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Abstract

Artificial Intelligence (AI) is increasingly recognized as a transformative force in health-

care, offering unprecedented opportunities to enhance disease diagnosis, management,

and prevention. This PhD thesis is rooted in two fundamental research areas: the appli-

cation of AI to health and epidemiological data for the purposes of disease prevention

and monitoring, and the utilization of AI techniques for the analysis of bioelectrical

signals to support clinical decision-making.

The first research area delves into the sophisticated analysis of extensive health and

epidemiological datasets using cutting-edge machine learning (ML) methodologies. The

objective is to uncover significant patterns that can inform and improve the prevention

and management of chronic diseases. By identifying these patterns, the research enables

the creation of personalized intervention strategies tailored to individual patient profiles,

while also optimizing disease management on a broader, population-wide scale. This

approach not only contributes to the advancement of public health but also sets the

stage for more proactive healthcare practices.

The second research focus of this thesis explores the development and application

of advanced ML and deep learning (DL) models for the interpretation of bioelectri-

cal signals, such as electroencephalograms (EEG), electrocardiograms (ECG), and

electromyograms (EMG). It is important to point out that non-invasive technologies

such as brain-computer interfaces (BCIs) were used for the analysis of EEG signals.

The AI-driven models developed in this PhD thesis aim to enhance the accuracy and

reliability of medical diagnostics, facilitating more precise and personalized clinical

decisions. The integration of these models into clinical workflows has the potential to

revolutionize patient care by providing healthcare professionals with powerful tools for

diagnosis and treatment planning.

The practical outcomes of this research are profound, offering novel tools and

frameworks that bridge the gap between AI innovation and clinical application. By

incorporating explainable Artificial Intelligence (XAI) principles, the models developed

in this thesis are designed to be transparent and interpretable, ensuring that healthcare
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professionals can trust and effectively use these advanced technologies in their daily

practice.

In summary, this PhD thesis makes significant contributions to the intersection

of AI and medicine, addressing key challenges in the interpretation of health and

epidemiological data as well as the analysis of bioelectrical signals. The findings

presented here lay a robust foundation for future advancements in personalized medicine

and public health, ultimately aiming to improve patient outcomes and the overall

efficacy of healthcare systems.

All contributions made in this thesis are detailed in the respective chapters, providing

a comprehensive overview of the research conducted and its impact on the field of AI

in healthcare.
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Chapter 1

Introduction

1.1 Thesis Statement

The thesis is divided into thematic chapters, each covering the basics, analyses, and

proposals of documents related to a specific theme. It should be noted that the order of

the papers in the chapters doesn’t necessarily follow chronological order. The goal was

to provide a complete and cohesive narrative of the entire thesis, from using Artificial

intelligence (AI) models to support diagnosis, to acquiring and analyzing bioelectric

signals, to propose concrete support tools in the medical domain.

To begin with, Chapter 2 introduces the foundational concepts and methodologies

for utilizing AI to accelerate and refine diagnostic practices. This chapter is essential for

understanding how AI can enhance effective patient care and timely treatment decisions.

Simultaneously, Chapter 3 delves into the application of AI for analyzing bioelectric

signals such as Electroencephalograms (EEGs), ECGs, and, Electromyography (EMG)

showcasing the potential of these technologies to significantly enhance clinical decision-

making processes.

The narrative progresses with Chapter 4, where the focus shifts to the formalization,

theoretical and empirical analysis, and the development of new AI-based diagnostic

systems. This chapter discusses how AI models not only improve the accuracy of medical

diagnostics but also the efficiency of healthcare operations, making AI integration a

pivotal improvement in healthcare systems.

Following this, Chapter 5 provides a comprehensive examination of the integration

of AI with electroencephalographic technologies to advance neurological diagnostics

and therapeutic interventions. This discussion extends the potential of AI beyond

traditional diagnostics to include therapeutic applications, highlighting the critical role

of AI in advancing medical technology.
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While, Chapter 6, discusses the broader implications and applications of AI in

processing bioelectrical signals, extending beyond traditional healthcare settings to

include aspects like performance enhancement in sports and rehabilitation.

The thesis concludes with Chapter 7, synthesizes the insights and advancements

discussed throughout the thesis. It highlights significant contributions and outlines

potential future research pathways that could stem from this work, emphasizing the

transformative impact of AI in healthcare.

Each chapter, while independent in focus, contributes to a cohesive narrative

about the transformative role of AI in healthcare, underlining the necessity of an

interdisciplinary approach to harness the full potential of AI in clinical and medical

research settings.

1.2 Research Contributions

The current section aims to offer a synthetic but comprehensive overview of the research

contributions from this thesis, as organized into thematic chapters. For each of them,

we briefly summarize the content, report on the related publications, and give complete

details about the role of the Ph.D. candidate, Paolo Sorino, in such publications.

Note that, in all the papers cited in this section, and as already indicated in the thesis

preamble, Paolo Sorino contributed as main author or is the corresponding author.

1.2.1 Healthcare Assisted by Artificial Intelligence-based Tech-

niques

Contributions

This chapter provides a detailed exploration of the application of AI-based techniques

in healthcare, demonstrating their versatility and transformative potential in various

settings.

It initially discusses how AI can analyze and understand complex dietary and

nutritional data—illustrating methods for identifying dietary patterns and assessing

their impact on health conditions such as diabetes and frailty in specific populations.

Techniques such as unsupervised learning and neural networks are applied to extract

meaningful information from large unstructured datasets, enabling personalized nu-

trition planning and intervention. Then, we move from diet analysis to the broader

predictive applications of AI in health care. Developments in AI tools that improve

predictive accuracy for various health conditions, including cognitive disorders and
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chronic diseases such as multiple sclerosis, are outlined. Discussion includes innovative

data security and reliability techniques in creating decision support systems, as well

as advanced machine learning approaches. Finally, the critical role of explainability

in AI applications in healthcare is highlighted. Solutions are detailed that not only

perform complex analyses, but also provide understandable and usable information to

ensure that healthcare providers and patients can make informed decisions based on

AI-generated data and predictions. Throughout the chapter, the narrative is structured

to highlight the empirical research supporting these applications, discussing both the

technological advancements and the theoretical underpinnings that make AI a valuable

tool in modern healthcare. The discussion is designed to be comprehensive, covering

technical details while also considering practical implications, thus providing a holistic

view of the current and potential uses of AI in improving healthcare outcomes.

Publications

The chapter covers the topics presented and explored in “Dietary Patterns Associated

with Diabetes in an Older Population from Southern Italy, Using an Unsupervised

Learning Approach” [283] published in the international journal on the science and

technology of sensors (Sensors).; “An Artificial Neural Network Model to Assess

Nutritional Factors Associated with Frailty in the Aging Population from Southern Italy“

[44], presented at IEEE International Conference on Systems, Man and Cybernetics

(SMC2022); “Blockchain and AI to Build an Alzheimer’s Risk Calculator” [270],

presented at 22nd International Conference, (ICWE 2022); "A Pareto-Optimality-

Based Approach for Selecting the Best Machine Learning Models in Mild Cognitive

Impairment Prediction" [273], presented at IEEE International Conference on Systems,

Man and Cybernetics (SMC2023); "Time-to-Event Interpretable Machine Learning

for Multiple Sclerosis Worsening Prediction: Results from iDPP@CLEF 2023" [172],

presented at Conference and Labs of the Evaluation Forum; "Integrating eXplainable

AI in Healthcare: A Web Application Framework for Advancing the One Health

Paradig" [69], presented at the 3rd International Workshop on Web Applications for

Life Sciences In conjunction with the 24th International Conference on Web Engineering

(ICWE 2024)(To appear).

Ph.D. Candidate’s Role

Paolo Sorino is the corresponding author of the papers [270, 273]
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1.2.2 Enhancing Devices for Bioelectrical Signal Analysis with

Artificial Intelligence

Contributions

The chapter deals a progressive exploration of how AI can be utilized with bioelectrical

signal analysis across various healthcare and auxiliary applications, beginning with

foundational concepts and advancing to more complex integrations. The narrative

begins with an investigation into the use of deep learning techniques for emotion

recognition through Brain-Computer Interfacess (BCIs). This segment focuses on

developing systems that can interpret human emotions by analyzing brain signals,

setting the stage for real-time applications that could significantly impact mental health

therapies and enhance user interaction with technology. The discussion then transitions

into the development of neurofeedback tools. These tools are designed to provide users

with real-time insights into their emotional states, enabling them to actively manage and

adjust their emotions through guided feedback from the system. This area is of growing

interest for its potential in psychiatric treatments and improving overall emotional

well-being. Further exploring the intersection of BCIs and emotional recognition, the

chapter elaborates on innovative applications that integrate BCI with advanced AI

technologies, like large language models. These applications are designed to facilitate

emotional support conversations, creating responsive and empathetic interactions that

can offer support in mental health contexts. The chapter also covers creating an

emotion-driven sound synthesis system, which utilizes bioelectrical signals to control

sound environments. This technology demonstrates potential uses in therapeutic

settings, where tailored soundscapes could aid in relaxation and stress reduction, as

well as in interactive media and artistic performances. Extending the application of

BCI beyond emotional recognition, the narrative delves into their use in recognizing

mental states for neurorehabilitation. This section highlights how integrating BCI

with machine learning can enhance therapeutic strategies, particularly for patients

recovering from neurological impairments, by providing customized treatments based

on the users’s current mental state. Exploration continues by looking at combining

mental state recognition with other innovative technologies like cellular automata and

biofeedback. This multifaceted approach aims to create more sophisticated systems

that can adapt to and interact with users’ mental states in various medical and

recreational contexts. The focus then shifts to applying explainable AI in classifying

heartbeat signals, an essential aspect of medical diagnostics. This approach ensures that

the AIs decision-making process is transparent and interpretable, fostering trust and
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understanding among medical professionals and patients. As the chapter progresses,

it broadens the scope to general applications of AI in bioelectrical signal analysis

beyond healthcare. It examines how biomechanical and bioelectrical data can be

utilized in sports science to enhance training programs for athletes, such as fencers,

by identifying skill levels and providing targeted training feedback. Additionally, the

narrative explores creative applications, discussing systems that generate music based

on neural networks and bioelectrical inputs. These systems highlight the potential for

BCI to transform artistic creation, allowing artists to generate music or control musical

instruments directly through brain activity. To conclude, we propose a dataset collected

using low-electrode devices for emotion recognition. This dataset takes advantage of

advances in AI technologies to analyse EEG signals with minimal hardware, with the

aim of facilitating the development of a robust tool to understand and interpret human

emotions efficiently.

The chapter emphasizes the broad and versatile implications of integrating AI with

bioelectrical signal analysis. This timeline not only reflects the current state of research

and application but also charts a course for future innovations that could transform

multiple aspects of human life, from healthcare and therapy to sports and the arts.

Publications

The chapter covers the topics presented and explored in "Brain Computer Interface:

Deep Learning Approach to Predict Human Emotion Recognition" [12], presented

at IEEE International Conference on Systems, Man and Cybernetics (SMC2022);

"Predicting Human Emotions using EEG-based Brain Computer Interface and In-

terpretable Machine Learning" [65], presented at the 3rd National CINI Conference

on Artificial Intelligence Ital-IA2023; "Combining Mental States Recognition and

Machine Learning for Neurorehabilitation" [65], IEEE International Conference on

Systems, Man and Cybernetics (SMC2023); "Exploring the Mental State Intersection

by Brain-Computer Interfaces, Cellular Automata, and Biofeedback" [62], presented

at IEEE EUROCON 2023 - 20th International Conference on Smart Technologies;

"Combining Biomechanical Features and Machine Learning Approaches to Identify

Fencers Levels for Training Support" [15], published in the International Journal of

Applied Sciences; "NeuralPMG: A Neural Polyphonic Music Generation System Based

on Machine Learning Algorithms" [60], published in Cognitive Computation Journal;

"Towards a Neurofeedback Tool For Emotion Recognition Using Brain Computer Inter-

face" [13], presented atthe 3rd International Workshop on Web Applications for Life

Sciences In conjunction with the 24th International Conference on Web Engineering
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(ICWE 2024)(To appear). "ARIEL: Brain-Computer Interfaces Meet Large Language

Models for Emotional Support Conversation" [271], presented at ACM WeBIUM24 -

1st Workshop on Wearable Devices and Brain-Computer Interfaces for User Modelling

- In conjunction with the 32nd ACM Conference on User Modeling, Adaptation and

Personalization (UMAP 2024); "EmoSynth Real Time Emotion-Driven Sound Texture

Synthesis via Brain-Computer Interface" [63], presented at ACM WeBIUM24 - 1st

Workshop on Wearable Devices and Brain-Computer Interfaces for User Modelling -

In conjunction with the 32nd ACM Conference on User Modeling, Adaptation and

Personalization (UMAP 2024). "An Explainable Machine Learning Approach for

Heartbeat Classification Through Signal-Based Features" [272], presented at the IEEE

International Conference on Systems, Man and Cybernetics (SMC2024) (To appear).

"NeuroSense: A Novel EEG Dataset Utilizing Low-Cost, Sparse Electrode Devices for

Emotion Exploration" [64], published in IEEE Access Journal.

Ph.D. Candidate’s Role

Paolo Sorino is the corresponding author of the papers [12, 15, 65, 271]

1.3 Bibliographical Notes

For the sake of completeness, in this last section, we report on the publications which

have been listed in the Publications section in the preamble of this thesis, but have not

been cited among the research contributions. Specifically, we categorize them into two

groups, namely: (i) research contributions regarding the main topics of this thesis that

cannot properly be considered as paper publications (e.g., workshops and tutorials);

(ii) other publications whose topics are similar/related to those of this thesis and where,

in same cases, the Ph.D. candidate (Paolo Sorino) has contributed.

Workshops and Tutorials

• “WeBIUM 1st Workshop on Wearable Devices and Brain-Computer Interfaces

for User Modelling“ [61].

• “Invited speaker to the Workshop: “The potential of enabling technologies in

tailoringand adapting neuromotor and cognitive rehabilitation in children”, IEEE

BHI BSN 2022“
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Different Approaches in Cybersecurity

• “CPU-side comparison for Key Agreement between Tree Parity Machines and

standard Cryptographic Primitives“ [169] accepted at the 12th International

Conference on Dependable Systems, Services and Technologies (DESSERT).

• “Towards a Federated Intrusion Detection System based on Neuromorphic Com-

puting“ [170] Accepted at the 9th International Conference on Smart and

Sustainable Technologies (SpliTech).

Contributions in Clinical Papers

• “FDF-DB: A Database of Traditional Fermented Dairy Foods and Their Asso-

ciated Microbiota“ [312] Accepted at international journal of human nutrition

(Nutrients)

• “The Effect of Low Glycemic Index Mediterranean Diet and Combined Exer-

cise Program on Metabolic-Associated Fatty Liver Disease: A Joint Modeling

Approach“ [67] Accepted at international journal of clinical medicine





Chapter 2

Background on intelligent

diagnostics for fast screening

The integration of Big Data and AI techniques in the development of intelligent diagnos-

tic tools represents a pivotal evolution in the healthcare sector. These technologies are

central to creating advanced decision support systems that assist physicians in making

more accurate and faster diagnostic decisions. This background section will focus on

how big data and AI have come together to revolutionise diagnostics, emphasising their

role in supporting rapid screening and decision-making processes [111, 179, 182].

Big Data in Healthcare

Big data in healthcare refers to the extensive volumes of data generated from numerous

sources such as Electronic Health Recordss (EHRs), genomic sequencing, wearables,

imaging, and patient-reported data [71]. The sheer volume, velocity, and variety of

this data surpass traditional data management tools and require advanced analytical

approaches to derive meaningful insights.

In particular, the role of Big Data in this scenario are related to:

• Comprehensive Insights: Big data allows for the aggregation of information

from multiple sources, providing a holistic view of a patient’s health status.

• Population Health Management: Analysis of large datasets can reveal

trends, predict outbreaks, and identify risk factors on a population level, which

is invaluable for public health planning and intervention.

• Personalized Medicine: Big data enables the analysis of patient-specific factors

such as genetics and lifestyle, which can inform personalized treatment plans.
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Artificial Intelligence Techniques

AI in healthcare uses algorithms and software to approximate human cognition in

the analysis of complex medical data. The primary goal of AI applications in healthcare

is to analyze relationships between treatment techniques and patient outcomes. AI

techniques commonly used include Machine Learning (ML) [181], Deep Learning (DL)

[263], and Natural Language Processing (NLP) [168].

Specifically, it is possible to analyse individually the main different AI techniques

commonly used in healthcare:

• Machine Learning: ML algorithms learn from data and can improve their

accuracy over time without being explicitly programmed. In diagnostics, ML

can be used to identify patterns in data that are indicative of specific health

conditions.

• Deep Learning: A subset of ML, DL uses neural networks with many layers

(hence “deep”) to analyze various details of the data. It is particularly effective

in image recognition, which is crucial for diagnosing diseases from imaging scans

like X-rays, MRIs, OCT-Scans, etc.

• Natural Language Processing: NLP helps interpret and categorize text data

in patient records, which is essential for extracting meaningful patient information

from unstructured data.

• Reinforcement Learning: Reinforcement Learning (RL) focuses on training

agents to make a sequence of decisions by rewarding them for correct actions

and penalizing incorrect ones. In healthcare, RL has been applied to optimize

treatment protocols, manage chronic diseases, and personalize therapies.

• Computer Vision: Computer Vision (CV) enables the analysis of visual data,

such as medical images, to assist in detecting abnormalities, segmenting regions

of interest, and tracking changes over time. Applications include tumor detection,

retinal analysis, and monitoring patient activity.

Artificial Intelligence-driven Decision Support Systems

AI-driven Decision support systems (DSS) in healthcare provide clinicians with incred-

ibly powerful tools for fast screening and diagnosis [14, 82, 111, 126]. These systems

analyze the data provided by big data technologies and offer prediction based on

patterns that may not be apparent to human observers. The benefits and challenges of

these tools for physicians are different and listed below
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Benefits to Physicians:

• Speed and Efficiency: AI can process and analyze data much faster than

humans, reducing the time from screening to diagnosis.

• Accuracy and Precision: AI systems reduce human error and increase the

precision of diagnoses, particularly in complex cases where multiple conditions

may exist.

• Predictive Capabilities: AI can predict disease progression and outcomes,

aiding physicians in choosing the best course of treatment.

• Interpretability: eXplainable Artificial Intelligence (XAI) systems can provide

physicians with feature contributions during the prediction, assisting them in

understanding the decision-making process.

Challenges in Healthcare:

• Lack of Trust: Physicians and patients may be reluctant to rely on AI systems

due to concerns about reliability, transparency, and accountability.

• Data Imbalance: Medical datasets often suffer from imbalances, with rare

conditions underrepresented, leading to biased predictions.

• Data Privacy and Security: Strict regulations like GDPR and HIPAA make

accessing and sharing healthcare data challenging, hindering AI training and

deployment.

• Integration with Clinical Workflows: Adapting AI systems to existing

workflows can be difficult, requiring significant adjustments and training for

healthcare professionals.

• Ethical Concerns: Issues such as bias in algorithms, fairness, and equitable

access to AI-driven solutions remain key challenges.

The convergence of big data and AI techniques is transforming the landscape of

diagnostic medicine by enabling the development of sophisticated decision support

systems. These tools not only enhance the efficiency of diagnostic processes but

also support physicians in making informed, data-driven decisions quickly. As these

technologies continue to evolve, they hold the promise of significantly improving patient

outcomes and optimizing healthcare delivery. The content of this chapter is inspired

by [275] and other papers we will cite in the following.
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2.1 Preliminaries

In healthcare, AI models often function as mappings from input features to predictive

outputs. Let X represent the input features (e.g., patient data), and let Y be the

predictions (e.g., diagnosis probabilities). The AI model can be described by a function:

f :X → Y

where f is parameterized by θ and trained to approximate the true function f∗

that maps inputs to outputs.

The model is trained by optimizing the parameters θ to minimize a loss function L,

which quantifies the difference between predicted outputs ŷ and actual outputs y over

a dataset D:

min
¹

1

N

N
∑

i=1

L(f(xi;θ),yi)

where N is the number of training samples, and (xi,yi) are the feature vector and

label for the i-th sample.

The trained model uses its learned parameters θ for predicting outputs on new,

unseen data:

ŷ = f(x;θ)

Evaluation Metrics

The metrics used to evaluate classifications models are the following.

The first parameter considered to evaluate the performance of machine learning

model was the accuracy, defined as [28]:

Accuracy =
Number of correct predictions

Total number of prediction

More specifically, the accuracy of a model is calculated with the following formula:

Accuracy =
TP +TN

TP +TN +FP +FN

where TP = True Positive, TN = True Negative, FP = False Positive and FN = False

Negative. The Recall metric measures the ratio of correct positive classifications among
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the total number of positive samples:

Recall =
TP

TP +FN

The Precision measures the ratio of correct positive classifications among the total

positive classifications:

Precision=
TP

TP +FP

The F1 score is the harmonic mean between recall and accuracy:

F1 = 2 ·
Precision · Recall
Precision + Recall

The F1 score combines precision and recall into a single metric. The Area Under

the Receiver Operating Characteristic Curve (AUC) is a metric that measures the

capability of a classifier to separate the positive class from the negative one. It is

formulated as follows:

AUC =

∑

x−ϵX−

∑

x+ϵX+

(

1
(

f
(

x−
)

< f
(

x+
)))

X− +X+

where 1(·) = 1 if f
(

x−
)

< f
(

x+
)

else 1(·) = 0 and, X+is the set of positive samples,

X−is the set of negative samples, f(·) is the result of model prediction, and 1(·) an

indicator function [40].

The metrics described above are essential for evaluating the performance of classifi-

cation models, where the objective is to correctly distinguish between different classes.

However, for regression models, where the objective is to predict a continuous value,

different metrics are needed to measure the accuracy of the predictions against actual

values. Below, we describe the most commonly used metrics for evaluating regression

models:

• Mean Squared Error (MSE)

MSE =
1

n

n
∑

i=1

(yi− ŷi)
2

• Root Mean Squared Error (RMSE)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi− ŷi)2
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• Mean Absolute Error (MAE)

MAE =
1

n

n
∑

i=1

|yi− ŷi|

• R-Squared (R2)

R2 = 1−

∑n
i=1(yi− ŷi)

2

∑n
i=1(yi− ȳ)2

where ȳ is the mean of the observed data.

• Adjusted R-Squared (R2
adj)

R2
adj = 1−

(

1−R2

n−k−1

)

(n−1)

where n is the number of observations and k is the number of predictors.

• Mean Absolute Percentage Error (MAPE)

MAPE =
100

n

n
∑

i=1

∣

∣

∣

∣

∣

yi− ŷi
yi

∣

∣

∣

∣

∣

In the context of healthcare, it is also crucial to understand the model’s predictions

for acceptance and ethical reasons. For this reason, it is important to define various

XAI approaches most commonly used.

LIME (Local Interpretable Model-agnostic Explanations)

Local Interpretable Model-Agnostic Explanations (LIME) is a technique that explains

the predictions of any classifier in an interpretable and faithful manner, by approxi-

mating it locally with an interpretable model[233]. The predictions are explained as

follows:

ξ(x) ≈ f(x;θ)

where ξ(x) is a simple model, such as a linear regression, trained to approximate

the predictions of the complex model f around the vicinity of a given instance x. The

local model is generated by perturbing x and obtaining the predictions of f on these

new samples, then weighting these samples according to their proximity to x.
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Feature Importance

Feature importance is a global explanation method where the importance of each input

feature is evaluated in terms of how much they contribute to the predictive model’s

accuracy [177, 242]. This can be quantitatively measured in several ways, such as the

decrease in model performance when a feature’s information is shuffled (permutation

importance), or the increase in prediction error when a feature is removed:

Importance(j) = Errormodel with all features −Errormodel without feature j

where Importance(j) measures the increase in prediction error caused by omitting

feature j from the model. This metric provides a sense of how crucial a feature is for

the model’s performance.

SHAP (SHapley Additive exPlanations)

Shapley Additive exPlanations (SHAP) values explain the prediction of an instance by

computing the contribution of each feature to the prediction [178].

The prediction can be expressed as:

ŷ = φ0 +
M
∑

j=1

φj

where M is the number of features, and φj represents the contribution of the j-th

feature to the prediction. These contributions are computed using Shapley values from

cooperative game theory, defined as:

φj =
∑

S⊆M\{j}

|S|!(M −|S|−1)!

M !
(v(S∪{j})−v(S))

Here, v(S) is the value function that outputs the prediction of the model using the

subset of features S.

The mathematical formalism of AI in healthcare, especially with the integration of

SHAP for XAI, bridges the gap between technical accuracy and practical transparency,

enhancing trust and reliability in AI-driven diagnostics.
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2.1.1 Artificial Intelligence-Driven Diagnostics: Tools and

Technologies

The application of AI in healthcare diagnostics incorporates a variety of sophisticated

tools and technologies, each designed to enhance the accuracy and efficiency of medical

diagnostics [112, 145, 157]. These AI systems are built on the foundations discussed

in the Preliminaries, where models trained on extensive datasets help predict and

diagnose diseases with remarkable precision.

The core technologies in AI-driven diagnostics include:

• Machine Learning and Deep Learning Models: Utilized for pattern recog-

nition and predictive analytics, these models can interpret complex datasets and

extract clinically relevant insights that assist in decision-making [39, 149].

• Cloud Computing: Facilitates the storage and processing of large volumes

of healthcare data, providing the necessary computational power to support

sophisticated AI algorithms and real-time data analytics [8, 108].

• IoT Devices: Wearables and other connected devices collect continuous health

data from patients, which are then processed using AI to monitor conditions and

detect anomalies in real-time [225, 289, 291].

• Data Analytics Platforms: These platforms integrate data from various

sources and use AI to provide comprehensive analytics, which is crucial for

diagnosing complex cases and planning treatment strategies [2, 174, 282].

The implementation of these tools and technologies in AI-driven diagnostics not

only speeds up the process of medical evaluation but also enhances the granularity and

accuracy of the diagnostics. This is crucial in all areas of healthcare, particularly in

emergency care, where rapid response and accurate diagnostics are paramount. By

seamlessly connecting data collection, model application, and result interpretation,

AI-driven tools and technologies lay the groundwork for more informed and timely

medical decisions.

2.1.2 Real-Time Data Processing and Its Importance in Emer-

gency Care

Real-time data processing in healthcare involves the continuous input, processing, and

analysis of patient data to provide immediate insights that are crucial in emergency
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care settings [55, 216]. This capability is particularly important in scenarios where

time-sensitive decisions can significantly impact patient outcomes.

