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Abstract

This thesis examines the use of machine learning and deep learning in mechanical engi-
neering problems. An underlying theme of the research is the comparison of Convolu-
tional Neural Networks and Recurrent Neural Networks with standard machine learning
techniques, such as Support Vector Machines, showing the advantages of Deep Learning
in modeling complex phenomena where traditional approaches fall short. As an example,
it is shown that with the proposed Multichannel Spectrograms, an autonomous robot
can classify the traversed terrain with an accuracy of over 90% when using a CNN based
on proprioceptive signals. This work addresses both generalization and extrapolation
issues, demonstrating that Deep Learning delivers more robust results than standard
machine learning when applied to data obtained in varied conditions. The importance
of sensor data complementarity is also emphasized showing that the use of appearance-
based measurements can be used to predict wheel-terrain interactions, improving the
ability of planetary exploration rovers to avoid hazards and respond to changing con-
ditions. The combination of proprioceptive and exteroceptive signals is explored for
crop monitoring in agricultural robotics. The design and development of a multi-sensor
system for 3D reconstruction of agricultural environments is here detailed together with
the necessary sensor fusion algorithms. Additionally, a new unsupervised learning algo-
rithm, Kalman Supervised Network, is proposed for modeling mechanical systems. KSN
uses the principles of Kalman Filters to continuously learn from sensor measurements
and produce a more accurate model of the system than the one embedded in the KF.
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Chapter 1

Introduction

1.1 Machine Learning and Deep Learning

Machine learning is a branch of artificial intelligence that allows systems to automat-
ically improve performance through experience, without being explicitly programmed.
It involves training algorithms on data to identify patterns and make predictions or
decisions in a specific task. The main types of machine learning algorithms are:

• Supervised learning - algorithms are trained on labeled data to make predictions
on new data. Examples: linear regression for predicting numerical values, classifi-
cation algorithms for identifying objects in images.

• Unsupervised learning - algorithms learn from unlabeled data to identify patterns
or groupings. Examples: clustering algorithms for grouping similar items in a
dataset, dimensionality reduction for visualizing high-dimensional data.

• Reinforcement learning - algorithms learn from interactions with an environment
to maximize a reward signal. Examples: control algorithms for optimizing process
control in manufacturing, robotics algorithms for autonomous vehicles.

Deep learning, a subfield of machine learning, uses artificial neural networks with multi-
ple layers to solve complex problems. It is capable of automatically learning features and
representations from raw data, making it well suited for tasks such as image and speech
recognition, and natural language processing. Examples of deep learning algorithms in-
clude Convolutional Neural Networks (CNN) for image classification in computer vision,
Recurrent Neural Networks (RNN) for sequential data processing in speech recogni-
tion, and Generative Adversarial Networks (GAN) for synthesizing images in computer
graphics. Machine learning has numerous applications in the engineering field such as
predictive maintenance for industrial equipment, autonomous control for smart build-
ings, and quality control in manufacturing. Deep learning is used in various applications
such as object detection and classification in computer vision, speech recognition in
human-computer interaction, and natural language processing in language translation.

1



2 Introduction

1.2 Applications for Mechanical Systems

Machine learning algorithms and deep learning algorithms have numerous potential ap-
plications in the mechanical engineering field. Here are a few examples with references
to existing literatures:

• Predictive maintenance in mechanical systems: Machine learning algorithms can
be used to predict the likelihood of failure in mechanical systems [20, 70].

• Quality control in manufacturing: Machine learning algorithms can be used to
detect and classify defects in manufactured products [100, 98].

• Autonomous control in smart buildings: Machine learning algorithms can be used
to optimize heating, ventilation, and air conditioning (HVAC) systems in smart
buildings [136, 2]

• Fluid dynamics simulations: Deep learning algorithms can be used to speed up
fluid dynamics simulations [68, 85].

• Online estimation of parameters: Machine learning algorithms can be used to
estimate parameters in real-time. For example the angle of internal friction [137]
or soil cohesion [76].

• Modeling of materials: Machine learning algorithms can be used to model the
behavior of materials, such as the prediction of the Curie temperature [90] or
vibration free energy and entropy using solely the chemical composition of the
material [69].

• Prediction of system dynamics: Machine learning algorithms can be used to predict
the dynamics of complex systems. Building data-driven models for longitudinal
and lateral dynamics [133] or for estimating the slip ratio [134].

These are just a few examples of the many potential applications of machine learning
and deep learning algorithms in the mechanical engineering field. There is a growing
body of research exploring the use of these algorithms in various areas of mechanical
engineering, and the field is likely to continue to grow in the coming years.

Machine learning models are built using data, which can be proprioceptive or ex-
teroceptive. Proprioceptive data refers to information generated by sensors within the
system being modeled, while exteroceptive data refers to information generated by sen-
sors outside the system. The distinction between sensing and perception is important in
understanding the role of data in machine learning models. Sensing refers to the process
of gathering information about the environment through the use of sensors. Perception
refers to the process of interpreting and making sense of that information. In the context
of machine learning, proprioceptive perception refers to the process of making sense of
proprioceptive data, while exteroceptive perception refers to the process of making sense
of exteroceptive data. Proprioceptive data is often used to build models that reflect the
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internal state of a system, while exteroceptive data is often used to build models that
reflect the external state of a system. For example, in the case of a self-driving car,
proprioceptive data might include information about the vehicle’s speed, steering angle,
and other internal state variables, while exteroceptive data might include information
about the road, other vehicles, and the surrounding environment. Machine learning al-
gorithms can be used to build models that use both proprioceptive and exteroceptive
data to make decisions and control the vehicle.

Chapter 2 of this thesis focuses on deep learning applications for terrain recognition
using solely proprioceptive data. Chapter 3 presents a novel approach for exteroceptive
measures to predict vehicle-terrain interaction. Finally, Chapter 4 describes the process
of combining exteroceptive and proprioceptive measures and section 5 presents a novel
approach for unsupervised accurate modelling of generic mechanical system based on
the Kalman Filter algorithm.

1.3 ADE Project

The study of this thesis has been developed as part of the research activity for the
project ADE (Autonomous DEcision making in very long traverses) [91, 37]. ADE is
an ongoing European H2020 research project, part of the PERASPERA second call
[38]. Its ambition is to design, develop, and test in a representative Earth analogue a
fully autonomous rover system. The ADE system is capable to take all decisions to
pursue mission objectives, to increase data collection and overall science, to perform
autonomous long traverse surface exploration, to guarantee fast reaction and adapt to
unforeseen situations, increasing mission reliability, and guaranteeing optimal exploita-
tion of resources. The main goal of ADE is to evelop and test a rover system capable
to achieve autonomous long-range navigation in hostile environments while guarantee-
ing fast reaction, mission reliability and safety, and optimal exploitation of the robot’s
resources within reasonable costs.

Future generations of mobile robots will be required to explore areas, which present
highly challenging mobility conditions. In order to fulfill long distance and duration
missions, it will be important to be able to understand the type of traversed surface, so
that adequate control and planning strategies can be implemented and areas of high risk
can be properly negotiated or avoided. This thesis details one of the key technologies to
enable long range applications of planetary rovers related with terrain awareness. As a
matter of fact, the mobility range capability of the rovers has been up to date strongly
limited to few tens of meters per sol day [89, 36, 88]. From a purely technical point
of view, this limitation has both hardware and software sources. The former and most
important is the finite power storage of the rover locomotion system, which is fixed given
a robot design. The latter is reduced skills in terms of autonomous decision-making. The
result is the impossibility to cover reasonable portions of/or multiples geographical areas
of a potential planetary surface, reducing drastically the data returns both in terms of
“pure science” and/or potential data collection for in-situ resources analysis and further
exploitation. The capability of taking autonomous decisions on-board can be improved
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by artificial intelligence. Improving it will extend the autonomy of the rover across
multiple geographical areas and therefore expands opportunities of data collection.

The importance of sensing hazards in long-range navigation was highlighted in April
2005, when the Mars Exploration Rover Opportunity became embedded in a dune of
loosely packed drift material [28]. The terrain geometry as reconstructed from a distance
via stereovision did not indicate any hazard, however, the high compressibility of the
loose drift material caused the wheels to sink deeply into the surface. The combination
of the drift’s low internal friction and the motion resistance due to sinkage prevented
the rover from producing sufficient thrust to travel up the slope. Opportunity’s progress
was delayed for more than a month while engineers worked to extricate it. A similar
embedding event experienced by the Spirit rover in 2010 led to the end of its mobility
operations [51]. This highlights the need for future generations of planetary exploration
rovers to have key technologies that can overcome these limitations, performing long
traverses while guaranteeing fast reaction, mission reliability and safety, and optimal
exploitation of the robot’s resources within reasonable costs. In this context, the ability
to sense and characterize the incoming terrain would represent an enabling technology
towards long-term autonomy and potential hazard avoidance [86].

1.4 Rovers Overview

SherpaTT SherpaTT was built by DFKI RIC for long-distance exploration applica-
tions [26], negotiation of highly challenging terrains or non-nominal conditions (sinkage
in soft soil, getting entangled between rocks or alike), cooperation tasks between het-
erogeneous rovers in a collaborative sample return mission, search and rescue and/or
security missions. SherpaTT is a four-wheeled mobile robot [25] outfited with an ac-
tively articulated suspension system, independent drive and steer wheel motors and a
six degrees of freedom (DOF) manipulation arm.

(a) (b)

Figure 1.4.0.1: (a) SherpaTT in soft sand dunes during Morocco field trials in 2018; (b)
SherpaTT in a sandy trench during the ADE final field tests in spring 2021.
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Hence, the rover is a hybrid wheeled-leg rover, meaning it can take advantage of both,
wheeled and legged locomotion according to the terrain difficulty. SherpaTT has a mass
of about 180 kg and a payload capacity of at least 40 kg. Each of the four suspended
legs has five DOF that include the rotation of the whole leg about the shoulder or
pan axis with respect to the robot body, the two rotations of the inner and outer leg
parallelograms for lifting a wheel, and the steer and drive angle of the wheel. Each
of the 20 suspension and six arm joints delivers telemetry data at a rate of 100 Hz.
The telemetry includes joint position (absolute and incremental), speed, current, PWM
duty cycle and two temperatures (housing and motor windings). Additionally, a 6-DOF
force-torque sensor (FTS) is placed at the mounting flange of each wheel-drive actuator
enabling the direct measurement of the generalized forces that each wheel exchanges
with the supporting surface. Active force control for the wheel-ground contact as well
as the roll-pitch adaption are two processes of the so-called Ground Adaption Process
(GAP) in SherpaTT.

(a)

(b)

(c)

Figure 1.4.0.2: Dummy figure
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Polibot The polibot rover is a skid-steering trucked rover developed by Polytechnic
of Bari that serves as a base for an expandible sensorial set-up. It can be equipped
with RGB-D cameras, stereo cameras, LiDARs, more than one RTK-GPS antenna for
enhanced heading estimation (as in 1.4.0.2) and IMUs. Chapter 3 is used for the crop
monitoring purpose and equipped with the SensorBox as shown in Figure 1.4.0.2 (a).

CNR-bot The CNR-bot is a custom-built robotic platform available at the Mobile
Robotics Laboratory of CNR-STIIMA, Bari, for crop monitoring purposes. CNR-bot is
equipped with four independent steering wheels that provide exceptional maneuverabil-
ity, allowing for a wide range of motion in all directions and also in-place rotation. The
four wheels can be driven independently, providing maximum control and versatility.
The ability to steer each wheel independently enables the rover to navigate obstacles,
perform complex movements, and traverse difficult terrains.

(a) (b)

Figure 1.4.0.3: CNR-bot rover
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Husky The rover Husky has a length of 0.7 m and a width of 0.5 m, and its propriocep-
tive sensor suite is composed of encoders to measure wheel angular velocity, electrical
current sensors that provide an indirect measurement of tire torque, and an XSENS
MTi-300 inertial sensor module that tracks linear accelerations and angular rates. The
sensor suite is completed by an exteroceptive counterpart that includes a stereo-camera,
an outdoor laser rangefinder, and a GPS

Figure 1.4.0.4: Husky rover.

1.5 Proprioceptive Learning of Terrain

The envisaged idea presented in this paper is that terrain properties can be obtained by
the rover’s wheels that serve as tactile sensors. SherpaTT’s wheels are outfitted with six
axis load cells that provide a direct measurement of the forces and torques applied by
the wheels to the ground and vice versa. In addition, estimation of the motion states in
terms of accelerations and rate-of-turn can be gathered by an inertial measurement unit
attached to the robot’s body. All 20 joints of the suspension system provide telemetry
including currents, voltages, PWM, temperatures, velocity, and position. Following this
rationale, signals that are directly modulated by the terrain interaction can be obtained.
These measurements represent a rich source of information that bring significant con-
tent in terms of terrain properties. The work presented in this paper applies learning
approaches to this data in order to make intelligent autonomous robots adaptive to the
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site-specific environment [32], [111].

In this study we generally refer to terrain classification as the task of recognizing from
among a list of known possible types the one crossed (or to be crossed) based on the
analysis of the sensory data available onboard the robot [129]. This problem is common
to different application areas. Notable examples can be found in robotics for surface
planetary exploration as described in [6, 48, 96, 46], and precision agriculture for which
terrain identification plays a key role in the fulfillment of numerous tasks such as seeding,
ploughing, fertilizing or controlled traffic [111, 87]. Early research relied on forward
imaging sensing and used limited learning [43]. The visual appearance of distant terrain
has been used in [105] also combining distance measurements generated by stereovision
[110], radar [82] and lidar [117]. However, observation of a given terrain from a distance
does not provide any information about its mechanical properties that directly impact
on vehicle mobility. It is known that off-road traversability largely depends on the
interaction between the robot and the terrain [10]. Dynamic ill-effects including wheel
sinkage, slippage and rolling resistance are the result of this complex interplay. For
example, the ground can be considered drivable based on the geometric elevation map.
Yet, the robot can incur in serious risks if this terrain offers low traction properties due
to high slippage and consequent lack of progression, as explained in [4].

Therefore, recently, methods that use proprioceptive sensing have been also proposed
for terrain classification[18], [123, 73, 42, 92]. The envisaged idea behind this approach
is that, from a mechanical perspective, terrain category can be identified using wheels as
tactile sensors that generate signals modulated by the vehicle-terrain interaction. Hence,
proprioceptive data contain much information, which can be useful to characterize the
terrain type. In addition, learning-based approaches have been introduced in order to
make intelligent autonomous robots adaptive to the sitespecific environment [13, 47,
79, 80]. One of the objectives of this study is to demonstrate the potential of terrain
classification via learning algorithms that are trained on proprioceptive features. Here,
proprioceptive features refer to statistics that are extracted from the measurement of
a physical variable pertaining to the robot-environment interaction, for example, wheel
velocity, forces, body linear, and angular accelerations. The hypothesis is that being
modulated by the terrain properties, these features are a rich source of information from
which the specific terrain type can be inferred via learning approaches [18, 45].

More difficult the environment, less likely expert rule-based or heuristic strategies
perform well. This is the case for natural terrains that entail many challenges including
variability in surface and lighting conditions, lack of structure, no prior information,
and in which learning approaches may fit better. Therefore, information pertaining to
wheel-terrain interaction can be extracted and, then, a mapping between proprioceptive
data and the corresponding surface can be created. A learning approach fits well to
this application as: i) the large number of parameters involved make a physics-based
terrain model rather complex, ii) the mapping from proprioceptive input to a given ter-
rain’s mechanical properties is an extremely complicated function, for which a closed
analytical form is very difficult to obtain and one possible solution is to observe the
phenomenon and learn about it through training examples, iii) adaptability of the ve-
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hicle’s behavior can be promoted through learning. Following recent research trends,
this paper tackles the terrain classification problem for rough terrain vehicles relying
on proprioceptive sensing and deep learning. Two types of network are discussed here:
the Recurrent Neural Network (RNN) and the spectrogram-based Convolutional Neural
Network (CNN). RNNs can be further engineered with different structures. This work
focuses on Long Short-Term Memory recurrent neural network (LSTM) and Convolu-
tional Long Short-Term Memory recurrent neural network (C-LSTM). The performance
of LSTM, C-LSTM and CNN are evaluated in comparison with the well-known state-
ofthe-art machine learning classifier Support Vector Machine (SVM), showing similar or
improved results even with relatively similar terrains. Our hypothesis is that self-learnt
features from deep learning may include temporal information from the data that are
not captured by the manually designed features used by SVM.

1.6 Exteroceptive prediction of vehicle-terrain interaction

On natural terrain, as in agricultural and off-road settings, the mobility of a vehicle is
known to be highly influenced by wheel-terrain interaction and can be very different on
ploughed terrain rather than on dirt road or compacted soil [10]. The knowledge of the
terrain characteristics and its ability to support vehicular motion can be beneficial in
many ways. Locomotion performance can be optimised in terms of traction or power
consumption (e.g., fuel or battery life) by adapting control and planning strategy to
site-specific environments. Terrain estimation can also contribute to increase the safety
of agricultural vehicles during operations near ditches, on hillsides and cross slopes, as
well as on highly-deformable terrain [128]. Another important aspect that is raising
interest in precision agriculture is related to the prediction of the risk of soil compaction
by farm machinery [118]. Early work on vehicle-terrain interaction estimation mainly
relied on modelor expert rule-based observers [107, 93]. More recently machine learning
approaches have been developed as an alternative or complementary solution with a
focus on slip estimatio [5, 111]. This thesis presents a novel framework for learning
and predicting online the motion resistance of an agricultural robot on natural terrain.
The main novelty of the proposed approach relies on the use of visual information,
including appearance and geometric characteristics of the ground, to learn and predict
from a distance the resistance torque encountered by the vehicle when traversing different
terrain types. Estimation of the expected torque before entering a terrain is crucial for
the vehicle to better plan its safest path and avoid dangerous or difficult areas. To address
this problem, terrain appearance and geometry information are correlated to the torque
measured by the rover while traversing a given surface. Such relationship is learned
from previous experience (learning phase), so that, successively, motion resistance can
be predicted from visual information only (prediction phase).
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1.7 Combined Perception for Crop Monitoring

Persistent and timely crop monitoring is crucial for the development of sustainable food
production systems. While remote sensing from satellites and aircrafts has been suc-
cessfully used for some decades to allow for rapidly mapping and characterize wide areas
through acquisition of multispectral imagery and 3D data, they generally lack the spatio-
temporal resolution needed for precision agriculture or phenotyping tasks. In crops with
smaller extension, Unmanned Aerial Vehicles (UAVs) have been effectively adopted for
remote crop survey with higher spatial and temporal resolution compared to satellite and
airborne devices. In high-density crops, however, collecting information on biophysical
properties at plant or leaf/fruit level via aerial sensing may be still infeasible. As a result,
ground-based sensing through Unmanned Ground Vehicles (UGVs) has been proposed
for in-field close-range applications [106]. In this respect, imaging sensors embedded
on ground vehicles have recently attracted much attention as an effective solution to
collect high resolution proximal data and provide information on plant characteristics
at centimetre or sub-centimetre scale. At the same time, they can be used for vehicle
guidance automation and scene perception and understanding in general, thus contribut-
ing to all aspects of crop monitoring automation, from data gathering up to high-level
data processing and interpretation. Among imaging sensors, consumer-grade RGB-D
cameras, i.e., sensors that embed color and depth sensing into a unique device, have
emerged in the last years in mobile robotics applications, to provide the vehicle with a
real-time representation of both appearance and 3D structure of the environment. One
shortcoming of typical consumergrade color-depth sensors is their limited field-of-view,
which makes them unsuitable for applications that need continuous survey of extensive
areas, like in agricultural settings.

In this thesis, a multi-view RGB-D camera system is proposed to enhance the per-
ception ability of an unmanned agricultural robot. The system features three RGB-D
cameras arranged to cover a horizontal field of view of about 130 deg. The cameras
are integrated with localization sensors, including a stereo-based tracking camera, an
RTK-GPS and an IMU, which provide accurate vehicle position information for image
geo-referencing based on Extended Information Filter (EIF). All the sensors are phys-
ically integrated in a custom-built sensor box, which is designed to be self-contained
from both a computational and energy point of view and independent from the particu-
lar vehicle architecture. The system is intended to generate accurate maps to facilitate
operations on a narrow scale with a smaller environment footprint. To this end, a point
cloud assembler that uses EIF-based pose estimates and the known relative poses be-
tween sensors is developed to reconstruct a geo-referenced multi-view 3-D map of the
traversed environment, which could provide a useful input to precision farming tech-
nologies and crop monitoring tasks. An additional use of the map is that it can be
incorporated into a high-fidelity simulator that can support the development and pre-
testing of algorithms for autonomous driving. In this respect, the map can be converted
into a mesh representation using the Ball Pivoting Algorithm (BPA) and imported into
a simulation environment under Gazebo [40].
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1.8 State Estimation

The estimation of the state is fundamental when dealing with the control of a dynamical
system. In this respect, it is well known that if the system is linear with additive white
Gaussian noise, then, the Kalman Filter (KF) is the optimal estimator that minimizes
the Mean-Squared Error (MSE) [64] [58]. One of the advantages of the KF is the low-
complexity: it is an iterative algorithm composed of two phases, i.e., predict and update.
In the predict phase, the filter computes an a priori estimate by means of a model of the
system. Then, in the update phase, the a posteriori estimate is computed thanks to the
available measurements. When sensor signal is unavailable, as for example when dealing
with long-term predictions, observations are not possible and the KF is only able to
propagate predictions exploiting the physics based model, with a consequent accuracy
reduction in state assessment [116].

