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Abstract. In this study, we start from a Follow-the-Leaders model for traffic flow that is based on a weighted harmonic mean
(in Lagrangian coordinates) of the downstream car density. This results in a nonlocal Lagrangian partial differential equation
(PDE) model for traffic flow. We demonstrate the well-posedness of the Lagrangian model in the L1 sense. Additionally,
we rigorously show that our model coincides with the Lagrangian formulation of the local LWR model in the “zero-filter”
(nonlocal-to-local) limit. We present numerical simulations of the new model. One significant advantage of the proposed
model is that it allows for simple proofs of (i) estimates that do not depend on the “filter size” and (ii) the dissipation of
an arbitrary convex entropy.
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[13], which is a PDE that states that the total number of vehicles on a given stretch of road must remain
constant over time. This is expressed mathematically as a continuity equation, which relates the flow of
vehicles uV into and out of a given region to the change in the density u of vehicles within that region.
The LWR model also includes equations that describe how the speed V of vehicles changes over time t
and space x. These equations are based on the assumption that the speed V of a vehicle located at a
point x at time t is determined by the density u of vehicles at (t, x), V = V (u(t, x)), and that the speed
of a vehicle will tend to decrease as the density of surrounding vehicles increases, V ′(·) ≤ 0. We refer to
uV (u) as the flux function and the conservation law

∂tu + ∂x

(
uV (u)

)
= 0 (1.1)

as the original LWR model. There have been many generalisations of the LWR model over the years. For
a comprehensive discussion of traffic flow data and the various models used to mathematically represent
it, we recommend consulting the book [28].

The original LWR model is based on local PDEs, which means that the speed function V is determined
by the values of the car density at a single point x in space. There have been numerous efforts to
develop alternative speed functions. In particular, many authors examined nonlocal generalisations of the
original LWR model, taking into account the look-ahead distance of drivers in order to better model their
behaviour. Some models assume that drivers react to the mean downstream traffic density, while others
assume that they react to the mean downstream velocity. The corresponding nonlocal LWR models take
the form

∂tu + ∂x (uV (u)) = 0, ∂tu + ∂x

(
uV (u)

)
= 0, (1.2)

where, for a given integrable function v = v(x), v(x) :=
∫∞

x
Φα(y − x)v(y) dy. The anisotropic kernel

Φα characterizes the nonlocal effect through the “filter size” α > 0. It is a nonnegative, nonincreasing,

and C1 function defined on the nonnegative real numbers, and it has unit mass:
∞∫

0

Φα(x) dx = 1. Setting

Jα(x) := Φα(−x)χ(−∞,0](x), the function v(x) can be expressed as the convolution v �Jα(x), noting that
{Jα(x)}α>0 is an approximate identify (convolution kernel) that generally is discontinuous at x = 0. In
the formal limit α → 0 (the “zero-filter” limit), the nonlocal fluxes uV (u) and uV (u) converge to the
local flux uV (u) of original LWR model (1.1).

The mathematical study of conservation laws with nonlocal flux has gained significant attention in
recent years. A comprehensive list of references on this topic is beyond the scope of this text. Instead,
we refer the reader to the recent paper [10] (on weak solutions) and the references cited therein. Here
we only mention a few references [3,7,15,16] related to nonlocal conservation laws (1.2) that arise as
generalisations of the original LWR model. In particular, in [3,7,16] the authors establish the well-
posedness (of entropy solutions) and convergence of numerical schemes for the first equation in (1.2), as
well as a more general version of it. For modifications of these results to account for the second equation
in (1.2), see [15].

In general [11], solutions of nonlocal conservation laws like ∂tuα + ∂x

(
uαV (uα � Jα)

)
= 0, where Jα is

an arbitrary approximate identity and V is a Lipschitz function, do not converge to the entropy solution
of the corresponding local conservation law as the “filter size” α approaches zero. The counterexamples
in [11] do not exclude the possibility that convergence may still hold in specific cases. In particular, the
case where V ′(·) ≤ 0, the initial function is nonnegative, and the convolution kernel Jα is anisotropic,
specifically supported on the negative axis (−∞, 0]. This case corresponds to nonlocal traffic flow PDEs,
like the first one in (1.2). Recently, under assumptions like these, positive results have been obtained for
the zero-filter limit [4,5,9,12,20].

Traffic flow models can be divided into two categories: macroscopic models, which describe the flow
of vehicles on a roadway as a continuous fluid, and microscopic models, which describe the motion and
interactions of individual vehicles. LWR-type PDEs are examples of macroscopic traffic flow models, while
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microscopic models are often described using systems of differential equations, such as the Follow-the-
Leaders (FtL) model. In the FtL model, the velocity of each vehicle is determined by the velocity of the
vehicle in front of it. There is a (rigorous) connection between FtL models and hyperbolic conservation
laws, which has been studied in detail in the literature, see [14,18] and the references therein. In [6,8,24,
26], the authors provide links between nonlocal FtL models and macroscopic LWR-type equations (1.2).

Before we present our own model, it is helpful to briefly describe the nonlocal FtL models of [8,24,26].
Let xi(t), i ∈ Z, be the position of the ith car, ordering them so that xi+1(t) ≥ xi(t) + �, where � is the
(common) length of the cars. Set

ui(t) :=
�

xi+t(t) − xi(t)
, (1.3)

which is the local discrete density (or “car saturation”) perceived by the driver of car i ∈ Z. One of the
nonlocal FtL models of [24] asks that the car positions xi(t) satisfy the following system of differential
equations:

x′
i(t) = V (ui(t)) , i ∈ Z, t > 0, (1.4)

where

ui(t) :=
∞∑

j=0

Φijα(t)ui+j(t), Φijα(t) :=

xi+1+j(t)∫

xi+j(t)

Φα(ζ − xi(t)) dζ, i ∈ Z. (1.5)

In other words, the velocity of each vehicle is not only determined by the vehicle directly in front of it,
but also by the other vehicles in the surrounding (downstream) area. Replacing (1.4) by

x′
i(t) = V (ui(t)), i ∈ Z, t > 0, (1.6)

we obtain a slightly different FtL model. While drivers under model (1.4) react to the mean downstream
traffic saturation, drivers under model (1.6) react to the mean downstream velocity.

Nonlocal FtL model (1.4), (1.5) uses a weighted arithmetic mean of the (downstream) car-density
values to calculate the speed. There are several ways to aggregate a sequence of numbers. While the
arithmetic mean is a simple average calculated by adding up the values in a set and dividing by the
number of values, the harmonic mean is calculated by taking the reciprocal of the arithmetic mean of the
reciprocals of the values in a set. In view of the well-known harmonic mean-arithmetic mean inequality
[27, p. 126], the harmonic mean is generally a more conservative estimate of the average value in a set;
roughly speaking, the harmonic mean takes into account the “size” of the values in the set, while the
arithmetic mean does not.

In this paper we propose a nonlocal FtL model based on a weighted harmonic mean in the Lagrangian
coordinates. The governing differential equations are of the form

x′
i(t) = V

([
1

ui(t)

]−1
)

,
1

ui(t)
:=

∞∑

j=0

Φijα

ui+j(t)
, i ∈ Z, t > 0. (1.7)

Now the weights are determined by

Φijα :=

zi+1+j∫

zi+j

Φα(ζ − zi) dζ, j = 0, 1, 2, . . . , (1.8)

where zi := i� is the Lagrangian coordinate of the i-th car. Note carefully that the weights Φijα are
computed by averaging the kernel Φ(· − zi) (centred at car i) between the Lagrangian particles zi+j

(car i + j) and zi+1+j (car i + 1 + j). The cars are here labelled in the driving direction,1 so that the

1In some Lagrangian traffic models (see, e.g. [22]), the so-called cumulative count function N(x, t) is used, which
represents the number of cars that have passed a specific location (x) at a specific time (t), starting with a reference car
that is labelled as 1. As cars pass the observer, they are labelled in consecutive order (2, 3, 4, etc.), thereby labelling the
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weights Φijα decrease with the car number (increasing zi). Averaging between Lagrangian particles is
different from more traditional approach (1.5). The contrast between the position xi of car i and the
Lagrangian coordinate zi is that xi represents the actual physical position of the car in space, while zi is
a mathematical construct (labelling) used to describe the car’s position relative to other cars.

The corresponding macroscopic equation becomes

∂t

(
1

u(z, t)

)
− ∂zV

([
1

u(z, t)

]−1
)

= 0, z ∈ R, t > 0, (1.9)

where
1

u(z, t)
=

∞∫

z

Φα(ζ − z)
1

u(ζ, t)
dζ. (1.10)

In other words, in terms of the Lagrangian variable y = y(z, t) = 1
u(z,t) (“amount of road per car”, also

known as “spacing” or “gap” between cars), we obtain a nonlocal conservation law of the form

∂ty − ∂zW (y) = 0, y(z, t) =

∞∫

z

Φα(ζ − z)y(ζ, t) dζ, W (y) := V

(
1
y

)
. (1.11)

Formally, as the filter size α approaches zero, the local Lagrangian PDE ∂t(1/u) − ∂zV (u) = 0 is
obtained. This PDE can be transformed into Eulerian PDE (1.1) through a change of variable [29]. Non-
local LWR equations (1.1) are Eulerian models, while model (1.9) analysed in this paper is a Lagrangian
model. The main difference between the two is the coordinate system used. In Eulerian coordinates, traffic
is observed from a fixed point and the coordinates are fixed in space, while in Lagrangian coordinates,
traffic is observed from a car travelling with the flow and coordinates move with the cars. In Eulerian
coordinates, the main variable is density u as a function of space x and time t, while in the Lagrangian
formulation, it is spacing y as a function of “car number” z and time t (the smaller the spacing, the higher
the traffic density, and vice versa). Lagrangian traffic flow models have become increasingly important in
recent times, as advancements in technology have allowed for the collection of data via GPS, on-board
sensors, and smartphones. This provides more accurate Lagrangian traffic measurements.

