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A B S T R A C T   

Background: In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel 
biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and 
Explainable Artificial Intelligence (XAI) to stratify prognosis and derive a gene-based signature. 
Methods: AE was exploited to learn an unsupervised representation of the gene expression (GE) from three 
publicly available datasets, each with its own technology. Multi-layer perceptron (MLP) was used to classify 
prognosis from latent representation. GE data were preprocessed as normalized, scaled, and standardized. Four 
different AE architectures (Large, Medium, Small and Extra Small) were compared to find the most suitable for 
GE data. The joint AE-MLP classified patients on six different outcomes: overall survival at 12, 36, 60 months and 
progression-free survival (PFS) at 12, 36, 60 months. XAI techniques were used to derive a gene-based signature 
aimed at refining the Revised International Prognostic Index (R-IPI) risk, which was validated in a fourth in-
dependent publicly available dataset. We named our tool SurvIAE: Survival prediction with Interpretable AE. 
Results: From the latent space of AEs, we observed that scaled and standardized data reduced the batch effect. 
SurvIAE models outperformed R-IPI with Matthews Correlation Coefficient up to 0.42 vs. 0.18 for the validation- 
set (PFS36) and to 0.30 vs. 0.19 for the test-set (PFS60). We selected the SurvIAE-Small-PFS36 as the best model 
and, from its gene signature, we stratified patients in three risk groups: R-IPI Poor patients with High levels of 
GAB1, R-IPI Poor patients with Low levels of GAB1 or R-IPI Good/Very Good patients with Low levels of GPR132, 
and R-IPI Good/Very Good patients with High levels of GPR132. 
Conclusions: SurvIAE showed the potential to derive a gene signature with translational purpose in DLBCL. The 
pipeline was made publicly available and can be reused for other pathologies.   

1. Introduction 

Diffuse Large B-Cell Lymphoma (DLBCL) is a heterogeneous disease 
because of genetic alterations, morphology, and clinical context. Some 
subtypes are aggressive and chemo-refractory; however, other subtypes 
have shown prolonged survival after tailored treatment [1,2]. The most 
used clinical prognostic tool is the International Prognostic Index (IPI) 
which has been refined and adapted over time as in the Revised IPI 
(R-IPI) [3,4]. Gene Expression Profiling (GEP) studies unveiled prog-
nostic Cell-Of-Origin (COO) subtypes of DLBCL, named Germinal Center 

B-Cell like (GCB) and Activated B-Cell like (ABC), driven by peculiar 
oncogenic pathways [5–7]. To better characterize DLBCL at diagnosis, 
among emerging prognosticators, transcriptome determinants were 
shown to predict patients’ risk, also related to the cellular/extracellular 
microenvironment [8–11]. 

The application of Artificial Intelligence (AI) and Machine Learning 
(ML) tools in biology and medicine is currently on the rise [12–15]. AI 
and ML have been applied to drug discovery and GEP as well as to the 
development of novel clinical prognosticators [16–18]. Among these 
tools, models based on autoencoders (AE) are still emerging. The first 
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examples in oncology are focused on multi-omics integration for Colo-
rectal (CRC) and breast cancers [19,20] and on spatial transcriptomics 
[21,22]. Indeed, multi-omics data are high-dimensional, posing prob-
lems for the generalization capabilities of downstream classifiers. AE 
architectures offer a powerful methodology to learn unsupervised rep-
resentations from the data itself, reducing the dimensionality and 
unveiling underlying feature patterns. Furthermore, combined models, 
composed of AEs and classifiers, can be exploited to perform end-to-end 
feature extraction and classification. Such models can be investigated 
with eXplainable AI (XAI), a term that refers to those methods used to 
provide an understandable explanation of ML models’ predictions and 
decisions [23–26]. 

In this paper, we propose an explainable pipeline to reduce dimen-
sionality and subsequently stratify the prognosis of DLBCL patients 
starting from transcriptomic data. Even though AEs have been used with 
success for diverse applications, there are no general guidelines for 
model architecture design and data preprocessing in the context of 
lymphoma GE data. In the first part of our work, we systematically 
compared four AE architectures and three preprocessing for six different 
prognostic outcomes. We performed our analysis on three different 
datasets, each with its own technology for GE data acquisition. Later, we 
focused on the explainable module of our pipeline. By exploiting the 
SHapley Additive exPlanation (SHAP) algorithm [27] on the joint model 
composed by AE and the neural network for classifying the severity of 
the prognosis, we were able to unveil the most important genes for 
prognosis. Since the joint model exploits both AEs and neural networks 
to stratify the prognosis, i.e., survival prediction, we named it SurvIAE 
(Survival prediction with Interpretable AE). It is worth noting that the 
interpretability part of our pipeline had an important role, since it posed 
the basis for performing the validation on a fourth independent dataset 
by exploiting a new signature with the extracted genes and clinical 
features which are traditionally considered for DLBCL patients. 

In summary, we can affirm that our work brings the following four 
contributions:  

1. A systematic comparison of AE architectures and data preprocessing 
strategies. The analysis involved three free-publicly available data-
sets of both microarrays from different platforms and RNA-seq, so 
that we also estimated the batch effect and devised which method-
ologies can be adopted to reduce it. 

2. A thorough investigation of the most relevant genes for each archi-
tecture, preprocessing, and outcome. Even though several works 
used XAI methodologies before, this is an in-depth investigation 
available in the context of DLBCL.  

3. The development of the SurvIAE tool, whose code was made publicly 
available to ensure reproducibility and allow other researchers to 
reuse it on other pathologies. SurvIAE effectively combines AE, 
neural networks, and interpretability to unveil prognostic 
biomarkers.  

4. An examination of the clinical translation of SurvIAE. First, we 
considered the risk scores of SurvIAE to construct a prognostic model 
and compared it with the recognized clinical scores for DLBCL, 
including R-IPI and COO. Then, we plugged the most relevant genes 
found by the XAI module to create an enhanced R-IPI prognostic 
score. 

2. Related works 

Studies involving AE models in oncology are generally aimed at 
reducing the dimensionality of omics data to predict cancer subtyping 
and discover molecular patterns associated with new potential bio-
markers. In Lupat et al., the authors used a semi-supervised AE to 
generalize the combination of GE, copy number, and somatic mutation 
data from a dataset of breast cancer. Model performances were inde-
pendently validated on a cohort of The Cancer Genome Atlas (TCGA) 
samples achieving more than 85 % of accuracy in subtype identification 

[20]. Way and Greene trained variational AEs on TCGA pan-cancer 
RNA-seq data, unveiling specific patterns in the encoded features. 
Interestingly, they identified both primary and metastatic tumors of skin 
cutaneous melanoma as well as a lower dimensional manifold of 
high-grade serous ovarian cancer subtypes [28]. Dwivedi et al. reduced 
the GE dimensionality of a TCGA dataset of Non-Small Cell Lung Cancer 
(NSCLC) with AE involvement. Authors trained different classifiers such 
as Multi-Layer Perceptron (MLP), Logistic Regression (LR), eXtreme 
Gradient Boosting (XGB), and Support Vector Machine (SVM) for 
biomarker discovery purposes. They compared an XAI-based feature 
selection with classical ML algorithms such as Random Forest (RF), 
SVM-RF, Least Absolute Shrinkage and Selection Operator (LASSO), 
Mutual Information (MI), and ReliefF. Applying the 
Leave-One-Out-Validation-set, the MLP classifier achieved Area Under 
the Receiver Operating Characteristic curve (AUROC) of 98.89 % 
whereas the XAI-based feature selection outperformed other methods in 
terms of accuracy (95.74 % vs. 93.62 %, 93.80 %, 93.89 %, 91.76 %, 
92.47 %, and 92.20 % of SVM-RFE, MI, ReliefF, LASSO, XGB, and RF, 
respectively) [29]. This research group used a similar pipeline to predict 
breast cancer subtypes either from Copy Number Variation (CNV) or 
DNA methylation data [30,31]. In the first work, the XAI-CNVMarker 
classifier, on the same TCGA breast cancer dataset, outperformed pre-
vious tools with an accuracy of 0.712 vs. 0.705 and 0.706 allowing to 
discover a signature of 44 genes, more clinically applicable than others 
with more than 200 genes. In the second work, the XAI-MethylMarker 
classifier comprises an AE for dimensionality reduction, a 
feed-forward neural network to classify breast cancer subtypes, and a 
biomarker discovery algorithm employing XAI. The classifier achieved 
an accuracy of 0.815 and led to the discovery of a predictive signature of 
52 genes via XAI. 

