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Abstract

The primary purpose of this thesis is to present several pipelines for developing multimodal
Decision Support Systems that leverage omics and healthcare Big Data analytics, contributing
to the advancement in precision medicine field.

Healthcare Big Data are analyzed using Machine Learning and Deep Learning models
which are implemented in prototypal form, known as biomedical Decision Support Systems,
across different healthcare domains such as medical image analysis, bioinformatics, natural
language processing and survival analysis.

Deep Learning models play a crucial role in medical imaging and bioinformatics fields.
In the first one, Deep Learning models find application in extracting features from medical
images and making prediction about diseases status or genetic mutations. Within the bioin-
formatics field, Deep Learning plays a pivotal role in extracting actionable insights from
omics data clusters, facilitating a deeper understanding of biological systems (e.g., a patient).
Such kinds of data are heterogeneous and generated in a large number, during constants time
periods. Concerning survival analysis, Machine Learning and Deep Learning are widely
used for assessing and categorizing the severity of pathologies over time, aiding personalized
treatment strategies.

Notably, most of medical and clinical examinations are provided with free-text reports;
Machine Learning and Deep Learning can be exploited for extracting useful information
from them, in the context of natural language processing.

In such scenarios, this thesis objective is to develop and validate several pipelines for
heterogeneous healthcare Big Data analytics. Specifically, two sets of multimodal and
unimodal pipelines are presented. The former includes the multimodal pipelines that integrate
medical imaging data with omics to study Pancreatic Ductal Adenocarcinoma disease from
different perspectives. The latter includes pipelines for medical image classification, survival
analysis, and natural language processing in different use cases.

Technical contributions of this work include designing novel algorithms, improving exist-

ing workflows, designing multimodal algorithms for analyzing heterogeneous data coming



iv

from different sources and incorporating Explainable Artificial Intelligence algorithms for
interpreting the decision of investigation models.

In order to develop and validate the proposed pipelines, several heterogeneous case studies
have been examined, using either public or private datasets. Regarding the multimodal
pipelines, proposed applications focus on pancreatic cancer, including: (i) multi-omics
analysis (Radiomics, Genomics and clinical) for overall survival and recurrence prediction;
(i1) multimodal analyis based on pathomics and transcrittomics for gene mutation prediction.
In unimodal analysis pipelines, proposed applications include: (i) enhancing model selection
in survival analysis using time-dependent explainability algorithms for Obstructive Sleep
Apnea; (ii) Deep Learning approaches for medical image classification for IgA nephropathy;
(111) shape based breast lesion classification using digital tomosynthesis images; (iv) diagnosis

standardization from free-text reports.



Table of contents

List of figures

List of tables

List of Acronyms

1

Introduction

1.1

Motivations and Contributions of the Work . . . . . . . . . . . ... ...
1.2 ThesisOutline . . . . . . . . . . . . e

State Of The Art
2.1 Machine Learning . . . . . . . . . . . .. ...
2.1.1 Classification . . . . . . . . . . . . o o e

2.2

2.1.1.1  Logistic Regression . . . . ... .. ... .. ......
2.1.1.2  Tree-basedModels . . . . . ... ... ... ... ...,
2.1.1.3  Multilayer Perceptron Classifier . . . . . . .. ... ...
Survival Analysis . . . . . .. ... L
2.1.2.1 CoxRegression . . . ... ... ... ... .......
2.1.2.2  Survival Random Forest . . . . . . .. .. ... ... ..
2.1.2.3  Survival Gradient Boosting Model . . . .. ... .. ..
2.1.2.4  Survival Support Vector Machine . . . . . . . ... ...

Deep Learning . . . . . . . . . .. ...

22.1

222

Classification . . . . . . . . . . . . .. .
2.2.1.1  Convolutional Neural Networks . . . . . ... ... ...
2.2.1.2  Transformer and Vision Transformer . . ... ... ...
2.2.1.3  Multiple-Instance Learning . . . . . . ... ... ....
Survival Analysis . . . . . .. ... L
2221 DeepSurv . . ... ... .

ix

xi

XV



Table of contents vi
2.22.2  Nnet-Survival . . . ... ... Lo oo 25

2223 Cox-Time . ... .. ... ... ... ... ..., 25

2224 DeepHit . ... ... ... .. ... 26

223 Autoencoders . . . . ... 26

2.3 Explainable Artificial Intelligence . . . . ... ... ... ... .. .... 28
2.3.1 Shapley Additive Explanations . . . . . . ... ... ... ..... 28

232 SurvSHAP . . . . .. 30

233 LIME . . . . . 32

2.3.4 Mathematically Explained XAI . . . ... ... ... .. ..... 33

2.3.5 Class Activation Maps and Attention Maps . . . . . ... ... .. 34

2.4 Evaluation Metrics . . . . . . . ..o 36
24.1 Classification . . . . . .. ... Lo 36

242 Survival Analysis . . . . ... Lo 38

2.5 Machine Learning in Radiomics . . . . .. ... ... ... ... ..... 39
2.6 Deep Learning in Digital Pathology . . . . .. ... ... ... ...... 41
3 Multimodal Pipelines for Pancreatic Ductal Adenocarcinoma Analysis 45
3.1 Multimodal analysis from the multi-omic cohort of CPTAC-PDA . . . . . . 46
3.1.1 Contribution . . . . . .. ... 46

3.1.2 Datasets . . . . ... e 46

3.1.3 Proposed Approach . . . . . . . ... ... L oo 47

3.1.4 DataPreparation . . . .. ... .. ... ... ... .. ... 48

3.1.5 Feature Selection Through Survival Analysis . . . ... ... ... 52

3.1.6 OS and REC Prediction . .. ... ... ... ........... 53

317 Results . . . . oo 55
3.1.8 Time-Dependent Explainability . . . ... ... .......... 56

3.1.9 Discussion . ... ... 58

3.2 Pathomics and Transcriptomics for Genetic Mutation Prediction in PDAC . 61
32.1 Contribution . . . . ... ... 61

322 Datasets . . . . ... e 61

3.23 Proposed Approach . . . . . . . ... Lo Lo 62

324 DataPreparation . . . .. ... .. ... ... ... .. 65

325 Methods . . . . ... 68

326 Results . . .. .. L 68
3.2.6.1 Dimensionality Reduction of transcriptomic data . . . . . 68



Table of contents vii

3.2.6.2 Classification . . . . .. .. ... .. ... ..., 69

327 XAL . .o 74

32.8 Discussion . . . ... 76

3.3 Summaryof Findings . . . . . .. ... ... ... ... .. 79
4 Unimodal Big Data Analytics Pipelines 81
4.1 Enhancing Survival Analysis Model Selection Through XAI(t) in Healthcare 82
4.1.1 RelatedWorks . . . ... ... ... ... 83

4.1.2 Materialand Methods . . . . . . ... ..o 85

4.1.3 Experimental Pipeline . . . ... ... ... ..., ....... 91

414 Results . . . .. ... 92

4.1.5 Discussion . . . ... 94

4.2 A deep learning approach for Oxford Classification of glomeruli lesions . . 101
4.2.1 Materialsand Methods . . . . . . ... .. .. ... ... ... 103

4.2.2 Experimental Pipeline . . .. ... ... .. ... ......... 107

423 Results . . . ... . 112

424 DiscussiOn . . . . . ... e e 119

4.3 Shape-based Breast Lesions Classification using Digital Tomosynthesis Images120
4.3.1 Materialsand Methods . . . . . . ... ... oL 122

4.3.2 Experimental Pipeline . ... ... ... ... ...... .. ... 123

433 Results . .. ... . 125

434 XAllnterpretation . . . . . . . . . . . ... ... 128

435 Discussion . . ... 130

4.4 Supervised Diagnosis Standardization in Free-Text Reports . . . . . . . .. 135
44.1 Materialsand Methods . . . . . . ... ... oL 136

4.4.2 Experimental Pipeline . ... ... ... ... .. ... ..... 137

443 Results . .. .. ... 141

4.4.4 Alternative approach with transformer model . . . . .. ... . .. 143

4.4.5 PreliminaryResults . . . . .. ... ... ... ... ... ..., 147

44.6 Discussion . . . ... 147

4.5 Summaryof Findings . . . . . . . .. ... ... Lo oo 148
S Conclusions 151

My Publications 154



Table of contents viii

References 156



List of figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Taxonomy of the thesis work related to chapters 2,3,and 4. . . . . . . . .. 7
Binary classification problem with two classes linearly separable. . . . . . . 10
Visualization of a Decision Tree model for heart failure risk estimation. . . 11
Example of Artificial Neural Network fully connected. . . . . . . ... .. 13
Example of CNN architecture - VGG16 Architecture. . . . . . . . ... .. 17
Transformer Architecture. . . . . . . . ... ... L 20
Vision Transformer (ViT) Schema . . . . . ... ... ... ... ..... 21
CLAM Workflow. . . . . . . ... 24
Vanilla AE Architecture . . . . . . . . .. ..o L 27
Example of SHAP DecisionPlot. . . . . . .. ... ... ... .. ..... 29
Example of SHAP global explanation. . . . . ... ... .......... 30
Example of SurvSHAP explanation for CPH survival Model. . . . . . . .. 32
Example of Attention-Map for a classifier model in genetic mutation prediction. 35
Confusion Matrix for binary classification problem. . . . . . .. ... ... 36
Example of ROC curve and PR curve for binary classification problem. . . 38
Multimodal Processing Pipeline for OS and REC prediction in PDAC. . . . 48
Data preparation for mutational data and radiology images. . . . . . . . .. 51
Survival curves related to the feature selected. . . . . . . . ... ... ... 54

Model performance comparison among survival models, in terms of C-index. 56
Feature Importance for OS (A)and RECB). . . . . . ... ... ... ... 57

Overview of Multimodal Processing Pipeline for genetic mutations prediction. 64

Trascriptomic data pre-processing Pipeline. . . . . . .. .. ... ... .. 67
Volcano Plot of Transcriptomic Data for Differential Gene Expression. . . . 70
AUROC and AUPRC metrics for imaging and transcriptomic models. . . . 71

AUROC and AUPRC metrics for multimodal predictions. . . . . . . . . .. 73



List of figures X

3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15
4.16

4.17

4.18

4.19

4.20

4.21

4.22
4.23

4.24
4.25

Attention maps and SHAP decision plots for each considered target gene. . 75
SHAP beeswarm plots for each target gene. . . . . . . ... .. ... ... 76
Processing Pipeline followed. . . . . . . . . ... ... ... ........ 86
Correlation Matrix before and after filtering. . . . . . . .. ... ... ... 88
Experimental Pipeline. . . . . ... ... .. ... ... .. ... ... 91
Survival Machine Learning models metrics computed on test set. . . . . . . 93
Survival Deep Learning models metrics computed on testset . . . . . . . . 93

Time variant models comparison for Cox Proportional Hazard, Cox-Time

and Log Hazardmodels. . . . . .. .. ... ... ... ... ....... 94
Dataset level explanation for Cox Regression Model. . . . . . ... .. .. 95
Dataset level explanation for Log Hazard Model. . . . . . . ... ... .. 95
Time-dependent feature importance for Cox Regression model. . . . . . . . 97
Time-dependent feature importance for Log Hazard model. . . . . . . . .. 97
Survival curves for malignancy and dilated cardiomyopathy features. . . . . 100
Lesions distribution. . . . . . . . .. ..o 106
Sample images from the dataset used for classification. . . . . .. ... .. 106

End-to-end workflow for glomeruli segmentation and classification of M, E,
S, C lesions with the proposed MESCnn pipeline. . . . .. ... ... ... 111
Qualitative results of the glomeruli segmentation process. . . . . . . . . .. 112
ROC and PR curves on the test set for the best-performing models regarding
M, E, S, C lesions on glomerularlevel. . . . . . . ... ... ... ..... 113
Embedding plots for M, E, S, C lesions classification by best-performing
models. . . ... 118
The morphological division of the breast cancer shapes according to the

growthpattern . . . . . . . . ... 121
The ready to classify Rols on the images. . . . ... ... ... ...... 122
The overall flow diagram of the experiments. . . . . .. ... ... .... 124

T-sne and UMAP visualization of extracted features from DenseNet-161 and

SqueezeNet. . . . . . . . 129
Visualization of the Grad-CAM method with the eight different CNNs. . . . 131
Visualization of LIME superpixels positive and negative regions with the

eight different CNN architectures. . . . . . . ... ... ... .. ..... 132
ARGO 2.0 Architecture . . . . . . . ... 140
BERT Architecture . . . . . . . . . .. .. 146



List of tables

2.1

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15
4.16
4.17

Summary of related works on radiomics-based studies on pancreatic cancer. 41

GLCM radiomics features considered for analyses. . . . . ... ... ... 50
List of hyper-parameters adopted for each classifier. . . . . . ... ... .. 55
TCGA-PAAD and CPTAC-PDA Datasets Summary. . . . . . .. ... ... 62
MSE values achieved on validation set (TCGA data sub-set) and the test set

(CPTAC dataset). . . . . . . . . . i i e e e 69
Comparison of the proposed approach with related works. . . . . . .. .. 74
Related Works of XAl and XAI(t). . . . . . . . . . ... ... ... .... 85
Final dataset with related statistics. . . . . . . . .. .. ... ... ... .. 89
Survival models metrics computed ontestset. . . . . . .. ... ... ... 92
Cox proportional hazards matrix. . . . . . ... ... ... ... ...... 98
Summary of differences between CPH and LHmodel.. . . . . . . ... .. 100
Related works for the classification of MEST-C lesions. . . . . . . ... .. 102
Related works for glomerular segmentation. . . . . . . ... ... ... .. 103
Sample data distribution according to MESC labels. . . . . . ... ... .. 108
Classification results for M lesion on the testset. . . . . . . ... ... .. 114
Classification results for E lesion on the testset. . . . . . . . ... ... .. 115
Classification results for S lesion on the testset. . . . . . . ... ... ... 116
Classification results for C lesionon the testset. . . . . . . . . ... .. .. 117
Data augmentation summary. . . . . . . . . ... e e e 125

The summary of the results obtained for No Aug, Basic Aug, and Adv Aug

configurations. . . . . . . .. ..o 127
Percentual occurrence of most frequent biomarkers. . . . . . . . ... ... 138
Label distribution for external testset . . . . . ... ... ... ... ... 138

Performance achieved with ARGO Core . . . . . . . . . . ... ... ... 141



List of tables

xii

4.18 Performance achieved with ML Model
4.19 Performance achieved with ARGO 2.0
4.20 Bio-BERT metrics on test set. . . . .



List of Acronyms

Acronym / Definition

AE

Al

ANN

AP

ARGO

AUPRC

AUROC

BD

C-Index

C/D AUC

CLAM

CNN

CPH

CT

DAM

DBT

DEG

Autoencoder

Artificial Intelligence

Artificial Neural Network

Average Precision

Automatic Record Generator for Onco-Hematology
Area Under Precision-Recall Curve

Area Under ROC Curve

Big Data

Concordance Index

Cumulative-Dynamic Area Under Curve
Clustering-Constrained-Attention Multiple-Instance Learning
Convolutional Neural Network

Cox Proportional Hazard

Cox Time

Diagnosis Assignment Manager

Digital Breast Tomosynthesis

Differentially Expressed Genes



List of Acronyms

xiv

DH
DL
DLBCL
DNN
DP

DS
DSS
DT

FC
FCL
GBM
GLCM
HL
HR
IgAN
LH
LIME
LOOCV
MCL
MIL
ML
MR

MSE

Deep Hit

Deep Learning

Diffuse Large B-Cell

Deep Neural Network

Digital Pathology

Deep Surv

Decision Support System
Decision Tree

Fold Change

Follicular Lymphoma

Gradient Boosted Model

Gray Level Co-occurrence Matrix
Hodgkin’s Lymphoma

Hazard Ratio

IgA Nephropathy

Logistic Hazard

Local Interpretable Model-agnostic
Leave-One-Out Cross-Validation
Mantle Cell Lymphoma
Multiple Instance Learning
Machine Learning

Matching Rate

Mean-Squared-Error



List of Acronyms

NER

NLP

OS

OSA

PCH

PDA/PDAC

REC

RF

ROC

SA

SHAP

SML

SRF

SSVM

SVM

t-SNE

UMAP

ViT

WSI

XAI

XGB

Named Entity Recognition

Natural Language Processing

Overall Survival

Obstructive Sleep Apnea

Piecewise Constant Hazard

Pancreatic Ductal Adenocarcinoma
Recurrence

Random Forest

Receiver Operating Characteristic

Survival Analysis

Shapley Additive Explanations

Survival Machine Learning

Survival Random Forest

Survival Support Vector Machine

Support Vector Machine

t-distributed Stochastic Neighbor Embedding
Uniform Manifold Approximation and Projection
Vision Transformer

Whole Slide Image

Explainable Artificial Intelligence

Extreme Gradient Boost



Chapter 1
Introduction

In recent years, the term "Big Data" (BD) has rapidly gained popularity among IT researchers
and professionals. Although numerous definitions of BD exist, the one perhaps encapsulates
them all is offered by De Mauro et al. [1]: “Big Data refers to the information asset charac-
terized by such a High Volume, Velocity, and Variety that necessitates specific Technologies
and analytical methods to transform it into Value.”

The concepts involved in this definition pertain to: (i) the characteristics of the managed
information, "Volume", (ii) the demands for processing this information, "Velocity and
Variety", (ii1) its economic "Value," which is one of the key factors influencing the societal
impact of BD. Such a definition also highlights the necessity of employing specialized
technologies and methods specifically tailored for BD to address diverse analytical objectives.

Big Data analytics encompasses three primary branches: statistical analysis (both descrip-
tive and inferential), Machine Learning (ML), and Deep Learning (DL) techniques. The last
two have an essential role in BD analytics, as they offer a range of techniques for extracting
meaningful insights from vast amounts of data, making predictions, processing unstructured
data, and recognizing as well as detecting patterns and anomalies.

In medical domain, BD analytics contribute to improve healthcare systems by supporting
specialists in improving the diagnoses accuracy, predicting patient outcomes, optimizing
and enhancing patient care, providing personalizing treatment plans. Such set of innovative
approaches is defined with the term "Precision Medicine", formally defined by Konig et al.
[2] as a cyclical process in which patient data are used for developing clinical models and
every development loop leads to models improvement.

This can achieved by developing clinical Decision Support Systems (DSSs) and integrat-
ing them in clinical practice. The advance of technology achieved in the last years has led to

an exponential increase of available heterogeneous medical data, such as clinical data, free-



text clinical reports, Magnetic Resonance Imaging (RMI) data, Computed Tomography (CT)
data, multi-omics data, Electromyography (EMG) and Electrocardiography (ECG) signals,
and so on. In these contexts, DSSs empower clinical decision processes by integrating all
patient data, providing a personalized treatment according to the subject characteristics, and
assessing and monitoring the health status over time [3].

Artificial Intelligence (Al), particularly Machine Learning and Deep Learning, is highly
valued in the development of clinical Decision Support Systems (DSSs) [4, 5].

Radiomics analysis [6] involves the use of complex mathematical models for extracting
quantitative features from images, aiming at revealing information that is not directly visible
from a human perspective; these features can be mainly classified in first order features
(voxel intensities distribution), 2D and 3D region shape features, grey-level features and pixel
relationships. ML is then exploited to develop classification and survival analysis models for
diagnosis, treatment and prognosis [7-9].

In Computational Imaging [10], DL is well appreciated due to its capability in learning a
hierarchical features representation, spanning from low-level features (e.g. borders, angles,
colors, etc.) to high-level features (also called deep features) obtained by combining the lower-
level ones for representing of an entire entity; thus, deep features consist in a global abstract
representation of entities in images. The adoption of DL approaches deletes the necessity of
design handcrafted features, reduces the dependency from feature engineering and enhances
the models generalization on new data due to the higher level of abstraction. Similarly to
ML for radiomics, DL models find application in diagnosis, treatment and prognosis by deep
feature extraction, lesions classification, lesions and instances segmentation [11-15].

Omic sciences focus on the generation and analysis of genomic, pathomic, transcriptomic,
proteomic, and metabolomic data, which are essential for describing biological systems
from a global point of view, considering multiple characteristics simultaneously. From
a dimensionality standpoint, omics data are characterized by high dimensionality [16],
necessitating specific pre-processing steps to reduce and aggregate the data while preserving
their informational content. ML and DL offer solutions for dimensionality reduction, such
as feature selection algorithms [17-20] or low-dimensional encoding representations using
Autoencoders [21-23], as well as data integration and prediction algorithms, enabling the
development of multi-omics models [24-27].

Moreover, most clinical examinations are accompanied by free-text reports, that include
crucial information like patients data, type of clinical test, diagnosis, medical opinion,
potential marker predictors status and so on [28]. One of the issues in medical reports is

the lack of standardization in diagnosis term definitions. Named Entity Recognition (NER)



1.1 Motivations and Contributions of the Work 3

is a branch of NLP dealing with the extraction of key words from free texts and it can be
exploit for diagnosis standardization. Despite the rise of DL. models such as Transformers
[29], many existing systems still rely on traditional Natural Language Processing (NLP)
techniques, such as regular expressions, and the integration of simple ML models can help to

improve systems performance. [30-32].

1.1 Motivations and Contributions of the Work

Biomedical field indeed benefits from the advance in Al for the design and implementation
of clinical DSSs but, nevertheless, several challenges need to be addressed.

From a BD point of view, Al models rely on high data quality but the real-word data con-
tain missing values, outliers and noise that affect the performance of the model; additionally,
the integration of heterogeneous data is required for describing a biological system from a
global perspective [33]. Such issues can be faced by using BD analytics approaches [34], in
particular those based on ML and DL paradigms.

Notably, Al models are inherently complex and are often perceived as "black boxes" by
healthcare operators. This opacity can impact trustworthiness [35], as operators may view
such systems unfavorably due to the lack of transparency in the Al decision-making process.
In fact, Shortliffe et al. [36] state that a clinical DSS should not work as black-box and the
operators need to be aware of the underlying process. Here, Explainable Artificial Intelligence
(XAI) algorithms come in help, aiming at making Al-based models more transparent and
interpretable for users [37].

The aforementioned scenarios raise several opportunities and challenges for Al in biomed-
ical field, this thesis partially addresses by pursuing three main objectives: (i) design, develop
and implement Al-based pipelines for the processing of healthcare big data, integrating
and analyzing heterogeneous data for improving decision-making process in healthcare; ii
show the flexibility of the methods adopted across different case studies; (ii) advance the
state-of-art of ML or DL methods in the examined domain.

More specifically, this work focus on developing multimodal and unimodal analytics
pipelines in medical imaging, omic sciences and NLP.

The developed multimodal pipelines focus on Pancreatic Adenocarcinoma, with the

following tasks:

* Overall Survival (OS) and Recurrence (REC) prediction in Pancreatic Ductal
Adenocarcinoma cohort (CPTAC) using Radiomics, clinical and genomics data.
This study, presented in "A Time-Dependent Explainable Radiomic Analysis from
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the Multi-Omic Cohort of CPTAC-Pancreatic Ductal Adenocarcinoma" [27], aims to
develop a time-dependent, explainable survival model for patients with pancreatic duc-
tal adenocarcinoma (PDAC). The model integrates radiomic, clinical, and mutational
features to predict OS and REC. Four survival machine learning (SML) classifiers are
designed, trained, and validated using data from the CPTAC, which includes annotated
CT images, clinical information, and mutational profiles. The study also employs
SurvSHAP(t) to explore the decision-making mechanisms of the survival algorithms,
providing insights into the most significant contributing features and their impact on

survival probabilities over time.

* Genetic mutations prediction in PDAC using histopathological images and trascrip-
tomic data with Deep Learning approaches. The research work "A Multimodal
Framework for Assessing the Link Between Pathomics, Transcriptomics, and Pancre-
atic Cancer Mutation" [38] focuses on designing an explainable multimodal pipeline
to predict genetic mutations in PDAC using transcriptomic and pathomic data. The
target genes include the most commonly mutated ones in PDAC: KRAS, TP53, SMAD4,
and CDKNZ2A [39]. Two configurations of the CLAM model and three feature ex-
tractors are applied for image analysis. For transcriptomic data (RNA-seq), a panel
of 60,660 transcripts is pre-processed through two approaches: (i) Differentially Ex-
pressed Genes analysis and (i1) an unsupervised deep learning approach using three
autoencoder architectures (small, medium, large). The processed transcript panels are
then input into three machine learning models, i.e. Random Forest, XGBoost, and
Multilayer Perceptron for gene mutation classification (wild-type vs. mutated). A
fusion layer combines the outputs of the unimodal models (pathomic and transcrip-
tomic) to produce a multimodal prediction. For each gene, the study compares the
performance of the combined models against their unimodal counterparts in terms of
AUROC and AUPRC. Explainability is achieved through attention maps and SHAP
analysis, providing insights into the most influential features from both pathomic and

transcriptomic models.
Concerning the unimodal pipelines, proposed applications cover:

* Enhancing Survival Model Selection Using Time-Dependent XAI in Obstructive
Sleep Apnea. The work "Enhancing Survival Analysis Model Selection through XAI(t)
in Healthcare" [40] focuses on improving the selection of ML and DL models for
survival analysis through time-dependent explainable Al. An end-to-end pipeline is

developed to estimate OS in patients with obstructive sleep apnea using various ML
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and DL survival models. Model evaluation is conducted using metrics such as the
C-Index, time-dependent AUC , and the Brier Score. The survSHAP algorithm is
applied to the best-performing models, demonstrating how explainability can aid in
distinguishing between models with similar performances, ultimately supporting more

informed model selection.

* Glomeruli detection and lesions classification using a supervised Deep Learning
approach in histopathology. The study "Performance and Limitations of a Supervised
Deep Learning Approach for the Histopathological Oxford Classification of Glomeruli
with IgA Nephropathy" [41] presents a pipeline for glomeruli detection and lesions
classification in histopathology. The approach consists of two main components: (1)
segmentation block: Whole-slide images are divided into tiles, followed by glomeruli
segmentation using object detection models; (ii) classification block: Convolutional
Neural Networks classify the segmented glomeruli. The classification results are
reported at both the glomerular and biopsy levels. To assess performance, intraclass
correlation coefficients (ICCs) and Cohen’s Kappa statistics are used to evaluate

agreement between the model’s predictions and expert pathologist annotations.

* Shape-Based Breast Lesion Classification Using Digital Tomosynthesis Images.
The work entitled "Shape-Based Breast Lesion Classification Using Digital Tomosyn-
thesis Images: The Role of Explainable Artificial Intelligence" [42] presents a math-
ematically and visually interpretable deep learning framework for multiclass, shape-
based classification of breast lesion images. Eight pretrained CNN architectures are
employed to classify previously extracted regions of interest containing lesions. To
address the black-box nature of deep learning models, two XAl techniques, Grad-CAM
and LIME, are used for visual interpretability. Additionally, t-SNE and UMAP are ap-
plied as mathematical interpretability methods to analyze multiclass feature clustering

and the behavior of the pretrained models.

* Diagnosis standardiziation and Named Entity Recognition in hematological free-
text report using hybrid NLP and ML approach. The work "ARGO 2.0: A Hybrid
NLP/ML Framework for Diagnosis Standardization" [43] introduces an enhanced
version of the Automatic Record Generator for Onco-Hematology (ARGO). This
framework extracts key fields from oncological free-text reports and standardizes
diagnoses based on definitions from the National Institute of Health, aligned with
the International Classification of Diseases, 10th Edition (ICD-10) and Oncology

(ICD-0O) [44]. The enhancement incorporates a machine learning model to support
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the existing architecture, along with a decision heuristic for classifying extracted
diagnoses. Preliminary results using a transformer-based architecture, replacing the
previous system, are presented for the diagnosis Named Entity Recognition (NER)
task.

Notably, most of the methods and models employed in the unimodal pipelines were
re-employed in the development of the two multimodal ones, showing their flexibility w.r.t.
the case studies. Nevertheless, the multimodal pipelines are presented first in Chapter 3,
since they are the main focus of this work. The methodologies employed, as well as the

various case studies, are thoroughly examined in the following chapters.

1.2 Thesis Outline

The thesis is structured as follows: Chapter 2 provides a comprehensive overview of Machine
Learning and Deep Learning methodologies and models employed, defining all key topics for
each pipeline developed. Chapter 3 outlines the contributions of two multimodal pipelines in
pancreatic cancer studies. Chapter 4 includes the development of time-dependent Explainable
Artificial Intelligence algorithms that enhance model selection in survival analysis and the
application of deep learning techniques to improve diagnostic accuracy in medical image
analysis and diagnosis standardization in medical free-text reports. The taxonomy related
to the aforementioned chapters in depicted in Figure 1.1. Finally, Chapter 5 synthesizes the
key results achieved in this thesis, highlighting their contribution to advancing healthcare

analytics and presents potential future works.
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Chapter 2

State Of The Art

This chapter provides a comprehensive overview about the State-of-the-Art methodologies
adopted in this thesis. Section 2.1 gives an overview of Al tasks and introduces classical
Machine Learning models. In Section 2.2, Deep Learning models are presented with related

applications. Finally, Section 2.3 illustrates the state-of-the-art related to XAl algorithms.

2.1 Machine Learning

Machine Learning [45] is a branch of Artificial Intelligence aiming at building computational
models able to learn patterns from data and making predictions. ML techniques can be

classified into three main branches, according to the kind of analysis performed:

* Supervised Learning. It consists in developing models capable of mapping input
observations to corresponding learned outputs; in this scenario, models training is

performed according to a labeled dataset given as input.
* Unsupervised Learning. It produces models able to find patterns in unlabeled data.

* Reinforcement Learning: produces models interacting with the environment to
accomplish a specific task; the model training is performed according to a rewards-

penalties rules.

Furthermore, there are also other sub-types of learning algorithms such as weakly-
supervised learning, semi-supervised learning, self-supervised learning, active learning,
transfer learning and multi-task learning [46, 47].

Supervised learning algorithms primarily address three main tasks: Regression, Classifi-

cation, and Survival Analysis (SA).
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All three tasks involve estimating the relationship between a dependent variable, often
referred to as the target variable, and a set of independent variables (features). The distinction
between such type of algorithms lies in the nature of the target variable: regression focuses
on predicting numerical targets, classification concerns the prediction of categorical variables,
and survival analysis aims to estimate the time until a specific event occurs, along with the
associated probability.

The next paragraphs focus on Classification and SA models.