We will see that the mathematical and numerical analysis of Lagrangian PDE (1.9) becomes fairly
simple, whereas its Eulerian counterpart leads to a complicated PDE that appears much harder to analyse
directly. Besides, we are able to rigourously justify the zero-filter limit of (1.9). More precisely, we show
the existence, uniqueness, and L1 stability of solutions to (1.9), for any fixed value of the filter size α > 0.
To prove the existence of a weak solution, we use approximate solutions obtained from the FtL model and
compactness arguments. The resulting solution is regular enough to make it easy to prove the uniqueness
and stability of the weak solution. A key aspect of our approach is that we derive estimates and strong
convergence for the filtered variable

w := y =

∞∫

z

Φα(ζ − z)y(ζ, t) dζ, (1.12)

rather than for the original variable y = 1/u itself. This allows for simple proofs of estimates that are
independent of the filter size α, which is at variance with the more traditional analyses of [3,7,15,16].
As a result, we can consider a sequence {wα = yα}α>0 of filtered solutions of (1.9) and show that a

cars in the opposite direction of their driving direction. By ordering the cars in the driving direction (as we do here), the
first car would be the one closest to the point of observation and the car numbering would increase as the cars move further
away from the point of observation. The corresponding cumulative count function Ñ(x, t) then represents the number of

cars that have yet to pass a certain point in the road at a given time. This means that the value of Ñ(x, ·) will decrease
over time as more cars pass the point of observation x, while N(x, ·) increases.
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subsequence converges strongly in L1
loc to a function w that is a solution of the (Lagrangian form) of

LWR Eq. (1.1). Besides, we demonstrate that wα dissipates any convex entropy function, which implies
that the limit w is the unique Kružkov entropy solution of the LWR equation. We even provide an explicit
rate of convergence, namely that ‖wα(t) − w(t)‖L1(R) ≤ C

√
α. It is worth noting that the zero-filter limit

has only recently been successfully studied in [9,12], but only for the first nonlocal conservation law in
(1.2). Our work provides a different approach for studying the alternative nonlocal Lagrangian model
(1.9), which is distinct from (1.2), and its zero-filter limit.

In this study, we also demonstrate that the variable yα converges strongly through the estimation of
wα − yα in the L1 norm for exponential kernels. Based on numerical experiments, the same appears to
be true for Lipschitz kernels. However, the convergence is not expected for general discontinuous kernels.
Our numerical experiments indicate that as α approaches zero, oscillations persist in the variable yα for
discontinuous kernels.

The paper is structured as follows: Sect. 2 analyses a fully discrete scheme for wα. Section 3 explores
the connection between yα = 1/uα and wα. Section 4 provides an Eulerian formulation for the discussed
Lagrangian PDE for easy comparison with existing literature. Section 5 examines the zero-filter limit.
Finally, Sect. 6 showcases numerical examples.

2. Analysis of a fully discrete scheme

In this section, we will present and analyse a fully discrete numerical approach based on nonlocal FtL
model (1.7). The numerical examples for this approach will be provided in Sect. 6. Before that, however,
we will list some properties of the averaging kernel Φα and the associated averaging operator.

Let Φ : R+ → R+ be a nonincreasing function such that
∞∫

0

Φ(z) dz = 1 and

∞∫

0

zΦ(z) dz < ∞. (2.1)

For α > 0 define
Φα(z) =

1
α

Φ
( z

α

)
, (2.2)

and for any suitable function h : R → R define

h(z) =

∞∫

z

Φα(ζ − z)h(ζ) dζ =

∞∫

0

Φα(ζ)h(z + ζ) dζ. (2.3)

We have that

h
′
(z) = h′(z) if h is differentiable,
∥
∥h
∥
∥

Lp(R)
≤ ‖h‖Lp(R) , p ∈ [1,∞],

h
′
(z) =

∞∫

0

Φ′
α(ζ) [h(z) − h(z + ζ)] dζ = −

∞∫

z

Φ′
α(ζ − z) [h(ζ) − h(z)] dζ,

if Φ is differentiable.
We shall consider a time-forward Euler discretization of the system of ODEs (1.7). We set Δz = � > 0

and employ the usual notation zj = (j − 1/2)Δz, j ∈ Z/2, z1/2 = 0, and λ = Δt/Δz, where Δt > 0 is
a sufficiently small (to be specified) number. Subtracting the equation for x′

i in (1.7) from that for x′
i+1

and dividing the result by Δz, we get

d

dt

( 1
ui(t)

)
=

1
Δz

(
V
( 1

ui+1

)
− V

( 1
ui

))
, (2.4)
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where

hi =
∑

j≥i

Φijαhj , Φijα =

zj+1/2∫

zj−1/2

Φα(ζ − zi−1/2) dζ, i ∈ Z,

and we have used (1.3). Semi-discrete scheme (2.4) represents an approximation of nonlocal Lagrangian
PDE (1.9). Throughout the paper, Φijα and Φi,j,α are used interchangeably, with either commas or no
commas in their notation.

To greatly facilitate the analysis, we will shift our focus from the variable y = 1/u to its filtered
counterpart by introducing

wi =
1
ui

, W (w) = V
( 1

w

)
, V ∈ C1([0,∞)) nonincreasing (2.5)

as previously mentioned in the introduction, cf. (1.12).
Applying the · operator to (2.4), we get

d

dt
wi =

1
Δz

(
W (wi+1) − W (wi)

)
, i ∈ Z.

We shall analyse the following scheme for this system of ODEs:

wn+1
i = wn

i + λ
(
W n

i+1/2 − W n
i−1/2

)
, n ≥ 0,

w0
i =

∑

j≥i

Φijαy0,j ,
i ∈ Z, (2.6)

where wn
i ≈ wi(nΔt) and

W n
i−1/2 =

∑

j≥i

ΦijαW (wn
j ), y0,i =

1
u0,i

=
xi+1(0) − xi(0)

�
.

It is readily verified that the infinite matrix Φijα satisfies

Φi−1,j−1,α =

zj−1/2∫

zj−3/2

Φα(ζ − zi−3/2) dζ =

zj+1/2∫

zj−1/2

Φα(ζ − zi−1/2) dζ = Φijα,

∑

j≥i

Φijα =
∑

j≥1

Φ1jα =
∑

j≥1

zj+1/2∫

zj−1/2

Φα(ζ) dζ =

∞∫

0

Φ(ζ) dζ = 1,

∑

i∈Z

∑

j≥i

Φijα μj =
∑

i∈Z

∞∑

k=1

Φi,i+k−1,α μi+k−1 =
∑

i∈Z

∞∑

k=1

Φ1,k,α μi+k−1 =
∑

j∈Z

μj

∞∑

k=1

Φ1,k,α

=
∑

i∈Z

μi,

∑

i∈Z

∣
∣
∣
∑

j≥i

Φijα μj

∣
∣
∣
p

≤
∑

i∈Z

|μj |p , 1 ≤ p < ∞,

sup
i∈Z

∣
∣
∣
∑

j≥i

Φijα μj

∣
∣
∣ ≤ sup

i∈Z

|μi| .

The following lemma demonstrates that scheme (2.6) for the filtered variable w = y adheres to the
classical monotonicity criteria of Harten, Hyman, and Lax. The monotonicity of the scheme ensures that
the numerical solution does not create spurious oscillations or produce unphysical values outside of the
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set of initial conditions. Note that the (exact) solution operator for the original variable y = 1/u is not
monotone.

Lemma 2.1. If Δt and Δx are chosen such that the CFL -condition

0 ≤ λ sup
w

W ′(w) ≤ 1 (2.7)

holds, then scheme (2.6) is monotone in the sense that

wn
i ≥ w̃n

i for all i ∈ Z =⇒ wn+1
i ≥ w̃n+1

i for all i ∈ Z,

where w̃n+1 is a corresponding solution of (2.6).

Proof. We compute

∂wn+1
i

∂wn
k

=

⎧
⎪⎨

⎪⎩

0, k < i,

1 − λΦiiαW ′(wi), k = i,

λ
(
Φikα − Φi,k+1,α

)
W ′(wk), k > i,

≥ 0,

if (2.7) holds, since Φiiα ≤ 1 and Φikα − Φi,k+1,α ≥ 0. �
As a direct result of the monotonicity, scheme (2.6) for the filtered variable w is also L1 contractive

(stable with respect to the initial data).

Corollary 2.2. Assume that CFL-condition (2.7) holds and let w̃n
i be the result of applying scheme (2.6)

to the initial data ỹ0,i. Then

Δz
∑

i

|wn
i − w̃n

i | ≤ Δz
∑

i

∣
∣w0

i − w̃0
i

∣
∣ = Δz

∑

i

|y0,i − ỹ0,i| .

Proof. Since the scheme is monotone, we can use the Crandall–Tartar lemma [17, Lemma 2.13] on the
set

Da,b =
{

{wi}i∈Z

∣
∣
∣ 1 ≤ wi < ∞, Δz

∑

i≤0

|wi − a| < ∞, Δz
∑

i≥0

|wi − b| < ∞
}

,

and conclude that the corollary holds. �
The monotonicity of scheme (2.6) for the filtered variable implies several basic estimates that are

independent of the filter size α. This is a key feature of using the filtered variable, as it allows for the
numerical scheme to be stable and well-balanced as α → 0. These estimates are not used to prove the
convergence of the scheme to the filtered version of nonlocal Lagrangian PDE (1.9) (for fixed α), but
rather to address the behaviour of the scheme in the limit as α approaches zero. This is important because
it helps to ensure consistency with the original LWR model. We will return to the zero-filter limit of (1.9)
in Sect. 5.

Corollary 2.3. Assume that CFL-condition (2.7) holds. Then

1 ≤ inf
i

y0,i ≤ wn
i ≤ sup

i
y0,i, (2.8)

∑

i

∣
∣wn

i+1 − wn
i

∣
∣ ≤
∑

i

|y0,i+1 − y0,i| , (2.9)

Δz
∑

i

∣
∣wn+1

i − wn
i

∣
∣ ≤ Δt ‖W ′‖L∞ |y0,·|BV . (2.10)

Proof. To prove (2.8), observe that the constants c = infi y0,i and C = supi y0,i are solutions to scheme
(2.6) and then apply monotonicity. To prove BV bound (2.9), set w̃n

i = wn
i+1 in Corollary 2.2. To prove

L1-continuity (2.10), choose w̃ = wn+1
i in Corollary 2.2 and calculate

Δz
∑

i

∣
∣wn+1

i − wn
i

∣
∣ ≤ Δz

∑

i

∣
∣w1

i − w0
i

∣
∣ = Δt

∑

i

∣
∣
∣W 0

i+1/2 − W 0
i−1/2

∣
∣
∣
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= Δt
∑

i

∣
∣
∣
∑

j≥i+1

Φi+1,j,αW (w0
j ) −

∑

j≥i

ΦijαW (w0
j )
∣
∣
∣

= Δt
∑

i

∣
∣
∣
∑

j≥i

ΦijαW (w0
j+1) −

∑

j≥i

ΦijαW (w0
j )
∣
∣
∣

≤ Δt
∑

i

∑

j≥i

Φijα

∣
∣W (w0

j+1) − W (w0
j )
∣
∣

≤ Δt ‖W ′‖∞
∑

i

∣
∣w0

j+1 − w0
j

∣
∣ ≤ Δt ‖W ′‖∞ |y0,·|BV .