Focusing on prognosis stratification, Wang and Lee identified two 
prognostic subgroups of luminal-A breast cancer. Authors trained an AE 
using GEP of luminal-A breast cancer to predict subgroups through the 
latent features and unsupervised learning. Afterward, they validated 
latent features independently proving that only these features allowed to 
identify distinct statistically significant prognostic groups (p-value: 
5.82E-05) with respect to all GEP (p-value: 0.566), the most variable 
5000 genes (p-value = 0.426) and 64 or 2-dimensional feature sets 
generated by traditional Principal Component Analysis (PCA) from 
whole GEP or top 5000 genes (p-values: 0.608, 0.183, 0.136, and 0.385, 
respectively) [32]. This point was also demonstrated by Song et al. in a 
multi-omics integration project from publicly available CRC datasets. 
Their AE-based prognostic model outperformed other strategies of 
dimensionality reduction with a concordance (C)-index of 0.781 vs. 
0.665, 0.766, 0.632, and 0.755 for PCA, t-distributed Stochastic 
Neighbor Embedding (t-SNE), Non-Negative Matrix Factorization 
(NMF), and Cox Proportional Hazard (Cox-PH) model, respectively [19]. 

AE involvement in onco-hematology is still rare. However, re-
searchers understood the high potentiality of using XAI tools to optimize 
the findability of robust and validated prognostic determinants [33–36]. 
In Maiseles et al., the authors used XAI for chronic lymphocytic leuke-
mia treatment prediction. Starting from a limited cohort of real-life 
patients, they used several ML models (GB Machine [GBM], General-
ized Linear Model, RF, Adaboost, SVM, and Catboost) to find the most 
accurate for predicting the clinical outcome after 2 years of treatment. 
For the best model (GBM model with 0.880 of AUROC and 0.78 of Area 
Under the Precision-Recall Curve [AUPRC]), the SHAP algorithm helped 
in identifying Red Blood Cells, Beta2-microglobulins, lymphocytes, and 
platelets levels as most important clinical determinants. On the other 
hand, SHAP selected 11q deletion as the most important mutational 
feature [37]. 

Due to epidemiologic reasons and the aggressiveness of the disease, 
DLBCL is one of the most studied hematological cancers and several 
works proposed innovative pipelines to find novel prognostic markers. 
For instance, LASSO logistic analysis has been used to identify novel 
prognostic signatures from GE data. In Wang et al., the authors 
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discovered a metabolic signature showing an AUROC of 0.725, 0.716, 
and 0.752 at 3 years, for the training-set, first and second validation-sets, 
respectively [38]. Again, Xiong et al. designed a risk score based on 19 
survival-related genes associated with ferroptosis. This tool achieved an 
AUROC of 0.801 for the training-set and 0.708 for the validation-set at 3 
years of FU [39]. Jiang et al. developed a prognostic tool based on 
Differentially Expressed Genes (DEG) from mRNA according to high and 
low immune infiltration groups obtained via unsupervised hierarchical 
clustering. Although this contribution lacked an independent 
validation-set, authors proposed a 16-genes signature showing an 
AUROC of 0.775 at 3 years of FU for the training-set, outperforming IPI 
(0.714), and comparably with other relevant works [40–44]. 

3. Materials and methods 

3.1. Pipeline 

According to the Fig. 1, the pipeline includes four blocks: Data 
Preparation, Model Design, Models Evaluation, and Prognostic Trans-
lation. The pseudocode which describes the pipeline is reported in 
Supplementary Algorithm 1. 

3.2. Datasets 

We considered four publicly available datasets with expression 
matrices:  

• The GSE117556 which comprises GEP data from formalin-fixed 
paraffin-embedded (FFPE) samples from n. 928 DLBCL patients 

Fig. 1. Schematic description of the pipeline used for data processing. The Data Preparation block (light green) depicts the datasets’ selection, the gene expression 
preprocessing strategy, and the clinical outcome definition. The Model Design block (light blue) describes the general AE architecture and the classifier modeling. The 
Models Evaluation block (light yellow) describes the strategy for selecting the best AE architecture according to clinical outcomes and the XAI involvement in 
selecting the most important biological features. The Prognostic Translation block (light red) shows how clinical and biological validation was performed. Abbre-
viations. DEG, Differential Expression Genes; PFS, Progression Free Survival; OS, Overall Survival; MSE, Mean Squared Error; CLF, classifier; AUC, Area Under Curve; 
L, Large; M, Medium; S, Small; X, extra-small; MCC, Matthews Correlation Coefficient; Train, Training; Val, Validation-set; SHAP, SHapley Additive exPlanation; 
UMAP, Uniform Manifold Approximation and Projection; Feat, feature; OR, Odds-Ratio. 

G.M. Zaccaria et al.                                                                                                                                                                                                                            



Computer Methods and Programs in Biomedicine 244 (2024) 107966

4

(Microarray technology by Illumina® HumanHT-12 WG-DASL V4.0 
R2 expression beadchip [11]).  

• The GSE98588, including GEP data from frozen samples from n. 137 
DLBCL patients (Microarray technology by Affymetrix® Human 
Genome U133 Plus 2.0 [9]).  

• The Schmitz et al. dataset, which includes RNA-seq data from frozen 
samples from n. 240 DLBCL patients by Illumina® HiSeq 2500 Sys-
tem [7]. 

• The GSE181063 dataset, which includes GEP data from FFPE sam-
ples from n. 1,311 DLBCL patients (Microarray technology by Illu-
mina® HumanHT-12 WG-DASL V4.0 R2 expression beadchip [45]). 

We assumed the GSE117556 as the training-set, the GSE98588 as the 
validation-set, and the dataset from Schmitz et al. as the test-set. Those 
datasets were exploited for model training, evaluation, and extraction of 
the prognostic signature. Finally, the GSE181063 was considered as the 
application-set to check the significance of the devised prognostic 
signature. Patients with missing clinical data were excluded for further 
analysis. All patients were diagnosed with nodal, de novo DLBCL, not 
otherwise specified (NOS) and homogeneously treated with front-line 
“R-CHOP/R-CHOP-like” immunochemotherapy. 

3.3. Preprocessing 

After selecting common genes between datasets, three preprocessing 
procedures were compared:  

1. Normalized Data. Expression data from the GSE117556 dataset 
(Illumina platform) was analyzed using the authors’ normalization 
settings [11]. GSE98588 raw data (Affymetrix® technology) were 
summarized and normalized using the Robust Multi-array Averaging 
(RMA) method by means of affy (v. 1.70.0) package in R software (v. 
4.2.1) [9]. RNA-seq data from Schmitz et al. were analyzed using the 
authors’ normalization settings including counts per million, tran-
scripts per million, and fragments per kilobase of transcript per 
million space, respectively [7]. Consistently, data from GSE181063 
was analyzed using the authors’ normalization settings.  

2. Scaled Data. For each dataset, normalized expression data from 
point n. 1 underwent min-max scaling.  

3. Standardized Data. For each dataset, normalized expression data 
from point n. 1 underwent a Z-score transformation. 

Points 2 and 3 were carried on by using sklearn.preprocessing 
package (scikit-learn v. 1.2.2, Python v. 3.8.16). 

Subsequently, the DEG analysis was conducted on the training-set, 
considering Progression Free Survival (PFS) and Overall Survival (OS) 
clinical outcomes at different times of FUs as 12 months (PFS12, OS12), 
36 months (PFS36, OS36), and 60 months (PFS60, OS60). We selected 
DEGs based on adjusted p-value < 0.05 and log fold change > 0.2. DEG 
analysis was performed by limma R package (v. 3.48.0). 

3.4. SurvIAE model 

The autoencoder architecture exploited by SurvIAE consists of con-
tracting and expanding blocks, in a symmetrical fashion, to create an 
intermediate latent representation of the data which may be useful for 
data compression or to perform other downstream tasks. The input to 
the autoencoder consisted of DEGs extracted for the various possible 
outcomes. 

To design the architecture, we considered a symmetrical structure 
with two layers of encoding and two layers of decoding. Particularly, we 
defined four sizes starting from this base AE structure, resulting in the 
following topologies:  

- AE-L (Large). First layer of encoding and last layer of decoding with 
512 neurons. Second layer of encoding and first layer of decoding 
with 256 neurons. Latent representation extracted from 128 neurons.  

- AE-M (Medium). First layer of encoding and last layer of decoding 
with 256 neurons. Second layer of encoding and first layer of 
decoding with 128 neurons. Latent representation extracted from 64 
neurons.  