To face this issue, in this work we introduce a hybrid data-driven system in which
KF estimates are used to train a Neural Network (NN). The goal of the NN is to com-
pute more reliable long-term predictions of the state without exploiting measurements
and without training on the inaccessible groundtruth underlying dynamics. In the past
decade, NNs have been widely applied in several application contexts [72, 9]. Neural
Networks are data-driven non-linear black-box structures able to characterize the be-
havior of complex processes learning it from the data involved rather than fitting a
formally defined model. For this reason, NNs are also a suitable tool when dealing with
state estimation [63]. In [115], a KF-like data-driven recursive filter, called KalmanNet,
is introduced. The aim of KalmanNet is to estimate the state of a dynamical system
without the complete knowledge of the model. However, this methodology relies on
the knowledge of the ground truth in the training phase. Moreover, in [1] a KF-based
observer is proposed for the estimation of the tire lateral force and road grip potential.
The observer is a hybrid system composed by an Extended KF (EKF), a recursive least
square block, and a NN. The NN is used to identify the highly nonlinear behavior of
the tire. This solution requires a large amount of labelled data collected with aggressive
maneuvers, with which networks with known friction coefficients are trained. In [66],
the estimation of the position of an autonomous car is investigated. In this case, a Deep
Neural Network is applied to compensate for the weakness of each available sensor.

However, future values are needed for the training phase, leading to an extrapolation
process. In this thesis the use of a NN trained on Kalman filter estimates is proposed.
The aim is to learn the underlying dynamics from the corrections provided by the filter
that exploits online measurements.

In this work we assume that the system dynamics is descried by an unknown transfer
function of a general complexity and with time independent parameters. This unknown
transfer function is modelled by means of a physical description and the parameters are
assessed with a certain degree of accuracy, like in a realistic scenario. A Kalman filter
provides a posteriori estimates on the state of the observed system that are accurate
(i.e. close to the underlying unknown transfer function), but generally not linked by
a single function and instead produced with a loop of predictions and updates. On
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the contrary, the physical model embedded in the Kalman filter uses always the same
function to provide a priori predictions that are however further from the real dynamics
than the filter estimates. The proposed net is used to learn the underlying dynamics of
the considered system using KF observations as training examples. With this strategy
we are able to produce a transfer function that provides more accurate predictions than
the best available physical model embedded in the Kalman filter, incorporating the
knowledge provided by the measurements to grasp the unknown underlying dynamics.
The proposed KSN can be trained with relatively few and easy-to-collect data and does
not require further knowledge of the system that is not typically available during field
tests.



Chapter 2

Terramechanics Application

2.1 Learning Algorithms for Terrain Classification

Robotic mobility takes advantage of terrain classification by predicting interaction with
the soil when optimizing controls or planning paths. Solving terrain-related challenges
such as soil identification is an important research area in autonomous robots, alongside
trajectory planning, localization, and obstacle avoidance [86]. The latest developments
in terrain classification strategies show that researchers have been focusing on two main
categories: visual (or exteroceptive) and visual-independent (or proprioceptive) meth-
ods. In both approaches, data collected from sensors are used to train machine or deep
learning-based classifiers that enable identification of the traversed terrain.

The interesting problem of terrain characterization was addressed by terramechanics
in [97] where a particle filter algorithm is coupled with regression analysis leading to
optimal terramechanics parameters predictions of single wheel experimental measures in
laboratory conditions. Cohesion, angle of internal friction and shear modulus, among
other descriptive features are defined with a mathematical model to characterize the
terrain and estimated through Bayesian techniques from measurable quantities such as
drawbar pull, wheel input torque and sinkage.

In [111] the average values of motion resistance and slippage alongside root mean
square and standard deviation of vertical acceleration were combined in a single four-
element vector used as input for a proprioceptive support vector machine-based classifier.
Results presented in [111] highlight the complementarity of proprioceptive and extero-
ceptive data especially to distinguish terrains with similar colors. The sensors used for
visual perception include RGB cameras [119, 132], RGB-D cameras [79], LiDARs [119],
visual cameras [95] and monocular cameras [7].

Although visual-based approaches are more common than proprioceptive-based ones,
they have limitations as well. Therefore, researchers have investigated methods that
use proprioceptive sensing for terrain classification. In this case, the sensors used to
perceive the incoming terrain include inertial measurement unit (IMU), force-torque
sensors, microphones, and wheel encoders. As an example, [61] used microphones to
support an RGB camera in the dark conditions. Researchers in [18] measured vibrations

13
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via accelerometers, analyzed them in the frequency domain and implemented an online
classifier that relies on principal component analysis (PCA) for feature reduction.

Many feature extraction algorithms used for proprioceptive-based terrain classifica-
tion use Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT) or Power
Spectral Density (PSD). A single-wheel testbed provided with a one-axes vibration sen-
sor normal to the ground was used in [18] to collect data that are associated through
FFT to feature vectors fed to an SVM model for terrain classification. The propriocep-
tive classifier proposed in [18] was also used to provide training examples to a visual
terrain classifier following a self-supervised approach [19].

Optimal results and clear methods presented in [18] inspired researchers as in [6,
130, 131] where the three axes vibrations are first transformed with FFT and then
concatenated. The feature vector containing FFT results is then used to construct an
SVM model in [131] and a multilayer perception deep neural network in [6].

Reference [138] integrated the information provided by a 3-axes accelerometer, a
single axis vibration sensor and one microphone through a multiclassifier combination
principle. Different machine learning methods were investigated for terrain classification
in [138], namely k-Nearest Neighbors (kNN), Naive Bayes (NB), SVM and Random
Forest (RF), and different feature extraction algorithms are also tested such as Modified
Mel-Frequency Cepstral Coefficient (MMFCC), FFT, Zero Crossing Rate (ZCR), Short
Time Energy (STE), entropy, spectral centroid, spectral roll-off, and spectral flux.

Results presented in [138] suggest SVM is better suited for online terrain classification
compared to the other tested algorithms. Accuracy values for SVM in [138] are between
80% and 90% for signals collected at relatively low speeds (0.4 m/s) depending on the
number of features selected.

According to [6, 130, 131] and [138], rover’s speed has a significant influence on
proprioceptive-based terrain classification accuracy. Lower travelling speed corresponds
to lower accuracy values because the signal-to-noise ratio is lower and significant fre-
quency features contained in signals become undetectable by machine learning algo-
rithms. Reaching good classification performance at low speed values is of great impor-
tance for proprioceptive-based terrain classification models, since it might be dangerous
to travel at high speed on a terrain that is possibly unknown and that the rover is trying
to identify.

The above works based on visual-independent approaches represent a step forward in
the direction of providing a mobile robot with information about the mechanical proper-
ties of the terrain. Although they achieved high confidence levels, little effort was spent
on feature selection as a means to reduce the computational burden of the model without
penalties in performance. A reduction in the number of features used to train and test
a machine learning classifier would lead to a lighter computational burden in terms of
feature extraction time, testing time, and memory usage. One of the contributions of
this research is to develop a feature selection algorithm demonstrating that these benefits
can be achieved without compromising the accuracy of the model. A body of research
has been devoted to the feature extraction process, as the quality of the feature space
directly affects the accuracy of the associated classifier. The feature extraction strategy
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depends on the machine learning approach chosen for terrain classification. Tradition-
ally, for a supervised machine learning algorithm such as SVM, an extraction stage is
required where features are hand-crafted by experts based on their knowledge in the
specific application domain. Attempts have been made in various research fields to find
effective features, for example in image-processing-related applications [75]. However,
this approach is not always possible for classifiers and it is often practically difficult, for
instance when the relationship between input measurements and user-defined classes is
extremely complex or even completely unknown beforehand. Additionally, features that
are crafted manually maybe not optimal. For this reason, finding more systematic ways
to get good features has drawn an increasing research interest [14].

Notable progress has been done recently to find learning techniques that allow models
to learn features automatically from data with minimal manual input. Solutions using
deep neural networks (NNs) have especially attracted much attention. The effectiveness
of deep NNs has been demonstrated in many fields other than image classification, such
as audio and natural language processing or transfer learning.

Among deep learning approaches, Long Short-Term Memory recurrent neural net-
works (LSTM) have been shown to be effective for prediction and classification of time
sequences [56]. These particular units of the recurrent network are capable of retain-
ing information for both short and long-term and are reasonably the best choice for
applications like speech recognition as in [49, 94].

Various architectures of RNNs are tested in [96] for the construction of a visual
terrain classification model outperforming standard visual approaches in dealing with
issues such as illumination changes or motion blur. A road surface classification model
based on LSTM was also proposed in [99] where 14 sensors output sequences are used
together to recognize flat road, sinusoidal road, potholes, and bumps showing optimal
results. Vehicle-terrain interaction sound was used in [123] to train and test a deep
spatiotemporal terrain classification model. The rover used in [123] is therefore equipped
with a shotgun microphone, and LSTM is integrated with a convolutional neural network
to recognize nine different types of terrain taking also into account adverse acoustic
conditions. Spectrograms of acoustic signals are computed, and a sequence of features
is derived from them to be further classified by an LSTM. Results of [123] highlight the
importance of temporal dynamics for the terrain-classification task.

Research in [46] compared the performance of several machine learning algorithms,
including Support Vector Machine (SVM), Multilayer Perceptron (MLP), Deep Neural
Networks (DNN), and Convolutional Neural Network (CNN), for both terrain estima-
tion and slip detection. This research investigates both vision-based and proprioceptive-
based classification with filtered and unfiltered data. The image dataset was provided
by NASA’s Planetary Data System and the University of Almeŕıa’s Fitorobot, while the
proprioceptive data were collected from an MIT single-wheel test-bed equipped with a
torque sensor, an IMU, and a displacement sensor.
The absolute value of the wheel torque together with the variance of pitch, longitu-
dinal, and vertical accelerations were used to compose the four-element feature vector
defined by the authors’ expert knowledge and train all models for comparison. Refer-
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ence [46] highlights the advantages of deep learning algorithms for being able to reach
good performance with raw data without necessarily requiring expert feature extrac-
tion. Researchers in [92] trained a feed-forward Neural Network (NN) for each one of
15 different sensors (3-axes gyros and accelerometers, two motor current sensors and
two voltage sensors, one ultrasonic and one infrared range sensors, one microphone, and
one wheel encoder). The authors compared the performance of NNs for different sen-
sor modalities for DFT-based classification of five different terrain types (gravel, grass,
sand, pavement, and dirt). Results of [92] show that certain sensors are better suited for
identifying certain types of terrain and suggest that better performance can be achieved
by combining multiple sensor modalities. A recent body of research has been devoted to
the classification of terrains in the context of legged robots [57]. In [8], torque measure-
ments taken from sensors attached on robot legs were passed through RNN and LSTM
to capture temporal data. Classification of terrain class (high-friction, low-friction, de-
formable, granular) was discussed in [65] for the SAIL-R legged robot using an SVM with
39 hand-designed features extracted from the ground reaction forces and motor speed.
Finally, an unsupervised learning based on the Pitman-Yor process was also presented
in [29].

Section 2.3 presents a Convolutional Neural Networks for terrain classification pur-
poses over data collected with SherpaTT rover. The adoption of recurrent and CNN
is discussed in 2.4, in the context of terrain classification using the agricultural robot
Husky equipped only with inertial and electrical current sensors. Section 2.5 presents a
fair comparison between hand-crafted and learned features through a rigid feature scor-
ing and selection process. Addressing the challenges in evaluating the effectiveness of
learned features contrasted with expert-designed ones and dealing with the complexity
of determining the descriptive power of hand-crafted features.

2.2 Support Vector Machine

SVM is a well-established machine learning solution for soil classification problems [12,
45, 111]. This section will present a summary of the theory behind SVM classification.
For a detailed description of SVM algorithm please refer to [55] and [124]. SVM classifies
the data attempting to separate them with hyperplanes during training and retains for
testing only few samples, called support vectors. The input of an SVM model is a
feature vector where the sensory data are generally composed or elaborated with expert
knowledge. An SVM problem is composed of two stages: training and testing. Given
two classes A and B (binary classifier), an input training set S composed of p samples
and n features can be defined as:

i = [1, 2, . . . , p]where

{
yi = 1 if xi ∈ A

yi = −1 if xi ∈ B

(2.2.0.1)
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xi are referred as predictors, yi represents the response variable. The purpose of
the linear SVM algorithm is to find a decision function D that allows, in the testing
phase, to classify any new sample x ∈ Rn according to the sign of D(x). This is done
by finding the hyperplane that maximizes its distance to the support vectors (i.e., the
predictors closest to the hyperplane), while minimizing the loss due to misclassification.
The Lagrangian dual of this optimization problem can be formulated as follows:

maxα

 p∑
i=1

αi −
p∑

i=1

p∑
j=1

αiαjyiyjxj
Txj


subject to

l∑
i=1

yiαi = 0and0 ≤ αi ≤ C,

(2.2.0.2)

where αi are Lagrangian multipliers and nCl is a parameter called box constraint.
The dominant approach for multiclass applications is to reduce the single problem into
multiple binary classification problems [33]. One of the most common methods for such
reduction is the error-correcting output codes (ECOC) model [31]. The most important
parameter for this method is the coding design, a matrix where elements indicate which
classes are trained by each binary learner, reducing the multiclass problem to a series of
binary problems.

2.3 Convolutional Neural Networks

In contrast to SVM that uses handcrafted features manually engineered by data ana-
lysts, CNN derives features automatically from inputs throughout a training process,
searching for those that better characterize each terrain. However, as input, CNN takes
an imagelike observation, therefore a first practical issue to solve is how to derive a 3D
object from several signals. The proposed solution is to resort to fast Fourier transform
(FFT) to construct magnitude spectrograms of the signals then appended into a mul-
tichannel object forming the input for the net. So, sensory data can be assembled in
3D shape, namely height, width and depth. The height corresponds to the frequencies
(nF ) analyzed by the FFT, the width corresponds to the number of time windows (nW )
adopted in the spectrogram, and the depth is the number of signals (nCh).

2.3.1 Multichannel Spectrograms

In this thesis, nCh refers to the number of channels that correspond to the available
sensors . Considering that any signal in time s(t) for t ∈ [t0, t1] N-tuple x ∈ R2 with
N = ⌊(t − t0)⌋ · sf , with ⌊·⌋ indicating the extraction of the integer part of a number.
Equation 2.3.1.1 computes the discrete Fourier transform x̂ ∈ CN and equation 2.3.1.2
defines the matrix operator F̄ .

x̂ =
1

N
F̄x (2.3.1.1)
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F̄ =



1 1 1 · · · 1

1 ej2π
1
N ej2π

2
N · · · ej2π

N−1
N

1 ej2π
2
N ej2π

4
N · · · ej2π

2(N−1)
N

...
...

...
. . .

...

1 ej2π
N−1
N ej2π

2(N−1)
N · · · ej2π

(N−1)2

N


(2.3.1.2)

The discrete Fourier transform x̂ contains the complex coefficients associated with the
double-sided spectrum of N frequencies in the range [0, sf ]. Each sample is represented
by a group of nCh signals, sc(t) for t ∈ [t0, t0+MW ] and c = 1, 2, . . . , nCh. Each signal
sc(t) is windowed with windows of length wL seconds and overlapping wO seconds
resulting in signals swc(t) and w = 1, 2, . . . , Nwind. Equations 2.3.1.3 define the ranges
of time [tw1, t

w
1] while equation 2.3.1.4 describes computation for the number of windows

Nwind. {
tw0 = t0 + (w − 1)(wL− wO)

tw1 = tw0 + wL
(2.3.1.3)

Nwind = ⌊⌊MW · sf⌋ − ⌊wL · sf⌋
⌊(wL− wO) · sf⌋

⌋ (2.3.1.4)

Considering xwc ∈ R⌊wL·sf⌋ the vector associated with signals swc(t), equation 2.3.1.1
allows for the computation of the discrete Fourier transform x̂wc ∈ C⌊wL·sf⌋. Each sam-
ple is here transformed in Nwind Fourier transform for every available channel. Given
symmetry with respect to the Nyquist frequency sf

2 of the double-sided magnitude spec-

trum |x̂wc| ∈ R⌊wL·sf⌋, equations 2.3.1.5 define the single-sided magnitude spectrum
|Mw

c| ∈ RnF with frequencies in the range [0, sf2 ] and equation 2.3.1.6 computes the
number of frequencies nF .

if⌊wL · sf⌋iseven

{
(Mw

c)f = |x̂wc|f ∀f = {1, nF}
(Mw

c)f = 2|x̂wc|f ∀f = {2, 3, . . . , nF − 1}

if⌊wL · sf⌋isodd

{
(Mw

c)f = |x̂wc|f ∀f = {1}
(Mw

c)f = 2|x̂wc|f ∀f = {2, 3, . . . , nF}

(2.3.1.5)

nF = ⌈wL · sf + 1

2
⌉ (2.3.1.6)

where the notation ⌊·⌋ indicates the nearest greatest integer of a number. Equation
2.3.1.7 finally defines the multichannel spectrogram S ∈ RNwind×nF×nCh.

Sw,s,c = (Mw
c)f ∀f = [1, . . . , nF ] (2.3.1.7)
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2.3.2 CNN Architecture

The architecture of the CNN is shown in Figure 2.3.2.1, where the neural dimensions
and the learnable variables of each layer are indicated. The first layer takes as input
the multichannel spectrogram, next, the batch-normalization layer normalizes inside the
mini-batch the value kept by each input neuron. Normalization process follows Equation
2.3.2.1 where xn and yn are respectively, the input and output values of neuron n of this
layer, batch mean µ and SD σ are computed during training, while learnable parameters
offset γ and bias β are searched through optimization across the whole training set.
Computational constant ϵ can improve numerical stability when variance σB

2 is small.

yn =γ
xn − µB√
σB2 + ϵ

+ β

∀n =1, ..., (nW · nF · Ch)
(2.3.2.1)

The following 2D convolution layer spans the output across time and frequency do-
main convoluting the nW ×nF ×nCh batch-normalized spectrograms into nFilt objects
of dimensions nW × nF . A user-specified number of square filters nFilt with size fsz
are here used to perform convolution process briefly described in Equation 2.3.2.2, where
X is the zeropadded neural grid after batch-normalization and Y the output of the con-
volution process. Each filter combines all channels into a single object trying to find
through the training process the combination of channels that better represents the ter-
rain. In this context, the filter size fsz controls both the frequency and time span in
which magnitudes across the channels are combined to form values representative for
the terrain. NFilt sets, instead, the number of filters that allow the terrain signature to
be adequately mapped between control input (e.g., electric motor currents) and sensory
output (e.g., the wheel speeds and IMUs measurements). The learnable parameters of
this layer are the kernel of filter m, the weights of matrix mω, and mβ the corresponding
bias.

Yw,f,m =
nCh∑
c=1

fsz
2∑

i,j=− fsz
2

mωi,j,cXw+i,f+j,c + m+β

∀w =1, . . . , nW, ∀f = 1, . . . , nF, ∀m = 1, . . . , nF ilt

(2.3.2.2)

The output of the convolution process is passed to the REctified Linear Unit (ReLu)
activated neurons in a grid nW × nF × nFilt , fully connected to nCl neurons where
nCl is the number of terrain classes considered. Compared to other activation functions
such as the sigmoidal function, ReLu helps in preventing the exponential growth in the
neural network computation and the “vanishing gradient” problem that is the tendency
for the gradient of a neuron to approach zero for high values of the input [67]. The two
following layers SoftMax and Classification are standard as output layers for classification
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networks. The function SoftMax is defined in Equation (5) where xn is the nth input
neuron and yn is the corresponding output of this layer.

yn =
exn∑nCl
i=1 e

xi
∀n = 1, . . . , nCl (2.3.2.3)

The output layer of this network is the classification layer that computes the crossen-
tropy loss for classification among terrains.

Figure 2.3.2.1: Architecture of the convolutional neural network.

The discussed network structure has been designed to be simple and fast performing,
following a classic image classification structure. The proposed algorithm can integrate
an arbitrary large set of signals to fuse different sensory output, promoting adaptability
to eventual enlargement of onboard sensors. A padding procedure is also proposed
to integrate signals provided at different frequencies. Convolution process is performed
across time and frequency domain to better capture time-dependent aspects of the rover-
terrain interaction. The results obtained concatenating spectrograms in the discussed
multichannel object suggest good capability to capture differences and characterizing
aspects of different terrains.

2.3.3 SherpaTT rover application

This section of the thesis is based on the published paper [125]. This research is developed
within the ADE (Autonomous Decision making in Very Long Traverses) project funded
by the European Union to develop novel technologies for future space robotics missions.
ADE’s objective is to increase the range of traveled distance of a planetary exploration
rover up to 1 km/sol, while ensuring at the same time optimal scientific data return.
In this context, the ability to sense and classify the type of traversed surface plays a
critical role. This section presents a terrain classifier that is based on the measurements
of motion states and wheel forces and torques to predict characteristics relevant for
locomotion using machine and deep learning algorithms. The proposed approach is
tested and demonstrated in the field using the SherpaTT rover, that uses an active
suspension system to adapt to terrain unevenness.
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Terrain classification represents a challenging task due to high variability in surface
type and lighting conditions, possible lack of structure, and no prior information. In this
context, heuristic or expert systems may perform poorly, whereas learning approaches
may provide better performance [109, 39, 34, 59].

The envisaged idea presented in this research is that terrain properties can be ob-
tained by the rover’s wheels that serve as tactile sensors. SherpaTT’s wheels are outfitted
with six axis load cells that provide a direct measurement of the forces and torques ap-
plied by the wheels to the ground and vice versa. In addition, estimation of the motion
states in terms of accelerations and rate-of-turn can be gathered by an inertial measure-
ment unit attached to the robot’s body. All 20 joints of the suspension system provide
telemetry including currents, voltages, PWM, temperatures, velocity, and position. Fol-
lowing this rationale, signals that are directly modulated by the terrain interaction can
be obtained. These measurements represent a rich source of information that bring sig-
nificant content in terms of terrain properties. The work here presented applies learning
approaches to this data in order to make intelligent autonomous robots adaptive to the
site-specific environment [32, 111].

