
POLITECNICO�DI�BARI

DOTTORATO�DI�RICERCA IN�INGEGNERIA ELETTROTECNICA

Curriculum:�Macchine�ed Azionamenti�Elettrici

XVII�ciclo

TESI�PER�IL CONSEGUIMENTO�DEL TITOLO

Online�Hybrid�Evolutionary Algorithms
for Auto-Tuning�of�Electric�Drives

Candidato:
Dott.�Giuseppe�Leonardo�Cascella

Tutor:

Prof.�Luigi�Salvatore
Dr.�Mark�Sumner

Coordinatore�del�Corso�di�Dottorato:

Prof.�Francesco Torelli

Anni Accademici�2002-2005



ii





iv



Acknowledgements

This thesis is the result of my research work with Electrical Machines Group

at the Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari.

I am deeply grateful to my supervisor, Professor Luigi Salvatore, for sup-

port, guidance and generous time without which my PhD would not have as

interesting and profitable.

I would like to thank Prof. Francesco Cupertino and Prof. Silvio Stasi for

the many discussions that we had and for sharing their opinion on diÆerent

subjects.

I would like to express my sincere gratitude to Prof. Greg M. Asher and

Dr. Mark Sumner who I worked with as visiting researcher in the Power

Electronics, Machines and Control Group (PEMC) at the University of Not-

tingham.

Special thanks go to Chris Gerada, Prof. Cyril Spiteri-Staines, and Vin-

cenzo Giordano, for their valuable help. It is a real pleasure to work with

v



vi ACKNOWLEDGEMENTS

them.



Contents

1 Introduction 7
1.1 Need for user-friendly drives . . . . . . . . . . . . . . . . . . . 9
1.2 Online Hybrid Evolutionary Algorithms . . . . . . . . . . . . . 10
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 PMSM Drive 13
2.1 PMSM configurations . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 PMSM model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Stator reference frame . . . . . . . . . . . . . . . . . . 17
2.2.2 Rotor reference frame . . . . . . . . . . . . . . . . . . . 19

2.3 Vector control of a PMSM . . . . . . . . . . . . . . . . . . . . 21
2.4 Model-based design of the vector control . . . . . . . . . . . . 25

2.4.1 q-axis current control loop . . . . . . . . . . . . . . . . 25
2.4.2 Speed control loop . . . . . . . . . . . . . . . . . . . . 28
2.4.3 d-axis current control loop . . . . . . . . . . . . . . . . 30

2.5 Self-commissioning . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Evolutionary Algorithms 39
3.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Search Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Training Test . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Poorly Performing Solutions . . . . . . . . . . . . . . . 51

3.4 Evolutionary Operators . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 Recombination . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Reinsertion . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1



2 CONTENTS

4 Hybridization of EAs 59
4.1 Nelder and Mead algorithm . . . . . . . . . . . . . . . . . . . 61

4.1.1 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Centroid calculation . . . . . . . . . . . . . . . . . . . 64
4.1.3 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.4 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.5 Outside contraction . . . . . . . . . . . . . . . . . . . . 68
4.1.6 Inside contraction . . . . . . . . . . . . . . . . . . . . . 68
4.1.7 Shrinking . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Probabilistic version . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Multidirectional search algorithm . . . . . . . . . . . . . . . . 75

5 Experimental setup and results 81
5.1 Hardware and Software Implementation . . . . . . . . . . . . . 81
5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 84



List of Tables

5.1 PMSM Nameplate . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Values of the Control System Parameters . . . . . . . . . . . . 87
5.3 Performance Indices Scored by xMC and xHEA after each

speed step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3



4 LIST OF TABLES



List of Figures

2.1 PMSM with diÆerent rotor configurations. . . . . . . . . . . . 16
2.2 PMSM analytical model. . . . . . . . . . . . . . . . . . . . . . 17
2.3 Block diagram of zero d-axis current control of a PMSM. . . . 22
2.4 Block diagram of the anti-windup PI. . . . . . . . . . . . . . . 23
2.5 Block diagram of the q-axis current control loop. . . . . . . . . 26
2.6 Equivalent block diagram of q-axis current control loop after

approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Final equivalent block diagram of q-axis current control loop. . 27
2.8 Block diagram of the speed control loop. . . . . . . . . . . . . 28
2.9 Block diagram of the simplified speed control loop. . . . . . . 29
2.10 Block diagram of the q-axis current control loop. . . . . . . . . 30
2.11 Block diagram of the d-axis current control loop. . . . . . . . 30
2.12 Final equivalent block diagram of d-axis current control loop. . 31
2.13 Model-based self-commissioning procedure. . . . . . . . . . . . 32
2.14 Normal working after self-commissioning. . . . . . . . . . . . . 33
2.15 Adaptive control with parameter tracking. . . . . . . . . . . . 36
2.16 Model-Reference Adaptive System (MRAS). . . . . . . . . . . 37
2.17 Final equivalent block diagram of d-axis current control loop. . 38

3.1 Interactive evolution cycle. . . . . . . . . . . . . . . . . . . . . 40
3.2 Research areas of artificial intelligence. . . . . . . . . . . . . . 42
3.3 The parameters to be optimized, encoded as chromosome. . . 44
3.4 Search domain for a PI controller optimization. . . . . . . . . 46
3.5 Block diagram of EAs. . . . . . . . . . . . . . . . . . . . . . . 47
3.6 The training test is a combination of speed commands (a se-

quence of 8 speed steps, continuous line) and load torque com-
mands (dashed line). . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 j-th speed step of the training. . . . . . . . . . . . . . . . . . . 50
3.8 Fitness as function of the individual position and the selective

pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



6 LIST OF FIGURES

3.9 Example of intermediate recombination for a two-dimension
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Example of mutation for a two-dimension problem. . . . . . . 57

4.1 Classification of the search techniques. . . . . . . . . . . . . . 62
4.2 Elite-based hybrid architecture. . . . . . . . . . . . . . . . . . 63
4.3 Some example of a simplex. . . . . . . . . . . . . . . . . . . . 65
4.4 Flowchart of an iteration of Nelder and Mead’s simplex method. 66
4.5 Operations of N-M’s simplex method. . . . . . . . . . . . . . . 70
4.6 Reflection in the probabilistic simplex method. . . . . . . . . . 72
4.7 Contraction in the probabilistic simplex method. . . . . . . . . 73
4.8 Operations of the concurrent simplex method. . . . . . . . . . 74
4.9 Flowchart of the multi-dimensional simplex method. . . . . . . 78
4.10 Operations of the multi-dimensional simplex method. . . . . . 79

5.1 Diagram of the hardware implementation. . . . . . . . . . . . 83
5.2 Diagram of the software implementation. . . . . . . . . . . . . 83
5.3 Frontal view of the experimental setup. . . . . . . . . . . . . . 85
5.4 Top view of the experimental setup. . . . . . . . . . . . . . . . 86
5.5 Responses given by xMC. . . . . . . . . . . . . . . . . . . . . . 91
5.6 Responses given by xHEA. . . . . . . . . . . . . . . . . . . . . 92
5.7 Comparison between the responses given by xMC and xHEA

to the no-load speed reversal. . . . . . . . . . . . . . . . . . . 93
5.8 Comparison between the responses given by xMC and xHEA

to the full-load speed reversal. . . . . . . . . . . . . . . . . . . 94
5.9 Comparison between the objective functions provided by xMC

and xHEA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Experiment to evaluate the amplitude of the speed oscillation

when a 15 Hz square-wave load torque is applied. . . . . . . . 95
5.11 Comparison between the amplitude frequency responses pro-

vided by xMC and xHEA. . . . . . . . . . . . . . . . . . . . . . 95
5.12 Comparison between the responses given by xMC and xHEA

to the second evaluation test. . . . . . . . . . . . . . . . . . . 96



Chapter 1

Introduction

The electric motor drives are the key component of automation over the last

twenty years. An electric motor drive is a power electronics device which

feeds an electric motor so that its motion is controlled. Electrical motors are

the most widespread devices for electrical-to-mechanical energy conversion,

e.g., motors use the 70% of the industrial electricity consumption almost

30·109 MWh in the United States [1]. The electric drives market still remains

one of the most dynamic sectors and its growth is likely to continue in the

next years, according to recent studies the European turnover is expected to

be worth 1.5 · 109 USD in 2004 and to be close to 2 · 109 USD by 2009 [2, 3].

This is due to a number of reasons:

• electric drives cover a wide range of power, speed and torque. They can

reach 100 MW and 100000 rpm for pumps of hydro storage plants, but can

also be designed for µW°applications such as micro-surgeon and robotics.

The new frontier consists of nanotechnology applications: “a UC Berkeley

physicist has created the first nano-scale motor - a gold rotor on a nanotube

7



8 CHAPTER 1. INTRODUCTION

shaft that could ride on the back of a virus,”[4];

• electric motor drives make existing electricity applications more e±cient.

Since 1993, in the United States, the electric motor drives have been stated

one of the most promising targets for potential e±ciency gain [5]. For

example, it is possible to cut an estimated 10% of energy consumed by

motors at idle, when no useful work is being accomplished.

• Electric drives can be adopted in extreme operating conditions such as

explosive, radioactive, and underwater environments.

• The environmental impact of electric drives, in terms of noise level and

waste production, is very low compared to other solutions, e.g. combustion

motors.

• Power quality, electromagnetic compatibility (EMC), electromagnetic in-

terference (EMI), and electrostatic discharge (ESD) are taken into account

when designing an electric drive.

