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Spin texture motion in antiferromagnetic and ferromagnetic nanowires
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We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of
ferromagnetic and antiferromagnetic domain walls in one-dimensional systems. To demonstrate the power of this
formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert
phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study
current induced domain-wall motion and compute the drift velocity. For the antiferromagnetic case, we show
that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application
of a magnetic field would influence the antiferromagnetic domain-wall dynamics. We consider both cases of the
magnetic field being parallel and transverse to the Néel field. Based on this formalism, we predict an orientation
switch mechanism for antiferromagnetic domain walls which can be tested with the recently discovered Néel
spin orbit torques.
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I. INTRODUCTION

The insensitivity of antiferromagnets (AFM) to external
magnetic fields, together with their inherent faster dynamics,
affords these materials a technological advantage over their
ferromagnetic (FM) counterparts [1,2]. However, the magnetic
invisibility is responsible also for the difficulty in detecting
and manipulating spin textures that can store information in
such materials. Making antiferromagnetic active components
in spintronic devices is the focus of the emerging field of
antiferromagnetic spintronics [3,4]. This emerging field has
seen a lot of recent progress in experimental techniques [5–10],
which has led to a rise in theoretical studies of the dynamics
of AFM domain walls (DW) and other AFM spin textures
[11–25]. Describing effectively the dynamics of these textures
is a vital goal to connect experimental observables to the AFM
textures and their dynamics.

The analysis of FM DW dynamics in terms of a finite set
of parameters have been considered recently in Refs. [26,27].
The results obtained from such description based on a finite set
of collective coordinates representing soft modes agree with
experimental and numerical data. In this paper we show that,
under some conditions, it is possible to combine such soft
modes in terms of conjugated parameters and a Hamiltonian
dynamics description. We apply this procedure to the electrical
current and magnetic field driven dynamics of both FM and
AFM DWs in nanowires. We derive the form of the effective
Hamiltonian for DW dynamics based on the symmetries of the
problem alone due to the transparent Hamiltonian structure of
the effective equations of motion.

A strength of the Hamiltonian dynamics formalism pro-
vided in this paper is that it is insensitive to the details of the
microscopic magnetic Hamiltonian. This aspect makes this
formalism very powerful and rich as one can easily, with a
few assumptions, study many known aspects of AFM DW
dynamics and also include various interactions. Moreover,
within the spirit of a phase space given by the conjugated

soft modes, we may consider interactions and scattering of
DWs, as well as thermodynamic effects. As an application
of the developed formalism, we will show that it is capable
of describing (i) current-induced dynamics for both FM and
AFM DWs, (ii) magnetic field induced dynamics for both FM
and AFM DWs, and (iii) orientation switching by current for
AFM DWs. The orientation switching mechanism is a feature
for AFM DWs which is naturally derived within our approach.
The switch of configurations on antiferromagnets may have
several applications to magnetic memory devices [28]. We also
show below that other effects such as different anisotropies,
nanowire inhomogeneity, etc., can be incorporated within the
same formalism.

The paper is structured as follows. We will first describe the
highly nonlinear dynamics of the magnetization field. We then
define a simpler FM DW description through the use of proper
canonical Hamiltonian variables. After deriving the Hamilton
equations of motion for the spin polarized current driven FM
DW in the dissipationless case, we show how the dissipation
must be included in these equations. We also demonstrate how
the form of the effective DW Hamiltonian can be understood
from the symmetries of the problem. Finally, we apply this
formalism to the case of AFM DWs, solve certain general
cases for AFM DW dynamics, and make proposals for future
AFM DW experiments.

II. EFFECTIVE HAMILTONIAN DESCRIPTION

In the absence of spin-orbit torques (SOT) [29–36] the
magnetization dynamics of a FM due to magnetic fields and
electric current is described by the Landau-Lifshitz-Gilbert
(LLG) equation [37,38]:

�̇m = γ0 �m × δHm

δ �m − J∂ �m + α �m × �̇m + β �m × (J∂ �m), (1)

where �m2 = 1 is the unitary vector along the magnetization,
the spatial derivative ∂ is along the nanowire, Hm is a magnetic
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Hamiltonian, α is the Gilbert constant damping, β is a
dimensionless damping parameter, and γ0 is the gyromagnetic
constant which is absorbed in the redefinition of time in the
rest of the paper. J corresponds to the spin-polarized current
along the nanowire, with the amplitude given by