Real-time AI System: R(t) = f(data(t);θ)

Where R(t) represents the real-time output or decision at time t, and data(t) is the

live streaming patient data at time t. The function f , parameterized by θ, is designed

to operate under constraints of low latency and high reliability, often using lightweight

models that are optimized for speed without sacrificing accuracy.

The implementation of real-time data processing systems in emergency care can be

transformative by:

• Accelerating Diagnosis: Real-time systems can quickly analyze critical data,

such as vital signs or ECG readings, to identify life-threatening conditions like

myocardial infarctions or strokes. By speeding up the diagnosis, treatment can

be initiated more promptly, which is often crucial for patient survival [5, 200,

281].

• Monitoring and Alerts: Continuous monitoring of patient vitals and automated

alert systems help in early detection of patient deterioration, allowing healthcare

staff to intervene before the condition worsens. AI-driven systems can predict

severe events before they occur, enabling proactive care [137, 304].

• Resource Optimization: In emergency departments, where resources are often

limited and time is critical, real-time AI systems can aid in prioritizing patient

care based on severity and predicted medical needs. This ensures that the

available medical staff and equipment are used as efficiently as possible [90, 124].

These systems rely on advanced data acquisition devices, high-speed computing

platforms, and robust AI models that are capable of functioning accurately and

efficiently in high-pressure environments. The integration of these technologies in

emergency care represents a critical advancement in medical diagnostics and patient

management.

2.2 Artificial Intelligence as a Driving Tool in Decision-

Making Processes

AI usually applies to computational technologies that emulate mechanisms assisted by

human intelligence, such as reasoning, deep learning, adaptation, and engagement [280].
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Some devices can play a role that typically involves human interpretation and decision

making [210]. These techniques have an interdisciplinary approach and can be widely

applied to medicine and health. The literature recognizes several application areas of

AI in medicine, however, two of the main ones can be defined as follows: (i) Clinical

Decision Support Systems (CDSS), (ii) Role of AI in Enhancing Diagnostic Accuracy.

Below, we present each of these macro areas of application outlining their main

application concepts, along with some of the most popular state-of-the-art techniques.

2.2.1 Clinical Decision Support Systems (CDSS)

Clinical Decision Support Systems (CDSS) [262] are crucial in healthcare, crafted

to assist clinicians in making well-informed decisions through robust, evidence-based

support. Traditional CDSS harness guidelines and protocols derived from extensive

clinical research and expert consensus, enabling healthcare providers to diagnose

accurately and manage patient care effectively. The integration of CDSS into healthcare

routines aims to improve patient outcomes, reduce errors, and maintain a consistently

high standard of care across various medical disciplines. Furthermore, the infusion

of AI into CDSS transforms these systems from static repositories of knowledge into

dynamic tools capable of learning and adapting. AI enhances CDSS by enabling the

analysis of large datasets beyond human capability, providing real-time insights, and

offering predictive analytics that anticipate patient risks and outcomes before they

manifest, significantly boosting the efficacy and responsiveness of medical interventions

[210, 258, 262].

Overview of CDSS in Healthcare

Nowadays, hospitals have access to vast amounts of data. The application of AI

techniques has significantly increased interest in CDSS. These systems are increasingly

employed across various medical domains, including medical imaging, epidemiology,

and triage operations in emergency departments, providing essential decision support

to physicians [84, 276]. CDSS can be categorized into two main types based on the AI

methodologies they employ: knowledge-based AI and data-driven AI.

Knowledge-based AI models human knowledge in computational terms, typically

involving a top-down methodology where human experts describe the concepts and

knowledge used to solve problems in a specific domain. Techniques in this category

include rule-based systems, ontologies, semantic networks, and case-based reasoning.

These systems provide explicit reasoning paths, making the decision process transparent
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and explainable, but often face scalability issues due to the extensive effort required

for knowledge acquisition and formalization [196].

Data-driven AI, on the other hand, starts with large datasets and uses statistical

and machine learning methods to identify patterns and make predictions. Operating in

a bottom-up manner, data-driven AI abstracts patterns from data to emulate human

decision-making processes. Common techniques include neural networks, support vector

machines (SVMs), decision trees, and ensemble learning methods. Data-driven AI

excels in handling large volumes of data, such as electronic health records (EHRs), and

can automatically build models from data with high accuracy, though these systems

often lack transparency and explainability [51][262].

A promising trend in CDSS is the integration of both knowledge-based and data-

driven approaches, creating hybrid systems that leverage the strengths of both method-

ologies. Hybrid systems can use formalized domain knowledge to structure the model

and enhance interpretability, while also utilizing large datasets to improve predictive

accuracy and handle complex patterns. Examples include probabilistic graphical mod-

els like Bayesian networks and case-based reasoning systems that integrate structured

knowledge with data-driven methods for retrieval and adaptation [196].

Key challenges for CDSS include ensuring transparency and explainability, integrat-

ing diverse data sources for effective interoperability, and addressing scalability issues.

The field is evolving towards the adoption of hybrid approaches that combine the

robustness of knowledge-based AI with the flexibility and accuracy of data-driven AI,

aiming to provide robust, scalable, and explainable decision support systems. Future

research will likely focus on enhancing transparency and ensuring seamless integration

of diverse data sources to support comprehensive clinical decision-making [220, 262].

Integration of Artificial Intelligence into CDSS: Enhancing Accuracy and

Speed

The integration of AI into CDSS has notably enhanced both the accuracy and speed of

medical diagnostics and decision-making processes. AI-driven CDSS leverage complex

algorithms to process and analyze vast amounts of healthcare data rapidly, leading

to quicker and more accurate patient assessments. This acceleration is critical in

environments where time is of the essence, such as in emergency departments or during

acute care scenarios.

Furthermore, AI enhances the precision of CDSS by employing advanced data

analytics techniques, such as machine learning and deep learning, which can identify

patterns and anomalies that may be invisible to the human eye. For instance, in
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medical imaging, AI algorithms can detect subtle changes in imaging data that signify

early stages of diseases such as cancer or neurological disorders, often before clinical

symptoms are apparent [120, 300].

AI’s capability to continuously learn from new data also means that CDSS can

become more refined and accurate over time, adapting to new medical findings and

evolving disease patterns without the need for explicit reprogramming. This adaptability

ensures that CDSS remain at the forefront of medical technology, providing clinicians

with the most current and relevant decision-support tools.

The use of AI in CDSS also addresses previous limitations related to the scalability

of knowledge-based systems. By automating the data analysis process, AI allows CDSS

to handle larger datasets efficiently, thereby supporting broader applications across

various medical specialties and increasing the system’s overall utility and impact [84,

294].

In summary, the integration of AI into CDSS significantly enhances the systems’

ability to deliver rapid, accurate, and high-quality medical decision support, transform-

ing how healthcare providers diagnose and manage patient care, and underscoring the

indispensable role of AI in modern healthcare systems [210, 258]

2.2.2 Role of Artificial Intelligence in Enhancing Diagnostic

Accuracy

AI significantly enhances diagnostic precision across various medical fields. By inte-

grating deep learning algorithms, AI systems can analyze medical images, genetic data,

and biomarkers with higher accuracy and granularity than traditional methods. This

capability allows for the detection of minute abnormalities that often elude human

observers, leading to earlier and more precise diagnoses. For example, AI applications

in dermatology have outperformed seasoned dermatologists in identifying skin cancers

from images, showcasing AI’s superior pattern recognition capabilities [79, 147].

How Artificial Intelligence Contributes to Finer Diagnostic Precision. AI’s

strength in handling complex and voluminous data sets comes into play notably in the

interpretation of complex medical data. In genomics, AI helps in mapping out genetic

mutations and predicting their implications on diseases, thus facilitating personalized

medicine. Similarly, in neurology, AI tools analyze brain imaging scans to detect early

signs of disorders such as Alzheimer’s or Parkinson’s disease, often before clinical

symptoms manifest. These applications underscore AI’s pivotal role in leveraging com-

plex datasets to provide actionable insights, thereby supporting clinicians in making
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informed decisions [16, 244, 303].

Artificial Intelligence in the Interpretation of Complex Medical Data. The

integration of AI into diagnostic workflows has revolutionized the speed and efficiency

of patient care delivery. In emergency settings, AI-driven tools quickly assess patient

data to prioritize care based on severity and immediate needs. For instance, AI systems

in triage analyze symptoms and vital signs to recommend immediate interventions or

further testing. This not only speeds up the diagnostic process but also ensures that

critical resources are allocated efficiently, enhancing overall healthcare delivery. More-

over, AI integration helps in continuous monitoring of hospitalized patients, detecting

potential complications before they become critical [206, 229].

2.3 Explainable Artificial Intelligence for Under-

standing Model Diagnoses

Introduction to XAI and its Necessity in Healthcare. XAI pertains to systems

and methodologies developed within the artificial intelligence framework that are struc-

tured to be interpretable by humans [80]. This capability is critical in healthcare, a field

where decisions have profound implications on patient outcomes. XAI demystifies the

AI decision-making process, making it transparent and understandable for practitioners

[171, 201]. This transparency is not just a technical requirement but a clinical necessity,

ensuring that AI-driven decisions align with ethical medical practices and are grounded

in understandable, logical reasoning [96]. As AI systems become more prevalent in

diagnostic and treatment pathways, their explainability will be essential for clinicians

to trust and effectively integrate these technologies into patient care.

Benefits of XAI in Patient and Practitioner Trust. The integration of XAI in

healthcare significantly fosters trust, a cornerstone in patient-practitioner relationships.

Explainable models contribute to this by providing insights into their analytical pro-

cesses, justifying their recommendations in a scientifically sound manner [154]. For

practitioners, this means being able to verify AI-generated advice against their clinical

knowledge and ethical considerations, enhancing confidence in utilizing AI tools as part

of treatment plans. For patients, understanding how decisions about their health are

made can improve satisfaction and compliance with treatment, essential components

of successful healthcare outcomes [4].
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2.3.1 Explainable Decision Support Systems

Designing Explainable Artificial Intelligence for Transparency in Clinical

Decisions. In the realm of clinical decision-making, transparency is not merely

beneficial; it is imperative. AI systems designed with explainability at their core help

in elucidating complex decision-making processes, thus providing clinicians with a clear

understanding of how conclusions were reached [254]. This level of transparency is

crucial for compliance with medical regulations and for maintaining an audit trail

that justifies decision-making processes in patient care. It also plays a pivotal role in

interdisciplinary collaborations where understanding the rationale behind AI decisions

can enhance teamwork and integrated care strategies [211].

Case Examples where Explainable Artificial Intelligence has Transformed

Decision-making. Several instances demonstrate how XAI has significantly improved

clinical decision-making. For instance, in radiology, XAI tools assist radiologists by

highlighting features in imaging scans that contribute to diagnoses, thus acting as a

second, highly reliable opinion that aids in early disease detection. Another notable

example is in oncology, where XAI provides rationales for recommending specific

chemotherapy regimens based on patient-specific data, historical treatment outcomes,

and ongoing research. These case examples not only illustrate the practical benefits of

XAI but also showcase its potential to significantly improve diagnostic accuracy and

patient outcomes [4, 296].

Future Trends in Explainable Systems within Medical Diagnostics. Looking

forward, the potential of XAI in healthcare is vast and varied. As medical data becomes

increasingly complex and voluminous, XAI will be crucial in managing this complexity

and ensuring that AI-driven diagnostics remain both high in quality and understandable.

Future developments may see XAI facilitating real-time diagnostics in emergency

scenarios, integrating multimodal data for comprehensive patient assessments, and

enhancing personalization in treatment planning. These advancements will not only

refine diagnostic processes but also make them more patient-centric [123, 247, 298].

2.3.2 Implementation Challenges and Solutions

Identifying Common Hurdles in Deploying explainable artificial intelligence

in Healthcare. The deployment of XAI in healthcare environments encounters

numerous challenges. These range from technical issues, such as data integration and

system complexity, to human factors, including resistance from healthcare staff and a

steep learning curve associated with new technologies. Moreover, ensuring the reliability
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and robustness of XAI systems in diverse clinical settings remains a significant hurdle

[248].

Strategies for Overcoming these Challenges. To address these challenges, a

multi-faceted approach is necessary. This includes rigorous training programs for

healthcare staff to increase familiarity with AI technologies, enhancements in user

interface design for XAI systems to improve usability, and robust data governance

frameworks that ensure the integrity and security of patient data. Additionally, ongoing

collaboration between AI developers, healthcare professionals, and regulatory bodies is

crucial to align system capabilities with clinical needs and compliance requirements.

Ethical Considerations and Managing Patient Data. The ethical dimensions

of deploying AI and XAI in healthcare are complex and critical. They encompass

concerns about patient privacy, consent processes for the use of personal medical

data, and the potential biases inherent in AI algorithms. Managing these ethical

considerations requires transparent practices, rigorous system testing to uncover and

mitigate biases, and clear communication with patients about how their data is used

and protected. These measures are essential to maintain trust and uphold the ethical

standards expected in healthcare [3, 208, 267].





Chapter 3

Advanced Bioelectric Signal

Analysis in Healthcare

The healthcare domain has undergone substantial advancements driven by the integra-

tion of modern technologies into various diagnostic and therapeutic fields. Among these

technologies, the analysis of bioelectric signals has emerged as one of the most vital

areas, playing a critical role in medical diagnostics, patient monitoring, and treatment.

Bioelectric signals, including EEG [26], EMG [59], and ECG [100], provide rich infor-

mation about the physiological activities of the brain, muscles, and heart, respectively.

These signals form the backbone of numerous clinical applications, allowing for the

assessment of neurological, muscular, and cardiac functions.

This chapter delves into the foundational concepts of bioelectric signals, offering

an overview of how these signals are generated and utilized in clinical practice. It

further explores the technological advancements that have significantly improved the

acquisition and processing of bioelectric signals, emphasizing the emerging role of AI in

transforming bioelectric signal analysis. By integrating ML, DL, and XAI techniques,

the field has seen significant improvements in refining signal processing workflows,

automating feature extraction, and enhancing diagnostic accuracies.

The deployment of AI-based methods has enabled more precise and personalized

assessments, making bioelectric signals an indispensable tool in modern healthcare.

Through these advancements, healthcare providers can make informed decisions that

ultimately lead to better patient outcomes and more efficient healthcare systems.

Moreover, examines the importance of in bioelectric signal analysis.
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3.1 Foundational Concepts of Bioelectric Signals

Bioelectric signals are electrical manifestations of the physiological activities of cells

and tissues within the body, primarily generated by nerve and muscle cells. These

signals, such as EEG, EMG, and ECG, play a vital role in healthcare for diagnosing,

monitoring, and treating various medical conditions. By providing a real-time window

into the functioning of critical systems like the brain, muscles, and heart, bioelectric

signals enable healthcare professionals to assess organ function, detect abnormalities,

and guide therapeutic interventions.

The importance of bioelectric signals lies in their non-invasive nature and ability

to offer early detection of physiological changes. For instance, EEG is essential for

identifying seizures, EMG is fundamental for diagnosing neuromuscular disorders, and

ECG is the gold standard for monitoring heart health and detecting arrhythmias.

Advancements in technology have further extended their use from routine check-ups to

critical care settings, enabling continuous monitoring and timely intervention.

Bioelectric signals also significantly impact patient management and rehabilitation

by assessing treatment effectiveness and tailoring personalized rehabilitation programs.

The integration of these signals into wearable technologies facilitates long-term moni-

toring in everyday environments, thus supporting personalized healthcare and leading

to improved patient outcomes.

Given the complexity and variability of bioelectric signals, accurate interpretation

requires sophisticated tools, including preprocessing techniques and advanced analytical

models. These methodologies enhance signal quality, remove artifacts, and extract

meaningful features, transforming raw data into actionable clinical insights that support

decision-making and optimize patient care.

3.1.1 Types and Roles of Bioelectric Signals

Bioelectric signals are essential in monitoring the physiological state of different organs,

helping detect abnormalities, guiding interventions, and evaluating treatment efficacy.

Here, we discuss the different types of bioelectric signals, each playing a specific role in

healthcare.

Electroencephalogram (EEG)

The EEG is a non-invasive method to measure the electrical activity of the brain. It

captures spontaneous electrical signals generated by the synchronized activity of large
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populations of neurons in the cortex. EEG is represented mathematically as:

EEG(t) =
N
∑

i=1

Ai sin(2πfit+φi)

where Ai, fi, and φi denote the amplitude, frequency, and phase of the i-th component

of the signal, reflecting the rhythmic activity of cortical neurons. EEG is extensively

used to diagnose epilepsy, sleep disorders, and brain function in coma patients, as

well as to monitor cognitive activity in neurological conditions. The ability to record

the brain’s activity with high temporal resolution makes EEG an essential tool in

neuroscience research.

Electromyogram (EMG)

EMG records the electrical activity produced by skeletal muscles. It is critical for

understanding the activation and coordination of muscles during movement, and it is

particularly useful for diagnosing neuromuscular diseases, monitoring rehabilitation

progress, and controlling prosthetic devices. EMG signals are modeled as a stochastic

process, given the random nature of muscle fiber activation:

EMG(t) =
∑

n

anδ(t− tn)

where an and tn represent the amplitude and firing time of the n-th motor unit action

potential, respectively. By analyzing EMG data, clinicians can assess muscle health

and function, detect myopathies, and evaluate muscle fatigue.

Electrocardiogram (ECG)

The ECG is a widely used technique to measure the electrical activity of the heart.

It provides crucial information regarding cardiac rhythm, heart rate variability, and

possible abnormalities like arrhythmias, ischemia, or hypertrophy. The ECG signal can

be approximated by a series of Gaussian functions representing different components

of the heart’s electrical cycle:

ECG(t) =
∑

j

Aje
−

(t−µj)2

2σ2
j

where Aj , µj , and σj correspond to the amplitude, position, and width of the j-th wave

component, representing the P wave, QRS complex, and T wave. The non-invasive
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nature and diagnostic capabilities of ECG make it a cornerstone of cardiovascular

assessment, with applications in both acute and chronic disease monitoring.

3.1.2 Technological Advancements in Signal Acquisition

The acquisition of bioelectric signals has evolved significantly over recent years due to

improvements in sensor technologies and data acquisition systems. These advancements

have enabled more accurate, reliable, and user-friendly devices for clinical and research

purposes.

Cutting-edge Technologies for Signal Capture

Advances in sensor technology and instrumentation have led to higher fidelity in

bioelectric signal recording. For EEG, high-density electrode arrays, often with 64 or

more channels, have improved spatial resolution, allowing more detailed monitoring

of cortical activity. Advances in BCI technologies have further pushed the frontier

of EEG acquisition, enabling communication and control for individuals with severe

motor impairments.

Wearable devices have also played a transformative role in signal acquisition.

Portable ECG monitors, equipped with wireless data transfer capabilities, provide

continuous, real-time data collection, which is crucial for long-term monitoring of

cardiac health. These devices offer a convenient and non-invasive way for patients

to track their heart health while maintaining their daily routines, thus improving

compliance and overall health outcomes.

The development of dry electrodes has also significantly enhanced patient comfort.

Traditional wet electrodes require a conductive gel, which can cause skin irritation and

requires regular reapplication. Dry electrodes eliminate these issues, making it easier

to obtain high-quality recordings in ambulatory settings without compromising signal

integrity.

Data Processing and Analysis Techniques

The processing and analysis of bioelectric signals employ advanced mathematical and

computational techniques to enhance the quality and interpretability of physiological

data. This process involves a series of steps to convert raw bioelectric signals into

actionable information for clinicians.

Preprocessing. The preprocessing stage is critical for ensuring the accuracy of

bioelectric signal analysis. Signal acquisition is often contaminated by noise and



3.2 Artificial Intelligence in Bioelectric Signal Analysis 29

artifacts, such as muscle activity, power line interference, and eye blinks. Techniques

like bandpass filtering, notch filtering, and Independent Component Analysis (ICA)

are employed to remove unwanted artifacts while preserving the integrity of the signals.

Proper preprocessing is essential, as it lays the foundation for accurate feature extraction

and classification.

Feature Extraction and Signal Segmentation. Once noise and artifacts are

removed, the next step is to extract meaningful features from the bioelectric signals.

Feature extraction involves identifying significant components, such as frequency bands

in EEG (e.g., delta, theta, alpha, beta, gamma), the time-domain features of ECG

waves, or motor unit action potentials in EMG. Extracted features provide insights

into the physiological state of the organ of interest. Signal segmentation techniques,

which divide signals into meaningful epochs, are also employed to focus on specific

events or activities within the data.

Advanced Analytical Techniques. Advanced analytical techniques, including

wavelet transforms, Fourier transforms, and statistical analysis, help in understanding

the underlying physiological patterns. These techniques allow researchers and clinicians

to interpret complex bioelectric signals by converting them into a more comprehensible

form, such as time-frequency maps or statistical distributions. Machine learning models

can then be applied to classify or predict specific outcomes based on these features.

3.2 Artificial Intelligence in Bioelectric Signal Anal-

ysis

AI has revolutionized the analysis of bioelectric signals, pushing the boundaries far

beyond what traditional signal processing methods could achieve. The integration of

AI techniques, including ML and DL, has enhanced the precision, efficiency, and scope

of bioelectric signal analysis, particularly for EEG, EMG, and ECG signals.

By leveraging AI algorithms, bioelectric signal analysis has evolved to achieve

more sophisticated levels of interpretation, enabling a deeper understanding of the

physiological processes behind these signals. The capabilities of AI to automatically

extract complex patterns and features from large datasets have proven invaluable in

managing the variability and intricacy of bioelectric data. This not only allows for

more accurate diagnostics but also provides new opportunities for predictive modeling

and personalized treatment approaches.

The transformative impact of AI on bioelectric signal analysis has led to significant

advancements in clinical and research settings. These advancements have enabled real-
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time monitoring of patient health, improved detection and classification of abnormalities,

and supported the development of novel applications such as BCIs and advanced

rehabilitation tools. Furthermore, the use of DL models has been particularly impactful

due to their ability to learn directly from raw data, thereby eliminating the need for

extensive feature engineering and reducing human bias in the analytical process.

3.2.1 Artificial Intelligence-enhanced Electroencephalography

Analysis

The use of AI in EEG analysis has significantly advanced the understanding of the

human brain and its various functional states. Machine learning, particularly DL,

has enabled the identification of complex patterns in EEG data that were previously

difficult to decipher using conventional methods.

Deep Learning for EEG Analysis. Deep learning methods, such as Convolutional

Neural Networkss (CNNs) and Recurrent Neural Networkss (RNNs) [94, 240, 309],

have been particularly useful for analyzing EEG signals due to their ability to handle

large datasets and their robustness in feature extraction. CNNs are primarily used for

spatial feature extraction, identifying distinct patterns in brain activity associated with

different tasks or emotional states. On the other hand, RNNs and Long short-term

memorys (LSTMs) [295] are highly effective in handling time-series data, making them

ideal for capturing temporal dependencies in EEG signals for different tasks [31, 78,

102, 261].

Applications include emotion recognition, seizure detection, and sleep stage classifi-

cation. For instance, LSTMs have been used in real-time emotion recognition systems

to identify changes in emotional states, which can be applied in areas such as mental

health monitoring and adaptive human-computer interaction [155, 295].

Real-time Monitoring and Brain-Computer Interfaces. AI-powered EEG sys-

tems are also at the forefront of BCI technology. These systems allow for direct

communication between the brain and external devices, empowering individuals with

physical disabilities to control prosthetic limbs or computer systems using their brain

activity alone. AI algorithms are critical for accurately decoding the neural commands,

thus making BCIs reliable and practical for real-world applications.

3.2.2 Artificial Intelligence Applications in Electromyography

AI techniques have also been employed extensively in the analysis of EMG signals [93],

aiding both clinical and non-clinical applications, such as rehabilitation, prosthetics,
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and human-machine interfaces [228, 232, 301].

Movement Intention Recognition. One of the key applications of AI in EMG

analysis is movement intention recognition, which is critical for prosthetic limb control.

Machine learning algorithms, such as Support Vector Machines (SVMs) and CNNs, are

used to classify muscle signals associated with specific movements, thereby allowing

amputees to control prosthetic devices more naturally [158, 292]. The accuracy of

these models has significantly improved with the inclusion of DL, which can learn

abstract features directly from raw signals, thus reducing the need for manual feature

engineering.

Muscle Fatigue Monitoring and Rehabilitation. AI models are also being

utilized for muscle fatigue detection, an important application in sports science and

rehabilitation [70, 195, 212]. Fatigue analysis provides insights into muscle health

and helps in designing personalized training and rehabilitation protocols. RNN are

well-suited for capturing the temporal characteristics of muscle activation, which is

key in detecting and monitoring the progression of muscle fatigue during exercise or

rehabilitation sessions [93].

Human-Machine Interaction. Beyond prosthetics, AI-enhanced EMG systems are

used in human-machine interaction scenarios, such as controlling robotic exoskeletons

for rehabilitation purposes [23, 77, 104]. These systems help restore motor function in

individuals who have lost it due to injury or neurological conditions. AI algorithms are

used to interpret the user’s muscle activation signals, translating them into commands

that control the exoskeleton’s movements, thus assisting in physical therapy and

mobility.

3.2.3 Artificial Intelligence in Electrocardiogram Analysis

The integration of AI into ECG analysis has fundamentally altered the landscape

of cardiovascular diagnostics, providing more accurate and real-time assessments of

cardiac health.

Diagnostic Applications of Deep Learning. Deep learning algorithms, particularly

CNNs, have shown significant potential in diagnosing various cardiac conditions by

analyzing ECG data [19, 56, 191]. These models are capable of automatically extracting

features related to arrhythmias, myocardial infarctions, and other cardiovascular

disorders without the need for manual intervention [161]. The automation provided

by AI is crucial in clinical settings, where rapid and accurate diagnosis can make a

significant difference in patient outcomes.

Real-time Monitoring Systems. AI has enabled the development of real-time
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ECG monitoring systems that are capable of continuously analyzing ECG signals and

alerting healthcare providers to any potential abnormalities [224, 243, 251]. These

systems are particularly valuable for patients with chronic cardiovascular conditions,

as they allow for timely intervention and reduce the risk of severe cardiac events [257].

Personalized Cardiovascular Risk Assessment. Another important application

of AI in ECG analysis is personalized risk assessment. By analyzing ECG data

in combination with other patient-specific information, AI models can provide a

comprehensive assessment of cardiovascular risk [135, 148]. Techniques such as ensemble

learning, which combines multiple machine learning algorithms, have been used to

improve the accuracy of cardiovascular risk prediction models, helping clinicians make

better-informed decisions regarding preventive measures and treatment strategies [6].