• New applications in portable tools and electric/hybrid vehicles are being

created by employment of higher-power-density batteries, fuel- and solar-

cells.

In conclusion, the electric motor drives are a renewed challenge not only

for their manufacturers, but for the industrial sectors such as automotive,

building automation, heating, robotics, aerospace, mining, constructions and

biomedical, where motion control is essential.
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1.1 Need for user-friendly drives

Usually manufacturers of sophisticated products run the risk that final users

underutilize their products and do not achieve the expected results. It might

say that such a problem is due to final user, which is not skilled enough

to properly use the product. This vision was common in the past, but is

anachronistic for the present market where the customer satisfaction is a

high-priority objective of manufacturers. New products not only should im-

plement advanced technology in order to provide new features, but should

make available intelligent functions which help the final user to achieve best

performances. For example, it is hard to imagine a camera without any aut-

ofocus function, or an operative system that does not recognize the most

popular hardware.

Following such a trend, recently there has been an increased interest in

smarter electric drives, i.e., more user friendly and capable of self-commissioning.

Self-commissioning should avoid a typical situation, that is, the final user is

forced to buy drive and motor from the same manufacturer to obtain good

performances without any extra-tuning is needed. Self-commissioning con-

sists of an automatic procedure for the tuning of controllers based on a previ-

ous parameter identification, when a motor is initially connected to the drive

[6]. In this way the final user can utilize the drive with a third party motor

without worrying about tuning.

The standard techniques for self-commissioning consist of specific sequences

of tests to measure electrical and mechanical parameters of the motor. These

identified parameters are then used for a model-based control design. By us-
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ing such a technique, the control system can be tuned in a very short time.

Although good enough for several applications, only a sub-optimal tuning is

achieved because the issues concerning the multiple inputs, system nonlin-

earities and uncertainties of the model-based design remain unaddressed.

1.2 Online Hybrid Evolutionary Algorithms

A possibility could be given by the adaptive control, but the market of elec-

tric drives does not justify the expense it would be necessary to implement

adaptive control in industrial drives. Such a propensity is also supported

by the fact that performances of PI-based vector-controlled drives can be

still improved. As the matter of fact, final users operate the standard self-

commissioning, which industrial drives nowadays have. Sub-optimal perfor-

mances are then improved by extra hand-calibrations that involve tedious

and time-consuming tests.

In order to overcome this obstacle, self-commissioning can online optimize

control system parameters, prior to the actual use of the system, which then

uses these optimized controllers. This is also known in the research area of

automatic control as auto-tuning or hardware-in-the-loop optimization [7].

This on-line optimization oÆers the advantages of the model-free design and

makes self-commissioning very reliable because the controllers are experimen-

tally evaluated.

This dissertation deals with the auto-tuning of electric drives based on Evo-

lutionary Algorithms (EAs). The tuning of the control system implemented
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in an electric drive is a multiobjective problem that involves a larger number

of parameters in the presence of reasonable noise. Recently EAs have been

successfully applied to this kind of optimization and have been proved to be

more robust than classical techniques. EAs are search algorithms based on

the mechanics of natural selection and genetics [8]. A recent and complete

survey about their application in control system engineering is in [9], where

the suitability of on-line EAs for robust AT is highlighted. Unfortunately

during the on-line evolution of the control system, can need many tests, and

the controlled process can be critically stressed by poorly performing solu-

tions. For this reason the successful applications of on-line EAs are really

limited in number.

In this dissertation, suggestions and innovative solutions are proposed to fully

perform an on-line optimization without any risk for the hardware. On the

one hand, a new real-time fitness implementation can halt the carrying out

of an experiment, if a highly unsatisfactory solution is recognized. On the

other hand, a new hybrid architecture integrates EA and simplex method in

order speed up the convergence.

Parameters optimization comes out in a number of circumstances for a large

class of problems. Industrial engineers recognize Matlab as one of the best

program to face these problems in simulation, but still find di±culties in

experimental context. From this point of view, the self-commissioning of

electric drives can be considered just one application of the new online op-

timization proposed in this thesis. In this particular case study, following

the proposed approach, manufacturers can embed this fully-automated tool

into their drives without any extra-hardware. Moreover each final user of the
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drive can concentrate on his own design specifications, letting the on-line GA

find the most satisfactory solution, i. e. the best control system parameters

for his design problem.

1.3 Thesis outline

The thesis is divided into the following chapters:

• the second chapter concerns the mathematical model of PMSMs in the

stator and rotor reference frame, available variants of the vector control,

their model based design, and finally their self-commissioning.

• Chapter three describes the proposed configuration of EAs for online op-

timization.

• In chapter four, the new hybrid architecture, which integrates EA and

simplex method in order speed up the convergence, is proposed.

• In chapter five, experimental results are shown to prove the eÆectiveness

of the proposed technique.



Chapter 2

PMSM Drive

Although the ac system of production and distribution of electrical energy

were well established by the early twentieth century, only induction mo-

tors were commonly employed in the industry. PMSMs provide torque at

synchronous speed, it means that their working speed depends on the fre-

quency of the power source, e.g., with a 50 Hz-line a PMSM could work at

3000, 1500 . . . rpm according to its number of pole pairs. For the motor

startup, the rotor, besides magnets, needed a squirrel cage to produce torque

at zero speed. This resulted in higher manufacturing costs discouraging the

spreading of PMSMs which remained on the fringe of the scene for long time.

Up to the eighties the induction motor were largely used for constant-speed

applications and the dc motor dominated the market of variable-speed appli-

cations, but with advances of power electronics, new drives capable of feeding

motors with variable-frequency voltages were available and changed the trend

of the market. Thanks to electric drives, PMSMs could be directly used at

any speed and ac motors began to replace dc ones for servo applications.

13



14 CHAPTER 2. PMSM DRIVE

Particularly PMSMs are superseding dc motors assuring:

• higher e±ciency and longer life,

• higher speed and power density,

• smaller size and better heat transfer,

• less noise and no spark,

and struggle for bigger slice of the market over induction motors assuring:

• higher e±ciency and performance for applications up to 10 kW,

• higher power density and power factor,

• smaller size and better heat transfer.

Furthermore, PMSM success goes on also thanks to advances of PMs man-

ufacturing made over last years, e.g., rare earths, such as neodymium-iron-

boron, nowadays can be bought for about 20 USD per kg, replacing the older

barium ferrite and Alnico. The production of better and better materials for

PMs not only matches the increasing demand of classical PMSMs, i.e., radial-

flux machines, but allows new solutions such as the axial-flux machines.

2.1 PMSM configurations

The radial flux PMSMs can be classified according to their rotor configu-

ration. As shown in fig. 2.1 there are four diÆerent ways of mounting the

magnets on the rotor. Each of them has its own characteristic.

The surface mounted magnets are simpler to be placed on the rotor, and

the reluctance eÆects are negligible resulting in a low torque ripple. On the

other hand, this solution requires high accuracy in its design to prevent mag-

net damaging when the rotor is placed into the stator. The airgap length
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needs to be very small to increase the stator inductance and reduce the flux

leakage, i.e., the part of the flux which does not cross the airgap. The sur-

face mounted magnets are suitable for low speed applications. As shown in

fig. 2.1b, surface mounted PMSMs can be regarded as round-rotor machines,

in each direction the eÆective airgap consists of the actual airgap and that

created by the magnets, whose permeability is almost that of the air. As a

consequence

Lsd º Lsq (2.1)

where Lsd and Lsqq are the d- and q-axis inductance respectively.

Mechanical robustness of rotors with inset magnets, or even more with buried

ones, makes these motors suitable for high speed applications. In this case,

as shown in fig. 2.1d, the motor cannot be considered a round rotor ma-

chine. The eÆective airgap of q-axis magnetic path is only due to the actual

airgap, whereas for d-axis magnetic path also the PM has to be considered.

Consequently

Ld ∑ Lq. (2.2)

Further details about permanent-magnet synchronous motor design can be

found in [10].

2.2 PMSM model

Fig. 2.2 illustrates the scheme of a permanent-magnet synchronous motor

which the machine analytical model is based on. For sake of clarity, it refers to

a machine with 3-phase stator windings and one pole pair, but the equations
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reported in this section are valid for any PMSM. For a exhaustive treatment

of the machine analytical models please refer to [11].

2.2.1 Stator reference frame

Variables which refer to the stator reference frame will be indicated by sub-

script 123. Adopting a matrix form, one gets

vs,123 = Rsis,123 +
d™s,123

dt
(2.3)

where the vectors of stator voltages, stator currents, and flux linkages are

respectively:

vs,123 =

∑
vs1 vs2 vs3

∏T

(2.4)

is,123 =

∑
is1 is2 is3

∏T

(2.5)
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™s,123 =

∑
™s1 ™s2 ™s3

∏T

. (2.6)

The vector of flux linkages, equation (2.6), can be also written as function of

the currents

™s,123 = (Lls + Lm + L¢m) is,123 + ™PM,123 (2.7)

where

Lls =

2

66664

Lls 0 0

0 Lls 0

0 0 Lls

3

77775
(2.8)

Lm =

2

66664

Lm °1
2Lm °1

2Lm

°1
2Lm Lm °1

2Lm

°1
2Lm °1

2Lm Lm

3

77775
(2.9)

L¢m = L¢m

2

66664

cos 2µr cos
°
2µr ° 2

3º
¢

cos
°
2µr + 2

3º
¢

cos
°
2µr ° 2

3º
¢

cos
°
2µr ° 4

3º
¢

cos 2µr

cos
°
2µr + 2

3º
¢

cos 2µr cos
°
2µr + 4

3º
¢

3

77775
(2.10)

™PM,123 = ™PM

∑
cos µr cos

°
µr ° 2

3º
¢

cos
°
µr ° 4

3º
¢

∏
(2.11)

are the matrices of stator leakage and magnetization inductances and the

vector of the flux linkages created by permanent magnets, respectively; and

Lm =
1

3

µ
N

2
s

Rmd
+

N
2
s

Rmq

∂
(2.12)

L¢m =
1

3

µ
N

2
s

Rmd
° N

2
s

Rmq

∂
(2.13)
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where Ns is the turns number of the stator windings, Rmd and Rmq are d-

and q-axis reluctances, respectively.