2.1.1 Classification
2.1.1.1 Logistic Regression

Logistic Regression is an algorithm developed for estimating the probability that a sample
belongs to a specific class. In case of binary classification, the estimated probability concerns
the likelihood that a sample belongs to one of the two classes, typically represented as class
0 (negative) or class 1 (positive). The relation between dependent variable and the feature set

is modeled through a hypothesis function ig(X), in particular a logistic function defined as:

N 1
Y =he(X)=T—5rx

2.1
where:

1. X indicates the feature set.

2. Y is the output of the model (the probability estimated)

3. O is the model parameters vectors that will be learned during the training phase.

The hypothesis function represents a sigmoid and lies between |0, 1[; the choice of such
a function is justified by its probabilistic interpretation. A probability threshold is set to
define the binary class according to the model output. The probability estimated for a specific

sample i (assumed that belongs to the positive class, 1) is defined as:
p(y(i) = 1|x(i);®) = h@(x(i)) (2.2)

while for class O is is:
p() = 0jx);0) = 1 - he(x)) (2.3)
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The classification aims at maximize the Likelihood, meaning the probability to obtain a

certain output y, giving x features with ® parameters. The Likelihood is formally defined as:
L(®) = p(Y|X;0) H p(y (2.4)

If the Likelihood is combined definition with 2.2 and 2.3 and transformed to a logarithmic

form, given m samples, it can be written as:
=10 T (ho )" (1 = o(a)) ")
i=1
=Y. (+710g (ho(x) ) + (1 =y log (1 - ho(x")) )

i=1

(2.5)

In such a scenario, the model training is led by the minimization of a cost function

retrieved by the previous equation:
1 . .
=—= Z og(he (x!) + (1—y")log(1 - he(x")) (2.6)
m .=

called Cross Entropy (CE) function.
From a geometrical perspective, binary classification problem with logistic regression
consists in find the best decision boundary that separates two classes (defined as the product

between ® parameters and X features).

A

Class A Sample
Decision

Class B Sample Boundary

>

Fig. 2.1 Binary classification problem with two classes linearly separable.
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2.1.1.2 Tree-based Models

A tree model is a type of decision model based on tree-graph structure; it is composed by
a root node, with arches and leaf nodes. The key-idea is to exploit the tree structure for
splitting data by several decision rules defined according to features characteristics. The main
tree-based models are Decision Tree (DT), Random Forest (RF) and Boosted Tree (BT).

Decision Tree. It is the simplest model, composed by a roof node, containing the full dataset,
decision nodes (also called intermediate nodes), containing a subset of data previously
split by a decision rule (e.g. color types, sex, shape and so on) and leaf nodes where the
decision is made. The goal of splitting is to improve the homogeneity of the resulting
sub-groups, i.e. the data within each child node should be more similar to each other

than the parent node. The number of decision nodes determines the depth of the model.

There are several split criteria that can be adopted but the most common are the Gini
Index and the Information Gain [48]. Figure 2.2 represents an example of DT for heart

failure risk estimation.

Low Risk Smoker

<60 >60 Yes No

Low Risk High Risk High Risk Low Risk

Fig. 2.2 Visualization of a Decision Tree model for heart failure risk estimation.

On one hand the main benefit of DTs is their high interpretability, due to the visualiza-
tion of the decision model, along with splitting rules; on the other hand, they suffer of

overfitting problems, leading to misclassifications on new datasets.

Random Forest. As the name suggests, a RF is a set of DTs trained using the Bagging
ensemble method. The Bagging is type of model training technique, in which several
models are trained on a sub-set of data and a sub-set of features (bootstrap). The

models are trained independently and paralleling and the prediction is made by the
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majority voting of all sub-models. In this way it is possible to reduce overfitting, while

decrease variance and improving the accuracy.

Boosted Models. They are models trained with Boosting ensamble: several models (called
weak learners) are trained sequentially and each model try to correct the errors of the
previous models by fine tuning its weights according to the classification error of the

previous model. There are two main type of boosting:

* Adaptive Boosting - Also called AdaBoost, each weak learner is trained se-
quentially, and after each iteration, the weights of misclassified data points are
increased. The final prediction is a weighted vote of all weak learners, where the

weight of each learner depends on its accuracy.

* Gradient Boosting - Aims at minimizing the errors of the previous model by
training the next model to predict the difference between the model output and
the ground truth (residual).

The models trained with boosting can be DTs or other types.

2.1.1.3 Multilayer Perceptron Classifier

The Multilayer Perceptron Classifier (MLP), also called a Feedforward Neural Network, is a
type of Artificial Neural Network (ANN), structured into layers as follows:

* Input Layer: The first layer, which receives the input data.
* QOutput Layer: The final layer, which provides the prediction.

* Hidden Layers: The set of layers between the Input Layer and the Output Layer.

Each layer contains one or more nodes (neurons), depending on the type of network,
and each node is connected to at least one neuron in the subsequent layer. If all neurons in
one layer are connected to all neurons in the next layer, the network is referred to as fully
connected. Additionally, each neuron has an Activation Function, that help the network learn
complex patterns; common functions include: ReLU (Rectified Linear Unit), Sigmoid, Tanh
and Softmax (usually in the output layer for multi-class classification).

Each connection between neurons is associated with a specific parameter ®, learned
during the training process, called weight; in particular, the computation of ® parameters
is made using the Forward and Backward Propagation algorithm [49]. Finally, each layer
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~ he(®)

Input Layer Hidden Layers Output Layer

Fig. 2.3 Example of Artificial Neural Network fully connected.

(except for the Input and Output layers) includes a Bias Unit, which serves as an additional

neuron to improve the network’s learning ability.
Where:

* ay,ay,aq are Bias units.

. ) , 0® , et , O are the vectors of parameters associated to the connections from
the neurons of one layer to the ones of the next one; these are initialized randomically

at the first iteration.
* q;, is the generic neuron.
* X;, 1s the input data.

* he(x) is the hypothesis function of the output layer.

The cost function for classification task is an extension of Cross-entropy (eq. 2.6):

)= [i Y. (54108 (ne(x)x ) + (1 =y og (1 —h@<x<">>k))]
- (2.7)
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Where:

* m is the number of samples.
* K is the number of classes of target variable.

* L is the number of layers.

2.1.2 Survival Analysis
2.1.2.1 Cox Regression

The Cox Regression model, also known as the Cox Proportional Hazards (CPH) model,
is a specialized multiple regression technique used to examine the relationship between a
predictor (often a risk factor) and the likelihood of a specific outcome, while adjusting for
one or more confounding factors. It is a proportional hazards model, meaning that covariates
have a multiplicative effect on the hazard rate, which remains constant over time for a given
factor.

Such a model can be divided into two parts: the underlying baseline hazard function,
often denoted as Hy(¢), that describes how the risk of event per time unit changes over time at
baseline levels of covariates, and the effect parameters, that describes how the hazard varies
in response to explanatory covariates. Let X; = (Xj1,...,Xj,) the p covariates for subject i.
The hazard function of a CPH model is:

H(t | Xi) = Ho(t) PX+PXin) = po (1) Xeh) (2.8)

where f3 are the effect parameters. Therefore, the Cox model returns the regression coeffi-
cients for each co-variate. These coefficients 8 indicate the risk that the event occurs and
they are called Hazard Ratio (HR).

2.1.2.2 Survival Random Forest

Survival Random Forests (SRF) were introduced in [50] to extend RF to the setting of
right-censored survival data. The implementation of SRF follows the same general principles
as RF: survival trees are grown by using bootstrapped data, then a random feature selection
is used when splitting tree nodes. Trees are generally grown deeply, and the survival forest
ensemble is calculated by averaging terminal node statistics.

Let & be a terminal node of a forest tree and N be the instances that, in the process of

building the tree, fall into it. Every instance is represented by X; that is the vector of the
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features and its survival information, involving the time event 7; , and related status &; ).
Thus for the node & there are T; , = to, . . . , £y time events and J; , = 0, 1 status.

For every instant of time ¢;, in the tree node £, it is possible to define the number of
events d;, and the number of the number of individuals at risk ¥; ;. Then Cumulative Hazard
Function (CHF) estimated for leaf / is defined as:

jn

CHF;, :f’\lh(l‘) = Z Yis
Js

tjn<t

(2.9)

The SRF prediction of the tree for subject i, denoted by H (7 | X;), coincides with the CHF
estimate of the leaf end node:
H(r | X;) = Hy(t) (2.10)

The final Hazard function is mediated on all trees:

H(t | X) =

ZH;,t|X (2.11)

Ntree Riree

2.1.2.3 Survival Gradient Boosting Model

Following the idea of boosted models, according to the loss function employed for a Gradient
Boosted Model (GBM) it is possible to adapt such a model according to a specific use case,
even for survival analysis.

The general problem in GBM models is to learn a functional mapping ®, in the form
y = F(X;B) from data {Xj,y;}!' ; where B is the set of parameters of F, such that the

following cost function:
n

(CF - Z yl7 XlaB (212)

is minimized. F(x) follows an “additive” expansion form and incorporates all the base
learners with a weight p and a parameter set 7. The function is dependent on the family of
the model chosen When GBM is used in survival analysis (Survival GBM - SGBM), ®(y, F')
and F(X) can be adapted to the Cox model as made by Ridgeway [51].

2.1.2.4 Survival Support Vector Machine

Support Vector Machines (SVMs) found a widespread application in standard classification
problem, due to their promising performance and linear training times. They are able to

account for complex, non-linear relationships between features and the target variable through
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the so-called kernel trick: a kernel function implicitly maps the input features in a high-
dimensional feature spaces, to a lower dimensional space where the target can be represented
by a hyperplane. This makes SVMs highly versatile and applicable to a wide range of data.
The Survival SVM (SSVM) aims at dealing with survival problems, by approaching them in

two main different ways [52]:

* A ranking problem - the model learns to assign samples with shorter survival times
a lower rank by considering all possible pairs of samples in the training data. This
approach is based on the idea of support vector regression (SVR), which aims at finding
a function estimating observed survival times as continuous outcome values y; by using

covariates X;.

* A regression problem - the model learns to directly predict the (log) survival time, con-
sidering the survival problem a classification problem with an ordinal target variable;

one of the widespread ranking formulation is the Van Belle [53].

2.2 Deep Learning

Deep Learning [49] is a branch of Machine Learning, referring to complex ANN-based
models, called Deep Neural Networks (DNNs), built and employed for hierarchical feature
extraction and raw data processing; the complexity of DL models lies in the elevate number
of layers and parameters. This section focuses on DL models for images classification, SA

and Dimensionality Reduction with Autoencoders.

2.2.1 Classification
2.2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a popular type of DNNs optimized for processing
matrix data. They are widely used in computer vision tasks like image classification, object
detection, and segmentation, but they can also be applied to other types of data, such as
signals and time series.

Differently from classical ANNs, such models are characterized by convolutional layers,
Pooling layers, Activation Functions, and Fully Connected layers. For computer vision tasks,
the input is an image represented by a 3D matrix, representing the image height, width, and

its three color channels - RGB.
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The convolutional layers apply a series of filters (called kernels) that slide over the input
matrix (according to preset stride and padding parameters) to detect features like edges,
textures, or more complex patterns. Each filter is learned during training, and the result of
applying the filters is a set of feature maps.

After, the activation functions are applied to the output of convolutional layer to introduce
non-linarity in model (often a ReLLu). Then the data are processed by pooling layers, for
reducing spatial dimensions of the feature maps while retaining important information. The
most common form is max pooling, where the maximum value from a set of values in a
feature map is selected but alternatively it is also possible to use an average pooling. Lastly,
the output of the final pooling layer is flattened ad processed by several fully connected layers
to combine the learned features for making prediction.

Figure 2.4 shows an example of CNN architecture, in particular VGG-16 [54].

convi

conv2

conv3
conv4

conv5
fcé fc7 fc8
T 1x1x4096 1x1x1000

14x14x512

28 x 28 x 512 7x7x512

56 x 56 x 256

convolutional + ReLU

112x 112 128 (—f) maxpooling
o |
v

fully connected + ReLU

softmax

224 x 224 x 64

Fig. 2.4 Example of CNN architecture - VGG16 Architecture.

However, training a CNN from scratch is an expensive task, especially the convolutional
layers. The key approach lies in transfer learning, consisting in the use of models with
pre-trained parameters, freezing the convolutional layers (used for feature extraction) and
training only the fully convolutional ones according to the task involved.

This approach is especially useful in medical scenarios where data availability is a
challenge, and it is enabled by the fact that the feature extraction layers of a CNN cap-
ture important structural information from the images. Typically, CNN models trained on

ImageNet [55] are leveraged for this purpose.
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Based on the network architecture, there are several models that might be employed for

different tasks. The ones used in this thesis are the following:

* MobileNetV2 [56], is a compact CNN architecture known for its efficiency. The
model starts with a low-dimensional input that is expanded into a high-dimensional
representation. The high-dimensional data is then processed through a lightweight
depth-wise convolution layer and, subsequently, the features are projected back into a
low-dimensional space using a linear convolution operation. This process leverages an

inverted residual structure with a linear bottleneck block.

* SqueezeNet [57], is a model or system designed for tasks with limited computational
resources. Although this characteristic may result in reduced accuracy, which is
less ideal for medical tasks, it can act as a safeguard against overfitting when data

availability is limited.

* DenseNet [58], differently from the other CNNs, this model uniquely incorporates the
feature maps from all preceding layers into each subsequent layer using the concatena-

tion operation.

* ResNet [59], introduces the concept of skip connections. In this approach, the input
of a convolutional layer block is combined with its output. This allows the model to
learn a residual function, expressed as f(x) = h(x) — x, which is easier to model than
the original function £(x). This innovation not only accelerates the training process

but also enables the development of deeper models.

* EfficientNetV2 [60], builds upon the MobileNetV?2 architecture. It employs a uniform
scaling approach for all network dimensions using a compound coefficient. Com-
pared to its previous version, EfficientNet, this one significantly enhances training
speed and parameter efficiency by reducing memory access and the total number of
parameters. EfficientNetV2 offers three variants, each differing in the number of
parameters: EfficientNetV2-S (22.10 million parameters), EfficientNetV2-M (55.30
million parameters), and EfficientNetV2-L (119.36 million parameters).

* VGG [54] comes in two famous versions with 16 and 19 layers comprising 144 million
parameters. This study considers the earlier i.e. VGG-16, which consists of several
number of channels, 3x3 receptive fields, and a stride of 1. This model is composed of

convolutions layers, max pooling layers, fully connected layers with 5 blocks and each
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block with a max pooling layer, and extra convolutional layers contained in last three
blocks.

* ResNeXt [61] is counterpart of ResNet, is a specifically designed image classification
network with very few tuneable parameters. It contains a series of blocks with a set of
aggregations of similar topology with an additional dimension called cardinality. This
cardinality, which creates major difference between its brother networks, competes
with the depth and width of network. The simpler architecture based on VGG and
ResNet with fewer parameters yields better accuracy on ImageNet classification dataset.
The word NeXt in the name of the network refers to next dimension which surpasses
ResNet-101, ResNet-152, ResNet-200, Inception-v3, and ResNet-v2 on the ImageNet
dataset in accuracy.

2.2.1.2 Transformer and Vision Transformer

The transformer architecture, proposed by Vaswani et al. [62], is a DL model designed
for NLP tasks, including an Encoder-Decoder architecture and exploiting the so-called
self-attention mechanism.

The encoder takes the input sequence and transforms it in a new internal representation
while the decoder takes the input encoding and returns an output. The self-attention it is used
to weights parts of the input according to the context of the entire sequence.

The encoder can be composed by stacking multiple blocks, each one composed by the
self-attention block and a feed-forward net. In particular, the input sequence is transformed
into a numerical vector with an embedding operation and, using a positional encoding
operation, the order of the original tokens in the sequence is saved along the numerical vector.
The innovative part concern the self-attention, described by the following equation:
Attention(Q,K,V) = Softmax(Q*—T

Vi

Where dj, represents the dimensionality of the key vectors, while O, K, and V are called

)V (2.13)

respectively queries, keys, and values. They are different representation of the tokens: Q is
used for comparing the tokens among themselves (what are we looking for), K is used by a
token for focusing on the other tokens (how a token can be relevant) and V represents the
information used for computing the output. The dot product between Q and K is computed to
determinate the importance (weight) of a token with respect to the others. Then the attention
is computed according to Equation 2.13. The key-idea lies in the possibility of each input

token to "pay attention" to the other ones in the sequence. Once obtained the token weights,
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for each token it is possible to obtain a new token representation by computing the weighted
sum of values. Such an operation is performed several times, processing several parts of the
input sequence with a Multi-head attention.

The new representation is given as input to the feed-forward net, introducing the non-
linearity. The decoder works in a similar way, using a masked self attention and an encoder-
decoder attention, looking the tokens generated by the encoder and using them for generating
the next tokens. At the end of the model, the token is transformed with a linear function and
the softmax is applied to the result. The transformer architecture is portrayed in Figure 2.5.
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Fig. 2.5 Transformer architecture introduced by Vaswani et al. [62].

Vision Transformers (ViTs) are a class models that have gained significant traction in
the field of computer vision. These models adapt the transformer architecture for image
processing tasks [63].

Differently from traditional transformers, in ViT the input is an image, divided in sequence
of patches. Each patch is flattened and processed using an embedding matrix with a positional
encoding (for retaining the positional information of the patch) and given as input to the

transformer. Another difference lies in the token of class - CLS, added to the begin of
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the sequence and used for aggregating the information learned from patches through the
attention.

The development of ViTs represents a shift in a field traditionally dominated by CNN:gs,
due to their promising performance comparable to CNNs, absence of convolution, kernel
independence, and global attention (the model focuses on all patches of all images); on the
other hand, transformers are computationally expensive and require large dataset for being
trained effectively.

The ViT Architecture schema is depicted in Figure 2.6.
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Fig. 2.6 Vision Transformer (ViT) Schema

One of the key strength of traditional transformers and ViT is the use of the attention
scores for explainability purposes (Section 2.3).

In this thesis, two ViT-based foundation models are employed as feature extractor, UNI
and CONCH.

UNI Presented by Chen et al. [64], UNI is ad hoc vision-based foundation model for
histopathology, trained over 100 millions of images derived from hundred of thousands
WSIs, coming from Brigham and Women’s Hospital and Massachusetts General Hospi-

tal; the use of private datasets reduces the risk of data contamination in benchmarking.
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It is based on ViT Large architecture, leveraging DINOv2 (DIstillation of knowledge
with NO labels) for pre-training [65]. Specifically, the distillation process consists in
two networks, called teacher and student, in which the teacher networks is a large,
complex model that has been trained on a task and achieved high performance and
the latter is a smaller simple model, trained to mimic the output of the teacher. The
student network is trained with output probabilities of the teacher, instead of hard
labels; this allows the student model to learn how the teacher generalized the input data.
This is achieved by weighting the student loss function with the output probabilities
of the teacher, minimizing the cross-entropy between the student’s predictions and
the teacher’s soft targets. DINO is self-supervised learning framework designed by
Facebook Al Research, designed for learning image representations without needing
labeled data; this is achieved through contrastive learning, where the model learns
by comparing different augmented views of the same image and ensuring that their

representations are similar, while representations of different images are distinct.

CONCH Released by Lu et al [66], CONCH is a multimodal ViT-based vision-language
foundation model specifically designed for histopathology, trained on over 1.17 million
image-caption pairs. It uses an image-text encoder-decoder model trained with Con-
trastive Captioning (CoCa) loss, which helps align the representations of images and
their corresponding captions. This enables the model to perform well on cross-modality
tasks, where it needs to retrieve images based on text or generate captions based on
images. For computer vision tasks it is possible to extract and use only the image

encoder.

2.2.1.3 Multiple-Instance Learning

In last years, Multiple Instance Learning (MIL) [67] approaches gained attention across
pathomic field, especially for Whole-Slide-Images (WSIs) classification. Traditional ap-
proaches consist in patch-based methods [41]: the WSI is first divided into smaller sub-
images (patches) and each patch is analyzed and classified as independent instance; the WSI
classification is derived from the classification of the individual instance.

This approach requires an expensive manual labeling of all instances present in the WSI by
experts. Another approach consists in analyzed the entire WSI by down-sampling; however
this approach may cause an information loss that heavily affects model’s performance.

In MIL-based classification paradigm, the input WSI is treated as a bag of instances,

where only the label of the bag is known; this is a form of weakly-supervised learning.
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Differently from patch-based approaches, instead of classifying the single patch, the model
learns to classify the entire WSI by treating it as a bag of instances, aiming at finding a
relationship between the single instances and the global WSI label.

This allows the model to identify the most critical regions in the WSI that contribute most
to the final classification. The identification of the most important patches is often accom-
plished with the support of attention-based mechanism, for weighting patches importance, as
made by CLAM.

Clustering-constrained Attention Multiple Instance Learning - CLAM Introduced by Lu
et al. [68] CLAM is a multi-class, weakly-supervised, and attention-based model for
WSIs classification. Specifically, it identifies the WSI regions of high diagnostic value
and exploits an instance-level clustering approach over such regions for constraining
and refining the feature space. During the training and inference, for a specific class,
the models analyzes and ranks all patches of the tissue regions, assigning an attention

score about their importance at slide-level representation.

At slide-level, there is an attention-based pooling layer, which produce a slide represen-
tation as the average of all patches in the WSI, weighted by their attention. Moreover,
CLAM has several parallel attention branches for calculating different unique WSI
representation, for each class. The choice of use a trainable attention-based pooling
layer instead of max pooling (or other classical aggregation operation) is justified by
the fact that, in the latter, when only the WSI-level label is known the gradient signal
for updating network parameters comes from a single instance, causing an inefficient

use of the others WSI instances during the training.

Due to the presence of multiple attention branches, the model produces several sets of
attention scores specific for each class; this allows the model to unambiguously learn for
each class which morphological features should be considered as positive and negative.
Moreover, for improving the learning of class-specific features, a binary clustering
layer is placed after the first fully connected layer, which use the slide-level attention
score coming from the previous layer to further divide the patches according to their
contribution for the specific class. These clustering constraints encourages the model
to group similar patches and focus on informative clusters. The final classification for
the entire slide is derived by pooling the attention-weighted patch-level features and
predicting the WSI’s label. Another key strength of CLAM is its interpretability; in
fact the Attention-Maps can be retrieved by projecting the attention scores on the input

WSI, without any additional algorithm. This transparency makes CLAM particularly
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valuable in clinical settings, where understanding the rationale behind predictions is

essential.

A simplification of CLAM workflow is depicted in Figure 2.7
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Fig. 2.7 CLAM Workflow.

2.2.2 Survival Analysis

In survival analysis, DL techniques have been increasingly utilized for modeling complex
relationships between covariates and survival outcomes. The models included in this thesis

are described in the following sections.

2.2.2.1 DeepSurv

Deep Surv (DS) [69] is a deep feed-forward neural network based on CPHs for modeling
interactions between a patient’s covariates and an event. The network propagates the inputs
through several hidden which layers which consist of fully connected nonlinear activation
functions followed by dropout. The final layer is a single node performing a linear combi-
nation of the hidden features, thus returning the output of the network that is taken as the

predicted log-risk function.



2.2 Deep Learning 25

Differently from CPH, the risk function in the Cox equation in 2.8 is replaced by the
output from neural network W, g - X;, where 8 is the weight for the last hidden layer and # is

the weight for other hidden layers of the neural network.

2.2.2.2 Nnet-Survival

Nnet-Survival [70] is a fully parametric survival model that discretizes survival time, so
that the follow-up time is divided in n intervals. In these cases the survival estimates are
a step function with steps at the grid points. This method was proposed to improve two
main aspects of the neural network model that are adapted from Cox model: computational
speed and the violation of the proportional hazard assumption. Here, hazard is defined as
the conditional probability of surviving time interval j given the event is not yet verified at
the beginning of interval j. There are various approaches for mapping input data to hazard
probabilities [71, 72].

Log Hazard. The flexible version of Nnet-Survival is called Logistic Hazard[72] (LH). In
this case the output layer has n neurons, where #n is the number of time intervals, since
the final hidden layer is densely connected to the output layer with a sigmoid activation
function, in which log odds are converted to the conditional probability of surviving
this interval. Every output neuron represents the survival probability at the specific

time interval given that an individual is alive at the beginning of the time interval.

PC Hazard. Piecewise Constant Hazard (PCH) [72] has the same concept of Nnet-Survival
but is a continuous-time model, meaning that it assumes that the continuous-time
hazard function is constant in predefined intervals. It is similar to the Piecewise
Exponential Models [72] but with a softplus activation instead of the exponential

function.

2.2.2.3 Cox-Time

Cox-Time (CT) [73] is a deep neural network based on the Cox Model but relaxes the
proportionally assumption. This is a parametric model that does not need to apply a stratified
version of the Cox model. This becomes possible because the time is treated by model as a

regular covariate and not as an output feature.
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2.2.2.4 Deep Hit

Deep Hit (DH) [74] is a deep neural network that aims at learning directly the distribution of
survival times. DH is a discrete-times model and makes no assumptions about the underlying
stochastic process, thus allowing for a relation between covariates and risk that changes
over time. The architecture of DH consists of a single shared sub-network and a family of
cause-specific sub-networks. The network is trained by using a loss function that exploits
both survival times and relative risks with the aim of learning P, i.e. the estimate of the joint
distribution of the first hitting time and competing events. As the network is constructed, each
sub-net takes input via a residual connection from both the event-associated covariate vector
and a latent representation produced by the shared sub-network. This gives the sub-networks
access to the learned representation while still allowing them to learn non-common part of the
representation as well. The output of the softmax layer i.e. the output layer, is a probability
distribution y = [y1 1, Y1 tyaes - - -1 YK, 1> - - s YK ) g1VEN @ patient with covariates X, an
output element yy, is the probability that the patient will experience the event k at time
t.. This innovative architecture drives the network to learn potentially non-linear and even

non-proportional relationships between covariates and risks.

2.2.3 Autoencoders

Autoencoders (AEs) [75] are a class of ANNs used in the context of unsupervised learning,
aiming to produce a compressed representation of input data for dimensionality reduction,

data compression or feature extraction. Such models are made up of two main components:

* Encoder: It takes the input data and compress it into a lower-dimensional space
representation, called latent space; this process aims to capture the most important

information and compress them, while discharging the less useful ones.

* Decoder: It takes the latent representation and tries to reconstruct the input as closely

as possible.

The latent space is the the most important part of the network, in which the compressed
information is stored in a smaller in size w.r.t. the original input. For such a reason, it is also

called bottleneck). An example of AE architecture is depicted in Figure 2.8.
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Fig. 2.8 Vanilla AE Architecture

The training process is the same of a typical ANN, aiming to minimize the difference
between input data and the respective reconstruction by computing the loss function as
Mean-Squared-Error (MSE) or binary CE, according to the nature of input data. According

to the net architecture and the application, it is possible to distinguish several type of AE:

e Vanilla Autoencoder. It consists of one encoder and one decoder, where both are

typically fully connected layers.

* Convolutional Autoencoder. For image data where spatial hierarchies are important,

this type of AEs use convolutional layers to better capture spatial features.

* Denoising Autoencoder. The input data is intentionally corrupted (e.g., by adding
noise), and the autoencoder is trained to reconstruct the uncorrupted original data, by

filter out noise and focus on the essential features.

* Sparse Autoencoder. A regularization term is added to the loss function to enforce

sparsity in the latent representation, leading to more efficient feature extraction.

* Variational Autoencoder. It adds a probabilistic aspect to the latent space, i.e. instead
of learning a fixed compressed representation, VAEs learn to encode the input as a
probability distribution. This is especially useful in data generation tasks, as the VAE

to generate new data by sampling from the learned distribution.
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2.3 Explainable Artificial Intelligence

Al models, especially DL ones, are often seen as black-box model as understanding the logic
behind a model’s decision making process is a challenging task; moreover, they also require
a compromise among performance and interpretability, introducing issues in Al models
trustworthiness [76].

To tackle these problems, a set of techniques called Explainable Artificial Intelligence,
have been proposed for make Al models more transparent. XAl techniques may be catego-

rized based on several criteria:
Interpretability Level
* Global methods offer an overall understanding of the relationships that a model
learns from data, providing an explanation about the entire behavior of the model.
* Local methods provide insights into why the model made a specific decision for
a specific instance (or a set of instance).

Approach to the explanation

* Post-Hoc explanations are generated after the model training phase, trying to
understand the decision making process by examining the decisions made by the

model.
* Intrinsic explanations, i.e. the explanations are easily retrievable from the model,
as this last one has been designed to be understandable (e.g., Decision Trees).
Agnosticism
* Model-based methods are tailored to a specific type of model and cannot be
applied to other types of models.

* Model-Agnostic methods treat the model as a black-box and try to provide an

explanation regardless the underlying model architecture.

2.3.1 Shapley Additive Explanations

SHapley Additive exPlanations (SHAP), introduced by Lundberg et al.[77], is an explanation
method derived from the Shapley values of the cooperative game theory [78] that quantify

the contribution of the single player to the overall result generated by the entire set of players.
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Lundberg et al. adapts such a concept to ML, by considering each data feature as a
cooperative player that contributes to the prediction of the target variable.

The Shapley values are computed according to the following equation:

SV =[S = 1)!
N!

o)=Y

SCN\{i}

(f(SU{i}) = £(S)) (2.14)

Where N is the total number of players, f : 2V — R a characteristic function, with
f(@) = 0. Given a set of players P, f(P) represents the total payoff expected from the
coalition P. The Shapley value quantifies the contribution of i-th player calculating the
difference of the values of f with a set including the i-th player and a set excluding the i-th
player. Furthermore, it is possible to retrieve the feature importance for a set of data by
averaging the SHAP values of the single samples.

Notably, SHAP can be classified as post hoc, model-agnostic, and local XAI method.
Figures 2.10 2.9 show the visual explanation returned by SHAP for gene (KRAS) mutation
prediction with trascriptomic data. Figure2.10 shows the global explanation for a set of
patients related to the features importance in genetic mutation prediction, while Figure 2.9
shows the SHAP decision plot for a single patient, highlight the contribution of the features

to the outcome.
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Fig. 2.9 Example of SHAP Decision Plot for a single subject. The feature importance is
indicated according to the bar magnitude, while the color indicates the type of contribution
(positive-red, negative-blue) to the prediction outcome.
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Fig. 2.10 Example of SHAP global explanation for a set of data, related to the impact of
trascriptomic features on a classifier model in genetic mutation prediction. The features are
sorted according to their importance, while the color indicates the feature value of a specific
sample. The feature importance for classification is directly proportional to the distance of
points from the origin.

2.3.2 SurvSHAP

SurvSHAP [79] generalizes SHAP to survival models, giving an explanation about the overall
behavior of the model over time.