J = jPgμB

2eMs

, (2)

where j is the current density, P is the polarization of the
current, and Ms is the saturation magnetization. The current, α,
and β terms generally depend on the microscopic details of the
full system. In particular, the dissipative α and β terms depend
on the strength and nature of the magnetization-electron
and magnetization-phonon interactions. However, we assume
locality (both in space and time) of the dissipative effects. The
symmetry demands a specific form of the dissipative terms
and the current interaction. As the current, α, and β terms
couple with the variation of the magnetization, at the scales
of the magnetization configurations considered in this paper,
only linear terms of these couplings are relevant. We also
assume here the isotropic form of all current, α and β terms,
although this requirement can be violated in some materials.
Nevertheless, generally the LLG equation has been shown
to describe magnetization dynamics well in many different
materials; see, e.g., Ref. [39].

The magnetic Hamiltonian Hm includes all interactions
for the local magnetization in the ferromagnet, such as the
exchange interaction and all the magnetic anisotropies. It may
also include Dzyaloshinskii-Moriya, dipole-dipole, and other
interaction terms. We assume that Hm does not explicitly
depend on time.

A. Domain wall motion in a ferromagnet

A typical transverse DW in a ferromagnetic nanowire is
well approximated by a rigid object, which can move along
and rotate around the wire axis [40]. During this motion the
DW shape changes a little, since in the presence of anisotropy
the modes corresponding to the change of the DW shape are
gapped. Here we derive the dynamics of the DW based on the
Hamiltonian equations of motion. To do so we calculate the
Poisson brackets for two parameters of this object.

The Poisson brackets of the unit vector �m, a representation
of SO(3), are

{mi(x),mj (x ′)} = εijkmk(x)δ(x − x ′). (3)

The magnetization configuration �m(x) of a single DW in
a nanowire may be described in terms of the soft modes
X, the position of the domain wall, and φ, the rotation of
magnetization at the DW center around the nanowire axis;
see Fig. 1. A variation of the configuration in terms of these
parameters corresponds to

dmi(x) = −dX ∂mi(x) + dφ εijkejmk(x), (4)

where �e is the unit vector along the wire. Comparing the total
volume of the phase space in terms of �m and variables X and
φ, we find

{X,φ} = ±1, (5)

FIG. 1. Sketch of ferromagnetic tail-to-tail domain wall. X and
φ denote the position and the tilt angle of the DW. J corresponds to
the injected spin polarized current. We assume the polarization of J

follows �m.

where the + and − signs are for the tail-to-tail and head-
to-head DWs, respectively [41]. Note that for a FM DW, the
DW position X and the angle φ are canonically conjugated
Hamiltonian variables independent of the microscopic form of
the Hamiltonian.

Let us now consider the dependence of the total magnetic
energy on time. As the Hamiltonian does not depend explicitly
on time, we can write

Ė =
∫

δHm

δmi(x)
ṁidx (6)

and substitute Eq. (1) for �̇m. Upon doing this we notice that
only one of the terms is not dissipative, −J

∫
δHm

δmi (x)∂midx =
J∂XE, where X is the DW center coordinate. The remaining
terms are first order in dissipation. As only linear order terms in
dissipation are relevant we use εijkmj

δHm

δmk
= ṁi + J∂mi and

find

Ė − J∂XE = −
∫

(ṁi + J∂mi)(αṁi + βJ∂mi)dx. (7)

First we consider the dissipationless dynamics, where we
set α = β = 0. We obtain then the equation of Hamiltonian
dynamics Ė = J∂XE. Therefore, there exists an effective
Hamiltonian H (X,φ) such that

Ė = {E,H } = J∂XE. (8)

In the absence of current, the Hamiltonian must be equal to
the magnetic energy E(X,φ) of the DW, and thus from Eqs.
(5) and (8) we conclude

H (X,φ) = E(X,φ) ± Jφ. (9)

This energy function is all one needs to know to obtain the
effective equations of motion for the FM DW.