The general learning process includes gathering of data pertaining to the vehicle-
terrain interaction followed by a mapping stage of data with the corresponding terrain.
This functional relationship can help addressing various issues: (a) difficulty in creating
a physics-based terrain model due to the large number of variables involved, (b) the
mapping from proprioceptive input to a mechanical terrain property is an extremely
complicated function, which does not have a known analytical form or a physical model
and one possible way to observe it and learn about it is via training examples, (c)
a learning approach promotes adaptability of the vehicle’s behavior. In this research,
we use a deep neural network to solve the classification problem of different terrain
types. Therefore, sensory signals are fed in the form of multichannel spectrograms to
a Convolutional Neural Network (CNN), showing better performance when contrasted
with standard Support Vector Machine (SVM). The ground properties detection (GPD)
system is tested and developed using the rover SherpaTT that is shown in Figure 1.4.0.1.

Figure 2.3.3.1: Types of surfaces traversed by SherpaTT during the test and development
of the system.
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SherpaTT was remotely controlled to follow an approximately 10 m long straight
path over three types of terrain: (i) unprepared sandy terrain, (ii) gravel/gravel road,
and (iii) paved ground. Sand and paved ground represent the two opposite extremes in
a terrain classification scale, since sand can be regarded as a high deformable and low
traction surface whereas a paved surface offers low/no deformability and high traction.
For each terrain, five runs were repeated in forward drive and five tests in reverse drive.
The speed of the rover was controlled as 0.1 m/s and 0.15 m/s. In Figure 2.3.3.1, the
three different terrain types are shown taken during the experiments.

All runs were conducted with a fueled power generator mounted to SherpaTT. It can
be seen as a red box at the back of the rover in Figure 2.3.3.1. The generator is used for
the long traverse in the project as a replacement for solar panels of a flight system, in
order to guarantee a 6-8 hour long operational time. Note, that the generator’s vibrations
might be included in the body’s IMU data. Reference runs on battery without vibrations
from the generator were also conducted but are not considered yet for the results of this
work.

2.3.4 Experimental Results

The deep CNN terrain classifier is validated in the field using real data gathered by
SherpaTT operating on different surfaces. The motivation is double-fold.

On one hand, the discriminative power of proprioceptive signals (e.g., inertial and
force measurements) is quantitatively evaluated. In this respect, three different classifiers
are built: two classifiers that are trained using each singular sensor modality, and one
algorithm that combines both sensory data.

On the other hand, the performance of a deep convolutional net is compared with
SVM. Raw data collected by SherpaTT with a sampling rate of 100 Hz during straight
runs are partitioned in four folders, and then windowed in 1-second adjacent samples.
The multimodal observation is then fed in the CNN classifier in the form of multichannel
spectrogram, whereas first and second statistical moments are extracted for the SVM
embodiment. 80% of the available windowed in each folder is used as training set,
whereas the remaining 20% is left out as testing set. Comparison between the two
learning approaches is presented in terms of confusion matrices, as shown in Figure
2.3.4.1 and Figure 2.3.4.2.

Figure 2.3.4.1 (a) and (c) shows that an IMU data-based learning approach can give
around 85% accuracy. The convolutional neural network, based on signals spectrograms
in Figure 2.3.4.1 (a) reaches 88.3% accuracy. Meanwhile SVM, exploiting mean and
standard deviation in Figure 2.3.4.1(c) is 4.8% less accurate. Precision of models is
also presented in the last column and sensitivity values are contained in the last row.
Both models show consistent precision and sensitivity values with lower values on paved
ground and gravel, which are terrains with relatively high adherence compared to sand.
Lower sensitivity value is relative to SVM capability of discerning paved ground samples
from sand ones, based only on IMU signals. Figure 2.3.4.1 (b) and (d) contain results
of classification models based only on measurements of forces and torques exchanged
between the rear left wheel and the ground. Both SVM and CNN models trained on



Proprioceptive Learning for Classification 23

signals provided by a single load-cell are quite as much accurate as the corresponding
IMU-based ones. CNN performs 0.6% better while SVM is 2.3% less accurate. Variation
of accuracy can be explained comparing the four confusion matrices and considering the
increasing gravel samples misclassified as sand ones, as shown by both CNN Figure
2.3.4.1 (b) and SVM Figure 2.3.4.1(d). Refer to row Sand and column gravel (red
element S-G). This variation is balanced in Figure 2.3.4.1 (b) by CNN model with the
increasing correctly classified paved samples (green element PG-PG) previously mistaken
in Figure 2.3.4.1 (a) as gravel (G-PG). SVM instead presents in Figure 2.3.4.1 (c) a larger
number of misclassified paved samples as gravel (G-PG), thus explaining the reduction
in accuracy. Relevant is also the comparison between (b) and (d) of Figure 2.3.4.1.

(a) (b)

(c) (d)

Figure 2.3.4.1: Confusion matrices obtained from (a) CNN trained with IMU data (b)
CNN trained with Load Cell data (c) SVM trained with IMU data (d) SVM trained
with Load Cell data

The two confusion matrixes not only present about the same number of correctly
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classified gravel samples (G-G), but also the same Sand sensitivity: 97.7%. Correspon-
dence between Sand sensitivities of models indicates that the two are equally good at
recognizing sand when driving on it. Moreover, correspondence of elements S-PG and
PG-S of both (b) and (d) indicates that the two models are equally good at discerning
Sand from Paved ground because they mistook the exact same number of paved ground
samples for Sand and vice versa. Therefore, providing a wheel with a load-cell will give
the rover about the same capacity of discerning between two opposite terrains in terms
of traction as Sand and Paved Ground when using a model that relies only on force and
torque data.

Figure 2.3.4.2 underlines the importance for a model to be able of fusing the in-
formation provided by different sensors. In this respect, the CNN model shows higher
capability of fusing IMU and load-cell data to recognize terrain than SVM, reaching
91.4% of accuracy Figure 2.3.4.2(a) outperforming SVM of 6.1% Figure 2.3.4.2(b). Us-
ing both IMU and load-cell data still results in higher SVM accuracy than using just one
of the two sensors, but SVM does not gain from sensor fusion as much as CNN does. In
fact, providing the IMU-based SVM with load-cell data results in a 1.3% more accurate
model, whereas providing the load-cell based CNN with the IMU data produces a 2.5%
more accurate neural network.

(a) (b)

Figure 2.3.4.2: Confusion matrixes obtained from the CNN (a) and SVM (b) terrain
classifier trained combining inertial and force signals.

The ADE project is designed and developed having a set of objectives in mind. Its
main objective is to address the current challenges that planetary rover exploration has.
ADE is a complex system-of-systems, in which each component is designed to fulfill a
specific purpose for reaching the project’s objectives. Among the main capabilities pro-
vided by ADE is to enable long traverses. To this aim, terrain classification results in
a critical component. Data provided during straight forward run by SherpaTT’s IMU
and rear left wheel cell-load are for this purpose gathered and analyzed. A 4-fold cross-
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validation process is carried on among runs and two machine learning algorithms (SVM
and CNN) are trained over 1 second long recordings corresponding to approximately 0.1
meters. Classification results are presented for the two models when based only on IMU
data, only on load-cell data and with both sensory data. Analysis of corresponding con-
fusion matrices show superiority of the deep-learning approach in classifying unfiltered
data and fusing sensory information to provide a better estimate of the traversed terrain
with respect to standard SVM-based machine learning classification.

2.4 Recurrent Neural Networks

This section of the thesis is based on the published paper [128]. The future challenge
for field robots is to increase the level of autonomy towards long distance ( 1 km) and
duration ( 1h) applications. One of the key technologies is the ability to accurately
estimate the properties of the traversed terrain to optimize onboard control strategies
and energy efficient path-planning, ensuring safety and avoiding possible immobilization
conditions that would lead to mission failure. Two main hypotheses are put forward
in this research: the first is that terrain can be effectively detected by relying exclu-
sively on the measurement of quantities that pertain to the robot-ground interaction,
i.e., proprioceptive signals, and no visual or depth information is required. The second
is that artificial deep neural networks can provide an accurate and robust solution to
the classification problem of different terrain types. Under these hypotheses, sensory
signals are classified as time series directly by a Recurrent Neural Network or by a Con-
volutional Neural Network in the form of higher-level features or spectrograms resulting
from additional processing. Results obtained from real experiments show comparable
or better performance when contrasted with standard Support Vector Machine with the
additional advantage of not requiring an a priori definition of the feature space.

The main contributions of this research to the terrain classification problem for off-
road autonomous wheeled robots refer to:

• Reliance on proprioceptive signals that we assume to bring distinctive traits of
the terrain as they directly generate from the physical vehicle-ground interaction.
Therefore, training a classifier on these signals allows one to identify directly the
impact of different terrain types on the vehicle mobility. While proprioceptive
sensing has been already proposed generally using one single sensor, here different
sensor modalities, e.g., wheel velocities and torques, and inertial measurements,
are combined into a single model to achieve robust classification even for terrains
with similar properties.

• Use of deep learning to solve the terrain classification problem. While standard
machine learning algorithms have been already demonstrated, this research dis-
cusses in detail the adoption of deep learning-based solutions. Three different em-
bodiments of deep learning classifiers are presented, namely, Convolutional Neural
Network (CNN), Long Short-Term Memory recurrent neural network (LSTM), and
Long Short-Term Convolutional recurrent neural network (C-LSTM). While the
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two RNNs accept as input directly the time series of the signals, CNN operates
through signal spectrogram. Therefore, a direct comparison between two different
approaches that use either raw signal or their spectral content is performed.

• A CNN-based terrain classifier is presented using a novel approach where hetero-
geneous input data are assembled in a multi-dimensional spectrogram. Previous
attempts in this direction have generally dealt with a single-channel spectrogram,
as for example in [123] or [113]. In contrast, the proposed approach can be extended
to any sensor combination without limitation on the number of measurements and
their sampling frequency. By combining different sensor modalities, classification
performance is significantly improved.

• Parametric analysis of the proposed deep learning classifiers to evaluate the influ-
ence of design parameters, including the temporal ”listening” window.

• Direct comparison between the proposed deep terrain classifiers with the existing
benchmark, e.g., SVM. Such a comparison is seldom discussed in the literature.
We expect that the self-learned features found via deep learning may capture the
temporal patterns from the data, which are not expressed by the hand-designed
feature space adopted by SVM.

2.4.1 RNN Architecture

Considering nCh as the number of channels and Nh as the number of hidden units,
Xt ∈ RnCh and Yt ∈ RNh are respectively the input and output vectors at time instant
t of a Recurrent Neural Network (RNN). The architecture of an RNN illustrated in
Figure 2.4.1.1 consists of a sequence of recurrent units (RUs). Each RU has the same
internal structure and outputs a hidden layer vector of size Nhx1 represented by ht
together with the output vector. The hidden layer vector ht is then given as input to
the following RU together with the input vector Xt+1.

Figure 2.4.1.1: Recurrent Neural Network structure. In this study Xt ∈ R10, Yt ∈ R15.
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With sf being the sampling frequency, X is a sequence of ⌊T · sf⌋ input vectors
meanwhile Y is the corresponding sequence of output vectors. An RNN has two dif-
ferent operating modes, sequence to sequence and sequence to label. The sequence to
sequence mode associates the sequence of input vectors to a sequence of output vectors,
whereas the sequence to label mode returns the last output vector of the sequence as
representative of the entire input sequence. The last output of the sequence Y , namely
YT is in fact influenced by all the previous inputs and therefore the most representative
for classifying the entire sequence. Given the number of classes nCl, the vector YT is
passed to a fullyconnected layer with a weight matrix of dimension (nCl×Nh) and bias
vector of size (nCl× 1). The fully-connected layer is further connected with a soft-max
layer and a classification layer after that, constituting the classic classification structure.
The internal structure of the repeating unit (RU) of a simple RNN is showed in Fig-
ure 2.4.1.1 on the left representing the mathematical relationship between the vectors
XT , YY and hT , given:

• Wh and Wy weight matrixes of size (Nh×Nh)

• Wx the weights matrix of size (Nh× nCh)

• bh and by bias vectors of size (Nh× 1)

The values retained by these weights and biases are computed during the training
process searching for the optimum point of the cost function. The activation function
tanh is the hyperbolic tangent and constitutes part of the classical recurrent unit of
a simple RNN capable of solving simple sequence classification problems. These types
of recurrent networks suffer from what is known in literature as problems of vanishing
or exploding gradient due to the fact they are not capable of propagating information
through time except for the previous time instant.

2.4.2 Long-Short Term Memory RNNs

Long Short-Term Memory RNNs (LSTM) solve vanishing gradients problem by changing
the structure of the recurrent unit, using the much more complex structure shown in
Figure 2.4.1.1 on the right. It has been proven [56, 49] that LSTM networks are capable
of blocking, forgetting and retaining information through the block gate Ct, the forget
gate ft, the input gate it and the memory state Ct, all vectors of dimensions (Nh× 1).
The hidden layer vector together with output and input vectors have the same meaning
and size as explained before and the size of weights and biases can be derived to make
coherent the following operations:

• ⊗ row-by-column matrix product

• ⊕ sum between vectors

• ⊙ Hadamard elementwise product between vectors.
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The activation function σ our study and depicted in 2.4.2.1 has a classic Sequence
to Single class value recurrent structure. The sequence input layer takes a sequence of
feature vectors and passes the data to the LSTM layer whose output is the last vector
of the hidden units. The LSTM layer output is then passed to a fully-connected layer
with dimension nCl. The last combination of the two layers soft-max and classification,
output the predicted single-value class associated with the sequence of feature vectors.
Different number of hidden units, Nh, have been tested, and eventually increasing Nh
beyond 15 did not result in any significant improvement.

Figure 2.4.2.1: Long Short-Term Memory Model Structure. The number of channels is
nCh, the number of hidden units is Nh and the number of terrain classes is nCl.

2.4.3 Convolutional LSTM

The Convoluted LSTM network (C-LSTM) takes advantage of the convolution process
among features for terrain classification. The structure of this model showed in Figure
2.4.3.1 is like the previously explained except for the first part. The sequence input
layer is in fact followed by a sequence folding layer that considers every feature vector
from the sequence and passes it to a two-dimensional convolutional layer that performs
the convolution process, similarly to the procedure described for the CNN model. The
convolution results are normalized by the batch normalization layer and handed over to
the rectified linear unit (ReLU) layer. The sequence unfolding layer then collects the
results of these operations performed on every element of the feature vector sequence and
together with the flatten layer they pass this new sequence to the LSTM layer. Specif-
ically, the flatten layer reduces the extra dimensionality produced by the convolutional
layer.

The following layers of the net structure are identical to the LSTM model structure.
This convolution process allows the C-LSTMmodel to autonomously search relationships
between features thus sensor outputs values for classification purposes. Five different
filters have been trained and the filter size fsz is set equal to the channels vector length
(nCh = 10) in order to let the net autonomously select a specific subset of inputs to be
related and associated in a new channel.
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Figure 2.4.3.1: Convoluted Long Short-Term Memory Model Structure. The number of
channels is nCh, the number of filers is nFilt, the number of hidden units is Nh and
the number of terrain classes is nCl.

2.4.4 Husky rover application

The proposed terrain classifiers are tested in the field using the experimental testbed
Husky that is shown in Figure 1.4.0.4. Its sensor suite exteroceptive counterpart has not
been logged for this specific research. Therefore, two groups of measurements can be
logged by the robot during operations: the IMU data sampled at 50 Hz and the wheel
service data that we refer to as the PRO data sampled at 15 Hz. The IMU data contain
the measurements of the 3-axes gyroscope and accelerometer inertial unit. The PRO
data instead consist of the electric driving currents of the left and right motors and the
left and right wheel velocities derived from the incremental encoder readings.

Sensory data are gathered as Husky traverses four different types of terrain: concrete,
dirt road, unploughed, and ploughed, shown in Table 2.4.4.1. Extraction of sample Si
from collected sensor’s signals is performed after a partitioning procedure of the data to
ensure generality of the models and avoid overfitting, according to the pipeline explained
in Figure 2.4.4.1. A partition window (PW) of 5 s is selected and consecutive clips of
length PW are extracted from each signal and used randomly for testing (green in Figure
2.4.4.1) and training (orange in Figure 2.4.4.1) sets following a k-fold cross-validation.
To augment the number of available data, clips of length PW are then further windowed
using a moving window of MW seconds and a stride of ST seconds.

In section 2.4.5.1 different values of MW are tested and the impact on model’s
performance is investigated. The stride ST is instead adjusted for each terrain type
to have a comparable number of samples for each terrain and avoid biasing model’s
prediction towards those terrains that would present more samples than others in the
dataset. Table 2.4.4.1 contains in the third column the total number of windowed 5s
long recordings available for each terrain type.

The generality of the presented model performance is achieved through k-fold (k = 5)
cross validation. Each fold contains 80% of the available windowed data in the training
set whereas the remaining 20% is used as a testing set. For each partition, the training
set is used to train the classifiers that are afterwards tested on the corresponding testing
set.



30 Proprioceptive Learning for Classification

Table 2.4.4.1: Considered Terrain Types and number of available 5s long windows for
each one

Terrain Type Terrain sample image
Number of 5s
long windows

Concrete 24

Dirt Road 16

Ploughed 60

Unploughed 56
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For each fold, performance metrics, including accuracy, specificity, precision and F1-
score are computed on the respective testing set. In this study nCh = 10 and PRO data
and IMU data are sampled, respectively, at 15 Hz and 50 Hz. Therefore, down-sampling
is performed for the training of RNNs, whereas padding is used for CNN. Four statistical
moments of signals (mean, standard deviation, skewness and kurtosis) are computed and
appended to form the input feature vector of SVM, instead.

Figure 2.4.4.1: Pipeline of signal partition and sample Si extraction, with PW the time
window used for partitioning, MW the time window used for augmentation and ST the
corresponding stride.

Furthermore, equation 2.3.1.6 expresses a direct proportion between the sampling
frequency sf and the number of frequencies nF for a certain window length wL. There-
fore, magnitude spectraMw

c corresponding to IMU channels providing data at sf = 50Hz
have more elements than those associated with PRO data sampled at sf = 15Hz. Each
element of the magnitude spectra Mw

c corresponding to PRO data is repeated as many
times as needed to match dimensions of magnitude spectra derived from channels pro-
viding data at faster frequency, in this case IMU. Considering nF as computed with
equation 2.3.1.6 for sf = 50Hz, each sample represented by a group of nCh signals of
MW seconds is transformed into nCh spectrograms with dimension Nwind× nF , and
subsequentially rearranged in a single multichannel spectrogram S defined by equation
2.3.1.7.

The number of channels nCh corresponds to the number of magnitude spectrograms
contained in a single CNN input sample. Figure 2.4.4.2 shows the magnitude spectra
associated with four different channels, two derived from IMU data (first row) and two
from PRO data (second row). To underline the different scales of channels, two color-bars
are presented on the right-hand side of figure 2.4.4.2, showing the values of acceleration
(in ms2)and current intensity (in Ampere).
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Figure 2.4.4.2: CNN input sample for nCh = 4, MW = 1.5s, wL = 0.4s and wO = 0.2s.

2.4.5 Experimental Results

The results of the three proposed architectures are benchmarked against the established
Support Vector Machine (SVM). The SVM model used in this research has a polynomial
kernel of fourth-order and ”one vs one” coding. It may be further refined and tuned to
optimize its performance. However, this is out of the scope of the present research and
the interested readers are referred to specific Literature, e.g., [35]. Architecture relevant
parameters have been empirically optimized for the 3 Deep Learning algorithms and are
reported in Table 2.4.5.1

Table 2.4.5.1: Architecture parameters of DL algorithms.

DL algorithm parameter value

CNN fsz 3
nFilt 5

LSTM Nh 15

C-LSTM Nh 15
nFilt 5

The performance of the three deep terrain classifiers is quantitatively evaluated using
real data acquired in a commercial vineyard. First, the impact of the moving window
(MW ) size is investigated with a variation range from 0.5 s to 2 s every 0.1 s corre-
sponding to patches from 25 cm up to 1 m. Then, standard classification metrics are
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calculated including accuracy, sensitivity, precision, and F1-scores. Normalized confu-
sion matrixes are presented for performance evaluation corresponding to the MW that
ensures the best results. Finally, computational burden and memory occupancy of all
tested models are discussed to assess the feasibility for online implementation.

Figure 2.4.5.1: Accuracy of respectively LSTM (blue), C-LSTM (red), SVM (green) and
CNN (yellow) models for each sample length of terrain tested corresponding to different
SL values. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

2.4.5.1 Parametric analysis

The accuracy among 5-fold partitions is plotted in Figure 2.4.5.1 for each proposed model
and moving window between the range 0.5 s and 2 s. The x-axis of Figure 2.4.5.1 contains
the sample lengths expressed in centimeter. Each sample length (SL) corresponds to the
odometry distance traversed by the robot at the constant speed of 0.5 m/s for a specific
moving window (MW ) period.

The larger the window the better the accuracy. This can be explained when con-
sidering that increasing the MW size results in a larger informative content injected in
the classifier (Park et al., 2018). CNN model leads to better accuracy than all other
models at every MW . The mean accuracy of the CNN model is already above 80% for
a sampling window of 0.5 s that corresponds to approximately only 25 cm of traversed
terrain, and it sets to 90% for sampling windows 1.2 s (i.e., 60 cm).
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Figure 2.4.5.2: Sensitivity of the LSTM, C-LSTM, CNN and SVM models for eachMW
tested.