3.3 Explainable Artificial Intelligence in Bioelectric

Signals

XAI plays a crucial role in increasing transparency and building trust in bioelectric

signal analysis. In healthcare, it is essential for clinicians to understand and trust the

decision-making processes of AI models, especially when they are used in diagnosis

and treatment planning.

Enhancing Transparency and Trust with XAI. XAI techniques help demystify the

"black-box" nature of many AI models by providing insights into how decisions are made.

Techniques such as Gradient-weighted Class Activation Mapping (Grad-CAM) [256],

SHAP (Shapley Additive Explanations), and LIME (Local Interpretable Model-agnostic

Explanations) are widely used to highlight important features in bioelectric signal

data and to visually explain model predictions [198, 227]. These explanations can

reveal which aspects of a signal contributed most to a particular diagnosis, providing

clinicians with greater confidence in the system’s recommendations. In the context of

EEG, XAI can be used to determine which regions of the brain were most influential in

detecting abnormal neural activity, while in ECG analysis, it can help in pinpointing

specific anomalies in heart rhythms that indicate cardiac risk. This not only improves

the interpretability of AI models but also supports better clinical decision-making.

XAI in Clinical Practice: Case Studies and Applications. Several case studies

demonstrate the practical use of XAI in clinical settings, particularly in neurorehabil-

itation and cardiovascular disease management [165, 222, 227]. For example, Class

Activation Mapping (CAM) has been used to highlight which regions of an ECG signal

are indicative of certain conditions, making it easier for cardiologists to validate the AI
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model’s output [134, 198]. Similarly, Random Forest models have been used for EMG

signal classification, with feature importance techniques providing valuable insights

into the features that are most predictive of specific motor activities [85, 98, 227].

These applications of XAI not only improve the transparency of AI models but also

foster greater acceptance among clinical experts, as they make it easier for practitioners

to understand and trust the models’ predictions. This is particularly important in

fields like mental health, where patient outcomes depend heavily on the accuracy and

transparency of diagnostic tools.

3.3.1 Prospects and Challenges of XAI in Bioelectric Signal

Analysis

The future of XAI in bioelectric signal analysis is promising, with the potential

to transform how clinicians interact with AI-based diagnostic tools [106, 133, 184].

Emerging techniques, such as causal inference and domain adaptation, are expected to

further enhance the interpretability and robustness of AI models in healthcare [227].

However, significant challenges remain. Ensuring the generalizability of XAI meth-

ods across different datasets and clinical scenarios is critical for their widespread

adoption. Bioelectric signals are often subject to variability based on individual dif-

ferences, such as age, sex, and comorbid conditions, making it challenging to create

one-size-fits-all explainable models. Additionally, incorporating clinician feedback

during the development of XAI systems can improve their usability and relevance,

leading to better patient care and outcomes [128].

Ethical considerations also play a role in the adoption of XAI. Issues such as bias,

fairness, and accountability must be addressed to ensure responsible and equitable use of

AI technologies in healthcare [32, 198]. XAI provides an opportunity to mitigate these

concerns by making the decision-making process more transparent and understandable

for all stakeholders involved.

In conclusion, XAI represents a transformative approach in the analysis of bioelectric

signals, with the potential to significantly enhance diagnostic and therapeutic processes

in healthcare. By making AI systems more transparent and trustworthy, XAI can

contribute to more personalized, effective, and ethical healthcare solutions.





Chapter 4

Healthcare Assisted by Artificial

Intelligence-based Techniques

4.1 Research Objectives and Contributions

The increasing complexity of modern health challenges, particularly among aging

populations and individuals at risk of neurodegenerative diseases, calls for advanced

analytical tools to enhance precision in diagnosis and care. AI has emerged as a

transformative technology in addressing these challenges, offering new ways to process

and interpret complex epidemiological data. This chapter explores the application

of machine learning techniques in the health and epidemiology domains, focusing on

identifying patterns in dietary behaviors, assessing factors linked to physical frailty,

and predicting cognitive decline.

4.1.1 Research Objectives

Chapter 4 is dedicated to harnessing the capabilities of AI to address complex challenges

in the domains of health and epidemiology. The chapter sets forth several key objectives

aimed at leveraging the power of both supervised and unsupervised machine learning

techniques. Firstly, it seeks to identify dietary patterns within an elderly diabetic

population and to analyze nutritional factors that are associated with frailty. This

involves a detailed examination of large datasets to discern patterns that may not be

immediately apparent to human analysts.

Additionally, the chapter aims to demonstrate the efficacy of AI in enhancing

healthcare diagnostics. This includes efforts to reduce delays in diagnostics, lower the

costs associated with healthcare delivery, and facilitate the development of personalized
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treatment plans tailored to the specific needs of individual patients. These objectives

underscore the potential of AI to transform traditional approaches to healthcare and

improve both efficiency and effectiveness.

Another significant objective of this chapter is to utilize advanced machine learning

methods to probe epidemiological data with a particular focus on neurodegenerative

outcomes, such as Mild Cognitive Impairment (MCI). This involves sophisticated

modeling techniques that can predict disease progression and potentially offer insights

into preventive measures.

Finally, the chapter evaluates the integration of AI technologies into clinical settings,

assessing their impact on the decision-making processes and the overall delivery of

healthcare services. This includes a critical analysis of how AI tools are currently

being adopted within healthcare infrastructures and their effects on the workflows and

outcomes of medical practices.

By addressing these objectives, Chapter 4 not only highlights the practical applica-

tions of AI in healthcare but also explores the broader implications of these technologies

on the field of epidemiology and public health.

4.1.2 State of the Art Limitations

While AI offers transformative potential for healthcare, it faces several challenges that

may limit its efficacy in current methodologies. These include issues related to the

quality, privacy, and representativeness of data, which are significant hurdles affecting

the reliability of AI predictions. The opaque nature of many AI models, particularly

those involving deep learning, complicates their acceptance and use in clinical practice

due to a lack of transparency and interpretability. Furthermore, technical and cultural

barriers complicate the integration of AI systems into existing healthcare infrastructures,

requiring considerable adaptation from current practices. Additionally, AI deployment

must navigate a complex landscape of ethical considerations and regulatory requirements

to ensure patient safety and ethical compliance.

4.1.3 Chapter Contributions

Building upon the identified objectives and the outlined limitations, this chapter

contributes to the field of healthcare through the application of AI. We begin by

utilizing machine learning to analyze dietary data from elderly diabetics, providing

new insights into the correlations between diet and health. This analysis helps in
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identifying dietary patterns that may influence the onset and progression of various

health conditions.

Furthermore, the relationship between nutritional factors and physical frailty is

examined, which suggests potential pathways for dietary interventions aimed at reducing

frailty risks among the elderly. This is particularly significant as it opens up avenues

for preventive healthcare measures that can significantly improve quality of life.

In addition, we focus on developing predictive models for MCI, aiming to enhance

our understanding and anticipation of neurodegenerative diseases. These models are

instrumental in proposing preventive health strategies by identifying early indicators

of cognitive decline, thereby allowing for timely intervention.

These contributions are designed not only to address the challenges posed by

the integration of AI in healthcare but also to leverage AI’s capabilities to improve

healthcare outcomes and decision-making processes significantly. By advancing AI

applications in healthcare, we aim to demonstrate its value in enhancing diagnostic

accuracy, optimizing treatment efficacy, and ultimately, improving patient care.

4.2 Background

The following section provides an overview of the existing research on the application

of AI in two key areas relevant to this thesis: nutritional pattern analysis and cognitive

impairment detection. These topics form the foundational background upon which the

subsequent work presented in this chapter is built.

First, we review recent advances in the use of ML techniques for analyzing nutritional

patterns, with a focus on dietary habits and their health implications. This includes the

identification of distinct dietary patterns and the potential for personalized nutrition

interventions.

Next, we explore AI-based methods for detecting cognitive impairment, specifi-

cally focusing on Alzheimer’s disease (AD) and MCI. This includes various machine

learning and deep learning approaches that have been applied to neuroimaging and

electrophysiological data to enhance early detection and prediction capabilities.

Artificial Intelligence in Nutritional Patterns

In recent years, there has been a growing interest in applying ML techniques to

nutrition research to manage the complexity and high dimensionality of nutritional

data.
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Kirk et al. [151] provide a comprehensive review of the applications of ML in

nutrition, particularly in precision nutrition and metabolomics. They emphasize the

importance of ML for understanding the multifaceted interactions between nutrition

and health, identifying key areas such as obesity and cardiovascular diseases where ML

has shown significant promise.

Silva et al. [264] used clustering algorithms and ML to analyze dietary patterns in

the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Their study identified

two primary patterns: a "Western" pattern characterized by high consumption of red

meat and processed foods, and a "Prudent" pattern with higher intakes of fruits,

vegetables, and whole grains. Algorithms like K-means, SVM, and random forest

demonstrated moderate accuracy (69%−72%) in predicting these patterns based on

socio-demographic and clinical data.

In a recent systematic review, Armand et al. [285] explored the applications of

AI in nutrition, highlighting the potential of ML and DL in areas such as personal-

ized nutrition, food recognition, and dietary monitoring. The review emphasizes how

these techniques can detect complex patterns within nutritional datasets and provide

predictive models for disease prevention and monitoring, thereby optimizing dietary

recommendations.

AI-based Methods in Cognitive Impairment Detection

AD, a type of dementia primarily affecting the elderly, is prevalent in society.

Detecting AD in its early stages is challenging for medical professionals, with no entirely

reliable biomarker available. Unfortunately, AD remains incurable, and clinical trials

for AD drugs have largely been unsuccessful. Many DL and supervised classification

algorithms have been developed for AD detection, but these methods are still imperfect

and unable to achieve high accuracy.

MCI, a progressive neurological condition often preceding AD, leads to cognitive

decline in older individuals. Early detection is crucial to implementing treatment

approaches that can improve quality of life for patients with MCI, although no current

remedies can halt or reverse its progression.

This section discusses studies on the use of Machine Learning and DL techniques

for analyzing MCI. Ansart et al. [10] highlighted the importance of following guidelines

for using ML as a clinical decision-making tool, focusing on predicting the progression

of individuals with MCI. The review of 234 experiments from 111 articles raised doubts

about the effectiveness of Magnetic Resonance Imaging (MRI) alone for predicting the
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advancement of MCI towards dementia, with studies using cognitive variables or FDG

PET reporting better results.

Grueso et al. [110] conducted a comprehensive evaluation of 452 studies that applied

ML to neuroimaging data to assess whether MCI patients were likely to develop AD.

The findings showed that combining MRI and PET led to higher classification accuracy

compared to using only one imaging technique. SVM was the most commonly used

algorithm, achieving an average accuracy of 75.4%, while CNN performed slightly

better with an accuracy of 78.5%.

Alvi et al. [9] proposed a DL approach involving a Gated Recurrent Unit (GRU)

model for detecting MCI using EEG data. Their model outperformed other classifiers,

including LSTM, SVM, and K-Nearest Neighbors (KNN), with high accuracy when

distinguishing between MCI participants and Healthy Control (HC) subjects, validated

using 5-fold cross-validation.

Forouzannezhad et al. [87] worked on distinguishing between Normal Controls (CN)

and early MCI (EMCI) groups to facilitate early diagnosis. They proposed a ML

approach combining MRI, PET, and neuropsychological test scores, achieving an

accuracy of 84.0% in differentiating CN from EMCI. Their method demonstrated

potential for multiclass classification, including CN, late MCI, and AD.

In summary, these studies illustrate the current advances and challenges in using

ML and DL techniques for MCI detection and AD prediction, emphasizing the need

for improved methods to enhance diagnostic accuracy.

These related works highlight both the opportunities and challenges in the ap-

plication of AI to health-related data, providing a comprehensive background that

underpins the novel approaches discussed later in this chapter.

4.3 Exploring Dietary and Nutritional Patterns in

Diabetic Population

With regard to work related to the diabetes mellitus (DM) population it is important

to define that DM is a group of metabolic diseases characterized by an increase in

blood glucose concentrations (hyperglycemia). There are two major subtypes of DM:

type 1 and type 2. Type 2 diabetes (T2DM) is the most common type of DM (around

90% of people with diabetes have T2DM) [83]. It is mainly linked to insulin resistance

(IR) and relatively poor insulin secretion.

Diabetes has become a major public health concern worldwide due to its growing

epidemic prevalence. According to the data of the International Diabetes Federation
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(IDF), diabetes affected 463 million people between the ages of 20 and 79 worldwide in

2019, which will grow to an estimated 700 million by 2045 [83]. Disease prevalence has

doubled in Italy in the last 30 years (now 5.7–6.2%, or one in every six people over 65

years old) [131].

Given these alarming trends, my doctoral research has concentrated on analyz-

ing the dietary differences between subjects with and without diabetes among non-

institutionalized older adults from Southern Italy using an unsupervised machine

learning approach in the identification of dietary patterns based on principal compo-

nent analysis (PCA).

4.3.1 Methods

Salus in Apulia study population

Study participants were residents of Castellana Grotte, Bari, Southern Italy, and the

sampling framework is based on the health registry office list on 31 December 2014.

This included 19675 people, 4021 of whom were aged 65 years or older. However,

only 2192 eligible individuals responded to the enrollment. They were enrolled in the

"Salus in Apulia Study", a public health initiative financed by the Italian Ministry of

Health and the Regional Government of Apulia and carried out by the IRCCS research

hospital Saverio De Bellis. Previous prospective MICOL studies [18], which began in

1981, included these same potential research subjects. From 2014 to 2018, all eligible

subjects, starting with MICOL participants, were invited to take part in the study

[47]. All participants signed informed consent acknowledgements after receiving full

information about their medical data to be studied. The study was conducted in

accordance with the Helsinki Declaration of 1975. Every examination and informed

consent form was approved by the Institutional Review Board of the National Institute

of Gastroenterology and Research Hospital. All study information is stored in electronic

databases that are protected according to Italian privacy laws.

Dietary Assessment and Clinical Evaluation

Diet and eating habits were assessed with a validated food frequency questionnaire

(FFQ) used in previous studies [159, 249]. FFQ referred only to the frequency of intake

and did not consider differences in portion sizes. In detail FFQ is a structured tool

that provides a checklist of foods and beverages along with a section for respondents

to indicate how frequently each item was consumed during a specified time period.

Semi-quantitative FFQs go a step further by including questions about portion sizes,
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typically using standardized portion sizes or offering multiple portion size options for

selection.

This questionnaire investigated dietary habits over the previous year and inquired

about the consumption of 85 food items. The food items are expressed in grams

per day as the unit of measurement. These values are subsequently converted into

kilocalories in accordance with the CREA (Council for Agricultural Research and

Economics) [203] guidelines to standardize dietary intake assessment. Afterwards the

original food items were further summarized in 28 food groups [47]. Supplementary

Table 1 in the apppendix shows the concordance of single foods in the questionnaire

and the food grouping used in the analyses [314].

The self-administered questionnaire was checked for completeness during an inter-

view conducted by a physician at the study centre. The questionnaire also included

questions about lifestyle aspects such as educational level, physical activity, and smok-

ing habits. Additionally, at the interview, anthropometric data on waist circumference

(cm), weight (kg), and height (cm) were obtained. Weight and height were measured

with the mechanical scale SECA 700 and stadiometer SECA 220 (Seca GmbH and

Co., Hamburg, Germany), and the body mass index (BMI) was then derived and

calculated as the ratio of weight (kg) to height squared (m2). The waist circumference

was assessed with respect to the National Cholesterol Education Program: Adult

Treatment Panel III (NCEP: ATP III) criteria. Diabetes mellitus was categorized as

fasting blood glucose (FBG) g 126 mg/dL.

Statistical Analysis

Patients’ characteristics were reported as mean ± standard deviation (M ± SD) for

continuous variables and as frequencies and percentages (%) for categorical variables.

To test associations with diabetes-related diseases between groups, the Chi-square test

was used for categorical variables, and the Wilcoxon rank-sum (Mann–Whitney) test

was used for continuous variables.

To further reduce the number of the 28 food groups, a dimensionality reduction

algorithm based on unsupervised learning was used, namely principal component

analysis (PCA).

The PCA algorithm finds linear combinations of raw features (also known as

projection) such that they retain as much variation in the data as possible, summarized

in as few new variables (components) as possible. The vectors (loadings) describing these

linear transformations produce a new set of features called scores (eigenvalues), which

are uncorrelated with each other. The principal components returned by statistical
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software are often ranked in descending order by their corresponding eigenvalues, which

simply comprise the amount of variance in the original data explained by each principal

component. The PCs with the largest eigenvalues account for most of the variation in

the data. We applied PCA to the 28 food intakes in the groups of diabetics and in the

control groups of non-diabetics. We considered only the most predominant PC (higher

eigenvalues) in both groups, describing the loadings for each food in that PC. Due to

the nature of this method, the observed food group contribution to the PCA-derived

habitual dietary patterns tended to be higher for large meals with a low consistency

of consumption and high interindividual variation. We chose PCA as the basis of

our analysis of dietary patterns because it is the exploratory method most frequently

adopted [255].

All analyses were performed using StataCorp. 2021. Stata Statistical Software:

Release 17. College Station, TX, USA: StataCorp LLC.

4.3.2 Health Profiles and Dietary Intake Evaluation

The sample analyzed in the present study included 1399 subjects drawn from the

"Salus in Apulia Study" population, with an average age of 73.43 ± 6.30 years. These

subjects were the only ones who had completed the questionnaire and had all the

necessary health data, for the analysis. The male gender was slightly predominant,

accounting for 53.6% (p = 0.02). The population was fairly well balanced for the

education level, which averaged 6.79 ± 3.79 years of schooling, as well as for mean

BMI, 28.98 ± 4.26, and waist circumference, 103.48 ± 10.25 cm. The population was

generally overweight had a greater abdominal circumference value than recommended.

The study population was subdivided into two groups based on the presence or absence

of diabetic disease: i.e., the "Not Diabetic (121)" and the "Diabetic (187)" groups.

Table 4.1 shows differences between the two groups regarding socio-demographic,

lifestyle, and biochemical parameters.
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Table 4.1 Sociodemographic and clinical variables in patients with and without diabetic
disease. * As mean and standard deviation for continuous and percentage (%) for categorical
variables. ψ Wilcoxon rank-sum test (Mann–Whitney). ∗∗ Chi-square test.

Parameters No (n = 1212) Yes (n = 187) p-valueÈ

Gender (%) 0.02∗∗

M 634 (52.31) 115 (61.50)

F 578 (47.69) 72 (38.50)

Age (yrs) 73.24 ± 6.26 74.66 ± 6.39 0.003

Education (yrs) 7.07 ± 3.80 6.52 ± 3.78 0.05

BMI (kg/m2) 28.90 ± 4.34 29.07 ± 4.18 0.60

Normal weight (BMI f 24.90) 221 (18.54) 28 (15.05)

Overweight (BMI 25.0–29.90) 548 (45.97) 93 (50.00)

Obese (BMI g 30) 423 (35.49) 65 (34.95)

Waist (cm) 102.92 ± 10.42 104.05 ± 10.08 0.24

Biomarkers

Glucose (mg/dL) 98.11 ± 11.33 160.63 ± 44.98 <0.0001

Cholesterol (mg/dL) 185.89 ± 36.87 167.47 ± 36.61 <0.0001

HDL (mg/dL) 49.41 ± 13.03 42.95 ± 10.63 <0.0001

LDL (mg/dL) 115.32 ± 31.14 97.78 ± 30.54 <0.0001

Triglycerides (mg/dL) 101.84 ± 54.25 133.58 ± 78.68 <0.0001

Systolic Blood Pressure (mmHg) 132.76 ± 14.30 136.90 ± 14.76 0.0006

Diastolic Blood Pressure (mmHg) 78.48 ± 7.72 77.46 ± 8.19 0.04

IL-6 (pg/mL) 3.85 ± 6.73 4.39 ± 6.48 0.0001

TNF-α (µg/mL) 2.76 ± 3.87 3.16 ± 2.98 0.01

Table 4.2 shows the characteristics of the two groups in terms of food group

consumption. Diabetic subjects consumed more potatoes (14.01±31.18 g vs. 13.31±

16.38 g), more ready-to-eat dishes (34.45 ± 94.18 g vs. 33.24 ± 34.83 g), fewer eggs

(7.40 ± 8.64 g vs. 8.33 ± 9.12 g), fewer nuts (5.49 ± 16.04 g vs. 7.56 ± 15.72 g), and

fewer sugary foods and beverages (sweets: 16.52±22.87 g vs. 23.74±35.81 g; sugary

foods: 7.22±15.96 g vs. 11.08±21.85 g; juices: 4.80±21.26 g vs. 6.96±20.64 g) than

non-diabetic (ND) subjects.
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Table 4.2 Food groups consumption in patients with and without diabetic disease. * Data are
presented as mean and standard deviation for continuous and percentage (%) for categorical
variables. ¥ Food groups were calculated by quantity of daily consumption. ψ Wilcoxon
rank-sum test (Mann–Whitney).

Parameters No (n = 1212) Yes (n = 187) p-valueÈ

Food Groups ¥

Dairy 104.19 ± 111.15 109.38 ± 99.20 0.41

Low-Fat Dairy 101.84 ± 108.35 98.18 ± 107.52 0.49

Eggs 8.33 ± 9.12 7.40 ± 8.64 0.02

White Meat 26.32 ± 32.52 28.19 ± 59.34 0.82

Red Meat 22.62 ± 23.62 25.99 ± 39.21 0.17

Processed Meat 15.11 ± 15.45 17.57 ± 40.64 0.50

Fish 25.20 ± 23.95 33.64 ± 100.18 0.39

Seafood/Shellfish 9.45 ± 13.75 14.84 ± 64.34 0.31

Leafy Vegetables 59.02 ± 60.42 65.59 ± 93.65 0.94

Fruiting Vegetables 93.39 ± 78.56 107.85 ± 105.38 0.08

Root Vegetables 11.81 ± 26.78 14.17 ± 33.44 0.17

Other Vegetables 80.28 ± 77.02 93.80 ± 106.76 0.28

Legumes 37.78 ± 27.66 41.27 ± 46.99 0.99

Potatoes 13.31 ± 16.38 14.01 ± 31.18 0.002

Fruits 620.23 ± 537.58 598.35 ± 485.11 0.89

Nuts 7.56 ± 15.72 5.49 ± 16.04 <0.0001

Grains 157.59 ± 108.42 145.80 ± 99.22 0.29

Sweets 23.74 ± 35.81 16.52 ± 22.87 <0.0001

Sugary Foods 11.08 ± 21.85 7.22 ± 15.96 <0.0001

Juices 6.96 ± 20.64 4.80 ± 21.26 0.002

High Calorie Drinks 7.31 ± 42.37 16.85 ± 95.24 0.53

Ready-to-Eat Dishes 33.24 ± 34.83 34.45 ± 94.18 0.01

Coffee 46.41 ± 29.97 50.32 ± 28.72 0.06

Wine 121.98 ± 162.88 124.38 ± 169.39 0.85

Beer 19.54 ± 73.26 19.56 ± 69.59 0.85

Spirits 1.54 ± 5.48 1.31 ± 5.31 0.62

Water 653.61 ± 297.74 705.75 ± 312.98 0.03

Principal Component Analysis (PCA)

PCA was used to evaluate dietary differences between the "Diabetic" and "Not Diabetic"

groups. Figure 4.1 shows that the most significant PCA in the "Diabetic" group was

dominated in terms of loading scores by foods of plant origin. The food pattern in this

group not only reflected a high-frequency intake of dairy products, eggs, vegetables
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and greens, nuts, and olive oil but also sweets and sugary foods. This pattern is named

the "Vegetarian Pattern".

Fig. 4.1 Principal component analysis (PCA) used to identify a dietary pattern of "Diabetic"
subjects.

Figure 4.2 shows the food pattern of the "Not Diabetic" group. It was characterized

by a high-frequency intake of red and processed meat, seafood, high-calorie drinks,

ready-to-eat dishes, wine, beer, and spirits.

Fig. 4.2 Principal component analysis (PCA) used to identify a dietary pattern of "Not
Diabetic" subjects.
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4.3.3 Discussion of Key Outcomes

This cross-sectional study conducted in a sample of 1399 middle-aged Italians from

Castellana Grotte (Puglia, Italy) examined dietary differences between subjects with

and without diabetes, identifying a distinct dietary pattern among diabetics. Diabetic

individuals exhibited a dietary pattern richer in fruits, vegetables, and nuts, and lower

in red and processed meats compared to non-diabetic subjects. The diabetic group had

an average age of 75, slightly older than the non-diabetic group (73 years), supporting

the association between age and diabetes prevalence [132].

Biochemically, diabetic subjects showed higher levels of glucose, triglycerides,

blood pressure, IL-6, and TNF-α, markers often linked to metabolic syndrome [81,

143]. Diabetes commonly coexists with obesity and hypertension, with obesity being

characterized by proinflammatory markers that may contribute to metabolic disorders

[50, 217].

Our study explored dietary habits more holistically by analyzing food groups rather

than isolated nutrients. While both groups met the recommended portions of fruits

and vegetables, the diabetic group still consumed sweets and sugary foods at higher

levels than non-diabetics, despite guidelines advising limited intake of added sugars

[290].

In line with the Italian Society of Diabetology (SID) recommendations, a diet

for diabetes management should emphasize fiber-rich fruits, vegetables, legumes, and

whole grains, which help control blood glucose and triglycerides [140, 250]. Regular

consumption of five portions of fruits and vegetables per day and four portions of

legumes per week aligns with these goals, with studies indicating that 40g or more of

daily fiber intake can significantly reduce blood glucose levels [48].

Despite national data showing insufficient fruit and vegetable consumption among

the elderly [245], participants in this study largely met Mediterranean diet guidelines,

perhaps reflecting their strong ties to regional dietary traditions. The Mediterranean

Diet, which places fruits and vegetables at its core while limiting red and processed

meats, has been associated with numerous health benefits, including better glycemic

control and reduced cardiovascular risk [68, 88].

Strengths and Limitations

The present study evaluated dietary differences between subjects with and without

diabetes drawn from non-institutionalized older adults from Southern Italy, using an

unsupervised machine learning algorithm. The main strength of our study is that no

study has yet analyzed these aspects in similar populations using this novel approach.
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Another strength is the description of a dietary pattern characteristic of diabetic

subjects.

However, some limitations must be considered. One of the main limitations of the

study is the use of food frequencies instead of calculating quantitative daily intake.