The Hamiltonian equations for the coordinates X and φ

take the form

Ẋ = {X,H } = ±∂H

∂φ
, φ̇ = {φ,H } = ∓∂H

∂X
. (10)

Next, we include dissipative terms γX and γφ in these
equations:

Ẋ = {X,H } + γX, φ̇ = {φ,H } + γφ. (11)

To calculate the dissipative terms, we expand Eq. (7) for the
DW motion to the linear order in J

Ė − J∂XE = −αẊ2	−1
X + 2αφ̇Ẋ
 − αφ̇2	φ

+ (α + β)J Ẋ	−1
X − (α + β)φ̇J
, (12)
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where the constants are defined as

	−1
X =

∫
(∂ �m)2dx, 	φ =

∫
(1 − m2

x)dx,


 =
∫

[�e × �m]∂ �mdx.

They are the parameters determining the DW dynamics and
depend on the DW shape. For a planar DW, when the magnetic
Hamiltonian has no Dzyaloshinskii-Moriya term [40], the
constant 
 vanishes, 
 = 0.

We compare now Eq. (12) to the same expression we
computed using (11), Ė − J∂XE = ∓Jγφ ± γφẊ ∓ γXφ̇, and
find for the dissipative terms

γφ = ∓αẊ	−1
X ± βJ	−1

X , (13)

γX = ±αφ̇	φ ∓ 2αẊ
 ± (α + β)J
. (14)

We note that Eqs. (11), together with the constants γX and
γφ defined above, completely determine the DW dynamics
in a ferromagnetic nanowire up to linear terms of α, β,
and the parameters of the magnetic Hamiltonian. In partic-
ular, many previous results on ferromagnetic DW dynamics
[26,40,42–44] can be easily obtained within this formalism.

We emphasize that, although in this paper we assume the
direction of the uniaxial magnetic anisotropy to be along the
nanowire, this description is valid for any other anisotropy
direction. The angle φ is then just the angle of the central
spin in the DW, which rotates around the anisotropy axis. In
the case of anisotropy axis perpendicular to the nanowire this
angle describes the oscillations between the Bloch and Néel
DWs.

B. Domain wall motion in an antiferromagnet

Below we show how to extend the Hamiltonian formalism
of DW dynamics to the important case of AFM DW. Both
theoretical and experimental studies [5–14,18–24] of the AFM
dynamics have been very active recently due to improved
experimental capabilities to detect, produce, and manipulate
these systems. However, a more systematic approach to the
motion of AFM DWs is still missing and here we make an
attempt to fill in this gap.

A typical nanowire is quasi-one-dimensional from the
point of view of magnetization and magnetization dynamics,
but still is three-dimensional from the point of view of the
electronic degrees of freedom. The reason is that these two
dynamics happen at different scales. The length scale of
the magnetization phenomena is much larger than the lattice
constant and in our problem is larger than the nanowire
width. Thus in a nanowire only the degree of freedom along
the wire is relevant for the magnetization dynamics. An
electron, however, moves on a three-dimensional lattice. With
that in mind, we consider a collinear AFM on a bipartite
lattice with sublattices A and B. Electrons hopping matrix
elements both between the nearest neighbors and between
next nearest neighbors on the lattice are comparable. In the
presence of the AFM order in the case of large on-site
electron spin-magnetization interaction the hopping between
the nearest neighbors—between a site of sublattice A and a

FIG. 2. Sketch of antiferromagnetic domain wall. The AFM DW
is a composite object consisting of two ferromagnetic DWs on two
sublattices (A and B) with respective position XA (XB ) and the tilt
angle of the ferromagnetic DW φA (φB ) on respective sublattice. One
ferromagnetic DW is tail-to-tail (A) and the other is head-to-head (B).
The inset shows the AFM lattice with up- and down-spin sublattices
and nearest (second nearest) neighbor hopping constants t (t ′).

nearest site in sublattice B—is suppressed, while the hopping
between the next nearest neighbors—the sites of the same
sublattice—is unaffected. Thus we can assume that each
electron lives on its own sublattice and interacts only with
the magnetization of the same sublattice. A hybrid system
of bilayer materials, i.e., what is known as an artificial
antiferromagnet, where both layers have ferromagnetic in-
layer order coupled antiferromagnetically to each other is a
good example of such a description.