- AE-S (Small). First layer of encoding and last layer of decoding with 
128 neurons. Second layer of encoding and first layer of decoding 
with 64 neurons. Latent representation extracted from 32 neurons.  

- AE-X (eXtra small). First layer of encoding and last layer of decoding 
with 64 neurons. Second layer of encoding and first layer of decoding 
with 32 neurons. Latent representation extracted from 16 neurons. 

AEs were trained on the training-set defined in Section 3.2. For the 
training process, the ADAM [46] optimizer with a Mean Squared Error 
(MSE) loss was adopted. MSE and Mean Absolute Error (MAE) were 
monitored during the training process, which lasted 2,000 epochs, and 
used as evaluation metrics for the AE. 

Latent representations extracted from the intermediate layer of the 
AE were qualitatively investigated, through the adoption of Uniform 
Manifold Approximation and Projection (UMAP) [47], between the 
different datasets, to check the occurrence of batch effects or other 
anomalies related to the adoption of different technologies of data 
acquisition. 

Particularly, to quantify the batch effect among the different 
normalization techniques, the Silhouette score (Sil) was calculated as 
the average of the Silhouette Coefficient of all samples, using the 
implementation from sklearn.metrics (scikit-learn v. 1.2.2, Python v. 
3.8.16), and portrayed on the embedding plots. As data points, the 
UMAP representations obtained on top of the latent representation of 
the AE were employed. As labels, the dataset from which the data point 
originates (training-set, validation-set, test-set). In this way, a higher 
value of Sil (close to 1) means that there is a strong batch effect, whereas 
a lower value of Sil (negative or close to 0) means that the batch effect is 
negligible. 

Then, a classifier, consisting of an MLP with one hidden layer, with 
the size defined according to AE size, and one output layer, was trained 
for 200 epochs with the ADAM optimizer with the binary cross-entropy 
loss function. To mitigate the risk of overfitting, an early stopping cri-
terion was implemented. In fact, after that the patience reached 100 
times on the validation-set defined in Section 3.2, the training process 
was halted, and the best weights were restored. During the training of 
the classifier, the weights of the layers belonging to the AE were not 
updated. 

We refer to the joint model of autoencoder and MLP as SurvIAE, and 
to its variants as follows:  

- SurvIAE-L. Autoencoder architecture: AE-L; hidden layer of the MLP 
classifier with 64 neurons.  

- SurvIAE-M. Autoencoder architecture: AE-M; hidden layer of the 
MLP classifier with 32 neurons.  

- SurvIAE-S. Autoencoder architecture: AE-S; hidden layer of the MLP 
classifier with 16 neurons.  

- SurvIAE-X. Autoencoder architecture: AE-X; hidden layer of the MLP 
classifier with 8 neurons. 

The SurvIAE architecture was implemented with TensorFlow (ten-
sorflow v. 2.10.1, Python v. 3.8.16). 

Data representation obtained from the hidden layer of the MLP was 
investigated in conjunction with the latent representation of the AE. 
Again, the results of the classification stage were assessed in terms of 
AUROC and AUPRC. Also, for the hidden layer of the classification 
model, UMAP was used to qualitatively assess its internal 
representations. 
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3.5. Comparison with baseline models 

The classification performances of the different joint AE-MLP ar-
chitectures were compared with respect to reference ensemble methods 
that can be used for this task. Indeed, Gradient Boosting [48], AdaBoost 
[49], Random Forests [50], and Extra Trees [51] were borrowed from 
sklearn.ensemble (scikit-learn v. 1.2.2, Python v. 3.8.16), whereas XGB 
(eXtreme Gradient Boosting) from xgboost [52] (xgboost v. 1.7.5, Py-
thon v. 3.8.16). 

3.6. Model interpretability 

Interpreting a model can be thought as the task of finding an 
explanation model g which is an interpretable approximation (and hence 
a simpler model) of an original model f. 

The authors of SHAP [27] introduced the concept of additive feature 
attribution methods, in which the explanation model g can be expressed 
as a linear combination of binary terms: g(z′) = ϕ0 +

∑M
i=1ϕiz′

i, where 
z′ ∈ {0,1}M, M signifies the number of simplified input features, and 
ϕi ∈ R. Explainability methodologies which match this definition attri-
bute an effect ϕi to every feature, and the sum of the effects of all feature 
attributions approximates the output f(x) of the original model. 

DeepLIFT was first proposed as an approach for recursively 
providing explanations of deep learning models’ predictions [53]. It 
works by assigning a value CΔxiΔy to every input xi. The term CΔxiΔy 

signifies the impact of adjusting the input to a reference value instead of 
its initial value. In DeepLIFT, a "summation-to-delta" property is 
enforced with 

∑n
i=1CΔxiΔo = Δo, where o = f(x) represents the output of 

the model, Δo = f(x) − f(r), Δxi = xi − ri, and r signifies the reference 
output. Considering ϕi = CΔxiΔo and ϕo = f(r), we can see that DeepLIFT 
is an additive feature attribution method. Lundberg and Lee modified 
DeepLIFT by transforming it into a compositional approximation of 
SHAP values, resulting in the creation of Deep SHAP [27]. 

In SurvIAE, we exploited the Deep SHAP [27] algorithm to extract an 
interpretable approximation of the joint AE-MLP classification system. 
Starting from the obtained Shapley values, the most significant genes for 
prognosis were individuated and used for subsequent analysis to build a 
prognostic signature. This signature was then evaluated on the inde-
pendent application-set, to demonstrate the prognostic translation of 
our model, as detailed in next section. 

3.7. Clinical validation and prognostic translation 

Clinical validation was fulfilled for each data preprocessing setup 
evaluated according to each categorical clinical outcome from Section 
3.3 and exploiting each AE architecture from Section 3.4. Firstly, for the 
three datasets used for model training, evaluation, and extraction of the 
prognostic signature, i.e., training-set, validation-set, and test-set, we 
merged clinical and expression data excluding incomplete cases. Every 
SurvIAE-based prognostic model was then evaluated after the applica-
tion of univariate LR, in terms of odds-ratio and significance level be-
tween Cluster 1 vs. Cluster 2. The p-values were derived from pairwise 
comparisons using z-statistic. To measure its prognostic value, for both 
validation-set and test-set, each SurvIAE-based model was compared to 
R-IPI categorized merging patients classified as Very Good and Good vs. 
Poor class which was assumed as reference. Again, for both validation- 
set and test-set, each model was thus evaluated in terms of Matthews 
Correlation Coefficient (MCC). MCC was measured by ROCR R package 
(v. 1.0.11). We only selected the SurvIAE-based models outperforming 
R-IPI models with higher MCC for both datasets. From each selected 
model, we extracted the top ten genes ordered by the sum of SHAP 
values from validation-set and test-set. We refer to these top ten genes as 
SHAP-derived signature for a SurvIAE model. The expression values of 
these genes were dichotomized from the training-set, according to a 
cutoff identified by maximally selected rank statistics, in 2 groups 

(“high” or “low”) using the function surv_cutpoint as implemented in the 
survminer R package (v. 0.4.9). Hence, for all datasets, each gene was 
evaluated in terms of significance-level after the application of the 
univariate LR model. Indeed, only genes discriminating the clinical 
outcomes with a p-value < 0.1 were selected. Again, the p-values were 
derived from pairwise comparisons using z-statistic. 

Then, the best SurvIAE model was identified with the following two 
conditions: (i) it possessed the highest difference of MCC with respect to 
the R-IPI, on both validation-set and test-set; (ii) its SHAP-derived 
signature includes at least one gene with significant impact on the 
clinical outcome. Finally, on the signature associated with the best 
model, we applied a multivariate LR analysis including also COO and R- 
IPI. 

For prognostic translational purposes, the selected genes were 
included again with both COO and R-IPI features in a recursive decision- 
tree model using the partykit R package (v. 1.2.20) [54]. Decision-tree 
modeling was implemented on the training-set and the output groups 
of patients obtained were then identified in the application-set 
comprising newly diagnosed DLBCL patients treated with R-CHOP 
with complete data. PFS and OS analyses were performed on 
application-set according to novel classes obtained post decision-tree 
application, with Kaplan-Meier (K-M) method. The models were 
compared by assessing C-index and Brier score. The survival analysis 
was implemented with survival R package (v. 3.5.5). 