Compared to CNN, SVM model correctly classifies at least 5% less of the available
samples, starting with accuracy values lower than 75% forMW = 0.5 s and reaching 80%
for MW 0.9 s. For SL equal to 85 cm, CNN shows the highest accuracy of 92.8% that
is 10.5% better than SVM. LSTM and C-LSTM models present similar accuracy values
both always lower than SVM’s.

The similarity between LSTM and C-LSTM results suggests that combining instant
feature values into a sequence of filtered data does not lead to better performance. For
SL = 85 cm, the LSTM and C-LSTM models correctly perform 16% and 14.2% worse
than the CNN model, respectively. C-LSTM Accracy values contained in Figure 2.4.5.1
are a good way to understand the influence of MW on each model performance.

Increasing values of MW generally lead to better 5-fold model’s accuracy for small
val- ues of MW whereas, forMW 1.2 s each model’s accuracy fluctates around a certain
value. Mean values and standard deviation for each model accuracy corresponding to
MW ∈ [1.3s, 2s] (or SL 65 cm) are contanied in 2.4.5.2. Standard deviations and
mean accuracy values in 2.4.5.2 suggest that not only the CNN model is more accurate
than the others, but it is also more stable and less subjected to variations of MW for
values 1.2 s (or SL 65 cm).

The distribution of sensitivity and precision is presented in 2.4.5.2 and Figure 2.4.5.2.
All models are perfectly able to recognize plowed terrain, independently of theMW and
present difficulties in singling out concrete terrain and unploughed.
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Figure 2.4.5.3: Precision of respectively LSTM, C-LSTM, CNN and SVM models for
each MW tested.

Precision and sensitivity can be combined in terms of F1-score as shown in 2.4.5.3.
Sensitivity and Precision values are well balanced for all the models and all the classes;
therefore, class specific performance can be evaluated analyzing F1-score in 2.4.5.3.

Table 2.4.5.2: Mean and standard deviation for accuracy values corresponding to the
MW range [1.3s, 2s] (i.e. [65cm, 1m]).

LSTM C-LSTM SVM CNN

Mean Accuracy 77.1% 77.4% 82.8% 91.5%
Accuracy standard deviation 1.13% 1.61% 1.10% 1.08%

In particular, the CNN model outperforms SVM in classifying concrete samples, but
show approximately the same F1-score values for dirt road. CNN model also presents
better F1-scores for unploughed terrain where the recurrent models present difficulties.
Dirt road F1-scores corresponding to recurrent models indicate better performance for
the C-LSTM than LSTM. As seen from Figure 2.4.5.1, the best accuracy is obtained by
the CNN model for a value of the MW size of 1.7s(or SL = 85 cm),which is therefore
adopted as the preferred design choice in the classifier implementation.
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Figure 2.4.5.4: F1-score of respectively LSTM, C-LSTM, CNN and SVM models for
each MW tested.

2.4.5.2 Performance evaluation

The normalized confusion matrixes corresponding to the 5folds results are presented for
all models in 2.4.5.5 for a value of MW = 1.7 s, that led best results and is therefore
used for further considerations. Analysis of normalized confusion matrixes outlines what
classes are mistaken for each other. Diagonal elements of normalized confusion matrixes
contain the sensitivity value of the corresponding class.

As expected, the CNN presents better overall precision and sensitivity values for all
classes, showing some difficulties only in sorting out dirt-road samples and unploughed
ones. Concrete, dirt road and unploughed terrain are three similar compact terrains,
LSTM, C-LSTM and SVM models present difficulties to sort them out from propri-
oceptive data. Instead, the CNN model proved to be particularly good in recognizing
concrete samples, presenting higher values for both precision and sensitivity of this class.

2.4.5.3 Computational burden

The online implementation of a proprioceptive-based terrain classification model in the
onboard processing unit of an autonomous robot requires low memory usage and fast
performing. The computational burden of all trained models is therefore analyzed.
Results are shown in 2.4.5.3 and they were estimated using a CPU intel i-9 working



Proprioceptive Learning for Classification 37

at 2.4 GHz. The overall classification time for a single observation calculated as an
average value over the testing dataset is reported for all models in the third row of the
table along with the corresponding average k-fold storage space (fourth row).

Figure 2.4.5.5: Normalized Confusion Matrixes for all models and MW = 1.7 (SL = 85
cm).

The time required for the analysis of a given observation can be divided into a
feature generation time followed by a classification time. In this respect, RNNs offer an
advantage since they do not require any feature generation stage beside being able to give
predictions for every instant of acquired raw data. It should be also noted that SVM
entails a preliminary stage for the feature space design that can absorb a significant
amount of time and it is subject to a large extent on the user expertise. Although,
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this ”supervised” preparatory stage is overlooked in this analysis, it represents a clear
limitation of SVM when compared to CNN.

Figure 2.4.5.6: Average classification time as a function of the sample length LSTM
LSTM (blue), C-LSTM (red), SVM (green) and CNN (yellow) models for each sample
length of terrain tested corresponding to different SL values.

SVM model needs less time to predict the terrain type but weights more on the
memory. Memory space occupied by SVM model depends on how much support vectors
are retained to classify a dataset and varies with types of features extracted from signals.
Highly non-linear problems correspond to a vast amount of support vectors to be retained
hence occupying larger space. On the contrary, storage space occupied by RNNs depend
only on the engineered structure, simple recurrent structures result therefore in lighter
models for resolving highly non-linear classification problems. It is noteworthy also that
classification time required by RNNs is highly dependent on sequence length. Longer
sequences require more calculations to be classified due to the recurrent structure of
the model. Memory space occupied by CNN model depends on the input size of the
multichannel spectrogram that is related to sequence length as well.

Figure 2.4.5.6 shows relationship between sample length (SL) and required classifi-
cation time for neural networks models. From SL = 30 cm to SL = 1 m the samples
are quite representative of terrain and increasing their dimension results in more com-
putation required for classification. As it can be seen from the slope of curves in Figure
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2.4.5.6 this effect is more significant for RNNs than it is for CNN. Increasing SL from
30 cm to 1 m results in 0.083 ms more required by C-LSTM, 0.088 ms more for LSTM
and 0.0329 ms more for CNN. Larger values of MW result in higher computation time
required also for feature generation. Build the feature vector based on statistical mo-
ments for SVM requires at least 0.095 ms for MW = 0.5 s and 0.157 ms for MW = 2
s. Assembling the multichannel spectrograms computed with FFT requires the largest
amount of time for CNN classification, ranging from 0.665 ms for MW = 0.5 s and 2.6
ms for MW = 2 s.

Table 2.4.5.3: Model’s computation burden for the classification of a single observation.
For all models it is assumed MW = 1.7s (i.e.,SL = 85cm).

SVM CNN LSTM C-LSTM

a: Feature generation [ms] 0.140 2.157 0 0
b: Classification [ms] 0.013 0.104 0.228 0.277
a+b: Total computation time [ms] 0.153 2.261 0.228 0.277
Storage space: Classification [MB] 0.671 0.025 0.020 0.314

2.4.5.4 Overview

This research investigated the use of three deep learning strategies to tackle the terrain
estimation problem using proprioceptive data. Ten sensory measurements were used
to feed models that predict the traversed terrain after a sufficient listening time. Sen-
sor’s channels efficient combination plays a key role in the terrain estimation task. Best
performance was obtained using FFT to compute spectrograms of available signals for
every terrain patch and assemble them in a multichannel image within a convolutional
network. The CNN model correctly classified up to 92.8% of the observations, 10.5%
more than standard SVM concatenating statis-tical moments, 16% more than LSTM
and 14.2% more than C-LSTM. In the existing Literature, higher performance for SVM
were reached through extraction of terramechanics parameters often requiring expensive
sensors like load-cells for forces and torques on wheels or unavailable ones like GPS for
wheel slippage. Nevertheless, SVM proved to be faster than all tested models although
RNNs can give real time estimate of traversed terrain with lower accuracy. The largest
accuracy was achieved for 1.7 s of sensor’s recordings or approximately 85 cm of tra-
versed terrain. Required computations for prediction took the CNN model 2.26 ms on
average making it the slowest of tested models but still suited for online prediction,
especially because the use of a dedicated GPU or low-level programming would boost
computation times. The proposed proprioceptive-based CNN along with the feature ex-
traction and organization proved advantageous under a variety of aspects. Besides being
more accurate than other deep models while being fast enough for online terrain imple-
mentation, it can be fed with unfiltered data, hardly classifiable with SVM (Gonzalez
and Iagnemma, 2018). Future developments will deal with the study of scalability and
portability to other robots of different size, weights, and locomotion systems. Strategies
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for self-supervised learning will be also pursued where the vehicle starts its operations
with no a priori knowledge of the models that are built progressively during motion.

Software repository The codes and data used for this research are publicly available
at this repository GitHub T DEEP

2.5 The role of feature and signal selection

This section of the thesis is based on the published paper [120]. Increasing the terrain
awareness of planetary exploration rovers is one key technology for future space robotics
to successfully accomplish long-distance and long-duration missions. In contrast to most
of the existing algorithms that use visual or depth data for terrain classification, the ap-
proach presented in this study tackles the problem using proprioceptive sensing, for
example, vibration or force measurements. The underlying assumption is that these sig-
nals, being directly modulated by the terrain properties, are well descriptive of a given
surface. Therefore, terrain signature can be inferred via learning algorithms that are
trained on either the signals directly or a signal-derived feature set. Following the latter
approach, first, a physics-based signal augmentation process is presented that aims at
maximizing the information content. Then, a feature selection algorithm based on a
scoring system and an iterative search is developed to decrease the computational cost
while preserving high classification accuracy. The resulting most informative feature
subspace can be used to train a support vector machine (SVM) classifier. For compar-
ison, the time histories of the selected proprioceptive signals are used to train a deep
convolutional neural network (CNN). Results obtained from real experiments using the
SherpaTT rover confirm that proprioceptive sensing is effective in predicting terrain type
with an accuracy higher than 90% for both algorithms in generalization tasks. When the
two learning approaches are contrasted in extrapolation problems, for example, predict-
ing observations acquired at previously unseen velocity or terrain, CNN outperforms the
standard SVM. Furthermore, CNN holds the additional advantage of learning features
automatically from signal spectrograms, reducing the need of a priori knowledge at the
expense of higher computational efforts.
One of the contributions of this study refers to the selection of the most informative
subset of proprioceptive features derived from the sensor suite integrated onboard of
planetary exploration rovers. A range of aspects is addressed that includes feature
extraction, feature ranking, multivariate feature selection, and efficient feature space
construction. While feature selection has been largely investigated in other domains, for
example, image processing, text processing, and gene expression analysis [53], it remains
largely under-investigated for the terrain classification problem of planetary exploration
rovers, and rough-terrain robots, in general. In contrast to other areas of applications
where datasets with tens or hundreds of thousands of variables are available forming a
statistically significant population, data acquired by a rover driving over natural terrain
present many challenges such as sparseness, presence of unknown and uncontrolled dis-
turbances, dependence on the specific time and site of the acquisition.

https://github.com/Ph0bi0/T_DEEP
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The objectives pursued by feature selection include improvement in the prediction per-
formance, reduction in training time, computational burden and memory usage of the
algorithm, and facilitation of understanding the underlying process that generated the
data. The other contribution of this study is the adoption of a suitable learning al-
gorithm to infer the type of terrain from the selected feature set. This algorithm will
have to look for patterns in the data to construct the mapping from the proprioceptive
measurements to the corresponding terrain type.
The well-known support vector machine (SVM) is contrasted with a deep convolutional
neural network (CNN). While SVM requires in input hand-crafted features that are
selected during a pre-processing stage, CNN uses learned features that are extracted
automatically from the signal time histories.

An important goal of the proposed approach is to improve the performance of terrain
classifiers for two use cases: generalization and extrapolation. Generalization is defined
as the performance of an algorithm on previously unseen observations (test set) that
is extracted from the same distribution as the data in the training set, for example,
the same test run. The error measured on the test set corresponds to both the online
performance of the model and the operating conditions included in the training set. The
second use case, extrapolation, is even more challenging since, in general, learning algo-
rithms are known to perform poorly outside the training data population. We compare
the performance of the two terrain classifiers (SVM and CNN) for both generalization
and extrapolation.
To sum up the novel additions of this study are:

• A whole new signal engineering stage is introduced to improve the overall infor-
mation content. The signal selection strategy is formalized and reflected in an
explanatory block diagram. Improved robustness has been achieved by increasing
the number of training repetitions for each candidate feature set;

• The importance of feature selection for terrain classification is shown by comparing
a machine learning approach (SVM) with a deep CNN in terms of model complex-
ity, computational burden, and prediction accuracy over a larger terrain set (three
types of terrain against two of the previous work);

• The system is evaluated not only in a standard generalization problem but as well
as in two more challenging extrapolation contexts that are seldom described in the
Literature.

Section 2.5.2 presents SherpaTT, the rover used as testbed, and explains the dataset.
Signal augmentation, feature extraction, and selection problems are tackled respectively
in Sections 2.5.3, 2.5.4 and 2.5.4.1. The results obtained from the terrain classifiers are
presented and discussed in Section 2.5.5. Conclusions wrap up the paper. In this study,
SVM is considered as the benchmark approach and compared against the alternative
deep CNN.
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2.5.1 Learning Parameters

In this section, the values assigned to the parameters of the learning algorithms are
highlighted. The parameter set of the SVM-based classifier is indicated in Table 2.5.1.1.
It was found empirically to give the best balance of sensitivity and specificity [74]. As for
CNN, during the training stage the learnable parameters are updated at each iteration,
whereas the hyper-parameters are defined by the user to govern the training process. In
one iteration, the network analyses the samples contained in the mini-batch. One epoch
consists in the number of iterations necessary to review the entire training data set.
The training stage stops after the network has passed through the entire data set the
number of times specified as the maximum number of epochs. It is usually preferred to
stop the training before this number has been reached, not only because it shortens the
time required for training, but also because it prevents overfitting on the training set.
Therefore, a percentage of the training data is kept apart as a validation set, and the
network evaluates its loss after the number of iterations specified as validation frequency.
The validation patience is the number of times that this loss can be smaller or equal
to the previously smallest loss before the training stage stops. The initial learning rate
drops by a factor (learn drop factor) after a given number of iterations (learn drop
period). Part of the hyperparameters is set according to the Literature, for example, the
solver and the gradient threshold follow the value suggested in [67].

Table 2.5.1.1: Learning parameters of SVM Classifier.

SVM Classifier Hyper-paramter Value

C (Box constraint) 1
Standardize True
Coding design one-vs-one

Table 2.5.1.2: Learning parameters and Architecture parameters of CNN.

CNN Hyper-paramter Value

Filter size (fsz) [5,5]
Number of filters (nFilt) 9
Mini-batch size 160
Maximum number of epochs 150
Validation percentage 15%
Validation frequency 20
Validation patiaence 15
Initial learning rate 0.005
Learn drop factor 0.2
Learn drop period 10

The remaining parameters have been selected empirically through gridsearch and
they are reported in Table 2.5.1.2. Note that for a fair comparison with SVM, the
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magnitude spectrograms of the signals used as input to CNN are obtained from a time
window ws = 2 s (please refer to Section 2.5.4).

2.5.2 SherpaTT rover application

A unique feature of Sherpa is a six-axis force-torque sensor (FTS) mounted on the
flange of each wheel-drive actuator, providing direct measurement of the force system
exchanged with the ground. The rover also features a six-DOF manipulation arm. The
arm is designed to withstand a good portion of the rover’s weight to support it during
locomotion. However, for the experiments described in this article, the arm was not
involved in locomotion testing. The logging system provides data at a rate of 100 Hz
and comprises the following main proprioceptive blocks:

• IMU;

• Wheel-mounted six-axis load cell (LC). In this study, we adopt solely the LC
mounted on the front left wheel;

• Joint telemetry (JT). Each of the 20 actuated joints of the suspension system
delivers telemetry such as supply voltage, supply current, temperatures, PWM
duty cycle, position (relative and absolute), and velocity.

The main data set used for this study was generated at the DFKI premises in Bremen,
Germany. SherpaTT was remotely controlled to move for approximately 10 m in a
straight line over three types of terrain: sand, gravel, and paved ground. This represents
a varied data set with high traction, low deformability surface (paved ground) at one
end, and a surface with low traction and high deformability (sand) on the other end,
with gravel in the middle of the two (Figure 2.3.3.1). For each terrain, five runs were
repeated in forward and reverse drive, except for gravel for which only four runs are
available. Two different drive speeds of the rover were used, namely 0.1 and 0.15 m/s.

Table 2.5.2.1: List of available proprioceptive signals.

Signal Symbol Sensors Signal ID

Longitudinal force Fx LC S1
Vertical force Fz LC S2
Drive torque Td LC S3
Drive electrical current Cd JT S4
Drive PWM duty cycle PWMd JT S5
Longitudinal acceleration ax IMU S6
Laterla acceleration ay IMU S7
Vertical acceleration az IMU S8
Gyro roll rate gyrox IMU S9
Gyro pitch rate gyroy IMU S10
Gyro yaw rate gyroz IMU S11
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A second data set was generated in a sand mine close to Bremen (please refer again
to Figure 1.4.0.1 (b), GPS coordinates (DMS format): 53° 18’ 54.9” N, 8° 41’ 17.3”
E) during the ADE’s final testing in April 2021. This independent data set is used
to predict terrain labels for observations outside the training data population. In this
last environment, the surface traversed was somewhat like the sand case of the previous
settings but the terrain was more compact and wetter. It can be directly observed in
Figure 1.4.0.1 (b) how humid sand got matted to the wheels while traversing, unlike in
the previous environments (Figure 2.3.3.1).

A list of measurements available from the SherpaTT’s sensor suite is shown in Table
2.5.2.1, with corresponding sensorial group and Signal ID. From the first analysis of Table
2.5.2.1, some of the signals may appear seemingly correlated. However, if we consider,
for example, body acceleration and wheel force, these signals are actually uncorrelated
through the flexibility of the suspension system, and therefore they are both relevant for
the proposed analysis.

Signals that are directly derived from measurements are referred to as direct signals.
Conversely, signals engineered with expert knowledge combining direct signals are re-
ferred to as indirect, as explained in the next section. Figure 2.5.2.1 shows a sample time
history of the vertical acceleration (gravity-compensated) and drive torque experienced
by SherpaTT on different terrains. As seen from this figure, signals show a signature
that seems to change according to the specific surface. The goal of this study is to learn
this signature to gain terrain awareness. To this aim, it is necessary to select the most
relevant signals for building an accurate predictor.

Figure 2.5.2.1: Vertical acceleration and drive torque (wheel front left) measured while
SherpaTT driving straight on different terrains.
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2.5.3 Signal Augmentation

To improve the information content, an augmentation engine combines multiple direct
measurements based on our understanding of the physical mechanisms underlying the
wheel-terrain interaction. These are a few of the many possible signal combinations
that can be implemented, and they are chosen following a trial-and-error approach to
provide the best performance over other alternatives. In this way, nine more indirect
signals can be obtained (Table 2.5.3.1). The derivation of these signals is detailed in
this section, and the rationale behind the choice of these entities is also explained. Two
main motivations support the proposed augmentation stage. First, two or more signals
that are useless (not relevant) for themselves can be useful when combined. Then, noise
reduction and consequently better class separation may be achieved by adding variables
that are seemingly redundant [53]. This explains why we resort to indirect or combined
signals and include redundant measurements of the same physical quantity. The first
indirect signal is the power loss due to the wheel traction on a given terrain. It can
be derived from a “mechanical” or “electrical” analysis. The mechanical power can be
estimated as follows:

PM = Td · ω (2.5.3.1)

where ω is the rotational speed of the wheel. Conversely, the electrical power con-
sumption can be obtained as follows:

PE = η · Vd · PWMd · Cd (2.5.3.2)

where Vd is the drive voltage, Cd is the wheel drive current, PWMd is the duty cycle
of the wheel drive Pulse Width Modulation, and η is the efficiency of the electric motor,
assumed to be constant and approximately equal to 0.85. Due to the rolling resistance,
the direction of the resultant vertical force Fz might not pass through the centre of the
wheel, with an offset in the direction of the movement (Figure 2.5.3.1). This is especially
true for soft terrain where the impact of rolling resistance is larger. Therefore, we can
define the vertical force offset dx from the equilibrium of moments around the centre of
the wheel, neglecting the contribution of rotational inertia:

dx =
Td − Fx ·R

Fz
(2.5.3.3)

where R is the loaded wheel radius defined as:

R = RN − Fz

kz
(2.5.3.4)

being RN (=200 mm) the nominal wheel radius, and kz the vertical stiffness of the
SherpaTT wheel that was experimentally estimated as 69N/mm. The friction coefficient
is an important entity related with the traction ability over the traversed surface. In
this study, it is estimated in three different ways:
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µ1 =
Fx

Fz
=

Td
Fz ·R

µ3 =
CdkT
Fz ·R

(2.5.3.5)

where kT (17.4 Nm/A in our case) is the scale factor taking into account the torque
constant of the electric motor and the transmission ratio of the motor reducer. Speed
deviation is the difference between the angular speed of each wheel ω and the average
angular speed of the four wheels ω̄. In this study, speed deviation was estimated in two
ways:

SD =|ω − ω̄|

SDnormalized =
ω − ω̄

ω

(2.5.3.6)

Wheel sinkage is another critical parameter related to rough terrain mobility that
can be approximated as suggested in [52]:

z = R ·
(
1− cos

(
2 · dx

R

))
(2.5.3.7)

One important aspect is the general data consistency. As an example, Figure 6 shows
the drive torque delivered by the leftwheel drive motor, measured by three different
sensors. Direct torque measurement from the wheel-mounted LC is denoted by a solid
grey line, whereas indirect estimation via the associated electric current drawn by the
motor is marked by a black solid line. Finally, an alternative indirect measurement via
the LC-derived longitudinal force is also plotted using a dashed black line. As seen in
this figure, all three measurements show a good agreement. Similar results were observed
on different surfaces.