For round-rotor machines the above equations get simpler because

Rmd = Rmq ) L¢m = 0, (2.14)

and the electromagnetic torque is

Tem = Np™PM

µ
is1 sin µr + is2 sin

µ
µr °

2

3
º

∂
+ is3 sin

µ
µr °

4

3
º

∂∂
(2.15)

2.2.2 Rotor reference frame

Variables which refer to the rotor reference frame will be indicated by sub-

script dq. The zero-component equation is omitted because is trivial. Ap-

plying Park’s transformation to stator reference equations one gets

vs,dq = Rsis,dq + !rJ™s,dq +
d™s,dq

dt
(2.16)

where the stator resistance is Rs and the vectors of stator voltages, stator

currents, and flux linkages are respectively:

vdq =

∑
vsd vsq

∏T

, (2.17)

idq =

∑
isd isq

∏T

, (2.18)

™dq =

∑
™sd ™sq

∏T

, (2.19)
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and the matrix J, which replaces the j operator when the complex notation

is used, is defined as follows

J =

2

64
0 °1

1 0

3

75 . (2.20)

The vector of flux linkages, eq. (2.19), can be also written as function of the

currents

™s,dq = Ls,dqis,dq + ™PM,dq (2.21)

where

™PM,dq =

2

64
™PM

0

3

75 (2.22)

Ls,dq =

2

64
Lsd 0

0 Lsq

3

75 . (2.23)

Combining equations (2.16), (2.22), and (2.23), one obtains

vs,dq = Rsis,dq + !rJLs,dqis,dq + Ls,dq
dis,dq

dt
+ !rJ™PM,dq, (2.24)

that can be also rewritten for sake of clarity as

vs,dq =

2

64
Rs °!rLsq

!rLsd Rs

3

75 is,dq +

2

64
Lsd 0

0 Lsq

3

75
dis,dq

dt
+ !r

2

64
0

™PM

3

75 .

(2.25)
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The electromagnetic torque is given by

Tem =
3

2
Np (Lsd ° Lsq) isdisq

| {z }
reluctance torque

+
3

2
Np™PM isq

| {z }
magnet torque

, (2.26)

where the reluctance torque assumes more importance for PMSMs with in-

set and buried magnets. For round-rotor machines the reluctance torque is

negligible, see equation (2.1), and the electromagnetic torque formula can be

further simplified as

Tem =
3

2
Np™PM isq. (2.27)

2.3 Vector control of a PMSM

The principle behind the vector control is to separately control the compo-

nents of the stator current vector in the rotor reference frame in order to

control the flux and torque of the motor. In this way the PMSM can be seen

as a separately-excited dc motor in which the armature and field currents

are equivalent to the d- and q-axis stator currents. From equation (2.26),

there is evidence that a given value of torque can be obtained by suitably

regulating both d- and q-axis components of the stator current vector. It

means that the torque has one degree of freedom, i.e., a further criterion can

be used to share the stator current between isd and isq in order to produce a

given value of torque.

There are diÆerent criterion to implement the vector control. The first is the

zero d-axis current (ZDAC) control, which will be described in this section.

It is one of the most widely used in the industry and forces the torque to
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Figure 2.3: Block diagram of zero d-axis current control of a PMSM.

be proportional to current magnitude for the PMSM [12, 13]. For applica-

tions in which e±ciency is essential, the maximum torque per unit current

and maximum e±ciency variants has to be considered. The former produces

maximum torque per unit current by minimizing copper losses [14, 15], in-

stead of the latter which minimizes net losses [16, 17]. The unity power factor

control allows a better utilization of the inverter [12, 15]. The constant mu-

tual flux linkages control [12, 15] maintains the magnet flux linkages value in

the core to avoid saturation.

As it will be described later, a ZDAC controlled surface mounted PMSM has

been used in the experimental setup and its block diagram is illustrated in

fig. 2.3. It has to be noted that for this type of motors, the ZDAC control is

equivalent to the maximum torque per unit current control, equation (2.27).

The PMSM is fed by a voltage source inverter (VSI). The voltage reference
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in the stator coordinates v§s,123 is obtained as follows

v§s,123 =

2

66664

1 0

°1
2

p
3

2

°1
2 °

p
3

2

3

77775

| {z }
(123)√(ÆØ)

2

64
cos µr ° sin µr

sin µr cos µr

3

75

| {z }
(ÆØ)√(dq)

v§s,dq. (2.28)

Both the d- and q-axis voltage references, v
§
sd and v

§
sq, are provided partly

by current controllers, partly by voltage compensators. The d- and q-axis

current controllers are two anti-windup PIs.

The anti-windup PI has been implemented as linear PI with two saturations

on the integrator and sum outcomes. The block diagram is illustrated in

fig. 2.4, and when it is working in the linear zone, saturations can be not

considered, and the transfer function is

K
1 + øs

øs
(2.29)

where K and ø are the proportional gain and the time constant of the PI.

As regards the d- and q-axis current controllers the two transfer functions
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are respectively:

Kisd
1 + øisds

øisds
(2.30)

and

Kisq
1 + øisqs

øisqs
. (2.31)

The d- and q-axis voltage compensators, whose feedforward actions are:

° !risqK1 (2.32)

and

!r (isdK2 + K3) (2.33)

respectively, improve the performance of the current control loops by reduc-

ing the influence of the cross coupling terms in (2.25).

The reference of the q- axis current is provided by the speed controller, an

anti-windup PI with transfer function

K!r
1 + ø!rs

ø!rs
(2.34)

The speed reference is prefiltered before being passed to the speed loop,

to reduce the overshoot and settling associated with step demands, whilst

retaining a fast disturbance rejection. This is achieved using a first-order

low-pass filter (FOLPF), namely smoothing filter

1

1 + øsms
(2.35)
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whose time constant has to be tuned according to the speed loop bandwidth.

2.4 Model-based design of the vector control

In this section will be described a way to design the vector control according

to suggestions given by literature [15, 18, 19] and supposing the knowledge of

motor and hardware parameters. For this reason this kind of design relies on

the accuracy with which motor and hardware models are known and belongs

to model-based design class. The design of the vector control consists of

tuning of the ten parameters above mentioned: Kisd, øisd, Kisq, øisq, K!r,

ø!r, øsm, K1, K2 and K3.

Initially, last three parameters can be set as:

K1 = Lsq, (2.36)

K2 = Lsd, (2.37)

and

K3 = ™PM (2.38)

to completely remove cross coupling actions in (2.25).

2.4.1 q-axis current control loop

Thanks to feedforward actions which compensate cross coupling terms, q-

axis current control loop gets simpler as illustrated in fig. 2.5. The control
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Figure 2.5: Block diagram of the q-axis current control loop.

algorithm is implemented with a microprocessor board which works with a

sample time Ts. It means that after a clock edge, the microprocessor takes

one sample time to produce the control action for the inverter. Such a delay

is taken into account by means of the FOLPF that follows the controller.

Next there is a further FOLPF modelling the delay due to the inverter, and

then the motor. Regarding the current feedback, LEM component is mod-

elled as a double FOLPF with time constant øLEM . Finally the last delay is

due to the A/D converter.

In order to make simpler block diagram with unitary feedback, let us approx-

imate the several little delays in the loop as one FOLPF with time constant

øßi =
Ts

2
+

Ts

2
+ Ts + 2øLEM , (2.39)

and the two zeros due to feedback as an initial FOLPF with one negative

time constant

(1 + 2øLEMs)

µ
1 +

Ts

2
s

∂
º 1

1°
°

Ts
2 + 2øLEM

¢
s

(2.40)
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Figure 2.7: Final equivalent block diagram of q-axis current control loop.

as shown in fig. 2.6. Applying the Absolute Value Optimum (AVO) criterion,

PI constants can be calculated as follows:

Kisq =
Rsøisq

2Tßi
(2.41)

and

øisq =
Lsq

Rs
(2.42)

and the q-axis current loop results in the diagram in fig. 2.7 where

Gisq (s) =
1

2øßis (1 + søßi)
. (2.43)
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2.4.2 Speed control loop

In fig. 2.8, the equivalent block diagram of the speed control loop is shown.