4. Results 

4.1. Autoencoder 

Originally, the training-set included n. 928 patients and n. 20,723 
transcripts, the validation-set n. 137 patients and n. 20,606 transcripts, 
and the test-set n. 240 patients and n. 12,430 transcripts. After merging 
the datasets, n. 9,737 common genes were retained. After filtering for 
patients with available outcomes, the training-set contained n. 928 cases 
for both OS and PFS, the validation-set n. 101 cases for OS and n. 98 
cases for PFS, and the test-set n. 234 cases for both OS and PFS. After 
retaining only the common genes, the training-set was used to perform 
the DEG analysis, which revealed n. 415 DEGs for OS12, n. 827 for 
OS36, n. 860 for OS60, n. 288 for PFS12, n. 391 for PFS36, and n. 394 for 
PFS60 (details portrayed in Fig. 2). 

The different AE models trained displayed the performance, in terms 
of MSE and MAE, reported in Tables 1 and 2, for the validation-set and 
test-set, respectively. Generally, it is possible to see that larger AEs tend 
to perform better on the reconstruction task, displaying lesser values of 
MSE and MAE. Also, because of the nature of the preprocessing, AEs 
trained on scaled data have very low values, since the scale is smaller. 

For normalized data, MSE ranged between 3.268–9.091 (5.475 ±
1.471) and 3.437–13.021 (7.268 ± 2.299) for the validation-set and 
test-set, respectively, whereas MAE ranged between 1.405–2.121 (1.650 
± 0.170) and 1.312–2.369 (1.772 ± 0.225) for the validation-set and 
test-set, respectively. For scaled data, MSE ranged between 
0.039–0.054 (0.047 ± 0.004) and 0.026-0.046 (0.035 ± 0.005) for the 
validation-set and test-set, respectively, whereas MAE ranged between 
0.155–0.182 (0.170 ± 0.007) and 0.127-0.166 (0.146 ± 0.010) for the 
validation-set and test-set, respectively. For standardized data, MSE 
ranged between 0.759–0.948 (0.866 ± 0.060) and 0.743-0.919 (0.834 
± 0.052) for the validation-set and test-set, respectively, whereas MAE 
ranged between 0.682–0.760 (0.726 ± 0.024) and 0.659–0.739 (0.701 
± 0.024) for the validation-set and test-set, respectively. 

The quality of the internal representation of the AE intermediate 
layer can be seen by embedding plots obtained with UMAP in Figs. 3 and 
4, for OS60 and PFS60, respectively. Interestingly, the batch effects 
among different datasets were considerably reduced by using stan-
dardized data, suggesting the possibility of multi-technology data inte-
gration. AE models that were trained on standardized data suffered less 
from batch effect than those trained on simply normalized data, as is 
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quantified by Sil calculated as described in Section 3.4. Indeed, Sil 
values for standardized data are close to 0 or slightly negative. 

The different SurvIAE models trained displayed the performance, in 
terms of AUROC and AUPRC, reported in Tables 3 and 4, for the 
validation-set and test-set, respectively. In this case, it is possible to see 
that some outcomes are difficult to predict, such as OS12. On the other 
hand, other outcomes are easier to predict, such as OS60 and PFS60, 
resulting in generally higher values of AUROC and AUPRC. In those 
tables, five reference ensemble methods are also considered for the 
comparison: GradientBoosting, AdaBoost, RandomForest, ExtraTrees, 
and XGB. 

On the validation-set, the only case in which ensemble models 
perform better than SurvIAE models on both AUROC and AUPRC is 
PFS60. For OS12, OS60, and PFS36, SurvIAE improves over ensemble 
methods on both AUROC and AUPRC. For OS36, SurvIAE presents a 
better AUROC but a slightly lesser AUPRC. For PFS12, SurvIAE possesses 
a better AUPRC but a worse AUROC. 

On the test-set, the only case in which ensemble models perform 
better than SurvIAE models on both AUROC and AUPRC is PFS36. In all 
other cases, SurvIAE displayed better AUROC and AUPRC than ensemble 
models. 

For SurvIAE, the ROC curves for OS60 and PFS60 are portrayed in 
Figs. 5 and 6, respectively. It is possible to see that, for the PFS60 
outcome, simply normalized data poses more generalization problems, 
with SurvIAE-S displaying unsatisfactory performance on validation-set 
and test-set, and SurvIAE-M on test-set. Indeed, the adoption of stan-
dardized data led to more stable performance among the datasets. 

For normalized data, AUROC ranged between 0.387–0.754 (0.635 
± 0.084) and 0.388–0.654 (0.571 ± 0.063) for the validation-set and 
test-set, respectively, whereas AUPRC ranged between 0.146–0.608 
(0.415 ± 0.138) and 0.183–0.542 (0.379 ± 0.094) for the validation-set 
and test-set, respectively. For scaled data, AUROC ranged between 
0.537–0.824 (0.671 ± 0.057) and 0.548–0.679 (0.614 ± 0.036) for the 
validation-set and test-set, respectively, whereas AUPRC ranged 

Fig. 2. Model selection workflow. Three normalization and four architectures were considered for each prognostic outcome, resulting in 12 models for each. Six 
different prognostic outcomes (OS and PFS, at FU times of 12, 36, 60 months) were considered, resulting in 72 models compared for this study. Models considered for 
XAI are only those which are statistically significant as prognosis predictors, and which outperform R-IPI, resulting in 15 models. Those models were then used to 
devise novel gene signatures to incorporate into clinically applicable prognostic models for DLBCL. Abbreviations. Train, Training-set; Val, Validation-set; Test, Test- 
set; G, Genes; OS, Overall Survival; PFS, Progression Free Survival; DEG, Differential Expression Genes; Preproc, Preprocessing; Norm, Normalized; Std, Standardized; 
L, Large; M, Medium; S, Small; X, extra-small; R-IPI, Revised International Prognostic Index. 
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between 0.179–0.688 (0.468 ± 0.127) and 0.235–0.585 (0.426 ±
0.092) for the validation-set and test-set, respectively. For standardized 
data, AUROC ranged between 0.512–0.742 (0.643 ± 0.056) and 
0.488–0.680 (0.600 ± 0.042) for the validation-set and test-set, 
respectively, whereas AUPRC ranged between 0.131–0.636 (0.451 ±
0.139) and 0.226–0.572 (0.411 ± 0.096) for the validation-set and test- 
set, respectively. 

4.2. Prognostic evaluation of the AE-based strategy and comparison with 
R-IPI 

Overall, we tested 72 models considering the six categorical clinical 
outcomes, the four AE architectures and the three data preprocessing 
techniques. Table 5 shows odds-ratios and p-values for each univariate 
LR model comparing, on one hand, two subgroups of patients clustered 
by the SurvIAE-based strategy (Cluster 1 vs. Cluster 2), and, on the other 
hand, two subgroups of patients according to R-IPI clinical prognostic 
tool (Good/Very Good vs. Poor) for the validation-set and test-set. 
Firstly, R-IPI demonstrated a prognostic value with significant levels 
for OS12, OS36, OS60, and PFS12 outcomes on the validation-set, and 
for all clinical outcomes on the test-set. 

Considering all preprocessing strategies (normalized, scaled, and 
standardized expression data), 55/72 and 51/72 SurvIAE-based models 
demonstrated statistically significant levels of survival between Cluster 
1 and Cluster 2 for the validation-set and the test-set, respectively (de-
tails shown in Fig. 2). 

As shown in Table 6, the SurvIAE-based strategy outperformed the R- 
IPI tool for 15/72 models for both validation-set and test-set. For the 
PFS60 outcome, MCC from SurvIAE-L models starting from normalized, 

scaled, and standardized expression datasets were 0.30, 0.28, and 0.22 
for the validation-set as well as 0.22, 0.23, and 0.23 for the test-set 
which were higher than respective R-IPI models. For the same 
outcome, SurvIAE-M models from scaled and standardized expression 
datasets outperformed R-IPI, obtaining an MCC of 0.31 and 0.23 for 
validation-set and 0.34 and 0.21 for the test-set. Interestingly, for this 
outcome, models with SurvIAE-S outperforming R-IPI resulted only for 
normalized and transformed expression datasets, whereas SurvIAE-X 
models outperforming R-IPI were only for the normalized and scaled 
expression datasets. 

For the PFS36 outcome, MCC from SurvIAE-L models from stan-
dardized expression datasets was 0.23 for both the validation-set and the 
test-set outperforming respective R-IPI model with 0.18 for the 
validation-set and 0.21 for the test-set. For the same outcome, MCC from 
the SurvIAE-S vs. R-IPI models from scaled and standardized expression 
datasets were 0.26 and 0.41 vs. 0.18 for the validation-set, and 0.22 and 
0.24 vs. 0.21 for the test-set. Finally, MCC from SurvIAE-X models for 
normalized, scaled, and standardized datasets outperformed R-IPI for 
both validation and test-sets. We excluded OS-based models for further 
steps, as no SurvIAE model outperformed R-IPI. For brevity, in the 
following, we will refer to model size and outcome as SurvIAE-{size}- 
{outcome}. 