Table 2.5.3.1: List of indirect signals.

Signal Symbol Sensors Signal ID

Mechanical power PM LC,JT S12
Electrical power PE LC S13
Vertical force offset dx LC S14
Friction coefficient 1 µ1 LC S15
Friction coefficient 2 Pµ2 LC S16
Friction coefficient 3 µ3 LC,JT S17
Speed deviation SD JT S18
Normalised speed deviation SDn JT S19
Sinkage z LC S9
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Figure 2.5.3.1: Definition of vertical force offset (dx).

Figure 2.5.3.2: Torque applied by the left front wheel of SherpaTT as obtained from
direct measurement of the load cell (solid grey line), indirect measurement via the electric
current drawn by the motor (solid black line), or alternatively via the longitudinal force
provided by the load cell (dashed black line).
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2.5.4 Feature Extraction

First, each sensory signal is divided in time windows, and then, for each window features
are extracted as the four main statistical moments. The size of the window, ws is a design
parameter. It is set as ws = 2 s corresponding to a traversed terrain patch of about 20
cm (comparable with the wheel radius) at an average travel speed of 0.1 m/s. In previous
works by the authors ([125]), it was found that this value of window size represents a
good trade-off between informative content and spatial resolution. The four statistical
moments are mean E, variance σ, skewness Sk and kurtosis Ku and are defined as
follows:
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(2.5.4.1)

where xn is the value of the signal at the nth time step and N is the total number of
time-steps for the ith window. The extraction of the statistical features brings the size
of the SVM-feature space to 80 (20 signals multiplied by their four statistical moments).
The generic feature will be indicated as SiMj, where i(i = 1, . . . , 20) represents the
signal ID, whereas j represents the statistical moment (j = 1, . . . , 4).

2.5.4.1 Feature Selection

Retaining only the features with the highest information content reduces the compu-
tational cost while preserving the accuracy of the model. The selection process can
be performed via feature scoring using appropriate validity indices. Then, an iterative
search algorithm can be followed to select a reduced best feature space.

Validity indexing A validity index can be assigned to each feature. This index rep-
resents a measure of the information content of the feature. In this study, two validity
indices are considered: the Pearson Coefficient (PC) ([55]), and the WB index ([139]).
The PC index can be computed through linear regression of a feature against the 3
classes of terrain, for example, sand, gravel, and paved ground. The higher the PC, the
larger the information content of the feature. Although this index can be successfully
used for 2-class classification problems ([32]), it might be difficult to implement it for
multiclass cases like the one presented in this study, because the number assigned to
each type of terrain is arbitrary. To overcome this issue, first, the PC index is computed
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for each terrain pair (e.g., sand-gravel, gravel-paved ground, and sand-paved ground),
and then averaged. For example, the PC index of the feature SiMj against the Classes
1 and 2 (sand and gravel) can be calculated as ([53]):

1
2PCSiMj =

cov
(
1
2FSiMj ,

1
2y
)

2

√
var

(
1
2FSiMj

)
var

(
1
2y
) (2.5.4.2)

where 1
2PCSiMj is a vector containing all values of the feature SiMj for terrains 1

and 2, whereas 1
2y contains class values (1 or 2) for each element of 1

2FSiMj . Similarly,
3
2PCSiMj (PC index of feature SiMj against the classes gravel and paved ground) and
1
3PCSiMj (PC index of feature SiMj against the classes sand and paved ground) follow
the same principle. The overall PC index for feature SiMj can be now computed as
follows:

PCSiMj =
1
2PCSiMj +

2
3PCSiMj +

1
3PCSiMj

3
(2.5.4.3)

In addition, the WB index can be computed for feature SiMj:

SBSiMj = m ·
SSWSiMj

SSBSiMj
(2.5.4.4)

where SSW is the sum of a square within classes and SSB is the sumo of squares
between classes, computed as follows:

SSWSiMj =

nCl∑
k=1

nk∑
s=1

(xs − µk)
2

SSBSiMj =

nCl∑
k=1

nk(µk − µ)2

(2.5.4.5)

where xs is the sth sample of feature SiMj, µk is the class k centroid value, µ is
the overall data set centroid value, nk is the number of samples in class k and nCl (=3)
is the number of classes. A low value of WBSiMj indicates that classes form compact
and distant clusters relatively to feature SiMj. Therefore, the score assigned to each
feature will be WB−1: the higher the WB−1, the better the feature for classification
purposes. The rationale behind using two validity indices is that the WB and PC have
two different statistical meanings: the former describes the compactness of classes, the
latter shows the correlation between a given feature and the type of terrain. One may
think that a feature with a low value of PC index will also have a relatively low value of
WB−1 index. However, this is not always true, and exceptions do occur. For example,
2.5.4.1 shows the distribution of PC and WB indices for the 25 features with the highest
scores. S6M2 is the feature with the third highest value of PC index, but it is only the
21st feature in terms of WB−1. Similarly, S16M2 is the feature with the second-highest
value of WB−1 index, but it is only the 14th in terms of PC. This shows that the two



50 Proprioceptive Learning for Classification

indices rank the features in different ways, therefore they complement each other very
well.

Figure 2.5.4.1: PC an WB indices distribution for the most relevant features.

Selection algorithm The proposed selection approach is based on the iterative search
scheme presented in the block diagram of Figure 2.5.4.2. The input to the algorithm is
the full set of n (=80) features. These features are then ranked using the output of one
of the two validity indices (PC or WB) as a score. The best feature set is initialized
with the first nmin − 1 (=2) features of the ranking. At this point, the objective is
to iterate on all the remaining features to find those which provide better classification
performance. In each iteration, identified with the index i that varies from nmin to nfeat,
the ith feature in the ranking is added provisionally to the best feature set. Then, an
SVM-based classifier is trained and evaluated in terms of F1-score via fivefold cross-
validation. The k-fold cross-validation process partitions data into k randomly chosen
subsets (or folds) of roughly equal size. Therefore, to improve the robustness of the
feature selection algorithm, the training phase is repeated ntrain (=10) times and the
final F1-score is computed as the average of the scores obtained at each training phase.
If the final F1-score is sufficiently higher than the best F1-score obtained so far, the ith
feature is kept in the best feature set, and the best F1-score is updated. Otherwise,
the ith feature is discarded from the best set and not considered for training purposes.
To facilitate the reading of the block diagram in Figure 2.5.4.2, the meaning and the
numerical values of the parameters involved in the selection process are collected in Table
2.5.4.1. The selection process discussed in Figure 2.5.4.2 can be repeated for each one of
the two validity indices. Eventually, two best reduced feature spaces will be obtained:
one associated with the PC and the other with the WB index.
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Figure 2.5.4.2: Block diagram of the proposed feature selection algorithm.
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To further improve the robustness of the selection algorithm, the union of these two
sets is chosen as the best for SVM training purposes. The 18 selected features are listed
in Table 2.5.4.2. It is worth noting that three features extracted from indirect signals
are included as well, thus, proving the utility of the signal augmentation phase.

Figure 2.5.4.3: PC an WB indices distribution for the most relevant features.

A 3D plot of the three most relevant features in terms of WB index is shown in Figure
2.5.4.3 to help the reader to easily visualize the result of the whole selection process.
As shown in this figure, the sand data form a quite compact cluster, with relatively
low values of all three features. Conversely, gravel and paved ground data show higher
values of S7M2 (variance of ay) than sand and differentiate prevalently for values of
S17M2 (variance of µ3).

Table 2.5.4.1: List of parameters involved in the feature selection approach

Parameter Description Value

nmin Minimum number of features 3
F1min Minimum F1-score 60%
th Accepted improvement (threshold) in the F1-score 50%
ntrain Number of trainings for each new best feature set 5
nfeat Number of features in the initial full feature set 80
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Table 2.5.4.2: Best feature set

Signal
Statistical
moment

Direct or
Indirect

Feature ID WB−1

WB−1
MAX

PC

µ3 Variance Indirect S17M2 1.00 0.345
ay Variance Direct S7M2 0.691 0.449
Td Variance Direct S3M2 0.685 0.308
gyroz Variance Direct S11M2 0.561 0.450
gyrox Kurtosis Direct S9M4 0.549 0.317
Fx Mean Direct S1M1 0.428 0.366
az Variance Direct S8M2 0.371 0.350
gyrox Skewness Direct S9M3 0.364 0.307
gyrox Variance Direct S9M2 0.348 0.356
µ1 Mean Indirect S15M1 0.342 0.275
z Kurtosis Indirect S20M4 0.327 0.177
ax Variance Direct S6M2 0.192 0.385
Fz Variance Direct S2M2 0.192 0.267
gyroy Variance Direct S10M2 0.164 0.295
Fx Variance Direct S1M2 0.143 0.253
ay Kurtosis Direct S7M4 0.048 0.115
PWMd Mean Direct S5M1 0.013 0.062
gyroz Mean Direct S11M1 0.011 0.064

2.5.5 Experimental Results

In this section, the results of the generalization problem are shown on the main data
set. Next, results for two extrapolation cases are presented.

2.5.5.1 Generalization

In the generalization problem, only the main data set is used (e.g., experiments on paved
ground, gravel, and sand). The algorithms are tested via fivefold cross-validation. The
data set comprises of 1204 samples, where a sample corresponds to a 2-second time
window. Of these 1204 samples, 443 are collected on paved ground, 338 on gravel, and
423 on sand.

One of the objectives of this research is to demonstrate how a proper feature se-
lection algorithm can reduce the computational and memory cost of the model, while
maintaining a similar accuracy in prediction. Table 7 shows a comparison between the
two machine learning algorithms in terms of accuracy and computational burden. More-
over, SVM is tested with three different feature sets:

• Direct feature set (44 features);

• Full feature set (80 features);
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• Best feature set (18 features).

while CNN is tested with three different signal sets:

• Direct signal set (11 signals);

• Full signal set (20 signals);

• Best signal set (13 signals).

The signals used for training CNN correspond to those used to compute SVM fea-
tures. In fact, the 44 direct features are the four statistical moments of the 11 direct
signals, and the full 80-feature set is composed of the four statistical moments of the full
20-signal set. Furthermore, the training set for CNN includes the signals used to derive
the features in the best feature set. Namely, the 13 best signals are: friction coefficients
1 and 3, longitudinal, lateral, and vertical accelerations, drive torque, yaw, pitch and
roll rates, longitudinal and vertical forces, sinkage, drive PWM.

The accuracy of the SVM model trained with the direct and full feature sets is
89.8% and 90.8%, respectively. With the full feature set, more samples are correctly
classified by SVM, but memory usage has increased by 82%, training time by 32%,
testing time by 71%, and feature extraction time by 50%. This proves the effectiveness
of the signal augmentation in terms of accuracy and shows the drawbacks in terms of the
computational burden. The purpose of feature selection is to reduce the computational
cost, without losing classification accuracy. The results presented for SVM trained with
the best feature set, prove that the feature selection algorithm proposed in this study is
effective. In fact, the accuracy reaches 90.9% and when compared to the SVM trained
on the full feature set, while the model memory usage is reduced by 77%, training time
by 6%, testing time by 29%, feature extraction time by 33%.

The effectiveness of both input signal augmentation and feature selection is also con-
firmed by the results presented for CNN. This deep learning algorithm gains in terms of
accuracy from signal augmentation reaching 96.4%. Using the full signal set still results
for CNN in the same drawbacks presented for SVM: model memory usage increased by
18%, training time by 36%, feature extraction time by 77%. In contrast with SVM,
testing time for CNN with full signal set is reduced by 22%. Training CNN with the
best signals resulting from feature selection leads to an accuracy of 96.2% and when
compared to the full-signal CNN, the model memory usage is reduced by 14%, training
time by 27%, testing time by 4%, feature extraction time by 41%.

Feature extraction times presented in the last row of Table 2.5.5.1 are suitable for
online applications for both SVM and CNN, even if construction of multichannel spec-
trograms from best signals for CNN takes about 2.1 ms more than the construction of
best features for SVM. It should also be noted that feature extraction time for both
SVM and CNN can be further improved by optimizing the current MatLab code using
vectorization or processing the data directly with a C++ code.
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Figure 2.5.5.1: Generalization results for best features SVM and best signals CNN. CNN,
convolutional neural network; SVM, support vector machine.

Confusion matrixes for both SVM and CNN are shown in Figure 2.5.5.1 only for
best feature and best signal sets. Sensitivity results for each class are contained in the
diagonal elements of each confusion matrix. The performance of both models in terms
of precision, recall, and F1-score are shown in Table 2.5.5.2.

Table 2.5.5.1: Performance comparison between terrain classifiers trained on different
feature sets: direct, full, best feature set

SVM CNN

Feature and signal sets Direct Full Best Direct Full Best

Accuracy (%) 89.8 90.8 90.9 95.6 96.4 96.2
Model Memory usage (kB) 547.6 996.9 228.0 44.9 53.2 45.8
Training time (ms) 118.9 157.7 148.0 1.07e4 1.46e4 1.06e4
Testing time (ms) 17.4 29.8 21.2 153.0 119.4 114.7
Feature extraction time (ms) 0.6 0.9 0.6 2.6 4.6 2.7

Table 2.5.5.2: Accuracy, Precision, Recall and F1-score for SVM and CNN in general-
ization

SVM CNN

Class Gravel
Paved
ground

Sand Gravel
Paved
ground

Sand

Precision (%) 89.1 82.4 100 80.3 82.2 100
Recall (%) 81.0 90.1 99.8 92.3 95.7 100
F1-score (%) 84.9 86.1 99.9 85.9 88.4 100
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Both models perform good in the generalization of data, with CNN being slower
but significantly more accurate. This increase in classification accuracy is not the main
advantage for CNN classification model with respect to SVM. Where the two models
show the greatest difference in classification performance is indeed extrapolation, as
shown in the next section.

2.5.5.2 Extrapolation

In the extrapolation problem, the operating conditions of training and testing sets are
different, therefore these sets do not come from the same population. In this study two
extrapolation cases are presented. The first one deals with varying rover speed, whereas
the second one assesses the performance of the algorithms on a terrain unseen in the
training phase.

Testing on a new vehicle velocity During the experiments with SherpaTT, the
rover was controlled at two different speeds: 0.1 m/s and 0.15 m/s. Of the 14 runs, 7
were conducted at low speed (0.1 m/s) and 7 at high speed (0.15 m/s). Data collected at
low-speed form the low-speed distribution, whereas data collected at high-speed belong
to the high-speed distribution. In the extrapolation problem presented here, low-speed
data are used as training set, while high-speed data are used as testing set. Both
sets belong to the main data set (paved ground, gravel, and sand). Proprioceptive
sensorial data are very useful for terrain classification but also show a strong dependency
from traversing speed ([6]). Most terrain classification algorithms analyse and classify
proprioceptive data acquired at constant traversing velocity on different terrains. Studies
have been also conducted to show the dependency of terrain classification performances
from rover’s traversing speed, searching for the velocity that maximizes classification
performance. For being able to classify the traversed terrain at any travelling speed a
rover should be equipped with a model trained on a vast variety of possible traversing
speeds or could only use speed-independent features that are difficult to construct and
may not be well suited for terrain classification. Another way of achieving the goal of
sensing and classifying the terrain at any travelling speed is using a model that shows
good results when tested on data acquired at a traversing velocity different from the
one used for training. Figure 2.5.5.2 contains the confusion matrixes for both SVM and
CNN when trained on low-speed data and tested on high-speed ones. As can be seen,
despite both models showed good results in generalization only CNN is also capable of
extrapolating the information of the traversed terrain from data acquired at a different
speed. The two models were still trained and tested using only best feature set for
SVM and corresponding signal set for CNN. While CNN keeps classification accuracy as
high as 89.5%, SVM becomes unreliable achieving only 55.7% of correctly classified data
samples. The performances of both models in terms of precision, recall, and F1-score are
shown in Table 2.5.5.3. It should also be pointed out that high-speed data used as testing
constitute 50% of available data, representing, therefore, testing set larger than the one
usually used (20%-30%). The robustness of CNN’s classification performance on a large
testing set composed of data acquired at a different speed suggests that this model is well
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suited for terrain classification purposes. Moreover, the features automatically learned
from signal spectrograms appear to be more reliable than statistic ones and represent a
better choice to be able to classify the traversed terrain at various traveling velocities.
Similar results are obtained when trained on high-speed data and tested on low-speed
data, and they are omitted for brevity sake.

Table 2.5.5.3: Precision, Recall and F1-score for SVM and CNN in extrapolation using
varying velocity

SVM CNN

Class Gravel
Paved
ground

Sand Gravel
Paved
ground

Sand

Precision (%) 54.8 46.8 100 80.3 82.2 100
Recall (%) 40.3 83.9 47.5 82.1 81.0 99.5
F1-score (%) 46.4 60.1 64.4 81.2 81.6 99.7

Figure 2.5.5.2: Extrapolation results for best features SVM and corresponding signals
CNN.

Testing on an independent data set The second extrapolation use case aims to
evaluate the system response when labeling observations collected on a terrain different
from those used in training (independent data set). To this aim, the ground classifier
previously trained on the main data set (formed by paved ground, gravel, and sand) is
further validated on a representative data set gathered from a second field test campaign
run in a planetary analogue terrain in a sand mine near Bremen (see Figure 2.5.5.3).

For this extrapolation challenge, we have tried to generalize the classification prob-
lem at hand by referring to terrain difficulty labels rather than specific terrain classes, as
explained in Table 10. Adopting the proposed terrain difficulty scale, paved ground and
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sand can be seen as the opposite extremes. Firm-ground offers better traction and less
compressibility, therefore a low-difficulty label can be assigned to it. Conversely, soft
ground poses more challenges, and it is scored as a highly difficult surface. Then, the
difficulty degree associated with an unknown observation can be considered as inversely
proportional to the distance from the class sand. One should note that such a gener-
alization effort can be useful or necessary for the practical implementation of planetary
exploration terrain classifiers that can be only trained on Earth using representative
analogue surfaces, and then applied to unknown planetary surfaces via extrapolation.

(a) (b)

Figure 2.5.5.3: (a) Sherpa TT during the sand mine testing; (b) a close up of the tracks
left by the wheels.

The sand mine independent data set consists of 302 samples, where, again, a sample
corresponds to a 2-second window. It should be also underlined that, although ground-
truth data is not available for this extrapolation problem, the terrain in the sand mine
can be expected as a surface with medium-high difficulties, like the sand type of the
main data set (Figure 2.3.3.1) but somewhat more compact and humid. As an indicative
measure, sample tracks left by the wheels on the sand mine terrain are shown in Figure
2.5.5.3(b).

Table 2.5.5.4: Category of difficulty assigned to each terrain type of the training set and
predictions as obtained from SVM and CNN in the sand mine test

Terrain type Equivalent category of terrain difficulty SVM CNN

Sand High 215 211
Gravel Medium 52 73
Paved Ground Low 35 18
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(a)

(b)

Figure 2.5.5.4: Semantic labeling using discrete terrain difficulty categories: (a) 3D
stereo-generated map of the environment with overlaid the path (dashed white line)
followed by the rover, (b) corresponding terrain difficulty visualization. Terrain patches
are marked respectively in red, yellow, and green, for high, medium, and low difficulty.

The classification results obtained from SVM and CNN are also collected in Table
2.5.5.4 showing predicted labels of terrain difficulty. Out of the 302 samples, the SVM-
based algorithm classifies 71.2% as high difficult terrain, 17.2% as medium and 11.6%
as low. CNN performs similarly, classifying 69.9% of the new terrain samples as highly
difficult, 24.2% as medium, and 5.9% as low. A relatively low percentage of the test
samples (about 12% for SVM and 6% for CNN) is classified as hard soil. For easier
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visualization, the results obtained from the CNN-based classifier are presented in Figure
2.5.5.4 during a sample straight run using semantic labelling where the successive terrain
patches traversed by the rover are marked according to a color map that reflects the
terrain difficulty scale of Table 2.5.5.4 (see also to the inset of Figure 2.5.5.4 (b)). We
recall that three discrete levels of terrain difficulty are considered: low, medium, and
high.
Figure 2.5.5.4 (a) shows the 3D stereo-generated map of the environment with overlaid
a CAD model of SherpaTT and the path followed by the rover denoted with a dashed
white line, whereas in Figure 2.5.5.4 (b) the corresponding terrain labeling is reported
with terrain patches marked respectively in red, yellow, and green, for high, medium,
and low difficulty. In this test that was performed on fairly homogeneous terrain, the
system mostly classifies the sand mine surface as of medium-high difficulty with two
erroneous predictions (low difficulty) between 2 and 3 m.