It has to be noted that the constant gain, Kt = 3
2Np™PM , is used to get

the electromagnetic torque from isq, see equation (2.27). The whole current

control loop has been modelled as a FOLPF with time constant:

ø°i = 2øßi °
Ts

2
° 2øLEM . (2.44)

Also in this case the idea is to get a simpler equivalent block diagram as

shown in fig. 2.9, by making following approximations. The several little

delays in the loop are modelled as one FOLPF with time constant

øß! =
Ts

2
+ ø≠ + Ts + ø°i. (2.45)

The viscous friction is assumed to be negligible

B º 0 (2.46)
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and µ
1 +

Ts

2
s

∂
(1 + ø≠s) º 1

1°
°

Ts
2 + ø≠

¢
s
. (2.47)

Applying the Symmetrical Optimum (SO) criterion, PI and smoothing filter

constants can be calculated as follows:

K!r =
J

KtNp2øß!
, (2.48)

ø!r = 4øß!, (2.49)

and

øsm = 4.8øß!. (2.50)

In this way the whole speed control loop can be view as in fig. ?? where

G! (s) =
1 + 4Tß!s

8T 2
ß!s2 (1 + Tß!s)

. (2.51)
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2.4.3 d-axis current control loop

As regards the design of the d-axis current controller, one can follow the same

procedure adopted for the q-axis current control loop. This is because the

equivalent scheme of d-axis current control loop is the same than that of the

q-axis one, except for the time constant of the motor which is Lsd/Rs instead

of Lsq/Rs. Obviously for round-rotor machine, d- and q-axis current control

loops would be identical as obtained by matching figures 2.11 and 2.5.

As described in subsection 2.4.1, making similar approximations and ap-

plying the Absolute Value Optimum (AVO) criterion, PI constants can be

calculated as follows:

Kisq =
Rsøisd

2Tßi
(2.52)
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and

øisd =
Lsd

Rs
(2.53)

where

øßi =
Ts

2
+

Ts

2
+ Ts + 2øLEM . (2.54)

The d-axis current loop results in the diagram in fig. 2.12 where

Gisd (s) =
1

2øßis (1 + søßi)
. (2.55)

2.5 Self-commissioning

As highlighted in the previous section, the fact that one can design the vector

control by applying some simple formula is an unquestionable advantage of

the model-based design. On the other hand, the higher the accuracy of values

of motor and hardware parameters is, the better the design results. Conse-

quently, a prior parameters identification becomes crucial. Furthermore, such

a procedure could be ideally automatic and available on drives. Starting from

such an idea, a considerable part of the research has been recently dedicated

to the so-called self-commissioning. Referring to [6] for a more precise def-
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inition, the self-commissioning consists of an automatic procedure for the

tuning of controllers based on a previous parameter identification, when a

motor is initially connected to the drive, figures 2.13 and 2.14. For industrial

use, it has to be implemented without any extra-hardware and with only the

knowledge of machine ratings (from motor nameplate). In this way the final

user can utilize the drive with a third-party motor without any hand-tuning.

According to literature related to the research area of automatic control, this

subject is known as auto-tuning [7].

In this section, main contributions given by researchers will be dealt to de-

scribe the state of the art of self-commissioning of electric drives. Although

for commercial reasons, most papers expressly deal with self-commissioning

for induction motor, they are very interesting also for permanent-magnet

synchronous motors because same concepts can be quickly readapted.

Initially self-commissioning was proposed by Schierling in [20]. The author

describes a specific sequence of tests at standstill in order to measure elec-

trical parameters of an induction motor. For the determination of the total
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Figure 2.14: Normal working after self-commissioning.

leakage inductance, two d-axis voltage steps are applied and the stator cur-

rent response is analyzed. These steps must be applied for a time much

shorter then the rotor time constant. Then the rotor and stator resistances

and rotor time constant are determined by impressing diÆerent values of d-

axis current. Unfortunately this paper is poor of details, for instance it leaves

in doubt about the length of the voltage steps. Such a length depends on the

rotor time constant which is not yet identified. Moreover the identification

of mechanical parameters is only touched on.

Self-commissioning was dealt with more details some year later in [21] and

then in [22]. The former, after a concise survey on vector control techniques

at that time available for industrial drive, shows how to implement an au-

tomatic procedure to identify both electrical and mechanical parameters in

the following order:

• stator resistance is determined from the ratio between the dc voltage ap-

plied and the dc current measured at standstill,

• stator transient time constant is obtained from the time and magnitude of
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a current spike due to an applied voltage spike at standstill,

• current controllers are set,

• rotor time constant is determined by the analyzing the current response

when the inverter is turned oÆ after that the flux is built up,

• rotor magnetizing current is obtained from the no-load current when the

motor is operated with the v/f open-loop control,

• flux controller is set,

• mechanical time constant is calculated from the acceleration time when the

motor is operated from zero speed to a prefixed speed value by applying a

constant torque.

It has to be emphasized that this procedure carries out the self-commissioning

of a 25 kVA induction motor drive in 60 s.

Also in [22], electrical parameters are measured with tests at standstill,

whereas mechanical parameters are identified by open loop runup and run-

down tests; but it is underlined the importance of recursive algorithm and

multiple tests to achieve a good level of identification accuracy. Moreover a

significant contribution was in extra closed-loop tests to fine tune the rotor

and torque time constants under varying operating conditions. The authors

describe how the drive can work well in one operating condition, but that

changed conditions lead to problems. Obviously, no problem arises when the

drive works over a small operating condition range in which the commission-

ing has been performed. To enlarge this range, special care has to be taken

in regards of the rotor time constant, rather than PI gains, which needs to

be updated according to condition changing.

Following this idea many researchers focused mostly on more accurate and
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quicker procedures for rotor time constant identification over a wide range of

operating condition [23, 24, 25]. A simple auto-tuning strategy for the rotor

time constant was proposed in [26]. The principle is simple and eÆective:

three samples of the speed profile generated by a torque command are recur-

sively used for the on-line correction. The further and very interesting step

was to develop and generalize such a auto-tuning strategy to two-degree-

of-freedom controllers, such as PIs, and apply to self-commissioning [27],

Unfortunately description in [27] lacks details. As regards PMSMs, an eÆec-

tive solution for self-commissioning has been proposed in [28], where the PI

design is based on the parameter measurement using adaptive identification.

In conclusion, after an initial success, the model-based self-commissioning of

PI-based vector control schemes has unveiled its limitations. Such limita-

tions are partly inherited by the simple control structure and partly by the

model-based design. Relative to the control structure, it is a cascade control

with linear regulators, such as PIs, and a feedforward action, whereas the

motor is a nonlinear system. About the model-based design, see section 2.4,

many approximations are made and issues concerning the multiple inputs,

system nonlinearities and uncertainties still remain unaddressed. Although

good enough for several applications, such a self-commissioning leads only to

a sub-optimal tuning.

Possible solution are given by the nonlinear, adaptive, and intelligent control

[7, 29, 30, 31]. Nonlinear control developed techniques, for instance, based

on fuzzy logic [32] or sliding-mode control [33], to improve the robustness of

the control scheme to parameter variations. Also the more advanced adap-

tive control was applied to electric drives in several ways. The simplest is
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illustrated in fig. 2.15, see [22, 23]. During the normal working of the drive,

a recursive algorithm, namely parameter tracking, keeps updated the param-

eter estimate. This is used to reapply, at each sample time, the design rules

for the controller tuning. The accuracy of parameter values is maintained

regardless operating conditions, but this meets only one of the the problems

related to model-based design letting the others unaddressed. In fig. 2.16 is

shown the Model-Reference Adaptive System (MRAS), [34]. The reference

model produces the output with which the plant should ideally respond to

the command. The mismatch between reference and actual output drives the

parameter adjustment. Realizing the outer adaptation loop, MRAS is very

powerful and flexible because fully bypasses problems related to model-based

design. Unfortunately, as often happens, powerfulness and flexibility involve

some risk. For instance, adaptation gain is not simple to set and stability

region is hard to be found. Finally implementation is harder because of its

complexity.

Before attempting to replace a well-known PI control with a sophisticate

adaptive control, one should investigate whether it has been made the most
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Figure 2.16: Model-Reference Adaptive System (MRAS).

of the simpler PI control [35]. About particular applications, such as missile

guidance, adaptive control has been necessary. On the contrary, the market

of electric drives did does not justify the expense it would be necessary to

implement adaptive control in industrial drives. Such a propensity is also

supported by the fact that performances of PI-based vector-controlled drives

can be still improved. As the matter of fact, final users operate the standard

self-commissioning, which industrial drives nowadays have. Sub-optimal per-

formances are then improved by extra hand-calibrations that involve tedious

and time-consuming tests.

Considering that almost all industrial drives are PI-based vector-controlled,

and that human time is more expensive than machine time, in this disser-

tation a new self-commissioning scheme is proposed in fig. 2.17. From a

comparison with the standard, see fig. 2.13, it has to be noted that the con-

troller auto-tuning is driven by the performance evaluation. As for adaptive

control, it completely avoids model-based issues. Further, either prefixed

tests or user tests can be used during auto-tuning. The core of this scheme
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is in the mechanism for parameter adjustment. In the next chapters the

algorithms which it is based on will be fully detailed.



Chapter 3

Evolutionary Algorithms

Evolutionary algorithms (EAs) are inspired by concepts of evolution and

adaptation discovered and studied by Charles Darwin in the nineteenth cen-

tury. According to Darwin, the natural selection is the main mechanism

which evolution is based on.

A population can survive in a given environment if enough individuals are

able to reproduce. The principle of natural selection states that the higher

the capability of adaptation of an individual, the higher the probability of

reproduction. It means that the better individuals are likely to transfer

their genetic inheritance to oÆspring. Hence, throughout the evolution, new

populations inherit better and better genetic material from previous ones.

The process that governs sharing and transferring of genetic material from

individuals to their oÆspring is called sexual reproduction. Furthermore, oÆ-

spring’s genes can be low-probabilistically altered by means of genetic muta-

tion, also known as asexual reproduction. Such a process helps in maintaining

a diverse population, i.e., a population where individuals with diÆerent genes

39
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coexist. In this way natural selection has a wide-ranging genetic inheritance

to operate on.