This type of measurement could increase the bias that is usually associated with a

retrospective dietary assessment over a period of one year when compared to the

actual intake. Nevertheless, despite the reported limitation of this assessment method,

FFQs remain the dietary assessment method most used to study dietary patterns and

population eating habits [11, 68, 88, 129, 142, 180, 245, 290]. Another important

limitation is the nature of the study, which was cross-sectional and does not allow a

clear directionality of an association to be discerned. Moreover, conclusions in this

study should be considered a descriptive comparison of the dietary pattern between

two groups, without quantitative statistical inferences. Another limitation concerns

the age of the diabetic subjects in our sample, which is reduced compared to the age

range of the typical diabetic population.
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4.4 Neural Network Assessment of Frailty-Related

Nutrition in Aging Italians

The ongoing research described previously has naturally progressed to investigating

nutritional factors associated with frailty among the elderly population in Southern

Italy.

Building on the findings discussed earlier, this study introduces a machine learning

approach using a Neural Network model. The model was developed to classify an

aging cohort from the Salus in Apulia study population described above, based on their

physical frailty condition. It aims to identify key dietary factors and readily available

clinical data that best encapsulate the characteristics of the frailty phenotype [103].

4.4.1 Methods

Clinical and Laboratory Examination

Education was categorized according to the major divisions of the Italian national

education system, i.e., lowest level: < 6 years reflecting primary school education;

middle level: 6−8 years reflecting lower secondary school education; highest level > 8

years reflecting upper secondary school/high school education and university education.

A blood sample was collected in the morning after overnight fasting to measure the

levels of fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol,

high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol,

and triglycerides using standard automated enzymatic colorimetric methods (AutoMate

2550, Beckman Coulter, Brea, CA, US) under strict quality control. LDL cholesterol

was calculated using the Friedewald equation [89]. Plasma glucose was determined

using the glucose oxidase method (Sclavus, Siena, Italy). Blood cell count was deter-

mined by a Coulter Hematology analyzer (Beckman Coulter, Brea, CA). The clinical

evaluation included extemporaneous ambulatory systolic blood pressure (SBP) and

diastolic blood pressure (DBP), determined in a sitting position after at least a 10-min

rest, at least three different times, using the OMRON M6 automatic blood pressure

monitor. Serum high-sensitivity C-reactive protein (CRP) was assayed using a latex

particle-enhanced immunoturbidimetric assay (Kamiya Biomedical Company, Seattle,

WA) (reference range: 0–5.5 mg/L; interassay coefficient of variation: 4.5%). Serum

interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were assayed using the

quantitative sandwich enzyme technique of ELISA (QuantiKine High Sensitivity Kit,

R&D Systems, Minneapolis, MN, and QuantiGlo immunoassay from R&D Systems,
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Minneapolis, MN). The interassay coefficient of variations was 11.7% for IL-6 and

13.0% for TNF-α. Inflammatory marker assays performed were analyzed at the same

laboratory following strict quality control procedures.

Food Questionnaire Assessment

A food frequency questionnaire (FFQ) previously validated on our population [283,

315] was used following a semi-quantitative approach based on foods consumed by

the Mediterranean population. For these foods, the frequency of predefined portion

intake, in the past year, was probed in the questionnaire using a 9-category scale.

Each portion was assigned a weight, and then the intake amount expressed as the

average intake in grams per day was calculated. The FFQ was structured into 11

sections that partly reflect the sequence of foods throughout the day and include foods

with similar characteristics: cereals, meat, fish, milk and dairy products, vegetables,

legumes, fruits, miscellaneous foods, water and alcoholic beverages, olive oil and other

edible fats, coffee/sugar, and salt. In a subsequent step, the FFQ was validated against

the dietary records, and the results were reviewed to make necessary changes to the

questionnaire [109]. The initial FFQ consisted of 85 food items and included questions

regarding fat consumption. To improve efficiency and reduce redundancy, the ques-

tionnaire was refined to 77 food items, allowing for more streamlined analyzes and

facilitating statistical modeling as well as comparisons with other studies. The food

items are expressed in grams per day, and the recorded values are then converted into

kilocalories according to the guidelines provided by the CREA (Council for Agricultural

Research and Economics) [203], ensuring consistency in the assessment of dietary intake.

Physical Frailty Assessment

Assessment of physical frailty status was performed using the CHS operational criteria

slightly modified for the present study, i.e., the positivity of three or more of the

following components weight loss, exhaustion, low physical activity levels, weakness,

and sluggishness, as detailed elsewhere [45]. The whole sample was categorized into

two groups based on the number of physical frailty components. Subjects who met

three or more criteria were included in the frail group, otherwise non-frail (or robust).

Statistical Analysis

The entire sample was divided into two groups according to physical frailty conditions.

Normal distributions of quantitative variables were tested using the Kolmogorov-

Smirnov test. Therefore, data were reported as mean ± standard deviation (M ±
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SD) for continuous measures and frequency and percentages (%) for all categorical

variables. A statistical approach based on the null hypothesis significance test (NHST)

was not used to focus the reader’s attention on practical differences between groups

in terms of effect size. Differences in the prevalence of exposure groups, i.e., physical

frailty and other categorical variables, and their 95% CIs were calculated and used

to assess significant differences in the magnitude of the association, i.e., effect size

(ES). Using Wilcoxon’s effect size, differences between continuous variables were

calculated by confidence intervals around them following a non parametric approach

[109]. Differences between categorical variables were assessed using differences in

prevalence and confidence intervals around them. Dietary records were normalized to

a daily assumption of 2000 kcal. A Lasso regression was performed on Physical Frailty

status, as the dependent variable, to reduce the number of predictors in the Neural

Network model (NN). A minimum value of lambda was chosen to optimize the Lasso

regression. There were 20 remaining predictors associated with the dependent variable

in the Lasso regression and selected for inclusion in the NN as input. Statistical analysis

were performed using RStudio software, Version 1.2.5042 (RStudio, Inc.,Boston, MA,

USA).

Fig. 4.3 Neural Network Architecture. Input units: from I1 to I20; Hidden units: from H1 to
H3; Output unit: O1. B1 and B2 are, respectively, hidden neuron bias and output neuron
bias.

Machine Learning Approach

The Machine Learning algorithm considered was the NN, which is a reinforcement

learning algorithm. The 20 predictors obtain from Lasso regression, were used to predict

the frailty condition. The split percentages for the training and test were, respectively,

70% and 30%. All data were normalized using Min-Max normalization.The Caret
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package was used to build and train the NN model. The hyperparameters tuning was

performed, using 5-fold cross validation on the training set, on:

• hidden layer size: from 3 to 9;

• decay values: 0.001,0.01,0.1.

The logistic activation function was used for each neuron. The best selection of

hyperparameters was obtained using the best accuracy, actually the hidden layer

size selected was 3 and the decay value was 0.1. Therefore the NN architecture was

composed of one input layer, one hidden layer and one output layer. The input layer

size was 20, the hidden layer size was 3 and the output layer size was 1. Fig. 5.1 shows

the architecture of the NN. Fig. 5.2 shows the variation of the accuracy value according

to the combination of the hidden layer size and decay values.

Fig. 4.4 Accuracy plots of Training dataset.

The absolute importance was evaluated using Garson’s algorithm [95]. This algo-

rithm decomposes the connection weights of a neural network to estimate the relative

contribution of each input feature to the network’s output. It calculates importance

scores by distributing the connection weights of hidden neurons proportionally across

input features, providing an interpretable measure of feature relevance.

Olden’s algorithm [207] evaluated the relative importance of the input variables in

the neural network (NN). This algorithm assesses importance by directly analyzing the

connection weights of the NN, accounting for the magnitude and direction (positive

or negative) of each weight. Unlike Garson’s algorithm, Olden’s method preserves

the sign of the weights, providing a more accurate and interpretable measure of the

contribution of each input variable to the model’s predictions.
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Accuracy metrics were evaluated for both datasets to assess model performance and

overfitting. The Machine Learning algorithm was performed using RStudio software,

Version 1.2.5042 (RStudio, Inc.,Boston, MA, USA).

4.4.2 Frailty Status Analysis and Predictive Modeling

The examined population (N = 1,929) appeared gender-balanced (53.20% male, n =

493). The mean age was 74.03 ± 6.36 years. Table 4.3 summarizes the main differences

among the population variables according to physical frailty status. Physical frailty

was prevalent in 14% of the entire sample (N=130), compared with 86% of those who

were not frail (N= 796). Older age (ES: 0.14, 95%CI 0.07 to 0.19), female gender

(ES: 12.72, 95%CI 3.55 to 21.89), and high BMI (ES: 0.08, 95%CI 0.01 to 0.14) were

associated with physical frailty, as high diastolic (ES: 0.07, 95%CI 0.01 to 0.13) and

systolic (ES: 0.08, 95%CI 0.02 to 0.15) blood pressure. Higher educational level and

smoking habit prevailed in non-frail individuals compared with the counterpart (ES:

5.98, 95%CI −9.20 to −2.77). As for the metabolic biomarkers, the lipid profile showed

significantly lower total, HDL, and LDL cholesterol values in frail subjects (ES: 0.08,

95%CI 0.01 to 0.13, ES:0.07, 95%CI 0.01 to 0.13, and ES: 0.08, 95%CI 0.02 to 0.14).

RBC levels were lower in the frail than the counterpart (ES: 0.06, 95%CI 0.01 to 0.13).

Conversely, serum levels of interleukin-6 and CRP were higher in the frail group (ES:

0.07, 95%CI 0.03 to 0.12, and ES: 0.06, 95%CI 0.02 to 0.11). Table 4.4 shows the daily

calorie intake (%) per food of the whole sample according to physical frailty condition.

Consumption of spaghetti soup, pecorino cheese, fennel, and chocolate was found to

be significantly higher in the frail group than non-frail (ES: 0.08, 95%CI 0.01 to 0.14,

ES: 0.08 95%CI 0.02 to 0.14, ES: 0.06 95%CI 0.01 to 0.13, and ES: 0.08 95%CI 0.01 to

0.14, respectively). Ham consumption was statistically lower in the frail group than its

counterpart (ES: 0.02 95%CI: 0.01 to 0.14). There were 20 features selected using the

Lasso regression model on physical frailty condition (see Table 4.5).
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Table 4.3 Description of the whole sample socio-demographic and biochemical variables
according to Physical Frailty status. N: 926

Legend: BMI: Body Mass Index, DBP: Diastolic Blood Pressure, SBP: Systolic Blood Pres-
sure, FBG: Fasting Blood Glucose, HbA1c: Glycated Hemoglobin, GGT: Gamma Glutamyl
Transferase, AST: Aspartate Aminotransferase, ALT: Alanine Aminotransferase, RBC: Red
Blood Cells, WBC: White Blood Cells, TNF-alpha: Tumor Necrosis Factor, CRP: C-Reactive
Protein, PA score: InChianti Physical Activity score, PF score: Global Physical Frailty score.
All data are shown as mean ± sd, median (min to max) for continuous variables and as n
(%) for proportions.
∗Wilcoxon’s effect size.

Without Physical Frailty With Physical Frailty Effect Size*

Mean ± SD
Median

(Min to Max)
Mean ± SD

Median

(Min to Max)
Value 95% CI

Proportions (%) 796 (86.00) 130 (14.00)

Age (years) 73.69 ± 6.32 73 (65 to 92) 76.1 ± 6.25 76 (65 to 95) 0.14 0.07 to 0.19

Sex

Male 438 (55.00) 55 (42.30) 12.72 3.55 to 21.89

Female 358 (45.00) 75 (57.70) 12.72 3.55 to 21.89

Educational Level (years) 6.92 ± 3.81 5 (0 to 18) 5.94 ± 4.15 5 (0 to 17) 0.13 0.07 to 0.21

Smoke Habits (yes) 66 (8.30) 3 (2.30) -5.98 -9.20 to -2.77

BMI (kg/m2) 28.58 ± 4.89 28.13 (14.09 to 48.47) 29.73 ± 5.35 29.55 (18.61 to 48.77) 0.08 0.01 to 0.14

DBP (mmHg) 78.36 ± 7.9 80 (40 to 110) 77.35 ± 8.59 80 (50 to 100) 0.04 −0.02 to 0.09

SBP (mmHg) 133.51 ± 14.71 130 (80 to 180) 137.19 ± 15.01 140 (100 to 200) 0.08 0.02 to 0.15

FBG (mg/dL) 105.45 ± 29.49 99 (62 to 365) 110.78 ± 38.1 101 (54 to 435) 0.07 0.01 to 0.13

HbA1c (mmol/mol) 40.64 ± 10.69 39 (18 to 128) 42.09 ± 11.2 40 (24 to 101) 0.06 −0.01 to 0.12

GGT (U/L) 35.39 ± 37.24 19 (6 to 158) 39.64 ± 40.87 22.5 (7 to 158) 0.05 −0.02 to 0.09

AST (U/L) 32.25 ± 28.77 23 (2 to 197) 35.8 ± 33.51 24 (1.2 to 189) 0.06 −0.01 to 0.11

ALT (U/L) 26.16 ± 22.71 19 (6 to 221) 26.02 ± 16.52 20 (8 to 81) 0.02 −0.03 to 0.06

Total Cholesterol (mg/dL) 184.01 ± 37.28 183.5 (76 to 386) 176.82 ± 40.21 178.5 (94 to 302) 0.08 0.01 to 0.13

LDL Cholesterol (mg/dL) 113.33 ± 31.18 114 (30 to 220) 107.41 ± 33.88 108.5 (37 to 209) 0.07 0.01 to 0.13

HDL Cholesterol (mg/dL) 49.07 ± 13.21 47 (23 to 117) 46.01 ± 11.54 44 (23 to 89) 0.08 0.02 to 0.14

Triglycerides (mg/dL) 103.86 ± 57.07 89 (21 to 498) 113.43 ± 65.31 93 (30 to 443) 0.06 −0.01 to 0.12

RBC (106 cells/mm3) 4.82 ± 1.38 4.76 (3.34 to 40.8) 4.68 ± 0.56 4.7 (3.17 to 6.78) 0.06 0.01 to 0.13

WBC (103 cells/mm3) 6.05 ± 1.71 5.8 (1.7 to 20.9) 6.34 ± 2.3 5.93 (3.29 to 24.36) 0.04 −0.02 to 0.08

Platelets (103 cells/mm3) 218.62 ± 55.37 212.5 (65 to 520) 219.22 ± 70.5 211.5 (75 to 605) 0.02 −0.05 to 0.04

Interleukin 6 (pg/ml) 4.1 ± 7.36 1.94 (0.06 to 64.94) 4.26 ± 5.96 2.28 (0.36 to 41.9) 0.07 0.03 to 0.12

TNF-alpha (pg/ml) 2.99 ± 4.56 2.2 (0.03 to 46.48) 2.89 ± 2.17 2.27 (0.2 to 13.83) 0.05 −0.01 to 0.11

CRP (mg/dL) 0.58 ± 0.86 0.31 (0.1 to 10.96) 0.65 ± 1.12 0.36 (0.1 to 10.96) 0.06 0.02 to 0.11

Step test (Impaired) 30 (3.80) 71 (54.60) 50.85 42.19 to 59.51

Weight loss 32 (4.00) 21 (16.20) 12.13 5.66 to 18.61

Sit to stand test (Impaired) 161 (20.20) 120 (92.30) 72.08 66.72 to 77.45

Gait test 114 (14.30) 121 (93.10) 78.76 73.76 to 83.75

PA score (Impaired) 127 (16.00) 107 (82.30) 66.35 59.32 to 73.39

GPF score (Impaired) 0.58 ± 0.72 0 (0 to 2) 3.38 ± 0.56 3 (3 to 5) 0.64 0.61 to 0.69
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Table 4.4 Description of daily calorie intake by food category according to Physical Frailty
status. N: 926. All data are shown as percentage of calories normalized to 2000 kcal/day.
∗Wilcoxon’s effect size.

Without Physical Frailty With Physical Frailty

Mean ± SD
Median

(Min to Max)
Mean ± SD

Median

(Min to Max)
Effect Size*

Proportions (%) 796 (86.00) 130 (14.00)

Veal Meat 5.87 ± 4.78 4.28 (0 to 32.1) 5.34 ± 5.19 4.28 (0 to 44.94) 0.03 (-0.02 to 0.08)

Chicken Meat 6.38 ± 5.8 4.5 (1.15 to 47.25) 7.02 ± 7.92 4.5 (1.15 to 70.9) 0.02 (-0.04 to 0.05)

Rabbit Meat 3.68 ± 4.00 2.65 (1.36 to 39.83) 3.59 ± 3.4 2.01 (1.36 to 26.55) 0.02 (-0.05 to 0.04)

Lamb Meat 3.73 ± 8.91 2.38 (0 to 100.17) 3.29 ± 3.16 2.38 (1.59 to 23.85) 0.02 (-0.03 to 0.06)

Raw Ham 3.17 ± 4.28 2.35 (0.59 to 49.35) 2.84 ± 4.46 1.18 (0.59 to 41.12) 0.02 (0.01 to 0.14)

Cooked Ham 4.41 ± 5.35 2.88 (0.72 to 50.4) 4.67 ± 6.1 2.88 (0.72 to 40.32) 0.03 (-0.03 to 0.08)

Noodle Soup 11.99 ± 15.12 5.94 (0 to 124.77) 15.77 ± 17.92 11.88 (0 to 83.18) 0.08 (0.01 to 0.14)

Bread 76.11 ± 38.78 75.04 (0 to 168.84) 73.85 ± 38.07 75.04 (2.01 to 168.84) 0.02 (-0.05 to 0.04)

Flat Bread 15.41 ± 21.49 12.5 (0 to 175) 14.76 ± 19.13 12.5 (0 to 175) 0.01 (-0.06 to 0.02)

Citrus 21.21 ± 13.9 22.5 (0 to 47.25) 20.14 ± 13.61 22.5 (0.56 to 47.25) 0.03 (-0.03 to 0.06)

Apricot 11.69 ± 11.31 6.3 (0 to 39.69) 11.02 ± 10.43 6.3 (0.32 to 39.69) 0.02 (-0.04 to 0.04)

Watermelon 14.57 ± 12.53 10.42 (0 to 43.74) 14.96 ± 13.39 10.42 (0.42 to 43.74) 0.01 (-0.07 to 0.01)

Melon 6.19 ± 7.28 2.94 (0 to 30.88) 7.17 ± 8.38 2.94 (0.3 to 30.88) 0.02 (-0.05 to 0.04)

Apples/Pears 17.28 ± 11.99 16.5 (0 to 46.2) 17.74 ± 12.63 16.5 (0.55 to 46.2) 0.03 (-0.06 to 0.02)

Kiwi 6.55 ± 9.56 1.8 (0 to 50.4) 7.17 ± 9.86 2.4 (0.6 to 50.4) 0.02 (-0.03 to 0.06)

Banana 21.59 ± 15.16 20.9 (0 to 63.84) 21.24 ± 16.26 18.62 (0 to 63.84) 0.02 (-0.05 to 0.04)

Dried Fruits 10.3 ± 15.5 5.26 (0 to 110.56) 9.04 ± 13.23 2.81 (0 to 73.71) 0.04 (-0.02 to 0.08)

Canned Fruit 3.39 ± 6.77 0.74 (0 to 61.95) 3.52 ± 8.71 0.74 (0 to 61.95) 0.01 (-0.06 to 0.02)

Pecorino Cheese 12.16 ± 17.31 5.05 (1.62 to 148.47) 15.18 ± 18.47 6.06 (1.62 to 70.7) 0.08 (0.02 to 0.14)

Fennel 2.99 ± 3.3 1.88 (0 to 15.75) 2.43 ± 2.92 1.12 (0 to 11.81) 0.06 (0.01 to 0.13)
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Table 4.5 Lasso regression model on Physical Frailty as dependent variable and selected
variables regressors with minimum lambda value.
Nutritional data are normalized to 2000 kcal/day and expressed as percentage.

Minimum Lambda:

0.01521157

LASSO Coefficients

Noodle soup 0.01

Codfish −0.01

Tuna −0.01

Aged Cheese 0.01

Pecorino Cheese 0.01

Cucumber −0.02

Peas 0.01

Pastries −0.01

Biscuits 0.01

Age (years) 0.03

Smoke Habits (yes) −0.19

Sex (Male) −0.29

FBG (mg/dl) 0.01

HDL Cholesterol (mg/dl) −0.01

LDL Cholesterol (mg/dl) −0.01

SBP (mmHg) 0.01

DBP (mmHg) −0.01

BMI (Kg/m2) 0.01

WBC (103 cells/mm3) 0.01

Educational level (years) −0.01

The most important feature to identify physical frailty condition, according to

Garson’s algorithm, was age followed by gender and consumption of aged cheese

(Fig. 5.3). On the other hand, according to Olden’s algorithm, pea consumption was

the most important characteristic used by the NN, while tuna consumption was the

most negative (Fig. 5.4).
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(a) Garson’s variables importance plot.

(b) Olden’s variables importance plot.

Fig. 4.5 Comparison of Garson’s and Olden’s variables importance plots.

The trained neural network demonstrated a robust accuracy of 86.49% on the

training dataset and maintained a closely comparable accuracy of 85.77% on the

test dataset, indicating a stable model performance with no significant evidence of

overfitting.

4.4.3 Insights and Implications

In this study, a NN to support frailty diagnosis in the aging population has been

developed on a model made up of easily available variables and nutritional data.

In particular, in this work, we trained and tested a NN to identify frailty subjects
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that can be applied in epidemiological study or screening. The aim was to identify

frailty subjects quicker instead of using classical tests that are more complicated to

perform, as they require information challenging to find. Previous studies used other

features, more difficult available, to predict frailty outcome with good performances.

However, our study is the first that uses easily available parameters to build a NN to

support frailty diagnosis in an older population. Our previous results show that our

NN has good performances on the train and test dataset and a good accuracy, and

there is no presence of overfitting. The NN makes few mistakes and it predicts, with

high specificity, healthy subjects. This allows us to conduct preliminary screening,

ensuring more specific analyses only when necessary. Moreover, the most important

variables were compared to identify those that have a major contribution to the

outcome. As we expected, age, gender, foods rich in fats, and smoking habits are

the most important features to predict the frailty condition according to Garson’s

method, whereas the direction of each variable importance was assessed with Olden’s

method. As underlined in a previous study [46], the population assessed is characterized

by higher consumption of legumes and unrefined cereals; therefore, the association

found between peas (legumes in general) and physical frailty confirms this pattern

of consumption. Legumes’ organoleptic characteristics and palatability are suitable

for consumption in frail and advanced age subjects, threfore preferably consumed. In

conclusion, the NN is a good support for frailty diagnosis and it can be applied in an

epidemiological study or screening.

4.5 Machine learning in Mild Cognitive Impairment

Prediction

Building on the exploration of machine learning techniques applied to epidemiological

data, this work now shifts focus to predicting neurodegenerative disease outcomes,

particularly MCI. This section presents advanced machine learning methods applied

to model and predict MCI by examining key epidemiological factors that may signal

the early stages of neurodegeneration. Through this approach, we aim to identify

predictive patterns and markers within large-scale healthcare data, contributing to

the field of neurodegenerative disease prevention and enhancing the accuracy of early

diagnostic frameworks.

It is important to define the concept of MCI, initially introduced by Petersen et

al. in the late 1990s, as part of the cognitive aging discipline [223]. MCI describes

a condition where an individual experiences an age-independent decline in cognitive
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abilities that is not severe enough to meet the criteria for dementia. MCI can impact

memory, language, attention, and other cognitive functions, and it is considered a risk

factor for dementia. According to the Alzheimer’s Association, approximately 15−20%

of people aged 65 and older are affected by MCI1.

In this work, we propose a Pareto-optimality-based approach to identify the best

ML model. Specifically, we test our approach by training multiple ML models on data

from the Salus in Apulia study population [45] to predict MCI using easily accessible

clinical dataset features that best describe this outcome.

To summarize, the contributions of this work are:

• Developing a predictive approach based on readily available healthcare data for

MCI prediction;

• Implementing a Pareto-based model selection approach to identify the optimal

model with high accuracy while minimizing misclassifications in MCI predictions;

4.5.1 Pareto Optimality and Hypervolume

In this Section, we explain the concept of Pareto Optimality. Its definition is widely

exploited in Multi-Objective Optimization Problems. Formally, a Multi-Objective

Optimization Problem (MOOP) is defined as [188]:

min
x

f (x) = {f1(x),f2(x), . . . ,fk(x)}

subject to x ∈ X .
(4.1)

The vector x ∈ R
n is formed by n independent decison variables. The set X ¦ R

n,

generally known as feasible set, is defined by a set of equality and inequality constraints.

The vector of functions f(·) is composed by k scalar objective functions fi : Rn →

R
kwith i= 1, . . . ,k; k g 2. The space R

k is known as objective function space.

In a MOOP, since typically there is no single global solution, it is usually adopted

the concept of Pareto optimality which leverages on the Pareto dominance relation [176].

A vector x
⋆ Pareto-dominates vector x, denoted by x

⋆ z x, if and only if: fi(x⋆) f

fi(x)∀i ∈ {1, . . . ,k} and ∃i ∈ {1, . . . ,k}|fi(x
⋆) < fi(x). Hence, a solution x

⋆ ∈ X is

Pareto optimal if there does not exist another solution x ∈ X such that f(x) z f(x⋆).

Then, solving the problem in Equation (4.1) means to find the solutions x ∈ X such

that their images f(x) are not Pareto-dominated by any other vector in the feasible set.

1https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/
mild-cognitive-impairment
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The group of non Pareto-dominated solutions in the feasible set is called Pareto optimal

set, whose image in the objective function space is known as Pareto frontier [213]. In

essence, the Pareto frontier represents the solutions that accomodate the trade-offs

between the different objective functions. However, sometimes there is a need to select a

single solution from the Pareto frontier that best fits the considered task. In this regard,

the hypervolume indicator helps to select a single solution from the Pareto frontier [313].

Given a Pareto optimal solution x
⋆ ∈ R

k, a reference point r ∈ R
k, and the Lebesgue

measure λ, the hypervolume of x
⋆ with respect to r is HV = λ({x ∈ R

k |x⋆ z x z r}).

The HV value is the volume of the hypercube determined by the solution x
⋆ and

the reference point r. Therefore, the solution with the highest hypervolume can be

considered as the best solution among the Pareto optimal set.

4.5.2 Methods

4.5.3 Dataset Description

The population under study is derived from the Salus in Apulia Study. Subjects included

in the analysis were characterized by 70 features, consisting of continuous or categorical

variables related to biochemical, anthropometric, and cognitive tests, acquired through

interviews, blood analyses, and clinical visits. The dataset is represented as tabular

data with 1,929 observations and 70 features, including the target variable. To obtain

a ready-to-use dataset, all categorical non-relevance features were removed from the

analysis except sex. A new dataset was obtained containing 57 features.