Considerations This study presented an approach to soil classification that relies on
proprioceptive sensing only, for example, accelerations, forces, torques, and electrical cur-
rents. The algorithms developed are validated on data collected during tests performed
with the hybrid wheeled-legged rover SherpaTT. The physics-based signal augmenta-
tion process presented in this research uses 11 proprioceptive measurements to produce
a large set of 80 features for SVM and 20 signals for CNN. This improved the information
content as proved by the high classification accuracy obtained in generalization (90.8%
for SVM and 96.4% for CNN). The proposed feature selection algorithm allows SVM
to retain a high classification accuracy with only a portion of the full set (18 features),
with successful reductions in memory usage (-77%) and required time for training (-6%),
testing (-29%), and feature extraction (-33%). The same benefits also apply for CNN
when using a reduced set of 13 signals related to the 18 best SVM features, improving
memory usage (-14%), training time (-27%), testing time (-4%), and feature extraction
time (-41%). The comparison between SVM and CNN shows good capabilities of both
models in generalization, with accuracy higher than 90%. More challenging extrapo-
lation problems have been tackled as well to evaluate the impact of varying operating
conditions and site of the acquisition. In these tests, CNN outperformed the SVM coun-
terpart. When tested on a new vehicle velocity, CNN reached an accuracy of 89.5%,
against 55.7% held by SVM. When tested on new terrain, CNN recognized its deforma-
bility class more frequently than SVM, correctly classifying 6% more of the available
samples. Based on these results, the proposed CNN qualifies as a good algorithm for
soil classification even in the presence of disturbances and unknown conditions. This
study proved that is possible to use only proprioceptive features to infer the signature of
a particular surface via learning algorithms. Moreover, the presented promising results
suggest the possibility to extend rover traveling distance thanks to on-board integration
of the developed learning algorithms.

Future developments of this study refer to (i) continuous training of the system
by incorporating instances of “new terrain” classes during normal operations, therefore
making the system adaptive, (ii) augmenting the classifier with new special classes; for
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example, instances of excessive wheel slippage (close to 100%) can be used to train a
hazard class to inform the rover of impending immobilization conditions, (iii) combining
the proposed framework using proprioceptive signals with exteroceptive signals. The
latter would enable the vehicle to predict hazards or trapping conditions before driving
through the ground, for example, based on noncontact information coming from vision
sensors.
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Chapter 3

Prediction of Vehicle-Terrain
interaction

3.1 Motion Resistance Prediction

This chapter of the thesis is based on the published paper [121]. Wheel-terrain interac-
tion plays a critical role for vehicle mobility on natural terrain, such as in agricultural,
planetary exploration and off-road settings. Estimation of the terrain characteristics and
the way they affect traversability is essential for the vehicle to better plan its safest and
energy-efficient path. This work proposes a novel approach to learn and predict from a
distance the motion resistance encountered by a robotic vehicle, while traversing natural
soil, by using visual information from a stereovision device. To this end, terrain appear-
ance and geometry information are first correlated to resistance torque measurements
during a learning phase via two alternative regression approaches, namely Least-Squares
Boosting and Long-Short Term Memory Recurrent Neural Network. Then, such a rela-
tionship is exploited to predict motion resistance remotely, based on visual data only.
Results obtained in preliminary experimental tests on ploughed and compact terrain are
presented to show the feasibility of the proposed method.

On natural terrain, as in agricultural and off-road settings, the mobility of a vehicle
is known to be highly influenced by wheel-terrain interaction and can be very different
on ploughed terrain rather than on dirt road or compacted soil [10]. The knowledge of
the terrain characteristics and its ability to support vehicular motion can be beneficial
in many ways. Locomotion performance can be optimised in terms of traction or power
consumption (e.g., fuel or battery life) by adapting control and planning strategy to
site-specific environments. Terrain estimation can also contribute to increase the safety
of agricultural vehicles during operations near ditches, on hillsides and cross slopes, as
well as on highly-deformable terrain [128]. Another important aspect that is raising
interest in precision agriculture is related to the prediction of the risk of soil compaction
by farm machinery [118]. Early work on vehicle-terrain interaction estimation mainly
relied on modelor expert rule-based observers [107],[93]. More recently machine learning
approaches have been developed as an alternative or complementary solution with a
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focus on slip estimation [5],[111].

This research presents a novel framework for learning and predicting online the mo-
tion resistance of an agricultural robot on natural terrain. The main novelty of the
proposed approach relies on the use of visual information, including appearance and ge-
ometric characteristics of the ground, to learn and predict from a distance the resistance
torque encountered by the vehicle when traversing different terrain types. Estimation
of the expected torque before entering a terrain is crucial for the vehicle to better plan
its safest path and avoid dangerous or difficult areas. To address this problem, terrain
appearance and geometry information are correlated to the torque measured by the rover
while traversing a given surface. Such relationship is learned from previous experience
(learning phase), so that, successively, motion resistance can be predicted from visual
information only (prediction phase).

Section 3.2 presents the rover used as test bed with its sensor suite as well as an
overview of the proposed algorithms. Section 3.3 discusses the experimental results
obtained.

3.2 Husky rover application

The Husky A200 robotic platform was used for experimental sensor data gathering (Fig-
ure 3.2.0.1). The sensor suite includes electrical current and voltage sensors to measure
wheel mechanical torque and a colour stereocamera (Point Grey XB3) mounted on a
dedicated aluminium frame in a looking-forward configuration, which provides three-
dimensional reconstruction of the environment with RGB colour data.

The proposed approach aims at learning and predicting the motion resistance en-
countered by a vehicle on a previously unknown terrain from visual data. During the
learning phase, the rover traverses the terrain and collects visual information (appear-
ance and geometry) about a future location. When this location is reached by the rover,
a motion resistance measure is taken using onboard current sensors. Then, a mapping
function between visual and motion resistance information is learnt. After learning, the
expected torque can be predicted based on the learnt functional relationship using only
stereo imagery as input. Visual information is represented in terms of colour and geo-
metric features. Specifically, for a given terrain patch, a feature vector is defined using
mean, variance, skewness and kurtosis of each channel of the c1c2c3 colour space. For
the same patch, geometric features are extracted based on the power spectral density
(PSD) of the surface profile [110]. Two approaches for regression fitting and prediction
are compared, namely Least-Squares Boosting (LSBoost) and Long-Short Term Mem-
ory Recurrent Neural Network (LSTM-RNN). LSBoost is an ensemble machine learning
algorithm. At every step, the ensemble fits a new learner to minimize the mean-squared
error between the observed response and the aggregated prediction of all learners grown
previously [17]. In the learning phase, a Bayesian optimization was run to optimize the
hyper-parameters of the boosted regression ensemble. The idea behind the ensemble
algorithm is to meld results from many weak learners into one high-quality ensemble
predictor. The weak learners used in this work are decision trees. The hyper-parameters
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optimized during the Bayesian process are shown in Table 3.2.0.1.

Figure 3.2.0.1: Robotic platform used for data gathering.

Table 3.2.0.1: Hyper-parameters of the LSBoost model.

Hyper-parameter Description Range

NumLearningCycles Number of ensemble learning cy-
cles. At every learning cycle, the
software trains one weak learner

[10,500]

LearnRate Learning rate for LSBoost
shrinkage

(0,1]

MinLeafSize Minimum number of leaf node
observations. Each leaf has at
least MinLeafSize observations
per tree leaf

[1,NumObservations/2]

MaxNumSplits Maximal number of decision
splits (or branch nodes)

[1,NumObservations-1]

NumVariablesToSample Number of predictors to select at
random for each split

[1,NumPredictors]
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The Bayesian optimization algorithm attempts to minimize a scalar objective func-
tion f(x), for x in a bounded domain, where x contains all the parameters to optimize.
The key elements in the minimization are a model of f(x) and an update procedure
at each evaluation of f(x). In this work, a Gaussian process model of f(x) was used
to obtain a posterior distribution after every evaluation of the objective function. The
first point x1 for the evaluation of f(x) is chosen randomly, whilst for all the following
iterations the evaluation point xi is chosen by maximizing an acquisition function. More
details about Bayesian optimization can be found in [41]. A Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN) was also implemented for comparison. The
structure of a Recurrent Neural Network for the regression purpose is shown in Figure
2.4.1.1. A certain number of Recurrent Units (RUs) passes a hidden output hi (with
i = 0, . . . , T − 1, where T + 1 is the number of RUs) to the following RU and gives
a guess of the torque value based on the instantaneous input and the previous hidden
output[56]. The LSTM is a particular type of RU that has been shown to be capable
of retaining through time in the hidden output relevant information from the input se-
quence to improve the accuracy of the prediction. The hyper-parameters of the training
stage, as well as the parameters of the net architecture were manually tuned for each
terrain observing the progress during training of RMSE and loss. They are presented in
Section 3.3.

3.3 Experimental Results

The system was tested in a rural environment where two main surfaces were present
(Figure 3.3.0.1):

• ploughed terrain: vineyard terrain broken and turned over;

• compact terrain: unbroken agricultural land. It is a compact and relatively hard
terrain that can be typically found in olive groves.

The rover was remotely controlled to follow a straight line of about 67 m, driving
parallel to a vineyard edge on ploughed terrain and of about 51 m on compact soil in an
olive grove. In each test, 1145 samples of ploughed terrain and 872 samples of compact
terrain were collected.

Table 3.3.0.1: Optimized LSBoost ensemble hyper-parameters.

Hyper-parameter
Optimization on
ploughed terrain

Optimization on
compact terrain

NumLearningCycles 491 70
LearnRate 0.09382 0.15418
MinLeafSize 2 5
MaxNumSplits 428 539
NumVariablesToSample 4 3
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Table 3.3.0.2: Hyper-parameters of the LSTM-RNN model.

Hyper-parameter Ploughed Compact

Number of RUs 50 50
Sequence Length 50 10
Sequence Overlap 25 5
Validation Percentage 0.15 0.15
Initial Learning Rate 0.005 0.005
Learn Drop Factor 0 0
Learn Drop Period 10 10
Maximum Number of Epochs 1500 1500
Mini-Batch size 1 1
Validation Patience 10 10
Validation Frequency 50 50
Gradient Threshold 10 10

A sequential split of the data into training and test sets was performed. Specifically,
for each terrain type, the first 70% of the sequence was used for training and the re-
maining part was used for testing. The Bayesian optimization for the LSBoost model
was repeated for each terrain type and the best hyperparameters are shown in Table
3.3.0.1. Table 3.3.0.2 presents the hyperparameters of the LSTM-RNN model that have
been manually tuned.

Table 3.3.0.3: Model errors.

Algorithm LSBoost LSTM-RNN

Terrain Ploughed Compact Ploughed Compact
MAPE [%] 8.96 20.1 8.15 11.0
RMSE [Nm] 0.0573 0.0460 0.05221 0.0275

The first plot in Figure 3.3.0.2 (a) shows the prediction of the LSBoost ensemble
model for ploughed terrain, compared with the observed values. The second plot in
Figure 3.3.0.2 (a) shows the discrepancy between observations and predictions. Figure
3.3.0.2 (b) shows the same results for the compact terrain case. Similarly, Figure 3.3.0.3
(a) and (b) show the results obtained with the LSTM-RNN model on ploughed and
compact terrain respectively. The performance of both models in terms of Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are shown in Table
3.3.0.3. It can be seen that LSBoost and LSTM-RNN perform similarly for the test on
ploughed terrain leading to a MAPE of 8.96% and 8.15% respectively, whereas LSTM-
RNN overcomes LSBoost performance in the case of compact terrain with a MAPE of
11.0% compared to the 20.0% obtained using the LSBoost model.
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Figure 3.3.0.1: Terrain types: (a)-(b) ploughed agricultural terrain; (c)-(d) compact
agricultural terrain. Left: sample images with overlaid the boundaries of the inspection
window. Right: corresponding 3D colour terrain patches obtained from the stereocam-
era.
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(a)

(b)

Figure 3.3.0.2: LSBoost predictions (a) for ploughed terrain and (b) for compact terrain.
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(a)

(b)

Figure 3.3.0.3: LSTM-RNN predictions (a) for ploughed terrain and (b) for compact
terrain.

Considerations This research presented a novel learning and prediction framework
to estimate remotely the motion resistance the vehicle will encounter on different types
of soils based on visual information from an onboard stereovision device, mounted in a
forward-looking setup. Specifically, first, the vehicle learns a mapping between visual
terrain appearance and geometry and motion resistance based on a regression learner,
then based on such a relationship it is able to predict the motion resistance of future
locations based on visual information only. Two regression approaches have been im-
plemented for comparison: a Least-Squares Boosting algorithm and a Long-Short Time
Memory Recurrent Neural Network. Preliminary tests were performed on two terrain
types showing that the system is able to make predictions with an error, in the worst
case, of 20% for the LSBoost model and 11% for the LSTM-RNN.



Chapter 4

Multi-sensor Perception

4.1 Crop Monitoring Application

The availability of up-to-date and accurate data is an essential prerequisite for precision
farming tasks, such as variable rate application of fertilizers/pesticides, identification of
infected plants or invasive species, and controlled traffic farming. While satellite and air-
borne technologies have been in use for some decades to effectively provide multi-spectral
and 3D information in wide agricultural and forestry areas, these platforms generally
lack the resolution needed to observe stems, leaves or fruits. Satellite images typically
have pixel resolution of hundreds of meters and airborne sensing may provide resolution
of a few meters, whereas monitoring orchards or vineyards requires observations at a
smaller scale. Information update frequency is also limited, varying from hours to sev-
eral days. In crops with smaller extension, UAVs equipped with RGB, multi spectral or
LiDAR sensors, have been adopted to overcome these bottlenecks, allowing for efficient
crop survey at user-defined spatio-temporal resolutions to assess vegetation vigor or for
canopy characterization [81]; [23]. However, in high density crops, using aerial data
can still be ineffective for precise measurement at leaf/fruit level, e.g., for health status
assessment and yield estimation.

As an alternative or complementary approach, proximal sensing from ground-based
or manually deployed devices can be performed. Proximal sensors range from RGB
cameras to high-resolution hyper spectral imaging, infrared (IR) thermal cameras, and
2D/3D LiDARs. Applications include fruit detection and counting [44], up to plant phe-
notyping [71], health status assessment and growth monitoring [77]; [62]. While these
methods were proved to be effective and accurate for detailed information extraction,
they are often constrained to structured environments, such as greenhouses and spe-
cific acquisition conditions, such as controlled illumination or predefined positioning of
the sensing devices, or they require the adoption of expensive high-resolution sensors
[78], which limits their practical implementation. In order to address these issues, crop
monitoring by agricultural ground robots has been proposed as a step forward to au-
tomated proximal measurement and characterization of high-value crops and soils [83]
While much work has been done in the context of ground robots for harvesting and pick-

71
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ing operations, the use of UGVs for in-field crop monitoring and assessment has been
proposed more recently. UGVs can carry a number of sensing devices, thus potentially
providing an efficient means to gather multi-modal information at a narrow scale. At the
same time, they can be equipped with manipulators and actuators to perform targeted
actions, such as selective spraying or fertilizing, with relatively high operating times.

Although UGVs offer enough payload to transport a number of bulky sensors, keeping
low complexity and costs is a major requirement for infield implementation. In this
respect, visual sensors mounted on ground robots have been shown to provide an efficient
and affordable solution in a wide range of agricultural applications, including plant and
fruit detection, fruit grading, ripeness detection, yield prediction, plant and fruit health
protection and disease detection. In addition, visual sensors provide a rich source of
information to support autonomous navigation functions such as localization, obstacle
detection and situation awareness in general [112, 84].

Among visual sensors, portable consumer-grade RGB-D cameras, like Microsoft
Kinect, have been receiving growing attention, as an effective means to recover in real-
time 3D textured models of plants and extract plant and fruit features [21], although
the application of this sensor remains mostly limited to indoor contexts. A novel family
of highly portable, consumer depth cameras has been introduced by Intel in 2015 (R200
and D4xx, Santa Clara, CA, USA). These cameras are similar to the Kinect sensor in
scope and cost, but use a different working principle based on IR stereo, which makes
them more suitable for outdoor conditions. In addition, their output include RGB infor-
mation, infrared images and 3D depth data, thus covering a wide range of information
about the scene. The potential of these sensors for agricultural applications has been
investigated in recent works [30, 24]. Following this research trend, this work explores
the potential of a multi-view RGB-D system for geo-referenced image acquisition and
mapping of a high-value crop, like a vineyard. The device is built following a modu-
lar approach and can be mounted on any agricultural vehicle to provide ground-based
3D reconstruction of the traversed crop rows. Data acquisition and processing can be
carried out during vehicle operations, in a non-invasive and completely automatic way,
while requiring low investment and maintenance costs.

One specific aspect addressed is accurate vehicle localization. Localization of the
UGV is essential for correct merging of point cloud streams and thus for the construction
of geo-referenced 3-D maps. In [60], the UGV pose estimation problem is formulated
as a pose graph optimization to mitigate sensor drift and significantly improve state
estimation accuracy using a Digital Elevation Model (DEM) and a Markov Random
Field (MRF) assumption. Authors in [54] proposed a Simultaneous Localization And
Mapping (SLAM) method for generating the map of an agricultural environment and
simulated it on Gazebo and Robot Operating System (ROS) for the case of an apple farm,
showing good results in fruit mapping. A well-established solution to the localization
problem to fuse information from multiple sensors is Kalman filtering. In this work, we
use the information form of the Kalman Filter as data fusion strategy for heterogeneous
sensors. The reason is related to the high reliability of such algorithm, as confirmed
by recent research (e.g.,[3] and [135]). Other alternatives have been investigated in the
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literature, including, for example, particle filtering, which however has proven to be less
accurate for localization purposes [122] [108].

Section 4.2 presents the sensor suite used for data gathering and the algorithms to
combine exteroceptive and proprioceptive measures. Section 5 proposes a novel approach
for unsupervised system modelling based on the algorithm presented in section 4.2. Then
tests the propsed Kalman Supervised Network on the simple case of a mass-spring-
damper system and discusses the results obtained.

4.2 Multi-view Mapping

This section of the thesis is based on the published paper [127].

Automated in-field data gathering is essential for crop monitoring and management
and for precision farming treatments. To this end, consumer-grade digital cameras have
been shown to offer a flexible and affordable sensing solution. This work describes the
integration and development of a cost-effective multi-view RGB-D device for sensing
and modelling of agricultural environments. The system features three RGB-D sensors,
arranged to cover a horizontal field of view of about 130 deg in front of the vehicle, and
a suite of localization sensors consisting of a tracking camera, an RTK-GPS sensor and
an IMU device. The system is intended to be mounted on-board an agricultural vehicle
to provide multi-channel information of the surveyed scene including color, infrared and
depth images, which are then combined with localization data to build a multi-view 3D
geo-referenced map of the traversed crop. The experimental demonstrator of the multi-
sensor system is presented along with the steps for the integration of the different sensor
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data into a unique multi-view map. Results of field experiments conducted in a com-
mercial vineyard are included, as well, showing the effectiveness of the proposed system.
The resulting map could be useful for precision agriculture applications, including crop
health monitoring, and to support autonomous driving.

(a)

(b)

(c)

Figure 4.2.0.1: (a) Demonstrator of the UGV’s sensor box: (1)-(2) Intel NUC Windows
PCs; (3) Batteries, (4) T265 Camera, (5) D435 Cameras, (6) X-Sense MTI-300 IMU, (7)
U-blox ZED F9P board, (8) Sensor Box GPS antenna. (b) Closeup of the multi-camera
system. (c) CAD model of the sensor frame.

4.2.1 Multi-sensor Device

This section describes the development of a multi-sensor box for close range sensing and
modelling of agricultural environments. The sensor suite is intended to be mounted on
board an agricultural robot and is designed to be self-contained, both from a computa-
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tional and energy point of view, and independent of the particular vehicle architecture.

Hardware Design The sensor suite is shown in Figure 4.2.0.1 (a). It consists of two
sensor arrays, namely a Perception Sensors array and a Navigation Sensors array. The
perception sensors include three Intel RealSense D435 RGB-D cameras arranged to cover
a wide horizontal field of view of about 130 deg in front of the vehicle, which extends up
to about 145 deg when considering infrared depth information only. The mounting case
allows one to alternatively place up to two cameras in lateral configuration, e.g., to keep
the image plane parallel to a crop row for tasks such as row following and/or monitoring.
A closeup of the multi-camera system is shown in Figure 4.2.0.1 (b). The navigation
sensors comprise one Intel RealSense tracking camera T265, one X-Sense IMU MTi-300
and two U-Blox GPS Zed-F9P providing RTK-GPS data in rover-base configuration.
All sensors are integrated in a 3-D printed PLA box (see Figure 4.2.0.1 (c)), which was
designed following a modular approach, so that it can be assembled in multiple ways
according to the specific needs of the test field. The described sensor suite can be fixed
to the vehicle through a metal frame, built with aluminum bars and plates and designed
to be stable and of adjustable height. Two Intel NUC7i7DNHE computers are used for
data gathering. The PCs, powered by lithium batteries, are fixed at the bottom of the
metal frame. Overall, the proposed sensor box provides a flexible and self-contained
data gathering device with a cost of about 6.5k e(i.e., 27% for the two processing units,
45% for the IMU, 14% for the cameras, 7% for the GPS, and 7% for the batteries).

Figure 4.2.1.1: Sensor box data flow.
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Acquisition Software Design The data gathering pipeline of the sensor suite is
shown in Figure 4.2.1.1. The sensor box provides two processing units, one running
Ubuntu and the other running Windows 11. The NUC Ubuntu is devoted to gathering
positional measurements produced by the GPS sensor and the IMU sensor. Data acqui-
sition is made through ROS drivers using a dedicated ROS node for each sensor. Then,
all the acquired data are stored in ROS bags.
For image acquisition and storage, a software package, named SensorBox, was developed
using the Intel RealSense SDK 2.0 (v. 2.49), running on NUC Windows. The software
architecture of the whole package is divided into two executables: MultiBagReader and
MultiBagWriter. The scheme of the first executable (MultiBagWriter) is shown in Fig-
ure 4.2.1.2. It works in a producer-consumer logic, where the Intel RealSense cameras
connected to the processing unit are first opened to produce the data which is then
consumed, i.e. displayed, to show the acquired field of view and/or the computed visual
odometry. Then, when the user starts the acquisition, the data are encapsulated in
several ROS bags, stored on the local hard disk of the NUC. In this way, each camera
produces a bag file at the maximum achievable rate (up to 30 fps), without any further
processing to prevent frame drops. It is worth noticing that each camera works in a
free run mode and, thus, their frames are not temporally synchronized, i.e. acquired
exactly at the same time instant. The second executable (MultiBagReader) opens the
bags, divides the RealSense pipelines to have single streams in each pipeline, and then
reports all the acquired frames to a global temporal reference, thus performing software
synchronization. The software features a user interface for both writing and reading
modules, as shown in Figure 4.2.1.3. The open-source code of the software is available
on STIIMA GitHub.