4.3. Gene signatures from XAI and clinical translation from the best 
model 

From each of the fifteen models, as described in Section 4.2, we 
verified, from a predictive point of view, each signature including top- 
ten genes after the XAI application as shown in Table 7. Since 

Table 1 
Performance in terms of MSE and MAE of the different AE models on the validation-set. Abbreviations. AE, autoencoder; L, large; M, medium; S, small; X; extra-small; 
OS, Overall Survival; PFS, Progression Free Survival; MSE, Mean Squared Error; MAE, Mean Absolute Error.  

Validation-set 

Model Preprocessing OS12 OS36 OS60 PFS12 PFS36 PFS60 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

AE-L Normalized 5.638 1.614 3.873 1.497 5.151 1.569 3.268 1.405 4.023 1.490 3.499 1.433 
Scaled 0.050 0.176 0.049 0.176 0.050 0.177 0.041 0.159 0.042 0.163 0.043 0.164 
Standardized 0.802 0.694 0.838 0.714 0.846 0.717 0.764 0.683 0.759 0.682 0.771 0.691 

AE-M Normalized 7.160 1.921 5.143 1.607 4.953 1.607 4.790 1.569 4.085 1.519 3.552 1.416 
Scaled 0.045 0.167 0.049 0.175 0.047 0.171 0.039 0.155 0.045 0.169 0.042 0.163 
Standardized 0.854 0.718 0.876 0.731 0.873 0.728 0.796 0.699 0.802 0.704 0.814 0.710 

AE-S Normalized 5.630 1.672 5.533 1.750 6.127 1.686 6.308 1.696 5.100 1.633 5.040 1.650 
Scaled 0.043 0.162 0.046 0.169 0.049 0.175 0.045 0.165 0.045 0.167 0.044 0.166 
Standardized 0.948 0.755 0.899 0.739 0.904 0.740 0.924 0.753 0.896 0.741 0.906 0.745 

AE-X Normalized 9.091 2.121 5.517 1.603 6.359 1.730 7.653 1.846 8.058 1.891 5.849 1.684 
Scaled 0.050 0.175 0.054 0.182 0.051 0.177 0.052 0.177 0.050 0.174 0.047 0.169 
Standardized 0.944 0.756 0.897 0.739 0.911 0.745 0.948 0.760 0.893 0.737 0.922 0.747  

Table 2 
Performance in terms of MSE and MAE of the different AE models on the test-set. Abbreviations. AE, autoencoder; L, large; M, medium; S, small; X; extra-small; OS, 
Overall Survival; PFS, Progression Free Survival; MSE, Mean Squared Error; MAE, Mean Absolute Error.  

Test-set 

Model Preprocessing OS12 OS36 OS60 PFS12 PFS36 PFS60 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

AE-L Normalized 7.200 1.711 4.697 1.529 6.412 1.672 3.437 1.312 5.471 1.611 4.725 1.584 
Scaled 0.040 0.158 0.035 0.148 0.037 0.153 0.027 0.131 0.027 0.130 0.029 0.136 
Standardized 0.786 0.679 0.806 0.685 0.812 0.690 0.752 0.659 0.743 0.659 0.743 0.660 

AE-M Normalized 9.126 2.016 6.714 1.757 6.436 1.720 5.574 1.561 4.836 1.583 4.851 1.551 
Scaled 0.038 0.153 0.036 0.149 0.035 0.147 0.026 0.127 0.030 0.136 0.029 0.135 
Standardized 0.830 0.702 0.846 0.705 0.847 0.707 0.781 0.676 0.784 0.681 0.780 0.680 

AE-S Normalized 7.898 1.807 7.279 1.843 8.695 1.878 7.396 1.705 7.017 1.834 6.595 1.745 
Scaled 0.039 0.154 0.035 0.147 0.037 0.151 0.032 0.138 0.033 0.142 0.032 0.141 
Standardized 0.919 0.739 0.873 0.716 0.874 0.717 0.894 0.728 0.859 0.714 0.861 0.714 

AE-X Normalized 13.021 2.369 7.477 1.815 8.886 1.903 10.595 1.980 11.716 2.184 8.375 1.860 
Scaled 0.046 0.166 0.043 0.162 0.041 0.158 0.038 0.151 0.036 0.147 0.037 0.149 
Standardized 0.915 0.737 0.863 0.713 0.864 0.715 0.883 0.722 0.841 0.705 0.857 0.713  
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Fig. 3. Latent representation of different AE models with 2D UMAP scatter plots for the OS60 outcome. The embedding representations are portrayed for the three 
different preprocessing. Batch effect among the different datasets is particularly observable in Normalized and Scaled data. On Standardized data, the batch effect is 
negligible. Abbreviations. OS, Overall Survival; AE, autoencoder; L, Large; M, Medium; S, Small; X, extra-small; UMAP, Uniform Manifold Approximation and 
Projection; Train, training-set; Val, validation-set; Sil, Silhouette. 
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Fig. 4. Latent representation of different AE models with 2D UMAP scatter plots for the PFS60 outcome. The embedding representations are portrayed for the three 
different preprocessing. Batch effect among the different datasets is particularly observable in Normalized and Scaled data. On Standardized data, the batch effect is 
negligible. Abbreviations. OS, Overall Survival; AE, autoencoder; L, Large; M, Medium; S, Small; X, extra-small; UMAP, Uniform Manifold Approximation and 
Projection; Train, training-set; Val, validation-set; Sil, Silhouette. 
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Table 3 
Performance in terms of AUROC and AUPRC of the different SurvIAE models on the validation-set. Five reference ensemble methods are also considered for the 
comparison: GradientBoosting, AdaBoost, RandomForest, ExtraTrees, XGB. The highest value of AUROC or AUPRC for each column is in bold font. Abbreviations. L, 
large; M, medium; S, small; X; extra-small; OS, Overall Survival; PFS, Progression Free Survival.  

Validation-set 

Model Preprocessing OS12 OS36 OS60 PFS12 PFS36 PFS60 

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC 

SurvIAE-L Normalized 0.698 0.252 0.650 0.502 0.660 0.509 0.711 0.491 0.577 0.367 0.674 0.608 
Scaled 0.671 0.299 0.740 0.571 0.824 0.688 0.569 0.446 0.685 0.617 0.668 0.540 
Standardized 0.588 0.149 0.664 0.490 0.724 0.538 0.675 0.477 0.639 0.507 0.634 0.516 

SurvIAE-M Normalized 0.490 0.146 0.700 0.421 0.716 0.488 0.556 0.394 0.692 0.482 0.642 0.532 
Scaled 0.719 0.215 0.640 0.446 0.657 0.482 0.712 0.546 0.667 0.588 0.635 0.513 
Standardized 0.541 0.131 0.742 0.511 0.687 0.592 0.640 0.410 0.702 0.636 0.636 0.535 

SurvIAE-S Normalized 0.625 0.215 0.577 0.318 0.665 0.506 0.627 0.313 0.541 0.393 0.387 0.312 
Scaled 0.645 0.243 0.682 0.476 0.714 0.501 0.647 0.432 0.637 0.445 0.537 0.473 
Standardized 0.614 0.322 0.582 0.498 0.678 0.542 0.638 0.366 0.685 0.587 0.623 0.489 

SurvIAE-X Normalized 0.657 0.182 0.754 0.560 0.731 0.559 0.568 0.249 0.683 0.570 0.653 0.585 
Scaled 0.613 0.179 0.680 0.467 0.711 0.558 0.702 0.399 0.703 0.585 0.640 0.532 
Standardized 0.512 0.188 0.610 0.373 0.666 0.490 0.582 0.358 0.717 0.523 0.646 0.600 

GradientBoosting Normalized 0.696 0.195 0.548 0.271 0.507 0.290 0.500 0.204 0.421 0.281 0.641 0.481 
Scaled 0.480 0.111 0.632 0.319 0.704 0.477 0.730 0.348 0.648 0.483 0.732 0.614 
Standardized 0.627 0.205 0.506 0.246 0.598 0.337 0.576 0.253 0.616 0.410 0.552 0.442 