Preprocessing

We parsed the dataset using pandas2. Initially, the dataset was subsampled using the

RandomUnderSampler technique from the imblearn library [162] to balance classes

by randomly sampling observations, resulting in 818 observations (414 for No MCI

and 414 for Yes MCI ). The dataset was then split into training and test sets with an

80/20 ratio. Continuous values were standardized using the StandardScaler3 method,

widely used in ML to reduce variance [91]. Feature selection was performed using

SelectKBest from scikit-learn, with the optimal value of k determined through a

GridSearchCV (5-fold)4 with a Random Forest Classifier [209], testing k values from 1

to 57. The best k was 9, selecting Pure tone audiometry (PTA)(0.5−2kHz) left and

2https://pandas.pydata.org/
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html
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right, Total Cholesterol, HDL Cholesterol, Mini Mental State Examination (MMSE),

Frontal Assesment Battery (Frontal Assesment Battery) raw score, Vitamin D, the

mean PTA(0.5 − 2kHz), and mean PTA(8kHz). Although gender and sex were not

selected, they were included as medically relevant features [305].

Classification Models

In order to determine the best classifier to predict the MCI status, we compared

the following models: Multilayer Perceptron (MLP) [22]; Random Forest (RF) [209];

SVM [202]; Extreme Gradient Boosting (XGBoost) [53]; The models are developed

with Python, using Scikit-learn library5 [219] and tuned using a grid search exploration

strategy with a 5-fold cross-validation. The models maximize the Area Under the ROC

Curve (AUC) value in order to obtain the best predictive power in binary classification.

For each model under study, the list of explored hyperparameter values is reported in

Table 4.6.

Table 4.6 Hyperparameter list and values for the classification models reported in this work.

Algorithm Hyperparameter Values

Multilayer Perceptron seed {42}

hidden_layer_sizes {[(50, 50, 50), (50, 100, 50), (100,)]}

activation {tanh, relu}

solver {sgd, adam}

alpha {np.arange(0.1, 1, 0.2)}

learning_rate {constant, adaptive}

Random Forest seed {42}

n_estimators {np.arange(1, 50, 2)}

max_features {sqrt, log2}

max_depth {np.arange(1, 30, 1)}

criterion {gini, entropy}

Support Vector Machines seed {42}

kernel {rbf, poly}

gamma {0.1, 0.001, 0.3, 0.003, 0.5, 0.05}

eXtreme Gradient Boosting seed {42}

n_estimators {np.arange(1, 50, 2)}

learning_rate {np.arange(0.1, 1, 0.2)}

scale_pos_weight {1.000}

5http://scikit-learn.org
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Pareto Optimality-based Selection

Fig. 4.6 Models’ hyperparameter configurations in the objective function space Accuracy/Re-
call on YES MCI class. For each model, the black dots are on the Pareto frontier, while the
red dots are dominated solutions.

In this Section, we describe the approach adopted to select the best classifier for our

task. Oftentimes, traditional approaches consist in selecting the best models relying

only on the accuracy of the candidate models. However, in MCI systems, it is of

greater importance to classify MCI subjects rather than healthy subjects correctly. As

a consequence, it is not sufficient to choose the model having the best overall accuracy.

Indeed, the selected model should maximize the number of correctly classified MCI

subjects (i.e., the Recall on yes MCI class), even paying some trade-off with the overall

accuracy of the system. In other words, we should perform a multi-criteria selection of

the best model. To this end, we exploit the concept of Pareto Optimality to identify

the models that best accommodate the trade-off between overall accuracy and Recall

on yes MCI class.
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Once all the models’ configurations described above are trained, they represent

different solutions in the objectives function space having accuracy and Recall on yes

MCI class on the x-axis and y-axis, respectively. For each model, we identify the

Pareto-optimal solutions lying on the Pareto frontier. To clarify this aspect, we plot

the objective function spaces and the solutions on them for each model in Figure

4.6. Then, we take into account the Pareto frontier of each model, and we find the

Pareto-optimal points among all the models (Figure 4.7). Finally, we exploit the

widely-used Hypervolume indicator to select one–best solution from the final Pareto

frontier.

4.5.4 Pareto-optimal Models for Enhanced MCI Prediction

In this section, we detail the results obtained from our experimental approach. Specif-

ically, in Table 4.7, we report the results obtained by computing the Hypervolume

indicator for each model lying on the Pareto frontier in Figure 4.7. We observe that

six models are Pareto-optimal. On the one hand, we notice that no configuration of

MLP lies on the Pareto frontier. On the other hand, four out of six Pareto-optimal

solutions are different configurations of Random Forest. Specifically, two Random

Forest configurations achieve the highest HV value. Both of them are characterized

by the Shannon entropy as information gain and 3 as the maximum depth of the tree.

Hence, we have two candidates as the best model to perform the MCI prediction. To

determine the best one, we also analyze the performance of such models in terms of

Precision, Recall, and F1-score for each class. From Table 4.8, we claim that RF2 is

the best model since it achieves better performance than RF1 with respect to all the

considered metrics except for Recall on Yes MCI class. To summarize, RF2 performs

better according to a multi-criteria evaluation. In fact, the performance obtained by

RF2 is the most balanced as it achieves an accuracy of 71%, a high value of recall

(0.80), the best value of precision, in the prediction of Yes MCI (0.67), and the best

value of F1-score in the prediction of Yes MCI (0.73).
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Table 4.7 Pareto-optimal models’ configurations and their performance. The best values for
HV indicator are in bold. The models are characterized by the following hyperparameters
configurations. RF1: Entropy as Criterion, Max depth=3, Max Features=log2, Number
of estimators=1; RF2: Entropy as Criterion, Max depth=3, Max Features=sqrt, Number
of estimators=9; RF3: Entropy as Criterion, Max depth=1, Max Features=sqrt, Number
of estimators=1; SVM1 C=6, γ =0.003, poly as Kernel; XGBoost1: Learning Rate=0.1,
Max depth=1, Number of estimators=1; RF4: Entropy as Criterion, Max depth=5, Max
Features=log2, Number of estimators=13.

Model Accuracy Recall Yes MCI HV

RF1 0.68 0.84 0.57

RF2 0.71 0.80 0.57

RF3 0.58 0.90 0.53

SVM1 0.5 0.99 0.49

XGBoost1 0.54 0.93 0.50

RF4 0.71 0.71 0.50

Fig. 4.7 Overall models’ hyperparameter configurations in the objective function space
Accuracy/Recall on YES MCI class. The black marks refer to Pareto-optimal solutions. The
red marks represent dominated solutions. The marks’ shapes indicate a particular class of
model.
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Table 4.8 Results for the MCI prediction of the Best Classifier.

Model Class Precision Recall F1-score Accuracy

RF1

No MCI 0.76 0.51 0.61
0.68

Yes MCI 0.63 0.84 0.72

RF2

No MCI 0.76 0.61 0.67
0.71

Yes MCI 0.67 0.80 0.73

4.5.5 Results Interpretation and Impact

In this study, we propose a Pareto-based approach to identifying the best model for

predicting MCI. Specifically, we trained and tested various machine-learning algorithms

in order to choose the best one. From our perspective, the Pareto-based approach is

relevant because it allows to select the best model according to multiple objectives.

In this way, the identification of the best model does not solely depend on the overall

accuracy of the model but also on other criteria tailored to the considered task.

Practically, in MCI systems, we are able to select a model with both acceptable overall

accuracy and effectiveness in classifying MCI subjects, which is crucial in medical tasks.

Hence, this approach could be used to select the best machine learning algorithms for

predicting high-risk classes that can be used in epidemiological studies or screening.

The aim is to provide a smaller set of easy-to-find features in health datasets to

predict MCI, thus reducing time and waiting lists for more extensive instrumental

examinations.

The Random Forest considered achieved an Accuracy = 0.71, Precision = 0.76,

Recall = 0.61, F1-Score = 0.67 respectively in the class No MCI and Precision = 0.67,

Recall = 0.80, F1-Score = 0.73 respectively in the class Yes MCI. These results appear

to be good in the current state of the art [35, 101]. However, the metrics achieved refer

to a small population sample. Possible implementations could be aimed at validating

this system on a larger test sample. The model selected by the Pareto-based approach

was able to well discriminate subjects at risk of MCI.

4.6 Summary

To summarise the contribution of the reported work, our studies, based on the Salus in

Apulia population, highlighted distinct dietary patterns and their clinical associations

among diabetic and non-diabetic subjects, as well as the role of ML in identifying
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complex features related to physical frailty. Among diabetic subjects, the diet was

characterized by a high intake of fruits, vegetables, dairy products, eggs, greens,

nuts, and olive oil, with limited consumption of red and processed meats. This dietary

pattern aligns with a more "Vegetarian" style, likely influenced by nutritional counseling

interventions, underscoring the importance of nutritional education as an effective

tool in both primary and secondary prevention for diabetic patients. In contrast,

non-diabetic individuals showed a higher consumption of red and processed meats,

ready-to-eat meals, and high-calorie beverages, indicating a need for greater nutritional

guidance within the healthy population as well.

Based on these findings, our focus expanded to using ML techniques on the Salus

in Apulia data to predict MCI in an elderly population. We developed a Pareto-based

approach for model selection, allowing us to identify the most balanced model by

optimizing multiple objectives beyond simple accuracy—a key requirement in complex

medical tasks. This approach enabled the identification of an optimal model with both

acceptable overall accuracy and effectiveness in classifying MCI subjects, demonstrating

a practical method for supporting high-risk class predictions in epidemiological studies

and screenings. Further, leveraging ML to analyze dietary, clinical, and cognitive data

enabled us to detect associations that traditional methods might miss, particularly in

identifying features associated with both physical frailty and MCI. This approach not

only validated classic associations in dietary and health studies but also highlighted

the potential of AI to uncover early indicators of neurodegeneration, broadening the

preventive scope to encompass both physical and cognitive decline. By incorporating

ML in the study of MCI, we were able to model subtle patterns and risk factors that

contribute to cognitive impairment, creating a basis for more proactive screening in

at-risk populations.

These findings underscore the interdisciplinary nature of physical frailty and cogni-

tive decline, suggesting that ML offers a powerful tool for early intervention across these

domains. Future studies should focus on optimizing model characteristics, refining

training parameters, and testing on larger datasets to enhance prediction accuracy,

thus paving the way for more tailored dietary, clinical, and cognitive guidelines across

populations. With continued refinement, these ML-based frameworks have the poten-

tial to support improved health outcomes by identifying critical risk factors in both

physical and cognitive health.





Chapter 5

Enhancing Devices for EEG Signal

Analysis with AI

5.1 Research Objectives and Contributions

The integration of AI with BCIs technologies represents a significant frontier in neuro-

science, offering transformative potential for both diagnostic and therapeutic applica-

tions in healthcare. This chapter explores how AI-powered BCIs can advance emotion

recognition, personalized neurorehabilitation, and therapeutic tools.

5.1.1 Research Objectives

Chapter 5 explores the advanced application of AI in neuroscience, focusing on the

integration of BCIs and machine learning techniques to enhance diagnostic and ther-

apeutic tools in healthcare. The primary objectives of this chapter are to develop

real-time emotion recognition models powered by AI for improved human-machine

interactions, create innovative therapeutic solutions that combine BCIs with natural

language models for emotional support, apply adaptive algorithms for personalized

neurorehabilitation, and advance research in affective computing through the Neu-

roSense dataset. The dataset, leveraging low-cost, sparse electrode BCIs, facilitates

emotion exploration and promotes accessible and extensive research.

5.1.2 Addressing Current Literature Gaps

Despite advancements in BCI-based emotion recognition and neurorehabilitation,

several gaps remain.
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1. Cost-effective EEG Setups for Emotion Recognition: Conventional

approaches rely on expensive, dense EEG systems, limiting practicality. Our framework

demonstrates that accurate emotion detection can be achieved with low-cost, sparse

EEG setups, utilizing refined feature extraction and robust models, thereby broadening

accessibility.

2. Real-world BCI Applications: BCI technologies are often restricted to

controlled environments, with insufficient exploration of real-world adaptability. We

address this by developing adaptive models that function effectively beyond laboratory

conditions, incorporating real-time emotion recognition and the integration of BCIs

with Large Language Models (LLMs) for practical emotional support.

3. Therapeutic Integration of BCI: Traditional BCI research is limited to

neurofeedback or basic communication. Our work bridges this gap by merging BCIs

with AI frameworks for mental health, offering solutions like EEG-driven emotion

recognition systems coupled with conversational agents for personalized support.

4. Music Generation for Therapy: BCI and ML applications in music have

focused on artistic expression rather than therapy. Our system translates EEG signals

for music composition into a therapeutic setting, offering novel interventions that

improve emotional and psychological well-being.

5.1.3 Chapter Contributions

Chapter 5 makes several impactful contributions to the field. We have improved the

precision of emotion recognition systems using deep learning models integrated with

BCIs, enhancing user interaction through adaptive and responsive feedback. The

ARIEL framework exemplifies the convergence of BCIs and LLMs, providing effective

emotional support in therapeutic contexts and showcasing a new frontier for mental

health technology.

The NeuralPMG system introduces a unique approach by using neural patterns to

generate personalized music, facilitating novel therapeutic methods for neurorehabilita-

tion. This contribution highlights the integration of emotional and physical state data

in creating immersive and effective therapy experiences.

Finally, the NeuroSense dataset fills a crucial gap by offering a low-cost, sparse

electrode solution for BCI research, democratizing access to emotion recognition

technologies and encouraging broader participation and innovation in the field.

These advancements collectively underscore the transformative potential of AI and

BCIs in healthcare, aiming to improve both clinical practices and research accessibility.
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5.2 Background

To provide a clearer understanding of the following studies, it is essential to establish

a comprehensive background and review the state-of-the-art relevant to our research

themes.

Emotion Recognition Using AI Techniques

Automatic emotion recognition is a critical field that serves a myriad of applications

such as automotive industry safety features, business decision-making supports, and

robotic empathy interactions. The most precise methods for recognizing emotions

typically involve processing images and videos through convolutional neural networks.

Studies by Rakshit et al. [231], Dhall et al. [75], Zhang et al. [308], and Wang et

al. [297] have explored various aspects of facial expression recognition critical to these

applications. With the advent of improved computational capabilities and network

designs by Szegedy et al. [279], He et al. [119], and Li et al. [164], the accuracy of these

systems has significantly improved.

Furthermore, Hazourli et al. [118] highlight the transition of emotion recognition

research from laboratory settings to real-world environments. While facial expressions

can sometimes be masked, involuntary biological signals captured by biosensors provide

a consistent basis for detecting emotional states, as explored by Menard et al. [193]

and in the International Affective Picture System by Lang et al. [160] and Bradley et

al. [33].

Brain-Computer Interface (BCI)

BCI technology has made significant advances in integrating EEG data for emotional

recognition. The work of Atkinson et al. [17], Islam et al. [130], and Zheng et al. [311]

demonstrates how novel feature-based models and sophisticated classifiers can greatly

enhance the accuracy of emotion classification systems. These advancements underline

the potential of BCIs to interpret cognitive states effectively, paving the way for

applications that range from adaptive interfaces to mental health monitoring.

Emotional Support Conversation with Large Language Models (LLMs)

The integration of LLMs for emotional support has seen innovative applications, as

demonstrated in the work of Tu et al. [287], who designed the MISC model, and Peng

et al. [221], who explored how BlenderBot can be adapted for emotional support. Liu

et al. [167] furthered this by integrating multi-modal information into their FEAT

model for emotional support conversations. These developments, however, highlight

the limitations of training data scope and the challenge of adapting to the variability

of real-world interactions, a critical area for future research as noted by De et al. [72].



70 Chapter 5 Enhancing Devices for EEG Signal Analysis with AI

BCI and ML for Neurorehabilitation

The fusion of BCI, Virtual Reality (VR), and ML has been transformative in neuroreha-

bilitation. Technologies that interpret and respond to neurophysiological signals during

rehabilitation tasks, as detailed by Parivash et al. [214], McMahon et al. [192], and

Karacsony et al. [141], have shown promising results in enhancing patient engagement

and therapeutic outcomes.

BCI in Music Generation

The creative intersection of BCI and music has been explored by pioneers such as

Rosenboom [238], Lucier [175], and others like Knapp et al. [152] and Brouse et al. [38].

These efforts have led to innovative systems that transform EEG signals into musical

outputs, enhancing both artistic expression and scientific exploration.

EEG Emotion Recognition Databases

The development of EEG-based emotion recognition has been greatly aided by databases

such as DEAP [153], MAHNOB [266], SEED [310], MPED [268], and DREAMER [144].

These resources provide a rich foundation for validating and improving emotion recog-

nition technologies.

Table 5.1 Summary of published EEG databases for emotion recognition/classification.

Dataset EEG Electrodes Participants Stimuli

DEAP [153] 32 32 Music videos

MAHNOB [266] 32 30 Movie clips

SEED [310] 62 15 Film clips

MPED [268] 62 23 Emotion videos

DREAMER [144] 14 23 Audio-visual clips

The summary of insights from these studies provides a robust background for the

understanding and advancement of the technologies discussed in this chapter.

5.3 Deep Learning Applied in Human Emotion

Recognition

The growing interest in affective computing and brain-computer interfaces (BCI)

has fostered advancements in emotion recognition through EEG signal analysis. In

particular, recognizing and quantifying emotional states such as Valence, Arousal, and

Dominance holds significant potential for applications in neuromotor rehabilitation and
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psychological therapies. This work introduces a prototype regression-based emotion

recognition system capable of detecting a user’s emotional state in real-time through

EEG-based biofeedback. A practical focus of this system is to provide a real-time,

interactive feedback loop, making it a promising tool for clinical trials and other

therapeutic settings such as neuromotor rehabilitation or psychological therapies.

5.3.1 Material and Methods

BCI Device Description

In the domain of emotion recognition related to electroencephalographic signals, several

studies based on multiple datasets and reference devices exist in the literature. We

remember some of them, such as DEAP, Dreamer, and IDEA [139, 144, 153]. In this

study, we focused on the Dreamer dataset [144] because it was made with a device

that is easy to find and easy to use, such as the Emotive Epoc with 14 electrodes1.

The device used has the following electrodes: AF3, F7, F3, FC5, T7, P7, O1, O2, P8,

T8, FC6, F4, F8, AF4, plus two mastoid references, M1 and M2. In Fig. 5.1 we can

observe the arrangement of the electrodes according to the standard configuration of

the system 10-20 [199].

Fig. 5.1 Emotive Epochs 14 Channels.

The sampling frequency of the device is 128Hz in output. One goal of our study is

to further reduce the channels of the EEG signal acquisition device while continuing to

obtain good predictive values. According to this goal, we used the Emotive - Insight

52 electrode device with its electrodes AF3, AF4, T7, T8, Pz with an output rate

1www.emotiv.com/epoc-x/
2https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-brainwear/
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always at 128 Hz. The two devices share the same technical characteristics but have a

different number of electrodes. Specifically, we only considered the electrodes related

to the emotion, only AF3, AF4, T7, and T8 because the Pz is not shared. However,

with only 4 electrodes, we found the possibility of obtaining good prediction results

with our 1D Convolution Deep Learning model. In Fig. 5.2 are the electrodes of the

Emotive Insight 5 device are shown according to the standard configuration 10-20.

Fig. 5.2 Emotive Insight 5 electrodes.

Dataset Description

The Dreamer dataset is composed of EEG signals from 23 users during emotional

induction. The emotional stimulation protocol was carried out using audio-video

clips. 18 movie clips cataloged in nine basic emotions such as amusement, excitement,

happiness, calmness, anger, disgust, fear, sadness, and surprise are used. Each user

had to watch all the video clips of variable length between 65 and 393s. The self-

assessment was given on a 5-point Likert scale for Valence, Arousal, and Dominance

whenever the video clip ended. In order to perform this task, the participants fill out

the Self-Assessment Manikin questionnaire at the end of each experiment [34]. In the

dataset both the recordings without emotional elicitation (baseline) and the recordings

during the emotion induction are collected. Finally, the authors of the study released

the dataset in the Matlab format3.

Preprocessing

One of the big problems with EEG signals is the strong presence of artifacts (noise)

or faulty EEG channels that can seriously compromise the analysis of the data. An
3https://it.mathworks.com/products/matlab.html
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important part of our study is the development of an automated preprocessing step

in order to create an easy-to-use routine for capturing EEG signals in real-time. The

preprocessing flow is crucial as our prototype aims to provide a real-time detection

system of the user’s emotional spectrum. The same preprocessing system is also used

for preprocessing the Dreamer dataset for deep learning model training. We verified the

efficiency of the automated preprocessing technique by visually inspecting all EEG trials.

Preprocessing Pipeline

• All the trials with related labels were selected, obtaining a total of 414 samples.

Each trial is composed of signals coming from the EEG channels of the Emotive

device and the corresponding values of Valence, Arousal, and Dominance.

• Once acquired all the trials, the first preprocessing step was to remove the Direct

Current offset (DC offset) present in the raw data from the Emotive device. It

has been used the script suggested by the helmet manufacturer4.

• After the removal of the DC Offset, we move on making the data format compatible

with the MNE 5 framework for adapting the skull electrode position according to

the standard arrangement 10-20. In this way, the cap location was built in line

with the electrodes of the device used in the study.

• The last 60 seconds are taken for each trial according to the study submitted

directly by the authors of the dataset [144].

• The noise of commercial electric current are removed using a notch filter calibrated

on the cutting frequency equal to 50hz.

• The whole trial was normalized in the 1-40Hz frequency range.

• From the continuous EEG signal, we have created epochs of length equal to 1

second.

• Before proceeding with the removal of ocular artifacts [166] through the Inde-

pendent Component Analysis (ICA), all noisy epochs are removed controlling

the deviation from the mean of the values for each channel, the amplitude of the

epochs, the variance, and the distance from the mean.

4https://emotiv.gitbook.io/emotivpro-v3/notes-on-the-data/code-examples
5https://mne.tools/stable/index.html
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• After that, ICA was applied for the identification of the components of the EEG

signal. The AF3, AF4 reference electrodes are used as false EOG electrodes for

the automatic recognition of components related to electro-oculographic artifacts

(EOG). This operation allows us to automatically identify the artifact peaks

related to the eye movements present in the signal.

• After removing EOG artifacts, a correction of the artifacts related to electromyo-

graphic patterns (EMG), ocular sacs, and any other artifact drifts is made

through the Autoreject framework6 with a particular setting of the hyperparame-

ters. Specifically, a very high decimation threshold is applied.

• As a further step, the detection and interpolation of defective channels and epochs

are done through the pyprep framework7. Epochs that exceed a certain noise

threshold are, however, removed and not interpolated.

• As the last step, the continuous EEG signal is reconstructed by joining all the

various epochs thus preprocessed. We add that some trials are removed if they

do not pass one of these preprocessing phases, so after operation, the actual trials

are 247.

Training Dataset

Once you get all the free trials from the artifacts, the dataset is built as follows:

1. Split into 4-second epochs of each continuous EEG trial.

2. All epochs are in overlap every 1280 samples. The new generated epochs have

the same label as the originals.

3. For each epoch in overlap, five features are extracted related to the amplitudes

of the bands Theta, Alpha, Beta1, Beta2, Beta3 with the framework neurokit28.

The Theta band is considered in the range 4-8Hz. The Alpha band in the range

8-13Hz, the Beta 1 in the 13-16 Hz, the Beta2 from 16-20Hz, and the Beta3

between 20-30Hz. In this modality, the dataset of 46,991 epochs with the relative

labels of reference is created.

Model Description

6https://autoreject.github.io/stable/index.html
7https://pypi.org/project/pyprep/0.2.1/
8https://neurokit2.readthedocs.io/en/latest/
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All the obtained features were initially split into train, validation, and test with the

sklearn train_test_split library in proportion 80% for training and the remaining 20%

for testing. The training dataset was then split into 75% for train and 25% for validation.

After this operation, the normalization was performed with the MinMax scaler of

sklearn [218]. The model used to make regression predictions is a 1D convolutional

neural network (CNN) because it is useful in order to predict vectors of features at

one size. The reference frameworks for the model are Keras [58] and Tensorflow [189].

The model consists of three convolutional layers, of which two to 128 neurons and

a last to 64 neurons. A BatchNormalization was performed at the end of the first

two layers of filters. Each layer was then condensed with the MaxPooling-1D in order

to extract the most relevant correlation of engineered features. The kernel size is

kept at 3, and the activation functions are Relu for convolutional layers. At the

end of the convolutional layers, a Flatten operation is performed to create the input

arrays for the next neural network. The neural network useful in order to predict

regression values is a Fully Connected Layer composed of four layers, one of which is

128 neurons input, a second hidden at 128 neurons, and a third hidden layer at 32

neurons. The activation functions are relatively Tanh for the first two layers and Relu

for the 32-neuron layer. Then a Dropout operation of 0.2 was performed in order to

regularize learning to avoid overfitting. Finally, there is the last three neurons’ output

layer with linear output function useful for the purpose of the regression task. The

three classes we want to predict are Valence, Arousal, and Dominance. During the

learning, the mean_absolute_error was monitored as a loss function, and a callback

was set to stop learning if the loss did not improve after ten iterations. (Patience =

10). The optimizer chosen is the Adam algorithm [150]. We have to schematize the

structure of the network as in Fig. 5.3.
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Fig. 5.3 Architecture of CNN-1D.

The main aim of our study is to provide an emotion recognition system that can

provide real-time feedback on the user’s emotional condition. In order to achieve this

goal, the minimum length in terms of seconds was sought in relation to the greater level
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of accuracy of the R2 metric. In practice, the minimum time that maintains the levels

of accuracy above 0.9% of R2 was sought, achieving periods not less than 4 seconds. In

the same way, the optimal overlap coefficient was chosen to maintain the value of the

metric R2 not less than 0.9%. This optimization of the hyperparameters was carried

out experimentally to directly find the best solution that could avoid considering the

eras of the EEG signal not too long but neither too short. Assuming to use epochs of

1-second length, or 128 samples, is not representative of an emotional state. Increasing

the length of the epoch, the value R2 increases, but consequently, it creates a problem

relative to the time of scan of the signal EEG during the acquisition in real-time.

5.3.2 System Performance and Real-Time Emotion Recogni-

tion

The model thus trained achieves the following levels of predictive accuracy: R2 = 0.93

Mean Absolute Error = 0.08 Mean Absolute Percentage Error = 0.07 All metrics are

calculated with sklearn.metrics.

in Figure5.4, 5.5, 5.6 is detailed the error distribution for each considered emotional

metrics:

Fig. 5.4 Valence Error Distribution.
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Fig. 5.5 Arousal Error Distribution.