�
Next, we will estimate the variations in space and time of the solution wn

i of scheme (2.6) for the
filtered variable w = y. These estimates will be dependent on the filter size α, but they will be sufficient
to demonstrate uniform convergence to a Lipschitz continuous limit wα(x, t) for a fixed value of α. As we
wish to bound the “derivatives” of wn

i , let us define

Δwn
j+1/2 = wn

j+1 − wn
j , ΔWj = W (wj+1) − W (wj) and ΔWj = Wj+1/2 − Wj−1/2,

and set
(Δŵ)n = sup

i

∣
∣
∣Δwn

i+1/2

∣
∣
∣ . (2.11)

Note that ΔWi =
∑

j≥i ΦijαΔWj .

Lemma 2.4. Assume that CFL-condition (2.7) holds. We have

(Δŵ)n ≤ (Δŵ)0 exp
(C

α
tn
)
, (2.12)

sup
i

∣
∣wn+1

i − wn
i

∣
∣ ≤ λ ‖W ′‖∞ (Δŵ)0 exp

(C

α
tn
)
, (2.13)

where tn = nΔt, (Δŵ)n is defined in (2.11), and the constant C is independent of n, Δz, and α.

Proof. We calculate
∣
∣
∣Δwn+1

i+1/2

∣
∣
∣ =
∣
∣
∣Δwn

i+1/2 + λ
(
ΔW n

j+1 − ΔW n
j

)∣∣
∣

≤
∣
∣
∣Δwn

i+1/2

∣
∣
∣+ λ

∣
∣
∣
∑

j≥i+1

Φi+1,j,αΔWn
j −

∑

j≥i

ΦijαΔWn
j

∣
∣
∣

=
∣
∣
∣Δwn

i+1/2

∣
∣
∣+ λ

∣
∣
∣
∑

j≥i+1

(Φi+1,j,α − Φijα) ΔWn
j − λΦ1,1,αΔWn

i

∣
∣
∣

≤
∣
∣
∣Δwn

i+1/2

∣
∣
∣− λ

∑

j≥1

(Φ1,j+1,α − Φ1,j,α)
∣
∣ΔWn

j

∣
∣+ λΦ1,1,α |ΔWn

i |

≤
∣
∣
∣Δwn

i+1/2

∣
∣
∣+ Δt ‖W ′‖∞

∑

j≥1

Φ1,j,α − Φ1,j+1,α

Δz

∣
∣
∣Δwn

j+1/2

∣
∣
∣+ Δt ‖W ′‖∞

Φ1,1,α

Δz

∣
∣
∣Δwn

j+1/2

∣
∣
∣

≤ (Δŵ)n

(
1 + Δt ‖W ′‖∞

(∑

j≥1

Φ1,j,α − Φ1,j+1,α

Δz
+

Φ1,1,α

Δz

))

= (Δŵ)n
(
1 + 2Δt ‖W ′‖∞

Φ1,1,α

Δz

)
,

which implies (2.12). We can also use this to prove (2.13),
∣
∣wn+1

i − wn
i

∣
∣ = λ

∣
∣
∣ΔW n

i+1/2

∣
∣
∣ ≤ λ

∑

j≥i

Φijα

∣
∣W (wn

j+1) − W (wn
j )
∣
∣
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≤ λ ‖W ′‖∞ (Δŵ)n
∑

j≥i

Φijα ≤ λ ‖W ′‖∞ (Δŵ)0 exp
(C

α
tn
)
.

�

The main theorem of this section states that the solutions to scheme (2.6) for the filtered variable
converge to a Lipschitz continuous weak solution of the filtered version of nonlocal Lagrangian PDE (1.9)
(for a fixed α). To assist the convergence proof, define wΔt,α(z, t) to be the bi-linear interpolation of the
points {(zi, t

n, wn
i )} with j ∈ Z and n ≥ 0.

Theorem 2.5. Let 0 < T < ∞ and assume that as Δt → 0, Δz → 0 in such a way that CFL condition
(2.7) is always satisfied. Let W (·) be defined by (2.5) and consider an initial function 1 ≤ y0 ∈ BV (R).
Let α > 0 be fixed and assume furthermore that the sequence of initial functions {wΔt,α(z, 0)}Δt>0 is
such that |∂zwΔt,α(z, 0)| ≤ M , where M does not depend on Δt (but on α). Suppose the averaging kernel
Φα satisfies (2.1), (2.2). Then there exists a Lipschitz continuous function wα : R× [0, T ] �→ R such that

lim
Δt→0

wΔt,α = wα in C(K × [0, T ]), ∀K ⊂⊂ R.

Moreover, wα is a weak (distributional) solution of
{

∂twα = ∂zW (wα), z ∈ R, 0 < t ≤ T,

wα(z, 0) = y0, z ∈ R,
(2.14)

where the averaging (overline) operator is defined by (2.3), i.e.
T∫

0

∫

R

wα(z, t)∂tϕ(z, t) − W (wα)∂zϕ(z, t) dzdt =
∫

R

wα(z, T )ϕ(z, T ) − wα(z, 0)ϕ(z, 0) dz

for all test functions ϕ ∈ C∞
0 (R × [0, T ]). The solution is uniquely determined by the initial data.

Proof. The uniform convergence wΔt,α → wα follows by the Arzelà-Ascoli theorem and Lemma 2.4.
For a fixed test function ϕ define

ϕn
i =

zi+1/2∫

zi−1/2

tn+1∫

tn

ϕ(z, t) dtdz,

and write (2.6) as
1

Δt

(
wn+1

i − wn
i

)− 1
Δz

(
W n

i+1/2 − W n
i−1/2

)
= 0.

Multiply this with ϕn
i , sum over n = 0, 1, . . . , N − 1, where NΔt = T , and over i ∈ Z and finally sum by

parts to arrive at

∑

i∈Z

N−1∑

n=1

wn
i

1
Δt

(
ϕn

i − ϕn−1
i

)−
∑

i∈Z

N−1∑

n=0

W n
i−1/2

1
Δz

(
ϕn

i − ϕn
i−1

)
=
∑

i∈Z

1
Δt

wN
i ϕN−1

i − 1
Δt

w0
i ϕ0

i .

If we insert the definition of ϕn
i

∑

i∈Z

N−1∑

n=1

wn
i

zi+1/2∫

zi−1/2

tn+1∫

tn

1
Δt

(ϕ(z, t) − ϕ(z, t − Δt)) dtdz

−
∑

i∈Z

N−1∑

n=0

W n
i−1/2

zi+1/2∫

zi−1/2

tn+1∫

tn

1
Δz

(ϕ(z, t) − ϕ(z − Δz, t)) dtdz
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=
∑

i∈Z

wN
i

zi+1/2∫

zi−1/2

1
Δt

tN∫

tN−1

ϕ(z, t) dtdz − w0
i

zi+1/2∫

zi−1/2

1
Δt

Δt∫

0

ϕ(z, t) dtdz. (2.15)

Now define the piecewise constant function (this is “omega”, not “double-u”)

ωΔt,α(z, t) = wn
i for (z, t) ∈ [zi−1/2, zi+1/2) × [tn, tn+1). (2.16)

Since wΔt,α is uniformly Lipschitz continuous with a Lipschitz constant L not depending on Δt we have
that |ωΔt,α(z, t) − wΔt,α(z, t)| ≤ LΔt. Furthermore

W n
i−1/2 =

∑

j≥i

ΦijαW (wn
j ) =

∑

j≥i

zj+1/2∫

zj−1/2

Φα(ζ − zi−1/2) dζW (wn
j )

=

∞∫

zi−1/2

Φα(ζ − zi−1/2)W (ωΔt,α(ζ, t)) dζ = W (ωΔt,α)(zi−1/2, t).

Since W is Lipschitz, it follows that W (ωΔt,α) converges a.e. and in L1
loc to W (wα). Additionally, as the

· operator is continuous in L∞, we also have that W (ωΔt,α) converges a.e. and in L1
loc to W (wα). Hence

also the piecewise constant function W defined by

WΔt(z, t) = W (ωΔt,α)(zi−1/2, t) for z ∈ [zi−1/2, zi+1/2),

will converge in L1
loc to W (wα) as Δt → 0. With this notation, (2.15) can be rewritten

∫

R

T∫

Δt

ωΔt,α(z, t)
1

Δt
(ϕ(z, t) − ϕ(z, t − Δt)) dtdz

−
∫

R

T∫

0

WΔt(z, t)
1

Δz
(ϕ(z, t) − ϕ(z − Δz, t)) dtdz

=
∫

R

ωΔt,α(z, T )
1

Δt

tN∫

tN −Δt

ϕ(z, t) dtdz −
∫

R

ωΔt,α(z, 0)
1

Δt

Δt∫

0

ϕ(z, t) dtdz. (2.17)

Now we can send Δt to 0 in (2.17) and conclude that wα is a (Lipschitz continuous) distributional solution
of (2.14).

Finally, the assertion of uniqueness follows directly from the L1 contraction principle stated in up-
coming Theorem 5.3. �

Finally, we will demonstrate a discrete entropy inequality for the filtered scheme. Although this in-
equality will not be used directly in our analysis, it serves as an important validation of the numerical
scheme (see also Corollary 2.3). The inequality shows that as the filter size becomes increasingly small,
the numerical scheme accurately captures the correct solution. This is a crucial aspect, as it ensures the
accuracy and well-balanced nature of the scheme used.