AdaBoost Normalized 0.512 0.122 0.488 0.248 0.528 0.306 0.673 0.324 0.564 0.372 0.497 0.347 
Scaled 0.475 0.112 0.612 0.471 0.733 0.550 0.722 0.428 0.613 0.488 0.694 0.593 
Standardized 0.582 0.198 0.506 0.347 0.647 0.448 0.610 0.295 0.605 0.406 0.683 0.483 

RandomForest Normalized 0.486 0.108 0.578 0.281 0.545 0.315 0.514 0.213 0.485 0.308 0.498 0.351 
Scaled 0.546 0.142 0.621 0.309 0.511 0.319 0.521 0.208 0.458 0.306 0.556 0.381 
Standardized 0.664 0.182 0.607 0.364 0.606 0.338 0.608 0.333 0.603 0.371 0.614 0.462 

ExtraTrees Normalized 0.451 0.100 0.458 0.235 0.486 0.287 0.425 0.198 0.465 0.294 0.432 0.319 
Scaled 0.594 0.208 0.643 0.357 0.591 0.361 0.538 0.264 0.614 0.383 0.633 0.449 
Standardized 0.608 0.179 0.615 0.306 0.621 0.392 0.524 0.239 0.556 0.329 0.563 0.399 

XGB Normalized 0.545 0.132 0.682 0.574 0.500 0.300 0.292 0.153 0.473 0.418 0.573 0.486 
Scaled 0.540 0.126 0.746 0.519 0.751 0.603 0.751 0.450 0.563 0.395 0.591 0.481 
Standardized 0.694 0.226 0.683 0.464 0.678 0.534 0.651 0.420 0.676 0.531 0.619 0.477  

Table 4 
Performance in terms of AUROC and AUPRC of the different SurvIAE models on the test-set. Five reference ensemble methods are also considered for the comparison: 
GradientBoosting, AdaBoost, RandomForest, ExtraTrees, XGB. The highest value of AUROC or AUPRC for each column is in bold font. Abbreviations. L, large; M, 
medium; S, small; X; extra-small; OS, Overall Survival; PFS, Progression Free Survival.  

Test-set 

Model Preprocessing OS12 OS36 OS60 PFS12 PFS36 PFS60 

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC 

SurvIAE-L Normalized 0.567 0.284 0.603 0.340 0.652 0.518 0.470 0.273 0.584 0.448 0.620 0.542 
Scaled 0.585 0.235 0.568 0.367 0.616 0.484 0.556 0.333 0.575 0.455 0.611 0.497 
Standardized 0.588 0.274 0.576 0.366 0.647 0.473 0.559 0.344 0.625 0.473 0.631 0.534 

SurvIAE-M Normalized 0.587 0.266 0.560 0.365 0.653 0.492 0.454 0.260 0.587 0.453 0.532 0.410 
Scaled 0.665 0.303 0.626 0.458 0.624 0.439 0.572 0.357 0.635 0.497 0.647 0.518 
Standardized 0.680 0.306 0.612 0.397 0.621 0.446 0.621 0.396 0.629 0.510 0.619 0.522 

SurvIAE-S Normalized 0.541 0.183 0.537 0.326 0.548 0.354 0.567 0.356 0.589 0.465 0.388 0.347 
Scaled 0.579 0.281 0.647 0.431 0.627 0.452 0.585 0.363 0.614 0.497 0.608 0.526 
Standardized 0.601 0.226 0.488 0.311 0.618 0.458 0.573 0.366 0.625 0.480 0.649 0.572 

SurvIAE-X Normalized 0.597 0.309 0.606 0.393 0.601 0.411 0.583 0.329 0.623 0.468 0.654 0.513 
Scaled 0.548 0.280 0.661 0.475 0.655 0.516 0.627 0.381 0.634 0.490 0.679 0.585 
Standardized 0.543 0.255 0.540 0.365 0.570 0.447 0.576 0.339 0.601 0.471 0.611 0.522 

GradientBoosting Normalized 0.434 0.143 0.543 0.318 0.571 0.390 0.547 0.304 0.654 0.496 0.577 0.470 
Scaled 0.507 0.165 0.544 0.335 0.556 0.376 0.619 0.355 0.622 0.470 0.601 0.513 
Standardized 0.481 0.158 0.571 0.428 0.517 0.340 0.531 0.293 0.599 0.460 0.575 0.464 

AdaBoost Normalized 0.460 0.206 0.589 0.409 0.592 0.455 0.609 0.372 0.674 0.583 0.618 0.512 
Scaled 0.512 0.222 0.608 0.371 0.624 0.468 0.608 0.396 0.566 0.431 0.594 0.470 
Standardized 0.599 0.252 0.569 0.386 0.605 0.417 0.562 0.352 0.620 0.496 0.630 0.553 

RandomForest Normalized 0.521 0.177 0.542 0.315 0.469 0.321 0.544 0.292 0.425 0.346 0.567 0.472 
Scaled 0.663 0.249 0.507 0.289 0.544 0.386 0.510 0.279 0.519 0.413 0.640 0.507 
Standardized 0.580 0.260 0.508 0.321 0.543 0.372 0.609 0.363 0.597 0.443 0.564 0.466 

ExtraTrees Normalized 0.516 0.172 0.457 0.306 0.452 0.318 0.593 0.337 0.547 0.413 0.436 0.371 
Scaled 0.551 0.186 0.597 0.347 0.560 0.370 0.572 0.339 0.597 0.457 0.502 0.413 
Standardized 0.598 0.237 0.602 0.373 0.602 0.403 0.584 0.364 0.590 0.473 0.600 0.494 

XGB Normalized 0.586 0.227 0.594 0.371 0.602 0.476 0.509 0.273 0.562 0.465 0.606 0.515 
Scaled 0.545 0.237 0.600 0.403 0.621 0.457 0.597 0.362 0.648 0.510 0.664 0.562 
Standardized 0.593 0.281 0.577 0.378 0.573 0.408 0.602 0.389 0.625 0.487 0.659 0.562  
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thresholding of GE levels failed in at least one among validation-set and 
test-set, we excluded gene signatures obtained from models that were 
trained from the normalized GE dataset. Among models trained from the 
scaled GE dataset, signatures including at least one gene with prognostic 
capability were those obtained from models SurvIAE-L-PFS60 (gene 
SLC1A1) and SurvIAE-M-PFS60 (TMEM163). Among models trained 
from the standardized GE dataset, those deriving genes with prognostic 

capability were those obtained from the SurvIAE-L-PFS36 (GAB1), the 
SurvIAE-S-PFS36 (signature including CDC42EP4, GAB1, and GPR132), 
the SurvIAE-S-PFS60 (signature including DENDD3, A4GALT, and SER-
PINE1), and the SurvIAE-X-PFS36 (HES4). 

The SurvIAE-S-PFS36 was then identified as the best model, 
considering the metric measured from every LR SurvIAE model vs. R-IPI. 
Firstly, we applied a multivariate LR analysis across training, validation- 

Fig. 5. ROC curves for the OS60 outcome. The curves are depicted for the three different preprocessing, the four SurvIAE architectures considered, and the three 
datasets. Abbreviations. OS, Overall Survival; L, Large; M, Medium; S, Small; X, extra-small; UMAP, Uniform Manifold Approximation and Projection; Train, training- 
set; Val, validation-set. 
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set, and test-set, including as predictors GPR132, GAB1, CDC42EP4, 
COO, and R-IPI determinants. Thus, the R-IPI retained a significant 
impact in predicting PFS36 (Fig. 7A) across datasets whether all genes 
were significant for the training-set. In fact, patients with “high” levels 
of CDC42EP4, patients with “low” levels of GAB1, and patients with 
“high” levels of GPR132 had 0.64 (p-value < 0.01), 0.67 (p-value <
0.05), and 0.63 (p-value < 0.01) probability to occur a PFS36 event with 
respect to other patients. Patients with “high” levels of CDC42EP4 had 

odds-ratio of 0.26 (p-value < 0.01) and 0.51 (p-value < 0.05) also for 
validation and test sets, respectively. Interestingly, patients with “low” 
levels of GAB1, retained their prognostic impact also for the application- 
set with an odds-ratio of 0.34 (p-value < 0.001). According to COO, we 
observed significance levels only for the test-set. In fact, for this dataset, 
patients classified as GCB vs. ABC+UNC reported a significant (p-value 
< 0.001) odds-ratio of 0.26, whereas odds-ratios were not significant for 
training-set, validation-set, and application-set. 