In the presence of an AFM DW this separation of the
electrons to different sublattices is not perfect, but under
the assumption that the DW width is much larger than the
electronic coherence length, the corrections to this picture are
expected to be small. It is important to note that, if there is
a percolation within each sublattice, the potential difference
across the wire is the same on both sublattices; however, the
resistivity of each of them does not have to be the same. Thus
the electrical currents on the two sublattices can be different.
This case is especially crucial in the situation where the
sublattices are made of different atoms, as it is on some hybrid
systems. To simplify the equations, however, we assume that,
given the assumptions of the scales considered, the currents
on the two sublattices are the same [45].

The above described situation leads to the following picture.
A single AFM DW is composed of two coupled FM DWs on
each of the sublattices with its own current. One of the DWs is
tail-to-tail (DW on sublattice A in Fig. 2) and the other one is
head-to-head. We thus introduce two sets of variables: XA and
φA for the head-to-head DW on sublattice A and XB and φB for
the tail-to-tail DW on sublattice B. To simplify the expressions
below we assume that the DW parameters 	φ , 	X, α, and β

are the same for the two DWs, and that the DWs are planar,
i.e., 
 = 0.

The magnetic Hamiltonian depends now on the two sets
of coordinates H (XA,φA,XB,φB). The center of the DW
is at X = 1

2 (XA + XB). The value of XA − XB gives the
magnetization of the AFM DW along the nanowire. φB − φA

is the angle between the directions of the spins at the center
of the DWs. It corresponds to the magnetic moment of the
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AFM DW perpendicular to the AFM DW plane. The coupled
equations of motion are

ẊA,B = {XA,B,H } ∓ αφ̇A,B	φ, (15)

φ̇A,B = {φA,B,H } ± α

	X

ẊA,B ∓ β

	X

JA,B, (16)

where upper and lower signs are for sublattices A and B,
respectively, and the Poisson brackets are {XA,φA} = −1 and
{XB,φB} = 1. The Hamiltonian H is

H (XA,φA,XB,φB)=E(XA,φA,XB,φB) − hXA + hXB

− JAφA + JBφB, (17)

where we have explicitly written the coupling of the DWs
on the sublattices to the magnetic field h, and E is then the
energy of the two DWs in the absence of the magnetic field.
It includes the magnetic interaction of the two DWs and thus
depends on the two sets of coordinates. In a translationally
invariant nanowire the energy E is independent of XA + XB .
However, in the problems for the DW dynamics in a nanowire
that is not translationally invariant [44], one should add a
term �(X2

A + X2
B)/2 to the energy E, where � is a constant

inversely proportional to the nanowire curvature.
One can write the function E(XA,φA,XB,φB) in a very

general form. We notice that the minimum of the total AFM
DW energy is reached at XA − XB = 0 and φA − φB = π .
Expanding for small |XA − XB | and the first harmonic of the
angular dependence, we find

E(XA,φA,XB,φB) = 	1

2
(XA − XB)2 + 	2 cos(φA − φB).

(18)

The constants 	1 and 	2 are of the order of JAF 	−2
X and JAF ,

respectively, where JAF is the antiferromagnetic exchange
constant. One also can add a transverse anisotropy by adding
K(sin2 φA + sin2 φB) to the energy.

Using the Hamiltonian (17) with energy (18) to calculate
the Poisson brackets, we obtain

ẊA,B = 	2 sin(φA − φB) ∓ αφ̇A,B	φ + J, (19)

φ̇A,B = 	1(XA − XB) − h ± α

	X

ẊA,B ∓ β

	X

J, (20)

where we set JA = JB = J . We point out that for AFM
materials with different compositions of their sublattices
JA �= JB . In the limiting case that one sublattice is insulating,
passing the current through this material would lead to the
rotation of the AFM DW as in the case of a ferromagnetic
DW above the Walker breakdown. In this paper we assume
that the easy-axis magnetic anisotropy is along the wire, and
the magnetic field h in the above equations is also along
the wire—along the anisotropy axis. However, the general
formalism is valid for any direction of the anisotropy after a
trivial change of notations.

The equations of motion (19) and (20) are one of our main
results. They provide the dynamics of AFM DW interacting
with both magnetic field h and electrical current J . These two
interactions may be studied independently.