Figure 3.1 illustrates the iterative cycle above described which EAs are based

on. An initial population is evaluated, it means that each individual receives

a positive number indicating how capable of adaptation that individual is.

Such a number is also known as fitness. According to their fitness, a part

of the population is selected to reproduce. After genetic mutation, oÆspring

create a new population ready to be evaluated. Thus the iterative cycle can

restart.

Studies on the artificial intelligence began between the fifties and sixties.
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This research area produced three of the most popular subjects in the his-

tory of computer science: neural networks, fuzzy logic, and evolutionary

algorithms (EAs) also know as evolutionary computation (EC). The lat-

ter includes genetic algorithms (GAs), evolutionary strategies (ESs), genetic

programming, evolutionary programming, and learning classifier systems, as

shown in fig. 3.2. The concise classification of these areas needs to be han-

dled carefully, because since the begin all methods have been often used to

contaminate each other.

GAs, initially proposed in [36], were made popularized by Holland in [37, 38].

A complete description of the implementation of natural mechanisms onto a

computer was presented in [8, 39]. These highlight two key points of GAs,

that are, an individual is binary-encoded into a bit-string representing the

genes, and one of the most important resource of evolution consists of sexual

reproduction, namely crossover. Furthermore, the Schema Theorem was pro-

posed to force a GA in a theoretical framework. In the nineties, the Schema

Theorem was subjected to criticism [40, 41], but received also favourable

feedback by [42, 43]. However, controversial studies for a theoretical for-

malization did not play down the role of GAs in engineering optimization

problems. Indeed, a further advance in this direction was made implement-

ing their real-coded version [44, 45, 46]. The real coding, typical of ESs, is

one of the features that makes GAs very attractive for optimization prob-

lems.

ESs were expressly developed to cope with parameter optimization [47]. The

native real coding allows to associate directly each parameter to one gene.

Such strategies rely on mutation and selection, rather than recombination, to
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evolve a good solution. Last key point is the self-adaptation, for instance the

mutation ratio changes throughout evolution according the evolution trend.

Genetic programming can be view as a GA that operates on function and

instruction sets, instead of binary-coded parameters, to optimize the code of

a program [48]. Also learning classifier systems can be thought as GAs, but

simple rules, such as if <condition> else <action>, are encoded as genes

[49]. Regarding evolutionary programming, it was developed independently

from ESs and is virtually not related to any coding, but real diÆerences are

hard to be singled out [50].

As aforementioned, EAs, specially GAs and ESs, have been successfully

used for optimizations. Parameter optimization consists of searching of the

best set of parameters which solves a given problem. The domain of feasi-

ble solutions is called search space. The goodness of a solution at solving

the given problem is numerically evaluated by a fitness function. The main

advantages provided by EAs can be summarized as follows:
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• EAs do not get trapped into local minima of the fitness function because of

their stochastic nature and because they do not use much local information.

• EAs work on a population of possible solutions which maintains diversity

throughout evolution. This allows a wide exploration of the search space.

• EAs can cope with ill-behaved fitness functions in terms of multi-modality,

discontinuity, and noise.

For these reasons EAs have an exploration ability which includes them in

the class of global search methods. On the other hand, their robustness is

obtained at the expense of a slow convergence rate that leads to high com-

putational costs. Such a drawback can be partly solved customizing the

configuration of EAs according to the given problem. This is because the

choice of representation, search domain, evaluation, and evolutionary oper-

ators is problem-oriented. Considering the suggestions of literature on both

EAs and electric drives, several configurations have been tested and the most

satisfactory one will be described in this chapter.

As regards electric drives, this approach has been used in [51, 52, 53, 54].

The first of these papers has proposed the tuning of the PI speed controller

of a brushless dc motor drive evaluating the response to a speed reference

step through a very simple fitness function. In [53, 54] the potential of on-

line GAs has been better exploited. In fact two controllers, for the current

and speed loops of a dc motor drive, have been optimized. The evolution

process in parallel tunes the controller parameters and chooses the controller

structures cascading elementary controllers. In [52] a fuzzy logic controller

for a dc motor drive has been genetically designed and compared with a PID

controller under variable load conditions.
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Figure 3.3: The parameters to be optimized, encoded as chromosome.

3.1 Representation

An individual, or potential solution to the design problem is denoted by x

and is encoded as chromosome, or string. The floating point representation

has been chosen [45], hence the chromosome is a vector of floating point

numbers, known as genes, one for each control parameter

x =

∑
Kisd, øisd, Kisq, øisq, K!r, ø!r, øsm, K1, K2, K3

∏
(3.1)

as shown in fig. 3.3.
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3.2 Search Domain

There are two conflicting demands when the search domain is defined. The

search domain has to be wide enough to ensure a good result, but the wider

the search domain the slower the optimization. A priori knowledge can be

helpful in order to assign a search interval for each parameter. For example,

a PI optimization can start from a approximate solution and the searching

can be limited to a suitable rectangle as depicted in fig. 3.4. Extending this

concept to the 10-element vector which represents the chromosome (fig. 3.3),

the search domain is a 10-dimensional hyper-rectangle given by the Cartesian

product of the intervals which each parameter is limited to. The upper and

lower bounds of each interval have been set as follows

xlb (i) = x0 (i) (1° LB (i) /100) (3.2)

xub (i) = x0 (i) (1 + UB (i) /100) (3.3)

where UB (i) and LB (i) are the upper and lower bounds in terms of per-

centage of x0 (i), and x0 is the vector of the parameter values of the sub-

optimal solution obtained by the initial commissioning calculated in section

II. Typical search ranges would be from ±30% to ±70% of pre-tuned control

parameters [55], but these values are chosen as a compromise between the

search time and best solution.

As a first step of the EA whose block diagram is shown in fig. 3.5, Nind

individuals are randomly sampled over the search domain to create the first

population.
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3.3 Evaluation

The second step consists of the evaluation of how successful each individual is

at solving the problem. The performance evaluation of a potential solution is

a crucial point for every optimization method. Because of the nonlinearities

of the system, more “best solutions” can be found according to the working

conditions. Therefore, the training test and the objective function should be

designed in order to consider the specific conditions in which the drive will

operate during the normal working. For this reason, a good software for the

self-commissioning should allow the final user of the drive to customize the

training test and the objective function.
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3.3.1 Training Test

For this research, we propose the training test shown in fig. 3.6. It can be

noted that the combination of the speed and load torque commands makes

it a general-purpose test. Indeed, in addition to low and high speeds, zero-

speed and speed reversal are considered at no- and full-load torque. In some

applications, it will not be possible to change the load directly, as in this test.

However, in many applications (e.g. fan, pump) a change in load will result

from a change in speed, and a series of speed changes may provide su±cient

training test.
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3.3.2 Objective Function

The performance given by each solution is numerically evaluated through the

objective function following the conventional weighted-sum approach [52].

The lower the individual’s objective value is, the higher the probability of

the individual at propagating its genes to the next generation is.

To optimize the overall response of the drive, the objective function to be

minimized is

Obj =
4X

i=1

√
ai ·

8X

j=1

Obji,j

!

(3.4)

where j indicates the number of the speed steps (the training test is a se-

quence of 8 speed steps), i indicates the number of the performance index,

and ai is the positive normalization factor of the respective performance in-

dex Obji,j. For more clarity, the j-th speed step of the training test is shown

in fig. 3.7.

The performance index Obj1,j measures the speed error in the settling phase

Obj1,j =

kj+1°1X

k=kj

ØØ!r (k)° !
§
r,j

ØØ gj (k) (3.5)

where !r (k) is the k-th stored sample of the rotor speed, and kj is the

sample at which the set point changes to !
§
r,j. The activation function gj

returns 0 when the speed reference changes, and returns 1 after kj,settling

samples. kj,settling is determined from the 5% settling time of the speed

response given by the original controller (x0), and remains fixed throughout
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the optimization. In this way the optimization is directed towards solutions

whose settlings are better than those provided by x0. In fact, Obj1,j aims to

take account of the steady-state speed error which depends mainly on the

nonlinearities and disturbance rejections. If some solution provides a settling

time greater than that given by x0, then Obj1,j will be aÆected not only by

the steady-state speed error, but also by the transient speed error which is

numerically bigger.

The overshoot index is

Obj2,j =

ØØØØØØØ

max
k=kj ,...,kj,settling

°
!r (k) · sign¢!

§
r,j

¢
° !

§
r,j · sign¢!

§
r,j

¢!§r,j

ØØØØØØØ
(3.6)

where ¢!
§
r,j = !

§
r,j °!

§
r,j°1 is the amplitude of the j-th speed step. It should

be noted that, (3.6) works for positive and negative values of !
§
r,j and ¢!

§
r,j,
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and for under and over damped responses.

The rise time index is

Obj3,j =
kj,95% ° kj,5%ØØ¢!§r,j

ØØ (3.7)

where kj,95% and kj,5% are the samples between which the measured speed

rises from the 5% to the 95% of the speed step.

Finally, the last performance index is

Obj4,j =

kj+1°1X

k=kj

|isd (k)| (3.8)

and takes account of the undesired d-axis-current oscillations which increase

losses and vibrations in the motor and drive.