Fig. 6. ROC curves for the PFS60 outcome. The curves are depicted for the three different preprocessing, the four SurvIAE architectures considered, and the three 
datasets. Abbreviations. PFS, Progression Free Survival; L, Large; M, Medium; S, Small; X, extra-small; UMAP, Uniform Manifold Approximation and Projection; 
Train, training-set; Val, validation-set. 
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Thus, for the training-set, after including those five features (R-IPI, 
COO, CDC42EP4, GAB1, and GPR132) in a decision-tree model (Fig. 7B), 
the Rev-IPI was selected as the first feature splitting the entire training 
cohort into Good/Very Good (N = 482) and Poor (N = 446) subgroups of 
patients (p-value < 0.001). The more favorable one was further sub-
divided according to the level of GPR132 into “high” (N = 360) and 
“low” (N = 122) subsets differing significantly in terms of PFS36 (p- 
value = 0.029). Conversely, the less favorable one was further sub-
divided according to the level of GAB1 into “high” (N = 206) and “low” 
(N = 240) subsets differing significantly in terms of PFS36 (p-value =
0.002). For clinical applicability, we identified as Group 1 patients 
classified as Poor R-IPI with “high” levels of GAB1, as Group 2 Poor 
patients with “low” levels of GAB1 or those classified as Good/Very 
Good R-IPI expressing “low” levels of GPR132, and we identified as 
Group 3 patients classified as Good/Very Good R-IPI expressing “high” 
levels of GPR132. Fig. 7C shows nine univariate K-M curves (PFS) for 
training, validation, and test datasets according to the expression of each 
gene included in the final signature. Generally, genes retained their 
prognostic impact across datasets. Fig. 7D left shows that, for the 
application-set, patients included into Group 1 had a PFS at 36 months of 
46 % (95 % confidence interval [CI]: 35 %–60 %) which significantly 
differed from patients from Group 2, with PFS at 36 months of 73 % (CI: 
65 %–82 %) and from patients from Group 3, with PFS at 36 months of 
80 % (CI: 73 %–88 %). We also verified the tool assuming OS as clinical 
outcome and for the application-set, patients included into Group 1 had 
OS at 36 months of 47 % (CI: 36 %–62 %) which significantly differed 
from patients from Group 2, with OS at 36 months of 78 % (CI: 71 %–86 
%) and from patients from Group 3, with OS at 36 months of 90 % (CI: 
85 %–96 %) (Fig. 7D, center). Fig. 7D, right displays that the proposed 
score slightly outperformed R-IPI with a C-index of 0.73 vs. 0.70, and 
0.70 vs. 0.69, and with a Brier Score of 0.19 vs. 0.20 and 0.16 vs. 0.17 for 
PFS36 and OS36, respectively. As expected, in all tested cases, COO 
resulted less accurate in discriminating outcomes than both new score 
and R-IPI. 

5. Discussion 

We compared four different AE architectures, three preprocessing 
methodologies, and six different outcomes to build a deeper under-
standing on how to use such tools in the analysis of GE data. To 
corroborate the validity of our findings, we made our analysis exploiting 
four different datasets, each with its own technology for GE data 
acquisition. We trained both the AE models and the classifiers on only 
one of these datasets and showed that these results can be generalized on 
unseen data acquired in different modalities. 

The comparison of SurvIAE with ensemble models showed that the 
classification performances obtained with the proposed approach are 
promising. Indeed, on the test-set, SurvIAE outperformed the ensemble 
models for the outcomes OS12, OS36, OS60, PFS12, and PFS60, leaving 
only PFS36 to ensembles. 

From our analysis, it emerged that some preprocessing techniques 
are more suitable to tackle GE data belonging to different datasets. 
Indeed, some AE models suffered from batch effect, as visible from 2D 
embeddings of their latent representation reported in Figs. 3 and 4, 
when data were normalized only with the platform-specific normaliza-
tion procedure. On the other hand, the adoption of standardized data 
solved this issue. The batch effect hardens the models’ training, as can be 
seen in Fig. 6, where SurvIAE-S displayed particularly bad performance 
on the validation-set and test-set with simply normalized data. Models 
trained with standardized data tend to have a better generalization 
capability. 

We proposed a novel generalizable approach to train different AE 
architectures from omics data to find out the best model for prognostic 
purposes [29–31]. To make other researchers interested in the analysis of 
GE data for survival prediction benefit from our efforts, we made our tool, 
SurvIAE, publicly available (https://github.com/Nicolik/SurvIAE). Ta
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Furthermore, even if we focused our analysis on the DLBCL, the pipeline 
can be used for any kind of GE data, and it is not limited to lymphomas. 

With respect to previous works, we concentrated on realizing a 
pipeline that can be useful for prognostic purposes and can unveil 
relevant gene signatures. Indeed, other studies used AE and MLP to 
classify breast cancer subtypes [20,30–32] or lung cancer subtypes [29], 
but few works concentrated on prognosis (e.g., for CRC [19]). With 
respect to works related to DLBCL, we note that there is a lack of works 
investigating the role of AE models and their latent representations for 
prognosis stratification, while most works rely on more traditional 
techniques such as LASSO and hierarchical clustering [38–40]. 

Previous research considered all GE data [32] or genes with the 
highest variability by median absolute deviation [28] as input to the AE. 
Herein, we concentrated on a different approach, by only considering a 

subset of the genes, obtained via DEG analysis, to train and validate each 
AE. Furthermore, if the information carried out by those genes can be 
likely relevant from a prognostic point of view, conversely, AE-based 
models including a classifier whose input data are budded from a 
latent representation cannot be directly applicable in the clinical prac-
tice [32]. In our analysis, we systematically compared SurvIAE models 
with the recognized R-IPI for DLBCL [4]. Hence, with the aim of pro-
posing a translational approach, our pipeline comprises the application 
of Deep SHAP to interpret the latent information by figuring out the 
most important genes according to the clinical outcomes. In more detail, 
after the XAI application, each gene was evaluated by adding SHAP 
contributions from the validation-set (from microarrays) and the test-set 
(obtained from RNA-seq) and thereafter reordered on its importance 
level (Part 3 from Algorithm 1). 

Table 6 
Performance according to MCC for each univariate LR model for validation-set and test-set. Cells marked with * represent SurvIAE models with MCC higher than the 
reference in the validation-set, whereas cells labeled with ** indicate the same result in the test-set. Abbreviations. MCC, Matthews Correlation Coefficient; R-IPI, 
Revised-International Prognostic Index; Ref, reference; GE, gene expression; OS, Overall Survival; PFS, Progression Free Survival; Val, validation-set.  

Model GE Data Preprocessing OS12 OS36 OS60 PFS12 PFS36 PFS60 

Val Test Val Test Val Test Val Test Val Test Val Test 

R-IPI (ref) - 0.32 0.28 0.31 0.26 0.31 0.25 0.26 0.26 0.18 0.21 0.20 0.19 
SurvIAE-L Normalized 0.29 0.11 0.26 0.19 0.27 0.28** 0.41* 0.03 0.14 0.12 0.30* 0.22** 

Scaled 0.33* 0.08 0.30 0.11 0.51* 0.14 0.25 0.10 0.42* 0.13 0.28* 0.23** 
Standardized -0.03 0.21 0.22 0.10 0.35* 0.22 0.18 0.21 0.23* 0.23** 0.22* 0.23** 

SurvIAE-M Normalized 0.19 0.15 0.41* 0.17 0.39* 0.23 0.18 0.03 0.38* 0.14 0.32* 0.15 
Scaled 0.25 0.17 0.26 0.21 0.29 0.23 0.43* 0.21 0.38* 0.20 0.31* 0.34** 
Standardized 0.10 0.23 0.28 0.18 0.30 0.20 0.25 0.21 0.42* 0.20 0.23* 0.21** 

SurvIAE-S Normalized 0.15 0.06 0.19 0.12 0.17 0.17 0.23 0.14 0.09 0.15 0.35* 0.20** 
Scaled 0.22 0.12 0.31 0.22 0.36* 0.23 0.21 0.15 0.26* 0.22** 0.18 0.13 
Standardized 0.11 0.17 0.34* 0.02 0.27 0.18 0.27* 0.19 0.41* 0.24** 0.23* 0.28** 

SurvIAE-X Normalized 0.24 0.21 0.32* 0.11 0.39* 0.21 0.15 0.20 0.33* 0.22** 0.26* 0.27** 
Scaled 0.18 0.08 0.29 0.24 0.35* 0.19 0.28* 0.20 0.33* 0.28** 0.32* 0.30** 
Standardized 0.02 0.03 0.22 0.06 0.25 0.09 0.15 0.20 0.36* 0.25** 0.19 0.20**  

Table 7 
List of the top 10 genes for SurvIAE models overperforming R-IPI. Gene labels with * are those with dichotomized levels of expressions not significant according to the 
outcome for at least one between validation-set and test-set. Gene labels with ** are those with dichotomized levels of expressions that are significant according to the 
outcome for both validation-set and test-set. Abbreviations. PFS, Progression Free Survival; L, large; M, medium; S, small; X, extra-small.  