Lemma 2.6. If CFL-condition (2.7) holds, then for any constant c
∣
∣wn+1

i − c
∣
∣ ≤ |wn

i − c| + λ
∑

j≥i

Φijα

(
Qc(wn

j+1) − Qc(wn
i )
)
,

where Qc(w) = sign (w − c) (W (w) − W (c)).
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Proof. For w = {wi}i∈Z
we define

G(w)i = wi + λ
∑

j≥i

Φijα (W (wj+1) − W (wj)) ,

and observe that the mapping w �→ G(w) is monotone in the sense that if vi ≤ wi for all i, then
G(v)i ≤ G(w)i for all i. Using G the scheme reads wn+1

i = G (wn)i. Let c denote the constant vector
with all entries equal to the number c, max {a, b}i = max {ai, bi}, and min {a, b}i = min {ai, bi}. Then
we have

G (max {wn, c})i = max {wn
i , c} + λ

∑

j≥i

Φijα

(
W
(
max

{
wn

j+1, c
})− W

(
max

{
wn

j , c
}))

≤ max {G(wn)i, c} ,

G (min {wn, c})i = min {wn
i , c} + λ

∑

j≥i

Φijα

(
W
(
min

{
wn

j+1, c
})− W

(
min

{
wn

j , c
}))

≥ min {G(wn)i, c} .

Subtracting these inequalities we get
∣
∣wn+1

i − c
∣
∣ = max {G(wn)i, c} − min {G(wn)i, c}
≤ max {wn

i , c} − min {wn
i , c}

+ λ
∑

j≥i

Φijα

[(
W
(
max

{
wn

j+1, c
})− W

(
min

{
wn

j+1, c
}))

− (W (
max

{
wn

j , c
})− W

(
min

{
wn

j , c
}))]

= |wn
i − c| + λ

∑

j≥i

Φijα

(
Qc

(
wn

j+1

)− Qc (wn
i )
)
.

�

Recall that wα is the Lipschitz continuous weak solution of (2.14), which is the filtered version of
nonlocal Lagrangian PDE model (1.9). Using similar reasoning as in the proof of Theorem 2.5, it can
be demonstrated that wα satisfies the Kružkov entropy inequalities ∂t |wα − c| ≤ ∂zQc(wα), for c ∈ R.
In Sect. 5 we will show that a refined version of this entropy inequality is satisfied by any Lipschitz
continuous weak solution of (2.14).

Remark 2.7. The unique form of the “filtered equation”, i.e. nonlocal PDE (2.14), suggests it can be
interpreted as a fractional conservation law, where the spatial derivative is a fractional derivative operator.
Recent studies, such as those referenced in [1,2,19] and many other others, have explored perturbations of
conservation laws through the use of fractional diffusion or more general Lévy operators. This connection
will be further clarified in the following.

Recall that the transport part of nonlocal PDE (2.14) can be written in the form

∂zW (wα)(z, t) =

∞∫

0

(−Φ′
α

)
(ζ)
[
W (wα(z + ζ, t)) − W (wα(z, t))

]
dζ.

For motivational reasons, let us specify the kernel as Φα(z) = e−z/α/α. Then it follows that
(−Φ′

α

)
(z) =

Φα(z)/α and
∞∫

0

(−Φ′
α

)
(z) dz = 1/α, but note that

∞∫

0

z
(−Φ′

α

)
(z) dz = 1.

Introducing the measure π(dz) on R defined by

π(dz) =
(−Φ′

α

)
(z)χ(−∞,0](z) dz,
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which satisfies first moment condition
∫

R

|z| π(dz) < ∞, we may express the term ∂zW (wα)(z, t) as
∫

R

[
W (wα(z + ζ, t)) − W (wα(z, t))

]
π(dζ). Dropping the α-subscript, nonlocal PDE (2.14) now becomes

∂tw =
∫

R

[
W (w(z + ζ, t)) − W (w(z, t))

]
π(dζ).

The measure π(dz) depends discontinuously on the position z, which contrasts with studies such as
[1,2,19]. Aiming for a generalised traffic flow model, we may treat π(dζ) as a general Lévy measure,
which describes the distribution of jumps in a Lévy process. In particular, one-sided Lévy processes
(subordinators) may be relevant. A Lévy process is a stochastic process with independent and stationary
increments and can be thought of as an extension of Brownian motion. Lévy processes and fractional
derivatives can be used to model various types of anomalous diffusion phenomena, including the spread of
information in complex transportation systems impacted by factors such as network structure, individual
behaviour, and external disruptions. Fractional derivatives are nonlocal operators that account for long-
range interactions and memory effects. A famous example of a Lévy measure is provided by π(dz) =
|z|−(1+γ) χ|z|<1 dz, for γ ∈ (0, 2). This example is related to the fractional Laplacian Δα := −(−Δ)

γ
2 on

R. For more information on Lévy processes, including one-sided processes (subordinators), see [25].

3. The nonlocal Lagrangian PDE for y = 1/u

Let us discuss the relationship between the scheme for the filtered variable w = y and a (fully discrete)
scheme for the original variable y = 1/u. Assuming that the nonlocal operator · is invertible (which is
true for certain averaging kernels, such as Φα(z) = e−z/α/α), then we can directly recover the values
{yn

i } from the values {wn
i } computed via scheme (2.6). Alternatively, we can start from a fully discrete

version of (2.4) for yn
i = 1/un

i :

yn+1
i = yn

i + λ
(
W (wn

i+1) − W (wn
i )
)
, i ∈ Z, n ∈ N, (3.1)

where, for n = 0,
{
y0

i

}
is an approximation of the initial function y0 = 1/u0, and wn

i =
∑

j≥i Φijαyn
j ,

Φijα =
zj+1/2∫

zj−1/2

Φα(ζ − zi−1/2) dζ, i ∈ Z. This is an explicit upwind (Godunov-type) scheme for approxi-

mating solutions y = 1/u to nonlocal Lagrangian PDE (1.9). Applying the averaging operator · to (3.1)
leads to scheme (2.6) for the filtered variable wn

i = yn
i = 1

un
i
.

The (α-independent) bound of the subsequent lemma implies that scheme (3.1) converges weakly to
a limit yα, which will be proven later to be a solution of nonlocal PDE (1.11).

Lemma 3.1. Let 1 ≤ y0 ∈ BV (R) be given. If CFL-condition (2.7) holds, then

inf
z∈R

y0(z) ≤ yn
i ≤ sup

z∈R

y0(z), (3.2)

for every α > 0 and i ∈ Z, n ≥ 0, where {yn
i }i,n solves (3.1).

Proof. Introduce the notation

Ij =

zj+1∫

zj

Φα(ζ) dζ and An
i =

W (wn
i+1) − W (wn

i )
wn

i+1 − wn
i

≥ 0.

By a summation by parts, the scheme for yn
i (3.1) can be written

yn+1
i − yn

i = λ
(
W
(
wn

i+1

)− W (wn
i )
)

= λAn
i

(
wn

i+1 − wn
i

)
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= λAn
i

∞∑

j=1

Ij−1

(
yn

i+j − yn
i+j−1

)

= λAn
i

( ∞∑

j=1

(Ij−1 − Ij) yn
i+j − I0y

n
i

) (
I0 =

∞∑

j=1

(Ij−1 − Ij)
)

= λAn
i

∞∑

j=1

(Ij−1 − Ij)
(
yn

i+j − yn
i

)
,

or
yn+1

i = G(An
i , yn

i , yn
i+1, y

n
i+2, . . .),

with the bilinear function G defined by

G(A,y) = (1 − λAI0) y1 + λA

∞∑

j=1

(Ij−1 − Ij) yj+1 = y1 + λA

∞∑

j=1

(Ij−1 − Ij) (yj+1 − y1) ,

for a number A and a vector y = {yi}∞
i=1. Observe that G(A, y, y, y, . . .) = y and that for fixed A ≥ 0,

the map {yi} �→ G(A, {yi}) (by the CFL-condition and the fact that Ij−1 ≥ Ij) is monotone increasing
in each argument y1, y2, y3, . . .. Set

y̌ = inf
i∈Z

yn
i and ŷ = sup

i∈Z

yn
i .

For any i ∈ Z and any n ≥ 0

y̌ = G (An
i , y̌, y̌, y̌, . . .) ≤ G

(
An

i , yn
i , yn

i+1, y
n
i+2, . . .

)

= yn+1
i = G

(
An

i , yn
i , yn

i+1, y
n
i+2, . . .

) ≤ G (An
i , ŷ, ŷ, ŷ, . . .) = ŷ.

Hence infi∈Z yn
i ≤ infi∈Z yn+1

i ≤ supi∈Z
yn+1

i ≤ supi∈Z
yn

i , and the lemma follows by induction. �
We denote by wΔt,α(z, t) the bi-linear interpolation of the points {(zi, t

n, wn
i )} with j ∈ Z, n ≥ 0,

and tn = nΔt, recalling (3.1). Based on Theorem 2.5, we conclude that wΔt,α(z, t) converges uniformly
on compacts to a Lipschitz continuous limit wα(z, t) as Δt → 0. The piecewise constant interpolation
of the points {(zi, t

n, wn
i )} is denoted by ωΔt,α(z, t), and it converges a.e. and thus in L1(K × [0, T ]),

∀K ⊂⊂ R. The piecewise constant interpolation of the points {(zi, t
n, yn

i )} is denoted by yΔt,α(z, t).
Due to estimate (3.2), yΔt,α is bounded in L∞(R × R+) uniformly in Δt (and α). Hence, there exists
a subsequence {yΔtm,α}m∈N

that converges weak-� in L∞(R × R+) to some limit yα. This implies that
the functions yα, wα satisfy (weakly) nonlocal Lagrangian PDE (1.11) with wα = yα. By the uniqueness
of solutions (from Remark 3.3), the entire sequence {yΔt,α} converges. In summary, we have proved the
following proposition:

Proposition 3.2. Suppose the assumptions of Theorem 2.5 hold. There exists a pair
(
yα, wα

)
, with 1 ≤

yα ∈ L∞(R×R+) and wα ∈ (Liploc ∩L∞)(R×R+), such that the following convergences hold as Δt → 0
(with α > 0 fixed):

yΔt,α → yα weak − � in L∞(R × R+),
wΔt,α → wα uniformly on compacts of R × R+.