3.3.3 Poorly Performing Solutions

The on-line optimization consists of numerous experiments because each pos-

sible solution will be experimentally tested. In this way, the experiment of

an unstable (or highly unsatisfactory) solution can severely stress the hard-

ware. While the theoretical guarantees of closed-loop stability on the actual

hardware remain open for further research, in this thesis we have adopted an

heuristic strategy that eÆectively overcomes the limitations of model-based

analysis. Rather than computing the objective value at the end of each ex-

periment, as is usually done in on-line tuning approaches, each performance

index value is monitored and update in real-time, i.e. at each sample time

of each experiment. If during an experiment one of the performance indices
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exceeds a predefined warning threshold, the current solution is recognized as

“bad”. It is immediately replaced by the stable solution x0, obtained by the

initial commissioning, and the motor is stopped. Then a penalty factor is

applied to the objective value according to the rule: “the earlier the bad solu-

tion is detected, the higher the penalty factor”. Afterwards the optimization

can go on with the next experiment. The value of each warning threshold

can be set between 1.5 and 3 times the value of the respective performance

index given by x0.

3.4 Evolutionary Operators

3.4.1 Selection

After the evaluation of all the individuals of a population, the selection pro-

cess starts. The selection consists of ranking and sampling.

Ranking

In order to avoid pre-convergence [56], individuals are initially ranked ac-

cording to their objective values. Particularly the linear ranking algorithm

[57] has been adopted.

An example can easily shows how it works. Let us suppose that a population

of five individuals, Nind = 5, is evaluated and then the ranking position of
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each individuals is calculated:

Obj =

2

66666666664

11

506

343

62

97

3

77777777775

) Pos =

2

66666666664

1

5

4

2

3

3

77777777775

, (3.9)

where Obj (i) and Pos (i) are the objective and position values of the i-th

individual, respectively.

Finally the fitness vector is calculated as

Ftn = (2° SP ) + 2
SP ° 1

Nind ° 1
(Pos° 1) (3.10)

where Ftn is the fitness vector and SP 2 [1, 2] is the selective pressure.

Considering the example data and a selective pressure SP = 1.5, the equation

(3.10) produces the following fitness vector

Ftn =

2

66666666664

0.5

1.25

1.5

1

0.75

3

77777777775

. (3.11)

Fig. 3.8 shows how the linear ranking, according to the selective pressure, is

a diversity diminishing and contracting operation. The population diversity,

often listed among the advantages of the evolutionary approach, can defeat
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the optimization when the diÆerence between some individual and the others

is too much. This because the evolution tends to use only the few fittest in-

dividuals to create the new generation. In other words, the whole population

tends to replicate those individuals drastically reducing the exploration and

causing the pre-convergence. A comparison between objective values, equa-

tion (3.9), and fitness values, equation (3.11), highlights how the ranking has

solved the problem. Usually the selective pressure is set between 1.5 and 2

because a too low value causes a too slow convergence rate.

Sampling

The sampling generates the mating pool, i.e. the set of individuals for the

reproduction. The Npa individuals of the mating pool are also called par-

ents. The stochastic universal sampling method has been chosen to achieve

zero bias and minimum spread [58]. The probability of the individual being
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selected is

SelP =

8
>>>><

>>>>:

1
NindP

1
Ftn(i)

Ftn formaximizationproblem

1° 1
NindP

1
Ftn(i)

Ftn forminimizationproblem
. (3.12)

In this work the optimization is a minimization problem, i.e., the lower the

fitness value the better the individual. Therefore the second selection prob-

ability formula is used.

3.4.2 Recombination

The exchange of genetic information is known as recombination. The recom-

bination of the Npa parents generates the same number of new individuals

called oÆspring. The algorithm adopted is known as intermediate recombi-

nation [59], and is based on the following formula for oÆspring calculation

xof = xp1 + B (xp2 ° xp1) (3.13)

where xp1, xp2 and xo are the two parents and the oÆspring, respectively. B

is a diagonal matrix with diagonal elements bi randomly chosen in the interval∑
b
min

, b
max

∏
, where typical values are b

min = °0.25 and b
max = 1.25.

If all the bi have the same value, the intermediate recombination is called

linear recombination. The recombination produces oÆspring in the hypercube

defined by

xmin
of

= xp1 + b
min (xp2 ° xp1) , (3.14)
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xmax
of

= xp1 + b
max (xp2 ° xp1) . (3.15)

For sake of clarity, fig. 3.9 shows the possible oÆspring for a two-dimension

problem.

3.4.3 Mutation

Each oÆspring’s genes is low-probabilistically altered during the mutation

process [59]

x̃o (i) = xo (i) + MP · (xub (i)° xlb (i)) (3.16)

where MP is called mutation probability and is randomly chosen in the

interval
£
MP

min
,MP

max
§
. Usually mutation probability is some percentage,

but better results in this case study have been achieved by using MP
min =

°0.2 and MP
max = 0.2.
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There is evidence that equation (3.16) can give points beyond the search

domain. To avoid this the genes are saturated as follows

xo (i) =

8
>>>><

>>>>:

xub (i) if x̃o (i) > xub (i)

x̃o (i) if xlb (i) ∑ x̃o (i) ∑ xub (i)

xlb (i) if x̃o (i) < xlb (i)

(3.17)

3.4.4 Reinsertion

Finally, fitness-based reinsertion has been used to create the new population

of Nind individuals. The least fit individuals of the previous population are

probabilistically replaced by the most fit oÆspring.
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3.5 Termination

At the end of every iteration, or generation, the GA provides a new pop-

ulation whose individuals can generally solve the problem better than the

previous ones. Because of the stochastic nature of the GA, the formulation

of convergence criteria is still an open problem. For this research the GA is

terminated after a predefined number of generations Ngen.



Chapter 4

Hybridization of EAs

EAs are guided stochastic search methods that suÆer of slow convergence

rate. A careful configuration, as discussed in the previous chapter, only

partly solves such a problem that lies in the non-deterministic nature of evo-

lutionary operators which locate the optimal “hill”, i.e., the zone where the

optimal solution is, but are not able to quickly refine it. On the contrary,

classical methods, often classified as hill-climbing, can e±ciently exploit local

information to speed up the optimization, but properly work when the func-

tion to be optimized is smoothed and unimodal. Unfortunately, they often

fail in real-word problems that usually are ill-behaved. In order to get the

benefits of both the techniques, many hybrid methods were proposed, see fig.

4.1.

A hybrid method consists of a combination between diÆerent search methods.

Although it is a very general definition, it is the only one that can include

the huge number of possibilities. These are given not only by the number of

search methods, but also by the hybrid architecture, i.e., the way in which

59
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the diÆerent methods are integrated in a framework to cooperate. Among

the hundreds paper concerning this subject, [60] is very noteworthy. In ad-

dition to a new hybrid approach for GA and simplex method, the authors

very well explain the hybrid architectures already proposed in literature. As

regards the self-commissioning of electric drives, the present thesis proposes

a generalized variant of the elite-based hybrid architecture, proposed in [60].

As shown in fig. 4.2, an initial sub-evolution transforms the initial popu-

lation, popin in the intermediate population, popint. This stage consists of

running the EA whose configuration is described in the previous chapter.

Consequently, the top-ranking individuals are extracted from popint creating

poptop,in. Analogously, the medium-ranking individuals form popmed,in. The

size of poptop,in top-ranking is chosen between the 10% and 15% of popint,

whilst that of popmed,in is between the 95% and 85%. It has to be noted that

poptop,in and popmed,in can be overlapped, that is, can have some individu-

als in common. The probabilistic multi-directional simplex method, later

described, is the local search method that operates on poptop,in to produce

poptop,out. Again, the popmed,out is obtained by the aforementioned EA with

popmed,in as initial population. Finally, the popout is obtained by a fitness-

based merging of poptop,out and popmed,out. This is one iteration that can be

repeated until a termination criterion, such as a prefixed number of itera-

tions, is satisfied.

The new hybrid architecture better coordinates the global and local search

methods in order to save fitness evaluations. Although this is experimentally

proved even if not theoretically justifiable, it is author conviction that this

is due to the highly noisy fitness. The proposed solution rations the use of
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the local search more than that done in [60] or in [61].

For the same reason, the proposed local search method is an emphad-hoc

combination of diÆerent variants of the simplex method, namely probabilis-

tic multi-directional simplex method. Simplex method was initially proposed

in the early sixties, and then popularized by Nelder and Mead [62] with their

eÆective version. It belongs to the class of the direct search methods whose

two main properties are:

• no gradient, or any gradient approximation, can be used,

• only the values of the fitness function can be used.

These properties make the direct search methods an e±cient alternative to

Newton’s, and quasi-Newton methods that are impracticable:

• if the fitness evaluation is very time-consuming and noisy such as, when

calculated through experimental tests,

• if gradient, Hessian, and first partial derivatives of the fitness function

cannot be exactly calculated, and their numerical approximations are too

expensive.

The diÆerent variants used to implement the probabilistic multi-directional

simplex will be described in the next sections. For more detail about the

direct search methods please refer to [63, 64, 65].

4.1 Nelder and Mead algorithm

A simplex in a n-dimensional Euclidean space is a Euclidean geometric spatial

element having n + 1 boundary points, and can be defined by a set of n + 1

points. For instance, a simplex is a line segment in one-dimensional space,
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a triangle in two-dimensional space, or a tetrahedron in three-dimensional

space, as shown in fig. 4.3; and the vertices of the spatial elements completely

define the simplex itself.

The flowchart of an iteration of this method is shown in fig. 4.4.

4.1.1 Sorting

Generic iteration begins by sorting and indexing the simplex points, x1,x2, . . . ,xn,xn+1,

according to their fitness, so that

f (x1) ∑ f (x2) ∑ . . . ∑ f (xn) ∑ f (xn+1) (4.1)

where f is the fitness function to be minimized, consequently x1 is the lower

fitness point, i.e., the best point, and xn+1 is the worst point.