It captures variable contributions across the entire time period under study, allowing
the detection of variables with time-dependent effects. Its aggregation method enhances
the determination of each variable’s importance for a prediction, offering a more effective
approach compared to other methods. Given the data D = {(Xj,y;,#;)} and assuming that
D contains m unique time instants ¢,, > t,,_1 > --- > t1, with y; as the event and ¢; as the
time point of interest. Therefore, each sample will be represented by covariates n, a status
v, and an instant of time . For each individual described by a variable vector X, the model
returns the individual’s survival distribution S(¢,X). For the observation of interest X, at any
selected time point ¢, the algorithm assigns an importance value ¢ (X, c) to the value of each

variable X(¢) included in the model with ¢ € {1,2,...,n} where n is the variable number. To
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calculate every value of SurvSHAP function, it is necessary to define the expected value for

the survival function conditioned by the values of the features:
e x. = E[8(1, X)X = X¢] (2.15)

defining P(c,m) as the precedence subset of ¢ in a permutation 7, i.e. & (c,7) ={x € X|

x precedes ¢ in 7} ,the contribution of the variable ¢ to the model is calculated as:

O (Xoyc) = = ¥ e PN ol (2.16)

nwell

IHI

where IT is a set of all permutations of n variables, and the apexes indicate which
variable contributes to the estimation of survival function. The first term of 2.16 refers to the
contribution of the model with the preset up to the variable c (c included), while the second
brings only the contribution of the subset without the variable c. In this way, it is possible to
obtain the contribution of each single variable to the prediction. For an easier comparison
among different models and time points, this value can be normalized to obtain values on a

common scale from -1 to 1, so that the contribution becomes:

(Pl (X*= C)

2.17
710X, 10

¢t* (X*7 C) =

To calculate global variable importance, the time-dependent contributions are aggregated,

achieving the following Average Aggregate SurvSHAP value:

Im
W(X,c) = /0 107 (X...0)| 2.18)

Notably, the average aggregate SurvSHAP value corresponds to the average aggregated
SHAP value. An example of a SurvSHAP plot is depicted in Figure 2.11.
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Fig. 2.11 Example of SurvSHAP explanation for CPH Model: on the left the features
importance ranking according to the average of absolute shapley values. On the right the
feature importance according to the observation time.

23.3 LIME

Local Interpretable Model-agnostic Explanations (LIME) is a well-known explanation tech-
nique based on model-agnostic phenomena, that can be applied to any DL model. Specifi-
cally:

* Local: states that LIME explains the behaviour of the model by approximating its
local behaviour;

* Interpretable: emphasizes on the ability of the LIME to provide an output useful to

understand the behaviour of the model from a human point of view;

* Model-Agnostic: means that LIME is not dependent on the model used; all models

are treated as a black-box.

For imaging classification tasks, LIME takes the superpixels (a patch of pixels) of the
original input image after generating a linear model, and generates several samples by
exploiting the superpixels. The quick-shift algorithm is responsible for the computation of
superpixels of an image. Thereafter, the perturbation images are generated and the final
prediction is made.
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Afterwards, a heatmap appears over the image that highlights the important pixels, i.e.
regions that contribute in classification. The positively contributing features are highlighted in
green while the negatively contributing superpixels are colored in red. The LIME also allows
to pick a threshold value to select the number of top contributing pixels, either positively or

negatively.

2.3.4 Mathematically Explained XAI

Mathematical interpretability techiniques, such as t-SNE and UMAP, aims to represent
high-dimensional data in a lower-dimensional space while preserving the clustering structure.

Although both t-SNE and UMAP are primarily used for visualization, they differ in how
they interpret distances between clusters. t-SNE preserves only the local structure of the
data, whereas UMAP can maintain both local and global structures. This means that, unlike

UMAP, t-SNE does not allow for interpreting dissimilarities and distances between clusters.

t-distributed Stochastic Neighbor Embedding. t-SNE [80] is a variation of the SNE tech-
nique that enables the visualization of high-dimensional data by mapping each data
point to a location in a lower-dimensional space (typically two or three dimensions). It

was developed to address two key issues in the SNE technique:

1. Optimization of the cost function, achieved by using a symmetrized version of
the SNE cost function and employing a Student-t distribution to calculate the

similarity between data points in the lower-dimensional space.

2. The "crowding problem," mitigated by using a heavy-tailed distribution in the

low-dimensional space.

Uniform Manifold Approximation and Projection. UMAP [81] is a nonlinear technique

for dimensionality reduction based on three main assumptions:

1. The data is uniformly distributed across an existing manifold.
2. The topological structure of the manifold should be preserved.

3. The manifold is locally connected.

The UMAP method consists of two primary phases: learning a manifold structure in
a high-dimensional space and representing it in a lower-dimensional space. In the
first phase, the nearest neighbors of each data point are identified using the Nearest-

Neighbor-Descent algorithm.
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Next, UMAP constructs a graph by connecting these identified neighbors. Since the
data is uniformly distributed across the manifold, the spacing between data points
varies based on regions of higher or lower density. This assumption allows for the
introduction of edge weights: for each point, the distance to its nearest neighbors is
calculated. The edge weights between data points are then computed, although there

may be issues with conflicting edges.

2.3.5 Class Activation Maps and Attention Maps

For imaging data it is possible visualize the regions of the image in which the model
focused the most for prediction, according to the type of classification model. This can be
achieved by the use of post-hoc, model-based XAl method such as Gradient-weighted Class
Activation Mapping (Grad-CAM) [82] for CNNss, that uses model’s gradients to produce a
class activation map highlighting the regions of an input image that are most influential in
the model’s decision-making process for a particular class.

Concerning attention-based model like transformers, it is possible to use the projection
of the attention weights on the input image for visualizing the distribution of the attention
over the input image. Differently from saliency maps (like Grad-CAM maps) that highlight
the importance of specific image pixels/region w.r.t. the prediction, the attention maps focus
on the entire input, showing how different parts affect each other.

Figure 2.12 illustrates a histological WSI along the respective attention map retrieved by
a classifier model, highlighting the most influent regions for a classifier in genetic mutation
prediction task.
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Fig. 2.12 Example of Attention-Map for CLAM model in genetic mutation prediction. The
most influent regions that contribute positively to the outcome are highlighted in red.
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2.4 Evaluation Metrics

A crucial aspect of model training and validation consists in the assessment of a model
performance according to the task involved. This is accomplished using several metrics

depending on the type of problem, like classification and survival analysis.

2.4.1 Classification

A standard method for evaluating the performance of a classifier is given by the confusion

matrix, depicted in Figure 2.13.
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Fig. 2.13 Confusion Matrix for binary classification problem.

As shown in Figure 2.13, the confusion matrix is composed by True Positive (TP) and
True Negative (TN) as the number of samples correctly predicted for the positive and negative
class, respectively, and by False Positive (FP) as the number of samples incorrectly predicted
as positive class when the actual class was negative, and by False Negative (FN) as the
number of samples incorrectly predicted as negative class when the actual class was positive.

Starting from such values it is possible to calculate several performance index:

* Accuracy: it measures the proportion of correct predictions out of the total predictions.

Accuracy = TP+ TN (2.19)
YT TPYTN+FP1FN ‘

* Precision: it measures the proportion of true positive predictions out of all predicted

positives.

TP
Precision = ———— (2.20)
TP+ FP
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* Recall: it measures the proportion of actual positives that are correctly predicted; It is

also known as Sensitivity or True Positive Rate (TPR)

TP
Recall = —— (2.21)
TP+FN

* F1-Score: It is the harmonic mean of precision and recall, providing a score that

balances both metrics.

Precision x Recall
Fl-score = 2 x ——ooton X Recd (2.22)
Precision + Recall

* Specificity: It indicates the proportions of actual negatives that are correctly predicted;

it is known also as True Negative Rate (TNR)

Specificity = TNT——]kVFP (2.23)

As stated in Section 2.1.1, the predicted value of a classification model is a probability
score and, setting a threshold, it is possible to decided whether belongs to a class or not.
Setting several thresholds it is possible to obtain several models, with different classification
results. Based on this assumption, it is possible to plot the Receiver Operating Characteristic
(ROC) curve, representing the proportion between the Recall (TPR) and the False Positive
Rate (FPR), computes as:

FPR = _FP (2.24)
FP+TN

the ROC curves compares the Recall with the FPR, by varying different probability
thresholds. The ideal ROC curve has a TPR = 1 and F PR = 0. The model performance is
retrieved by computing the Area Under Curve (ROC-AUC).

Notably, the ROC curve suffers from data unbalancing problem leading to biased perfor-
mance metrics. For mitigating such a problem, the Precision-Recall (PR) curve with related
PR-AUC should be computed, along with ROC curve. Both curves are depicted in Figure
2.14



2.4 Evaluation Metrics

38

Receiver Operating Characteristic (ROC) Precision-Recall Curve

1.0

7 0.8

0.6

Precision

0.4 1

True Positive Rate (TPR)

0.2

0.0

’
e —— ROCAUC = 0.92

0.2 4

—— PRAUC = 0.94

0.0

0.4 0.6 0.8

False Positive Rate (FPR)

0.2

0.0

0.0 0.2

0.4 0.6 0.8

Recall

1.0

Fig. 2.14 Example of ROC curve and PR curve for binary classification problem, on the left
ROC curve with related AUC, on the right PR curve with related AUC.

2.4.2 Survival Analysis

For SA tasks the models can be evaluated in terms of three different performance metrics:

* Harrell’s C-index [83] — Also known as the Concordance Index, it assesses the propor-

tion of all observation pairs for which the model’s predicted survival order corresponds
to the actual survival order in the data. A higher C-Index (ideally 1) reflects better
concordance between the model’s predictions and the ground truth, whereas a C-Index

of 0.5 indicates a random prediction. The formula for the C-index is as follows:

Ncp

1=
Ncp+ Npp

(2.25)

where N¢p is the number of concordant pairs and Npp is the number of discordant

pairs.

Integrated Cumulative-Dynamic Area Under the Curve (C/D AUC) [84] — This metric
evaluates the area under the ROC curve at various points throughout the observation
period. The C/D AUC is calculated by integrating the AUC over time:

1 (T
C/D AUC = 7/ ROC-AUC(¢),dt (2.26)
0
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* Brier Score [85] — This score measures the difference between the model’s predictions
and the actual outcome. A lower Brier score indicates better model accuracy, while a

higher score suggests performance decline. The Brier score is given by:

. 1 ¥
Brier Score = N i;(pi — y,~)2 (2.27)

where p;is the predicted probability of the event for observation i-th ant, y; is the actual
outcome (0 or 1); a value of 0.5 reflects random predictions. Notably, the Brier-Score
is similar to the MSE, as they both measures the squared difference between ground

truth and predicted value:
1Y .
MSE = Y i—¥:)? (2.28)
i=1

2.5 Machine Learning in Radiomics

Radiomics is a quantitative approach applied to medical images (such as CT, MRI, or PET
scans), aimed at extracting quantitative data from images by using sophisticated and non-
intuitive mathematical analyses. The radiomic approach is based on the assumption that
lesions possess phenotypic traits, often imperceptible to the human eye, but rich in valuable
information that allows for the characterization of various lesions [86].

According to the type of the information content, radiomic features can be classified in the
following categories: intensity-based, morphological, and textural features. Intensity-based
features, also referred to as first-order features, describe the distribution of pixel/voxel inten-
sity values within the Region-Of-Interest (ROI) or Volume-Of-Interest (VOI) by analyzing
the intensity histogram. Morphological features capture the geometric attributes of the region,
taking into account spatial relationships between pixels or voxels. Textural features, which
are second-order statistics, provide insights into the spatial arrangement of intensity values.
These textural features are computed using various data structures, often based on Gray-
Level Matrices, such as Gray-Level Co-occurrence Matrix (GLCM) [87], Gray-Level Size
Zone Matrix (GLSZM) [88, 89], Gray-Level Length Matrix (GLRLM) [90], the Gray-Level
Neighboring Gray Tone Difference Matrix (NGTDM) [91], and the Gray-Level Dependence
Matrix (GLDM) [92].

Noteworthy, radiomic analysis can produce a high dimensional feature vector, which
includes potential redundant information. Additionally, the number of extracted features can

exceed the sample size, which may reduce the study’s statistical power and generalizability



2.5 Machine Learning in Radiomics 40

(curse of dimensionality). Thus, employing feature selection algorithms or dimensionality
reduction techniques is recommended to create an informative, reproducible, and non-
redundant feature vector [93], also known as radiomc signature.

After radiomics feature extraction and dimensionality reduction [94], the radiomic sig-
nature is given as input to ML models for tumor lesions analysis. This process showed
promising results in lesions classification [95, 96] and Overall Survival (OS) and Recurrence
(REC) prediction [97].

Radiomics in Pancreatic Cancer Studies Radiomics-based approaches proved to be ef-
fective in characterization and analysis of several cancer types, such as lung [98],

breast [99], gastric [100], and pacreatic cancers.

Focusing on the last one, a radiomics-based signature has been proposed to differ-
entiate between PDAC and pancreatic adenosquamous carcinoma (PASC) with high
accuracy [101]. Qiu et al. [102], exploits radiomics approaches have for discriminating
PDA histological subtypes, obtaining 0.77 of Accuracy and a ROC AUC of 0.79. In
the context of prognostic analyses for PDA, radiomics has proven to be an effective
tool for predicting lymph node metastasis, which in many studies is considered an
independent risk factor for overall survival (OS) due to its high prevalence [103]. Parr
and colleagues developed a prognostic model based on seven first- and second-order ra-
diomic features extracted from wavelet-transformed images. Their study demonstrated
that a model combining clinical and radiomic predictors outperformed a purely clinical
model in predicting disease recurrence, achieving a concordance index (C-index) of
0.78 compared to 0.66 for the clinical model [97]. Similarly, Xie et al. integrated a
radiomic score into a clinical nomogram to predict both disease-free survival (DFS)
and OS. For their test set, the radiomic nomogram achieved C-indexes of 0.70 and 0.73
for DFS and OS, respectively, outperforming the tumor, nodal, and metastatic (TNM)

staging system, which is the established clinical prognosticator [104].

Additionally, Khalvati and colleagues identified Sum Entropy and Cluster Tendency as
the most robust radiomic features in predicting OS, with HR of 1.56 (p = 0.005) and
1.35 (p = 0.022), respectively, for their test set [105]. Despite the potential for radiomic
features to correlate with clinical and biological patterns, the clinical translation of
radiomics-based pipelines remains limited. Finally, Keyl et al. [106] utilized SHAP
in a multimodal survival prediction model for advanced pancreatic cancer. While the
authors incorporated three radiomic features into their analysis, they did not evaluate

their impact over time. Consequently, one of the primary limitations of existing
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radiomics studies is the absence of a framework capable of explaining the contribution
of these radiomic prognosticators when they are integrated into survival models with

censored data.

Table 2.1 Summary of related works on radiomics-based studies on pancreatic cancer.

Study Objective Results
Qiu et al.| Discrimination of PDA his-| 0.77 of Accuracy and a ROC
[102] tological subtypes using ra- | AUC of 0.79.

diomics aprroaches

Ren et al
[101]

Radiomics signatore for dif-
ferentiation between PDA and
PASC

0.94 of Accuracy, 0.98 of Sensi-
tivity, 0.90 of Specificity .

Lietal. [103]

Prediction of lymph node

metastasis in PDA

ROC AUC of 0.912.

Parr et al [97]

Prognostic multimodal model
for PDA recurrence (REC)

C-Index of 0.78 .

Xieetal. [104]

Prediction of DFS and OS in
PDA

C-index of 0.70 and 0.73 for DFS
and OS.

Khalvati et al.
[105]

Identification of robust ra-
diomic features for predicting
oS

Sum Entropy and Cluster Ten-
dency were identified as robust

radiomic features for predicting

OS, with HR of 1.56 (p = 0.005)
and 1.35 (p = 0.022), respec-
tively.

2.6 Deep Learning in Digital Pathology

Digital Pathology refers to the process of digitizing pathology slides, typically derived from
biopsies or tissue sections, for diagnostic and research use. High-resolution scanners are used
to convert histological slides into digital images WSI, which can then be analyzed using DL
approaches. Pathomics is an extension of DP that focuses on the extraction of quantitative
features, known as pathomic features, from digital tissue images. Such features can be
derived from various aspects of the WSI, such as morphology, texture, cellular structures,

and the spatial organization of cells within the sample. Under this aspect, DL models for
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WSIs processing such as CNNs and ViTs play a pivotal role in the realization of biomedical
DSS [107].
Notably, WSIs are characterized by:

* Resolution: They capture tissue at very high resolutions, which means they offer
detailed views at cellular levels. These images can be zoomed in and out, enabling fine-

grained analysis, but their large size presents challenges for computational processing.

» Size: They are extremely large files, ranging from gigabytes to tens of gigabytes

depending on the size of the tissue and the magnification level.

* Format: They are usually stored in specialized formats (e.g., SVS, NDPI, TIFF) that
allow for pyramidal representations, enabling efficient navigation through different

levels of magnification.

In light of this, classification tasks of WSIs is challenging due to their large size and

complexity. Such a task may be accomplished in two ways:

1. Dividing it in two sub-tasks, a segmentation and classification task. The former can be
accomplished by a segmentation model for object detection and instance segmentation
within the WSI, while the latter by a classification model for the instances extracted.

Then the WSI-level score is computed according the single instance classification.

2. Approaching it as a MIL problem, by treating the WSI as bag of instances, aiming at
finding a relationship between the single instances and the global WSI label.

Deep Learning for Genetic Mutations Prediction in Pancreatic Cancer Pancreatic can-
cer is associated with genetic mutations that affect both tumor suppressor genes, such
as TP53, SMAD4, and CDKN2A, and oncogenes, such as KRAS [108—111]. Mutations
in these genes are present in more than 50% of the cancer cases, and have earned the

name of "four mountains" [39, 112].

KRAS mutations are remarkably prevalent in pancreatic tumors, occurring in 90-95%
of pancreatic adenocarcinomas, making KRAS the most commonly mutated gene in
this form of cancer [113]. Oncogenic KRAS mutations are critical in the initiation
and progression of PDAC by promoting the generation of reactive oxygen species
(ROS) through metabolic alterations. The elevated ROS levels activate key signaling
pathways that drive PDAC development [114].
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SMAD4 functions as a key mediator in the Transforming Growth Factor Beta (TGF-
B) signaling pathway, regulating essential cellular processes such as cell growth,
differentiation, apoptosis, and migration [115]. In the context of tumorigenesis, SMAD4
plays a vital role in triggering cell-cycle arrest and apoptosis, which are essential

mechanisms for regulating cell proliferation and removing damaged cells [115].

TP53 mutations, appearing in a range from 50% to 90% of PDAC cases, have a strong
impact on carcinogenesis, prognosis and response to treatment [111]. The TP53 gene,
situated on chromosome 17, serves as a tumor suppressor by managing cell division.

Hence, mutations affecting this gene result in uncontrolled cell division [111].

CDKN2A mutations are highly significant in pancreatic tumors, with somatic mu-
tations found in up to 95% of cases and a genetic predisposition seen in familial
instances. There is a clear link to an increased risk of pancreatic cancer, and families
with CDKN2A germline mutations may show signs of a pancreatic cancer-melanoma

syndrome [116].

In last years, the task of predicting genetic mutations from histopathology images
gained significant attention due to advancements in Deep Learning (DL) and Computa-
tional Pathology. Such approaches aim at extracting genetic information without the

need for genetic sequencing.

By leveraging CNN and multimodal learning approaches, researchers have made
progress in integrating image features with genomic data. On one side, histopathology
images can be used for complex tasks such as predicting genetic alterations of key
genes, tumor composition, and prognosis [117]. On the other hand, complementing
different omics (including those derived from images, e.g. radiomics and pathomics
[118]) can improve predictive accuracy of models employed on tasks such as prognosis
[119? ].

Although several pan-cancer studies concerned mutation status prediction, there are
very few ones that include PDAC cases [120]. In 2020, Kather et al. [121], exploited
weakly supervised learning approaches with CNN models for inferring a wide range of
genetic mutations, molecular tumor subtypes, gene expression signatures and pathology
biomarkers from histological images. They reported Area Under ROC curve (AUROC)
scores of 0.67 for KRAS, 0.45 for SMAD4, 0.51 for TP53, and 0.24 for CDKN2A,
with corresponding Area Under Precision-Recall curve (AUPRC) scores of 0.70,
0.17, 0.58, and 0.12, respectively. Komura et al. [122] proposed a deep texture

representations for predicting several combinations of genomic features and cancer
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types from hematoxylin-and-eosin-stained (H&E) images. Their model achieved
AUROC scores of 0.61 for KRAS, 0.51 for SMAD4, 0.60 for TP53, and 0.54 for
CDKN?2A. Recently, Saldanha et al. [123] provided a self-supervised feature extraction
method followed by an attention-based multiple instance learning model for pan-cancer
mutation prediction from histopathology. Their results showed AUROC scores of (.58
for KRAS, 0.47 for SMAD4, 0.44 for TP53, and 0.61 for CDKN2A.

Another interesting aspect concerns the adoption of other omics to infer the mutational
status, which can allow biological discovery among different omic layers, reaching
a more comprehensive knowledge of tumor biology. According to Crawford et al.
[124], transcriptomic data is the most effective omic to predict the mutation status.
Furthermore, they stated that adding other omics into a multi-omic model does not
improve the prediction of mutation status. Hence, we also considered transcriptomic
data, to provide a broader perspective on the task of predicting the mutation status,
and to have another modality comparison for the pathomic models. Furthermore, this

allowed us to investigate a multimodal fusion based on pathomics and transcriptomics.



Chapter 3

Multimodal Pipelines for Pancreatic

Ductal Adenocarcinoma Analysis

This chapter introduces the first pipelines developed: two multimodal big data analytics
pipelines for the analysis of Pancreatic Ductal Adenocarcinoma (PDAC) cases.

According to the methods investigated in the previous chapter, the first section deals
with the role of ML in radiomics with particular focus on PDAC, for Overall Survival and
Recurrence prediction. The developed multimodal pipeline includes multi-omics features,
i.e. Radiomics, Clinical and Genomics and provides several survival analysis models for OS
and REC estimation; the achieved performance are assessed in terms of C-index. Finally, an
innovative time-dependent XAl method (survSHAP) is applied to the best survival models
for investigating their behavior, finding the most relevant features useful for patients clinical
evaluation.

The second section, investigates the application of DL methods for genetic mutations
prediction in PDAC cases using pathomic and trascriptomic models. Specifically, an attention-
based MIL approach is exploited for imaging classification, while Differentially Expressed
Genes (DEG) analysis and deep AEs are exploited and compared for mutations prediction
with transcriptomic data using classical ML models. Then the two unimodal approaches are
combined, obtaining multimodal predictions. Finally, the use of attention-maps and SHAP

method allows for retrieving an explanation at both pathomic and transcriptomic level.
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3.1 Multimodal analysis from the multi-omic cohort of
CPTAC-PDA

3.1.1 Contribution

The primary objective of the work "A time-dependent explainable radiomic analysis from
the multi-omic cohort of CPTAC-Pancreatic Ductal Adenocarcinoma" [27] was to develop
a time-dependent, explainable survival model for patients with pancreatic ductal adenocar-
cinoma by integrating radiomic, clinical, and mutational features. Four survival machine
learning (SML) classifiers were designed, trained, and validated to predict overall survival
(OS) and recurrence (REC) in PDAC patients. The data used for this study were obtained
from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) project, which provides
multiple public multi-omic datasets, including annotated CT images, clinical, and mutational
data. Additionally, the mechanisms behind the decision-making processes of the survival
algorithms were explored using SurvSHAP(t), allowing for a deeper understanding of the
most significant contributing features and their impact on survival probability over different
time intervals.

In summary, this work offered three main contributions:

1. A comprehensive investigation of the clinical, mutational, and radiomic data from
the CPTAC-PDA project, aimed at developing accurate and explainable multi-omic

prognostic models for PDAC.

2. A systematic comparison of various SML classifiers built on multi-omic predictors,

utilizing a leave-one-out cross-validation (LOOCV) approach to study OS and REC.

3. An innovative explainability analysis for translational purposes, focusing on the ra-
diomic determinants featured in the best risk prediction models, achieved through the

use of the time-dependent, model-agnostic explainability algorithm, SurvSHAP(t).

3.1.2 Datasets

Patients’ data were obtained from the National Cancer Institute’s (NCI) CPTAC-PDA co-
hort [125]. This cohort comprises 170 patients with PDAC, including treatment-naive and
surgically resected tissue samples, collected from multiple translational research centers to

promote advancements in proteomics.
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Radiology Images. Radiology CT images were collected from 98 patients enrolled across
six international radiology departments participating in the CPTAC-PDA project.
Tumor-annotated CT images were provided by clinical investigators for 87 of these
patients [126]. Radiology images from the CPTAC-PDA cohort were collected and
made publicly available by The Cancer Imaging Archive (TCIA). Of the 489 CT
series available, 298 were labeled with anatomical structures such as the pancreas and
its ducts. Among these, 134 series included tumor annotations based on a clinical
annotation protocol; the scans were obtained using a multi-slice CT system, and the
images were downloaded in DICOM format, while their corresponding annotations
were provided in RTSTRUCT (DICOM Radiotherapy Structure Sets) format.

Clinical and Mutational Data. The data included clinical outcomes (vital status, disease
recurrence or progression, and follow-up [FU]), demographic data (age at diagnosis
and gender), and pathology and clinical data (including tumor stage, tumor grade,
and the American Joint Commission on Cancer [AJCC] TNM status according to
the 8th edition, clinical response, and residual disease). Frailty data, such as the
Eastern Cooperative Oncology Group performance status (ECOG) and the Karnofsky
performance status, were also incorporated. Features with more than 50% missing

values were excluded from the analysis.

For standardization, age at diagnosis, Body Mass Index (BMI), and the largest tumor
diameter were categorized based on clinical criteria: age was categorized at 65 years
(high vs. low), BMI at 25 (overweight vs. underweight), and tumor diameter at
3.5 cm (larger vs. smaller). Discrete variables such as the number of lymph nodes
involved, ECOG score, Karnofsky score, and clinical response were dichotomized
into two classes: at least one involved lymph node vs. none, ECOG score of 3-5 vs.
0-2, Karnofsky score > 0% vs. 0%, and responders (complete and partial) vs. non-
responders (progressors and stable disease). Surgical residual disease was categorized
as totally resected (RO), partially resected (R1/R2), or resection not defined (RX).

3.1.3 Proposed Approach

The workflow involved three main stages and can be summarized as follow:

1. Data preparation: from the whole dataset, radiomics, clinical, and mutational features
have been retrieved to prepare single omics and the combinations of multi-omic
datasets. Then a dichotomizing phase of continuous radiomic features according to the

clinical outcomes has made for translational purposes.
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2. Training and Validation: the survival models considered have been trained with
LOOCYV method. Then, predicted responses have been globally evaluated in a vec-
tor combining every risk of occurrence of either OS or REC through the C-index

assessment.

3. The best models for OS and REC prediction were selected according to C-index
and their behavior has been investigated using a time-dependent XAl algorithm, i.e.
SurvSHAP(1).

The full processing pipeline is depicted in Figure 3.1
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Fig. 3.1 Multimodal Processing Pipeline for OS and REC prediction in PDAC.

3.1.4 Data Preparation

Mutational Data. Based on whole-exome sequencing (WXS) analysis, 251 out of 270
tumor samples exhibited genetic alterations. As shown in the oncoplot in Figure 3.2A,
the top 10 mutated genes were KRAS (81% of samples), TP53 (64%), CDKN2A (19%),
SMAD4 (19%), TTN (11%), MUC16 (7%), CSMDI1 (6%), RYR2 (6%), KMT2D
(6%), and RYR1 (5%). Mutations with a frequency below 5% were excluded from

further analyses.



3.1 Multimodal analysis from the multi-omic cohort of CPTAC-PDA 49

Radiomics Features. A total of 87 patients with annotated tumor CT scans were included,
comprising 134 series acquired during the enhancement phases of arterial (AR), portal
venous (PV), and delayed (De) contrast medium phases. For the analysis, CT scans
from the PV phase were used when available (n = 75 patients). In cases where the PV
phase was unavailable, the AR phase was selected (n = 11 patients). In one case where
both PV and AR phases were unavailable, the De phase was chosen (n = 1 patient).
Figures 3.2B and 3.2C provide two examples of series acquired during the AR and PV

phases, shown in the axial, coronal, and sagittal planes.

Feature extraction was performed from the original images, those filtered with the
Laplacian of Gaussian (LoG), and the wavelet-transformed VOIs. The sigma parameter
for the LoG filter ranged from 1 to 5, with increments of 1 [mm]. For the wavelet-
transformed images, eight decompositions (LLL, LLH, LHL, LHH, HLL, HLH, HHL,
HHH) were obtained by applying combinations of low-pass (L) and high-pass (H)
filters, using a Coiflet 1 mother wavelet on the 3D volumes. The values for the sigma
parameter and the wavelet decompositions were selected based on prior research [98,
127]. All images were resampled to a spacing of 1 [mm] in each direction using the
sitkBSpline interpolator, and discretized with a bin width of 25, which has shown good
reproducibility and performance in previous studies [128].

PyRadiomics tool was utilized to extract all shape, first-order, and second-order fea-
tures from GLRLM, GLSZM, GLDM, and Neighboring Gray Tone Difference Matrix
(NGTDM). The software requires that both the images and the tumor masks be con-
verted to the NIfTI (Neuroimaging Informatics Technology Initiative) format. Conse-
quently, the SimpleITK library was employed to convert the original DICOM series into
NIfTI images, and the rt-utils package was used to transform the DICOM-RTSTRUCT

annotations into NIfTI masks.

A total of 1,288 quantitative radiomic features were extracted. After performing a
correlation analysis (Fig. 2D), a subset of 16 features for OS and 14 features for REC

were retained for further analysis.

A correlation analysis was applied for dimensionality reduction of radiomic features
eligible for the next steps. Such step was performed by computing the Pearson
Correlation for each feature and setting a cut-off of |0.3| to select features with the

lowest inter-correlations. The selected features are reported in Table 3.1.
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Table 3.1 GLCM radiomics features considered for analyses.

GLCM Feature Description

Autocorrelation Measure of the magnitude of the fineness and coarseness of
texture

JointAverage Returns the mean gray level intensity of each distribution

ClusterProminence Measure of the skewness and asymmetry of the GLCM

ClusterShade Measure of the skewness and uniformity of the GLCM

ClusterTendency Measure of groupings of voxels with similar gray-level val-
ues

Contrast Measure of the local intensity variation

Correlation Value between 0 (uncorrelated) and 1 (perfectly correlated)
showing the linear dependency of gray level values to their
respective voxels in the GLCM

Difference Average Measures the relationship between occurrences of pairs with
similar intensity values and pairs with differing intensity
values

DifferenceEntropy Measure of the randomness/variability in neighborhood in-
tensity value differences

DifferenceVariance Measure of heterogeneity that places higher weights on dif-
fering intensity level pairs that deviate more from the mean

JointEnergy Measure of homogeneous patterns in the image

JointEntropy Measure of the randomness/variability in neighborhood in-
tensity values

IMCI1 Informational Measures of Correlation-1 quantifies the com-
plexity of the texture

IMC2 Informational Measures of Correlation-2 quantifies the com-
plexity of the texture

IDM Inverse Difference Moment, a measure of the local homo-
geneity of an image

IDMN IDM normalized

ID Inverse Difference, another measure of the local homogene-
ity of an image

IDN ID normalized

InverseVariance Inverse Variance

MaximumProbability | Occurrences of the most predominant pair of neighboring
intensity values

SumEntropy Sum of neighborhood intensity value differences

SumSquares Measure of the distribution of neighboring intensity level
pairs about the mean intensity level in the GLCM
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Fig. 3.2 Data preparation for mutational data and radiology images. (A) Oncoplot of top
ten mutated genes. (B-C) Example of AR/PV phase series shown in the axial, coronal, and
sagittal planes. (D) Correlation Matrix heatmap of the initial 1,288 radiomic features.