Besides,
(
yα, wα

)
is a weak solution of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tyα = ∂zW (wα), z ∈ R, t > 0,

wα(z, t) =

∞∫

z

Φα (ζ − z) yα(ζ, t) dζ, z ∈ R, t > 0,

yα(z, 0) = y0(z), z ∈ R.

(3.3)
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Weak solutions from the class L∞(R × R+) × (Liploc ∩L∞)(R × R+) are uniquely determined by their
initial data.

Remark 3.3. To conclude this section, we examine the stability of nonlocal Lagrangian PDE (3.3) in
response to perturbations in the averaging kernel Φ. Suppose Φ1 and Φ2 both adhere to the same as-
sumptions outlined in (2.1) as Φ. Consider the solutions y1,α and y2,α to (3.3) with Φ1,α and Φ2,α as
the averaging kernels, see (2.2), and y1,0, y1,0 as the initial data. A simple calculation yields the stability
estimate

‖y1,α(·, t) − y2,α(·, t)‖L1(R) ≤ect/α ‖y1,0 − y2,0‖L1(R)

+ cα
(
ect/α − 1

) ‖Φ1 − Φ2‖L1(R) + c
(
ect/α − 1

) ‖Φ′
1 − Φ′

2‖L1(R) .

where c does not depend on α.

4. Eulerian formulation

One can transform nonlocal Lagrangian PDE (3.3)—or (1.9)—into an Eulerian PDE via a change of
variable, assuming that smooth solutions exist. However, this results in a complex and difficult-to-analyse
Eulerian PDE. We only display this PDE here to highlight differences from other nonlocal Eulerian traffic
flow equations, like (1.2). Wagner’s result [29] provides a rigourous framework for converting Lagrangian
PDEs to Eulerian PDEs for weak solutions.

The Eulerian form of (1.9) reads

∂tũ + ∂x

(

ũ V

([
1

ũ(x, t)

]−1
))

= 0, (4.1)

1
ũ(x, t)

=

∞∫

x

Φα

⎛

⎝
σ∫

x

ũ(θ, t) dθ

⎞

⎠ dσ. (4.2)

We may rewrite (4.2) in a slightly clearer form. Since 0 < u∗ ≤ ũ ≤ 1, the function σ �→
σ∫

x

ũ(θ, t) dθ is

invertible and
∞∫

x

ũ(θ, t) dθ = ∞. Therefore, we may express 1
ũ at the point (x, t) as a weighted harmonic

mean of ũ around different points � �→ (
σ(�, x, t), t

)
:

1
ũ(x, t)

=

∞∫

0

Φα (�)
1

ũ(σ(�, x, t), t)
d�, (4.3)

where σ(�, x, t) satisfies � =
σ(�,x,t)∫

x

ũ(θ, t) dθ; the new variable � should not be confused with the �

appearing in (1.3).

Remark 4.1. Formally, by sending α → 0 in (4.1) and (4.2), we arrive at local LWR equation (1.1). To

see this, note that the relation � =
σ∫

x

ũ(θ, t) dθ implies 0 =
σ(0,x,t)∫

x

ũ(θ, t) dθ, from which we conclude that

σ(0, x, t) = x. As a result, sending α → 0 in (4.3) yields
∞∫

0

Φα (�)
1

ũ(σ(�, x, t), t)
d� −→ 1

ũ(σ(0, x, t), t)
=

1
ũ(x, t)

,

and then (4.1) becomes (1.1): ∂tũ + ∂x

(
ũV (ũ)

)
= 0.
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Under the assumption of smooth solutions, we will outline a derivation of (4.1) and (4.2). For a
derivation that works for weak solutions, see [29]. Let ψt(z) satisfy

∂zψt(z) =
1

u(z, t)
, ∂tψt(z) = V

([
1

u(z, t)

]−1
)

. (4.4)

Denote by ψ−1
t (·) the inverse of ψt(·), so that

ψt(ψ−1
t (x)) = x. (4.5)

Define
ũ(x, t) = u(ψ−1

t (x), t). (4.6)
Differentiating (4.5) with respect to x yields ∂zψt(ψ−1

t (x))∂xψ−1
t (x) = 1. Thus, by (4.4), ∂xψ−1

t (x) equals
1/∂zψt(ψ−1

t (x)) = u(ψ−1
t (x), t), and, thanks to (4.6),

∂xψ−1
t (x) = ũ(x, t). (4.7)

Differentiating (4.5) with respect to t yields ∂zψt(ψ−1
t (x))∂tψ

−1
t (x) + ∂tψt(ψ−1

t (x)) = 0. Hence, using
(4.4) and (4.6),

∂tψ
−1
t (x) = −u(ψ−1

t (x), t)V

([
1

u(ψ−1
t (x), t)

]−1
)

= −ũ(x, t)V

([
1

ũ(x, t)

]−1
)

. (4.8)

Using (4.6), (4.8), and (1.9) to express ∂tu(z, t) as −u2(z, t)∂zV
( [

1
u(z,t)

]−1 )
, we obtain

∂tũ(x, t) = ∂zu(ψ−1
t (x), t)∂tψ

−1
t (x) + ∂tu(ψ−1

t (x), t)

= −∂zu(ψ−1
t (x), t)u(ψ−1

t (x), t)∂zV

([
1

u(ψ−1
t (x), t)

]−1
)

− u2(ψ−1
t (x), t)V

([
1

u(ψ−1
t (x), t)

]−1
)

= −u(ψ−1
t (x), t)∂z

(

u(ψ−1
t (x), t)V

([
1

u(ψ−1
t (x), t)

]−1
))

.

In view of (4.7) and (4.6), this yields

∂tũ(x, t) = −∂xψ−1
t (x)∂z

(

u(ψ−1
t (x), t)V

([
1

u(ψ−1
t (x), t)

]−1
))

= −∂x

(

u(ψ−1
t (x), t)V

[
1

u(ψ−1
t (x), t)

]−1
)

= −∂x

(

ũ(x, t)V

([
1

ũ(x, t)

]−1
))

,

which is (4.1). Furthermore, using (4.6) and (1.10),

1
ũ(x, t)

=
1

u(ψ−1
t (x), t)

=

∞∫

ψ−1
t (x)

Φα

(
ζ − ψ−1

t (x)
) 1

u(ζ, t)
dζ.

Introduce the change of variable ζ = ψ−1
t (σ) for σ ∈ [x,∞), so that dζ = ∂xψ−1

t (σ) dσ = ũ(σ, t) dσ,
cf. (4.7) and (4.6). Then

1
ũ(x, t)

=

∞∫

x

Φα

(
ψ−1

t (σ) − ψ−1
t (x)

)
dσ =

∞∫

x

Φα

⎛

⎝
σ∫

x

∂xψ−1
t (θ) dθ

⎞

⎠ dσ
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=

∞∫

x

Φα

⎛

⎝
σ∫

x

ũ(θ, t) dθ

⎞

⎠ dσ,

which is (4.2).

Remark 4.2. For comparative purposes, let us discuss the relationship between Lagrangian and Eulerian
variables in the “standard” nonlocal traffic flow equations (1.2), starting with the first equation. The
macroscopic Lagrangian model corresponding to nonlocal FtL model (1.4) is

∂t

(
1

u(z, t)

)
− ∂zV (u(z, t)) = 0, z ∈ R, t > 0,

where

u(z, t) =

∞∫

ψt(z)

Φα(ζ − ψt(z))u(ψ−1
t (ζ), t) dζ, (4.9)

and ψt(z) satisfies the equations

∂zψt(z) =
1

u(z, t)
, ∂tψt(z) = V (u(z, t)) .

By repeating the steps that led to (4.1) and (4.2), with necessary adjustments to account for the differences
between (1.10) and (4.9), we derive the first Eulerian PDE in (1.2) for the function ũ(x, t) = u(ψ−1

t (x), t).
These adjustments include expressing (4.9) as

ũ(x, t) = u(ψ−1
t (x), t) =

∞∫

ψt(z)

Φα(ζ − ψt(z))u(ψ−1
t (ζ), t) dζ =

∞∫

x

Φα(ζ − x)ũ(ζ, t) dζ.

Similarly, the macroscopic Lagrangian model corresponding to (1.6) takes the form

∂t

(
1

u(z, t)

)
− ∂zV (u(z, t)) = 0, z ∈ R, t > 0,

where

V (u(z, t)) =

∞∫

ψt(z)

Φα(ζ − ψt(z))V (u(ψ−1
t (ζ), t)) dζ,

and ψt(z) satisfies

∂zψt(z) =
1

u(z, t)
, ∂tψt(z) = V (u(z, t)).

Using the same reasoning, the second Eulerian PDE in (1.2) is derived.

5. Zero-filter limit of the nonlocal model

In this section, we will examine a sequence of Lipschitz continuous weak solutions wα, indexed by the
filter size α > 0, of the filtered version of nonlocal Lagrangian PDE (1.9), see (2.14) and Theorem 2.5.
We will prove that these solutions have α-independent estimates, precise entropy equalities, and converge
to the unique entropy solution of original LWR equation (1.1) in Lagrangian coordinates.

Let (η,Q) be an entropy/entropy-flux pair, i.e. η is a convex, twice continuously differentiable function
and Q is a function satisfying Q′(w) = η′(w)W ′(w). Multiply (2.14) with η′(w(z, t)) to get

∂tη(wα) = ∂zQ(wα) + η′(wα)∂zW (wα) − ∂zQ(wα)
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= ∂zQ(wα)

+

∞∫

0

Φ′
α(ζ)

[
(η′(wα(z, t))W (wα(z, t)) − Q(wα(z, t)))

− (η′(wα(z, t))W (wα(z + ζ, t)) − Q(wα(z + ζ, t)))
]
dζ

= ∂zQ(wα) +

∞∫

0

Φ′
α(ζ)H(wα(z, t), wα(z + ζ, t)) dζ,

where, recalling that W ′(·) ≥ 0,

H(a, b) =
[(

η′(a)W (a) − Q(a)
)− (η′(a)W (b) − Q(b)

)]

=

a∫ (
η′(a) − η′(σ)

)
W ′(σ) dσ −

b∫ (
η′(a) − η′(σ)

)
W ′(σ) dσ

=

b∫

a

(
η′(σ) − η′(a)

)
W ′(σ) dσ =

b∫

a

σ∫

a

η′′(μ) dμW ′(σ) dσ ≥ 0.