4.1.2 Centroid calculation

Then, the centroid is calculated as the average value of the best n points

x̄ =
1

n

nX

i=1

xi, (4.2)

as shown in fig. 4.5a.

4.1.3 Reflection

In order to replace the worst point xn+1 with a better one, a reflected point

is calculated as

xr,n+1 = x̄ + kr (x̄° xn+1) (4.3)
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where kr = 1 is the reflection coe±cient, and its standard value is that orig-

inally proposed in [62].

The reflection operates a central symmetry, also known as point symmetry,

through the point x̄ that sends the point xn+1 to the point at the same dis-

tance kx̄° xn+1k2 on the line determined by x̄ and xn+1 but on the opposite

side from x̄. As shown in fig. 4.5b, the idea is to move the worst point

towards the more promising zone given by the better n points.

According to the fitness of the reflected point, f (xr,n+1), diÆerent decisions

can be taken:

• if f (xr,n+1) < f (x1) then the expansion is operated,

• if f (x1) ∑ f (xr,n+1) < f (xn) then the reflected point replaces the worst,

and the iteration terminates,

• if f (xn) ∑ f (xr,n+1) < f (xn+1) then the outside contraction is operated,

• if f (xn+1) < f (x1) then the inside contraction is operated.

4.1.4 Expansion

If f (xr,n+1) < f (x1), that is, the reflected point is the new best point, a new

point, namely expanded point, is calculated as follows

xe,n+1 = x̄ + ke (x̄° xn+1) (4.4)

where ke = 2 is the standard expansion coe±cient. Fig. 4.5c shows how ex-

pansion stretches the simplex in the very promising direction which reflection

pointed to. According to the fitness of the expanded point

• if f (xe,n+1) < f (xr,n+1), then the expanded point replaces the worst, and
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the iteration terminates,

• if f (xe,n+1) ∏ f (xr,n+1), then the reflected point replaces the worst, and

the iteration terminates.

4.1.5 Outside contraction

If f (xn) ∑ f (xr,n+1) < f (xn+1), it means that the pointed direction is not

so favorable. Therefore the simplex is contracted by

xoc,n+1 = x̄ + kc (x̄° xn+1) (4.5)

where kc = 0.5 is the standard contraction coe±cient. Fig. 4.5d shows how

outside contraction works in the two-dimensional space.

According to xoc,n+1’s fitness,

• if f (xoc,n+1) ∑ f (xr,n+1), then xoc,n+1 replaces the worst xn+1, and the

iteration terminates,

• if f (xoc,n+1) > f (xr,n+1), then the shrinking is operated.

4.1.6 Inside contraction

If f (xn+1) < f (xr,n+1), it means that the pointed direction is very unfavor-

able. The new contracted point is given by

xic,n+1 = x̄° kc (x̄° xn+1) (4.6)

where kc = 0.5 is the contraction coe±cient used in (4.6). Fig. 4.5e shows

how inside contraction works in the two-dimensional space.
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According to xic,n+1’s fitness,

• if f (xic,n+1) < f (xn+1), then xic,n+1 replaces the worst xn+1, and the

iteration terminates,

• if f (xic,n+1) ∏ f (xn+1), then the shrinking is operated.

4.1.7 Shrinking

The shrinking is applied when any of previous operation produces a new

point better than the worst, and consists of moving all the other vertices

{xi}i=1,...,n towards x1. The new points are given by

xs,i = x1 + ks (x1 ° xi) , i = 1, . . . , n (4.7)

where ks = 0.5 is the standard shrinking coe±cient. It has to be noted that

also in this case the simplex is contracted and for this reason the shrinking

is also known as multi-contraction, fig. 4.5f.

4.2 Probabilistic version

Although at a first glance, the way in which N-M’s algorithm searches the

best solution seems simple, the convergence properties are still discussed by

mathematics. However, there is evidence that the optimization process can

be modified by changing reflection, expansion, and contraction coe±cients.

According to the problem, often such coe±cients are manually changed in

order to improve the convergence rate. Besides such intuitive changes, an in-

novative idea was proposed in [66]. The authors made non-deterministic the
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Figure 4.5: Operations of N-M’s simplex method.
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coe±cients of the simplex method to introduce a cost-eÆective exploration

component. This idea has been proved very eÆective, particularly for online

optimization, making the simplex method able to cope with noisy fitness

functions.

This variant consolidates reflection, expansion, and outside contraction op-

erations in one probabilistic reflection. In N-M’s algorithm, these operations

can be seen as a reflection in which the reflection coe±cient either kr = 1, or

ke = 2, or koc = 0.5 are respectively adopted. As shown in figures 4.6a and

4.6b, the probabilistic reflection uses one random variable kpr 2 [0, 2] with a

triangular probability density function that peaks at 1 and reaches zero at 0

and 1.

Analogously the probabilistic contraction replace the internal contraction of

N-M’s algorithm, by using a kpc 2 [0, 1] with a triangular probability density

function that peaks at 0.5 and reaches zero at 0 and 1, as shown in figures

4.7a and 4.7b.

The same authors further introduced a new variant, known as concurrent

simplex method, when their aforementioned paper was accepted for journal

publication [60]. The concurrent simplex methods can be seen as a general-

ized N-M’s algorithm. It starts with n + m points, where m ∏ 1, the two

methods are equivalent for m = 1. Sorting, reflection, expansion, and con-

traction are basically the same, but operates on the worst m points, as shown

in fig. 4.8. At the expense of a greater number of function evaluations, the

search space is better investigated. Furthermore, it has to be noted that the

concurrent variation of the simplex method can be applied independently

from the probabilistic one.
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4.3 Multidirectional search algorithm

Among the many recent variants, one of the most important is the multidi-

rectional search algorithm that was initially proposed and then developed in

[67]. It was developed to meet the need of e±ciency in a parallel computing

environment.

Multidirectional search algorithm is a simplex method in which the point of

symmetry of reflections and contractions is the best point x1, unlike N-M’s

version that uses the centroid x̄, see equation (4.2). Reflections or contrac-

tions of the remaining n points, {xi}i=2,...,n+1, through the best point x1,

allow a parallel exploration in diÆerent directions. The generic iteration ter-

minates when a new point outperforming x1 is found. It has to be noted that

this condition is much stronger than that required in N-M’s version.

The flowchart of an iteration of multidirectional search method is shown in

fig. 4.9.

Sorting

Also in this case an iteration begins by sorting and indexing the simplex

points, x1,x2, . . . ,xn,xn+1, according to their fitness, so that

f (x1) ∑ f (x2) ∑ . . . ∑ f (xn) ∑ f (xn+1) (4.8)

where f is the fitness function to be minimize, consequently x1 is the lower

fitness point, i.e., the best point, and xn+1 is the worst point.
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Reflection

New n points are calculated by reflecting {xi}i=2,...,n+1 as follows

xr,i = x1 + kr (x1 ° xi) , i = 2, . . . , n + 1 (4.9)

where kr = 1 is the reflection coe±cient. Fig. 4.10a shows how reflection

works in the two-dimensional space.

Comparing the fitness of the best reflected points and with that of x1, dif-

ferent decisions can be taken:

• if min
i=2,...,n+1

{f (xr,i)} < f (x1) then the expansion is operated,

• if min
i=2,...,n+1

{f (xr,i)} ∏ f (x1) then the contraction is operated.

Expansion

If min
i=2,...,n+1

{f (xr,i)} < f (x1), the expanded simplex is given by

xe,i = x1 + ke (x1 ° xi) , i = 2, . . . , n + 1 (4.10)

where ke = 2 is the expansion coe±cient. Fig. 4.10b shows how expansion

operates in the two-dimensional space.

If min
i=2,...,n+1

{f (xe,i)} < min
i=2,...,n+1

{f (xr,i)}, then the expanded points {xe,i}i=2,...,n+1

will replace the initial {xi}i=2,...,n+1 in the next iteration, otherwise the lat-

ter will be replaced by the reflected ones {xr,i}i=2,...,n+1. In any case, the

iteration terminates.
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Contraction

If min
i=2,...,n+1

{f (xr,i)} ∏ f (x1) then the contracted simplex is given by

xc,i = x1 ° kc (x1 ° xi) , i = 2, . . . , n + 1 (4.11)

where kc = 0.5 is the standard contraction coe±cient. Comparing figures

4.10c and 4.5f , equations (4.11) and (4.7), there is evidence that the multi-

directional contraction is equivalent to the shrinking of N-M’s version.

In this case , the current iteration terminates replacing the initial {xi}i=2,...,n+1

by {xc,i}i=2,...,n+1, regardless their fitness.
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Chapter 5

Experimental setup and results

5.1 Hardware and Software Implementation

The implementation of the control system and the self-commissioning pro-

cedure is based on an Host PC and a multi-purpose single board dSpace

DS1103 [68]. Although the DS1103 has a floating-point PowerPC 604e mi-

croprocessor working in conjunction with a TMS320F240 fixed-point DSP,

the control platform used in this project employs the fixed-point DSP only,

so that control hardware is equivalent to that of a typical industrial drive,

as shown in fig. 5.1. The DSP executes the code in the dual-ported memory

that can be also accessed by the host PC and the I/O units through the

DSP bus. The digital I/O port consists of two 8-bit I/O configurable ports

through which the PWM commands and control signals are sent to the in-

verter. The feedback from the current sensors are A/D converted with 14-bit

resolution. Finally, the feedback from the encoder is handled by the encoder

interface.