The integration of clinical, mutational data, and annotated CT images allowed the identi-

fication of two distinct cohorts of patients:

* A cohort of 60 patients with complete data and available OS.
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* A cohort of 49 patients with complete data and available REC, after excluding 4 stage
IV patients for clinical reasons and 7 patients due to the unavailability of REC data in

the clinical database.

3.1.5 Feature Selection Through Survival Analysis

Quantitative levels of each radiomic feature were dichotomized into two groups (high or low)
based on a cutoff identified by maximally selected rank statistics, using the surv_cutpoint
function from the survminer R package, as applied in various translational studies [129, 130].
Each feature was then evaluated for significance after applying the univariate (UV) survival
model for overall survival (OS) or recurrence (REC). Only features that significantly discrim-
inated clinical outcomes with a p-value < 0.15 in the UV analysis were considered eligible
for multivariate (MV) analysis, conducted using CPH models. Features that discriminated
clinical outcomes with a p-value < 0.10 were considered eligible for subsequent steps. The
p-values for the univariate (UV) and MV analyses were derived from pairwise comparisons,

using log-rank statistics for the UV analysis and z statistics for the MV analysis.

Overall Survival Based on the univariate (UV) analysis of patients who experienced overall
survival (OS), 13 out of 16 radiomic features were included in the multivariate (MV)
analysis: Original first-order Kurtosis, Original first-order 90 Percentile, Original shape
Elongation, Original GLCM Joint Energy, LoG.sigma.1.0.mm.3D GLDM Dependence
Variance, LoG.sigma.1.0.mm.3D first-order Skewness, LoG.sigma.2.0.mm.3D first-
order Median, Wavelet. LLH GLCM Cluster Tendency, Wavelet. HLL GLCM Inverse
Variance, Wavelet. HLH GLCM IMC1, Wavelet. HHL first-order Mean, Wavelet. HHL
GLCM IMCl, and Wavelet HHL. GLSZM Large Area Emphasis. Following the MV
analysis, 6 out of the 13 radiomic predictors were selected for inclusion in multi-omic
models: Original first-order 90 Percentile (high vs. low levels, HR = 2.45, p-val =
0.090), Original shape Elongation (high vs. low, HR = 0.27, p-val = 0.005), Original
GLCM Joint Energy (high vs. low, HR = 11.98, p-val = 0.010), LoG.sigma.1.0.mm.3D
first-order Skewness (high vs. low, HR = 0.50, p-val = 0.078), LoG.sigma.2.0.mm.3D
first-order Median (high vs. low, HR = 0.18, p-val < 0.001), and Wavelet HLH GLCM
IMC1 (high vs. low, HR = 0.24, p-val = 0.018).

For the clinical features, based on both UV and MV analyses, 3 out of 11 predictors
were selected for the multi-modal models: gender (M vs. F, HR = 0.46, p-val = 0.013),
tumor grade (G3 vs. G1/G2, HR = 3.11, p-val = 0.001), and residual disease (RO vs.
R1/R2, HR = 0.73, p-val = 0.076).
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Regarding mutational features, 2 out of 10 genes were included in the MV analysis
based on the UV analysis: KRAS and TTN (Table 3). Ultimately, the MV analysis
identified the TTN gene as retaining a prognostic impact, with HR = 3.32, p-val =

0.008, for mutated patients versus non-mutated patients.

Recurrence Based on the univariate (UV) analysis of patients who experienced recurrence
(REC), 10 out of 14 radiomic features were included in the multivariate (MV) analysis:
Original first-order Kurtosis, Original GLCM Correlation, Original shape Elongation,
Original GLCM Joint Energy, Original shape Least Axis Length, LoG.sigma.2.0.mm.3D
GLSZM Small Area Low Gray Level Emphasis (SALGLE), LoG.sigma.2.0.mm.3D
first-order Median, Wavelet.LLH first-order Variance, Wavelet. HHL first-order Mean,
and Wavelet HHL GLSZM Large Area Emphasis (LAE). Following the MV anal-
ysis, 2 out of 10 radiomic predictors were selected for inclusion in the multi-omic
models: Original shape Elongation (high vs. low, HR = 4.23, p-val = 0.044) and
LoG.sigma.2.0.mm.3D first-order Median (high vs. low, HR = 0.35, p-val = 0.024).

For the clinical features, based on both UV and MV analyses, only residual disease
was selected to be included with the other determinants in the multi-modal models (RO
vs. R1/R2, HR = 0.66, p-val = 0.075).

Regarding the mutational features, following UV and MV analyses, 2 out of 10 genes
were selected for inclusion in the multi-omic models: patients with mutated KRAS
(HR = 2.83, p-val = 0.056) and SMAD4 (HR = 0.47, p-val = 0.094) compared to

non-mutated patients.

The Kaplan-Meier curves related to the feature selected are represented in Figure 4.11A
for OS cohort and Figure 4.11B for REC cohort.

3.1.6 OS and REC Prediction

The selected features were subsequently combined in a multi-omic approach. Seven different
models were compared: radiomic features only (1), clinical features only (2), mutational
features only (3), a combination of radiomic and clinical features (4), radiomic and mutational
features (5), clinical and mutational features (6), and a comprehensive model integrating
radiomic, clinical, and mutational features (7). Due to the significant dataset imbalance, both
overall survival (OS) and recurrence (REC) analyses were conducted using LOOCV. The
SML models involved are the following: CPH, SRF, Survival SVM and Survival GB model
(see Chapter 2, Section 2.1.2); the models hyperparameters are reported in Table 3.2.
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Fig. 3.3 Survival curves related to the feature selected. (A-B) Univariate Kaplan-Meier
curves (OS-REC) for features retained after the multivariate analysis.
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Table 3.2 List of hyper-parameter adopted for each classifier. Abbreviations: RF, random
forest; GB, generalized boosted; SVM, support vector machine.

Classifier | Parameters

COX Convergence tolerance = 1e-09

Max Iterations = 20

Tolerance for infinite parameters = 1e-09

Tolerance for Cholesky decomposition = le-10

RF Number of trees = 500

Subset of features for split = floor() with p = number of features
Node size = 15

Max Trees Depth = Not prefixed limit

Split rule = logrank
GBM Number of trees = 100
Interaction Depth = 10

Bag Function = 0.9

Shrinkage = 0.001

SVM Gamma = 0.2

Coefficient type estimation = Vanbelle2

Time difference method = makedift3

3.1.7 Results

Using the available data retained after pre-processing operations and considering the follow-

ing:
* The classifiers employed (Cox, SRF, survival GB, and survival SVM);
¢ Each individual omic and various combinations of omics;
* The clinical outcomes predicted (OS and REC);

a total of 56 different models were compared based on their C-index. Overall, for each
classifier, models that included radiomic predictors in single-omic models or combined with
other omics, outperformed models without radiomic features for both OS and REC. For
instance, in the COX model for OS, adding radiomic features to the TTN feature increased
the C-index from 46% to 75% (Fig. 3.4A). For REC, the combination of radiomics with
clinical features in the GB model increased the C-index from 52% to 66% (Fig. 3.4B).
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For OS, Cox classifiers outperformed SRF, survival GB, and survival SVM, with an
average C-index of 66.6%, compared to 63.1%, 60.4%, and 51.1%, respectively. The
best-performing COX classifiers, achieving a C-index of 75%, combined (i) radiomics and
mutational data, (ii) radiomics, clinical, and mutational data, (iii) radiomics and clinical data
(Fig. 3.4A). CPH combining radiomics, clinical, and mutational data was selected as best
model for XAl analysis.

For REC, Cox, SRF, and survival SVM classifiers outperformed survival GB, with mean
C-indexes of 59.0%, 59.9%, and 58.4%, compared to 52.3%, respectively (Fig. 3.4A). No-
tably, SVM classifiers incorporating only radiomic features achieved the highest performance
for both OS and REC, with C-indexes of 57% and 68%, respectively. This last model was
selected as best model for XAl analysis.

The comparison among survival model performance is depicted in Figure 3.4.
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Fig. 3.4 Model performance comparison among survival models, in terms of C-index. (A)
Performance comparison with multi-omic approach for OS prediction. (B) Performance
comparison with multi-omic approach for REC prediction.

3.1.8 Time-Dependent Explainability

The results from the validation set of the explainability analysis for the evaluated COX and
SVM classifiers, based on OS and REC, are shown in Figure 3.5, with Absolute Average
SHAP values on the left part and the SHAP values over time on the right part.
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Fig. 3.5 Feature Importance for OS (A) and REC(B).
For the observation of 60 patients as a function of their follow-up, the most important
variables were identified as follows (Figure 3.5A):

* LoG.sigma.2.0.mm.3D first-order Median, which reached the highest average ISurvSHAP(t)!
of 0.13 at 26 months.

* Grade, with the highest average ISurvSHAP(t)l of 0.13 at 16 months.
* Gender, with the highest average ISurvSHAP(t)l of 0.12 at 24 months.

* Wavelet HLH GLCM IMC1, which achieved the highest average ISurvSHAP(t)| of
0.10 at 34 months.

* Original GLCM Joint Energy, with the highest average ISurvSHAP(t)l of 0.09 at 32

months.

* LoG.sigma.1.0.mm.3D first-order Skewness, which recorded the highest average
ISurvSHAP(t)l of 0.06 at 16 months.

* Original first-order 90 percentile, which reached the highest average ISurvSHAP(t)! of
0.05 at 24 months.
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* Original shape Elongation, with the highest average ISurvSHAP(t)l of 0.05 at 25

months.

* Residual disease, which reached the highest average ISurvSHAP(t)l of 0.04 at 21

months.

* TTN, with the highest average ISurvSHAP(t)l of 0.02 at 13 months.

Patients with high values of LoG.sigma.2.0.mm.3D first-order Median, with grade G3,
low values of Wavelet HLH GLCM IMCl1, females, and high values of Original GLCM
Joint Energy were associated with a higher risk of overall survival (OS) compared to their
complementary values. Interestingly, the TTN gene did not contribute as significantly as the
other determinants.

In the second case, for recurrence (REC) observed in 49 patients, the explainability of
the SVM classifier, which included radiomic features, identified the following as the most
important (Figure 3.5B):

* LoG.sigma.2.0.mm.3D GLSZM SALGLE, with the highest average ISurvSHAP(t)! of
0.08 at 13 months.

* LoG.sigma.2.0.mm.3D first-order Median, which reached the highest average ISurvSHAP(t)!
of 0.07 at 12 months of follow-up.

* Wavelet.LLH first-order Variance, with the highest average ISurvSHAP(t)! of 0.03 at
12 months.

Patients with low values of LoG.sigma.2.0.mm.3D GLSZM SALGLE, LoG.sigma.2.0.mm.3D
first-order Median, and Wavelet.LLH first-order Variance had a higher risk of recurrence
compared to patients with higher values (Figure S2B and Figure S4). Finally, according to

SurvSHAP(t), the contributions from the remaining radiomic variables were negligible.

3.1.9 Discussion

In the context of PDAC, recognized clinical and biological prognosticators are insufficient for
accurately stratifying patients, highlighting the need for additional tools. When effectively
combined with existing tools, radiomics can offer clinicians alternative and more precise
methods for prognosis. The release of PDAC-annotated CT images by the CPTAC project
has contributed to the uniqueness of this cohort, enabling multi-omic studies of the disease.

This study compared four different classifiers and seven multi-omic datasets to explore
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the role of radiomics in PDAC prognosis. Using a LOOCYV strategy, OS and REC were
analyzed, with feature selection based on UV and MV survival analyses. The approach
demonstrated that models incorporating radiomic signatures outperformed those using only
clinical and mutational predictors. The best models were further subjected to time-dependent
explainability analysis using SurvSHAP(t) to assess the local contributions of radiomic
features, either independently (in the REC analysis) or in combination (in the OS analysis)
with other omics.

For OS, the radiomic signature identified elongated (Original shape Elongation) and
asymmetric (LoG.sigma.1.0.mm.3D first-order Skewness) tumor masses with high gray-level
intensities (Original first-order 90 Percentile and LoG.sigma.2.0.mm.3D first-order Median).
These tumors were spatially characterized by homogeneous (Original GLCM Joint Energy)
and complex (Wavelet. HLH GLCM IMC1) textures. This signature was refined by including
gender and grade variables, both of which proved significant in the explainability process.
Not surprisingly, grade, a well-established prognostic factor for PDAC, was included in the
model.

In contrast, for REC, the radiomic signature (Fig. 5B) identified tumor masses with high
gray-level intensities (LoG.sigma.2.0.mm.3D first-order Median, Wavelet. HHL first-order
Mean) and spread gray-level intensities (Wavelet.LLH first-order Variance and Original first-
order Kurtosis). These tumors were spatially characterized by the joint distribution of smaller
size zones with lower gray-level values, independent of VOI rotation (LoG.sigma.2.0.mm.3D
GLSZM Small Area Low Gray Level Emphasis).

SurvSHAP(t) is a novel, standardized, and easy-to-apply tool designed to explain sur-
vival models with censored observations. Notably, in the multi-omic model used for
OS analysis, between 0 and 20 months, the most important variables were grade and
LoG.sigma.1.0.mm.3D first-order Skewness. Between 20 and 40 months of follow-up,
LoG.sigma.2.0.mm.3D first-order Median and gender became more significant, while the
importance of grade decreased. Second-order radiomic features (Original GLCM Joint
Energy and Wavelet. HLH GLCM IMC1) reached their peak importance later. This general-
ization of SHAP could assist researchers in designing future prospective studies to analyze
diverse patient multi-omics cohorts, considering the limitations of both standard Cox and
machine learning-based survival models [79]. Additionally, the results from SurvSHAP(t)
analysis confirmed those from the feature selection phase. For OS, features with the highest
ISurvSHAP(t)! values also had the most significant hazard ratios (HR) in the MV analyses,
as seen with LoG.sigma.2.0.mm.3D first-order Median, grade, gender, Original GLCM
Joint Energy, and Wavelet. HLH GLCM IMCI. In contrast, SurvSHAP(t) indicated that the
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contribution of the TTN mutation was negligible for predicting OS. Interestingly, while TTN
is frequently mutated in other studies, its prognostic impact in PDAC remains controversial

and is not yet scientifically recognized [131, 132].

Limitations Although the CPTAC-PDA cohort is both multi-centric and multi-omic, in-
tegrating CT images with clinical and mutational datasets significantly reduced the
number of complete cases available for analysis. This limitation necessitated the use
of a LOOCYV strategy to mitigate the risk of overfitting. LOOCYV allows the use of all
available data for evaluation and provides a more reliable accuracy estimate compared
to other methods, such as k-fold cross-validation, particularly when the sample size is
small. Additionally, since the radiomic models were trained on CT series acquired at
different phases (75 in the PV phase, 11 in the AR phase, and 1 in the De phase), this
heterogeneity may have slightly impacted their stability. Nevertheless, an external test
set would be necessary to further validate these findings. For the survival analysis, only
dichotomized features were included, which, while simplifying clinical translation,

may also reduce the precision of the prognostic predictions.
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3.2 Pathomics and Transcriptomics for Genetic Mutation
Prediction in PDAC

3.2.1 Contribution

The research goal of the study "A Multimodal Framework for Assessing the Link between
Pathomics, Transcriptomics, and Pancreatic Cancer Mutation" [38] was to design and develop
an explainable multimodal pipeline for genetic mutation predictions in PDAC cases, from
transcriptomic and pathomic data. The target genes considered are the most mutated ones
in PDAC cases, KRAS, TP53, SMAD4 and CDKN2A [39]. Specifically, two CLAM model
configurations, as well as three different feature extractors were employed for image analysis.
Concerning the transcriptomics (RNA-seq), a panel of 60,660 different transcripts was pre-
processed with two different pipelines: (i) a Differentially Expressed Genes (DEG) analysis;
(i1) an unsupervised DL approach based on three autoencoders (AE) architectures (small,
medium, big). The pre-processed transcript panels were given as input to three ML models:
a RF, XGB and MLP for gene mutation classification (wild-type vs mutated). A fusion
layer followed the output of unimodal models (pathomics and transcriptomics), combining
the output of such models and obtaining a multimodal prediction. Then, for each gene, a
performance comparison (in terms of AUROC and AUPRC) among the combined models
has been made in reference to the corresponding unimodal models. Finally, Attention-maps
and SHAP methods have been employed for the models’ explainability, allowing for a deeper
understanding of the most contributing features, from both the pathomic and transcriptomic

models, respectively.

3.2.2 Datasets

For this study two public datasets were used as training set and independent test set:

1. the TCGA-PAAD dataset includes newly-diagnosed Pancreatic Adenocarcinoma
(PAAD) patients’ data from The Cancer Genome Atlas (TCGA) project [133].

2. the CPTAC-PDA includes newly diagnosed PDAC patients’ data from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) project [125].

For both of them, WSI data were aligned with the transcriptomic data and genetic alter-
ation labels. This step ensured that only the samples having histopathology, transcriptomic,

and genetic data at the same time were retained, ensuring consistency for the further analyses.
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Considering that a relation one-to-many exists between patients and slides/samples (e.g,
one patient can be associated to more WSIs and transcriptomic samples) the final dataset is
reported in Table 3.3:

Table 3.3 TCGA-PAAD and CPTAC-PDA Datasets Summary.

Project | Data Type Number of Subjects Number of Samples Mgt:t;(;ﬁ:ﬁ;;}:;l:cy
Original | After Filtering | Original | After Filtering | KRAS SMAD4 TPS3 CDKN2A
TCGA WSI 183 168 209 188 0.59 (111) 0.21(41) 0.55(105) 0.16 (31)
RNA-Seq 162 162 162 162 0.60 (97) 0.21(35) 0.57(93) 0.17(29)
CPTAC WSI 147 124 489 367 0.85(314) 0.15(58) 0.72(264) 0.16 (61)
RNA-Seq 151 128 192 161 0.83 (143) 0.15(24) 0.70(114) 0.20 (32)

3.2.3 Proposed Approach

Once retrieved data from GDC data portal, the workflow comprised of several stages, sum-

marized as follows:

1. Data Preparation. As first step, both imaging and transcriptomic samples were filtered
on the availability of each gene mutation status assumed as target (KRAS, TP53,
SMAD4, and CDKNZ2A), leading to the creation of the datasets reported in Table 3.3.

2. Data Processing. Since we have built a multimodal pipeline, this module is composed

of two sub-blocks:

(a) Histopathology Data Feature Extraction. Three feature extractors were used for
image processing: ResNet50, UNI, and CONCH (using only the image encoder).
The tissue were first segmented, then patched and provided as input to the feature

extractors.

(b) Transcriptomic Data Feature Extraction. Transcriptomic data were processed
in two ways: (i) using a DEG analysis to retain only the most differentially
expressed genes, and (ii) using three Deep Vanilla AEs [75] with latent space
dimensions of 64, 128, and 256, to extract compact latent representations from

the whole transcriptome.

3. Models Training and Prediction Ensemble. For WSI data classification, two single-
branch CLAM models (large and small versions, see Section 3.2.5) were trained using
Monte Carlo 10-fold cross-validation. For RNA-Seq data classification, RF, XGB, and
MLP models were trained with a 10-fold cross-validation using both DEG and AE-

processed data, independently. The predicted probabilities were ensembled between
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each model-fold and at the subject level. Performance assessments were conducted
using AUROC and AUPRC metrics.

4. Model Ensemble. After retaining the unimodal models, the output from the softmax

function of each classifier was aggregated to obtain a combined prediction.

5. Model Explanations. For the best performing multimodal models, attention maps and

SHAP plots were generated to investigate their behavior at both global and local levels.

The full pipeline is depicted in Figure 3.6.
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Fig. 3.6 Overview of Multimodal Processing Pipeline. Imaging data were analyzed using
a CNN and two foundation models for feature extraction, followed by a CLAM model for
classification. Two distinct dimensionality reduction techniques, namely DEG analysis and
Deep AEs, were considered for transcriptomic. Finally, both transcriptomic and pathomic
data were classified using ML models. The predictions from both branches were combined
to produce a multimodal output, and attention-maps and SHAP values were visualized to
interpret the logic behind model’s predictions.
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3.2.4 Data Preparation

As first step, the original imaging and transcriptomic datasets were filtered based on the
availability of labels for all target mutations to ensure consistency across the subsets with
respect to targets. Subjects missing any target mutation label were excluded from the analysis.

After samples filtering, the whole datasets were pre-processed in the following way:

WSI. A total of 555 WSIs were retained, 188 for training and 367 for test, respectively. A
segmentation operation was performed as first step, detecting the tissue and separating
it from the background. TCGA image data were acquired at x40 magnification, while
CPTAC image data were scanned at x 20 magnification. In order to uniform the region
sizes considered, since only pyramid levels of 1, 4, 16 and 32 were available for TCGA
images, during the patching phase TCGA data patches were extracted with a size of
512 x 512 (at maximum resolution, corresponding to x40 magnification), and then
resized to 256 x 256 (corresponding to x20 magnification) while CPTAC patches were
extracted at 256 x 256. The patches were then used to feed the feature extractors:
ResNet50, UNI, and CONCH, obtaining a total of 6 different feature vectors for each
image (considering 3 feature extractors and 2 CLAM configurations).

Transcriptomics. The whole panel of gene expression data was composed by 60,660 dif-
ferent transcripts and a dimensionality reduction operations was required. Specifically,

two different modalities were tested and compared:

* For each target gene, a DEG analysis was performed on TCGA-PAAD data with
DESeq?2 [134]. DeSeq2 normalizes the absolute counts of reads using the median
ratio method, where the counts for each gene are divided by the geometric mean
of the gene across all samples, and the median of these ratios is used to normalize
each sample. Then, a generalized linear model (GLM) is fitted to the data, which
incorporates the dispersion estimates. Next, a negative binomial model is fitted to
each gene’s expression data across samples. Finally, the Wald test is performed
for calculating the statical significance of each feature. Resulting p-values are
then adjusted (padj) for multiple testing using the Benjamini-Hochberg correction
[135], which controls the false discovery rate; this ensures that the reported DEGs
are statistically reliable. Only the feature with padj < 0.05 were considered
differentially expressed genes. The Log2 fold change (FC) was computed to
determine of if a gene is up-regulated (FC > 1) or down-regulated (FC < —1).
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* An unsupervised approach using three Deep Vanilla AEs with latent space di-
mensions of 64, 128 and 256 was implemented. For readability purposes, the
three AEs were defined according to their latent space dimension, i.e., AE-Small
(AE-S, 64), AE-Medium (AE-M, 128), and AE-Large (AE-L, 256). Due to
the high dimensionality of transcriptomic feature data, the transcripts were first
reduced to 5,000 by extracting those with the highest Median Absolute Deviation
(MAD), before feeding the AEs. Given a dataset D = x1,x»,...,x, composed of
n transcripts x;,i = 1,...,n, where each x; contains m observations x;;, j = 1,...,m,

the median of each transcript was computed
M; = median(x;1,x;2, . . ., Xim) 3.1
Followed by the computation of absolute deviations from the median:
|xij—M;| forjel,..m (3.2)
Finally the MAD for each transcript i = 1,...,n was computed as:
MAD; = median(|x;; — M;|, |xp — M, .., |xin — M;|) (3.3)

The features were ranked according to the MAD and only the top 5,000 were
retained; this approach is very effective as also demonstrated by other authors
[136]. Before feeding the models, the features were normalized using a Robust
Scaler, i.e. subtracting the respective medians and dividing them by the inter-
quartile range. The AEs were trained for reducing the input dimensionality to the
aforementioned dimensions and reconstructing it to the original one; the Mean-
Squared-Error (MSE) function was chosen as loss function used for models
training. The use of such a metric allowed for evaluating the average offset
between original and reconstructed data. Each model was trained by setting adam
as optimizer and a total number of epochs set to 500, with an EarlyStopping
criterion using a tolerance of 100 epochs, according to the decrease of validation
loss. TCGA data was split into training and validation sets in proportions of
80% and 20%, respectively. After AEs training and inference phases, three new

datasets were obtained with a features number of 64, 128 and 256, respectively.

A straightforward representation of both procedures is reported in Figure 3.7.
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Fig. 3.7 Trascriptomic data pre-processing Pipeline. The original trascriptomic data are
processed in parallel with a DEG analysis (top branch), selecting the genes up/down-regulated,
and with a AE-based pipeline, retrieving the latent representation of the tree AE model,
according to their size.

Finally, for CPTAC dataset, imaging samples were intersected with transcriptomic sam-
ples, allowing only subjects with labels for both data types to be retained, ensuring consistency
across the data for the multi-modal validation. After the intersection operation, the number
of subjected retained and used for constructing the test set was equal to 122.
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3.2.5 Methods

Classification Models. The genetic mutations classification task with transcriptomic data
was handled with three machine learning models: RF, XGB, and MLP classifiers. The
WSIs classification task was approached with a MIL paradigm, using CLAM Deep
Learning model. Notably, the performance of CLAM model relies of the quality of
feature retrieved by the feature extractors. In its first version, CLAM used ResNet50
[59], pre-trained on ImageNet. However, recently, CLAM implemented the possi-
bility of using of UNI and CONCH, two foundation models pre-trained on specific

histopathology private datasets. In this study all three feature extractors were included.

Explainable Artificial Intelligence. The last step involved the use of eXplainable Artificial
Intelligence (XAI) methods for retrieving an explanation at both imaging-level and

transcriptomics.

Concerning the imaging-level XAl, a key strength of CLAM is the interpretability, due
to its attention mechanism. In fact, a visual explanation was obtained by projecting the
model attention scores on the input WSI, without any additional algorithm. In this way,
it was possible to obtain attention-maps that can be used to investigate which image
regions are crucial for model predictions. This transparency makes CLAM particularly
valuable in clinical settings, where understanding the rationale behind predictions is
essential [137, 138].

Shifting to transcriptomics XAl, the SHAP algorithm was used for retrieving global
and local explanations of models behavior. Introduced by Lundberg et al. [139], SHAP
is an explanation methods derived from the Shapley values of the cooperative game
theory [78], that quantifies the contribution of the single player to the overall result
generated by the entire set of players. Lundberg et al. adapts such a concept to ML, by
considering each data feature as a cooperative player that contributes to the prediction

of the target variable.

3.2.6 Results
3.2.6.1 Dimensionality Reduction of transcriptomic data

For transcriptomic data, the feature extraction according to DEG analysis and dimensionality
reduction with AEs were evaluated for assessing the quality of the feature retrieved in both

approaches.
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DEG Analysis. A total of 117, 105, 41, and 134 DEGs were obtained for KRAS, SMADA,
TP53, and CDKN2A, respectively. As depicted in the Figure 3.8, according to
KRAS, genes with lowest p-value and higher Log,FC were C6orf58 and GAST as
up-regulated and STYXL2 as down-regulated. According to SMAD4, top genes were
LDB3, FENDRR, COL9A1, MASP1, GIP, and ACTG2 as up-regulated and STYXL2,
ZFP57, UPK2, and SCGB2A2 as down-regulated. Again, according to TP53, top
down-regulated genes were GAST, C6orf58 and CFAP47, and DEFAS5 whereas the best
down-regulated gene was CSF3. According to CDKNZ2A, top up-regulated genes were
HORMADI and SLC52A1, and down-regulated genes were AMY2A, again STYXL?2,
and RPL3L.

The differentially expressed genes retained, along with relative mean, log, FC, Log

FC Standard Error, and p — values are reported in supplementary materials S1.

Autoencoders. The AEs performance was evaluated in terms of MSE value, since this was
chosen as loss function for model training. Table 3.4 shows the MSE achieved on the
training and validation set along with the one achieved on the test set (CPTAC dataset),

according to the AE latent space dimension.

Table 3.4 MSE values achieved on validation set (TCGA data sub-set) and the test set (CPTAC
dataset). In bold, the lowest values of MSE. Abbreviations: Mean Squared Error (MSE),
AE-L (Autoencoder with latent space dimension of 256), AE-M (Autoencoder with latent
space dimension of 128), AE-S (Autoencoder with latent space dimension of 64).

Model Total Epochs Training Loss Validation Loss Test Loss
AE-S 187/500 0.0019 0.0457 0.0314
AE-M 170/500 0.0006 0.0452 0.0305
AE-L 175/500 0.0002 0.0441 0.0300

3.2.6.2 Classification

As described in Section 3.2.5, a total of 72 models were trained, 24 for pathomics and 48 for
transcriptomics. Performance assessment was made in terms of AUROC and AUPRC, due to
the high unbalancing for SMAD4 and CDKNZ2A labels. The best models were selected by
choosing the best compromise among the two metrics, since AUROC was used as indicator
of general performance while AUPRC was used to assess how well the model performed on

the positive class predictions.
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Fig. 3.8 Volcano Plot of Transcriptomic Data for Differential Gene Expression. The X-
axis represents log2 fold change (1og2FC) in gene expression, with positive values for
up-regulated genes and negative values for down-regulated genes. The Y-axis shows -log10
p-value (logP), indicating statistical significance; genes further from the origin in either
direction are significantly up- or down-regulated.

Unimodal Results. Figure 3.9 presents AUROCs and AUPRC:s in the form of radar plots,
emphasizing the pair feature extractor-CLAM model, for imaging data, and data

pre-processing-classifier, for transcriptomics.
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As highlighted by Figure 3.9, the models performance achieved on KRAS and TP53
were generally higher than the ones on SMAD4 and CDKNZ2A. This difference was
justified by the high unbalancing for the latter mutations, that introduced underfitting
during the model training. Imaging-based models that were trained on ResNet-based
features were outperformed by imaging models trained with either UNI or CONCH-
based features. The best imaging models are listed as follow:

* KRAS: CONCH features and CLAM Large, with AUROC = 0.69 and AUPRC =
0.91.

* SMAD4: UNI features and with CLAM Large, with AUROC = 0.57 and AUPRC
=0.21.

* TP53: CONCH features and CLAM Large, with AUROC = 0.58 and AUPRC =
0.77.

* CDKNZ2A: UNI features and CLAM Large and Small, with AUROC = 0.62 and
AUPRC = 0.22.

Figure 3.9B depicted the perfomance achieved with transcriptomic models. At first
glance, the overall performance achieved by such models outperformed the correspond-
ing imaging models. The best transcriptomic models, with related performance, are

listed as follow:
* KRAS: XGB, with AUROC = 0.86 and AUPRC = 0.96 on data processed with
AE-L.

* SMAD4: RF, with AUROC = 0.66 and AUPRC = 0.32 on data processed with
AE-S.