Fig. 5.6 Dominance Error Distribution.

Fig. 5.7 shows the course of the function of loss during the learning phase.
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Fig. 5.7 Loss – Mean Absolute Percentage Error.

Our emotion recognition system aims to recognize them in real-time, so it must

provide continuous visual feedback of how the user’s emotion varies in the domain of

time. Fig. 5.8 shows the user interface

Fig. 5.8 User Interface.

The whole Front End is built in Max Msp9, a software development environment

mainly oriented to the development of applications in the domain of music but which

offers great potential for the development of any stand-alone application. Fig.5.9.

shows the full system architecture

9https://cycling74.com/products/max
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Fig. 5.9 System Architecture.

In Fig. 5.9 the user can continuously monitor their emotional state in order to be

able to search, in real-time, to change it in the desired polarity. The steps necessary

for the operation of the system are as follows: The user wears the device with the

five electrodes. The EEG signal is sampled and preprocessed in real-time to make it

conform to the subsequent analysis.

• The prediction of the values of Valence, Arousal, and Dominance on the EEG

epochs that have passed the preprocessing flow, so we will get different prediction

values in relation to the epochs analyzed. Remember that each epoch is 4 seconds.

• The prediction results are sent to the user interface, which in the back end

performs the distribution of the received valence, arousal, and Dominance values.

The distribution of these values is performed through a Spatial Model Encoding

through the object ml.spatial10 of Max MSP. The spatial encoder is a form of

neural network that takes integer tokens and creates a vector that encodes the

input sequence. The ml.spatial represents a form of "short-term memory" network

where each vector element indicates the recursiveness of the various tokens. In

this way, as you receive the input prediction data, you can see which classes

are most present and which tend to decrease. The global emotion is instead

calculated as the average of the various tokens in the time domain. For the

assignment of the four emotional states, we refer to the circumflex model of

Russel, which describes emotions as interpolation of the values of Valence and

Arousal. Fig. 5.10 shows a schematization of the Russel model [42].
10https://cycling74.com/articles
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Fig. 5.10 The schematization of the Russel’s Circumplex Emotion Model

In Table 5.2, we observe the threshold for the allocation of the global emotional

state.

Table 5.2 Global Emotion Parameter.

Valence Arousal Global Emotion

>2.5 >2.5 Happy

>2.5 <2.5 Relaxed

<2.5 <2.5 Sad

<2.5 >2.5 Angry

5.3.3 Prototype Evaluation and Implications

In this study, we developed a prototype of emotional bio-feedback based on EEG signals

that can recognize human emotions. In particular, we have trained a deep neural

network to classify valence, arousal, and dominance levels. From our point of view,

classifying human emotions dynamically through the CNN-1D and the spatial encoder

ml. spatial allows us to observe them better over time. From this perspective, we

realized the possibility of observing the emotional history of a subject in real-time. This

aspect makes our research original. The prototype could be used in epidemiological

studies or screening. The purpose is to provide a real-time multimedia helpful stimulus

as a feedback system for both the user and the clinician. The Convolutional Neural

Network reached an R2 of 0.93, Mean Absolute Error = 0.08, and Mean Absolute

Percentage Error = 0.07. These results are very good according to the current state

of research. However, the high metrics reached refer to a small population sample.

Possible implementations could be aimed at validating this prototype on a more
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extensive test sample. In conclusion, these prototypes could be a good support tool in

the clinical field and large-population studies.

5.4 ARIEL: Emotional Support Conversations with

Brain-Computer Interfaces and Language Mod-

els

Building upon our previous work in user emotion recognition through EEG signals,

which demonstrated the feasibility of detecting and classifying emotional states in real-

time, this study extends those findings to explore interactive applications utilizing emo-

tional feedback. The recent advances in Brain-Computer Interfaces (BCIs)—specifically

devices that interpret electroencephalographic (EEG) signals—provide a minimally

invasive and cost-effective method for monitoring user emotions with accuracy and

reliability. These developments have paved the way for ARIEL—an emotionAl

suppoRt bcI dEvices and Llm-based conversational agent designed to engage

users in emotionally supportive conversations by harnessing real-time emotion data.

ARIEL integrates BCI-driven emotion recognition with Large Language Models

(LLMs), enabling it to dynamically perceive and respond to users’ emotional states,

thus creating an interactive, emotionally aware experience. Leveraging the LLaMA 2

chat model, ARIEL adapts its conversational approach in response to real-time emotion

analysis, fostering a supportive environment that actively assists the user’s emotional

well-being. Through a carefully structured hard-prompt strategy, the system ensures

coherent, empathetic dialogues tailored to each user’s emotional evolution, making the

interaction both responsive and personalized.

The integration of BCIs in affective computing underscores the potential for EEG

signals to monitor and interpret emotional states, especially given the growing need for

emotionally responsive technology in fields like neurorehabilitation and psychological

support. Despite substantial advancements in AI and large language models, many

automated conversation systems still lack the nuanced emotional understanding re-

quired for meaningful support. ARIEL seeks to address this gap by uniting BCI-based

emotion recognition and conversational AI to achieve the goal of the Emotional Sup-

port Conversation (ESConv) task—helping users alleviate emotional distress through

dialogue.

Our contributions can be summarized as follows:
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1. A novel framework combining EEG-based emotion recognition with LLMs,

providing a system capable of real-time emotional support in conversational

settings.

2. Detailed design and implementation of the ARIEL framework, describing

the workflow and components necessary for sustained emotional support.

3. Efficacy demonstration through a controlled in-vitro experiment, showing

ARIEL’s functionality and highlighting its potential for in-vivo clinical applica-

tions.

Looking forward, we aim to conduct in-vivo experiments to further evaluate ARIEL’s

functionality, examining its potential applications within clinical and support-based

environments. This innovative combination of affective computing and language

modeling marks a significant step toward developing emotionally aware conversational

agents with promising applications in mental health and emotional support contexts.

5.4.1 ARIEL Framework

The task of emotional support conversation can be generally divided into two subtasks:

i) the modelling of users’ psychological factors to detect their emotional state (i.e.,

emotion recognition task - ER) and ii) the design of a conversational mode able to

have natural language dialogues (i.e., conversational agent - CA) with the final aim

to generate supportive responses. Although multiple Sentiment Analysis techniques

allow today for detailed identification of emotional aspects hidden within a text [24,

299], which helps to infer the emotional state of the person who wrote it, they are

effective only when dealing with linear sentiment [74], failing the emotion recognition

task otherwise. Moreover, the development of CAs strictly dedicated to generating

supportive dialogues suffers from the overfitting problem. Specifically, they may be

unskilled in talking about topics outside the addressed task [1], typical of human

interactions, which would facilitate user emotional support.

To solve such issues, we design the ARIEL framework by taking advantage of

the recent developments in the AC field through BCI devices and the unprecedented

linguistic and cognitive properties characterizing the most recent LLM systems in

having conversations with users. Figure 5.11 illustrates ARIEL’s architecture and its

workflow modelled to address the Emotional Support Conversation (ESConv) task,

which mainly relies on four components: the Neuro-Linguistic Interface, the Emotion
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Recognizer, the Prompt Formatter, and the LLM.

Neuro-linguistic Interface

The Neuro-Linguistic Interface identifies the principal component with which users

can interact with the ARIEL framework. It allows information gathering from actions

undertaken by users who decide to interact with our system, looking for supportive

conversations. Such data is mandatory for ARIEL to accomplish the ESConv task,

which exploits the Neuro-Linguistic Interface to return, in turn, the computed responses

to users. In a few words, this component is essential to make people communicate with

the framework and vice versa.

The input on which our framework works is two-folded, spanning over two different

information channels: the EEG signal and natural language. The former is acquired

through a BCI device, which measures the brain’s electrical activities in a non-invasive

way. This signal conveys more emotional information from humans than other kinds

(e.g., linguistic data, facial expressions). The brain’s more superficial areas are closely

connected to emotions, with a higher concentration of electrical activity when feelings

or emotional states are experienced. Therefore, it is a valuable source of information

to detect users’ emotional condition and act accordingly. The latter, instead, brings to

the system what users want to communicate explicitly in textual form. Such messages

may also include users’ sentiments through descriptions or writing styles, although

they can hardly be considered reliable. Nevertheless, textual messages are handled by

the homonym sub-component, which allows the system to know the topics on which

users prefer to talk, besides making possible dialogues.

The system consistently collects EEG signals starting when the user initiates

interaction. In contrast, it exclusively registers chat messages upon the user’s successful

transmission through the Neuro-Linguistic Interface.
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Fig. 5.11 The figure schematizes the overall workflow followed by the ARIEL framework.
On the left side, the user interacts with ARIEL through the Neuro-Linguistic Interface
(a) component, which contemporarily enables Text Messaging and measuring EEG signals
through a BCI device. On the right side, the Emotion Recognizer (b) receives a stream
of EEG signals on which several ML classifiers are asked to infer the emotion label that
describes those signals. Such a label feeds the Prompt Formatter (c) with the user message.
The (c) component wraps up this information within the most suitable prompt based on the
conversation state. The LLM (d) is queried with the selected prompt, generating a supportive
response delivered to the user for continuing the dialogue. The interaction ends when the
user reaches a positive emotional state and leaves the conversation.

Emotion Recognizer

The Emotion Recognizer is a component that analyzes the EEG signals measured via

BCI to infer the actual emotional state of the user. Specifically, it receives a stream of

EEG signals, which is adequately framed based on the dialogue’s timing users have

with the system, from the Neuro-Linguistic Interface. These signals are processed and

feed machine learning models to infer a label indicating the user’s emotional state,

which is essential to have a clear picture of the user’s current state and act accordingly.

To achive this goal, we rely on a novel approach granting high trustworthiness regarding

the emotion recognized, which we describe below in tripartite paragraphs related to its

founding elements.

Dataset Description

In this study, the Deap [153] dataset protocol approach was employed to collect data to

train machine learning models based on the emotion state classification. The acquisition
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process was conducted at the Polytechnic University of Bari, taking into account a

student population with an average age between 20 and 30 years. Participants were

informed about the procedure and provided written consent for the collection of EEG

data before the experiment. Participants’ EEG signal was acquired using the Muse 2

EEG device11 to perform an accurate data acquisition. During the experiment, a series

of 40 music videos was shown to each participant, and simultaneously the EEG data

were continuously recorded. All collected EEG data have been anonymized to ensure

participants’ privacy, and stored securely and accessible only to the researcher team.

The final dataset is organized as follows: (i) 30 subjects collected and divided into

several folders. (ii) Each folder contains 40 EEG trials organized into session subfolders.

Preprocessing

The preprocessing pipeline is outlined below: EEG epochs duplication and application

of a bandpass filter to isolate frequencies between 1 and 40 Hz was carried out as the

first step. After filtering, the data are transposed and amplitude scaled to simplify

computation. A K-nearest neighbors (K-NN) classifier, was trained on the filtered

dataset to calculate anomaly scores in order to identify EEG data artifacts if a prede-

fined threshold is exceeded. All artifacts detected by the threshold-based approach

are subsequently removed by exploiting the megkit [21] framework using the ringing

artifact reduction method. Cleaned EEG data are then resized, restructured, and

encapsulated in an MNE[107] EpochsArray object, ensuring data consistency since

it maintains names and channel types defined according to a standardized electrode

fitting. Otherwise, if the EEG Signals are artifact-free, they are preserved in their

original shape. This accurate preprocessing procedure is essential to preserve the

integrity of the EEG data, increasing the reliability of the results.

Machine Learning Models

In order to find the best model able to classify emotional states, different ML models

such as Logistic Regression (LR), eXtreme Gradient Boosting (XGB), RF and, SVM

are compared. In order to identify the best model, a hyperparameter tuning using

GridSearchCV (5-fold)12 was applied, with a Leave-One-Subject-Out (LOSO) cross-

validation strategy[156]. This approach has led to the development of 120 specialized

models. Specifically 30 ML models for each of 4 emotions (Happy, Angry, Sad, Relaxed)

able to predict by majority vote the outcome resulting from the quadrants of Russell’s

11https://choosemuse.com/products/muse-2
12https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html
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complex circumference. After comparison of the various ML models, the best model in

predicting Happy, Angry, Sad and, Relaxed emotions was SVM achieving an accuracy

of 0.77, 0.78, 0.76, 0.80 respectively for the considered emotions.

Prompt Formatter

ARIEL introduces also the Prompt Formatter component, a crucial element within

our conversational system that orchestrates the initiation and progression of dialogues

with a Large Language Model (LLM). The Prompt Formatter serves as the gateway

through which the user’s emotion label, found by the Emotion Recognizer, and her

sent message are amalgamated into coherent prompts, setting the stage for meaningful

interactions. A prompt is essentially a piece of natural language text given to the

model by the user, serving as the initial input or question. This input initiates the

model’s response process and guides its direction and scope, acting as a catalyst for

the output’s relevance and utility [307].

At the heart of the Prompt Formatter lies a dynamic prompting strategy designed

to optimize dialogue generation in handling the ESConv task. The strategy hinges on

the selection and adaptation of prompts tailored to different stages of the conversation.

Initially, the Prompt Formatter employs a role-play prompt to kickstart the interaction,

providing the role the LLM has to play towards conversations as a context. In this case,

we assign to the LLM the role of a virtual assistant specialized in supporting users’

mental distress to evolve their emotional status to a positive condition. Furthermore,

we also let the LLM know that the user’s sentiment is measured with BCI sensors,

favouring the LLM in considering possible mismatches between what the user says

about her emotional state and what he actually feels. Below we report the adopted

prompt for enabling the LLM to initiate the conversation.

Conversation start role-play prompt

You are a Virtual Assistant designed to converse with users supporting their emotional distress and transforming it

into a positive feeling. You receive as input also information about users emotional state measured through an high

reliable emotion recognition model. Just have a chit-chat conversation until the user feels happy or relaxed and

wants to leave the conversation. The emotion recognition model measures the user feels {emotion label}.

The user sent {user message}.

As the dialogue unfolds, the prompt evolves in response to the ongoing discourse,

ensuring relevance and coherence while leveraging the LLM’s contextual understanding.

Specifically, the prompt evolution is determined step-by-step through the conversa-

tion by selecting a prompt from a collection designed to take into account possible

conversational states. Moreover, all the prompts include growing dialogue histories
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to avoid information loss. This adaptive prompting mechanism not only sustains

the coherence of the conversation but also facilitates the LLM’s comprehension and

response generation, leading to richer interactive exchanges.

Generative LLM

Finally, the generative LLM component identifies the core of the ARIEL framework.

Based on the open weight LLaMA 2 chat model, this component exploits the language

processing capabilities of the LLMs instructed to behave in a conversational manner.

It serves as the virtual interlocutor, capable of understanding user inputs, processing

contextual information, and generating coherent responses in natural language.

Large Language Models (LLMs) are based on advanced neural networks designed for

natural language processing tasks. At their core, LLMs are probabilistic models designed

to estimate the probability distribution of sequences of linguistic units such as words or

sentences [239]. Upon receiving prompts from the Prompt Formatter component, the

generative LLM builds responses based on the provided context and instructions. These

responses are crafted to emulate human-like conversational behavior, incorporating

linguistic nuances, contextually relevant information, and appropriate tone. Moreover,

since it is coupled with prompting strategies described within the Prompt Formatter

component, LLMs seamlessly integrate into conversational frameworks, effortlessly

generating responses that align with the desired conversational goals.

5.4.2 ARIEL @ Work

With the growing sense of isolation and detachment people feel in today’s scenario,

compounded by the pervasive influence of digital communication platforms, ARIEL

eavesdrops actively on the users’ emotional problems and promulgates through conver-

sations engaging discussions and chit-chat interactions to alleviate their mental distress.

The ARIEL’s goal is to let people talk about preferred and positive topics, opening up

to confidence and problem expressions to relieve the experienced emotive pressure.

Below, we describe an example of a user interaction with the ARIEL system

consisting of an AI-based emotion recognition framework and an LLM-based chatbot.

Specifically, we have designed a running example immersed in one of the possible cases

for which this tool is helpful, besides explaining how the ARIEL framework works

in detail. Furthermore, Figure 5.12 contains an additional conversation example to

ensure a better understanding of the functioning of the proposed framework. Such a

controlled experiment resulted from a real session trial with the ARIEL system.
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Eric is a young professional immersed in a stressful work environment. Particularly,

in a very stressful period studded with relevant workload and imminent deadlines, at

the end of his working day, Eric has limited time to engage in any social activity to

relieve his accumulated tension. Therefore, to get relaxed Eric sits at his computer

and wears a BCI device. With a habitual gesture, he starts the system called ARIEL,

which immediately starts recording the EEG signals of his brain and using an AI-based

Emotion Recognition algorithm to predict his emotional state in real-time. Indeed,

this system represents an innovative interface between Eric’s mind and the digital

world, enabling a proactive understanding and reaction to his emotions. Based on the

emotions predicted by ARIEL, a chatbot embedded in the system triggers a dialogue

with Eric, designed to drive his emotional state towards a positive direction.

ARIEL 1 Settings Log Out

Hi! Yeah, I feel lost recently.
Like I don't have goals no
more

Insert Text

Hi! You look lonely. Do
you want to talk about it?

I'm so sorry, this may
happen time to time.
However, also these
moments are precious for
your growth! You may not
have goals now, but you
have skills! What are you
good at?

You might be right! I might
be good at writing stories

Fantastic! What genre do
you like to write?

I love writing pirates stories.
Set sail for the sea is one of
my dreams

ARIEL 1 Settings Log Out

Of course! I love Pirates of
the Caribbean! I think I
found my inspiration! thank
you!

Insert Text

I see! That's because a
pirate life is a life of
freedom! You got the
quote?

Oh wonderful! Will you let
me read in the future?

Yep! Probably you can give
me some advices during the
writing!

Indeed! I have the right
capabilities to support
you! Glad you feel better
now!

You really help me! Bye!

Bye bye!

Emotion: Sadness

Emotion: Sadness

Emotion: Neutral

Emotion: Happiness

Emotion: Happiness

Emotion: Happiness

Fig. 5.12 The figure highlights a simplified conversation held by ARIEL with the user Eric.
The first screenshot from the left captures the start of the conversation, where ARIEL engages
Eric in talking about his emotional distress (grey balloon). Thus, Eric joins the dialogue
with an answer describing what he feels (blue balloon) together with the emotion recognised
by the Emotion Recognizer (cf. Figure 5.11) through the BCI device (red balloon). The two
actors of the framework have a chit-chat conversation that brings the user’s emotional state
to evolve from sadness into happiness.
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In this case, the ARIEL’s emotion recognizer predicts that Eric is experiencing

sadness. Hence, ARIEL’s chatbot welcomes Eric and initiates working on the emotion

felt by the user by encouraging them to have a light conversation with the message:

"Good evening Eric! I sense a certain sadness from you. What happened?". Eric, who

needs to talk to someone to relieve himself from daily worries, texts the system: "Hi

Ariel! Yes, my work is quite tiring these days, and deadlines certainly don’t help me

relax.". Since ARIEL does not acknowledge a shift in Eric’s emotional state, it tries to

cheer up him by replying: "I see! But do you know that after great effort there is always

great satisfaction? You’re working hard, you deserve it!". Eric feels partly consoled

by the message, but the great tiredness does not allow him to change his sadness to a

positive feeling. Accordingly, Eric messages ARIEL: "I know! However, I feel trapped

in this routine. Tonight I would have liked to go and listen to a Pink Floyd cover band,

but obviously, I can’t.". Although the overall emotional state did not have sensitive

variations from the initial state, the BCI device measures a slight positive change in

Eric’s EEG signal that the emotion recognizer promptly reports to the ARIEL chatbot.

Consequently, ARIEL continues the conversation by resuming the topic discussed in

the previous message, which allowed the recording of this little positive perturbation

(e.g., Pink Floyd). It answers Eric: "I’m sorry! However, even if it is not the same, you

can reproduce their songs to relax! I think you would love listening to "The Great Gig

in the Sky"! Is one of my favourites! The vocal performance is exceptional!". At this

moment, Eric feels engaged by the conversation since the mentioned song is also one of

his favourites. He replies: "It is also one of my favourite songs! Clare was commendable

and conveys many positive feelings!". The emotion recognizer now detects a neutral

state of the user from the initial sadness, which encourages ARIEL to continue talking

about music. Through messages of encouragement, positive talk or joyful activities,

the system will try to transform Eric’s sadness into a more positive feeling, such as

happiness. The conversational session will terminate whenever Eric reaches a positive

emotional state and greets ARIEL, declaring the end of the dialogue.

ARIEL implements a dynamic approach for handling the ESConv task thanks to the

Prompt Formatter. Depending on emotions predicted by the emotion recognizer, this

component selects the most suitable prompt that guides ARIEL’s LLM in conversing

with users and accomplishing the emotional supportive mission. In this example, Eric

has a bad day at work the following day, having had some discussions with colleagues.

When interacting with ARIEL, the system predicts that Eric is experiencing anger. In

this case, the chatbot will take a different approach. Therefore, ARIEL texts Eric: "Hi

Eric! Did you have a bad day? I feel your anger." Eric will then explain to ARIEL
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his unfortunate day, and the emotion recognizer will detect his negative feelings. As a

consequence, ARIEL engages in a conversation to manage nervousness issues, replying

to Eric: "What a pity! But first thing first, take a deep breath. Every problem has a

solution. Let’s find it together." During the dialogue, ARIEL will offer Eric further

stress management techniques, such as calm reflection on his feelings, despite positively

facing the emerging work issue. The aim is to help Eric calm down and regain his inner

peace, gradually shifting his emotionality towards more neutral and ultimately positive

states. Also, the whole conversation will be guided wisely thanks to the continuous

monitoring of the user’s EEG signals through the BCI device.

Whenever Eric starts a conversation with ARIEL while feeling happy or any other

positive emotion, the emotion recognizer will detect that Eric is already in a positive

emotional state, therefore the chatbot will keep the conversation light and joyful,

without attempting to change his mood further. Instead, it might propose fun activities

or encourage Eric to share his positive experiences, thus helping to consolidate his

happy emotional state.

5.4.3 ARIEL Principles and Future Pathways

In this work, we presented a novel framework to handle the emotional support con-

versation (ESConv) task. ARIEL, an emotionAl suppoRt bcI dEvices and Llm-based

system, embraces an innovative strategy in engaging users through conversations to

alleviate their mental distress via the adoption of brain-computer interface (BCI)

devices for reliably detecting their feelings. Our proposal is the first to take advantage

of the recent discoveries in the fields of Affective Computing and Language Modelling,

mixing BCI-based emotion recognition models and a large language model (LLM)-based

conversational agent (CA) to effectively address the ESConv task. Indeed, ARIEL is

composed of an emotion recognizer to detect the users’ emotional states via BCI, an

LLM to generate natural language messages given a text as the input, and a prompt

formatter to enclose emotional labels and users’ messages within different and dynam-

ically selected prompts to guide the LLM in generating dialogues. One of the most

interesting aspects of ARIEL is the high reliability in detecting users’ emotions thanks

to the electroencephalographic (EEG) signals acquired by the BCI device, showing

effective functioning during our running example.

In future developments of this work, through a detailed user study, the impacts of

this technology on mental health, emotional well-being and work performance will be

analysed. Furthermore, the ethical and social implications of an increasingly intimate
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interaction between man and machine in the field of personalised emotional assistance

will be assessed.

5.5 Machine Learning for Neurorehabilitation via

Mental State Recognition

The progression of our studies on the application of Machine Learning (ML) techniques

to electroencephalographic (EEG) signals has led to a shift in focus towards neuroreha-

bilitation and the potential of biofeedback systems to enhance therapeutic outcomes.

Initially, our work concentrated on classifying users’ mental states, such as Focus and

Relaxation, through various ML models. This early phase established a solid foundation

by achieving significant accuracy rates, specifically attaining 0.90 accuracy on the

Test Set with the Support Vector Machine (SVM) classifier. However, recognizing

the therapeutic potential of biofeedback-driven interactions, we have extended our

investigation to explore how real-time emotional state detection via EEG signals could

support neurorehabilitation processes.

This extension of our research is realized through the development of a prototype

system that dynamically generates music based on detected mental states, categorized

into Focused or Relaxed outputs. This biofeedback tool, leveraging BCI capabilities,

allows the system to automatically adapt music generation to the user’s detected

mental state. Such adaptability could be highly effective in clinical neurorehabilitation

scenarios, where tailored auditory stimuli play a vital role in enhancing motor recovery,

emotional regulation, and cognitive engagement. Sound-based interventions have

been shown to stimulate neuroplasticity and improve therapeutic outcomes in various

clinical domains [237, 252]. By integrating these principles into a responsive system, we

provide a novel approach to real-time rehabilitation support, driven by a biofeedback

mechanism that encourages patient engagement and movement through personalized

auditory cues.

The contributions of this work are threefold: (i) development of an ML-based

biofeedback system using EEG signals to detect users’ mental states (Focus and

Relaxation); (ii) introduction of a real-time music generation component that adjusts

according to the user’s current state, thereby promoting focused or relaxed mental

states as needed; (iii) demonstration of the system’s applicability in neurorehabilitation,

underscoring its potential to enhance patient outcomes through auditory biofeedback.
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5.5.1 Methods

The system employs an approach based on new paradigms for polyphony generation

by exploiting the user’s Focus and Relaxation values. More specifically Polyphony

generation refers to the creation of music by the coherent superimposition of four

melodic lines.

The framework shown in Figure 5.21, is structured of 5 main steps. The First Step

is based on the data acquisition by the BCI-Muse EEG Device [97]13. Afterwards, the

EEG signal is pre-processed during the Second Step. The Third and Fourth Steps are

devoted to (i) the generation of the user’s mental state classification values by the

Machine Learning Engine and (ii) the generation of music based on the user’s mental

state with the visualization of the score. During the Fifth Step, a musician plays

the generated music in real-time. Finally, the user hears and reacts to the generated

music by trying to maintain the required concentration level. The system manages

a biofeedback loop between the user-generated musical texture and the his mental

state. A likely example scenario could be: Tom is a guy who needs to stimulate his

motor skills. A specialized operator asks him to move in time with the generated music.

The task is to generate high rhythmic music. To achieve this, Tom must strive to

concentrate. The original music generated in real-time is performed by a music player.

If the music is high rhythmically Tom will be induced to move more and enhance his

movement. On the other hand, if the music is low rhythmically Tom will be induced

to move slowly.

Fig. 5.13 NeuralPMG System Architecture.