81
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The vector control program has been developed in a Simulink environment

and has been compiled by the dSpace code generator. The real-time ex-

ecutable code is downloaded to the DSP memory whose simplified map is

shown in fig. 5.2. During the normal working of the drive, the vector control

code is executed by the DSP which updates the outputs while the I/O units

update the feedback values. The control parameters remain static and the

control logic flags are used to synchronize the processes and to handle the

faults. During the auto-tuning, the evaluation procedure of the HEA changes

the control parameters and analyzes the response to the training test. This

is performed by accessing the memory locations where the control parame-

ters and the feedback values are stored using the dSpace MLIB Interface. In

this way the auto-tuning procedure does not need to recompile the control

code. Furthermore the evaluation procedure uses the control flags to make

the auto-tuning independent of the training test time and the DSP execution

code time.

It should be emphasized that the dSpace board and the Host PC have been

used to reduce prototyping time. No extra-hardware has been used for the

vector control implementation compared with an industrial drive. More-

over the HEA code has been written by the author in Matlab environment,

starting from the Genetic Algorithm Toolbox [69], but for this application

it can be optimized to take up a small part of the DSP memory. Hence

this solution can be simply embedded in an industrial drive software as a

self-commissioning tool.
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Table 5.1: PMSM Nameplate

phase-to-phase resistance 10.4 ≠

phase-to-phase inductance 0.0087 H

voltage constant 0.35 V/(rad/s)

torque constant 0.40 Nm/A

moment of inertia 0.00012 kg · m2

rated power 350 W

rated speed 4000 rpm

5.2 Experimental Results

Besides a PC and the DS1103 board previously described, the experimen-

tal setup is constructed from a Technosoft ACPM750 three-phase inverter, a

150 W three-phase PMSM and a 250-pulse incremental encoder. A second

torque controlled PMSM (Table 5.1) has been used for the load. The exper-

imental setup is shown in figures 5.3 and 5.4.

As mentioned in chapter 2.5 an initial commissioning has been performed.

The AVO and SO criteria have been applied to tune the parameters of the

control system after a conventional output-error identification [70]. The con-

trol system parameters so obtained are reported in the first column of the

Table 5.2 and represent the approximate solution x0. In fact, because of

approximations of the modelling and design, x0 has proven to be stable but

with a poor dynamic response. For a fair comparison with the results given

by the proposed on-line hybrid-evolutionary optimization, a further accurate

manual calibration has been carried out. The new parameters represent the

solution xMC and are reported in the second column of Table 5.2. The speed
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Figure 5.3: Frontal view of the experimental setup.
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Figure 5.4: Top view of the experimental setup.
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Table 5.2: Values of the Control System Parameters

initial manually calibrated HEA-designed

solution, x0 solution, xMC solution, xHEA

Kisd 6.93 6.93 10.51

øisd 8.37 · 10°4 8.36 · 10°4 8.96 · 10°4

Kisq 6.93 6.93 8.88

øisq 8.37 · 10°4 8.36 · 10°4 9.32 · 10°4

K!r 12.10 · 10°3 10.76 · 10°3 13.90 · 10°3

ø!r 1.54 · 10°2 2.24 · 10°2 1.24 · 10°2

øsm 1.54 · 10°2 1.54 · 10°2 1.55 · 10°2

K1 4.35 · 10°3 3.85 · 10°3 3.75 · 10°3

K2 4.35 · 10°3 3.85 · 10°3 3.94 · 10°3

K3 6.36 · 10°3 6.36 · 10°3 5.59 · 10°3

response to the training test is shown in fig. 5.5a, whilst the d- and q-axis

current responses are shown in fig. 5.5b and 5.5c respectively. The current

responses show oscillation, which is particularly large during the first speed

reversal. A simply way to remove these oscillations would have consisted

of speed dynamics decreasing with consequently deterioration of the speed

response. Considering that the first objective is a good speed response, and

that the amplitude of the current oscillations is acceptable, xMC has been

chosen as the best solution after the hand-calibration. Essentially, we have

retraced the typical steps of an engineer commissioning an industrial drive.

Subsequently the control system parameters have been optimized by the

proposed on-line genetic auto-tuning. The solution, xHEA, is reported in

the last column of Table 5.2. The repeatability of this final result has been

validated by 30 optimization runs. The configuration of the HEA is synthe-
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Table 5.3: Performance Indices Scored by xMC and xHEA after each speed
step

j F tn1,j Ftn2,j Ftn3,j Ftn4,j

xMC xHEA xMC xHEA xMC xHEA xMC xHEA

1 0.37 0.21 0.52 0.43 0.08 0.04 0.01 0.01

2 0.74 0.41 0.74 0.65 0.23 0.14 0.05 0.04

3 1.11 0.62 0.84 0.75 0.36 0.24 0.25 0.09

4 1.47 0.83 0.95 0.84 0.44 0.28 0.28 0.11

5 1.48 0.84 1.40 1.10 0.48 0.41 0.29 0.13

6 1.49 0.85 1.52 1.22 0.62 0.49 0.32 0.16

7 1.49 0.86 1.72 1.42 0.69 0.55 0.38 0.21

8 1.50 0.85 1.83 1.53 0.80 0.69 0.40 0.23

sized in Table ??. As mentioned in section 3.2, only x0 has been used as a

priori knowledge and not the more accurate xMC. The speed response to the

training test is shown in fig. 5.6a, whilst the d- and q-axis current responses

are shown in fig. 5.6b and 5.6c respectively. At a first glance these results

are better than those given by xMC. However, to allow an easier comparison

the values of the performance indices scored by xMC and xHEA are reported

in Table 5.3. It should be noted that xHEA has better performance in terms

of speed and current response to each speed step.

In particular, consider the details of the no-load speed reversals i.e. the re-

sponses given by xMC and xHEA to the third speed step of the training test

(at t = 1 s), fig. 5.7. As regards the xMC speed response, the 5% settling

time is 0.094 s and the overshoot is 11% (in fact the speed step amplitude is

2 p.u., from 1 p.u. to °1 p.u.). The 5% settling time and the overshoot of

the xHEA speed response are 0.077 s and 8%, respectively. The superiority of
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xHEA is also confirmed by the xMC current responses which show unwanted

oscillations. Also during the full-load speed reversal the performance of xHEA

is better, even though xMC provides a current response with few oscillations,

as shown in fig. 5.8. The full-load speed reversal is the seventh speed step

of the training test (at t = 3 s). The 5% settling time and the overshoot of

xMC speed response are 0.140 s and 7%, respectively, whilst those of xHEA

are 0.128 s and 5%, respectively.

As mentioned in section 3.3.2, each performance index is updated in real-

time. In fig. 5.9 the real-time values of the objective functions (i.e. the

weighted sum of the performance indices) given by xMC and xHEA are

shown. The final objective values scored by xMC and xHEA are 4.53 and

3.30 respectively. Hence the overall performance obtained with an accurate

hand-calibration is about 37% worse than that achieved with the proposed

on-line genetic optimization.

To evaluate the robustness of xMC and xHEA, two evaluation tests have been

performed. The aim is to stress the control system in conditions diÆering from

those used for its design. The first evaluation test is designed to stress the

control system with an alternative load torque. It consists of a set of experi-

ments in which the motor is initially started at half rated speed with no-load

torque. After the steady-state is reached, a square-wave load torque with

amplitude 0.4 p.u. and frequency from 10 Hz to 26 Hz is applied. For sake of

clearness, the speed responses of the experiment with 15 Hz square-wave load

torque is shown in fig. 5.10. Each square-wave load torque generates a speed

oscillation with the same frequency. The amplitude of each speed oscillation

is reported in the Bode diagram in fig. 5.11. The physical implementation of
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the load torque does not allow to go beyond a frequency of 30 Hz. In spite

of this, it is possible to recognize the xMC amplitude frequency response as

that of an over damped system. In fact, up to 13 Hz the amplitude value is

constant, 0.108 p.u., and then is strictly decreasing. As regards the xHEA

amplitude frequency response, the 17 Hz resonant peak shows the behavior

of an under damped system. Up to 13 Hz the amplitude value is constant,

0.082 p.u., and after the resonant peak, 0.089 p.u., it is strictly decreasing.

This evaluation test confirms the superiority of xHEA whose amplitude fre-

quency response is always under that of xMC.

The speed and current responses to the second evaluation test are shown in

fig. 5.12a, 5.12b, and 5.12c. Initially, a speed step is applied, whilst the load

torque is set to zero. At t = 0.01 s the full-load torque is applied, and at

t = 0.05 s the reference speed is set to zero again. At first, both xMC and

xHEA responses are quite similar. In fact, both speed responses are ramps

in which the acceleration in the first part (from t = 0 s to t = 0.035 s,

no-load torque) is higher than that of the second part (from t = 0.01 s to

t = 0.05 s, full-load torque). At t = 0.05 s the speed reference is set to

zero whilst the full-load torque is kept. At that time the regulators are still

in saturation, in fact the isq is the double of rated value (choose as maximum

value allowable) and the rotor speed is still far enough from the rated speed.

It should be noted that the training test does not provide this situation re-

produced by the evaluation test. The 5% settling time of xMC and xHEA

speed responses are equal to 0.106 s and 0.089 s respectively, confirming the

superiority of the latter.
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(c) q-axis current response.

Figure 5.5: Responses given by xMC.
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Figure 5.6: Responses given by xHEA.
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Figure 5.7: Comparison between the responses given by xMC and xHEA to
the no-load speed reversal.
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Figure 5.8: Comparison between the responses given by xMC and xHEA to
the full-load speed reversal.
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Figure 5.12: Comparison between the responses given by xMC and xHEA to
the second evaluation test.
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