Current induced AFM DW dynamics. Many aspects of
the current driven dynamics of magnetization configurations
in antiferromagnetic is well known; see, for example, Refs.
[15,16,23,25,28]. We show that some results may be easily
derived within the Hamiltonian formalism. From Eqs. (19)
and (20) we consider next the case with no magnetic field, i.e.,
h = 0, and

ẊA − ẊB = −α(φ̇A + φ̇B)	φ, (21)

φ̇A + φ̇A = 2	1(XA − XB) + α

	X

(ẊA − ẊB). (22)

As ẊA − ẊB is already first order in the dissipation, the second
term on the right-hand side (RHS) of Eq. (22) should be
dropped. Then, by substituting Eq. (22) into (21) we obtain

ẊA − ẊB = −2α	φ	1(XA − XB). (23)

It has an exponentially decaying solution for XA − XB ∝
exp(−2α	φ	1t) and thus in the steady state φ̇A = −φ̇B . We
also obtain the other two equations from the system (19)
and (20):

φ̇A − φ̇B = 2α

	X

Ẋ − 2β

	X

J,

Ẋ = 	2 sin(φA − φB) − α	φ

φ̇A − φ̇B

2
+ J.

Similarly φ̇A − φ̇B is already of the first order in dissipation,
so we can neglect the second term on the RHS of the second
equation to find

Ẋ = 	2 sin(φA − φB) + J. (24)

This set of equations has the simple solutions φ̇A − φ̇B = 0
and Ẋ = V given by

V = β

α
J, sin(φA − φB) = − J

	2
(1 − β/α).

There is a critical current Jc = α	2
|α−β| up to which this solution

exists [46]. This current is generally large, since 	2 is of the
order of the exchange constant. Physically this critical current
corresponds to the situation when the magnetizations on the
two sublattices rotate with respect to each other and eventually
point in the same direction. For small currents J � Jc this
solution shows that a moving AFM DW is not rotating and has
a magnetic moment of the order of 	X

J
Jc

perpendicular to the
plane of the AFM DW.

For J > Jc the AFM DW will not rotate, but the magnetic
moment perpendicular to the AFM DM oscillates in time
with T = 	X

2α	2

2π√
(J/Jc)2−1

. The AFM DW velocity is also not

constant in time. The average AFM DW velocity is given by
〈V 〉 = J − J	2

Jc
(1 −

√
(J/Jc)2 − 1).

Magnetic field parallel to the nanowire. Next, we consider
the AFM DW dynamics under the action of the magnetic field
along the wire in the absence of current. In this situation
we find from Eqs. (19) and (20) that in the steady state
φ̇A = φ̇B = 0 and φB = π + φA (a small deviation from this
decays exponentially with time), while ẊA = ẊB = 0 and
XA − XB = h/	1, which show that the induced magnetic
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moment is ∼h	X/	1. Also, notice that unlike in a FM DW,
there is no motion induced by an external magnetic field in
this configuration.

Magnetic field perpendicular to the nanowire with current.
Let us consider the AFM DW dynamics under the magnetic
field perpendicular to the current, i.e., the nanowire axis.
This magnetic field couples to the angles φA and φB ; the
corresponding term in the Hamiltonian is −h(sin φA + sin φB),
where h is the magnetic field multiplied by the perpendicular
magnetization of a single DW. Such term in the Hamiltonian
does not change the equations for φ̇A and φ̇B , see Eqs. (19)
and (20), but adds a term h cos φA to the RHS of equation for
ẊA and −h cos φB to the RHS of equation for ẊB . Then, it
follows that

ẊA,B = 	2 sin(φA − φB) ∓ αφ̇A,B	φ + J ± h cos φA,B,

(25)

φ̇A,B = 	1(XA − XB) ± α

	X

ẊA,B ∓ β

	X

J. (26)

A simple solution for the steady state at small J and h is given
by XA = XB and ẊA = β

α
J for the coordinates. Note that this

is the same result as for the current driven AFM DW motion.
For the angles, we obtain φA = π + φB and

cos φA = −J

h
(1 − β/α). (27)

We notice from Eqs. (25) and (26) that, as we switch the
current with constant magnetic field, the angles could also be
switched.

AFM DW orientation switching mechanism. Given a static
AFM DW without current or magnetic fields applied to it,
from Eqs. (19) and (20) the configuration is given by XA =
XB and φA = φB or φA = φB + π . The first corresponds to a
ferromagnetic state. The second configuration, as we apply a
magnetic field perpendicular to the nanowire, may represent
two different drift velocities; see Eqs. (19) and (20). These
different behaviors suggest that it would be interesting to study
a reorientation mechanism for an AFM DW.

