the
algorithms parameters are the same as those in Sec. VI-B.
It is worth remarking that the processed data are thus real
measurements carried by the temperature sensors installed
on the fixed monitoring stations, hence they do not follow
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FIGURE 14. Average estimated temperature as a function of the daytime
using the algorithms designed for the multiplicative error model, for
(a) β = 2 and (b) β = 4.

any stochastic generative model (i.e., they do not match the
Gaussian mixture models assumed ad the design stage).

1) RESULTS WITH ALGORITHMS FOR MULTIPLICATIVE
ERROR MODEL
a: TEMPERATURE ESTIMATION PERFORMANCE
We start the analysis by testing the algorithms designed for
the multiplicative error model. In Fig. 14 we report the aver-
age estimated temperature at different daytime for two values
of the standard deviation parameter β encoding the entity
of the anomaly in the multiplicative model. More specifi-
cally, Fig. 14a shows the resulting estimates when a value
of β = 2 is used. As it can be noticed, all the algorithms
generally experience a similar trend, except for the window
between 10:00 and 17:00, which coincides with the hottest
hours of the day. In that time window, measurements coming
from the stations can be rather different among each other
owing to fluctuations caused by different local environmen-
tal conditions (e.g., mitigation effects due to the vicinity of
the sea). Since the anomalous station returned temperatures
even 10/15 degrees lower than those measured by the other
stations, a value of β = 2 may be not sufficient to cor-
rectly capture the actual entity of the fault. The consequent
effects are visible on the resulting curves: the DBSCAN-
based approach, for instance, tends to underestimate the aver-
age temperature, with a curve falling below that of the SEC
algorithm. The two Bayesian algorithms are instead able to
capture variations in the temperature in a more accurate man-
ner when pd is chosen close to the actual value of p = 1/20
(or when p is estimated from data), though their curves are
only slightly better than that provided by the SEC algorithm.

In Fig. 14b, we report the average estimated temperatures
when a value of β = 4 is used. Since this choice can more
accurately capture the deviations present in the anomalous

TABLE 1. Accuracy of temperature sensors classification for the
algorithms based on the multiplicative error model.

measurements, the two Bayesian algorithms begin to unveil
their potentials: as it can be seen, their curves become visibly
better than those of the SEC andDBSCAN-based approaches,
especially for pd close to the actual p or when p is inferred
from data. The DBSCAN-based approach tends to overesti-
mate the actual values of the temperature, providing in turn a
non-smooth curve with notable spiky fluctuations.

b: MONITORING STATIONS CLASSIFICATION ACCURACY
In Table 1 we report the accuracy (expressed in percentage)
achieved by each algorithm in terms of correct classification
of temperature sensors. The SEC algorithm provides an
accuracy of 92.15%, while the DBSCAN-based approach
achieves at most 92.3% when a value of β = 4 is used.
Interestingly, the joint ML-MAP algorithms provides the
best accuracy for all the possible cases, with values varying
between 93.2% in the less convenient setting of β = 2 and
pd = 10−4, up to about 99.6% when pd = 1/20 and β = 4.
As for the two-step EC algorithm, it also outperforms both
DBSCAN-based and SEC algorithms, with an accuracy that
is about 95.5% when a pd = 1/20 and a β = 2 are assumed,
and increases up to 99.3% when a value of β = 4 that better
capture the entity of the anomaly is considered. Remarkably,
when p is inferred from data, its accuracy ranges from 94.3%
(for β = 2) up to 98.6% (for β = 4). This analysis
confirms the same findings of Sec. VI-B, with the two step
EC algorithm offering overall performance very close to that
of the optimal joint ML-MAP approach.

2) RESULTS WITH ALGORITHMS FOR ADDITIVE
ERROR MODEL
a: TEMPERATURE ESTIMATION PERFORMANCE
Fig. 15 shows the average estimated temperature as a function
of the daytime when the algorithms designed for the additive
error model are applied to the real measurements dataset,
for two different values of the mean parameter ν (which
encodes the entity of the anomaly in the additive model).
In Fig. 15a, we report the average estimated temperature for
a value of ν = −5. It should be noticed that, differently
from themultiplicativemodel, the algorithms designed for the
additive model are also affected by the sign of the anomaly,
being the latter encoded through the mean of the additive
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FIGURE 15. Average estimated temperature as a function of the daytime
using the algorithms designed for the additive error model, for
(a) ν = −5 and (b) ν = 2.