Model GENE 1 GENE 2 GENE 3 GENE 4 GENE 5 GENE 6 GENE 7 GENE 8 GENE 9 GENE 10 

Normalized Data 
SurvIAE-L PFS60 

ACY3 KCNIP2 CD1D COBLL1 CPT1C EFNB1 ALDH1A3 FOS* UPP1 NSBP1* 

Normalized Data 
SurvIAE-S PFS60 

VASH1 FOSB KCNMB1 TMEM119 HTRA1 FOS* KATNAL2 A4GALT ACY3 PDPN 

Normalized Data 
SurvIAE-X PFS36 

ACY3 PEG10 CRABP2 KATNAL2 PDPN FOSB KIAA1377 WASF1 CPNE5 RBP7 

Normalized Data 
SurvIAE-X PFS60 

PEG10 ACY3 CRABP2 COL9A2 CAND2 UPP1 PDPN RENBP FGF11 KATNAL2 

Scaled Data SurvIAE-L 
PFS60 

CAND2* TRIP10* ANKRD13B* SLC1A1** MED12L* LMO2* ACY3* ALDH1A3* PTK7* LRRC32* 

Scaled Data SurvIAE- 
M PFS60 

KCNIP2* SYTL4* TRIP10* ACY3* ZNF639* IL18R1* PDE8B* TMEM163** LOXL2* NSBP1* 

Scaled Data SurvIAE-S 
PFS36 

DHRS9* RASL11A* ACY3* GAB1* TBC1D2* PLEKHG3* PARVA* ROR2* DPYSL3* CD24* 

Scaled Data SurvIAE-X 
PFS36 

LMO2* CAPN5* DHRS9* PEG10* DPYSL3* GAB1* KATNAL2* RGS12* AVPI1* ZMYND15* 

Scaled Data SurvIAE-X 
PFS60 

FSCN1* ITGA5* ACY3* AVPI1* PEG10* NOTCH3* CD300LF* PLXDC2* CLN5* EPAS1* 

Standardized Data 
SurvIAE-L PFS36 

GAB1** PRDM1* KIAA1199* ADRA2A* TRPM4 ZC3H12A* ASF1A* FBXO6* PDK3* ARHGAP28* 

Standardized Data 
SurvIAE-L PFS60 

SPHK1* KCNIP2* CKB* MXRA5* WASF1* SOCS3* COBLL1* MMAB* PBX4* HAPLN3* 

Standardized Data 
SurvIAE-M PFS60 

MED12L* COBLL1* ELL2* CD4* ADAM28* EXTL2* SLC41A2* TNFRSF9* PBX1* IDE* 

Standardized Data 
SurvIAE-S PFS36 

RARRES2* CDC42EP4** RENBP* FNDC1* SULF1* GAB1** SELM* LMO2* DUSP10* GPR132** 

Standardized Data 
SurvIAE-S PFS60 

DENND3** CTSK* LOX* COL1A1* PAPLN* A4GALT** C1QTNF6* SCARA3* SERPINE1** ADRA2A* 

Standardized Data 
SurvIAE-X PFS36 

VASN* CSPP1* AKAP1* HES4** SLAMF8* HSPB8* TNFRSF4* C5AR1* ELL2* SSPN*  
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Fig. 7. Translational validation combining SurvIAE with R-IPI. (A) Multivariate logistic regression analysis including clinical determinants and the gene signature 
retrieved from the SurvIAE-S for the PFS36 outcome. (B) Decision tree depicting results of recursive models applied on clinical and biological features built on PFS36 
in the training dataset. The most relevant groups were Group 1 (R-IPI Poor patients with “High” levels of GAB1), Group 2 (R-IPI Poor patients with “Low” levels of 
GAB1 or R-IPI Good/Very Good patients with “Low” levels of GPR132), and Group 3 (R-IPI Good/Very Good patients with “High” levels of GPR132). (C) Univariate 
Kaplan-Meier curves (PFS) for training, validation, and test datasets according to the expression of each gene included in the final signature. (D) Kaplan-Meier 
survival plots for PFS (left) and OS (center) of Group 1 vs. Group 2 vs. Group 3 for the application-set with survival rates measured at 36 months and perfor-
mance metrics measured across prognostic models (right). Abbreviations. Train, Training-set; Val, Validation-set; Test, test-set; COO, Cell-of-Origin; ABC, Activated 
B-Cell like; GCB, Germinal B-cell like; R-IPI, Revised-International Prognostic Index; VG: Very Good; G: Good; P, Poor; PFS, Progression Free Survival; OS, Overall 
Survival, C, Concordance. 
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Since the R-IPI was unable to significantly discriminate for the 
validation set Good/Very Good patients from Poor patients according to 
PFS at 36 and 60 months (Table 5), this affected the performance 
assessed by MCC from Table 6. In fact, SurvIAE models were, in most 
cases, superior independently of AE architectures as well as GE data 
preprocessing. However, identification of the SurvIAE-S-PFS36 model 
was also driven by the number of significant genes after the dichoto-
mization of expression levels to “high” and “low” risk classes. 

DLBCL is a heterogeneous disease with a very complex biology. 
Recent works proposed novel prognostic signatures [41,42,44,40,55]. 
Among these, Wang et al. performed an expression cluster analysis 
founding two epigenetic-related clusters [56]. DEG analysis allowed to 
find a subset of prognostic epigenetic-related genes overexpressed in 
both clusters. In our study, we implemented a pipeline to find out the 
best deep-learning architecture on GE data. Application of our pipeline 
on those data might suggest a potential signature to evaluate in terms of 
immune and therapeutic response. The same research group proposed 
an lnc-RNA-regulating epigenetic event signature (ELncSig) for pre-
dicting prognosis in DLBCL [57]. Interestingly, among DEGs between 
the high and low-risk ELncSig, we found the LMO2 gene, which is a 
marker of longer survival of DLBCL patients following immunotherapy, 
in 3/15 signatures from Table 7. 

SurvIAE-S-PFS36 model identified a signature including GPR132, 
GAB1, and CDC42EP4 genes. The GPR132 gene has been demonstrated 
to have a tumor-suppressive role since it is activated by ONC212, an 
anti-tumor molecule connected to leukemias [58]. Furthermore, a GE 
analysis from TCGA revealed that GPR132 is expressed in a range of 
tumors with the highest expression also in lymphoma [59]. GAB1, which 
has been identified as a driver gene in DLBCL, can favor cancer pro-
gression when highly expressed [60,61]. In our analyses, we first eval-
uated the prognostic impact of each gene in a multivariate fashion 
adjusting for R-IPI and COO. Thus, after including those three genes with 
clinical determinants in a recursive decision tree model from the 
training-set, not surprisingly, R-IPI was selected as the first feature 
discriminating patients with Good/Very Good and Poor risks. Thus, for 
the Good/Very Good patients, our decision-tree model showed the ca-
pacity of GPR132 to recognize “high” risk patients with lower expres-
sion, while identifying more favorable cases at higher expression. On the 
other hand, for Poor patients, our decision-tree model showed the ca-
pacity of GAB1 to recognize “very high” risk patients with higher 
expression. 

5.1. Limitations 

We considered MLP as the downstream classifier after the latent 
representation of the AE was learned, but, of course, other classifiers 
could have been adopted. We limited our analysis to bulk GE data, but it 
would be interesting to generalize our workflow to single-cell or spatial 
GE data. 

For the survival analysis, only dichotomized genes were considered, 
which on the one hand simplifies the clinical translation, but on the 
other hand, may reduce the accuracy of the prognosis. 

6. Conclusions 

In this work, we propose an interpretable, end-to-end pipeline, to 
perform prognosis and derive gene signatures from three datasets of 
DLBCL patients by means of autoencoders and classifiers. The devised 
prognostic signature was validated in an independent fourth dataset. We 
made our tool publicly available to enhance the reproducibility of our 
efforts. We focused on the analysis of DLBCL, but the pipeline can be 
easily adapted for other oncologic diseases. Future works will involve 
considering spatial profiling data, to perform an even more accurate 
prognosis and further increase the understanding of the biology of the 
tumor and its microenvironment. 
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