Figure 4.2.1.2: Schematic of the image acquisition software.

Sensor Synchronization and Calibration The association of heterogeneous data
requires temporal and spatial calibration. For time synchronization, a timestamp-based

https://github.com/ispstiima/SensorBox
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(a)

(b)

Figure 4.2.1.3: User interface of the multi-view camera system: (a) interface for data ac-
quisition and storage (MultiBagWriter); (b) interface for reading stored image databases
(MultiBagReader).

approach was adopted, whereby each sensor observation was marked with a timestamp.
In addition, to register all sensor data with respect to a common reference frame, spatial
calibration was performed to estimate the relative position and orientation of the sensors
with respect to each other. Spatial calibration was performed by construction, consider-
ing that all the sensors are located in the sensor box at fixed positions. This proved to
be sufficiently accurate for the purpose of this work, although optimization strategies,
such as the one proposed by the authors in [101], can be also adopted to further improve
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the registration accuracy.

4.2.2 Multi-view 3D Mapping

The data acquired by the sensor suite are processed to build a multi-view map of the
traversed environment, following multiple stages. First, data from GPS, IMU and T265
sensors are fused by an EIF to generate pose estimates. Successively, the point clouds
obtained by each of the three RGB-D cameras are assembled into a unique map, using
the EIF pose estimates and the known relative poses between the sensors. The map can
be then converted into a 3D mesh representation for efficient storage and inspection, as
well as, for import in a dedicated simulation environment, as will be described later in
Section 5. In more detail, with reference to Figure 4.2.0.1, let us introduce the reference
frames denoted with the following subscripts:

• sb: Sensor Box frame (Figure 4.2.0.1, a-6)

• w: East-North-Up world frame (Figure 4.2.0.1, a-8)

• cam: Camera Frame (Figure 4.2.0.1, a-5)

• s: Reference frame for the s-th sensor (RTK-GPS, T265, IMU).

Furthermore, quantities of interest are presented here to facilitate the understanding
of the mapping reconstruction process:

• pB−A(t) ∈ R1,3: position vector of reference frameA at time t expressed in reference
frame B

• qB−A(t) ∈ C1,4: quaternion orientation of reference frame A at time t expressed
in reference frame B. Note that only quaternions are denoted in bold.

Quaternion Analysis Quaternion representations are convenient for composition of
rotations and coordinate transformations. Here we provide the reader with an overview
of basic concepts of quaternion analysis, the interested reader is referred to the literature
(e.g., [22]) for more details. The unit quaternion q = [qx, qy, qz, qw], is uniquely mapped
to a rotation matrix R and describes the transformation between two reference frames as
a rotation of a certain angle θ around the direction vector n⃗ following Equation 4.2.2.1.

q = [nxsin
θ

2
, nysin

θ

2
, nzsin

θ

2
, cos

θ

2
] (4.2.2.1)

Denoting with s1 and v⃗1 respectively the scalar and vector part of quaternion q1 =
[v⃗1, s1] = [v1x, v1y, v1z, s1], and with s2,v⃗2 the scalar and vector part of quaternion q2,
the operation of quaternion product can be expressed as

q2q1 = [s2v⃗1 + s1v⃗2 + v⃗2 × v⃗1, s2s1 − v⃗2 · v⃗1] (4.2.2.2)
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where quaternion product symbol has been omitted for readability, whereas v⃗2·v⃗1 denotes
dot product between vectors v⃗1 and v⃗2 and finally v⃗2× v⃗1 denotes cross product between
the two vectors. Quaternion product is a non-commutative operation and returns a
quaternion that represents the orientation obtained after the sequence of transformations
q1 and then q2. The norm of a quaternion q is denoted as ∥q∥2 = q2x + q2y + q2z + q2w.
The conjugate of quaternion q = [v⃗, s] is represented as q∗ = [−v⃗, s], while its inverse
q−1 = q∗√

∥q∥2
. For a unit quaternion we have ∥q∥2 = 1 so its conjugate coincides with

its inverse. All quaternions describing orientation in 3-D space are unit quaternions.
The normalized quaternion denoted as ∥q∥ = q√

∥q∥2
has a unit norm and each of its

components are divided by
√
∥q∥2. Let us denote with qB−A the quaternion describing

orientation of frame A with respect to frame B written in frame B, its inverse is q−1
B−A =

qA−B. Then, composition of rotations can be obtained in a convenient form as

qC−A = qC−BqB−A (4.2.2.3)

Consider the position vector p⃗A in frame A, then its projection in reference frame B can
be obtained as

[p⃗B, 0] = qB−A[p⃗A, 0]qA−B (4.2.2.4)

Finally, denoting with ω⃗B(t) the angular velocity of moving frame B in its reference
frame A, the derivative of the quaternion qA−B(t) expressed in the inertial frame A can
be computed as

dqA−B(t)

dt
=

1

2
qA−B(t)[ω⃗B(t), 0] (4.2.2.5)

Mapping Algorithm The mapping algorithm proceeds according to the following
three steps:

1. Pose estimation: position and orientation of the sensor box can be estimated from
different sensors (RTK-GPS, T265, IMU) and fused within an EIF. In general,
the sensor s can provide information about its position and orientation expressed
either in the world frame or with respect to its initial pose. In the former case,
Equations (4.2.2.6) give the sensor box orientation qw−sb and position pw−sb in the
world frame, knowing qs−sb and psb−s

qw−sb(t) = qw−s(t)qs−sb

[pw−sb(t), 0] = [pw−s(t), 0]− qw−sb(t)[psb−s, 0]
(4.2.2.6)

If the sensor provides ps0−s(t) and qs0−s(t) with respect to its initial condition s0,
Equations (4.2.2.7) compute pw−sb and qw−sb

qw−sb(t) = qw−sb0qsb0−s(t)qs−sb

[pw−sb(t), 0] = qw−sb0qsb−s[ps0−s(t), 0]qs−sbqsb0−w−
+ qw−sb(t)[psb−s, 0]+

+ [pw−sb0 , 0]

(4.2.2.7)
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Apart from qsb−s = q−1
s−sb, initial position and orientation of the sensor box in

the world frame (pw−sb0 and qw−sb0) are needed to compute pw−sb and qw−sb.
In Equations (4.2.2.7) notation [p, 0] indicates the quaternion with zero real part
corresponding to position vector p.

Please note that in both Equations (4.2.2.6) and (4.2.2.7) quaternion multiplication
is omitted for ease of notation.
The predictive model used to implement the EIF is expressed by Equations (4.2.2.8)

p̃t+1|t = p̃t|t + ṽt|t ·∆t
[ṽt+1|t, 0] = [ṽt|t, 0] + (q̃t|t[asb, 0]q̃

−1
t|t − [g, 0]) ·∆t

q̃t+1|t = ∥(q̃t|t +
∆t

2
· q̃t|t[ωsb, 0])∥

(4.2.2.8)

where position p̃, velocity ṽ, and quaternion q̃ describe the state of the sensor
box over time expressed in the w frame. Subscript t+ 1|t denotes predicted value
and t|t indicates posterior value corrected with measurements. Expression ∥q∥
represents quaternion normalization. Angular velocity ωsb and linear acceleration
asb are measurements provided by the IMU and expressed in the sb frame, and g
denotes gravity acceleration in the world frame.

2. Point cloud assembly The pose estimates are then used to transform and assemble
the point clouds provided by each RGB-D camera in its own frame. Denoting with
Pcam ∈ R3,1 a generic point of the point cloud in the camera frame cam and with
Tcam ∈ R4,4 the homogeneous transformation matrix from frame cam to frame sb,
Equation (4.2.2.9) expresses Pcam in the sb frame as Psb.

[Psb
T , 1]

T
= Tcam[Pcam

T , 1]
T

(4.2.2.9)

The homogeneous transformation matrix Tsb from the sensor box frame to the
inertial frame can be obtained by Equation (4.2.2.10) using the pose estimated by
the EIF

Tsb =

[
rotm(q̃t|t) p̃Tt|t
[0, 0, 0] 1

]
(4.2.2.10)

where rotm(q) ∈ R3,3 returns the rotation matrix uniquely assigned to quaternion
q. Finally, 3D points can be transformed from the sb to the w frame using Equation
(4.2.2.11)

[Pw
T , 1]

T
= Tsb[Psb

T , 1]
T

(4.2.2.11)

3. Map merging. Assembled point clouds gathered by the three cameras and trans-
formed in the world frame are then merged together and down sampled (voxel grid
size= 0.01 m).
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4.2.3 Simulation Environment

Figure 4.2.3.1: Gazebo simulation environment composed of a vineyard row and a mobile
robot.

The possibility to simulate robots in outdoor environments under different conditions
is of paramount importance in agricultural robotics. In this regard, the most famous
simulator framework used by the robotic community is Gazebo. Gazebo is an open-
source simulator born in 2002 for robotics. After over 15 years of development, Gazebo is
undergoing a significant upgrade and modernization. Today, Gazebo is part of Ignition,
which is a collection of open-source software libraries designed by Open Robotics to
simplify the development of high-performance applications. Creating Gazebo models
means creating SDF (Simulation Description Format) files to define SDF Model Objects.
The primary element composing an SDF file is the link. A link contains the physical
properties of one body of the model. Each link may have many collisions and visual
elements. Usually, these two elements define the 3D mesh file describing the 3D surface
of the object. Gazebo requires that mesh files be formatted as STL, Collada, or OBJ,
with Collada and OBJ preferred formats.
In this work, the point cloud map, obtained as described Section 4.2.2, is modeled using
a meshing algorithm, which allows one to generate a mesh-based representation for map
import in the Gazebo simulation environment, according to the following steps:

• Downsampling: to down sample the obtained dense map is a not mandatory
task that enables to speed up the mesh reconstruction process and improves the
outcome of the whole process. To accomplish this task, the samples are generated

http://gazebosim.org/


82 Exteroceptive and Proprioceptive signals integration

according to a Poisson-disk distribution [27];

• Normals computation: the knowledge of the normals is necessary to reconstruct
the surface of the elements composing the map. Normals are computed on the basis
of the 10 closest points;

• Surface reconstruction: this step regards the reconstruction of the surface start-
ing from the set of points and normals. In this case, the Ball Pivoting algorithm is
used [15] to compute a triangle mesh. It is based on the principle that three points
form a triangle if a ball of a user-specified radius touches them without containing
any other point;

• Texture mapping: the texture mapping is build with triangle by triangle
parametrization;

• Color transfer: this step concerns the process of projecting a 2D image to a 3D
model’s surface for texture mapping, the so called UV mapping. Once a UV map
is available, the color can be transferred to the reconstructed surface;

• Save the mesh: finally, the mesh is ready to be exported in a suitable format.

Thus, thanks to the created mesh files, it is possible to develop a Gazebo SDF model ob-
ject describing the reconstructed vineyard row. As an example, Figure 4.2.3.1 showcases
a mobile robot crossing a vineyard row developed by following the procedure described
above.

4.2.4 In-field Testing

The multi-sensor system is mounted and integrated the polibot, and it is tested in field
conditions, as shown in Figure 1.4.0.2 (a). Dedicated tests are performed in a commercial
vineyard in San Donaci, Apulia region, Italy. Specifically, the robot is guided to follow
closed-loop trajectories around different crop rows while gathering the sensor data. The
data were then processed offline to recover the 6DoF path and the 3D map of the
environment.
In this section, first, the localization performance of the proposed system is analyzed in
terms of accuracy and repeatability. Then, the mapping results are discussed.

4.2.4.1 Localization performance

Four closed-loop runs are considered, performed along two different crop rows of about
120 m length, referred to as Test 1 to Test 4 in the following. They belong to two field
campaigns carried out in September and October 2021, respectively, during different
times of the day. Three localization sources are compared, namely RTK-GPS only, T265
only and EIF. A projection in Google Earth view of the trajectories reconstructed by EIF
for the four paths is shown in Figure 4.2.4.1. Numerical results for all runs are collected
in Table 4.2.4.1, showing the discrepancy in the East-North-Up (w) frame between the
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starting and ending points of the trajectory, expressed in terms of 3D Euclidean distance
(D), 2D Euclidean distance in the motion plane (DEN ) and altitude distance (DU ), and
the standard deviation of altitude measurements (σU ) along the entire path.

Table 4.2.4.1: Comparison of different localization sources along four robot paths (Test 1
to 4): discrepancy in the East-North-Up frame between the starting and ending points of
the trajectory expressed in terms of 3D Euclidean distance (D), 2D Euclidean distance
in the motion plane (DEN ), altitude distance (DU ), and standard deviation of altitude
measurements (σU ) along the entire path.

Test Source D[m] DEN [m] DU [m] σU [m]

RTK-GPS 1.501 1.511 0.026 0.451
1 T265 1.276 1.275 0.046 2.425

EIF 1.514 1.513 0.032 0.228

RTK-GPS 0.579 0.579 0.013 0.452
2 T265 5.909 4.921 3.270 2.199

EIF 0.579 0.579 0.011 0.209

RTK-GPS 1.852 1.517 1.063 0.370
3 T265 7.264 5.811 4.359 1.440

EIF 1.833 1.484 1.077 0.355

RTK-GPS 1.290 1.073 0.717 0.670
4 T265 5.341 4.760 2.424 1.497

EIF 0.739 0.356 0.647 0.428

The robot path as estimated by each localization source is reported in Figure 4.2.4.2
for Test 1. In this test, pose estimates using only RTK-GPS (Figure 4.2.4.2 (a)) are
consistent as long as RTK correction is available. The starting and ending points are
close to each other and the altitude estimate is stable except when the connection to
the base GPS is lost and the RTK correction is missing (red diamonds in Figure 4.2.4.2
(a)). Figure 4.2.4.2 (b) shows the path as reconstructed by the T265 proprietary visual-
inertial SLAM algorithm in its own frame and successively transformed in the world
frame.

Figure 4.2.4.1: Google Earth view of the four paths estimated by EIF in a commercial
vineyard, San Donaci, Apulia Region, Italy (40°27’16.2”N 17°54’30.6”E).

Compared to RTK-GPS path, the distance between starting and ending points esti-
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mated by the T265 camera is 15.6% smaller in terms of East-North coordinates (DEN )
but 77% larger in terms of altitude (DU ). Low accuracy of vertical displacement esti-
mates leads to large standard deviation of altitude measurements (σU ), which for T265
is of 2.43 m, about 5 times larger than the one obtained by RTK-GPS. Figure 4.2.4.2(c)
shows the path reconstructed by the EIF. The EIF uses linear acceleration and angu-
lar velocity measures to make state predictions using the model described by equations
(4.2.2.8), and corrects its predictions using measures of RTK-GPS (world position and
velocity), IMU (world orientation) and T265 (relative position and orientation). The
EIF estimates a difference between starting and ending points 0.18% larger than the
RTK-GPS in terms of East-North position and 23% larger in terms of vertical displace-
ment. However, the standard deviation of altitude measures is 0.22 m for the EIF, i.e.,
49% smaller than the one provided by RTK-GPS, suggesting an overall improvement in
position estimate when fusing measurements with the EIF. This improvement is due to
the fact that the RTK corrections are not available when connection is lost with the base
GPS, whereas the EIF adjusts the position estimates for these instants using predictions
with IMU data and short-term measures of the T265 camera when the covariance of
position and velocity provided by the GPS grows.
When considering a second run along the same row (Test 2), similar results are ob-
tained (see Figure 4.2.4.3 (a) and the corresponding row in Table 4.2.4.1) in terms of
σU which attests to 0.45 m for RTK-GPS, 2.20 m for T265 camera and 0.21 m for EIF.
The discrepancy between starting and ending points (D) for T265 is higher than the one
obtained from RTK-GPS indicating that visual inertial odometry should be only used
for short-term displacement estimation. Again, the use of EIF allows for a reduction of
σU of 53% with respect to GPS and of 90% with respect to T265, while preserving loop
closure accuracy.
The localization results for a path along a different crop row (Test 3) is reported in
Figure 4.2.4.3 (b). In this case, the T265 results in a substantially degraded estimation,
and EIF mainly relies on GPS leading to σU of 0.35 m. On the contrary, Figure 4.2.4.3
(c) refers to an example where the quality of GPS signal is poor in several parts of
the trajectory (Test 4). Again, EIF is able to compensate for the GPS outages mainly
relying on T265 information showing better performance for all the metrics.
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(a)

(b)

(c)

Figure 4.2.4.2: Localization results for Test 1: (a) from RTK-GPS only; (b) from T265
camera only; (c) after EIF fusion of RTK-GPS, IMU and T265 measurements. In (a), red
diamonds are overlaid in two different zones without RTK coverage due to connection
loss.
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(a)

(b)

(c)

Figure 4.2.4.3: Localization results (a) for a second run along the same path of Test 2
(b) for Test 3 (c) for Test 4; RTK-GPS only (solid grey line), T265 only (dashed black
line) and EIF (solid black line). Start and stop positions for EIF trajectory are denoted
by green and red dot, respectively.
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4.2.4.2 Mapping

For each geo-referenced position, the corresponding multi-view data can be recovered.
As an example, Figure 4.2.4.4 shows the robot path (Test 1) overlaid over Google Earth
view with three pinpointed positions, whereas the corresponding multi-view output is
displayed in Figure 4.2.4.5.

Figure 4.2.4.4: EIF-derived path overlaid on Google Earth view for Test 1. Three
successive positions of the robot are pinpointed. For these positions, the corresponding
visual data are shown in Figure 4.2.4.5.

Point clouds are collected and assembled in the w frame using estimates of both
absolute position and orientation of the sensor box. In Figure 4.2.4.6, the EIF observer
output is used to merge point clouds collected by the frontal camera. Figure 4.2.4.8(a)
shows, instead, about 20 m of merged point clouds from all cameras using 6DoF odometry
provided by the EIF.

Figure 4.2.4.5: Output of the multi-view camera system for three robot locations along
the path (Test 1): (first row) color images, (second row) depth images obtained from IR
stereo reconstruction and (third row) multi-view 3D point cloud.
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This map can be processed to extract high-level information about the crop, such as
vegetation indexes and morphological information. As an example, Figures 4.2.4.8(b)
and (c) show the map of Figure 4.2.4.8 (a) augmented with Green-Red Vegetation Index
(GRVI) and crop elevation information, respectively.
Accurate localization information is essential to assemble subsequent point clouds ac-
quired by the D435 cameras and build the environment map. This can be clearly seen
in Figure 4.2.4.7, where two different 6DoF localization sources are compared. In detail,
Figure 4.2.4.7(a) shows a group of point clouds badly assembled with synced data of GPS
for position and IMU for orientation when RTK correction are missing. Figure 4.2.4.7(b)
is obtained using the EIF for the same time span, clearly showing the improvement in
point cloud assembling.

Figure 4.2.4.6: Mapping results (Test 1): upper view of the terrain map reconstructed
by the central camera. The robot trajectory estimated by the sensor fusion approach is
also overlaid.

(a)

(b)

Figure 4.2.4.7: Mapping results (Test 1): closeup of loop closure before (a) and after (b)
EIF correction.
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(a)

(b)

(c)

Figure 4.2.4.8: Closeup of the multi-view map for Test 1 (first 20 m): (a) RGB, (b)
GRVI and (c) elevation map. In (b), green points refer to vegetation, whereas blue
points correspond to non-vegetated parts. Lighter green denotes higher GRVI values.
In (c), a jet colormap is used to represent point height with respect to ground.
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4.2.4.3 Considerations

In this section, the development, implementation and testing of a multi-view RGB-D
sensing device is presented. The system is intended to be mounted on an agricultural
ground robot for in-field proximal monitoring of high-value crops. A multi-view mapping
approach to combine information from multiple visual and localization sensors and pro-
duce a high-resolution 3D reconstruction of agricultural environments is described. It is
based on an EIF algorithm to fuse information from RTK-GPS, IMU and visual-inertial
SLAM to obtain an accurate estimation of the vehicle position in the field. Then, on the
basis of localization data, subsequent point clouds reconstructed by the RGB-D sensors
during robot motion can be assembled to generate a high-resolution map of the surveyed
environment. Results of dedicated tests performed in a commercial vineyard are pre-
sented, showing the effectiveness of the proposed system for in-field data gathering in
an automatic and non-invasive way.
Future work will include the processing of the maps using supervised or unsupervised
classification methods to generate semantic representations of the environment, which
can be used to improve vehicle autonomy and safety. Research will focus on the inte-
gration of output maps into Farm Management Information Systems (FMIS) to enable
map-based control of agricultural applications and machinery. In this respect, future
efforts will be devoted to address the real-time challenge by using the multi-view maps
for online navigation of autonomous agricultural vehicles. Furthermore, methods for
identification and mapping of anomalies, such as weeds, as well as the extraction of
geometric measurements, such as plant volume/height estimates, will be integrated to
enable precision farming practices. This would also improve the cost-benefit ratio of the
sensor suite.



Chapter 5

Modelling the prediction-update
loop

This section of the thesis is based on the published paper [126]. In this work, we pro-
pose a Neural Network to improve long-term state predictions without measurements
based on Kalman filter observations. It is well known that the Kalman Filter is an
iterative algorithm composed of two phases: predict and update. The update corrects
predictions based on measurements. Predictions rely exclusively on the embedded phys-
ical model. This research aims to learn the underlying dynamics of the system under
observation from the estimates of a standard Kalman Filter that supervises a Neural
Network. Then, the Kalman Supervised Net (KSN) can be used to improve predictions
learning from Kalman filter corrections. Numerical results show the advantages of the
proposed solution when predicting the state of a spring-mass-damper system without
using acceleration measurements.