Since Φ′
a ≤ 0, we have proved that a solution wα of (2.14) satisfies an entropy (in)equality.

Theorem 5.1. Let wα be a Lipschitz continuous distributional solution of (2.14), see Theorem 2.5. Then
for any entropy/entropy-flux pair (η,Q)

∂tη(wα(z, t)) + D(z, t) = ∂zQ(wα)(z, t), (5.1)

where

D(z, t) =

∞∫

0

(−Φ′
α

)
(ζ)

wα(z+ζ,t)∫

wα(z,t)

σ∫

wα(z,t)

η′′(μ)W ′(σ) dμ dσ dζ ≥ 0.

Remark 5.2. For concrete choices of the entropy η we obtain more precise estimates. If we suppose
infμ,σ[η′′(μ)W ′(σ)] ≥ 2c > 0 for some constant c, then

b∫

a

σ∫

a

η′′(μ) dμW ′(σ) dσ ≥ c(b − a)2,

and consequently

D(z, t) ≥ c

∞∫

0

(−Φ′
α

)
(ζ)
(
wα(z + ζ, t) − wα(z, t)

)2
dζ (≥ 0).

For example, specifying η(w) = w2/2 and integrating (5.1) over [−R,R]× [0, T ], we obtain the additional
a priori estimate

T∫

0

R∫

−R

∞∫

0

(−Φ′
α

)
(ζ)
(
wα(z + ζ, t) − wα(z, t)

)2
dζ dz dt ≤ CR.

If we use the Kružkov entropy

η(w) = |w − k| , η′(w) = sign (w − k) , η′′(w) = 2δk(w),
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we obtain

H(wα(z, t), wα(z + ζ, t)) =

{
2 |wα(z + ζ, t) − wα(z, t)| if k is between wα(z, t) and wα(z + ζ, t),
0 otherwise.

Thus for this choice

D(z, t) = 2

∞∫

0

(−Φ′
α

)
(ζ) |wα(z + ζ, t) − wα(z, t)| χ[m(z,ζ),M(z,ζ)](ζ) dζ,

where χI denotes the indicator function of the interval I and

m(z, ζ) = min {wα(z + ζ, t), wα(z, t)} , M(z, ζ) = max {wα(z + ζ, t), wα(z, t)} .

Next we demonstrate that the Lipschitz continuous weak solutions of filtered PDE (1.9) exhibit con-
tinuity with respect to the initial data in the L1 norm. Specifically, we show that the solution operator
is L1 contractive. It is important to note that solutions of (2.14) cannot be integrated over R. However,
the theorem below demonstrates that the difference between two solutions, if they are initially integrable,
will be integrable over R at later times.

Theorem 5.3. Let wα be a solution of (2.14) and let vα be another solution with initial data r0, see
Theorem 2.5. If y0 − r0 ∈ L1(R), then wα(·, t) − vα(·, t) ∈ L1(R) for t > 0, and

‖wα(·, t) − vα(·, t)‖L1(R) ≤ ‖y0 − r0‖L1(R) .

In particular, Lipschitz continuous weak solutions are uniquely determined by their initial data.

Proof. Subtracting the equation for vα from that of wα we get

∂t (wα − vα) = ∂z

(
W (wα) − W (vα)

)
.

Using the notation ΔW (z, t) = W (wα(z, t))−W (vα(z, t)), we multiply this with sign (wα(z, t) − vα(z, t)) =
sign (ΔW (z, t)) and get

∂t |wα − vα| = sign (wα − vα) ∂z

(
W (wα) − W (vα)

)

=

∞∫

0

Φ′
α(ζ) sign (ΔW (z, t)) (ΔW (z, t) − ΔW (z + ζ, t)) dζ

≤
∞∫

0

Φ′
α(ζ) (|ΔW (z, t)| − |ΔW (z + ζ), t|) dζ

= ∂z

∞∫

0

Φα(ζ) |ΔW (z + ζ, t)| dζ = ∂z|W (wα) − W (vα)|. (5.2)

Let δ > 0 be a constant, define fδ(z) = e−δ|z|, and observe that

f ′
δ(z) = −δ sign (z) fδ(z), |f ′

δ(z)| ≤ δfδ(z).

Multiply (5.2) with fδ(z) and integrate in z to get
d

dt

∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz ≤ −
∫

R

f ′
δ(z)|ΔW |(z, t) dz = δ

∫

R

sign (z) fδ(z)|ΔW |(z, t) dz

≤ δ

∞∫

0

fδ(z)|ΔW |(z, t) dz
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= δ

∞∫

0

fδ |ΔW |(z, t) dz + δ

∞∫

0

fδ(z)|ΔW |(z, t) − fδ |ΔW |(z, t) dz

≤ δ ‖W ′‖∞

∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz

+ δ

∞∫

0

∞∫

0

Φα(ζ) (fδ(z) − fδ(z + ζ)) |ΔW (z + ζ, t)| dζdz

= δ ‖W ′‖∞

∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz

+ δ

∞∫

0

∞∫

0

Φα(ζ)e−δz
(
1 − e−δζ

) |ΔW (z + ζ, t)| dζdz

≤ δ ‖W ′‖∞

∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz

+ M

∞∫

0

Φα(ζ)
(
1 − e−δζ

)
dζ

≤ δ ‖W ′‖∞

∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz + Mδ

∞∫

0

Φα(ζ)ζ dζ

= δ ‖W ′‖∞

∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz + Mδcα,

where M is a bound on |ΔW | and c =
∞∫

0

Φ(ζ)ζ dζ < ∞, see (2.1). We invoke Gronwall’s inequality and

obtain
∫

R

fδ(z) |wα(z, t) − vα(z, t)| dz ≤ eδ‖W ′‖∞t

∫

R

fδ(z) |wα(z, 0) − vα(z, 0)| dz

+
Mcα

‖W ′‖∞

(
eδ‖W ′‖∞t − 1

)
.

Since wα(·, 0) − vα(·, 0) ∈ L1(R), we can use the monotone convergence theorem to take the limit as
δ → 0, and this concludes the proof. �

The following lemma presents three estimates that do not depend on the parameter α, and when
taken together, they imply the local L1 precompactness of the sequence {wα}α>0. These estimates are
modelled on the discrete estimates from Corollary 2.3.

Lemma 5.4. Let wα be the unique Lipschitz continuous solution of (2.14), see Theorem 2.5. Then the
following α-independent estimates hold:

inf
x

y0(z) ≤ wα(z, t) ≤ sup
z

y0(z, t), (5.3)

|wα(·, t)|BV (R) ≤ |y0|BV (R) , (5.4)

‖wα(·, t) − wα(·, s)‖L1(R) ≤ |t − s| ‖W ′‖∞ |y0|BV (R) . (5.5)
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Proof. Note the translation invariance of Φα in · , see the second part of (2.3). Consequently, choosing
vα(z, 0) = wα(z + ζ, 0) in Theorem 5.3, we conclude that |wα(·, t)|BV (R) ≤ |wα(·, 0)|BV (R) ≤ |y0|BV (R).
This proves (5.4).

To prove (5.5), for t > s we calculate

‖wα(·, t) − wα(·, s)‖L1(R) ≤
∫

R

t∫

s

∣
∣
∣∂zW (wα)(z, τ)

∣
∣
∣ dτ dz

≤
t∫

s

∫

R

|∂zW (wα(z, τ))| dz dτ

≤ ‖W ′‖∞

t∫

s

|wα(·, τ)|BV (R) dτ ≤ (t − s) ‖W ′‖∞ |y0|BV (R) .

It remains to prove (5.3). Let a+ = max {a, 0} and H(a) be the Heaviside function. By an approxi-
mation argument, the functions

η(w) = (w − k)+ , Q(w) = H(w − k)(W (w) − W (k)), k ∈ R,

are admissible entropy/entropy-flux pairs. Since W is nondecreasing, Q(w) = (W (w) − W (k))+. Using
the notation of, and arguments similar to, the proof of Theorem 5.3 we find

d

dt

∫

R

fδ(z)η(wα(z, t)) dz ≤ −
∞∫

0

f ′
δ(z)Q(wα)(z, t) dz

= δ

∞∫

0

fδQ(wα)(z, t) dz + δ

∞∫

0

fδ(z)Q(wα)(z, t) − fδQ(wα)(z, t) dz

≤ δ

∫

R

fδ(z)Q(wα(z, t)) dz

+ δ

∞∫

0

∞∫

0

Φα(ζ) (fδ(z) − fδ(z + ζ)) Q(wα(z + ζ, t)) dζ dz

≤ δ ‖W ′‖∞

∫

R

fδ(z)η(wα(z, t)) dz + Mδcα,

where now M is a bound on Q. Next, Gronwall’s inequality yields
∫

R

fδ(z)η(wα(z, t)) dz ≤ eδ‖W ′‖∞t

∫

R

fδ(z)η(wα(z, 0)) dz +
Mcα

‖W ′‖∞

(
eδ‖W ′‖∞t − 1

)
.

Thus if wα(z, 0) < k for almost all z then
∫

R

fδ(z)η(wα(z, t)) dz ≤ Mcα

‖W ′‖∞

(
eδ‖W ′‖∞t − 1

)
,

for all δ > 0. We send δ → 0 and conclude that if wα(z, 0) < k for almost all z, then wα(z, t) < k for
almost all z. The other inequality is proved using η(w) = (w − k)− and analogous arguments. �

Consider now the scalar conservation law

∂tw = ∂zW (w), w(·, 0) = y0, z ∈ R, t > 0, (5.6)
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which coincides with original LWR Eq. (1.1) written in Lagrangian coordinates, where W (·) = V (1/w),
see (2.5), and V is the local speed function. By a solution of (5.6) we mean a distributional solution, i.e.
a function w = w(z, t) such that w ∈ C([0, T ];L1

loc(R)) ∩ L∞(R × [0, T ]), T > 0, and
T∫

0

∫

R

w∂tϕ − W (w)∂zϕdzdt =
∫

R

w(z, T )ϕ(z, T ) − y0(z)ϕ(z, 0) dz,

for all test functions ϕ ∈ C∞
0 (R × [0, T ]).