Data Acquisition Device

13https://choosemuse.com/muse-2/
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In this section, we describe the device BCI-Muse, used in user EEG signal acqui-

sition. Muse device is a passive helmet with four electrodes capable of measuring

electrical voltages on the head’s surface (EEG). The silver electrodes are dry-conductive

(conductive solutions are not required) and are placed according to the official 10−20

system [122] in positions AF3, AF4, TP9, TP10 with reference on FPz(CMS/DRL).

The sampling frequency (fs) is 256 Hz. Figure 5.22 shows an example of electrode

representation with relative positions.

Fig. 5.14 Representation of Electrode placement according to the 10-20 system.

Polyphonic Structure Generation

The generation process starts by analyzing the result of the ML model prediction.

Based on the classification result, a set of corresponding rhythmic values is chosen and

then used to generate the rhythmic profiles for the four melodic lines. Rhythmic value

samples are divided into the following two groups:

1. Focus: represented by the rhythmic values 1/4, 1/8, 1/16 and their corresponding

rest values;

2. Relaxation: represented by the rhythmic values of 4/4, 2/4, 1/4 and their

corresponding rest values.

Strings of the rhythmic pattern are created with random permutations between

values belonging to the settings chosen by the classifier (0 for Focus, 1 for Relaxation).

The melodic profile is generated through several steps based on the set of notes. The

framework is able to compute all possible musical scales in an octave from 3 to 11

notes. An octave interval is defined as the distance between two musical notes, one of
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which has twice the frequency of the other. The word musical scale means a subset

of notes inside all 12 Equal temperament [127, 138]. To generate polyphony, the first

steps are related to selecting the basic scale. Figure 5.15 shows the Graphical User

Interface (GUI) of notes number choice for scale. All polyphony will be generated on

the notes of the selected scale.

Fig. 5.15 GUI - Menu representation, allowing the user to select octaves.

Fig. 5.16 GUI - Example of submenu for all possible pentatonic scales in one Octave.
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5.5.2 Dataset Description

In our system, the ’EEG brainwave mental state’ dataset [27] is used in order to apply

the Muse device. The raw data are available in open source format14.

The authors collected the EEG signals, from four users (two males and two females),

related to the following mental states: (i) focus (ii) neutral and (iii) relaxation.

During the relaxation task, relaxing sounds were played, and users were asked to

relax. Moreover, in the attention condition, users played a task that required them

to pay attention: a ball was hidden under one of three cups. The goal of the test

was to identify in which cup the ball was hidden. Figure 5.17 shows the user’s EEG

signal during concentration and relaxation tasks, respectively. Channels TP9 and

TP10 were excluded because are noisy in whole dataset. Using only a few channels, it

was not possible to perform EEG/Electrooculogram (EOG) artifact removal applying

regression methods [76], ICA [293], or other standard techniques.

Figure 5.17 shows several problems related to noisy channels and the presence of

ocular artefacts [284] related to the raw data. In particular, they show: (i) low-frequency

artefacts (ocular) and (ii) high-frequency artefacts (muscle tension, etc.).

Therefore, each signal was filtered considering only the 7-14 Hz as wavelength.

This technique excludes low-frequency artifacts (drift, head movements, EOG blink

artifacts, etc.), as well as high-frequency artifacts related to noise environments, and

muscle artifacts. Accordingly, the selected channels used in the analysis are the AF3

and AF4. Figure 5.18 shows the signal in the concentration and relaxation task after

the filtering step.

14https://github.com/jordan-bird/eeg-feature-generation/tree/master/dataset
/original_data
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Fig. 5.17 Representation of EEG Raw Signal during the Concentrating (left) and Relaxation
(right) tasks, before the filter operation.
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Fig. 5.18 Representation of EEG Raw Signal during the Concentrating (left) and Relaxation
(right) tasks, after the filter operation.

5.5.3 Framework

The primary objective of the framework is to identify two mental states - activation

and relaxation - through a ML classifier. After classifying the user’s activation level,

the system generates music in real-time based on the current mental state. The prepro-

cessing and Machine Learning Engine operations are described in the following section.

Machine learning engine The ML approach is structured into two steps. In the

first step, the MiniRocket [73] algorithm was applied. We adopted the implementation

of the sktime [173] library. Briefly, Minirocket is a variant of Rocket, i.e., an algorithm

for feature extraction from time series. Each time series is convolved by using random

convolutional kernels, and global max pooling. The proportion of positive values

pooling is applied to the convolutional output to produce two features per kernel. The

extracted features contain information related to series class membership, which a
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linear classifier can model. Hence, the first process involves feature extraction from each

time series using a convolutional filter kernel. It extracts features from the multivariate

EEG segment. These features are then input to the Ridge classifier, which we have

selected as a linear method for the twofold goal of handling feature collinearity with

L2 regularization and performing feature ranking [136]. The length of the features

employs two hyperparameters: Kernel size and Kernel length. The hyperparame-

ter phase of the whole process is carried out into Python Pipelines: (i) MiniRocket

tuning (Kernel size and length), (ii) RidgeClassifier tuning (alpha values), and (iii)

Normalization function selection (MinMaxScalar, StandardScaler, RobustScaler) in

5-fold cross-validation using Random Search (50 iterations) developed with Python,

applying Scikit-learn library [219]15.

The whole process of choosing the best EEG segment and hyperparameter tuning

is iterated with different lengths of the EEG signal. Determining the correct signal

length is essential to obtain the highest amount of information from the signal in a

real-time classification setting. From our proposed system, the maximum EEG signal

length should not exceed 5 seconds to avoid it being too long and then not in real-time.

Fig. 5.19 Distribution of features coefficients averaged across the k validation rounds.

Table 5.3 shows the shapes of the data set in relation to the length of the EEG

segments.

15http://scikit-learn.org
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Table 5.3 Snapshot of the training dataset. EEG Segment is measured in seconds (sec).

EEG Segment Raw Number Number of Channels Samples

1 822 2 256

2 409 2 512

3 272 2 768

4 203 2 1024

5 162 2 1280

Accuracy, F1 score, precision, and recall have been computed to assess the perfor-

mance of the models.

The main goal of the second phase is obtaining the average distribution of the

coefficients of the features corresponding to the best model-RidgeClassifier. Figure 5.19

shows the feature coefficients averaged across k-fold validation rounds. Afterwards, the

best predictive model with the best EEG segment is selected. We used a statistical

criterion to reduce the set of 3,864 features based on the selection of the most important

features (lower 10th percentile and upper 90th percentile, given the symmetry of the

model weights). The new set of reduced features is 774.

Consequently, the training dataset is redefined according to the new subset of

extracted features. Finally, we trained three ML algorithms (SVM, Random Forest,

and KNN) with hyperparameter tuning and k-fold strategy.

Table 5.4 Results of the best models related to the EEG segment length. EEG segment is
measured in seconds (sec).

EEG

Segment Length

Pipeline Steps:

MiniRocketMultivariate

Pipeline Steps:

Scaler

Pipeline Steps:

RidgeClassifier
Precision Recall F1 Score Accuracy

Confusion

Matrix

1
kernel max dilatations: 352

num kernels:1110
RobustScaler

alpha = 621.01

max_iter = 891

random_state = 42

solver =auto

class -1 = 0.73

class 1 = 0.77

class -1 = 0.70

class 1 = 0.79

class -1 = 0.71

class 1 = 0.78
0.75

51 22

19 73

2
kernel max dilatutions: 848

num kernels: 261
StandardScale

alpha = 148.73

max_iter = 769

random_state = 42

solver =auto

class -1 = 0.78

class 1 = 0.78

class -1 = 0.69

class 1 = 0.85

class -1 = 0.74

class 1 = 0.81
0.78

25 12

7 39

3
kernel max dilatations: 512

num kernels: 3910
RobustScaler

alpha = 148.73

max_iter = 591

random_state = 42

solver =auto

class -1 = 0.83

class 1 = 0.87

class -1 = 0.83

class 1 = 0.87

class -1 = 0.83

class 1 = 0.87
0.85

20 4

4 27

4
kernel max dilututions: 384

num kernels: 12010
MinMaxScaler

alpha = 0.78

max_iter = 16

random_state = 42

solver =auto

class -1 = 0.75

class 1 = 0.76

class -1 = 0.67

class 1 = 0.83

class -1 = 0.71

class 1 = 0.79
0.76

12 6

4 19

5
kernel max dilututions: 560

num kernels:16910
RobustScaler

alpha = 57.36

max_iter = 270

random_state = 42

solver =auto

class -1 = 0.91

class 1 = 0.77

class -1 = 0.67

class 1 = 0.94

class -1 = 0.77

class 1 = 0.85
0.82

10 5

1 17
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Table 5.5 Results of 5-fold cross-validation applied on Test set.
MA = Mean Accuracy; STD = Standard Deviation.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 MA STD

SVM 0.8727 0.9454 0.9444 0.9259 0.8148 0.9006 0.0504

Random Forest 0.8363 0.9636 0.8148 0.9074 0.7592 0.8563 0.0716

KNN 0.8545 0.8545 0.7037 0.9444 0.8333 0.8381 0.0773

5.5.4 Mental State Recognition Insights and Analysis

In this section, we present the best model able to recognize two mental states related

to Focus and Relaxation.

Table 5.4 highlights the best model in terms of performance for the 3-second EEG

segment. Figure 5.19 shows the coefficients distributions of the best models for the

different EEG segments length. It is remarkable that models trained with segments of

length 1, 2, and 3 seconds show feature distributions with the highest variance. In fact,

it suggests applying a feature selection criterion by exploiting percentiles. On the other

hand, the distributions of the coefficient for the 4 and 5 seconds are more concentrated

around zero. This phenomenon shows that the impact of the features is much more

negligible than the models obtained with 1, 2, and 3-second segments. Table 5.4

and Figure 5.19, shows the best final model configuration by selecting 3-second EEG

segments.

Afterwards, we identified three different candidate models as the best model.

SVM builds a geometric separation hyperplane with support vectors, Random forest

builds the decision boundary through the informative content of the features and the

KNN algorithm creates centroids according to the similarities/differences between the

features. Table 5.5 shows the results of the 5 − fold cross-validation strategy after

feature selection carried out in the previous step. SVM with a mean accuracy of 0.90

and STD of 0.050 is the best model because it achieves the best mean accuracy for

two mental-state recognition in a 5−fold cross-validation strategy during the training

and test phase.

In our approach, we used signal preprocessed; in contrast, the authors [27] used

only downsampling data preprocessing, achieving 87.16% accuracy.

To summarize SVM is better than the others. Indeed it is able to define the decision

boundary and it is more suitable for the distribution of characteristics. In fact, there

is a better relationship between performance on the train and testing compared to

Random Forest and KNN models. In addition, SVM shows no overfitting problem and

achieved the best Standard Deviation (STD) during the test phase.
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5.6 NeuralPMG System

Following the developments discussed above, this section introduces NeuralPMG a

system that leverages BCI-based emotion detection with polyphonic music generation

to support creativity and engagement in music composition. Here, NeuralPMG serves

as a continuation of the themes addressed in the prior works: it integrates ML and BCI

technologies to classify user mental states, using these insights to influence and enhance

the music creation process in real-time. This framework incorporates Slonimsky’s

theoretical model, AI-driven pattern generation, and an interface combining EEG and

hand movement detection to create a seamless composition experience.

With NeuralPMG, the aim is to go beyond pure emotion recognition to apply these

techniques in artistic and therapeutic contexts. The system translates users’ mental

states into musical structures, offering a dynamic platform for musical composition that

adapts to the user’s cognitive and emotional states. This approach reflects a significant

step forward in our research, highlighting how BCIs can be used both as conversation

support systems (as in the case of ARIEL) and as interactive music composition tools

that can be employed in neurorehabilitation and creative education environments.

In the following sections, we detail the NeuralPMG system’s design, including

its integration of EEG-based emotion classification, hand-tracking input for melodic

structure, and the real-time generation of polyphonic compositions. This work marks

a further evolution in leveraging BCI technology and AI for practical, user-centered

applications across healthcare, education, and creative industries.

5.6.1 Example Scenario

This section proposes a scenario depicting a key usage situation of NeuralPMG. Sce-

narios are commonly used in Human-Computer Interaction for “bringing requirements

to life” [226] since they provide, in a concrete narrative style, a description of specific

people performing work activities in a specific work situation within a specific work

context [116].

Tom is an expert music composer, who creates soundtracks for movies, advertise-

ments, music videos, audio-visual setups, as well as more traditional 20th-century

classical music. He frequently manages multiple composition projects in parallel and

in different genres and styles, each taking from a week to several months to complete.

He aspires to provide more complex compositions in the form of an audio and musical

score, suitable for performance with virtual instruments or real music groups.
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Tom needs to streamline the production process. He aims to obtain semifinished

pieces that he can later refine, modify, or complete as desired. He is familiar with

Nicolas Slonimsky’s theory, which enables him to experiment with various generations

of scales and melodic patterns. He can construct polyphonies using sound organisation

grammar drawn from contemporary composition methods, such as the permutation of

notes, inversions, transpositions of musical phrases, variations in rhythmic values, etc.

Furthermore, Tom is well acquainted with the rules of polyphonic and counterpoint

organisation, which he uses to create tonal and post-tonal musical compositions.

Tom does not wish to rely solely on an automated music generation system, even if

it can be programmed with specific parameters, as he wants to retain control over his

own artistic decisions in each composition. Thus, Tom decides to use the NeuralPMG,

whose GUI is shown in Figure 5.20.

Fig. 5.20 GUI of the NeuralPMG framework: three panels outline the main steps in the
process of creating the final polyphony, i.e., Mental states training, Melodic pattern creation,
Polyphony generation. Instructions for using the system can be found in the panel at the top.



104 Chapter 5 Enhancing Devices for EEG Signal Analysis with AI

As first step, Tom wears a Emotiv headset, i.e. the BCI, and trains the system

to recognize his mental state, so that it can determine if he is focused or relaxed. To

accomplish this task, he selects the "Focused" and then the "Relaxed" buttons in the

"Mental states training" panel of the system interface. Once the system has been trained

on Tom’s mental states, he can carry on using it. Tom activates the Leap Motion

device to produce a melodic pattern: he moves his fingers on the device that detects the

coordinates of Tom’s fingers and translates them into musical notes that are displayed

on the musical staff. The finger position and the musical staff are both displayed in

the "Melodic pattern creation" panel, on the left and central side, respectively. The

melodic pattern can be played and stopped. Once he has found a satisfactory melodic

pattern, he can change and explore different version of melodic pattern through the

box "selecting Interval Axes in Semitones". With this button he can transpose and

refit the melodic pattern on different Interval axis. When Tom thinks he has found

the right melodic pattern, saves it as a MIDI or XML file. Using this melodic pattern

as a seed, the system exploits the Slonimsky’s grammar to generate all the melodic

patterns related to that seed. Tom then goes on with "Polyphony Generation". The

trained classifier identifies Tom’s mental state and generates a polyphonic composition.

Tom knows that when he is focused, the polyphony has rhythmic values of quarter

note, eighth note and sixteenth note, while when he is relaxed, the rhythmic values are

whole note, half note and quarter note. Thus, depending on the polyphony he wants to

generate, Tom tries to be focused or relaxed. Tom can modify the generation intervals,

the "performance tempo" expressed in bits per minute (bpm) and the interval of each

polyphonic voice according to what he feels for each composition. When he finds the

generated polyphony useful, he saves and exports it in a MIDI or XML file format.

Later, having an archive of polyphonic and melodic compositions at his disposal, he

can edit, arrange, and manipulate them as desired using either a Digital Audio Work

Station (DAW) or a music notation software.

5.6.2 NeuralPMG Framework Architecture

In this section, we describe the NeuralPMG architecture.
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Fig. 5.21 Overview of the NeuralPMG framework architecture main components.

According to Figure 5.21, NeuralPMG consists of three macro-components. The

Data Acquisition module is in charge of data acquisition from the two devices, i.e. the

Leap Motion and the Emotiv headset. The AI Engine module receives the EEG power

band values from the CortexV.2 REST API and elaborates them with ML techniques

to first create a user’s mental state training dataset and later classify the current mental

state. The Music Generation Engine module is responsible for: i) creating the melodic

pattern based on the data acquired by the Leap Motion; ii) creating polyphony based

on the melodic pattern and the mental stated prediction value provided by the AI

Engine; iii) displaying a GUI with the widgets for user interaction and system output.

The dashed lines between the architecture modules represent control signal.

The processes of the modules are controlled using a Python Flask library16, which

allows us, through the API-Rest technology, to manage a communication protocol

based on TCP-IP capable of handling server-client calls with related data exchange on

a specific IP address.

Two devices are used for acquiring user data:

• Brain Computer Interface. The Emotive Insight device17 is a 5-electrode

passive headset capable of detecting electrical voltages on the head surface (i.e.

the EEG). The electrodes are Semi-Dry Polymers, as they have a conductive

16Python Flask library: https://flask.palletsprojects.com/en/2.0.x/
17https://www.emotiv.com/insight/
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rubber coating. Generally they can be used without gels or conductive solutions.

The EEG signal quality is verified by the proprietary Emotive PRO18 software

interface, which provides a signal quality check by means of coloured indicators,

from "Green = excellent quality" to "Black = very poor quality". As shown in

Figure 5.21, the EEG headset interface communicates, with the Engine module

by an API Gateway, using the native CortexV.2 REST API. Once the signal

calibration phase has passed, data is received by the Cortex API SDK. Electrodes

are placed according to the official 10−20 system in positions AF3, AF4, T7,

T8, and Pz [122]. Figure 5.22 shows a schematic representation of the electrodes

with their positioning on the user’s head.

The Cortex V.2 API by Emotive enables interfacing the device with various

development environments. For each electrode, the API provides a series of

numerical values corresponding to the power spectrum in the different bands

of interest: Delta(0-4Hz), Theta(4-8Hz), Alpha(8-12Hz), Beta(12-35Hz) and

Gamma(35-43Hz).

• Leap Motion. Leap Motion (LM)19 is a powerful tool for recognizing the

movement of different hand parts. Palm and fingers data of one or both hands in

the spatial coordinates on the x,y, and z axes are detected by an infrared camera.

The coordinates data streaming is received directly by aka.leapmotion object20

in Max/Msp that visualizes them in a widget of the user interface.

18https://www.emotiv.com/emotivpro/
19https://www.ultraleap.com/product/leap-motion-controller/
20https://github.com/akamatsu/aka.leapmotion
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Fig. 5.22 Electrode placement according to the 10-20 system.

5.6.3 Polyphony Generation Process

The polyphony generation process is divided into two main parts, namely:

• Generation of the basic melodic pattern: It is generated by selecting

a reference interval axis as proposed in Slonimsky’s theory. The infra-inter-

extrapolation process along with related permutations, is determined by the

movement of one hand’s fingers (refer to Section 5.6.3 for details).

• Generation of Polyphonic structure: The system employs the previously

generated melodic pattern to create a four-part polyphony. This involves overlay-

ing four rhythmic profiles, derived from permutations of rhythmic figures found

in two distinct reference sets, onto the four voices. The first set comprises rhyth-

mic values of quarter notes, eighth notes, and sixteenth notes, along with their

corresponding rest values. The second set includes rhythmic values equivalent to

whole notes, half notes, and quarter notes, also accompanied by their respective

rest values. These divided sets are then utilized to form sequences of rhythmic

figures. Concerning dynamic progression in each polyphonic voice, amplitude

variations corresponding to Alpha, Beta, Theta, Gamma, and Delta brainwaves

are scaled within the 0 - 127 range, in accordance with MIDI protocol standards.

The selection of rhythmic value sets and dynamic progression is subject to the

user’s discretion, controlled through mental states assumed during system usage.
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Mental State Generation

The system records power data from Alpha, Beta, Theta, Gamma, and Delta

brainwave bands. This data is essential for defining mental states. As per literature [37],

the Focused mental state correlates with increased power in Beta and Gamma bands,

whereas the Relaxed state is associated with heightened Alpha band amplitudes.

Initially, users must train the system to distinguish between these two mental states.

To elicit a Focused mental state, users engage in mental exercises that simulate an

elevation in Beta and Gamma brainwave activities. The system sequentially displays

numerical strings (e.g., [41-21-92-10-8-37-45-75-61-29-61-95-79- . . . ]) for the user to

observe and read. Conversely, to induce a Relaxed state, the system plays natural

sounds such as flowing water and bird chirps. The data collected during the focused

and relaxed mental state form a training dataset for various ML algorithms and simple

Feed Forward Neural Networks with up to three hidden layers.

Melodic Pattern Generation

Melodic pattern generation relies on the positioning of select fingers of one hand

approximately 30 cm from a Leap Motion device. The Y-axis coordinates of the five

fingers (left or right hand) are recognized. Figure 5.23 shows the position of the fingers

at 45°angle relative to a horizontal reference plane. Three fingers are considered in

building the melodic pattern: the first note is the reference tone; the second, third, and

fourth notes are defined by thumb, middle, and little finger respectively. Figure 5.24

shows the same fingers translated onto the musical staff.

Fig. 5.23 Visualization of the user’s left hand five fingers position in the NeuralPMG GUI.
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Fig. 5.24 Finger transposition on the musical staff.

The melodic pattern generated through LM is scaled across two octaves using the

bach.mod21 library. This scaling process involves specific handling of input values

relative to a defined threshold:

1. Threshold Processing: The system employs a threshold of 2400 cents. For

input values falling below this threshold, the output value directly corresponds to

the input value. Conversely, if the input value surpasses 2400 cents, the output

is recalculated as inputvalue-2400 cents.

2. Constant Addition for Note Display: To accurately represent the notes in

both violin and bass clefs, a constant of +6000 cents is added to the output

value. This adjustment ensures proper display and interpretation of the notes

within the respective clef notations.

3. Formation of the Base Melodic Cell: The base four-note melodic cell

is derived initially. Subsequent notes are generated by adding constants that

correspond to the selected interval axis. This process is pivotal in determining

the melodic structure and is dependent on the axis choice:

• Unison Interval Axis: If a unison interval axis is chosen, a value of 0

cents is added to the four base notes.

• Augmented Fourth Interval Axis: For an augmented fourth interval

axis, each note of the base cell is incremented by +6000 cents.

4. Display and Notation: The resulting pattern is then visualized in a software

object that provides a transcription in mensural notation (as referenced in [163]).

This display includes a consistent rhythmic profile, standardizing all notes to

quarter notes.

21https://www.bachproject.net/
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Figure 5.25 illustrates the generated melodic pattern following these procedures.

Fig. 5.25 Melodic pattern of infra-inter-ultrapolation on augmented fourth C-F# interval
axis.

Polyphony Generation

The polyphony generation process starts with the analysis of the user’s mental state,

utilizing the Emotiv headset to capture EEG signals. These signals are transformed

from the time domain to the frequency domain in the range 0.5-43 Hz. The system

samples 50 time series at approximately 1-second intervals, each consisting of 25

features. This data, pertaining to Alpha, Beta, Theta, Gamma, and Delta bandwidth

values, is then fed into a classification algorithm. The algorithm outputs a prediction

value corresponding to a mental state class, which informs the rhythmic value selection

in the Max/MSP software for generating the rhythmic profiles of the four voices. The

rhythmic values are divided into the following two categories:

1. Focused state: consists of rhythmic figures 1/4, 1/8, 1/16 and their corresponding

rest values;

2. Relaxed state: consists of rhythmic values of 4/4, 2/4, 1/4 and their corresponding

rest values.

Random permutations of these rhythmic values generate strings of 49 rhythmic figures,

assigning one rhythmic value to each note. These strings are then overlaid on the

pitches of the basic patterns distributed across the four voices in the score, visualized in

the bach.score object. This visualization facilitates observing the complete polyphonic

score as shown in Figure 5.25.

Subsequently, the score undergoes further refinement by transposing each voice

along a selected interval axis, as per Slonimsky’s theory. This involves adding a

numerical constant to each note and voice, corresponding to the chosen interval axis.

Figure 5.26 elucidates this transposition operation, showcasing the initial set of pitches

in the top box and the altered set in the bottom box after adding a numerical constant

of 300.
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Fig. 5.26 Transposition operation of the pitch set.

The rectangle labeled ’I°voice transposition’ in Figure 5.20 performs the summation

operation between the top height list plus the numeric constant. The input height

list in the bach.expr method is represented by the variable x1, while the constant is

represented by the variable x2. In the lower panel of Figure 5.26, the output list on

which the summing operation was performed can be observed.

Additionally, the amplitude values from the relevant EEG bands are utilized to set

dynamic values for each note. These dynamics are translated into MIDI velocity values,

ranging from 0 to 127. The Max/MSP’s native scales object is calibrated to scale

these values appropriately, with input ranges from 0 to 100 (reflecting the maximum

bandwidths provided by the Emotiv Insight) and output ranges from 10 to 127. This

ensures that notes are never assigned a velocity of 0, which would equate to silence.

Upon completion of polyphony generation, the piece can be audibly rendered. The

tempo is adjustable via beats per minute (B.P.M.), allowing for the input of the desired

metronomic speed. Additionally, input boxes are provided for further modification of

the score, enabling transposition of each polyphonic voice to preferred intervals. The

finalised composition can be exported in MIDI or XML formats.

NeuralPMG Engine

This section outlines the functioning of the NeuralPMG Engine. Two mental

states are recorded (Focused/Relaxed) and a dataset is created. For each user, Neu-

ralPMG identifies the best ML algorithm able to recognize the mental state. Using LM

allows the user’s finger movement to be recognized and generate the melodic pattern.

Different ML models are used and compared in the training phase. The best

model is then used for predicting the user’s mental state. The system then generates

polyphony from the melodic pattern according to the user’s detected mental state.
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Dataset Generation. The acquisition of the mental state is managed by specific

routines. There is TCP-IP call to Flask22 enabling communication between the BCI

device and the Cortex API23. Once the connection has been established, the API starts

streaming power band data for each band and electrode. They are absolute values

whose unit is expressed in uV 2/Hz. Each user has a dataset consisting of 25 features

based on 5 power bands for 5 channels, with 100 total acquisitions: the first 50 items

collected while the user was stimulated to the Focused state by reading sequences of

numbers, the next 50 while listening to natural environment sounds to induce the

Relaxed state. As an illustrative example, the Supplementary Table 2 available in the

Appendix to this article presents the mental state dataset acquired for a single user.