5.1 Problem Statement

For the sake of simplicity, we refer to the stochastic Linear Time Invariant (LTI) dynam-
ical system described in Eq. (5.1.0.1). However, the proposed approach can be extended
to any complex system.

ẋ = Fx+Gu+ Γw
z = Hx+Du+ n

, (5.1.0.1)

In Eq. (5.1.0.1), x ∈ Rn is the state of the system, u ∈ Rm the input, z ∈ Rp the
measurement vector, w ∼ N (0,Q) the process noise, and n ∼ N (0,R) the measurement
noise. Moreover, Q ∈ Rn×n is the process noise covariance matrix, R ∈ Rp×p is the
measurement noise covariance matrix and Γ is the matrix associated with the process
noise. We consider the process noise and the measurement noise independent one each
other and internally orthogonal, therefore Q and R are diagonal matrices.

Practical applications need a discrete-time version of the system (5.1.0.1), because
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Figure 5.1.0.1: Block diagram representing the Kalman Filter whose plant model is
characterized by matrices F̄d, Ḡd, H̄d, D̄d, measurement covariance matrix R̄d and
process noise covariance Q̄d. Here x̂t|t is the posterior estimate at time t, ut is the
control input and xt+1|t is the state prediction at time t+ 1 prior to measurement zt+1

measurements are available only at the sampling points at each time step:

xt+1 = Fdxt +Gdut + Γdwt (5.1.0.2a)

zt = Hdxt +Ddut + nt (5.1.0.2b)

where t ∈ N the t-th time step. With Eq.s (5.1.0.2), we can define a suitable observer
x̂t = Obs(zt, x̂t−1) able to estimate the state of system in Eq. (5.1.0.1) on the basis of
the measurement zt and the previous observation x̂t−1.

The Kalman filter is an iterative algorithm composed by two phases, namely, predic-
tion and update, as explained in Figure 5.1.0.1. The a priori estimate x̂t+1|t is computed
with a dynamical model of the plant that resembles Eq. (5.1.0.2a). In practical applica-
tions, the model embedded in the KF uses an approximation of the actual matrices that
govern the dynamic process, as they are seldom known beforehand. The approximated
matrices are indicated in Figure 5.1.0.1 with a bar, i.e, F̄d, Ḡd, H̄d, D̄d. The KF is
a robust algorithm for estimating system states whose evolution in time is corrupted
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by noise, unmodelled phenomena and/or uncertainties in system parameters. The algo-
rithm uses available measurements to correct a priori model-based predictions resulting
in a better estimate of the state evolution over time. Therefore the purpose of this work
is to construct a NN, which fits the hidden state evolution function of Eq. (5.1.0.2a)
that the Kalman Filter emulates in a sequence of predictions and updates, from the
knowledge of the matrices reported in Figure 5.1.0.1.

5.2 KSN usage

The sequence of state estimates obtained from a Kalman Filter working under nominal
conditions is used to train the KSN. The network is trained using as input the previous
posterior estimate x̂t|t together with the control input ut at the same time, and it gives
as output the posterior estimate x̂t+1|t+1 at the successive time. The training aims at
capturing the underlying dynamics of the system to improve prediction accuracy on
state vector concerning the physics model embedded with the KF. The training stage
of the neural predictor is shown in Figure 5.2.0.1 (a). It should be noted that the
knowledge of the ground truth system dynamics is not used to train the KSN as this
kind of information is supposed to be hidden and not available during in-field actual
tests. The only required condition to train the KSN is that the Kalman Filter algorithm
has converged and is properly working correcting physical predictions with the available
measurements.
The network is trained with the collected data in an end-to-end manner, considering each
time instant separately and shuffling the data in the mini-batches after every training
epoch to ensure that only information regarding time instant t is needed to infer the
state at time t+ 1. Furthermore, the loss function defined as:

L =
1

T

T∑
t=1

∥ x̃t − x̂t|t ∥2 (5.2.0.1)

being the MSE between network predictions x̃t and KF posterior observations, is mini-
mized on the training set (T = mini-batch size) and also computed on a validation set
(T = validation size) extracted from the training data to impose a stopping condition
for the training process thus avoiding over fitting. The trained network encapsulates
system dynamics as a black-box built over the best available physical understanding of
the actual system.

The Kalman Supervised Network can be designed with different architectures (RNN,
CNN, etc..) depending on the dynamics complexity and the state dimension and can
learn from different online observing algorithms (EKF, UKF, etc...) depending on both
system characteristics and the detail level of the available physical description. The
testing stage of the proposed algorithm is shown in Figure 5.2.0.1 (b). At time t̄ mea-
surements are hidden and the KF embedded physical model predictions are propagated
alongside KSN predictions.
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(a) (b)

Figure 5.2.0.1: (a) Block diagram representing the training stage of the Kalman Super-
vised Network (b) block diagram representing the proposed estimation scheme. Time t̄
marks the beginning of the measurement outage when predictions of KSN are propagated
alongside KF embedded physical model predictions. x̃t refers to the network prediction
at time t > t̄.

5.3 Numerical Results

The proposed KSN is applied to the well-known mass-spring-damper system. Firstly,
the ground-truth system is introduced. Then, a discrete-time Kalman Filter observer
is defined grounded on an approximate model. Moreover, a Neural Network for imple-
menting the Kalman Supervised Netowork is designed and trained on Kalman Filter
predictions for a sinusoidal input signal. Finally, the Neural Network has been tested
for a different input.

5.3.1 The mass-spring-damper system

Figure 5.3.1.1 shows the classical mass-spring-damper system, where m, k, and c repre-
sent, respectively, the mass, the stiffness and the damping coefficient.
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Figure 5.3.1.1: Mass-spring-damper system, where m is the mass of the system, k is the
elastic coefficient of the spring, c is the damping coefficient, h(t) is the input and x(t) is
the mass displacement

The dynamics of the system can be modeled by the following second-order Ordinary
Differential Equation (ODE):

mẍ+ c
(
ẋ− ḣ

)
+ k (x− h) = 0 (5.3.1.1)

Then, a state-space representation can be obtained by selecting the following state vari-
ables

x =

[
x− h
ẋ

]
(5.3.1.2)

with the input to the system given by u = ḣ. With reference to Eqs. (5.1.0.1), let us
assume that the acceleration measurements of the mass m are available, i.e. z = ẍ, then,
the following matrices are defined:

F =

 0 1

− k

m
− c

m

 , G =

−1

c

m


(5.3.1.3)

H =

[
− k

m
− c

m

]
, D =

c

m
.



96 Kalman Supervised Network

Clearly, the parameters of the model are unknown during field tests. Furthermore,
measurements are corrupted by both process and measurement noise. For this reason,
the process and measurement input matrices, respectively G and D, are modified as
follows

Gw =

−1 1 0 0

c

m
0 1 0


(5.3.1.4)

Dw =
[ c
m

0 0 1
]

and, consequently, the input is modified to account for three different additive Gaussian
noises:

uw =
[
ḣ w1 w2 wa

]T
(5.3.1.5)

where wi ∼ N
(
0, σ2i

)
for i = 1, 2, a, is the noise associated to the first state, second

state, and acceleration measurements, respectively.

The time evolution of the state used as ground truth reference for the tests is ob-
tained using the noiseless state-space model with G, D and u, while measurements are
extracted from the noisy state-space model with Gw, Dw and uw. The parameter
values selected for numerical simulations are listed in Table 5.3.1.1, while Table 5.3.1.2
contains the selected noises associated with process and measurements.

Table 5.3.1.1: True system parameters

Parameter Value Unit of Measurement

m 100 kg

k 10000 N/m

c 200 Ns/m

5.3.2 KF Implementation

Let us assume that the parameters in Table 5.3.1.1 are known with a confidence interval
of 5%. Moreover, we assume to have no information about noise covariance matrices.
Therefore, the approximated model embedded in the KF is built upon the matrices F̄d,
Ḡd, H̄d and D̄d that are constructed following Eq. (5.3.1.3) with the parameters affected
with a random percentage error up to 5%. Meanwhile, covariance matrices Q̄d and R̄d

contain twice the value of the variances in Table 5.3.1.2. Finally, the discrete time model
is achieved by means of the forward Euler integration method [108].



Kalman Supervised Network 97

Table 5.3.1.2: True noise variances

Parameter Value Unit of measure

σ21 0.1 (m)2

σ22 1 (m/s)2

σ2a 0.35 (m/s2)2

5.3.3 KSN Training

Figure 5.3.3.1: Kalman Supervised Network layout used for the considered mechanical
system

Two distinct networks are considered with a feed-forward structure to output sepa-
rately predictions on the two state variables. The training process, already introduced
in Sec. 5.2, is therefore carried out separately for each one of the two components of
the state x. We recall from Sec. 5.3.2 that training examples are obtained from the a
posteriori estimates of the Kalman Filter observer exploiting measurements. The two
networks present the same architecture with one sequence input layer followed by a
fully-connected hidden layer and a regression output layer. A feed-forward architecture
has been selected to characterize time independence of this system [1, 11]. A graphical
representation of the structure of the network is depicted in Fig. 5.3.3.1. The training
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set is extracted from the observations obtained by the linear Kalman filter when the
system is fed with a sinusoidal input of the form u = ḣ = 2π sin(2πt + π/2) for a time
interval of 5 seconds, corresponding to a constrained training displacement h = sin(2πt).
The training process is carried on with a mini-batch containing 2% of the available
training samples and stops considering the loss computed on a validation set with 15%
of the training data. For each training iteration the loss in Eq. (5.2.0.1) is minimized
inside the mini-batch, updating net parameters and after 50 iterations the validation
loss is computed in the validation set to check for the stopping condition. The training
stops when the validation loss remains larger or equal to the smallest one computed for
50 consecutive validation checks. For a sinusoidal input on a time interval of 5 s, the
training process takes around 25 seconds for each one of the two networks composing
the described KSN. The training process has been carried on an intel i-9 CPU under
MATLAB environment.

5.3.4 KSN Testing

The Neural Predictor is tested on the input signal expressed by Eq. (5.3.4.1):

ḣ(t) =
N∑
i=1

d

dt

[√
2Φi(ωi)∆ω sin (ωit− φi)

]
(5.3.4.1)

where ωi is the i-th angular frequency, Φi is the Power Spectral Density (PSD) computed
at ωi, ∆ω is the angular frequency step size and φi is the i-th phase angle belonging to
the random vector φ ∼ N

(
0, (2π)2

)
. For the testing stage we used a signal composed

of N = 10000 sinusoidal waves from ω1 = 2π to ωN = 200π. It is important to note that
testing is performed by predicting the system response when excited with a different
input than that used for the training stage. This is a more challenging task since we
evaluate the ability of the system to extrapolate on a previously unseen population that
is independent from the training dataset.

Figure 5.3.4.1 shows the testing results for the aforementioned input signal. It is
assumed that measurements are available for the first 3 s of the simulation (t < t̄, t̄ = 3
s) when the standard Kalman Filter (solid red line) correctly provides state estimates
matching the ground truth model (dashed black line). The good agreement between KF
observations and ground truth data underlines the KF correct working conditions. At
time t̄ = 3s, mass acceleration measurements are made unavailable to test the proposed
algorithm, and KF predictions are propagated in time to keep assessing system state
relying only on the embedded model. During the measurement outage stage, the KF
predictions are compared with those provided by the KSN (solid blue line). As seen from
Figure 5.3.4.1. In order to quantitatively evaluate the system performance, suitable
metrics are considered. Given the RMSEs that measure the discrepancy of a given
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observer with respect to ground truth data

RMSEN,i =

√
1

T

∑T
t=t̄ (x̃t,i − xt,i)

2

RMSEK,i =

√
1

T

∑T
t=t̄

(
x̂t|t−1,i − xt,i

)2
(5.3.4.2)

RMSEB,i =

√
1

T

∑T
t=t̄

(
x̂t|t,i − xt,i

)2
where RMSEN refers to the proposed KSN, RMSEK is obtained from x̂t|t−1 that rep-
resents the a priori physical-based prediction at time index t. Finally, RMSEB refers
to the benchmark error as obtained from a virtual KF that keeps receiving in input the
measurements. Index i = 1, 2 in Eq. (5.3.4.2) refers to the two state variables of the
system. Then, three evaluation metrics can be considered:

• ψN : the relative percentage variation in the RMSE between the state predictions
obtained from the KSN and the KF.

• ∆N : the absolute variation in the RMSE between RMSEN and RMSEB

• ∆K : the absolute variation in the RMSE between RMSEK and RMSEB.

The mathematical expression of the three evaluation metrics ψN , ∆N and ∆K is detailed
in Eq. (5.3.4.3). A negative value of ψN,i indicates that consecutive predictions of the
KSN are more accurate than consecutive KF predictions. Positive values are instead
expected for ∆K,i, because the output of a correctly working KF should be the closest
estimate available of the ground truth state evolution. Similarly, positive values are
expected for ∆N,i because the KSN is trained over KF posterior observations, so it will
not be able to return RMSE values smaller than those obtained with the observer from
which it learns.

ψN,i =
RMSEN,i − RMSEK,i

RMSEK,i
× 100

∆N,i = RMSEN,i − RMSEB,i (5.3.4.3)

∆K,i = RMSEK,i − RMSEB,i
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Figure 5.3.4.1: Testing results obtained by comparing state estimation as obtained from
the KSN and the standard KF during measurement outage starting at time t = 3 s

Comparison between the proposed prediction algorithm KSN and the standard KF
without measurement updates is shown in Figure 5.3.4.1, in terms of both evaluation
metrics and time history of the state evolution. The KSN clearly outperforms the KF
in predicting the system evolution over time. For the first state variable, the RMSEN is
reduced of 70%, whereas the improvement is of 64% for the second one. For both state
variables, it holds true the relationship 0 < ∆N,i < ∆K,i indicating that the KF observer
provides the best state estimates exploiting measurements, and that KSN predictions
are more accurate than KF ones when propagated over long-time periods. Although the
results have been obtained from the textbook use case of a mass-spring-damper system,
they are promising as well as more complex systems.
The RMSE reduction has been confirmed for a 12 s long sensor signal shortage, and
the KSN only required a 5 s long observation for a sinusoidal input and 50 s of training
process. The only condition needed for the KSN training is the reliability of KF obser-
vations that can be assessed in several ways. For the simulated case at hand, reliability
was ensured by the knowledge of the ground truth system dynamics. On real word
applications it can be inferred analysing the distribution of innovation vectors [114] or
other metrics such those discussed in [50].
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Considerations The presented algorithm has dealt with the problem of improving
long-term predictions for a dynamic system using Kalman Filter observations. Neural
networks are widely used to fit generic functions by learning relationships between inputs
and outputs directly from collected data. The KSN algorithm is based on the assump-
tion that the real dynamics of a generic system is inherently unknown and can only
be estimated through an observer that combines frequent measurements with the best
physical understanding of the phenomenon. Therefore the KSN is trained on reliable
observations to build an accurate predictor that learns from the information provided
by the measurements and captured system dynamics providing a transfer function more
accurate than the one implemented in the KF prediction block. The KSN algorithm has
been explained and tested on a mass-spring-damper system where it showed to be more
accurate than a standard KF for long-term predictions without measurements. In future
works the proposed method will be applied to more complex systems and validated with
in-field tests. In addition, recurrent network architectures and possible advantages of
transfer learning for these data driven models will be investigated.



102



Chapter 6

Recommendations for future work

This thesis presented evidence of the effectiveness of machine learning and deep learn-
ing in mechanical engineering, particularly in terrain classification. The comparison of
Convolutional Neural Networks and Recurrent Neural Networks to standard machine
learning techniques, such as Support Vector Machines, highlighted the advantage of
Deep Learning in modeling complex phenomena where traditional methods were insuf-
ficient. The proposed Multichannel Spectrograms led terrain classification accuracy of
over 90% using a CNN based on proprioceptive signals demonstrating the capability of
Deep Learning in overcoming both generalization and extrapolation problems. The use
of exteroceptive measures to predict wheel-terrain interactions and the examination of a
combination of proprioceptive and exteroceptive signals for crop monitoring reinforced
the benefits of Deep Learning in enhancing the performance of rovers and control sys-
tems. The novel Kalman Supervised Network algorithm, which continuously learns from
sensor measurements to produce a more accurate model of a mechanical system than the
one embedded in the Kalman Filter, further highlighted the potential of Deep Learning
in mechanical engineering.

Future work will focus on the usage of KSN for enhancing control strategies. Sup-
posing, for example to use a simple Proportional control for a given system described
by the state transition matrix A and the control matrix B, to reach the desired state xg
the applied control ut at time instant t would be

ut = K(xg − xt|t) (6.0.0.1)

where xt|t is the Kalman Filter state estimate at time t. The problem is that every
control strategy does not learn from measures corrections but simply adapts the control
based on how far away the system is from the goal xg. The computed control ut is
supposed to make the system pass to state xt+1|t as it is only tuned with knowledge
of matrixes A and B. What will actually happen is that provided ut the system will
transition to the posterior estimated state xt+1|t+1 and the subsequent control will be
based on that corrected estimate.

While this reasoning will eventually lead the system to the desired goal xg the se-
quence of state transitions will not be the one initially prescribed when the proportional
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control matrixK was designed. KSN instead has the main purpose of learning the system
dynamics from the Kalman Filter so it provides an accurate mathematical representa-
tion of the system learned from measures corrections. It is necessary here to underline
the concept that the Kalman Filter does not learn from the corrections that it makes
to physics predictions exploiting available measures, but instead it uses the measures
to correct the estimate at each instant t. KSN instead is specifically designed to learn
from the dynamic that KF represents in a loop of predictions and corrections, therefore
outputs a generic non-linear function f(x, u) that encapsulates the actual dynamic of
the system.

The intended future use of KSN is to compute the control ut that will take the system
to state xt+1|t that the designed control was supposed to achieve. For such scope, one
will need to solve the non-linear equation:

Axt|t +BK(xg − xt|t) = f(xt|t, ut) (6.0.0.2)

for the control ut. Considering that if the activation functions used in KSN are continu-
ous and differentiable, then also function f is continuous and differentiable, this enables
iterative methods for solving non-linear equations, such as Newton-Raphson, to solve
around BK(xg − xt|t) for the control ut. If KSN is correctly trained over a functioning
KF, this solution will take the system to the desired state following the desired path
avoiding systematic errors due to the fact that the control strategy does not learn from
measures corrections but only adapts to them.



Appendix A

Author’s Publications

The following articles have been produced with a significant contribution of the Author:

Ashwin Rajkumar, Fabio Vulpi, Satish Reddy Bethi, Hassam Khan Wazir, Preeti
Raghavan, and Vikram Kapila. Wearable inertial sensors for range of motion assessment.
IEEE sensors journal, 20(7):3777–3787, 2019

Ashwin Rajkumar, Fabio Vulpi, Satish Reddy Bethi, Preeti Raghavan, and Vikram
Kapila. Usability study of wearable inertial sensors for exergames (wise) for movement
assessment and exercise. Mhealth, 7, 2021

Satish Reddy Bethi, Ashwin RajKumar, Fabio Vulpi, Preeti Raghavan, and Vikram
Kapila. Wearable inertial sensors for exergames and rehabilitation. In 2020 42nd An-
nual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 4579–4582. IEEE, 2020

F Vulpi, A Milella, F Cordes, R Dominguez, and G Reina. Deep terrain estimation
for planetary rovers. In 15th International Symposium on Artificial Intelligence, Robotics
and Automation in Space, ISAIRAS-2020, 2020

Angelo Ugenti, Fabio Vulpi, Annalisa Milella, and Giulio Reina. Learning and pre-
diction of vehicle-terrain interaction from 3d vision. In Multimodal Sensing and Artificial
Intelligence: Technologies and Applications II, volume 11785, pages 167–173. SPIE, 2021

Antonio Petitti, Fabio Vulpi, Roberto Marani, and Annalisa Milella. A self-calibration
approach for multi-view RGB-D sensing. In Ettore Stella, editor, Multimodal Sensing
and Artificial Intelligence: Technologies and Applications II, volume 11785, pages 50 –
55. International Society for Optics and Photonics, SPIE, 2021

Fabio Vulpi, Annalisa Milella, Roberto Marani, and Giulio Reina. Recurrent and con-
volutional neural networks for deep terrain classification by autonomous robots. Journal
of Terramechanics, 96:119–131, 2021

Angelo Ugenti, Fabio Vulpi, Raúl Domı́nguez, Florian Cordes, Annalisa Milella, and
Giulio Reina. On the role of feature and signal selection for terrain learning in planetary
exploration robots. Journal of Field Robotics, 39(4):355–370, 2022

Fabio Vulpi, Roberto Marani, Antonio Petitti, Giulio Reina, and Annalisa Milella.
An rgb-d multi-view perspective for autonomous agricultural robots. Computers and
Electronics in Agriculture, 202:107419, 2022
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Fabio Vulpi, Antonio Leanza, Antonio Petitti, Annalisa Milella, and Giulio Reina.
Kalman supervised network for improved model predictions. In 2022 International Con-
ference on Electrical, Computer, Communications and Mechatronics Engineering (ICEC-
CME), pages 1–7. IEEE, 2022

Arianna Rana, Fabio Vulpi, Rocco Galati, Annalisa Milella, and Antonio Petitti. A
pose estimation algorithm for agricultural mobile robots using an rgb-d camera. In 2022
International Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME), pages 1–5, 2022
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