First, we notice that a weak magnetic field applied parallel
to the nanowire would induce a precession of the AFM
DW. This precession, however, would be extremely slow; the
period is ∼1/h. As we are interested in practical use for the
reorientation, we need to consider faster processes. This may
be obtained by considering a time dependent current along the
nanowire and a magnetic field perpendicular to the nanowire.

To illustrate the reorientation mechanism, we consider
that initially XA = XB = X and φA = π − φB = φ. From
Eqs. (25) and (26), we note that these relations are valid for the
entire switching process as long as we apply a time-dependent
current of the form

J (t) = 1

α − β
[	Xφ̇ + α cos φ(2	2 sin φ − h)], (28)

where we neglected the terms proportional to α2. Other types
of currents may be considered for the reorientation. However,
the dynamics involved will be a lot more complex and may not
be possible to obtain the exact time dependence analytically.
For initial angle φ0 we consider that we have a static AFM

FIG. 3. (a) Plot of the numerical solution of integral (31) giving
the time of switching T ′ = T γ/	X as a function of the parameter
H = ET /γ 2 for different initial angles φ0. As expected, the time of
switching decreases as we increase the initial φ̇. (b) A sketch of the
reorientation mechanism for AFM DWs. The different sublattices’
orientation will cross, producing a temporary magnetic moment
perpendicular to the wire during the process. The graph is in terms of
dimensionless units.

DW profile with no current. This implies

sin φ0 = h

2	2
. (29)

In order to obtain the minimum Ohmic losses for the switching
process with finite time of switching T , we find that the time
dependence of φ is given by

t = 	X

γ

∫ φ(t)

φ0

dφ√
ET

γ 2 + cos2 φ(sin φ − sin φ0)2
, (30)

where γ = 2	2α and ET = 	2
Xφ̇2

0 is the constant related to
the time of switching T by

T = 	X

γ

∫ π−φ0

φ0

dφ√
ET

γ 2 + cos2 φ(sin φ − sin φ0)2
. (31)

This time of switching is about h2 times faster than the
precession by a magnetic field parallel to the wire.

Therefore, with the current given by Eq. (28) and
Eq. (30) satisfying Eq. (29), we are able to efficiently switch
the orientation of the AFM DW within a finite time T given by
Eq. (31). It is important to notice, however, that with the time
dependent current, Eq. (28), it is also possible to obtain other
φ(t) evolutions that also correspond to the switching process,
but with higher energy losses. The integral can be solved in
terms of elliptic functions; see Fig. 3(a). Once we are able to
switch the orientation in a controllable fashion, one must then
measure the switching of this 180 AFM DW. Whereas most
measurements cannot directly observe such DW, a system that
contains the newly discovered Neel spin-orbit torque [17,28],
can in principle be sensitive to the orientation of a 180 DW as
shown in Ref. [17]. The measurement of the DW orientation
was also considered in Refs. [43,47]. One must also notice that
during the switching process a finite magnetic moment arises,
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see Fig. 3(b), which can be measured experimentally allowing
an indirect measure of the process.

In the present formulation the direction of the magnetic
field in the plane perpendicular to the nanowire is arbitrary.
However, in the presence of the transverse anisotropy this
effect will be the largest if the field direction is perpendicular
to the transverse anisotropy axis. The current required for the
switching in this case will be determined by both the magnitude
of the magnetic field and by the anisotropy.

III. CONCLUSION

We have developed a Hamiltonian approach to the current
and magnetic field driven dynamics of both ferromagnetic
and antiferromagnetic DWs which describes the domain walls
as rigid topological objects. We have shown how dissipation
is included in this description by means of LLG equation
formalism. The dynamics can be described by a set of universal
equations which depend only on a few parameters. These
parameters can be measured in real nanowires either through
magnetoresistance or through electrical means as shown in
Ref. [43].

We have shown that the developed formalism allows
one to solve various problems of both FM and AFM DW
dynamics on the same footing and extend it to different
geometries. As the Hamiltonian formalism does not depend

on microscopic aspects, it allows one to easily introduce new
interactions. In particular, it can be used to describe both FM
and AFM DW dynamics induced by parallel magnetic field
and current. As a consequence of this analysis, we were able to
obtain an orientation switch mechanism for AFM DWs. With
the developments of measuring techniques, the mechanism
described here may be useful for memory devices.
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