* TP53: MLP, with AUROC = 0.69 and AUPRC = 0.79 on data processed with
AE-S.

* CDKN2A: RF, with AUROC = 0.56 and AUPRC = (.26, on data processed with
DeSeq2.

The metric values for trascriptomic models reflected the ones for the imaging models,
with a KRAS and TP53 emerging as the best classified mutations.

Multimodal Results. The output of imaging and transcriptomics models were then com-

bined to obtain multimodal models. Figure 3.10 depicts a grid of radar plots where the
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rows correspond to different imaging feature extractor and the columns to the target

gene mutations.

The best multimodal models were as follows:

KRAS: (UNI features) + (CLAM Large) and RF + AE-L, with AUROC = 0.87
and AUPRC =0.97.

SMAD4: (UNI features) + (CLAM Large) and XGB + AE-L, with AUROC =
0.65 and AUPRC = 0.25.

TP53: (UNI features) + (CLAM Large) and XGB + AE-L, with AUROC = 0.69
and AUPRC =0.78.

CDKN2A: (UNI features) + (CLAM Large) and MLP + AE-L, with AUROC =
0.56 and AUPRC =0.27.

The comparison with related works is reported in Table 3.5, showing that the adoption of
foundation models with MIL approaches in pathomics outperforms the existing approaches

for genetic mutation prediction in PDAC.

Table 3.5 Comparison of the proposed approach with related works for genetic mutations
predictions in PDAC.

Target Mutations

Work Methods KRAS SMAD4 TP53 CDKN2A
AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC
Kather et al. [121] Wea];}iyﬂf‘g;rglifg ;:lf“mg 0.67 0.7 0.45 0.17 0.51 0.58 0.24 0.12
Komura et al. [122] Supervised Learning with 0.61 - 0.51 - 0.60 : 0.54

DTRs and CNN models.
Self-supervised feature extraction

Saldanha et al. [123] and attention-based MIL. 0.58 - 0.47 - 0.44 - 0.61

Proposed Approach Foundation models for feature
(Pathomics) extraction and MIL. 0.69 091 0.57 0.21 0.58 0.77 0.62 0.22

Proposed Approach DeSeq2 and AEs with ML 0.88 0.97 0.63 0.37 0.69 0.82 0.55 0.25

(Transcriptomics) classifiers.

Proposeq Approach Combmatl‘on of‘Pathomlcs and 0586 097 065 025 0.69 078 0.62 027

(Multimodal) Trascriptomics models.
3.2.7 XAI

Example of local XAl results for all considered genes are portrayed in Figure 3.11 and a global
explanation was also provided in Figure 3.12. Global XAl suggested the top genes which
contributed positively to the prediction (right side) and those which contributed negatively
(left side). Among top genes, FAM222A and SFTPA2 genes importantly discriminated the
KRAS and SMAD4 mutational status, respectively.
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Fig. 3.11 Attention maps and SHAP decision plots for each considered target gene. For
the KRAS, SMAD4, CDKN2A, TP53 mutations, the C3L-00277-23, C3N-02585-22, C3L-
01598-22, and C3N-03190-22 cases from the CPTAC project are shown, respectively. In the
WSIs, red regions indicated features that contributed positively to the prediction, while blue
regions indicated negative contributions. The SHAP decision plots followed the same color
scheme, with feature importance reflected by the width of each bar.
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Fig. 3.12 SHAP beeswarm plots for each target gene. According to the legend, the color of
each dot represents the feature value for a specific sample, while the dot’s distance from the
origin indicates its importance.

3.2.8 Discussion

Pre-Processing and Classification. Predicting genetic mutations from histopathology data
is a challenging task due to heterogeneity of the tumor microenvironment, variability in
tissue samples, and the complexity of linking histopathology features to the underlying
genetic alterations. This work studied the mutational status in PDAC combining
classical transcriptomics with pathomics on two independent series from TCGA-PAAD
and CPTAC-PDA. Pathomic features were extracted by applying three different feature
extractors, ResNet50, UNI, and CONCH. Classification models were designed with
two CLAM architectures, small and large. Each model was then evaluated in terms
or AUROC and AUPRC. AUPRC helped in a better understanding of case-studies
with imbalanced classes. The results achieved were superimposable to those from the
state-of-the-art, confirming that foundation models are able to extract higher quality
determinants than those which use ResNet50 [64, 66]. As observed in Figure 3.9A,
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the pathomic models achieved a good performance on KRAS and TP53 achieving a
best AUROC score of 0.70 and 0.58, respectively, and a best AUPRC value of 0.91
and 0.77, respectively. On the other hand, those models suffered in providing reliable
predictions on SMAD4 and CDKNZ2A. For the SMAD4, the CLAM Large model trained
on UNI features, which resulted as the best model, achieved an AUROC of 0.57
and an AUPRC of 0.20. Again for the SMAD4 target, the CLAM Small model on
ResNet50 features achieved an AUPRC score of 0.79, which was very high. However,
the AUROC score of 0.46 evidenced a potential bias in the assessment of the AUPRC
score. For CDKN2A, again, the best model achieved an AUROC of 0.62 and an
AUPRC of 0.22, making it worthless for predicting CDKN2A mutations. Overall for
pathomics, the results obtained slightly outperformed those from the state-of-the-art,
as reported in Table 3.5. Notably, while Kather et al. and Komura et al. achieved
comparable metrics, they reported results on the TCGA-PAAD dataset, using the same
cohort for both training and validation, which could potentially inflate performance. In
contrast, the evaluation proposed relied on an external test set, offering a more rigorous
measure of generalization. Interestingly, Komura et al. excluded those WSIs with
poor staining quality and did not evaluate performance on datasets where individual
subjects had multiple WSIs. In general, transcriptomic-based models outperformed
those pathomic-based. This is likely due for the nature of data. Comparing AE-based
models with DEGs, the models trained on the latent data representations achieved a
better performance w.r.t. than those trained on DEG dataset; DEG analysis approach
outperformed AE-based approach only for CDKN2A classification. For other mutations,
AE-based models retained higher predictive power than those DEG-based. Thus, AE
approaches were very effective in reducing data dimensionality, while retaining the

information content.

As for imaging, the models were able to better fit data for both KRAS and TP53 targets
achieving good performances for AUROC score (0.86 for KRAS and 0.69 for TP53) and
AUPRC score (0.96 for KRAS and 0.79 for TP53). Conversely, for SMAD4, although
the XGB achieved a good AUROC, its AUPRC was too low for considering it as a
reliable predictive model. This is confirmed in using RF to predict the CDKN2A status.

Looking at multimodal predictions obtained by leveraging both pathomic and tran-
scriptomic models, the overall performance achieved is acceptable. Interestingly, the
best metrics for target mutation were not obtained by the combination of the best
unimodal models. In general, the performances achieved by combining the unimodal

predictions were comparable to those from transcriptomic models. Hence, although
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pathomic-based models are emerging tools to predict genetic mutations, the results
carefully suggest that transcriptomics stills remain preferable in predicting mutational
status for PDA. Despite that, the integration of pathomic models may adds value by
incorporating insights from histopathology images, which can offer additional context
or understanding of the tumor environment and genetic mutations. Thus, the combined
approach provided richer information for interpreting the biological factors underlying

the predictions.

Models Explainability. The attention maps offered by transformer models are an useful way
of portraying saliency regions on the input images, displaying which image regions
were most useful to make the classification. As is possible to see from Figure 3.11,
where local XAl is executed on four samples for the four considered target genes, the
imaging models tend to concentrate on abnormal glands and patterns in the WSI tissue,
showing the capacity of the attention mechanism to discover likely tumor regions that

could reflect the most patterns induced by the specific genetic mutations.

In the same figure, a decision plot obtained by SHAP for the transcriptomic model
is also shown. As we can see, this technique has the potential to uncover which
transcript expression is more important as link to the genetic mutation. Specifically,
SHAP TreeExplainer and GradientExplainer algorithm were applied to Tree-based and
ANN-based models, respectively. For the cascade combination of AE and Tree-based

model the explanation was retrieved by using KernelSHAP.

Noteworthy, although the combination of AE and ML models performed better, the use
on SHAP on it did not lead to a meaningful result, since the algorithm computed the
feature importance for the prediction as the sum of infinitesimal contributions of a large
feature set. In light of this, from a XAl perspective, the use of DEG-based data remains
a preferable approach. However, the questions rising about the trade-off between

model’s performance and interpretability are still debated in literature [140-142].

In Figure 3.12, beeswarm SHAP plots are shown, where the contributions for each
sample in the datasets are considered together to devise a feature importance at dataset
level and not just at instance level. This technique can show which transcript expres-
sions are more linked to genetic mutations not just at patient-level, but on the whole
cohort, allowing to uncover eventually more complex relationships between genome

and transcriptome.
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3.3 Summary of Findings

Multimodal analysis from the multi-omic cohort of CPTAC-PDA.
Radiomic, clinical, and mutational features that correlate with OS and REC are iden-
tified in this study. The findings indicate that radiomics, when effectively combined
with established clinical and biological determinants, has the potential to enhance
patient risk stratification for PDA. The results show that the Cox model outperforms
SML models for OS prediction, while the SVM model proves most effective for REC
prediction. Additionally, this work represents the first application of time-dependent
explanations of radiomic features within a PDA cohort. Future efforts focus on val-
idating the proposed signature using “real-life”” data. The CPTAC project provides
additional mutational data, including copy number variations and methylation data,
as well as histopathology images of biopsied tumors collected at diagnosis. To fully
utilize these public datasets, future research is directed towards radiogenomics and
pathomics analyses. Specifically, the development of an integrated radiopathomic
prognostic model is prioritized to improve the accuracy of patient prognosis predic-
tions. Furthermore, the identified signatures have potential applications in accelerating

clinical workflows, such as predicting genetic alterations directly from imaging data.

Pathomics and Transcriptomics for Genetic Mutation Prediction in PDAC.
Predicting genetic mutations from histopathology data presents significant challenges
due to the heterogeneity of the tumor microenvironment, variability in tissue samples,
and the complexity of associating histopathological features with underlying genetic
alterations. Although various approaches have been proposed in recent years to link
genetic mutations to histopathology data, few have focused on mutation prediction in
PDAC. To date, none of these methods have proven sufficiently reliable for routine use
in this context. This study demonstrates the potential of foundation models for digital
pathology to enhance performance in predicting genetic mutations. Notably, the path-
omic models achieved promising results in predicting KRAS mutations, highlighting
their applicability in this domain. Consistent with prior research, transcriptomic data
emerged as the strongest predictor for genetic mutations. Multimodal models combin-
ing transcriptomic and pathomic data were also tested; however, they did not show
significant advantages over purely transcriptomic models. Nevertheless, the integration
of pathomic models contributes additional insights by leveraging histopathology im-
ages, offering valuable context for understanding the tumor environment and genetic

alterations. This combined approach enriches the interpretation of the biological factors
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underlying the predictions. Furthermore, the explainability provided by the attention
mechanisms in CLAM models and the post-hoc interpretations of transcriptomic mod-
els using SHAP offers crucial insights into the relationships between transcriptomic,
genomic, and histopathological data. These explainability tools hold promise for
unveiling the complex interplay of these biological layers, advancing understanding
and interpretation in this field.



Chapter 4
Unimodal Big Data Analytics Pipelines

This chapter examines the four unimodal analytics pipelines developed with some of the
methods included in the two multimodal pipelines. Such methods are applied to other case
studies, showing their flexibility.

The first pipeline exploits a time-dependent XAl method for enhancing the model selec-
tion process in the survival analysis [40]. In particular, an end-to-end pipeline is developed
for estimating the OS in patients affected by Obstructive Sleep Apnea (OSA) using several
ML and DL survival models. C-Index, C/D AUC and Brier Score are considered as evaluation
metrics for survival models. Finally, survSHAP algorithm is applied to the best performing
models showing how explainability can support the model selection process for models with
similar performances.

The second section presents another contribution of this thesis work to digital pathology.
In particular a pipeline is tailored to the segmentation and classification of glomerular lesions
according to the Oxford classification for IgA nephropathy (IgAN) cases [41]. The pipeline
consists of two main components: (i) a segmentationblock, for dividing WSIs into tiles,
followed by glomeruli segmentation using object detection models. (ii) a classification Block,
with CNNs employed for the classification of the segmented glomeruli. The classification
outcomes are reported at both the glomerular and biopsy levels. To evaluate the pipeline’s
performance, intraclass correlation coefficients and Cohen’s Kappa statistics are calculated
to measure agreement between the model’s predictions and expert pathologist labels at the
glomerular and biopsy levels.

The third pipeline proposes a mathematically and visually interpretable deep learning-
based framework for multiclass, shape-based classification of tomosynthesis breast lesion
images Eight pretrained CNN architectures are utilized for the classification task on pre-

viously extracted regions of interest containing lesions. The black-box nature of the deep
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learning models is further explored using two well-known explainable Al (XAI) techniques:
Grad-CAM and LIME. Additionally, two mathematical-structure-based interpretability meth-
ods, t-SNE and UMAP, are applied to analyze the behavior of the pretrained models in
multiclass feature clustering.

The last pipeline deals with NER approach for medical oncological free-text report. This
is another important aspect related to clinical examinations. While this thesis has focused on
algorithms that support the diagnostic and decision-making phases, it is also important to
support the data collection phase from unstructured clinical reports. This can be achieved
through NLP tasks such as NER. In particular, a framework called Automatic record genera-
tor for Onco-Hematology (ARGO) was enhanced for extracting key-fields from oncological
free-text reports and for standardizing the diagnosis associated, according to definitions
coming from the National Institute of Health in accordance with the International Classifi-
cation of Diseases, 10th (ICD-10) and oncology (ICD-O) versions [44]. The enhancement
involves the inclusion of Machine Learning model, supporting the existing architecture and
a decisional heuristic for classifying the extracted diagnosis. Finally, a preliminary results
with transformer-based architecture, replacing the existing one, are shown for diagnosis NER
task.

4.1 Enhancing Survival Analysis Model Selection Through
XAI(t) in Healthcare

Survival analysis is particularly valuable in healthcare for assessing patient outcomes, identi-
fying risk factors, and tailoring treatments to individual patients. By incorporating variables
like comorbidities, age, and treatment responses, survival analysis helps clinicians determine
which patients are at higher risk and adjust care plans accordingly.

When applied to OSA, SA can play a crucial role in better assessing and categorizing
disease severity. OSA, characterized by recurrent airway collapse during sleep, often leads
to oxygen deprivation and interrupted sleep cycles [143—-145]. Moreover, the presence of
comorbidities, particularly metabolic, cardiovascular, and renal diseases, complicates the
prognosis and treatment of OSA [143, 146].

Moreover, SA can help identify high-risk individuals by incorporating both the comorbid
conditions and the symptoms typical of OSA. This approach allows for a more personalized
treatment plan, especially during rehabilitation and follow-up phases, ultimately improving

the survival probability of patients by tailoring care to their specific needs.
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Notwithstanding, Al algorithms addressing survival analysis are known to be character-
ized by the poor interpretability of their results, since determining which feature impacts
on the model prediction is not a simple task. Moreover, the role of comorbidities and risk
factors is often evaluated only according to Hazard Ratios and Odds Ratios [147]. This limits
their applicability in decision support systems for clinical purposes [79].

A gap has been found in the existing literature about XAl methods for SA tasks. No prior
works applies time-dependent XAl - XAI(t) methods to survival DL models, while offering a
model comparison in terms of data and model explanation. Most of existing XAl-oriented
researches focus on standard XAl methodology applied to classification tasks, possibly facing
the survival analysis as a separated task. Such a gap can be attributed to the novelty of XAI(t)
approaches as well as to challenges in producing a simple and reliable explanation when the
time is involved.

Focusing on the OSA clinical scenario, the work named "Enhancing Survival Analysis

Model Selection through XAI(t) in Healthcare" [40] a survival analysis pipeline aiming at:

* training and validating different Machine Learning and Deep Learning survival models,

selecting the best performing ones according to the metrics used in survival tasks;
* investigating the role of comorbidities in OSA from XAI(t) perspective;

 performing a model comparison, selecting the most reliable models according to the

explanations retrieved by XAI(t) algorithms.

4.1.1 Related Works

In Artificial intelligence field results are difficult to be interpreted, especially when dealing
with deep models that are “black-box” where it is difficult to understand how the model got
to the prediction. XAl has been recently extended to this context to improve explainability,
interpretability and transparency for modeling results [148—150]. XAI algorithms’ goal is
then to convert unexplained ML and DL predictions into more interpretable “white-box”
glass ones.

Notably, in the realm of survival analysis, to be able to understand which characteristics
have a more important influence on the prediction, that means to understand how it "weighs"
such features for the prognosis or diagnosis, is fundamental because it allows clinicians to
choose the type of treatment on the patient (preventive or curative).

Most of existing works applies XAl techniques like SHAP and LIME on Al-based

frameworks addressing SA. Qi et al. [151] used SHAP to improve the explainability of a
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ML-based framework about the role of mithochondrial regulatory genes on the evolution
of renal clear cell carcinoma . Zaccaria et al. [152] adopted approximated SHAP values
to build an interpretable transcriptomics-based prognostic system for Diffuse Large B-Cell
Lymphoma (DLBCL). Srinidhi and Bhargavi [153] embedded SHAP and LIME in a ML- and
DL-based framework to support the prediction of survival rates of patients with pancreatic
cancer. Zuo et al. [154] employed both SHAP and LIME to explain the survival predictions
of many ML methods fed with a radiomics feature set that is extracted from tomographic
images. Chadaga et al. [155] used SHAP and LIME for explaining the ML-based estimations
about the survival probability of children after bone marrow transplantation. Both SHAP
and LIME were included in Alabi’s study [156] to better interpret the predictions of ML
algorithms addressing SA on clinical data from people with nasopharyngeal carcinoma. Peng
and colleagues [157] used SHAP and LIME to corroborate the outcomes of ML models
about hepatitis diagnosis and prognosis.

Even fewer works employed either SurvSHAP or SurvLIME for performing SA with ML-
based workflows. Zhu and colleagues [158] employed SurvSHAP to investigate the efficacy
of adjuvant chemotherapy starting from the prediction of both ML and DL models about the
survival probability of breast cancer patients. Passera et al. [159] explained the outcomes of
survival models fed by demographic and clinical features by means of both SurvSHAP(t) and
SurvLIME. Such XAI methods were oriented to global and local explaination by analyzing
data from the whole cohort or a single patient. Baniecki et al. [160] performed SA to estimate
the hospitalization time by training ML algorithms with a multimodal dataset, and also
explained the results of time-to-event models for a single patient through SurvSHAP as well.
Remarkably, as far as we know, no studies that utilizes XAI(t) to elucidate the predictions
generated by a deep learning model. In fact, such architectures often play a supporting role
in SA workflows: they are used not to predict mortality risks, but to determine additional
metrics that are then fed in a classical survival pipeline for performing SA. [144, 161, 162].
In addition, these works do not include XAI strategies to better interpret how the model
achieves survival predictions.

Related work shows a paucity in the literature about survival analysis with either ML
algorithms or DL models embedding XAl techniques - e.g., SurvSHAP and SurvLIME - to
increase the interpretability of the predictions of mortality risk. Table 4.1 reports a summary
of related work involving classical XAl and XAI(t) in SA.
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Table 4.1 Related Works of XAI and time-dependent XAl

Author Year Task Input data Survival analysis model Explainability model

Zaccaria et al.

[152] 2023 Prognosis of DLBCL Transcriptomic data AutoEncoders DeepSHAP
Alabi et al. Linear Regression, KNN, S t Vect
2023 Prognosis of NPC CT images, clinical data inear Regression upport Yector SHAP, LIME
[156] Machines, Naive Bayes, Tree-based models,
Srinidhi et al. C lutional N I Networks,
2023  Prognosis of pancreatic cancer CT images, clinical data onvolutionat eura e. Works SHAP, LIME
[153] Support Vector Machines
Chadaga et al. - i - Tree-base models, Linear Regression,
2023 Prediction of BMT efficacy Clinical data SHAP, LIME
[155] KNN, AdaBoost, CartBoost
Peng et al. Linear Regression, CART, KNN,
¢ 2021 Prognosis of hepatitis Clinical and demographic data fnear Begression, TA* SHAP, LIME
[157] Tree-based models, Naive Bayes
Qietal. [151] 2023 Prognosis of RCC Genomic data LASSO-Cox SHAP, LIME
Zuo et al. Identification of EGFR in lun, .
2023 K € CT images Light GBM, Linear Regression, Tree-based models SHAP, LIME
[154] adenocarcinoma
Zhu et al. Cox Mixti , DeepSurv,
2024 Prognosis of breast cancer Clinical and demographic data ox Vi |?u'es eepourY; SurvSHAP
[158] Cox PH, Survival Random Forest
Baniecki et al. _ . ) X Tree-based models, CoxPH,
2023 Prediction of hospital LoS Text data, tabular data, X-ray images ) SurvSHAP, SurvLIME
[160] DeepSurv, DeepHit
Passera et al. . ) .
[159] 2023 Test XAl on SA for BMT Clinical and demographic data CoxPH, Survival Random Forest SurvSHAP, SurvLIME

4.1.2 Material and Methods

Initially, pre-processing operations were conducted to clean and prepare the data. Statistical
tests and correlation analyses were then performed to aid in feature selection. Subsequently,
the data was divided into training and test sets, and survival analysis models were trained,
with the best-performing ones selected based on evaluation metrics from the test set. Finally,
the chosen models were interpreted and compared using SurvSHAP. Figure 4.1 provides an

overview of the pipeline used for the analysis.

Dataset

The dataset utilized in this study was collected by the Istituti Clinici Scientifici (ICS)
Maugeri Hospital sleep laboratory in Bari, during the rehabilitation phase of patients
diagnosed with Obstructive Sleep Apnea (OSA). The diagnosis was established for
all patients through an in-laboratory overnight polysomnography (PSG). The original
dataset contained 1,592 samples and 45 features, encompassing clinical data and
information retrieved from PSG exams. In addition to demographic variables like
age, follow-up duration, and gender, the dataset included medical parameters such
as Body Mass Index (BMI), Glomerular Filtrate Rate (GFR), Ejection Fraction (EF),
Oxygen Desaturation Index (ODI), minimum blood oxygen saturation (SaO;), Apnea

Hypopnea Index (AHI), and details on comorbidities such as heart disease and diabetes.

Data Pre-Processing
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Fig. 4.1 Processing Pipeline followed.

Initially, irrelevant features, including patient I.D., N CC (number of health records),
Admission Date, Discharge Date, and profession, were removed from the dataset. The
survival time was then converted from days to months to simplify the analysis and
interpretation. Features with high levels of missing data, such as EF and ODI (which
had 90% of their values missing), were dropped since no reliable imputation strategy
was available. The Anemia feature was retained, and missing values were imputed

based on hemoglobin levels, considering the patient’s gender.

Next, several variables were discretized: Age was categorized as O for subjects aged
65 or younger, and 1 for subjects older than 65; BMI and GFR were binned according
to reference values from medical literature [163, 164]. The age cut-off was chosen
based on medical relevance [165, 166], ensuring better generalization of the results.
Additionally, the dataset included two new features: Continuous Positive Airway
Pressure (CPAP) treatment (a binary categorical feature indicating whether the patient

had undergone CPAP treatment) and the corresponding duration of treatment in years.
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Outlier removal was not performed, as in the medical domain, outliers may represent
important clinical conditions. Finally, to avoid bias caused by the COVID-19 pandemic,
samples with a follow-up after 2020 (198 samples) were excluded. After this pre-

processing, 1,394 samples were retained for analysis.

Statistical Analysis and Feature Selection

Before training the survival analysis models, feature selection was conducted based
on the training set. Pearson’s correlation coefficient (PC) was calculated for each
feature to identify and remove those with high correlations (absolute |PC| greater than
0.6). The correlation matrices before and after filtering are shown in Figure 4.2a and
Figure 4.2b. In cases of high correlation between numerical and categorical features,

the numerical variables were retained.

Following the pre-processing and feature selection, 23 features from 1,394 records
were used for survival analysis. The Status variable served as the event indicator, and

the Follow-up Days (converted to months) represented the survival time.
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Table 4.2 Final dataset with related statistics.

Feature Type Description ‘ Number | Mean+Std | P-Value
Number of patients = 1394
Demographics
Status
Dead Categorical Indicates if the patient is dead or alive at follow-up 363 - Reference
Alive 1031 -
Sex
Male Categorical Sex of the patient 997 - 0.182
Female 397 -
Age
Under 65 years Categorical Indicates whether or not the patient is over 65 700 - <0.001
Over 65 years 694 -
Marital Status
Married Categorical Marital Status of the patient 262 - 0.842
Not Married 1132 -
Comorbidities
Hypertension Categorical Presence of hypertension 752 - 0.652
Diabetes Categorical Presence of diabetes 413 - 0.033
Heart Failure Categorical Indicates whether patients have a history of heart failure 79 - <0.001
Dilated cardiomyopathy Categorical Presence of dilated cardiomyopathy 17 - <0.001
Atrial Fibrillation Categorical Indicates whether patients have a history of atrial fibrillation 135 - <0.001
Previous Cardiovascular | Categorical Indicates whether patients have a history of Previous CV Events 32 - 0.089
Events
Valvular Heart Disease Categorical Presence of Valvular Heart Disease 33 - 0.006
Cardiovascular Disease Categorical Presence of Cardiovascular Disease 339 - <0.001
Chronic  obstructive  pul- | Categorical Presence of COPD 288 - <0.001
monary disease (COPD)
Asthma Categorical Presence of Asthma 70 - 0.297
Malignancy Categorical | Indicates whether patients have a history or Presence of malignancy 26 - <0.001
Renal Dysfunction Categorical Presence of Renal Dysfunction in Patient 308 - <0.001
Anemia Categorical Presence of Anemia 263 - <0.001
Cholesterol Category
Value < 200 [mg/dL] . X L . . 870 -
X Categorical Categorical column binning the Cholesterol in 3 categories 0.030
Value in 200-239 [mg/dL] 371 -
Value > 240 [mg/dL] 153 -
Weight Categories
Normal Weight 75 -
Overweight . . . 291 -
. Categorical Categories of weight based on BMI value <0.001
Obesity Class I 397 N
Obesity Class IT 327 -
Morbid Obesity 304 -
Polysomnographic data
AHI Numeric Apnea-Hypopnea Index - 57.01+19.16 0.002
Sa0, min [%] Numeric Minimum oxygen saturation - 70.94+13.63 0.335
Treatment Info
CPAP Categorical Received CPAP treatment 555 - 0.006
Years of CPAP Numeric Duration of CPAP usage (years) - 4.44+3.25 <0.001
Follow-Up Days Numeric Days from admission to follow-up (months) - 98.62+49.76 | <0.086

Survival models

For performing the experiments the following models were included:

* Machine Learning - Cox Proportional Hazard (CPH), Survival Random Forest

(SRF), Survival Gradient Boosting Model, Survival Support Vector Machine
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* Deep Learning - Cox-Time (CT), Deep-Hit (DH), DeepSurv (DS) , NNet-Survival
(Logistic Hazard (LH) and Piecewise Constant Hazard (PCH)).

Explanation Methods

The explainability phase was conducted exploiting survSHAP. As mentioned in Chap-
ter 2 (Section 2.3.1), this method generalizes SHAP to survival models, giving a global
explanation about the overall behavior of the model over the time. SurvSHAP can
reveal the importance of comorbidities affects the prognosis over follow-up, offering
valuable insights into the progression of OSA and what to do to improve the patient’s

prognosis.

The model explanation methods can be classified in two categories: Dataset expla-
nation and Model explanation. The former category aims at analyzing the dataset
characteristics in order to understand their impact on the event prediction; the latter is
focused on ranking and highlights the features that the model considers important for

the prediction.

Intuitively both category methods present some limitations:

* Dataset-level explanation limitations: SHAP is designed to return a local-
explanation, i.e. gives an explanation for a single sample; consequently, SurvSHAP
behaves the same way. When used on a dataset, its resulting explanation depends
on the samples distribution. In fact, if the data are unbalanced for specific features,
their contribution will be minimal, but this conclusion cannot be generalized to
other data. Hence, the ideal scenario could be to use a large dataset for the sake
of a higher generalization of the results. However, the computation of features
contribution for a single sample is computational expensive, because of the model
complexity and the operations involved (e.g. multiple features permutations,
predictions and performance computations for SHAP values, local-samples gener-
ation, local-model training and prediction for LIME). In XAlI(t), this is worsened

since the feature contributions are computed also for different time instants.

* Model-level explanation limitations: Although the model-level explanation is
computationally less expensive than the data-level one, it returns explanation
information at populational level and cannot be used for explanation at single
prediction level. Moreover, the explanation methods based on permutation can
lead to misinterpretations when the independent variables are strongly corre-
lated [167].
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To overcome the limitations of both explanation methods, they can be exploited in a
complementary way: while the model-level explanation can be used to identify the
most important features affecting the prediction, the dataset-level explanation can be

used to investigate how they affect the prediction.

Obviously, both methods strongly depend on the model performance: if a model is
not reliable, then the model explanation will not be able to identify some features
that can be important for the event prediction, while the data explanation can lead to

misinterpretations of features behavior.

4.1.3 Experimental Pipeline

The experiments were conducted using both R and Python. The dataset was randomly
split using the holdout method, with 70% of the data allocated for the training set and the
remaining 30% for the test set, while ensuring stratification by the event feature. Additionally,
it was verified that the observation period in the test set did not exceed that in the training set.

The experimental pipeline workflow is illustrated in Figure 4.3.
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Fig. 4.3 Experimental Pipeline. For each trained model the related explainer object was
created, with relative performance and explanation computation. Cox Regression (CPH),
Survival Random Forest (SRF), Survival SVM (SSVM), Survival Generalized Boosted Model
(SGBM), Survival Deep Learning Models (SDL).
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4.1.4 Results

The performance of the models on the test set was evaluated using the following metrics:
C-Index, Brier-Score and C/D AUC. Greater emphasis was placed on the C-index and Brier
Score, as these were the most commonly used and interpretable metrics for survival tasks,
offering a clearer understanding than the C/D AUC.

The evaluation metrics on test set are showed in Table 4.3 with a graphical comparison in

Figure 4.4 and Figure 4.5, for ML and DL models, respectively.

Table 4.3 Survival models metrics computed on test set. Cox Regression (CPH), Survival Ran-
dom Forest (SRF), Survival SVM (SSVM), Survival Generalized Boosted Model (SGBM).

Integrated C/D Integrated Bri
Family  Model C-Index | 2o niegrated Brier

AUC Score
CPH 0.81 0.72 0.10
Machine SRF 0.81 0.70 0.12
Learning SSVM 0.71 0.61 0.15
SGBM 0.79 0.69 0.14
CoxTime 0.78 0.73 0.12
DeepHit 0.73 0.70 0.13
Deep

. DeepSurv 0.57 0.60 0.16

Learning
LogHazard 0.77 0.70 0.11
PCHazard 0.78 0.71 0.13

ML Models Results As a general observation, SSVM emerged as the poorest performing
model, while all other models demonstrated good results. The differences between
Cox Regression, SGBM, and SRF were minimal in terms of C-index and Integrated
C/D AUC, although Cox Regression exhibited a lower Brier Score.