By an entropy solution of (5.6) we mean a weak solution which also satisfies
T∫

0

∫

R

η(w)∂tϕ − Q(w)∂zϕdzdt ≥
∫

R

η(w(z, T ))ϕ(z, T ) − η(y0(z))ϕ(z, 0) dz, (5.7)

for all entropy/entropy-flux pairs (η,Q) and all non-negative test functions in ϕ ∈ C∞
0 (R × [0, T ]). If

y0 ∈ BV (R) (for example), there exists such unique entropy solution w of (5.6) [21].
By Lemma 5.4 the set {wα}α>0 is precompact in C([0, T ];L1

loc(R)), see e.g. [17, Theorem A.11]. Let
{α} be some subsequence such that w = limα→0 wα exists.

The following theorem demonstrates that the limit w satisfies the entropy inequalities, which identify
the unique weak solution of (5.6). The fact that there is only one solution means that the entire sequence
{wα} converges to w, rather than just a subsequence of it.

Theorem 5.5. Consider W (·) defined by (2.5) and an initial function y0 ∈ BV (R) such that 1 ≤ y0.
Suppose the averaging kernel Φα satisfies the conditions in (2.1) and (2.2). Then the limit w = limα→0 wα

coincides with the unique entropy solution to (5.6).

Proof. Let ϕ be a non-negative test function and define

Υ(w) =

T∫

0

∫

R

η(w)∂tϕ − Q(w)∂zϕdzdt −
∫

R

η(w(z, T ))ϕ(z, T ) − η(y0(z))ϕ(z, 0) dz,

Υα(w) =

T∫

0

∫

R

η(w)∂tϕ − Q(w)∂zϕdzdt −
∫

R

η(w(z, T ))ϕ(z, T ) − η(y0(z))ϕ(z, 0) dz.

By Theorem 5.1 Υα(wα) ≥ 0. We write Υ(w) ≥ Υα(wα)−|Υα(wα) − Υ(w)| ≥ − |Υα(wα) − Υ(w)|. Since
wα → w in C([0, T ];L1(R)), it is easily shown that |Υα(wα) − Υ(w)| → 0 as α → 0. Hence the limit w
satisfies entropy inequality (5.7) which implies that w is a weak solution. �

We have shown that wα(·, t) → w(·, t) in L1
loc as α → 0. By employing Kuznetsov’s lemma [17,

Theorem 3.14] we can demonstrate that wα → w at a rate. For simplicity, we assume that lim|z|→∞ y0(z) =
c for some constant c. Since vα = c is a solution of (2.14), Theorem 5.3 ensures that wα(·, t) − c ∈ L1(R).
Since w solves scalar conservation law (5.6), by finite speed of propagation, w(·, t) − c ∈ L1(R) and thus
wα(·, t)−w(·, t) ∈ L1(R). To state Kuznetsov’s lemma, we need some notation. Let (η,Q) be the Kružkov
entropy/entropy-flux pair

η(w) = |w − k| , Q(w, k) = |W (w) − W (k)| ,
and let

ΛT (w,ϕ, k) =

T∫

0

∫

R

η(w(z, t))∂tϕ(z, t) − Q(w(z, t), k)∂zϕ(z, t) dzdt

−
∫

R

η(w(z, T ))ϕ(z, T ) − η(y0(z))ϕ(z, 0) dz.



   66 Page 22 of 31 G. M. Coclite, K. H. Karlsen and N. H. Risebro ZAMP

Let ωε be a standard mollifier and define the test function

Ωε0,ε(z, z′, t, t′) = ωε0,ε(t − t′)ωε(z − z′).

Let wα be the unique solution of (2.14) and let w be the entropy solution of (5.6). Observe that w and
wα share the same initial data. Finally define

Λε0,ε(wα, w) =

T∫

0

∫

R

ΛT (wα,Ω(·, t′, ·, z′) , w (z′, t′)) dz′ dt′.

Since we know that |w(·, t)|BV (R) ≤ |y0|BV (R) and |wα(·, t)|BV (R) ≤ |y0|BV (R), in this context Kuznetsov’s
lemma reads

‖wα(·, t) − w(·, t)‖L1(R) ≤ 2 (ε + ‖W ′‖∞ ε0) |y0|BV (R) − Λε0,ε(wα, w).

This can be used to prove the following result quantifying the convergence wα → w.

Theorem 5.6. Suppose the assumptions of Theorem 5.5 hold. Let wα and w be solutions, respectively, of
(2.14) and (5.6). Then

‖wα(·, t) − w(·, t)‖L1(R) ≤ 2
√

2T ‖W ′‖∞ |y0|BV (R) α, for t ≤ T.

Proof. Using Theorem 5.1

−Λε0,ε(wα, w) = − Λε0,ε(w,wα) + Λε0,ε(w,wα) − Λε0,ε(wα, w)

≤ ∣∣Λε0,ε(w,wα) − Λε0,ε(wα, w)
∣
∣ ,

where

Λε0,ε(wα, w) =

T∫

0

∫

R

T∫

0

∫

R

|wα(z, t) − w(z′, t′)| ∂tΩ(z, z′, t, t′)

− Q(wα, w(z′, t′))(z, t)∂zΩ(z, z′, t, t′) dzdt dz′dt′

−
T∫

0

∫

R

∫

R

|wα(z, T ) − w(z′, t′)| Ω(z, z′, T, t′)

− |wα(z, 0) − w(z′, t′)| Ω(z, z′, 0, t′) dz dz′dt′.

Thus

Λε0,ε(w,wα) − Λε0,ε(wα, w) =

T∫

0

∫

R

T∫

0

∫

R

(
Q(wα(z, t), w(z′, t′)) − Q(wα, w(z′, t′))(z, t)

)

× ∂zΩ(z, z′, t, t′) dzdt dz′dt′.

Regarding the difference Q( ) − Q( ),

∣
∣
∣Q(wα(z, t), w(z′, t′)) − Q(wα, w(z′, t′))(z, t)

∣
∣
∣ =
∣
∣
∣

∞∫

0

Φα(ζ)
(
Q(wα(z, t), w(z′, t′))

− Q(wα(z + ζ, t), w(z′, t′))
)
dζ
∣
∣
∣

≤ ‖W ′‖∞

∞∫

0

Φα(ζ) |wα(z + ζ, t) − wα(z, t)| dζ.
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Therefore we can proceed as follows:

−Λε0,ε(wα, w) ≤ ‖W ′‖∞

T∫

0

∫

R

T∫

0

∫

R

∞∫

0

Φα(ζ) |wα(z + ζ, t) − wα(z, t)|

× ωε0(t − t′)ω′
ε(z − z′) dζ dzdt dz′dt

≤ ‖W ′‖∞

T∫

0

∞∫

0

Φα(ζ)ζ |y0|BV (R)

1
ε

dζ dt

≤ T ‖W ′‖∞ |y0|BV (R)

α

ε
,

where we have used (2.1). Hence

‖wα(·, t) − w(·, t)‖L1(R) ≤ 2ε + T ‖W ′‖∞ |y0|BV (R)

α

ε
,

for ε > 0. Minimising the right-hand side over ε concludes the proof. �

Theorems 5.5 and 5.6 state that as the filter size α approaches 0, the filtered variables wα, which
are equal to yα, converge strongly in L1

loc to the entropy solution of LWR conservation law (5.6). By
Proposition 3.2, we know only that yα converges weakly. The question of whether the Lagrangian variables
yα (spacing between cars) also converge strongly is a natural one, and our next result shows that this is
true when using the exponential kernel.

Corollary 5.7. Suppose the assumptions of Theorem 5.5 hold, and specify Φ(ζ) = e−ζ . Let yα and w be
solutions, respectively, of (3.3) and (5.6). Then

‖yα(·, t) − w(·, t)‖L1(R) ≤ α |y0|BV (R) + 2
√

2T ‖W ′‖∞ |y0|BV (R) α, for t ∈ [0, T ].

Proof. Due to the special choice of the function Φ we have the identity −α∂zwα + wα = yα. Thus, using
(5.4) and Theorem 5.6, we get

‖yα(·, t) − w(·, t)‖L1(R) ≤ ‖yα(·, t) − wα(·, t)‖L1(R) + ‖wα(·, t) − w(·, t)‖L1(R)

≤ α |wα(·, t)|BV (R) + 2
√

2T ‖W ′‖∞ |y0|BV (R) α

≤ α |y0|BV (R) + 2
√

2T ‖W ′‖∞ |y0|BV (R) α.

�

Remark 5.8. Let us examine conditions on the kernel Φ that enhance the weak convergence of yα from
Proposition 3.2 to strong convergence (to the limit w of wα). It appears that the only scenario is the one
described in Corollary 5.7. Using (3.3),

∂zwα(z, t) = −Φα(0)yα(z, t) −
∞∫

0

Φ′
α (ζ) yα(ζ + z, t) dζ

= Φα(0)(wα(z, t) − yα(z, t)) −
∞∫

0

(Φα(0)Φα(ζ) + Φ′
α (ζ)) yα(ζ + z, t) dζ

=
Φ(0)

α
(wα(z, t) − yα(z, t)) − 1

α2

∞∫

0

(
Φ(0)Φ

(
ζ

α

)
+ Φ′

(
ζ

α

))
yα(ζ + z, t) dζ.
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For every R > 0, using (3.2) and (5.4),

R∫

−R

|wα(z, t) − yα(z, t)| dz

≤ α

Φ(0)

R∫

−R

|∂zwα(z, t)| dz +
1

αΦ(0)

R∫

−R

∞∫

0

∣
∣
∣
∣Φ(0)Φ

(
ζ

α

)
+ Φ′

(
ζ

α

)∣∣
∣
∣ yα(ζ + z, t) dζ dz

≤ α

Φ(0)
|wα(·, t)|BV (R) +

2R ‖yα(·, t)‖L∞(R)

Φ(0)

∞∫

0

|Φ(0)Φ (ζ) + Φ′ (ζ)| dζ

≤ α

Φ(0)
|y0|BV (R) +

2R ‖y0‖L∞(R)

Φ(0)

∞∫

0

|Φ(0)Φ (ζ) + Φ′ (ζ)| dζ.

Strong convergence is achieved only when the last term is zero, meaning Φ(0)Φ (ζ) + Φ′ (ζ) = 0, which
only holds when Φ(ζ) = e−ζ . Although numerical evidence suggests that strong convergence of yα occurs
for Lipschitz continuous kernels different from e−ζ , weak convergence (oscillations persist) is observed for
BV (discontinuous) kernels in the limit as α → 0.