TABLE 2. Accuracy of temperature sensors classification for the
algorithms based on the additive error model.

error term in (2). For this choice, the Bayesian algorithms are
‘‘informed’’ with a correct sign for the anomaly (being the
measurements from the faulty station underestimates of the
actual temperature), but with a magnitude that does not com-
pletely capture the whole errors (deviations can even achieve
10/15 degrees, as previously shown in Fig. 13). Remarkably,
the two Bayesian algorithms are able to provide very good
performance for values of pd close to the actual p = 1/20 or
when p is estimated from data, with curves that correctly
estimate the average temperatures even in the hottest and
most dynamic hours of the day. On the other hand, the SEC
algorithm performs a too severe smoothing, resulting in a
curve that does not follows all the temperature variations over
time. As to the DBSCAN-based approach, it again tends to
overestimate the average temperature and exhibits a curve
with evident abrupt fluctuations.

Fig. 15b shows the average estimated temperature when a
rather wrong value of ν = 2 is fed to the algorithms. It can
be seen that the DBSCAN-based approach has performance
similar to the case of Fig. 14a, being the value of |ν|/2
(analogously to β/2) used to set its search radius insensitive

to the sign of the anomaly. On the other hand, the two
Bayesian algorithms suffer from a more severe mismatch on
the assumed parameter and tend to have better performance
for a value of pd = 10−4. This behavior can be explained by
observing that by setting ν = 2, the Bayesian algorithms fol-
low a model whose corresponding parameters do not match
the actual situation found in the data; therefore, they tend
to be blind with respect to an anomaly characterized by a
mean value significantly different (taking into account also
the sign) from ν = 2, even if the probability of having a faulty
sensor pd is set close to the actual one.

b: MONITORING STATIONS CLASSIFICATION ACCURACY
To conclude the analysis, in Table 2 we report the sen-
sors classification accuracy of the considered algorithms,
under the different parameters settings. In this case, the
DBSCAN-based approach provides accuracy levels that do
not exceed 87%, whereas the SEC algorithm guarantees
95% accuracy. It should be however remarked that the latter
approach always decides for the normal operational behavior
of all sensors, which for the specific case at hand holds true
95% of the time (there is only a single faulty sensor in the
networkwith dimensionN = 20). Clearly, its accuracywould
dramatically decrease when a more significant percentage of
anomalous sensors appear in the network. Remarkably, the
two Bayesian algorithms outperform the competitors for all
the considered configurations.More specifically, the two-step
EC approach has an accuracy ranging from a minimum value
of 95.2%, obtained despite the rather erroneous value for the
anomaly parameter ν = 2 (and pd = 1/20), up to about
98% for ν = −5 and pd = 10−4. Also in this case, the
joint ML-MAP approach provides the best performance, with
accuracy greater than 96% in most of the cases. Notably,
when p is inferred from data, the two Bayesian algorithms
guarantee an accuracy of 97.1% (two-step EC) and 98.1%
(joint ML-MAP), respectively.

VII. CONCLUSION
This paper addressed the problem of joint estimation and
anomaly detection in environmental sensor networks, start-
ing from possibly unreliable measurements of a common
physical quantity of interest. The problem has been formu-
lated within a novel unified Bayesian framework, accounting
for two general error models that capture different types of
anomalies in the measurement process. The optimal joint
ML-MAP estimators have been illustrated for both models,
and novel reduced-complexity two-step EC algorithms have
been presented. The novel approaches employ a MAP clas-
sifier to make decisions about the sensor states and identify
the presence of anomalies, while the estimation task is based
on the ML criterion and may vary in complexity depending
on the availability of some prior information about the proba-
bility of fault occurrence. Remarkably, the novel two-step EC
approaches attain almost the same performance of the optimal
joint ML-MAP estimator (which represents the benchmark
for the problem at hand), but at a fraction of its computational
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complexity, as demonstrated by the theoretical cost analysis.
The obtained results revealed that the proposed algorithms
provide very low estimation errors, high accuracy, excellent
scalability, and satisfactory robustness to potential model
mismatches and to increasing percentages of faulty nodes in
the network, on both synthetic and real-world data.
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