Consequently, CPH was selected for the explainability step. Additionally, this model
provided the Hazard Ratio for each feature, which could be utilized for data explain-

ability alongside the XAl techniques discussed in Section 4.1.5.
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Fig. 4.4 Survival Machine Learning models metrics computed on test set; Cox Regression
(CPH), Survival Random Forest (SRF), Survival SVM (SSVM), Survival Gradient Boosted
Model (SGBM)

DL Models Results As illustrated in Figure 4.5, CT, PCH, and LH demonstrated comparable
performances, positioning them as the best-performing models. LH was chosen for the
explainability phase, with further details provided in Section 4.1.5.

Model performance
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Fig. 4.5 Survival Deep Learning models metrics computed on test set.

metric value
o
n

The time variant Brier Score and C/D AUC for CPH, CT and LH models are depicted
in Figure 4.6
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Fig. 4.6 Time variant models comparison for CPH, Cox-Time and Log Hazard models. The
x-axis represents the event time expressed in months, where each tick represent the event
(black - 0, red - 1).

4.1.5 Discussion

Both data and model-level time-dependent explanations were performed on the test set (419
samples) by comparing the survival models trained using ML and DL approaches. SurvSHAP
was used to interpret and analyze the results, all of which are presented in relation to the
survival function.

It was noted that generating explanations for deep learning models across all test samples
can be computationally expensive, with minimal performance differences observed between
the CT and LH models. For this reason, the LH model was selected for the explanation
phase, due to its computational efficiency, enabling the generation of detailed explanations in
a reasonable time frame.

To mitigate issues associated with the permutation method used for model-level explana-

tions, features were filtered based on correlation coefficients, as explained in Section 4.1.2.

Dataset-level Explanation SurvSHAP values on test data were computed, retrieving and

ranking the most important features.
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Fig. 4.7 Dataset level explanation for Cox Regression Model: on the left the features
importance ranking according to the average of absolute shapley values. On the right the
feature importance according to the observation time.In the right part of the figure, the x-axis
represents the event time expressed in months, where each tick represent the event (black - 0,
red - 1).

Feature importance according to aggregated |[SurvSHAP(t)|
— Age — Sa0,min — Renal Dysfunction— Years of CPAP
—— AHI COPD ~ Anemia

0.125

Age

0.100

AHI

Renal Dysfunction
0.075

Sa0, min

0.050

Years of CPAP

Average |SurvSHAP(t)| value

COPD

0.025

UL

Anemia

o.000 ANV ) AV O 1O N 00 A AR
o 50 100 150 200

0.02 0.04 0.06
Average |aggregated SurvSHAP(t) value time

°
3
8
5
8

Fig. 4.8 Dataset level explanation for Log Hazard Model: on the left the features importance
ranking according to the average of absolute shapley values. On the right the feature
importance according to the observation time. In the right part of the figure, the x-axis
represents the event time expressed in months, where each tick represent the event (black - 0,
red - 1).
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As depicted on the left side of Figure 4.7 relative to CPH, Age emerged as the most im-
portant feature, followed by Years of CPAP, Renal Dysfunction, COP, BMI Categories,

Sex and Anemia.

Similarly, in Figure 4.8 Age remained a predominant feature, although the LH model
assigned nearly equal importance to other features, with only minimal differences.
More specifically, AHI ranked second, followed by Renal Dysfunction, SaO, minimum,
Years of CPAP, COPD, and Anemia. In the LH model, these features demonstrated
greater significance in terms of their average contribution to the prediction compared
to the CPH model.

The discrepancy in feature importance could be attributed to the non-linear relationships
between features and targets, uncovered by the LH model, which in certain cases
prioritized numeric features over categorical ones. The temporal trends associated with
the model outcomes are illustrated on the right side of Figures 4.7 and 4.8. nterestingly,
in the CPH scenario, after approximately 9 years (around 110 months), the importance
of Years of CPAP, Sex, and BMI Categories increased compared to Renal Dysfunction,
Anemia, and COPD, respectively.

A similar pattern was observed in the LH model, where the discretization effect on
predictions became noticeable. Although SaO; was initially ranked fourth in terms of
feature contribution and appeared to be less important, its significance grew over time,

emerging as the third most crucial feature in the latter part of the observation period.

Finally, while in the CPH model, all features contributed similarly in the final ob-
servation period, the LH model highlighted two distinct feature groups: one con-
sisting of AHI and SaO;, and the other comprising Renal Dysfunction, COPD, and
Years_of CPAP.

In contrast to classical XAI methods, where variable importance is presented as a static
measure reflecting overall relevance, SurvSHAP allowed for variable importance to
shift over time, offering a more dynamic evaluation of feature impact at any given time
L.

Model-level Explanation

The second main evaluation step consisted in investigating the feature importance
from the models perspective. This was accomplished by computing the difference
between the loss function of the trained model and the loss function of the model

with permutations. Specifically, the loss function (i.e. Brier Score) was computed
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multiple times by changing the values of each single feature at time, while keeping
the others unchanged. Features that lead to greater fluctuations in the difference
are considered more influential according to the model perspective. The results are
depicted in Figure 4.9 for CPH and Figure 4.10 for LH.
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Fig. 4.9 Time-dependent feature importance for Cox Regression model, obtained by subtract-
ing full model Brier Score from the Brier Score after single feature permutations.
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Fig. 4.10 Time-dependent feature importance for Log Hazard model, obtained by subtracting
full model Brier Score from the Brier Score after single feature permutations.
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The relationships between OSA and the most important features retrieved by SA models

found confirmation in the medical literature [168—172]. Such comorbities revealed

to be predictors of a lower survival probability for people with OSA in a previous

work [143]. The most important features identified for the CPH model aligned with the

features highlighted by computing the SurvSHAP values on the test set. Remarkably,

additional features such as Malignancy and Dilated Heart Disease were not reported

in the data-level explanations. This suggested that, while certain features may not

stand out prominently in the individual data instances (i.e., they are underrepresented

in data), they still hold a significant weight when considered from CPH model-level

perspective. Such conclusion was also confirmed by looking the related Hazard Ratios

in Table 4.4.

Table 4.4 Cox proportional hazards matrix with features sorted by Hazard Ratio in descending

order.

Variable Coef | Exp.coef | Se.coef | Z Pr...z..
Malignancy 1.83 6.21 0.29 6.30 | 2.89E-10
Idiopathic dilated cardiomyopathy | 1.41 4.08 0.48 2.92 0.00
COPD 0.53 1.70 0.14 3.81 | 1.37E4
Renal dysfunction 0.56 1.75 0.15 3.81 | 1.37E-4
Age 1.37 3.94 0.18 7.75 | 9.28E-15
Anemia 0.40 1.49 0.15 2.73 0.01
Atrial fibrillation 0.37 1.45 0.23 1.64 0.10
Heart failure 0.35 1.41 0.28 1.24 0.22
Diabetes 0.11 1.12 0.14 0.78 0.43
Sex 0.30 1.35 0.16 1.81 0.07
Ipertension 0.02 1.02 0.13 0.15 0.88
Cardiovascular disease -0.01 0.99 0.19 | -0.06 0.95
BMI Categories -0.07 0.93 0.06 | -1.12 0.26
Cholesterol categories -0.08 0.92 0.10 | -0.83 0.41
Valvular disease -0.02 0.98 0.42 | -0.05 0.96
Sa02 min -0.01 0.99 0.01 | -1.16 0.25
AHI -0.01 0.99 0.00 | -1.54 0.12
Years of CPAP -0.13 0.87 0.03 |-5.06 | 4.11E-7
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However, although the presence of malignancy and the dilated cardiomyopathy con-
dition had a strong influence on the individual survival, such features are not always
available since they are not common in population and cannot be used in clinical

practice.

In addition, unlike the data-level explanations where the contribution of CPAP treat-
ment period increased over time, in the general model it loss its importance in the
final part of the observation period, thus lessening the contributions related to Renal
Dysfunction and COPD. As concerns LH model (Figure 4.10), the features identified
were the same retrieved by applying SurvSHAP to the test set. Differently from CPH
model, the contribution of Age was almost equal to the other features. Surprisingly,
AHI gave the greatest contribution from ~150 to ~170 months (~ 12.5 to 14 years);
besides, starting from ~125 months the SaO; min started to gain more importance
until ending to be the most important feature. Comparing Figures 4.9 with 4.10, LH

model computed the feature contribution in a more balanced way, w.r.t. CPH.

Notably, while having similar performance, the selected models focus on different fea-
ture sets. Specifically, CPH identified several features that seem related to the mortality
in a general way, such as dilated heart disease and the presence of malignancies, while
giving a greater importance to the Age. On the other hand, LH focuses on features
that are related to the OSA pathology, such as minimum oxygenation level (SaO;
min) Apnea and Hypopnea Index (AHI), which gains importance over the observation
time. In light of this, the use of SurvSHAP lead clinicians to assess that, to parity
of performances, LH model results more reliable here. Ultimately, LH model results
also more useful, since AHI and SaO; min are more useful features compared to
the presence of malignancy or dilated cardiomyopathy, because the latter are rarer
conditions in the population, as demonstrated with survival curves depicted in Figure
4.11, (thus making such data not always applicable) and because the former two are

directly derived from polysomnography.

The summary of the differences in the retrieved models from XAI(t) perspective is depicted
in Table 4.5.
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Fig. 4.11 Survival curves for malignancy and dilated cardiomyopathy features.

Table 4.5 Summary of differences between CPH and LH model. DCM - Dilated Cardiomy-
opathy.

Performance Metrics

Data-Level Explanation (419 test samples)
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Prevailing

Prevailing

C-Index Brier Score Observations Relevant Features Observations
Features Feature Features
. o Age still prevails on other features;
Age, Years of CPAP, Huge gap in Age contribution | Age, Years of CPAP, )
) R Malignancy and DCM are not
Renal Dysfunction, w.r.t other features; Renal Dysfunction, Age, followed by ) R
CPH 0.81 0.10 Age . A strictly related to the mortality
COPD, BMI, the features contributions have COPD, Anemia, Years of CPAP
. R L. . . and they are not
Sex, Anemia few variations over the time. Malignancy, DCM. _ .
50 common in population.
Moderated gap between Age The relevant features give almost
. _— Age, Years of CPAP, o
Age, AHI, Renal Dysfunction, contribution and other features; . . the same contribution.
. . Renal Dysfunction, Al features give the .
LH 0.77 0.11 Sa02 min,Years of CPAP, Age these ones provide the same AHI and SaO2min are more

COPD, Anemia

contribution, but it variates

over the time.

COPD, Anemia,
AHI, SaO2min.

same contribution . .
useful and accessible

in OSA context.
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4.2 A deep learning approach for Oxford Classification of

glomeruli lesions

Another contribution of DL in pathomics of this thesis work relies in its application to
the Oxford Classification system, which is a highly valuable tool in nephropathology for
assessing IgA Nephropathy (IgAN) [173-175]. The Oxford Classification evaluates lesions
in two main tissue compartments: the glomeruli and the cortical tubulointerstitium. From
this evaluation, three binary components (M: mesangial hypercellularity, E: endocapillary
hypercellularity, and S: segmental glomerulosclerosis) and two ordinal components (C:
crescent formation and T: tubular atrophy/interstitial fibrosis) are derived.

By integrating these histopathological features with clinical parameters, the IgAN risk
prediction score can be computed, which helps predict the progression of the disease .
Machine learning could support nephropathologists by automating the interpretation of histo-
logical features and clinical data, thus offering more consistent and accurate risk predictions,
potentially leading to better patient outcomes.

This work introduced MESCnn [41] (MESC classification by neural network), a novel
decision support system for nephropathology that incorporates instance-level segmentation of
glomeruli for PAS-stained sections in I[gAN cases. This system adheres closely to the Oxford
Classification’s standards for glomerular lesion classification. This distinction stems from the
fact that it supports prognosis within the framework of the International Risk Prediction Tool
for IgAN (including the Oxford Classification), but only after IgAN diagnosis has already
been confirmed through other nephropathological methods like electron microscopy and
immunostaining.

The focus was placed on four key glomerular score components—mesangial hypercellu-
larity (M), endocapillary hypercellularity (E), segmental sclerosis (S), and active crescents
(C) adhering strictly to the original definitions of the Oxford Classification. This was done
using periodic acid-Schiff (PAS) sections to ensure alignment with established guidelines.
Unlike previous studies, which either extended beyond IgAN classification, employed differ-
ent staining techniques like trichrome, or focused on only a subset of the components such as
mesangial hypercellularity or hypercellularity alone, this work concentrated on implementing
the full spectrum of these components according to PAS staining protocols.

A custom glomerular segmentation module was developed for MESC classification,
specifically trained on a large and diverse dataset from three different institutions, encom-
passing 11 common classes of glomerulonephritis. This allowed for the creation of a

comprehensive end-to-end pipeline designed to classify glomerular lesions from whole slide
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images (WSIs). The related works for glomerular classification and segmentation of MEST-C

lesions are reported in Table 4.6 and Table 4.7

Table 4.6 Related works for the classification of MEST-C lesions.

Author Year MEST-C Method Data Stain
Chagas et al. [176] 2020 M, E CNN+SVM FIOCRUZ H&E, PAS
Mask R-CNN + LSTM &  LKCGMH, KSCGMH HAE, PAS,
sk R- + , ,
Yangetal.[?] 2021  E,S,C » PAM,
ResNeXT-101 KMUMH .
trichrome
138 glomeruli (x20) from
Purwaretal. [?] 2020 M KNN, SVM vs CNN (TL) IgAN patients (AIIMS, PAS
Delhi)
12,253 images + 11,142
Weis et al. [? ] 2022 M, S CNN + CAM (XAI) images + 180 consensus PAS
images
CNN (NAS-Net) +
Satoetal. [? ] 2021 (unsupervised) Clustering + Score-CAM, 68 patients with IgAN H&E
Grad-CAM
42 biopsies (train) + 66 ,
L L Masson’s
Jaugeyetal. [?] 2023 M,E,S, T,.C CNN biopsies (test) + 88 biopsies .
oo trichrome
(application)
283 kidney biopsi ith
Uchino et al. [177] 2020 M,E, S,C fine-tuning of InceptionV3 1aney biopsies wi PAS, PAM

15,888 glomerular images

102
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Table 4.7 Related works for glomerular segmentation.
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4.2.1 Materials and Methods

A total of 386 WSIs from various kidney biopsies were annotated using QuPath software [180]

by a specialized nephropathologist. The dataset was divided into two groups: 102 biopsies

diagnosed with IgAN and 284 biopsies diagnosed with other forms of glomerulonephritis (re-

ferred to as Other GN). The Other GN cases covered a broad spectrum of glomerulonephritis

variations, representing all morphological forms of IgAN observed in PAS-stained WSIs.
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The Other GN cohort was employed in developing the segmentation models, while the IgAN
cohort was used for the classification models. This two-step approach ensured that the
models were well-trained for both segmentation and classification tasks, using a diverse and
representative set of biopsy samples.

Annotations covered both sclerosed and non-sclerosed glomeruli, with the exception of
empty Bowman’s capsules. When feasible, the annotations followed the Bowman’s capsule
outline. For dislodged glomerular tufts, all cellular and matrix components were annotated
according to the Bowman’s capsule trajectory. The biopsies used for these annotations were
sourced from three institutions: the Institute of Pathology in Cologne, the University of
Szeged, and the Nephrology Department in Bari. PAS-stained sections from these biopsies
were scanned at a resolution of either approximately 0.23 um/ pixel or 0.12 m/ pixel, using
different imaging equipment. In Cologne and Bari, a NanoZoomer Scanner (Hamamatsu,
Herrsching am Ammersee, Germany) with a 40x objective was used, while in Szeged, a
Pannoramic Midi Slide Scanner (3DHISTECH, Budapest, Hungary) was employed. Each
biopsy included for analysis met the Oxford scoring system’s minimum criterion of at
least eight glomeruli. The focus on PAS staining was critical since the study aimed to
develop a precise Oxford scoring system, which, by definition, is restricted to PAS-stained
samples [174].

102 renal biopsies diagnosed with IgAN were involved for the Oxford classification [174],
ensuring the exclusion of IgA vasculitis (Henoch-Schonlein Purpura) through clinical assess-
ment [176].

All glomerular sections were uploaded to the Labelbox platform (www.labelbox.com( for
expert nephropathologist annotation. The total count of labeled glomerular sections reached
6206.

Segmentation Dataset The dataset used for developing the glomerular segmentation model
included 284 biopsies, corresponding to 748 whole slide images (WSIs). These
biopsies came from the PanGN cohort, which covers 11 different classes of glomeru-
lonephritis (GN). The GN classes represented in this cohort include anti-glomerular
basement membrane antibody GN, anti-neutrophil cytoplasmic antibody GN, C3-GN,
cryoglobulinemic GN, dense deposit disease, infection-associated GN, membranous
nephropathy, idiopathic membranoproliferative GN, proliferative GN with monoclonal
immunoglobulin deposits, and systemic lupus erythematosus GN class I'V. Importantly,
the 102 biopsies related to IgA nephropathy (IgAN), accounting for 308 WSIs, were

excluded from the dataset to prevent overlap with the target dataset.


www.labelbox.com
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The dataset was divided into training and test sets for segmentation model development.
The training set consisted of 227 biopsies (587 WSIs), while the test set included 57
biopsies (161 WSIs).

In total, the dataset for both glomerular segmentation and MESC classification models
consisted of 386 biopsies, of which 102 were specific to IgA-GN. All biopsies were
stained with PAS and were sourced from three institutions: the University Hospital
of Cologne (Germany), the Department of Emergency and Organ Transplantations
(DETO) at Bari University Hospital (Italy), and the Szeged University (Hungary).

Classification Dataset The dataset used for developing the classification model consisted
of 102 biopsies, representing 308 WSIs, and a total of 6206 glomerular crops. It was
divided into a training set of 67 biopsies (207 WSIs, 4298 glomerular crops) and a test
set of 35 biopsies (101 WSIs, 1908 glomerular crops). These subsets were used for
training the classification models aimed at predicting the Oxford labels: M (mesangial
hypercellularity), E (endocapillary hypercellularity), S (segmental glomerulosclerosis),

and C (active crescents).

After predicting the Oxford labels, they were translated into biopsy-level Oxford scores
as MO/M1, EO/E1, S0/S1, and CO/C1/C2, according to the methodology described
previously. An expert nephropathologist independently assigned biopsy-level Ox-
ford scores based on the same WSIs, following the Oxford classification guidelines.
Importantly, the dataset only had one biopsy with a C2 score (indicating more than
25% active crescents), highlighting the rarity of C2 cases in clinical practice. For the

purpose of statistical analysis, C1 and C2 categories were merged.

The distribution of ground truth label classes is shown in Figure 4.12, while Figure 4.13
provides sample images from the dataset. Notably, for E and C lesions, it is possible
to observe and imbalance for positive labels with respect to the negative ones. This
dataset was used to develop the MESCnn pipeline, which facilitates the segmentation
of glomeruli and the classification of lesions according to the Oxford M, E, S, and
C scoring system. Noteworthy is the distinction between the annotations applied to
individual glomerular level and the biopsy-level Oxford scores. This study focused
only on the glomerular components of the Oxford score (MESC), while the T score

(cortical Tubular atrophy) and interstitial fibrosis fell outside the scope of this research.

* Mesangioproliferation (M): Mesangial cells are situated at the core of the glomeru-

lar tuft, extending between capillary loops. According to the Oxford Classifi-
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Fig. 4.12 Lesions distribution. Pie charts representing the M, E, S, C lesion distribution in the
dataset collected from the three cohorts. The number of samples for each lesion is reported
in Table 4.8.

Fig. 4.13 Sample images from the dataset used for classification. (A) Masked (extraglomeru-
lar background set to black) glomerular crops without any M (mesangioproliferation), E
(endocapillary hypercellularity), S (segmental glomerulosclerosis) or C (active crescent)
lesion coded in the Oxford Classification; (B) Glomerular crops with ground truth S label
applied by an expert nephropathologist; (C) Global Glomerulosclerosis; (D) Mesangioprolif-
eration; (E) Endocapillary Hypercellularity; (F) Cellular or Fibrocellular Crescent.
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cation, the term "mesangioproliferation” is assigned to glomeruli displaying
clusters of more than three mesangial cells in a mesangial area, excluding the
stalk region. Based on the Oxford Classification scoring system, the label "M"
is categorized as "noM" (no mesangioproliferation), "yesM" (mesangioprolifer-
ation), or "indeterminate" (NULL). If more than 50% of the glomeruli exhibit
mesangioproliferation, the patient is assigned a score of M1; otherwise, the score
is MO [174].

* Endocapillary Hypercellularity (E): Endocapillary hypercellularity refers to an
increase in leukocytes within the glomerular capillaries. The Oxford Classifica-
tion uses a binary system for labeling: "noE" for absence and "yesE" for presence
of endocapillary hypercellularity. The patient receives an E1 score if at least one
glomerular section exhibits endocapillary hypercellularity, and an EO score if

none does.

* Segmental Glomerulosclerosis (S): Segmental glomerulosclerosis (SGS) de-
scribes a condition where scarring affects less than the entirety of the glomerular
capillary loop. The Oxford Classification includes a binary labeling system:
"noGS" for no glomerulosclerosis, "SGS" for segmental glomerulosclerosis, and
"GGS" for global glomerulosclerosis. If any glomerular section in a biopsy shows
segmental glomerulosclerosis, the score is S1; if none shows such lesions, the

score is SO.

* Active Crescent (C): This lesion involves extracapillary crescent formation with
a cellular content of at least 10% compared to matrix content. The Oxford
Classification assigns labels of "noC" or "yesC" based on the presence of active
crescents. Biopsies are scored C1 if they contain up to 25% of active crescents,
C2 if more than 25%, and CO if none [175].

The data distribution according to the labels is reported in Table 4.8

4.2.2 Experimental Pipeline

Segmentation A comprehensive evaluation of several Mask R-CNN variants was performed
to identify the optimal architecture for the glomerular segmentation task. Initially,
segmentation results were generated tile by tile and then mapped onto WSIs for further
processing. This was integrated into QuPath, under the name "QuPath Interface for

Glomeruli Segmentation" (QIGS), which facilitates automatic glomeruli segmentation
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Table 4.8 Sample data distribution according to MESC labels.

Classification
Cohort M lesion E lesion S lesion C lesion
nan noM yesM noE yesE GGS NoGS SGS noC yesC
Bari 90 241 34 360 5 40 307 18 336 29

Cologne | 1233 1922 1370 4417 108 1000 2969 556 4250 275
Szeged 537 329 450 1242 74 491 662 163 1206 110

Train 1277 1771 1250 4191 107 1063 2739 496 3994 304

Validation | 583 721 604 1828 80 468 1199 241 1798 110

Total ‘1860 2492 1854 6019 187 1531 3938 737 5792 414

of PAS-stained WSIs, enabling easier use of these results for downstream tasks, such as

the Oxford classification or export via Python scripts interfacing with QuPath projects.

The models were trained using Stochastic Gradient Descent with Momentum (SGDM),
adhering to default Detectron2 settings, with a learning rate of 3e-4, running up
to 300,000 iterations, and using batch sizes of two tiles per iteration. For model
training and validation, WSIs were split into 1024 x 1024 pixel tiles, taken at a 10x
magnification. Overlaps of 512 pixels per axis were included to ensure glomerular
regions were fully represented in at least one tile.

During inference, results were initially generated at the tile level. Overlap between
adjacent tiles helped prevent missing glomeruli near tile edges. To address duplicate
detections, the Non-Max-Area-Suppression (NMAS) [181] algorithm was used on
detections projected back into WSI space. Results were stored in a QuPath project,
with a Python-based interface using the PAQUO library to link Detectron2 and QuPath.

Classification For the image classification tasks, two types of deep learning models were

predominantly utilized: CNNs and ViT. In preparing the glomerular images for training
and validation datasets, several pre-processing steps were applied to ensure the images

were in optimal form:

1. Mask Application: A mask was applied to isolate the glomerular regions, elimi-
nating irrelevant pixels outside the target area based on expert-guided glomerular

segmentation.
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2. Zero Padding: This process ensured the glomerular crops became square-shaped,
which is often required by CNNs and ViTs to maintain consistency in input

dimensions.

3. Resizing: Images were resized to 256x256 pixels, while maintaining their aspect

ratio to avoid distortion or stretching.

To enhance variability in training data and minimize overfitting, an augmentation
technique based on the Pytorch AutoAugmentPolicy.IMAGENET policy was imple-
mented, introducing random variations to the images. For model training, the Adam
optimizer was employed with an initial learning rate set to le-5. Training lasted for 50
epochs. The inherent imbalance in lesion class distributions (e.g., the E lesion, repre-
senting only 2.49% of glomeruli in the training set) was addressed using PyTorch’s
WeightedRandomSampler. This approach assigned a weight to each class inversely
proportional to its frequency, ensuring more balanced class representation during the
model’s learning process. Additionally, the multi-class cross-entropy loss function was

employed to train the classifiers effectively.

Evaluation To assess the performance of instance segmentation models, the metrics em-
ployed were defined as by the COCO dataset evaluation framework, which is widely
used in object detection tasks. The main metrics considered include:

* Average Precision (AP): This metric calculates the area under the precision-
recall curve, averaged over Intersection over Union (IoU) thresholds ranging
from 0.5 to 0.95, in increments of 0.05. It provides a balanced overview of the
segmentation accuracy across different IoU thresholds, which accounts for both

object localization and segmentation quality.

* AP50 and AP75: These specific variants of AP focus on fixed IoU thresholds.
AP50 measures precision when the IoU threshold is set at 50%, while AP75
is based on a stricter 75% IoU threshold. These thresholds provide additional
insights into how well the model performs at different levels of overlap between

predicted and ground truth regions.

» Aggregated Jaccard Index (AJI): This metric combines both detection and seg-
mentation accuracy into a single measure, making it suitable for assessing the
overall performance of instance segmentation models. AJI measures the similar-
ity between the predicted and actual segmented regions, offering a comprehensive

evaluation of both object detection and pixel-wise segmentation.
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* Dice Coefficient: This metric, commonly used in medical imaging, is computed
as 2TP/(2TP + FP + FN), where TP, FP, and FN stand for true positives, false
positives, and false negatives, respectively. The Dice coefficient focuses on the
overlap between the predicted and actual segmented areas, and is particularly

effective for evaluating pixel-level segmentation performance.

For the classification of M, E, S, and C lesions, various CNNs and ViT architectures
were leveraged to classify these glomerular lesions. AUROC and AUPRC metrics were
used to assess classification performance. Finally, to visually inspect the quality of
features extracted by the classification models, UMAP was exploited. This technique
helps in visualizing high-dimensional data by projecting the feature representations
of the model into a lower-dimensional space. UMAP plots allowed to compare the
feature distributions of models trained from scratch on the dataset with those using
pretrained models (such as those pretrained on ImageNet), providing insights into how

well the models differentiate between the lesion classes.

The segmentation and classification modules were assembled to create an end-to-end
pipeline, utilizing PAS WSIs as input, along with Oxford M, E, S, and C labels for individual
glomerular crops. The pipeline then produced Oxford M, E, S, and C classifications at the
biopsy level. This pipeline, named MESChnn, is depicted in Figure 4.14 which outlines the
comprehensive workflow used during its development and execution.

The "QuPath Interface for Glomeruli Segmentation" (QIGS) was deployed by integrating
it with the QuPath software using the PAQUO library. This integration enabled the visualiza-
tion of segmentation results and allowed for their export to subsequent classification stages.
Additionally, pathologists could review the segmentation results, providing expert oversight
where needed.

The end-to-end pipeline, MESCnn, which generated a spreadsheet report as output and
used WSIs as input, was made available through a repository https://github.com/Nicolik/
MESChnn. This repository includes the QIGS module, which is responsible for creating the
QuPath project with segmented glomerular masks. The weights of the trained models and
example WSIs were also shared for reference and testing purposes. Links to both the pipeline

and the QIGS module were provided for public access.


https://github.com/Nicolik/MESCnn
https://github.com/Nicolik/MESCnn
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Fig. 4.14 End-to-end workflow for glomeruli segmentation and classification of M, E, S, C
lesions with the proposed MESCnn pipeline. (A) Models development stage. (B) Glomerular
annotation generation by pathologists using QuPath. (C) End-to-end usage of the proposed
pipeline. (D) Instance segmentation of glomeruli. (E) Classification of M, E, S, C lesions
taking advantage of convolutional neural networks and vision transformers. Finally, WSI
scores are determined by applying decision rules as defined in the Oxford Classification.
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4.2.3 Results

Segmentation Results The segmentation results obtained using Mask R-CNN and its vari-
ants demonstrated impressive performance, the AP50 reached about 80% on the
validation set and roughly 78% on the test set for the instance segmentation task. The
AJI peaked around 76% on the validation set and approximately 73% on the test set.
The detection models exhibited robust performance across several metrics, reflecting
their effectiveness in the instance segmentation task. The best detection model was
chosen based on the average performance across evaluation metrics on the validation
set. On the test set, AP values were ranging from 61.2% to 62.8%, with an average
of 62.1%. AP50 ranged between 75.1% to 77.7%, averaging 76.5%, while the AP75
reached a mean of 71.0%. For AJI, the the test set values ranged between 69.1% and
73.4%, with an average of 72.2%. Pixelwise segmentation, measured using the Dice
coefficient, produced results between 79.0% and 80.7% (with an average of 79.8%) on
the test set. These results highlight the effectiveness of the model in both identifying
and segmenting glomeruli across the dataset. Qualitative results of the segmentations
produced by the trained detection model are reported in Figure 4.15.

Fig. 4.15 Qualitative results of the glomeruli segmentation process. The top row exhibits
examples from the Szeged cohort, the middle row from the Bari cohort, and the bottom row
from the Cologne cohort. Notably, observe the impressive segmentation performance despite
the distinct color variations in the PAS stainings across these three different institutions.
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Classification The classification results at the glomerular level for CNN and ViT models
were summarized in terms of ROC-AUC and PR-AUC across four types of lesions (M,
E, S, and C). The best-performing models varied by lesion type:

M lesions: EfficientNetV2-L achieved the highest performance with a mean
ROC-AUC of 90.2% and a mean PR-AUC of 81.8%.

E lesions: MobileNetV2 achieved the top ROC-AUC of 94.7%, while ResNet50
obtained the highest PR-AUC at 75.8%.

S lesions: EfficientNetV2-M demonstrated the best results, with a ROC-AUC of
92.7% and a PR-AUC of 78.6%.