6. Numerical examples

This section presents three numerical experiments that showcase the features of our proposed model and
compare it with established models in the field, giving a deeper understanding and valuable insights for
future improvement.

6.1. Comparing different models

We compare solutions of the standard (local) LWR FtL model, the more sophisticated nonlocal FtL
model given by (1.4), (1.5), and nonlocal FtL model (1.7), (1.8) proposed in this work.

Concretely, let the initial values (initial positions of vehicles) xi(0) = x̃i(0) = x̄i(0) be specified as
follows: Let � be a small parameter (the length of a vehicle) and ρ0 be a function such that 0 < ρ0(x) ≤ 1
and that ρ0(x) is constant for x outside the interval (a, b). Then we set x1(0) = a and define xi+1(0),
ui(0) by

xi+1(0)∫

xi(0)

ρ0(x) dx = �, ui(0) =
�

xi+1(0) − xi(0)
, i = 1, . . . , N,

where N is the smallest integer such that xN+1(0) > b. Finally, we set uN+1(0) = ρ0(xN+1), xN+1 = ∞
and u0(0) = ρ0(a − 1). Given {x̃i}N+1

i=1 with xN+1 = ∞ and zi = i� for i = 1, . . . , N , zN+1 = ∞, define
the N × N upper triangular matrices Φ̃α and Φα with entries

Φ̃i,j,α =

x̃j+1∫

x̃j

Φα (ξ − x̃i) dξ, Φi,j,α =

zj+1∫

zj

Φα (ζ − zi) dζ,
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respectively. Observe that Φ̃N,N,α = ΦN,N,α = 1. For t > 0, i = 1, . . . , N − 1, let xi(t), x̃i(t), and x̄i(t)
solve

(local FtL) x′
i = V (ui), ui =

�

xi+1 − xi
, (6.1)

(standard nonlocal FtL) x̃′
i = V (ũi), ũi =

N∑

j=i

Φ̃i,j,α
�

x̃j+1 − x̃j
, (6.2)

(our nonlocal FtL) x̄′
i = V (ūi), ūi =

( N∑

j=i

Φi,j,α
x̄i+1 − x̄i

�

)−1

, (6.3)

and x′
N = x̃′

N = x̄′
N = V (uN ), where V is a nonincreasing Lipschitz continuous function V : [0, 1] �→ [0, 1]

with V (1) = 0. We define the piecewise constant function

u�(x, t) =

⎧
⎪⎨

⎪⎩

u0 x ≤ a,

ui(t) xi(t) < x ≤ xi+1(t), i = 1, . . . , N − 1,

uN xN (t) < x.

The piecewise constant functions ũ� and ū� are defined analogously. To solve (6.1)–(6.3) numerically we
utilise the explicit Euler scheme with Δt = �. In all our computations we use

V (v) = 1 − v and Φ(ξ) = e−ξ.

We consider the (box) initial condition

ρ0(x) =

{
1 |x| < 0.75,

0.05 otherwise.
(6.4)

If Fig. 1 we show a numerical solution to (6.1)–(6.3) computed with the explicit Euler scheme and α = 0.5
at t = 1.4 for � = 0.06 (left) and � = 0.005 (right). It appears that the limits as � → 0 of ũ� and ū�

are different, and that both of these differ from the limit of u�—the entropy solution of conservation law
(1.1). We also observe that the limits of ũ� and ū� (as � → 0) seem to have both positive and negative
jumps and thus cannot satisfy an Oleinik-type entropy condition.

The simulations show that when the speed is determined using weighted Lagrangian coordinates (6.3),
vehicles drive faster compared to when the speed is determined by local FtL model (6.1) or Eulerian
coordinates (6.2). This is because the Lagrangian distance between vehicles remains constant even if the
Eulerian distance increases. The Lagrangian distance is always less than or equal to the Eulerian distance,
giving the Lagrangian model more weight to spacings further ahead. As a result, in a decreasing density
or thinly occupied road, the speed determined by the Lagrangian model is greater than or equal to that
determined by the Eulerian model.

6.2. The zero-filter (α → 0) limit

We now study scheme (2.6) for α = 1/2, α = 1/8, α = 1/32, and α = 1/128 in order to compare 1/wα

and 1/yα with ρ, where ρ is the unique entropy solution of the local LWR model

∂tρ + ∂x(ρV (ρ)) = 0, ρ(x, 0) = ρ0(x). (6.5)

In this setting (ρ0 = const outside an interval (a, b)), we define ui(0) and the matrix Φα as in the previous
section and then define the initial data

y0
i =

1
ui(0)

and w0
i =

N∑

j=i

Φi,j,αy0
j , (6.6)



   66 Page 26 of 31 G. M. Coclite, K. H. Karlsen and N. H. Risebro ZAMP

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350
-1

0

1

2

3

4

Fig. 1. Numerical solutions of (6.1)–(6.3) computed by the explicit Euler scheme. Left: � = 0.06, right: � = 0.005

for i = 1, . . . , N . Set Δz = �, λ = Δt/Δx where Δt is chosen such that CFL-condition (2.7) holds. Let
wn

i satisfy (2.6), which in this context reads

wn+1
i = wn

i + λ
( N∑

j=i+1

Φi+1,j,αW
(
wn

j

)−
N∑

j=i+1

Φi,j,αW
(
wn

j

))
, (6.7)

for i = 1, . . . , N . The scheme for yn
i then reads

yn+1
i = yn

i + λ
(
W
(
wn

i+1

)− W (wn
i )
)
,

for i = 1, . . . , N . It is not very elucidating to compare 1/y and 1/w with ρ in Lagrangian coordinates, let
therefore the “discrete Eulerian coordinates” ξn

i be defined by

ξn
1 = x1(0) + Δt

n∑

m=1

V
( 1

ym
1

)
, ξn

i+1 = ξn
i + yn

i Δz, i = 1, . . . , N − 1,

cf. (1.3). Hence, we expect that

1
wn

i

≈ ρ(ξn
i , tn) and

1
yn

i

≈ ρ(ξn
i , tn)

for sufficiently small α.
Figure 2 shows 1/w, 1/y, and ρ for different values of α. In these plots the x axis is the Eulerian

coordinates, i.e. we plot the points

(ξn
i , 1/wn

i ) and (ξn
i , 1/yn

i ) ,

for all relevant i, and n is such that tn = 1.2. The approximation to conservation law (6.5) is computed
with the Engquist-Osher scheme on a fine grid. From this figure, we see that {1/wn

i }N
i=1 and {1/yn

i }N
i=1

approach {ρ(ξn
i , tn)}N

i=1 in L1 as α traverses the sequence {1/2, 1/8, 1/32, 1/128}.
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Fig. 2. Solutions of (6.7), (6.3), with initial data given in (6.4), (6.6). For all computations t = 1.2 and � = 1/2000. For
comparisons we also show a numerical solution of (6.5). Upper left: α = 1/2, upper right: α = 1/8, lower left: α = 1/32,
lower right: α = 1/128

6.3. Convergence of yα and the effect of different filters.

We proved that the filter Φ = Φexp(z) = e−z results in strong convergence of yα to 1/ρ, the entropy solu-
tion of local LWR conservation law (1.1). This convergence, which followed from ‖yα(·, t) − wα(·, t)‖L1(R) �
O(α), was also seen in previous experiments. However, this strong convergence has only been proven for
this specific filter and may not hold for others. To test this we experimented with other Lipschitz contin-
uous filters:
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Fig. 3. Solutions of (6.7), (6.3),with initial data given in (6.4), (6.6). For all computations t = 1.2 and � = 1/5000. In the
left column, Φ = Φtri, in the right column, Φ = Φbox

Φ1(z) =
4
π

1
(1 + z2)2

, Φtri(z) = 2max {1 − z, 0} and even Φ2(z) =
2
π

1
1 + z2

,

although the last filter is not covered by the theory in this paper. Our numerical experiments show that
yα converges strongly for all filters. However, for the discontinuous filter Φbox(z) = χ(0,1)(z), we observe
weak convergence oscillations that persist as α → 0.

Oscillatory solutions can be attributed to stop-and-go traffic patterns [28]. Recall that stop-and-go
traffic refers to a situation where cars frequently start and stop, resulting in waves of congestion that can
propagate through a traffic flow and cause oscillations.
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Fig. 4. Solutions of (6.7), (6.3),with initial data given in (6.4), (6.6), using the discontinuous filter Φbox with α = 1/256
and � = 1/10000. The figure to the right is just an enlargement of a region of the left figure

In Fig. 3 we compare computations using initial data (6.4), � = 1/5000, and the filters Φtri (left
column) and Φbox (right column). In the first row α = 1/32 and in the second row α = 1/128.

From these computations, it is tempting to infer that (at least for these initial data) y� converges
strongly to 1/ρ for the filter Φtri and only weakly to 1/ρ for the discontinuous filter Φbox. To substantiate
our suspicion that y� only converges weakly, we did one final experiment in which we used the same initial
data, but � = 1/10000 and α = 1/256.

The result is depicted in Fig. 4. The right figure is a magnification of the region x ∈ [0.2, 0.3], ρ ∈
[0.69, 0.72] in the left figure.

Our experiment leads us to propose the conjecture that if a filter Φ is continuous, then the convergence
of yα to 1/ρ is strong. However, a proof has yet to be provided, except in the case of the exponential
filter.
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[15] Friedrich, J., Kolb, O., Göttlich, S.: A Godunov type scheme for a class of LWR traffic flow models with non-local flux.

Netw. Heterog. Med. 13(4), 531–547 (2018)
[16] Goatin, P., Scialanga, S.: Well-posedness and finite volume approximations of the LWR traffic flow model with non-local

velocity. Netw. Heterog. Med. 11(1), 107–121 (2016)
[17] Holden, H., and Risebro, N. H.: Front tracking for hyperbolic conservation laws, vol. 152, 3rd edn. Applied Mathematical

Sciences. Springer, Heidelberg (2015)
[18] Holden, H., Risebro, N.H.: The continuum limit of Follow-the-Leader models–a short proof. Discrete Contin. Dyn. Syst.

38(2), 715–722 (2018)
[19] Karlsen, K.H., Ulusoy, S.: Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations. Electron. J.
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