C lesions: EfficientNetV2-L delivered the best ROC-AUC of 92.3%, and EfficientNetV2-
S scored the highest PR-AUC at 54.7%.
Figure 4.16 visually compares these models” ROC-AUC and PR-AUC performance.
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Fig. 4.16 ROC and PR curves on the test set for the best-performing models regarding M, E,
S, C lesions on glomerular level.

The classification results are detailed in Table 4.9 for M lesions, Table 4.10 for E
lesions, Table 4.11 for S lesions, and Table 4.12 for C lesions.
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Table 4.9 Classification results for M lesion on the test set. The best-performing architecture
is highlighted in bold typeface.

. ROC Curve PR Curve
Architecture M Label —r-—37 0 "AUC AUC  Mean AUC

nan_label 96.6 94.7

EfficientNetV2-L noM 88.2 90.2 77.9 81.8
yesM 85.8 72.9
nan_label 95.0 92.5

EfficientNetV2-M noM 87.1 89.0 77.3 80.5
yesM 84.7 71.8
nan_label 96.9 95.2

EfficientNetV2-S noM 87.0 89.2 78.8 80.4
yesM 83.8 67.3
nan_label 97.0 95.1

DenseNet161 noM 87.8 89.7 78.8 81.1
yesM 84.2 69.5
nan_label 97.0 95.1

DenseNet121 noM 87.4 88.6 77.6 78.6
yesM 81.3 63.2
nan_label 96.6 94.6

ResNet50 noM 88.3 89.5 78.8 80.0
yesM 83.7 66.6
nan_label 96.7 94.9

ResNet34 noM 86.2 87.5 76.0 76.6
yesM 79.6 59.0
nan_label 96.9 94.6

MobileNetV?2 noM 87.2 88.9 78.9 80.4
yesM 82.6 67.6
nan_label 93.0 88.8

SqueezeNet noM 80.9 80.0 69.2 66.8
yesM 66.0 42.3
nan_label 93.2 90.2

PretrainedViTB32 noM 80.7 82.5 66.8 69.4
yesM 73.6 51.3
nan_label 94.4 91.3

PretrainedViTL32 noM 81.2 83.1 66.7 69.7
yesM 73.7 51.0
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Table 4.10 Classification results for E lesion on the test set The best-performing architecture
is highlighted in bold typeface.

ROC Curve PR Curve
AUC Mean AUC AUC Mean AUC

Architecture E Label

) noE 91.4 994
EfficientNetV2-L 91.5 87.1
yesE 91.5 74.7
. noE 92.0 99.4
EfficientNetV2-M 92.0 85.0
yesE 92.0 70.5
i noE 92.5 99.6
EfficientNetV2-S 92.5 83.1
yesE 924 66.6
noE 929 99.6
DenseNet161 92.9 81.9
yesE 92.8 64.3
noE 93.0 99.6
DenseNetl121 92.2 69.8
yesE 91.4 40.1
noE 93.6 99.6
ResNet50 934 87.7
yesE 93.3 75.8
noE 91.9 99.5
ResNet34 91.7 77.1
yesE 91.6 54.6
. noE 94.9 99.7
MobileNetV2 94.8 83.2
yesE 94.7 66.6
noE 89.3 994
SqueezeNet 57.6 51.6
yesE 259 3.9
] ) noE 82.8 98.6
PretrainedViTB32 82.8 69.8
yesE 82.8 40.9
) ) noE 74.6 98.4
PretrainedViTL32 74.6 55.7

yesE 74.6 13.0




4.2 A deep learning approach for Oxford Classification of glomeruli lesions

116

Table 4.11 Classification results for S lesion on the test set. The best-performing architecture
is highlighted in bold typeface.

. ROC Curve PR Curve
Architecture S Label —(m—3r ol AUC AUC  Mean AUC

GGS 98.7 97.3

EfficientNetV2-L NoGS 93.8 92.4 95.5 76.9
SGS 84.8 38.1
GGS 98.3 96.8

EfficientNetV2-M NoGS 94.3 92.7 95.7 78.6
SGS 85.6 43.2
GGS 98.7 97.2

EfficientNetV2-S NoGS 94.0 90.6 95.6 75.0
SGS 79.0 32.0
GGS 99.0 97.6

DenseNetl161 NoGS 94.0 90.1 95.7 75.0
SGS 77.3 31.6
GGS 99.1 98.0

DenseNet121 NoGS 94 .4 88.6 96.4 74.1
SGS 72.1 27.8
GGS 98.9 97.4

ResNet50 NoGS 934 87.7 95.9 72.3
SGS 70.8 23.7
GGS 98.6 96.8

ResNet34 NoGS 932 88.0 95.1 72.2
SGS 72.4 24.7
GGS 98.9 97.4

MobileNetV2 NoGS 93.6 88.6 95.6 73.8
SGS 73.3 28.3
GGS 97.3 91.7

SqueezeNet NoGS  88.1 79.8 91.1 66.3
SGS 54.1 16.1
GGS 94.7 91.6

PretrainedViTB32  NoGS 87.6 85.5 89.1 69.2
SGS 74.2 26.8
GGS 97.4 94 .4

PretrainedViTL32 NoGS 88.7 85.7 89.7 69.2
SGS 70.9 23.4
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Table 4.12 Classification results for C lesion on the test set. The best-performing architecture
is highlighted in bold typeface.

. ROC Curve PR Curve
Architecture C Label
AUC Mean AUC AUC Mean AUC
. noC 92.0 99.3
EfficientNetV2-L 92.1 75.5
yesC 92.3 51.7
) noC 89.0 99.1
EfficientNetV2-M 88.9 71.9
yesC 88.7 44.7
. noC 89.9 99.0
EfficientNetV2-S 90.2 76.9
yesC 90.6 54.7
noC 92.4 994
DenseNet161 92.3 73.9
yesC 92.2 48.4
noC 90.1 99.3
DenseNet121 90.7 75.0
yesC 91.3 50.7
noC 89.0 99.0
ResNet50 88.9 71.7
yesC 88.9 443
noC 88.9 99.1
ResNet34 89.2 70.1
yesC 89.5 41.1
] noC 90.2 99.2
MobileNetV?2 90.4 71.8
yesC 90.6 44.3
noC 69.8 97.1
SqueezeNet 56.1 52.7
yesC 42.4 8.4
) ) noC 52.1 95.6
PretrainedViTB32 52.1 51.1
yesC 52.1 6.7
] ] noC 37.9 93.1
PretrainedViTL32 37.9 49.5
yesC 37.9 5.9

UMAP plots in Figure 4.17 depict how well the models grouped glomeruli according to

the lesion types, indicating distinct feature clusters.
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Fig. 4.17 Embedding plots for M, E, S, C lesions classification by best-performing models.
Specific training for Oxford M, E, S, C labels improved the separation of clusters obtained
from CNN features compared to the pretrained baseline.
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4.2.4 Discussion

In this study, a comprehensive pipeline referred to as MESCnn was developed for a computer-
aided nephropathology system, focusing on glomeruli segmentation and the classification of
M, E, S, and C lesions in line with the Oxford Classification for IgA nephropathy biopsies.

The segmentation stage of the pipeline was achieved using variations of the Mask R-CNN
architecture, trained on a large, diverse dataset obtained from three different institutions,
covering 11 types of glomerulonephritis. The Mask R-CNN models demonstrated strong
performance, surpassing comparable models from previous studies [178, 179, 182]. Various
configurations of Mask R-CNN were explored, with detailed results shown in the study’s
tables, affirming the architecture’s effectiveness in accurately identifying glomerular regions
in IgAN biopsies.

Following segmentation, the pipeline’s classification stage was dedicated to classifying
M, E, S, and C lesions within each glomerulus and providing biopsy-level classifications.
This study is one of the few that strictly adheres to the Oxford Classification using only
PAS-stained sections and focuses exclusively on IgAN biopsies. Although Uchino et al. [177]
have tackled similar lesions in their study, their performance fell considerably short of with
respect to the ones obtained here across all scores, despite having access to a larger dataset.
The models tested include various CNN architectures ViTs, with EfficientNet and ResNet
consistently yielding superior results across the classification tasks. The study highlights
that, while ViTs have yet to match CNN performance in glomerular classification tasks,
future advancements may lead to improved performance. Additionally, the challenge in
replicating human pathologist assessments of E and S lesions is noted, which may be due
to their low reproducibility in clinical settings. Finally, this study also addresses the issue
of stain color variation by training models on multicentric data with diverse stain color
characteristics. Previous research supports this strategy as a way to mitigate the challenges
of stain color variability in histopathology data analysis [183, 184]. Future studies could
explore the benefits of stain color normalization techniques to further enhance the pipeline’s

accuracy in lesion scoring.
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4.3 Shape-based Breast Lesions Classification using Digital

Tomosynthesis Images

Breast cancer, the second most common cancer among women worldwide, has become
a global public health issue due to its complex intrinsic etiology [185]. Early diagnosis
and cancer monitoring significantly reduce death risks, improve prognosis and treatment
outcomes, and lower treatment costs.

Mammography is considered the gold standard among various imaging modalities as it
offers the potential for early pathology detection [186]. However, as a 2D method, it has
limitations in visualizing lesions, particularly in dense breasts with a prevalent glandular
component. Additionally, mammography provides a 2D projection of a 3D structure, resulting
in superimposition of tissues from different planes in the radiographic image.

Other imaging techniques, such as magnetic resonance, computed tomography, and digital
breast tomosynthesis (DBT), are strong alternatives when in-depth analysis of high-risk cases
is required. Among these, DBT has been shown to have greater accuracy compared to 2D
imaging methods [187]. By acquiring multiple thin, high-resolution images, the DBT system
creates a quasi-three-dimensional representation of breast images, reducing the effects of
tissue superimposition.

Additionally, DBT requires a lower radiation dose than conventional imaging techniques,
while producing images with higher resolution and contrast [188]. DBT provides a more
precise diagnostic tool than 2D imaging for assessing morphological features, such as the
shape and margins of various breast cancer immunophenotypes, allowing it to play a critical
role in molecular imaging and prognosis [189-193].

Over the last decade, DL has emerged as a promising computational approach for
the automatic detection, classification and segmentation of cancerous masses thorough
the analysis of diagnostic medical images, thus enabling the computer-aided diagnosis
(CAD) and clinical decision support systems [194-197]. The DL methods along with
the traditional image processing techniques have already been established as an effective
approach to automatically analyse diagnostic images for the breast cancer diagnosis and
monitoring [187, 198, 199]. Numerous studies have been dedicated for the automatic
detection, segmentation and classification of the breast lesions that achieved considerably
moderate to high performances [200-209].

However, the automatic classification of the breast lesions according to the shape, size
and physical appearance remains a challenging task due to the varying shape that refers

to different type and stage of the cancer [210] (see Figure 4.18). The breast cancer is
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morphologically categorised into several varying shapes based on cancer growth pattern,
named as round, oval, lobulated, irregular, and architectural distortion [211, 212].

Numerous existing studies deal with the shape based breast cancer classification [210,
213, 214], however, most of these consider the mammogram instead of the DBT that offers
several advantages as discussed above.

In this work named "Shape based Breast Lesion Classification using Digital Tomosynthe-
sis Images: the role of Explainable Artificial Intelligence" [42], a CNN-based deep learning
framework was developed and validated for classifying breast lesions based on shape by
analyzing the ROIs on DBT images. The shapes of cancerous masses were considered
according to the Breast Imaging Reporting and Data System (BIRADS) classification from
the American College of Radiology, which is widely used in clinical and digital breast
tomosynthesis settings [215]. This classification includes the following three categories (see
Figure 4.19):

* regular opacity (Oro), encompassing round, oval, and lobulated shapes;
* irregular opacity (Ori);
* architectural distortion shape (Ost).

The clinical importance of these three BIRADS categories lies in the ability to distinguish
between regular masses and irregular masses/architectural distortions, which is crucial for
early breast cancer diagnosis. It is known that Oro lesions are typically benign, while Ori and
Ost lesions are malignant. Additionally, a "no lesion’ category, containing images without
any lesions, was included in this study (see Figure 4.19).

Furthermore, eight state-of-the-art pretrained CNN architectures were employed, and

their performance was compared with and without fine-tuning (using XAl techniques). Two

OO

urcumscnbed Obscured Microlobulated 11l Defined Splculalcd/

\ Round Oval Lobulated Irregular Distortion/

Z_'C)FU>Z

l"""~’il>:l:“/J

Fig. 4.18 The morphological division of the breast cancer shapes according to the growth
pattern [211].
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different online data augmentation routines were tested to evaluate the impact of various
augmentation methods on the model’s performance. The dataset used in this study was
derived from the authors’ previous research and included 39 breast DBT exams from 16
patients. For more details on data acquisition and composition, readers are referred to the

previous study [99].

(d)

Fig. 4.19 The ready to classify Rols on the images. (a) Example of image with no lesions
(None); (b) Example of image with irregular opacity (Ori); (¢c) Example of image with regular
opacity (Oro); and (d) Example of image with stellar opacity (Ost).

The trained DL models and related results have been further interpreted employing two
different methodologies for each of the two explanation mechanisms. Grad-CAM method and
LIME have been used to visually interpret the results, whereas t-SNE and UMAP techniques
have been utilized to study the mathematical interpretability of the features automatically
extracted by all eight CNN architectures.

4.3.1 Materials and Methods

This study uses the Rol-level images generated in a previous study [99], aimed at building a

dataset of Rols suitable for feeding into deep learning models for shape-based classification.
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A total of 16 patients participated in breast tomosynthesis examinations. The average age of
the participants was 49.8 years, with a standard deviation of 9.2 years. The youngest patient
was 35, while the oldest was 65. Since some patients underwent multiple exams, the total
number of examinations amounted to 39. Machine learning algorithms were used to generate
tiles from the original images.

Figure 4.19 displays the Rols after the segmentation phase. For the None class (i.e., the
no lesion class), random images were selected from breast areas without any lesions.

A radiologist from the University of Bari Medical School, with fifteen years of experience
in breast imaging, labeled the images. To verify labeling accuracy, all radiological reports
were reviewed, including histological reports for detected lesions and a two-year follow-up
with DBT for negative cases. The images were labeled and categorized into four classes: no
lesions (None); irregular opacity (Ori); regular opacity (Oro); and stellar opacity (Ost). The
None class contains 1000 images, while the Ori, Oro, and Ost classes contain 391, 654, and
480 images of lesions, respectively, resulting in a total of 2525 samples.

The CNN model architectures employed for classification task were the following: VGG,
ResNet, ResNeXt, DenseNet, SqueezeNet and MobileNet-v2.

4.3.2 Experimental Pipeline

Figure 4.20 illustrates the overall flow diagram of the experimental approach. As shown,
the experimental setup began by fine-tuning the selected pretrained networks with three
different datasets: the original dataset and two augmented versions created using different
data augmentation techniques. The CNN models were trained using 5-Fold cross-validation.
Subsequently, the features extracted from the feature maps of all versions of the fine-tuned
and pretrained networks were analyzed using both t-SNE and UMAP. Finally, Grad-CAM
and LIME were applied to the Rol images to provide interpretability.
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Fig. 4.20 The overall flow diagram of the experiments. The experimental setup starts by fine
tuning the considered pretrained networks with three different datasets, i.e the original one
and two datasets obtained with two different data augmentation procedures. Thereafter, the
features extracted by the feature maps of all versions of fine-tuned and pretrained networks
have been analyzed with both t-SNE and UMAP. Finally, Grad-CAM and LIME have been
applied to the Rol images.

Data Augmentation. Due to the limited dataset size, two types of augmentation were con-
sidered: basic and advanced. The basic augmentation included rotation and flipping,
while the advanced augmentation also incorporated color jittering. Various configura-
tions of data augmentation were tested, as shown in Table 4.13 and described below.
Using the transforms.Compose interface provided by PyTorch, the augmentations were

applied sequentially on-the-fly, each with a probability set to 0.25.

No Aug involved no augmentation other than normalization, which was performed
by rescaling the image intensity values from integer values in the range [0,255] to
floating-point values in [0, 1]. Basic Aug included random rotation in multiples of 90
degrees, as well as random horizontal and vertical flips. Adv Aug extended the basic
augmentation by adding ColorJitter transformations, introducing random variations
in brightness, contrast, saturation, and hue. Normalization was performed in the same

way as in No Aug.
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Table 4.13 Data augmentation summary. All augmentations are done on-the-fly with 0.25
probability in the order they are presented in the table. Normalization is always performed at
the end after all other augmentations. ColorJitter refers to the random alterations of the
brightness, range: [0.8,1.2]; contrast, range: [0.8,1.2]; saturation, range: [0.8,1.2]; and hue,
range: [—0.2,0.2]

Transform No Aug Basic Aug Adv Aug
RandomRotation90 X v v
RandomRotation180 X 4 v
RandomRotation270 X v v
RandomHorizontalFlip X v 4
RandomVerticalFlip X v v
ColorJitter X X v
Normalization v v v

4.3.3 Results

The results of all pretrained and fine-tuned nets were analysed based on ROC AUC. The
mean and standard deviation of AUC was computed for each classifier among 5-fold results.
The AUC and the standard deviation were also computed for each individual class against all
architectures in three augmentation configurations.

In case of No Aug configuration, it can be observed from the Table 4.14, DenseNet-
161 1s the architecture with the highest mean AUC of 96.3%. The ResNeXt and ResNet-
50 networks are slightly behind with the AUC of 96.2% and 96.1%, respectively. The
MobileNet-v2, ResNet-34, and VGG-16 collectively form a third cluster with an AUC of
around 95%. Conversely, the SqueezeNet is the least performing model in our experimental
setup, managing to achieve merely 72.4% of the AUC.

In the case of Basic Aug configuration, all architectures performed considerably better
than the previous No Aug configuration. The results reveal that ResNeXt obtains the highest
AUC of 97.9% beating all other architectures. The DenseNet-161 and ResNet-50 achieve
similar performances with the AUC of 97.7% and 97.6%, respectively. Once again, the
performance of the SqueezeNet failed to present significant outcomes, thus abiding by the
No Aug configuration.

The second augmentation setup, called Adv Aug, emerged to be even better than both

previously conceived No Aug and Basic Aug setups. The DenseNet-161 reached the top



4.3 Shape-based Breast Lesions Classification using Digital Tomosynthesis Images 126

AUC of 98.2%. The ResNet-50 appeared to be the second best model with a slightly less
AUC of 98.0%.

Finally, as noted during the No Aug and Basic Aug configurations, the SqueezeNet was
the model which offers least reliability with the largest inter-fold variability; however, the
AUC achieved by such a model improved from the previous setups.

Therefore, it can be summed up that the ResNeXt and DenseNet-161 remained the
top performing models and the augmentation configurations considerably improved the
performance of all CNN architectures. Notably, SqueezeNet failed to produce convinceable

results.
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Table 4.14 The summary of the results obtained for No Aug, Basic Aug, and Adv Aug config-
urations is provided hereunder. The bold text represents the best value of the corresponding
parameter among all CNN models, that is mean over all four classes

Area Under the Curve (AUC)

No Aug Basic Aug Adv Aug

Architecture (None, Ori, (None, Ori, (None, Ori,
Oro, Ost) Oro, Ost) Oro, Ost)

919+1.1 924+09 936+1.2
974+04 98.0+06 97.6x09
952+13 959+1.1 963+09
95.8+0.7 96.6+x05 96.5+0.7

MobileNet-v2

95.1 95.7 96.0

90.1+12 939+19 945+13
942+14 985+£06 982+0.8
899+1.7 955+0.6 96.7+0.8
929+18 971+x08 972+1.2

DenseNet-121

91.8 96.2 96.6

948+09 958+1.0 964+05
97614 99107 994+0.2
958+13 97810 98.7+0.7
97.0+£09 982+03 98.0+0.7

DenseNet-161

96.3 97.7 98.2

509+3.0 56.6+x56 62.7+£8.1
859+32 843+14 864+29
689+£56 67.6+38 71.7+£72
83.8+2.6 862+37 87.6+3.1

SqueezeNet

72.4 73.7 71.1

920+£08 945+£1.0 95406
962+0.8 98.6+05 989+0.5
94717 976+04 974+10
96.1+13 97.6+x0.7 97.7+0.7

ResNet-34

94.8 97.1 913

938+1.1 953+12 962+0.6
98.0+0.5 994+03 993+03
95.8+08 97.8+0.6 97.9+0.7
97.0+1.0 97.8+09 985+04

ResNet-50

96.1 97.6 98.0

90.6+1.7 925+x14 936+1.3
98.1+0.6 989+06 97.7+0.7
96.1+0.7 96.7+0.7 972+0.7
96.6+04 97.7+0.6 98.1+0.6

VGG-16

95.3 96.4 96.6

941+1.0 96.1+£0.7 958+0.7
97.7+£0.7 99.3+£02 99.0+0.7
96.0+08 97.9+0.7 982+0.8
97105 983+x03 982+09

ResNeXt

96.2 97.9 97.8
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4.3.4 XAI Interpretation

UMAP and t-SNE The extracted features from both pretrained and fine-tuned networks
were visualized to understand the patterns that emerged in low-dimensional spaces after

applying nonlinear dimensionality reduction techniques, such as t-SNE and UMAP.

In Figure 4.21a, the t-SNE embedding plots for both pretrained and fine-tuned DenseNet-
161 and SqueezeNet architectures are presented. Similarly, Figure 4.21b shows
the UMAP embedding plots for both pretrained and fine-tuned DenseNet-161 and
SqueezeNet models. In the pretrained versions, no clear patterns emerged in either
embedding plot, indicating that the features learned from the ImageNet dataset were

not necessarily well-suited for discriminative tasks in radiological image applications.

However, after 50 epochs of fine-tuning on the designated training set, the clusters
became more distinctive. With fine-tuned CNN features, both UMAP and t-SNE
allowed for the visualization of separate clusters corresponding to the four classes:
None, Ori, Oro, and Ost.

Notably, the distances between clusters in the t-SNE visualizations cannot be directly
interpreted. For instance, the proximity of clusters in Figure 4.21a does not imply simi-
larity; rather, points closer to each other within a cluster represent more similar objects
compared to those farther apart. In contrast, Figure 4.21b demonstrates UMAP’s ability
to represent both local and global feature structures, providing a clearer distinction

between clusters and more interpretable positioning of points.
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the validation set of 1* fold.
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and (c) and fine-tuned (b) and (d) DenseNet-161 and SqueezeNet, respectively,
on the validation set of 1% fold.

Fig. 4.21 T-sne and UMAP visualization of extracted features from DenseNet-161 and
SqueezeNet.
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Grad-CAM. The visual explanation of all eight fine-tuned networks is shown in Figure
4.22, using Grad-CAM as the reference method. In this figure, two sample images for
each class are displayed, along with the corresponding saliency maps for each network.
Only images for which all networks made correct predictions were included, allowing
for visualization of the relationship between highlighting of the lesion area and network
performance. The saliency maps of the approximate features were generated based on

the ground-truth/predicted class view.

Interestingly, the CNN architectures that struggled to correctly identify the lesion areas
also showed lower performance in the classification task. For instance, SqueezeNet,
which was the least effective network in terms of AUC, and VGG-16, failed to highlight
the relevant lesion areas. This trade-off implies that an increasing number of parameters
did not consistently result in higher AUC. In contrast, DenseNet-161, DenseNet-121,
and ResNet-50 successfully highlighted the lesion areas in the images. Consequently,
this XAl-based CAD system revealed the potential applicability of reliable and less

reliable models for use in CAD applications.

LIME. The superpixel perturbations performed by LIME are shown in Figure 4.23. Observa-
tions regarding the performance of the LIME technique were similar to those obtained
with the Grad-CAM method. The figure presents the same images compared in Figure
4.22 for Grad-CAM, allowing for a robust and clear comparison. The class used for
LIME perturbations was the ground truth class, which in this case also matched the
prediction made by all CNNs. Regions positively correlated with the CNN’s decision

are highlighted in green, while those negatively correlated are shown in red.

However, it should be noted that reasoning in terms of superpixels may result in
explanations that are visually less intuitive than those provided by CAM-based methods.
Comparing Figures 4.22 and 4.23, some superpixels identified as relevant to the
prediction according to LIME were not highlighted in the corresponding Grad-CAM
activation maps. Therefore, it is recommended to use both methods when developing
an explanation for a CAD system, as complementary information from both sources

can provide a broader understanding of how the model operates.

4.3.5 Discussion

This study proposed a novel visually interpretable DL framework for multiclass, shape-based

classification of breast lesions in tomosynthesis images. For morphological classification,
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Fig. 4.22 The visualization of the Grad-CAM method with the eight different CNN architec-
tures considered throughout the study. To illustrate the better view, two examples for each
class are portrayed and the ground truth class label is provided above the set of each image.
As the jet color scheme is employed for depicting saliency zones, the red color represents
the higher intensity, i.e. pixels on which the network is focusing more for performing the
classification, whereas, the tendency towards the blue color represents the lower intensity of
focus. The header bar is used to distinguish among several classes and colored uniquely. The
similar color of header for two images represents the sample chosen from same class.

eight DL models were employed on tomosynthesis breast images, and two families of XAl
methods—perceptive interpretability and mathematical interpretability—were incorporated
to explain the results obtained during the validation study, aiming to build trust between
clinicians and Al

The perceptive interpretability models visually explained the top features contributing

to classification, while the mathematical interpretability methods revealed the clustering
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Fig. 4.23 The visualization of LIME superpixels positive and negative regions with the eight
different CNN architectures considered throughout this study. To illustrate the better view,
two examples for each class are portrayed and the ground truth class label is provided above
the set of each image. The red color highlights the negatively contributing superpixels,
whereas, the green represents otherwise. The header bar is used to distinguish among several
classes and colored uniquely. The similar color of header for two images represents the
sample chosen from same class.

capabilities of the DL architectures. The CAD system developed in this study was capable
of identifying potential growth patterns of tumorous regions in DBT images, resulting
in improved diagnostic and prognostic performance. Its successful implementation also
enhanced trust in high-accuracy DL models within the clinical field.

Quantitative analysis of extensive experimental results was performed using pretrained
DL models with and without data augmentation. The mean AUC values of the models

improved with data augmentation. DenseNet-161 emerged as the best-performing algorithm,
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consistently achieving an AUC higher than 96.0% across No Aug, Basic Aug, and Adv Aug
setups.

In particular, DenseNet-161 demonstrated a 1.45% and 1.97% increase in mean AUC
from No Aug to Basic Aug and Adv Aug, respectively. It outperformed SqueezeNet by
33.01%, 33.28%, and 27.10% in comparative configuration, respectively. In Basic Aug,
ResNeXt outperformed other architectures, with a 33.56% improvement over the least
performing model.

While results were comparable, the best-performing model in terms of AUC did not
always perform optimally across all aspects, due to the primitive learning and weight updating
mechanisms of CNN models. For example, in the No Aug phase, three out of four individual
AUC values of ResNeXt among classes were higher than those of DenseNet-161, despite
having the same mean AUC.

Nevertheless, both augmentation types and three execution setups (10, 30, and 50 epochs)
showed clear improvement with augmentation. Basic augmentation improved performance
compared to no augmentation, while advanced augmentation further increased AUC. High
visual similarity between training and validation data, along with state-of-the-art architectures,
clinical data, and Rol-level cropped images, were likely contributing factors.

Regarding mathematical explanations, feature embeddings from both t-SNE and UMAP
effectively extracted meaningful relationships in low-dimensional spaces when features
were representative of underlying patterns. In Figures 4.21a and 4.21b, four clusters were
visible for DenseNet-161. For less accurate models, like the lightweight SqueezeNet, cluster
formation varied, with UMAP yielding more compact representations. Therefore, the study
recommended using mathematical XAl techniques to visualize feature relevance for the given
problem.

For perceptive XAl techniques, the performance of CNN models aligned with comple-
mentary insights from Grad-CAM and LIME. Grad-CAM highlighted regions with relevant
gradients for classification, while LIME identified superpixels as positively or negatively
correlated with predictions. LIME allowed adjustment of the number of top contributing
features, and Grad-CAM saliency maps provided intensity values. Positively correlated
regions were marked in green, and negatively correlated regions in red, allowing for an
intuitive understanding of significant regions.

Interestingly, CNN architectures that struggled to identify lesion areas also had lower
AUC scores. The high AUC of certain models could be explained using XAI methods.
For example, SqueezeNet, the least performing network in terms of AUC, and VGG-16,
failed to highlight relevant lesions, as shown in Figure 4.22. In contrast, DenseNet-161,
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DenseNet-121, ResNeXt, and ResNet-50, with higher AUC values, accurately highlighted
lesion areas using Grad-CAM.

In summary, this study demonstrated the applicability of CNN models for DBT lesion
classification at the Rol level. By leveraging transfer learning, the framework achieved
efficient results with fine-tuning of parameters. The black-box nature of DL models was
effectively explained, building radiologists’ trust in reliable CAD systems for diagnostic
tasks.
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4.4 Supervised Diagnosis Standardization in Free-Text Re-

ports

In clinical practice, routine examinations are typically accompanied by textual reports,
written by experts to document findings and observations. These reports provide crucial
information for diagnosis and treatment planning, capturing nuances that are often specific to
the individual case. However, since these reports are often composed manually, they vary
in structure and terminology, depending on the physician’s style and expertise. This lack
of standardization poses challenges for consistent interpretation and integration into digital
health records, especially as healthcare systems increasingly rely on data-driven insights to
support clinical decision-making.

Standardizing the diagnosis related to clinical cases represents a critical challenge in
medicine, one that can be addressed through digital solutions designed to automatically
support physicians. These solutions often need to process free-text reports and identify
clinically relevant terms, such as the diagnosis itself and terminology used for diagnostic
formulation. Despite the increased adoption of electronic reporting systems, many clinical
institutions still rely on manual collection and processing of reports. If not adequately aligned
with shared protocols and standards, the recognition of relevant terms can suffer from a lack
of standardization.

Nowadays, the availability of standard vocabularies for clinically relevant terms, in-
cluding diagnoses, is a standing reality. The challenge of automated systems for diagnosis
standardization is taking full benefit from such a shared knowledge, to reach the highest
possible level of standardization in assigning a diagnosis.

In this section ARGO 2.0 is presented ("ARGO 2.0: a Hybrid NLP/ML Framework for
Diagnosis Standardization" [43]), a framework aimed at diagnosis standardization based on a
hybrid approach, in which both NLP standard methods and MLP techniques cooperate to the
standardization. Recent research has focused heavily on NLP-based automated digitalization
of medical reports [216-221] and the prediction of diagnoses using ML models [222-225].
However, many of these solutions are highly domain-specific and fail to integrate the dual
goals of automatically digitalizing reports and inferring diagnoses from structured digital

datasets. ARGO 2.0 addresses both challenges in a unified approach, summarized as follow:

* it includes a component for automating the digitalization of medical reports, integrated
within a comprehensive tool known as ARGO Core. This tool leverages Optical
Character Recognition (OCR) and NLP to transform free-text reports into digital

content, which is then used to populate a relational database modeled in RedCap [226];
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this database serves as a data source for training a machine learning model capable of

learning diagnoses for incoming patients.

* it was designed to be flexible w.r.t. the template used in the reports and agnostic to the
medical field. The system was evaluated in the domain of hemo lympho-pathology,

processing 502 heterogeneous textual reports from various institutions.

Finally, preliminary results with a deep learning approach for the diagnosis NER were
evaluated, proposing a migration from the hybrid NLP/ML architecture to a deep learning

one.

4.4.1 Materials and Methods

Dataset A set of 502 reports including diagnoses of lymphomas from 2014 to 2021 from 9

Italian centers was collected from 9 italians centers and organized as follows:

* An internal series of n. 353 reports collected from the Research Institution Istituto
Tumori ‘Giovanni Paolo II’ from Bari; this was used as training set and validation

set.

* An external series including n. 149 reports coming from 8 collaborative sites;

this was used as test set.

The reports collected were stored in the data model, supporting 9 heterogeneous

templates, adopted in reports coming from different Italian institutions:

1. Hematology and Cell Therapy Unit, [.LR.C.C.S. Istituto Tumori ‘Giovanni Paolo
II’, Bari.

2. Division of Hematology 1, AOU “Citta della Salute e della Scienza di Torino”,

Turin.
3. Hematology, AUSL/IRCCS, Reggio Emilia.

4. Division of Hematology, Azienda Ospedaliero-Universitaria Maggiore della

Carita di Novara, Novara.

5. Unit of Hematology, Azienda Ospedaliero-Universitaria Policlinico Umberto I,

Rome.
6. Department of Medicine, Section of Hematology, University of Verona, Verona.

7. Department of laboratory diagnostics, “ASST Degli Spedali Civili di Brescia”,

Brescia.
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8. Division of Diagnostic Hematopathology, IRCCS European Institute of Oncology,
Milan.

9. Histologic Pathology and Molecular diagnostic, Azienda Ospedaliero-Universitaria

Careggi, Firenze.

ML Models The NER task with diagnosis standardization was approached as a classification
task. The ML models supporting the ARGO Core were chosen among the classical
ones in ML, in particular a RF, XGB and MLP classifiers. The best model was chosen

by

The markers related to the internal series have been manually extracted and reviewed, to
reduce the error related to wrong data input during the training phase. Instead, the markers in
the external series were extracted from the input reports, through OCR and NLP techniques.
Several factors, including the slight imprecisions of OCR algorithm during the text acquisition
and the non-optimal image quality, negatively affect the performance of the classification
model on the external series.

Table 4.15 shows the percentual occurrence of most frequent biomarkers in the pathology
reports for definition of every aforementioned diagnosis, for both internal and external series.

Collected reports refer to five prevalent diagnosis classes of lymphoma: diffuse large
b-cell (DLBCL), follicular (FCL), mantle cell (MCL), Hodgkin (HL), and T-cell. Label

distribution for test set is reported in Table 4.16

4.4.2 Experimental Pipeline

The architecture of ARGO 2.0 was made up by four components:

Data Model was the underlying source of information, designed for the integration of
heterogeneous sources of data ingestion. It automatically collected information coming
from medical reports by modelling them as personalized electronic Case Report Forms
(eCRFs) [20]. Adopted eCRFs have been designed to match the knowledge model
shared in RedCap, set on the clinically relevant variables identified by recognized
investigators. In the addressed use case, eCRFs were designed according to the
requirements provided and approved by the College of American Pathologists [21],
[22]. Included features were: Report ID, Report Data, Sample Type, Markers, Type of

Diagnosis.

ARGO core was the tool responsible for converting free-text reports into a digital format

for storage in the data model. It exhibited three key features: (1) independence from the
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Table 4.15 Percentual occurrence of most frequent biomarkers retrieved from both internal
and external series of pathology reports. Abbreviations: NA, not available. : BCL?2 assessed

by in situ hybridization.

. Occurrence of Biomarker, %

Most frequent biomarkers : .
Internal series | External series

CD20 88.95 91.87
CD3 84.99 56.10
CD5 84.42 42.28
BCL6 75.92 60.16
BCL2 71.10 67.48
CD10 69.69 68.29
CD30 60.62 21.14
Ki-67 53.54 65.04
IRF4/MUM1 50.42 30.08
CD23 42.49 20.33
CD15 33.99 19.51
CD45/LL.CA 28.90 NA
PAXS 27.76 20.33
Cyclin-D1 23.51 35.77
CD79alpha 22.38 5.69
EBV/LMP1 16.43 4.07
IgM 13.31 NA
IgD 12.75 NA
MYC 10.76 33.33
BCL2* 10.48 NA
EMA 8.22 0.81

Table 4.16 Label distribution for external test set: diffuse large b-cell (DLBCL), follicular
(FCL), mantle cell (MCL), Hodgkin (HL), and T-cell.

Diagnosis | N. | Frequency (%)
DLBCL | 59 39.60
FCL 32 21.48
HL 30 20.12
MCL 26 17.45
T-CELL | 2 1.35

report template, (ii) independence from the medical field, and (iii) the application of a

NER approach to selecting the most appropriate diagnosis. In the addressed use case,

ARGQO core analyzed the incoming reports, retrieving all relevant sub-sections from

the acquired template. Using an OCR algorithm to retrieve the full report text, ARGO
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core chunked it into sub-sections using a basic set of regular expression. The section
report is then processed by a DL-based translation service API (DeepL !, detecting
the report source langue and translating it into english. For the diagnosis sub-section,
it extracted each marker mentioned in the report and used them to query the SEER
database for potential diagnoses associated with each marker value. ARGO core then
computed a degree of correspondence, termed the Matching Rate (MR), as defined by
the following formula:

counter

MR 4.1)

B DiagnosisLength
where the counter represented the number of occurrences of each label in the diagnosis
section, normalized by the length of that section (DiagnosisLength). Finally, the
retrieved sub-sections, marker list, and diagnosis list (with corresponding MR) were
sent to the DAM. The retrieval of sections and the NER for markers were based on

regular expressions.

ML Model was the machine learning model trained to predict diagnoses based on the
available data model. In the addressed use case, the training phase involved the
implementation of several model categories, including Decision Tree, Random Forest,
Gradient Boosting, Support Vector Machine, and Artificial Neural Network. Each
model category was trained and fine-tuned using the Grid Search approach. Each
combination of parameters generated a model with specific performance characteristics;
only the Random Forest model was retained, as it outperformed the others. The
remaining models were discarded due to lower performance. The ML model received
a list of markers as input and returned a predicted diagnosis, which was subsequently
sent to the DAM.

Diagnosis Assignment Manager DAM module was responsible for managing the sug-
gested diagnosis to optimize assignment accuracy, following a strategy tailored to the
specific medical field. No decision was needed when the diagnosis retrieved by both
ARGO core and the ML Model coincided, as DAM validated this single suggestion.
Similarly, if ARGO core was unable to return a result, DAM suggested the only avail-
able diagnosis— the one provided by the ML Model. However, when both diagnoses
were available but conflicting, an optimization strategy was required. In this case,
ARGO core computed the Matching Rate (MR) for the diagnosis predicted by the
ML Model. The rationale behind this strategy was to trust the ML Model’s prediction

'https://www.deepl.com/it/translator


https://www.deepl.com/it/translator

4.4 Supervised Diagnosis Standardization in Free-Text Reports 140

if it was supported by ARGO core with a sufficient MR. A threshold value for MR,
which was domain-dependent and heuristically set to 0.67 in the addressed use case,
was employed to measure the adequacy of this support. Finally, the chosen diagnosis
and the report sub-sections were sent to the Data Model, that used them to create the

corresponding eCRF.

As first step, the data were pre-processed as follows: drop of non-relevant features for
the prediction (i.e., Report ID, Data and those containing all missing values), drop one of the
same features expressed in both numerical and categorical way, categorical feature encoding,

Z-Score Normalization of numerical feature. Figure 4.24 depicted the full framework
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Fig. 4.24 ARGO 2.0 Architecture: (A), ARGO core services (B) and an example of eCRF
generated by ARGO 2.0 (C). DAM - Diagnosis Assignment Manager, ML Model — Machine
Learning Model, OCR — Optical Character Recognition, SEER - Surveillance, Epidemiology,
and End Results, NER — Named Entity Recognition, NEN — Named Entity Normalization.
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4.4.3 Results

The results achieved were divided into three categories: ARGO Core only, ML only and
ARGO 2.0 (the combined approach). For this task, the framework performance was assessed

in terms of Accuracy (A), Precision(P), Recall (R) and average F-Score.

ARGO Core Results According to the internal series, ARGO core achieved 86.4% of A,
average R, and average F-Score, and 100.0% of average P in the process of assigning a
diagnosis, showing higher performance than the one presented in its previous version.

Table 4.17 reported the performance achieved on test set.

Table 4.17 Performance achieved with ARGO Core. Abbreviations: DLBCL, diffuse large
b cell lymphoma; FCL, follicular lymphoma; HL, Hodgkin lymphoma; MCL, mantle cell
lymphoma

Precision % | Recall% | F-Score%
DLBCL 100 87.27 93.20
FCL 93.93 96.87 95.38
HL 100 89.65 95.45
MCL 96.15 96.15 96.10
Average Metrics 97.52 92.48 94.82
Accuracy % 91.56
Not Available daignosis 9

ML Results As mentioned before, the best overall accuracy was obtained by RF on the
validation set, resulting as the best model for making predictions in most diagnosis.

Then, the performance of the such a model was evaluated on the test set.
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Table 4.18 Performance achieved with ML Model. Abbreviations: DLBCL, diffuse large
b cell lymphoma; FCL, follicular lymphoma; HL, Hodgkin lymphoma; MCL, mantle cell
lymphoma

Precision % | Recall% | F-Score%
DLBCL 90.47 69.09 78.35
FCL 75 75 75
HL 57.14 96.55 71.79
MCL 89.47 65.38 75.55
Average Metrics 78.02 76.50 75.17
Accuracy % 75.35

ARGO 2.0 Results As a final step the performance of ARGO 2.0 was evaluated, which
embedded the DAM module to improve the reliability of diagnosis assignment by
combining ARGO core with the RF model. Table presented performance by class of
ARGO 2.0 with reference to the test set.

Table 4.19 Performance achieved with ARGO 2.0.Abbreviations: DLBCL, diffuse large
b cell lymphoma; FCL, follicular lymphoma; HL, Hodgkin lymphoma; MCL, mantle cell
lymphoma

Precision % | Recall% | F-Score%
DLBCL 100 89.09 94.23
FCL 94.11 100 96.96
HL 85.29 100 92.06
MCL 100 96.15 98.03
Average Metrics 94.85 96.31 95.32
Accuracy % 95.07

In this study, ARGO core was enhanced with a DAM that incorporated a RF model, re-
sulting in the development of ARGO 2.0. The upgraded framework demonstrated promising
results when applied to hemo lympho-pathology. ARGO 2.0 outperformed both the stan-
dalone ARGO core and the ML model across most metrics, with the exception of precision,
which was lower than that of ARGO core. The cause of this reduced precision was explored

by evaluating the model’s performance by diagnosis class. It became evident that precision
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was particularly low for the HL class. While ARGO core achieved 100% precision for HL di-
agnosis (as indicated in Table I), the ML model performed poorly, with a precision of 57.14%
(as shown in Table 4.18). Consequently, the overall precision of ARGO 2.0 decreased due to
the DAM module prioritizing the ML model’s prediction over ARGO core’s assignment. This
misclassification occurred when ARGO core produced a list of possible diagnoses and the
ML model incorrectly selected a diagnosis from that list with a MR exceeding the threshold.
In such cases, ARGO 2.0 would favor the ML. model’s selection, even though ARGO core
alone would have discarded the wrong diagnosis.

A potential technical solution to this issue lies in fine-tuning the MR threshold, ideally
using machine learning techniques to learn the optimal threshold dynamically, rather than
relying on empirical setting. This will be addressed in future work. Nonetheless, the
fundamental issue remains the low precision of the ML model in classifying the HL class,
which had a direct impact on ARGO 2.0’s overall performance. Such analysis revealed that
descriptions of HL cases lacked standardization. HL is a common diagnosis that physicians
typically further specify, which may lead to variability in descriptions. To address this,
future work will involve training the ML model on a larger number of classes, including
HL subclasses, to improve prediction specificity. A direct comparative analysis of ARGO
2.0 results with related tools is challenging, as these tools do not perform exactly the same
tasks. However, they tackle similar objectives, such as NER, information extraction (IE),
and pathology classification. The results achieved are in line with similar ones in the same
field [220, 221].

4.4.4 Alternative approach with transformer model

An alternative approach for performing NER of diagnosis in free-text report is given by the
use DL models, in particular with transformers.

In such a scenario, the adoption of a DL model may introduce several vantages: (i) total
independence from regular expressions, allowing the framework to be generalized to every
pathology with only fine-tuning process; (ii) possibility of performing NER on other targets
(markers, diagnosis, examination data, and so on) at the same time with a single model;
(ii1) replace the handcraft decisional heuristic of the DAM module with a straightforward
approach, since the decision depends only from the model; (iv) framework architecture
simplification, replacing the DAM module and ML module with DL model; (v) explainability

od the decisions retrieved directly from the attention mechanism.
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For the use case aforementioned, a BERT model was fine-tuned and tested against ARGO

2.0 DAM. Specifically, BERT was employed in its biomedical version, Bio-Bert.

BERT Introduced by Delvin et al. [227], the Bidirectional Encoder Representations from
Transformers (BERT) model is a pre-trained language model developed to process
and understand large amounts of text data. BERT’s unique Transformer architecture
allows it to encode bidirectional word contexts, meaning it considers both the words
preceding and following a given word, considering also the intra-word patterns. This
bidirectional context helps BERT produce high-quality representations of words in
a text. In NER, BERT can be effectively used as a pre-trained model for extracting
entities from text. To apply BERT to the specific task of NER, a process called
fine-tuning is performed. Fine-tuning involves training a classification model using
a labeled dataset containing examples of text with annotated entities. The BERT
model encodes the context of each word in the text and generates a sequence of word
representations. These representations are then passed to a classifier, which determines
for each word whether it belongs to an entity, and if so, classifies the type of entity (e.g.,
person, place, organization). During the fine-tuning process, the weights of the BERT
model are adjusted to better suit the NER dataset, enabling it to learn how to correctly
identify and classify entities in the text. BERT’s ability to consider both the preceding
and following contexts of words gives it an advantage over other NER models based on

older techniques, such as RNNs. This results in improved entity recognition accuracy.

BERT uses two main training paradigms: pre-training and fine-tuning. During the pre-
training phase, BERT is trained on a large dataset to learn general language patterns and
representations. This phase is typically conducted in an unsupervised manner, where
the model is exposed to unlabeled data, allowing it to learn from large corpora like
English Wikipedia and BooksCorpus. In this stage, BERT learns to capture linguistic
structures such as grammar, semantics, and syntax without needing labeled examples,

involving two two techniques:

* Masked Language Modeling : it predicts hidden (masked) words in a sentence
based on their surrounding context. This improves the model’s ability to learn

semantic relationships between words.

* Next Sentence Prediction: it predicts whether a given sentence follows a previous

one, improving text comprehension and context prediction.
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In the fine-tuning phase, BERT is then adapted to perform specific tasks, such as
classification, text generation, language translation, question answering, and more.
This involves training the model on task-specific datasets in a supervised manner,

where it uses labeled data to learn how to predict desired outputs for a given task.

BERT leverages the Transformer architecture to process text sequences and generate
contextualized language representations. The Transformer architecture consists of
encoding and decoding blocks, but BERT only uses the encoding block. This encoding
block is composed of multiple stacked layers, each tasked with encoding the input
text sequence. These layers encode both semantic and syntactic information into
dense vector representations (embeddings) that are highly useful for a wide range of
downstream NLP tasks. Moreover, BERT uses tokenization to break text into smaller
units, called tokens, for processing. Specifically, it employs WordPiece tokenization,
which splits words into subtokens based on frequency in the training corpus, allowing
BERT to handle words more efficiently. During this process, BERT adds two special
tokens: [CLS] at the beginning of a sentence, representing the entire sentence, and

[SEP] to separate different sentences. The type of embedding used are the following:

» Token Embedding — represents each token in the sentence.
* Segment Embedding — separates multiple sentences within the input.

* Position Embedding — captures the position of tokens in a sentence, helping
BERT understand the structure.

The output of BERT model in NER task is a representation following the BIO tagging
scheme. Given a sentence, each entity (word) is labeled as follows: B-Beginning of
the entity, I-Inside, tokens that are part of the same entity but not the first one and
0O-Outside, tokens that do not belong to any entity. An overview of BERT architecture
with BIO tagging scheme is depicted in Figure 4.25
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Fig. 4.25 BERT Architecture with tagging scheme. B-Beginning of the entity, I-Inside,
O-Outside.

In this work Bio-BERT model [228], a pre-trained BERT on medical corpora, was
fine-tuned and used for NER on the external test set. Such a choice was justified by its
superior performance compared with other biomedical language representation models,
such as PubMedBERT [229] and SciBERT [230], on a wide range of biomedical text

processing tasks.
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4.4.5 Preliminary Results

Bio-BERT was fine tuned on CancerMine public dataset [231], chosen as a source of
information. , CancerMine is a high-quality text-extracted database that catalogs more than
856 genes as drivers, 2,421 as oncogenes, and 2,037 as tumor suppressors in 426 cancer. This
resource was created through analysis of a wide range of scientific publications on oncology
and identification of important genes involved in cancer pathogenesis and is an automatically
updated dataset.

It was decided, therefore, to process the datasets by extracting 25,000 cases of lymphomas
out of 100,000 total cases. Then the model was tested on the external test set. Three
experiments were conducted by setting a number of epoch of 10, 20, and 40 respectively and
setting a maximum length of sentence processed of 256, 512 and 512.

The preliminary performances achieved on the test are shown in Table 4.20.

Table 4.20 Bio-BERT NER metrics on test set.

Experiment Configuration Precision | Recall | F1-score
CancerMine fine-tuning with 10 epochs | 66.9% | 66.7% | 66.8%
CancerMine fine-tuning with 20 epochs 81.3% 80.6% | 80.9%
CancerMine fine-tuning with 40 epochs | 75.1% 71.3% | 73.2%

4.4.6 Discussion

Bio-BERT fine-tuned on CancerMine achieved promising performance on the external test
set. Notably the trends of performance in Table 4.20 shows an overfitting behavior after
20 epochs, with the second experiment resulting as the most promising one. Comparing
the model with ARGO 2.0, although the acceptable performance, the metrics achieved still
remain lower w.r.t. Argo Core and ARGO 2.0 but higher than ML module. On the other

hand, the following consideration should be taken into account:

* The results achieved by Bio-BERT do not consider partial matching, i.e. if a diagnosis
is partially retrieved with a missing word, it is classified as false negative; this leads
to a performance decrease. Such issue can be mitigate by adding another layer that
matches the diagnosis retrieved with a list of possible diagnosis, returning the most

similar one.

* ARGO 2.0 performance metrics were considered after the standardization. The sup-

port of ARGO 2.0 DAM module inevitably increase the performance, since partial
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diagnosis sequences are converted into a standardization format and the framework

can misclassify an input sequence only if the partial diagnosis sequence is fully wrong.

* Bio-BERT was fine-tuned using an external public training set while ARGO 2.0 was
tuned on a private dataset, specific for the target lymphoma cases and supervised by
expert operators; the use of public dataset that includes other type of lymphomas
can introduce noise during the training phase. Moreover, transformers demonstrate
their full potential when trained on very large datasets, as their architecture excels
at capturing complex patterns and relationships in vast amounts of data. In light of
this, the model can benefit from the adoption of other public datasets [232] during the

fine-tuning phase.

* Bio-BERT was fine-tuned only considering the training epochs and the maximum
sequence processed by the model; a more elaborate fine-tuning strategies can further

increase the performance achieved.

* Bio-BERT can perform the NER task, even if the report image is cut (see Table 4.17,
Not Available diagnosis), assuming that the diagnosis sequence is contained in the cut
image. In case of Not Available diagnosis, the ML model still produces an output but

not reliable without the support of the heuristic incorporate into DAM.

Considering the aforementioned considerations, a transformer-based approach indeed
showed a promising performance and proved to be a valuable asset for accomplishing
NER on free-text report diagnosis. Noteworthy is the absence of a heuristic strategy and a
straightforward approach in performing NER w.r.t. ARGO 2.0 architecture. Indeed, more
experiments and more model training strategies are required for achieving higher performance

and, possibly, for outperforming ARGO 2.0.

4.5 Summary of Findings

Enhancing Survival Analysis Model Selection Through XAI(t) in Healthcare.
In this study, a comprehensive pipeline for training and comparing survival ML and
DL models was developed, incorporating SurvSHAP to enhance the understanding
of model predictions over time. The work addressed two key challenges in survival
analysis: selecting the most reliable model among similarly performing ones and
analyzing variable importance based on observation time. The study focused on OSA,

emphasizing the impact of comorbidities, but the proposed approach is applicable
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to other pathologies. Performance and reliability of survival models were evaluated
considering data quality, feature relevance, and model architecture. Complex models
demonstrated their capability to identify features that accurately describe the examined
pathology. After data preparation, four ML models and five DL models were trained,
and the best-performing models were selected using test-set metrics. SurvSHAP was
applied to classify explanations into dataset- and model-level categories, illustrating
differences in feature importance between ML and DL models over time. Results
highlighted how models identified key variables and their time-dependent impact on
predictions. While the CPH model showed slightly better performance, the LH model
emerged as more reliable and clinically valuable for OSA patient follow-up. The time-
dependent explainability provided by XAI(t) proved critical for understanding model
behavior and feature contributions to survival predictions. This dynamic evaluation
may supports clinical decision-making by helping physicians assign varying weights
to patient-related features as their importance evolves, ultimately improving follow-up

strategies in rehabilitation.

Supervised deep learning approach for the histopathological Oxford Classification

of glomeruli with IgA nephropathy.

The Oxford Classification for IgAN represents a successful example of an evidence-
based nephropathology system. This study aimed to develop a deep learning model
for the automatic analysis of large biopsy cohorts, ensuring perfect reproducibility
and minimal human effort. The results demonstrated that features extracted from
modern deep networks pretrained on ImageNet effectively replicate expert labels for
the glomerular components of the Oxford Classification. Expanding the availability of
larger datasets for glomerular lesion classification is expected to further enhance the

model’s performance.

Shape-based Breast Lesion Classification using Digital Tomosynthesis Images:

the role of Explainable Artificial Intelligence.

Breast cancer is a leading cause of mortality in women, and timely diagnosis can
significantly improve outcomes by limiting cancer progression. DL models have
shown success in detecting and classifying breast lesions using medical imaging,
but their black-box nature hinders trust among clinicians. XAl techniques address
this issue by uncovering model mechanisms, fostering confidence in DL-based CAD
systems. This study proposed an explainable DL framework for multiclass shape

classification of tomosynthesis breast lesions using eight pretrained CNN models. With
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data augmentation, the best model achieved a mean AUC of 98.2%, compared to
96.3% without augmentation. XAI methods, including Grad-CAM, LIME, t-SNE, and
UMAP, were used to explain classification results visually and mathematically, aligning
model performance with interpretability and building trust in clinical applications.
Future efforts will focus on quantifying individual feature contributions, testing on
external datasets, and incorporating novel DL models to enhance robustness and

generalizability.

Supervised Diagnosis Standardization in Free-Text Reports.
The study addresses the challenge of standardizing diagnosis assignment in hemo
lympho-pathology, a task complicated by the heterogeneity of clinical descriptions
and the lack of uniformity in pathology reports. ARGO 2.0, an enhanced framework
integrating a DAM with a RF model, was developed to tackle this issue. The framework
demonstrated improved performance over its individual components, ARGO core and
the standalone ML model, across most metrics. However, lower precision in the
classification of Hodgkin’s Lymphoma highlighted limitations in the MLL model and
the need for more refined tuning of parameters, such as threshold learning. Through
this study, the integration of NLP techniques and ML methods in ARGO 2.0 provided
novel insights and underscored the value of a cooperative approach. Notably, the test
of BIO-BERT transformer model yielded promising results, potential enhancing the
capacity to process and interpret unstructured textual data. Future work aims to refine
the framework further by including HL subclasses in predictions and extending its
application to other medical domains, demonstrating its potential as a versatile tool for

diagnosis standardization and clinical decision support.



Chapter 5
Conclusions

This thesis introduces several Big Data analytics pipelines designed as clinical Decision Sup-
port Systems, assisting physicians and operators in biomedical field. After the introduction of
all methods included in this work in Chapter 2, including Machine Learning, Deep Learning
and Explainable Artifical Intelligence algorithms, the contribution chapters open with the
two multimodal pipelines, Chapter 3, and the unimodal pipelines in Chapter 4.

The use cases covered a wide range of applications, bringing contributions in the fields
of Radiomics, Digital Pathology, Clinical and biomedical Natural Language Processing.

The two multimodal pipelines presented in Chapter 3 focus on the study of Pancreatic
Ductal Adenocarcinoma from different perspectives: (i) according to the target, the former
deals with Overall Survival and Recurrence prediction while the latter deals with genetic
mutation prediction; (ii) according to the methods, the former exploits multi-omcs (radiomics,
clinical and genomics) data with survival analysis methods while the latter exploits pathomic
and transcriptomic data with Deep Learning and Machine Learning methods.

Delving into the first pipeline, the Cox Proportional Hazard model achieved good perfor-
mance metrics with a C-Index of 75% of Overall Survival, while Survival SVM achieved 68%
of C-Index score, resulting the best models. The use of time-dependent XAl (survSHAP)
allows for retrieving the feature importance over time, highlighting how the combination of
radiomics, clinical and genomics features contributes to the model predictions.

The second pipeline exploits DL and ML models for prediction the genomic mutations
of the four principal genes (KRAS, TP53, SMAD4, and CDKNZ2A) that play a pivotal role in
PDAC. Concerning the image processing side, CLAM and foundation models were employed
for feature extraction and Whole Slide Images classification, outperforming the state-of-the-
art, in terms of Area Under ROC Curve and Area Under PR Curve. KRAS and TP53 revealed

to be easy prediction targets w.r.t. the other two genes. Shifting to the transcriptomics side,



152

ML models achieved higher performances w.r.t. to the imaging models. The fusion layer
obtained by combining the two type of predictions, achieved the same performance level
as transcriptomic models on KRAS and 7P53 and a slight higher performance on the other
two genes. The combined adoption of attention-maps and SHAP shows how it is possible to
investigate a prediction from both imaging and trascriptomics perspective.

Chapter 4 illustrates the developed unimodal pipelines. The first section shows how
time-dependent XAl can be exploited in survival model selection process. The trained
models belong to both ML and DL survival model families and the dataset involved is related
to Obstructive Sleep Apnea cases, with Overall Survival as target. The performance achieved
lead to select Cox Proportional Hazard model, CoxTime and LogHazards as the best models,
with a C-Index scores of 81%, 78% and 78% respectively; the Integrated Brier score achieved
by such models is of 0.10, 0.12 and 0.11. LogHazard and Cox Proportional Hazard are
examined from an explainability perspective. Although the two models show comparable
performance metrics, the use of SurvSHAP enables clinician to assess that LogHazard is
more reliable and useful in clinical context, according to the feature importance over time.
Notably, Cox Proportional Hazard metrics are slight higher w.r.t. LogHazard, underlying
that performance and usefulness are not strictly bound to each other.

The second unimodal pipeline deals with IgAN classification from Whole Slide Images
according to Oxford Score, resulting a first end-to-end pipeline accomplishing such a task.
This pipeline involves two key tasks. First, glomeruli segmentation is carried out using object
detection models, with the segmentation results stored in a Qupath project for pathologists to
review manually. The most successful segmentation model, Cascade Mask R-CNN, achieved
a Dice score of 80.7% on the external test set. Differently from the second multimodal
pipeline, in which the classification problem was approached as Multiple Instance Learning
problem, here the slide-level classification relies on the independent single-glomerulus
classification. The set of glomerulus classifications is used for assign a MESC score to the
Whole Slide Image.The classification of MESC lesions, compares the performance of various
CNNs and ViT architectures. For the M lesion, the best model is EfficientNetV2-L, with
an ROC AUC of 90.2%. For the E lesion, MobileNetV2 performes best, achieving an ROC
AUC of 94.8%. Similarly, EfficientNetV2-M is the top model for the S lesion, with a ROC
AUC of 92.7%. For the C lesion, EfficientNetV2-L excelled, attaining a ROC AUC of 92.1%.
Notably, these results surpass the current state-of-the-art techniques.

The third pipeline presents a visually interpretable deep learning framework for multiclass,
shape-based classification of breast lesions in tomosynthesis images. Eight pretrained

DL models are used for morphological classification, supported by two explainable Al
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(XAI) methods—perceptive and mathematical interpretability—to provide insight into model
decisions and build clinician trust. Perceptive models visually highlight the top features
for classification, while mathematical models reveal clustering in low-dimensional spaces.
DenseNet-161 demonstrates the best performance, achieving over 96% AUC with data
augmentation. Augmentation further improves mean AUC across configurations, while high
similarity between training and validation data and Rol-level images enhance model accuracy.
Using Grad-CAM and LIME, the framework explains the model’s focus on lesion areas, with
high AUC models like DenseNet-161 and ResNeXt accurately highlighting lesions. This
approach effectively demystifies DL. models, fostering trust in CAD systems for clinical
applications.

The last unimodal pipeline provides a framework for Named Entity Recognition and
diagnosis standardization in free-text reports of lymphoma cases. In particular, starting
from an existing framework named ARGO Core, an important enhancement was made by
supporting ARGO Core with a ML module and a Diagnosis Assignment Manager (DAM)
module (resulting into a new framework version, called ARGO 2.0). The adoption of MLL
with a decision heuristic of DAM module increases ARGO performance achieving a Precision
score of 94.85%, a Recall score of 96.31% and F-Score of 95.31%. Finally a migration to a
DL model is proposed, achieving promising preliminary results.

In conclusion, this work showcases a wide range of big data computational method-
ologies across different biomedical heterogeneous fields. The pipelines developed bring
advancements in precision medicine-oriented decision support systems.

Apart from the discussions and future enhancements regarding each pipeline (faced at
the end of each pipeline section), noteworthy is the flexibility of the models employed across
different tasks and target. Moreover, this work highlights how explainable Al methods play a
crucial role in understanding a model behavior, increasing the trustworthy in Al.

In light of this, future steps can involve the integration of all pipelines in a single
distributed framework, making them agnostic to the target and to the data information nature,
considering only the main task (i.e. a classification, a Named Entity Recognition, a survival
analysis, and so on) and the type of input data (generic images and generic tabular data). In
this way the models involved can be re-used to cover use cases in fields different from the

biomedical one, abstracting them at a higher level.
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