Classification Model Evaluation. Determining the user’s mental state is in-

fluenced by several factors, as it is well-known in the EEG analysis domain. First,

values for delta, theta, alpha, beta, and gamma frequencies can vary among different

users. Furthermore, users have different reactions on internal or external stimuli, thus

having different abilities in relaxing or concentrating without being influenced by the

surrounding environment. To mitigate these problems, we selected six ML models and

tested their performances in classifying mental state by involving 5 users. The models

are trained in parallel for each user; this approach is possible because the training

dataset is not large and therefore it does require reasonable computational resources

and time to execute. The following models were considered:

• Linear Discriminant [92];

• Decision Tree [49];

• Naive Bayesian [236];

• Support Vector Machine [302];

• K-nearest neighbors [274];

• Feedforward Neural Network [277] (1 hidden layer with 10-neuron);

• Feedforward Neural Network [277] (1 hidden layer with 25-neuron);

• Feedforward Neural Network [277] (2 hidden layers with respectively 10 neurons

per layer);

22https://flask.palletsprojects.com/en/2.2.x/
23https://emotiv.gitbook.io/cortex-api/
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To perform the training phases of the models, we used the Matlab toolbox -

Classification Learner24. It performs the following steps: (i) Z-score standardization

and (ii) Training phase with k-fold = 5. The toolbox returns the model with the best

accuracy among all models considering also the best performance of the model on the

5 folds obtained in the training phase. For each model, a random search is performed

to select the best hyperparameters.

Table 5.6 shows test results. KNN showed extremely low accuracy values; therefore,

it was not considered in the system implementation. The Feed Forward neural network

1 (FNN1), despite its weak performance, was implemented in the system.

Table 5.6 Mental state classification performances of the considered models: LD = Linear
Discriminant, DT = Decision Tree, NB = Naive Bayesian, SVM = Support Vector Machine,
FNN = Feedforward Neural Network.

Accuracy Performance

User LD DT NB SVM KNN FNN1 FNN2 FNN3

1 0.67 0.86 0.90 0.88 0.48 0.66 0.78 0.45

2 0.43 0.52 0.67 0.69 0.34 0.57 0.60 0.59

3 0.84 0.65 0.67 0.80 0.62 0.64 0.80 0.82

4 0.67 0.78 0.65 0.89 0.56 0.59 0.98 0.92

5 0.89 0.67 0.64 0.76 0.40 0.68 0.67 0.52

5.6.4 Evaluation Study

In this section, we describe the user study that aimed at evaluating the interaction

with the NeuralPMG from various perspective.

Participants and Design

The study on NeuralPMG specifically involved participants from the Electronic

Music laboratory of the E.R. Duni Conservatory of Matera. This targeted selection was

based on two key prerequisites: expertise in algorithmic composition and proficiency

in both algorithmic composition and sound manipulation software. This focus on

electronic music students was intentional. Traditional music composers, typically from

classical backgrounds, were not considered suitable for this study. Their training often

emphasizes manual composition methods, including hand-writing music, and frequently

24https://it.mathworks.com/help/stats/classificationlearner-app.html
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avoids the use of digital tools like music notation software. In contrast, our study

required familiarity with computer systems integral to algorithmic composition.

All participants in the study possessed a moderate level of experience in algorithmic

and computer-aided music composition. While some were professional instrumentalists,

all participants were skilled in at least one musical instrument, aligning with the

Conservatory’s educational standards. Notably, none of the participants were previously

acquainted with Slonimsky’s method.

The participant group was diverse in terms of age and gender: age min = 19, age

max = 61, age avg = 30, Females = 10, Males = 9, 1st academic degree level = 11

and, 2nd academic degree level = 8.

Procedure

The experimental procedure involved three Human-Computer Interaction (HCI)

experts: two observers, who recorded task execution times and challenges, and one

facilitator, who managed participant-system interactions. Conducted individually for

each participant in the “Rota” hall of the Conservatory, the study was performed under

moderate lighting and comfortable room conditions (21°C). The procedure consisted of

six stages:

1. Initial Setup: Each participant signed a consent form for photo documentation

and research use before proceeding to the study station, where equipment was

prearranged.

2. Calibration Phase: Participants wore an Emotive Insight headset, adjusted per

the 10-20 standard electrode placement system. Impedance was checked using

EmotivePro software, and conductive gel was applied as necessary to ensure

signal quality. Participants were advised to minimize head and facial movements

to maintain signal integrity.

3. Mental State Training: Machine Learning algorithms trained the system to

distinguish between ’Focused’ and ’Relaxed’ mental states. For ’Focus,’ partici-

pants read random number sequences on-screen; for ’Relaxed,’ they practiced

diaphragmatic breathing while listening to nature sounds. Accurate classification

in this stage was crucial for generating subsequent polyphonic elements.

4. Melodic Pattern Generation: After calibration, participants created a melodic

pattern using the Leap Motion device:

• Activating the Leap Motion start/stop button.
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• Moving their hand and fingers over the sensor (at approximately 10 cm) to

compose a pattern.

• Saving the pattern by holding the hand steady and pressing the start/stop

button.

• Modifying and playing the pattern as desired.

This phase took approximately 10 minutes per participant.

5. Polyphony Generation: Participants created a polyphony based on the melodic

pattern with the following steps:

• Pressing Dial to generate the polyphony.

• Adjusting speed (BPM) and interval axes as needed.

• Saving the final composition by pressing export midi.

The polyphony generation phase, including headset calibration, required an

average of 20 minutes per participant.

Data Collection

Both quantitative and qualitative data were collected through questionnaires com-

pleted by participants and observer notes on significant behaviors or comments. All

interactions were audio-video recorded.

Initially, participants filled out a demographic questionnaire assessing their back-

ground in IT, electronic music composition, and familiarity with Slonimsky’s method.

Details are reported in Section 5.6.4.

The second questionnaire, divided into 8 sections, evaluated various aspects of

the interaction with NeuralPMG. Each of the first five sections used established

questionnaires, while the remaining three sections contained custom questions to

explore specific aspects:

1. User Experience using the AttrakDiff questionnaire [117]: A 28-item, seven-step

bipolar adjective scale (e.g., "confusing - clear"). This tool assesses:

• Pragmatic Quality (PQ): Usability and goal achievement.

• Hedonic Quality - Stimulation (HQ-S): Novelty and engagement.

• Hedonic Quality - Identity (HQ-I): User identification with the system.

• Attractiveness (ATT): Overall quality perception.
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2. Creativity Support using the Creativity Support Index (CSI) questionnaire [57]:

A 12-item survey measuring six creativity support dimensions: Exploration,

Expressiveness, Immersion, Enjoyment, Effort, and Collaboration.

3. Workload using the NASA-TLX questionnaire [115]: A six-item survey rating

perceived workload on Mental Demand, Physical Demand, Temporal Demand,

Performance, Effort, and Frustration, combining scores into a NASA-TLX work-

load index.

4. User Engagement using the User Engagement Scale (UES) short-form [204]: A

12-item survey assessing engagement through four dimensions: Focused Attention

(FA), Perceived Usability (PU), Aesthetic Appeal (AE), and Reward (RW).

5. Emotional Response using the Self-Assessment Manikin (SAM) question-

naire [34]: Two image-based questions measuring emotional response in terms of

pleasure, arousal, and dominance on a 1-9 Likert scale.

6. Self-Assessment of Generated Polyphony: Eight custom questions on a 1-7

scale, covering:

(a) Need for modifications in pitch and dynamics (2 questions).

(b) Most suitable compositional techniques for further processing (3 questions).

(c) Application domains best fitting the generated polyphony (3 questions).

7. NeuralPMG Appreciation: Two open-ended questions on the most and least

appreciated aspects of NeuralPMG.

8. Comments and Suggestions: One open-ended question inviting feedback and

suggestions.

The average time for participants to complete the questionnaire was approximately

12 minutes.

Experiments

In the following subsections data collected during the experimental study are

analysed and results are provided.
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Classification Performances of NeuralPMG Models

Table 5.7 shows the Accuracy obtained during the experiment by each model for each of

the 19 participants. It emerges that the different models for classifying the participants’

mental state were selected homogeneously by the engine (LD, DT, FNN2 = 4; SVM =

5), except for NB which was used for only two participants. FNN1, which in the pilot

test had weak performance, has never been the best classification model and was used

for no participants.

Table 5.7 Model accuracy for each of the 19 participants. LD = Linear Discriminant, DT =
Decision Tree, NB = Naive Bayesian, SVM = Support Vector Machine, FNN = Feedforward
Neural Network. The grey background indicates that model has been selected for that
participant.

Accuracy Performance

Participant LD DT NB SVM FNN1 FNN2

1 0.67 0.78 0.85 0.66 0.51 0.43

2 0.54 0.65 0.45 0.69 0.52 0.58

3 0.84 0.76 0.67 0.82 0.64 0.47

4 0.34 0.55 0.41 0.86 0.78 0.94

5 0.89 0.78 0.68 0.72 0.81 0.84

6 0.90 0.87 0.77 0.82 0.67 0.78

7 0.55 0.52 0.41 0.48 0.50 0.51

8 0.34 0.45 0.44 0.49 0.31 0.30

9 0.80 0.87 0.90 0.97 0.87 0.88

10 0.45 0.80 0.51 0.78 0.80 0.97

11 0.30 0.73 0.45 0.56 0.70 0.75

12 0.67 0.56 0.78 0.80 0.78 0.90

13 0.45 0.91 0.34 0.78 0.68 0.87

14 0.30 0.40 0.46 0.44 0.23 0

15 0.56 0.39 0.4 0.76 0.6 0.5

16 0.70 0.80 0.64 0.79 0.73 0.77

17 0.43 0.44 0.65 0.32 0.7 0.98

18 0.67 0.91 0.80 0.78 0.79 0.46

19 0.31 0.20 0.30 0.43 0.38 0.40



118 Chapter 5 Enhancing Devices for EEG Signal Analysis with AI

User eXperience (UX)

An overview of the AttrakDiff results is presented in Table 5.8, which summarizes the

hedonic (HQ) and pragmatic (PQ) qualities of the system according to their respective

confidence rectangles. In general, a larger rectangle indicates greater uncertainty about

the system’s classification. NeuralPMG displays high HQ and PQ values, categorizing

it as a desirable product with promising User Experience (UX).

The HQ value (1.55, 0.29) is higher than PQ (0.76, 0.35), indicating a stronger

hedonic appeal. The partial scores for the system are as follows: Attractiveness

(ATT) (7.50, 0.63), Hedonic Quality - Identity (HQ-I) (6.48, 0.60), Hedonic Quality -

Stimulation (HQ-S) (7.24, 0.73), and Pragmatic Quality (PQ) (5.82, 0.80).

Table 5.8 Mean (AVG score) and Standard deviation (SD score) for each category of the
AttrakDiff questionnaire.

AVG Score SD Score

PQ 5.83 0.81

HQ-I 6.48 0.60

HQ-S 7.25 0.73

ATT 7.50 0.63

Support for Creative Design

Using the Creative Support Index (CSI) questionnaire, participants’ perceptions of

NeuralPMG’s creativity support were measured. The system achieved an average CSI

score of 70/100, indicating strong support for creative design (CSI=70.00, STD=14.86).

As shown in Table 5.9, the highest average score was for Immersion (8.18), followed

by Expressiveness (7.32), Exploration (7.63), and the Effort/Reward trade-off (RWE

7.45). Collaboration scored lowest (5.03), as there were no collaborative functions in

the system.

Table 5.9 Mean (AVG score) and Standard deviation (SD score) for CSI questionnaire
dimensions.

AVG Count SD Count AVG Score SD Score AVG weigh. Score SD weigh. Score

Exploration 4 1.08 7.63 1.67 30.12 1.80

Collaboration 3 1.18 5.03 2.83 16.14 3.35

Immersion 2 1.60 8.18 1.72 18.52 2.74

Expressiveness 1.42 1.07 7.32 1.93 10.40 2.07

Enjoyment 3 1.33 6.74 2.01 20.21 2.68

Effort/Reward tradeoff 1 1.61 7.45 2.34 8.62 3.77
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Workload

Workload was assessed using the NASA-TLX questionnaire, with scores shown in

Table 5.10. Mental Demand had a high weighted mean (7.42, SD=7.68), indicating

significant cognitive workload. Physical Demand was low, reflecting minimal physical

effort. Performance scored high (8.11, SD=3.02), suggesting positive feedback on

outcomes. Frustration levels were low (3.95, SD=5.03), although variability was noted,

likely due to calibration challenges with the headset.

Table 5.10 Mean (AVG) and Standard deviation (SD) for NASA-TLX questionnaire dimen-
sions.

AVG Count SD Count AVG Score SD Score AVG weigh. Score SD weigh. Score

Mental Demand 1.21 0.92 4.63 2.83 7.42 7.68

Physical Demand 0.11 0.46 2.68 1.73 0.63 2.75

Temporal Demand 1.37 1.16 3 1.83 5.53 5.57

Performance 0.89 0.32 8.68 1.57 8.11 3.02

Effort 1 2.47 1 2.47 4.95 6.84

Frustration 0.74 2.35 0.74 2.35 3.95 5.03

User Engagement

The User Engagement Scale (UES) short form measured engagement, yielding an

average score of 4.13 (SD=0.41). Table 5.11 shows average scores for each dimen-

sion, with Perceived Usability (PU) achieving a satisfactory score of 4.28 (SD=0.64).

The Aesthetic Appeal (AE) and Reward (RW) dimensions were also highly rated,

highlighting the system’s visual appeal and user satisfaction.

Table 5.11 Mean (AVG Score) and Standard Deviation (SD Score) for UES Questionnaire
Dimensions.

AVG Score SD Score

FA-S 3.51 0.56

PU-S 4.28 0.64

AE-S 4.28 0.71

RW-S 4.46 0.60

Emotional Response

Participants’ emotional responses to the generated polyphony were categorized into

four main emotions: Excited/Delighted/Happy, Sleepy/Calm/Content, Neutral, and
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Sad/Depressed/Bored. A softmax function was applied to determine the dominant

emotion, yielding a high positive score (0.99978) for Excited/Delighted/Happy, with

minimal responses in other categories (see Table 5.12).

Table 5.12 Emotional Score from Softmax Activation Function.

Excited, Delighted, Happy 0.99978

Sleepy, Calm, Content 0.00005

Neutral 0.00012

Sad, Depressed, Bored 0.00005

Self-assessment of Generated Polyphony

Participants provided feedback on the generated polyphony, suggesting that signifi-

cant modifications were needed in pitch and dynamics (AVG=3.42/7). The preferred

compositional techniques for further processing were serial/atonal (AVG=5.21) and

aleatory (AVG=5.42). Most participants felt the polyphony was best suited for Multi-

media (AVG=5.84) and Academic (AVG=5.16) domains.

NeuralPMG Appreciation and Suggestions

Open-ended responses from participants were analyzed thematically, revealing six

positive themes, including “System Novelty,” “Production of Unconventional Poly-

phonies,” and “Use of BCI and Leap Motion Devices.” Critical themes included “System

GUI” and “System Efficiency.” Tables 5.13 and 5.14 show theme frequency.

Table 5.13 Aspects of NeuralPMG Appreciated by Participants.

Theme Frequency

Overall system novelty 7

Use of BCI system 7

Production of unconventional polyphonies 3

Use of Leap Motion device 3

Production of unconventional melodies 3

Power of generative grammar 2
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Table 5.14 Aspects of NeuralPMG Criticized by Participants.

Theme Frequency

Use of BCI system 5

Use of Leap Motion device 4

System graphical user interface 2

System appreciation 2

System efficiency 3

Comments and Suggestions

Seven participants provided additional comments, all positive. Participants ex-

pressed appreciation for the system (4 comments), a desire to use it in their work (2

comments), and one suggested integrating other biometric inputs, such as heartbeat.

5.6.5 Polyphony Assessment by Music Experts

Two professors of the E.R. Duni Conservatory of Matera, both holding the title of

Maestro, and with extensive experience in music composition were involved. They

individually listened to the 19 polyphonies generated by the 19 participants in the

previous study and, for each one, answered a questionnaire structured in 6 sections:

1. three questions focusing on the evaluation of the aesthetic aspects of the polyphony;

2. four questions addressing the technical evaluation of the harmonic aspects;

3. three questions analysing the polyphony level of elaboration;

4. three questions dealing with the evaluation of possible usage scenarios of the

polyphony;

5. nine questions assessing each polyphony with respect to its ability to arouse

9 different emotions: happiness, tenderness, happiness, anger, sadness, fear,

negativity, activity, positivity, tension.

6. one open question to provide further comments and opinions.

The first 5 sections were based on a Likert scale with values from 1 to 7, representing

respectively the degree of agreement ranging from "not at all" to "very much".

Results of the music experts’ assessment have been summarised by heatmaps,

complemented with average values and standard deviation for every question and
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section. Figure 5.27 and 5.28 refer to the polyphony evaluation provided by Maestro 1

and 2, respectively.

Fig. 5.27 Maestro 1’s evaluation of the polyphonies produced by the 19 participants.

Fig. 5.28 Maestro 2’s evaluation of the polyphonies produced by the 19 participants.

5.6.6 NeuralPMG Findings

In this section, we discuss the findings from the NeuralPMG evaluation, covering

dimensions such as User Experience (UX), Creativity, Workload, Engagement, Self-

assessment of Generated Polyphony, Application Domains, and Participant Feedback.
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The assessment by the two Maestros also provides critical insights, highlighting the

system’s strengths and potential areas for improvement, as well as its broader impact

on music composition and user interaction.

User Experience (UX): The AttrakDiff results indicate that participants gen-

erally found NeuralPMG attractive. However, there is room for improvement in its

Pragmatic Quality, as noted in user feedback.

Creativity: According to the Creativity Support Index (CSI), the exploratory

component was highly rated, reflecting the system’s alignment with the participants’

professional interests. While immersiveness and enjoyment were prominent, expres-

siveness was less significant, which aligns with the participants’ inclination to use

tools for creative support rather than as direct expressions of artistry. Overall, the

system fostered focused creativity among participants, enabling deep engagement in

the composition task.

Workload: Low physical effort was reported, though some participants experienced

frustration related to BCI headset calibration challenges.

Engagement: Engagement scores from the User Engagement Scale (UES) and

emotional responses indicated positive interaction with NeuralPMG, affirming its role

in creating an immersive and enjoyable experience.

Self-assessment of Generated Polyphony: Participants recognized Neu-

ralPMG’s effectiveness in assisting with complex note organization. Although refine-

ment in pitch and dynamics was desired, the generated polyphonies were seen as a

beneficial starting point for further development, especially for academic or multimedia

applications. This aligns with serial and atonal compositional principles, emphasizing

diverse organizational techniques.

Application Domains: Participants found the polyphony suitable for academic

and multimedia applications, such as in film scoring, where it can convey dynamic

emotions and narratives through sound textures and harmonic layers.

Participant Feedback: Insights from open-ended responses underscored the

system’s effectiveness in mental state decoding for polyphony generation, though

improvements in BCI device comfort and the graphical user interface (GUI) were

suggested. Enhancing device wearability and GUI customization in future versions

could further improve user experience.

In terms of Slonimsky’s grammar for harmonic and melodic exploration, feed-

back highlighted its potential in generating unconventional melodies and polyphonies,

reinforcing the system’s role in discovering innovative compositional materials.
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Leap Motion Device Challenges: Some participants reported challenges in

using the Leap Motion device for melody crafting. Future adjustments to tracking

sensitivity could improve stability in melodic pattern generation, enhancing user control

over the musical output.

Transparency and Explainability: Some participants expressed difficulty in

understanding how BCI-generated signals influence polyphony generation, a common

issue in Human-Computer Artificial Intelligence (HCAI) systems [253, 260]. Addressing

this, we propose enhanced transparency in data flow management, with the addition

of visual or auditory cues reflecting backend processes. Such modifications align with

HCAI principles for reliable, safe, and trustworthy AI systems [259].

Maestros’ Evaluation: The two Maestros provided nuanced insights into the

system’s aesthetic and innovative potential. Both agreed on the consonance/dissonance

balance, indicating coherent harmonic structures in the generated polyphonies. Diver-

gence in their views on innovativeness reflects differing interpretations of innovation,

with Maestro 1 favoring harmonic coherence and Maestro 2 valuing the unconventional

structures enabled by Slonimsky’s theory.

In the elaboration domain, Maestro 1 viewed polyphonies as harmonically integrated

textures, while Maestro 2 adopted a contrapuntal perspective, seeing them as foun-

dations for further permutation. Emotional responses to the generated pieces varied,

affirming the polyphonies’ versatility across applications such as film scoring and pure

composition, highlighting the breadth and interpretative depth of the material created.

In summary, the NeuralPMG evaluation underscores the system’s role in supporting

composers by facilitating the exploration of polyphonic structures. Future develop-

ments should focus on enhanced explainability, interface improvements, and real-world

application validation. The findings reflect NeuralPMG’s potential to foster creative

innovation in the intersection of BCI, ML, and music composition, offering a promising

tool for professional musicians and composers.

5.7 NeuroSense: Low-Cost sparse electrode Dataset

The final work detailed in this chapter presents the NeuroSense project, an innovative

dataset for emotion recognition utilizing a low-cost, sparse-electrode EEG device.

NeuroSense builds upon previous studies on emotion recognition, where advancements

in EEG-based emotion classification revealed the viability of detecting and categorizing

emotional states. While these studies provided significant insights, they predominantly
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relied on complex and high-density EEG setups, which can limit accessibility and

general applicability in practical environments.

Given the state of the art previously discussed, where the majority of emotion

recognition studies employ numerous electrodes to capture brain activity across various

regions, we chose to take a different path. The NeuroSense dataset is designed to

explore the feasibility of emotion recognition using a minimalistic setup, employing

only four electrodes. This approach addresses the growing interest in creating scalable,

accessible, and cost-effective solutions for real-time emotion recognition, especially for

applications in human-computer interaction, mental health monitoring, and other areas

requiring portable systems.

The NeuroSense dataset comprises EEG signals collected from 30 participants who

experienced a series of music videos in a controlled neurofeedback environment. Through

a standardized assessment protocol, participants rated their emotional responses along

key affective dimensions, such as arousal, valence, and dominance. This dataset

not only provides a unique resource for ML-based emotion recognition with sparse

EEG devices but also offers an extensive preprocessing pipeline, statistical validations,

and comparisons to other widely used datasets to highlight both the advantages and

limitations of using a minimal electrode setup for affective computing.

In this section, we will discuss the motivation, methodology, and design of the

NeuroSense dataset, as well as the potential implications of using low-cost, sparse

electrode setups in the future of emotion recognition research.

5.7.1 Stimuli Selection

We adopted the DEAP protocol for eliciting emotional responses, chosen for its

standardization and reliability in emotion analysis via physiological signals. This

protocol offers multidimensional evaluations, including arousal, valence, and dominance,

aligning closely with our research objectives and enhancing ecological validity through

the use of audiovisual stimuli to evoke genuine emotional responses.

The stimuli selection process consists of several key steps, as illustrated in Figure

5.29:

1. Video Clip Selection: A total of 120 videos were selected in two stages—60

videos through affective tags derived from an expanded list of emotional key-

words based on Parrott’s work [215], and 60 videos curated manually. Using the
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Last.fm 25 database, we identified songs tagged with specific emotions, represent-

ing each of Russell’s emotional quadrants [241].

2. Detection of One-Minute Highlights: Using the DEAP protocol and a

Relevance Vector Machine (RVM) model [265], we identified high-emotion one-

minute segments within the selected videos based on predicted arousal and valence

scores.

3. Video and Audio Feature Extraction: Relevant video features, such as

motion vectors, lighting, color variance, rhythm, and dynamic object movements,

were extracted to enhance emotional content. The video content was encoded

in MPEG-1 format [278] to facilitate these extractions. Lighting keys in the

HSV color space and color variance in the CIE LUV color space were computed

for each frame [43, 183]. Further, rhythm and emotional impact were evaluated

by average shot change rates [114] and dynamic scenes quantified by motion

vectors [234].

4. Relevance Vector Machine Application: The RVM model [265] was trained

on annotated features from an initial set of 21 movies to predict valence and

arousal scores. Selected segments with high emotional scores were manually

refined to ensure relevance.

5. Online Subjective Annotation: The final selection of 40 test video clips

was achieved via online subjective ratings from volunteers, assessing arousal,

valence, and dominance. Each video was selected for its high-intensity emotional

elicitation.
25www.last.fm
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Fig. 5.29 Overview of the stimuli selection process, comprising five steps: (1) selection through
affective tags and manual curation; (2) detection of one-minute highlights using DEAP; (3)
video and audio feature extraction; (4) RVM-based valence/arousal prediction; and (5) final
selection via online annotation.

Video and Audio Feature Extraction

The extracted video features included shot segmentation, lighting keys, color variance,

rhythm, and dynamic scene analysis. Lighting keys and color variance were determined

in the HSV and CIE LUV color spaces, respectively [43, 183]. Rhythmic impact

was assessed by shot change rates [114], and dynamic object movements by motion

vectors [234]. Audio channels were converted to mono MPEG-3 format at 44.1 kHz,

normalized in amplitude, and analyzed for 53 low-level audio features (e.g., MFCCs,

energy, pitch) [105]. The summarized pipelines are shown in Panels B and C of

Figure 5.29.

Relevance Vector Machine

To predict the valence and arousal scores for each video segment among the selected

120 videos, the Relevance Vector Machine (RVM) [286] is trained using all shots from

21 annotated movies within the dataset presented in [265]. Additionally, the RVM

identifies the importance of features. It is thus employed in the DEAP protocol to

select a subset of features from the entire set of extracted features. The final prediction

pipeline is delineated below:

• the music videos are segmented into one-minute intervals with a 55-second overlap.
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• Content features are extracted from each segment.

• Prediction scores for arousal and valence are obtained from the trained RVM.

• A final score is computed for each segment using the equation: ei = sqrt(a2

i +v2

i ),

where ai and vi represent centered arousal and valence scores.

The graphical representation shown in Panel D of Figure 5.29 summarizes the steps

involved in the pipeline. Segments with higher emotional highlight scores are then

selected. A manual override of the affective highlight detection is performed for some

clips. This manual intervention is applied to segments deemed characteristic of the

song, recognized by the public and expected to elicit emotional responses. Following

this iterative process, a collection of 120 one-minute videos featuring high emotional

content is obtained.

Online Subjective Annotation

This section describes the process for selecting the final 40 test video clips. The

selection methodology involves a web-based subjective emotion assessment wherein

participants viewed music videos and provided ratings on a 9-point scale for valence,

arousal, and dominance. Key aspects of this process include:

1. participants used a web interface for rating videos.

2. They were allowed to watch as many videos as they wanted and end the rating

process at any time.

3. The order of video clips was randomized.

4. Participants did not see the same video twice.

5. All 120 videos received ratings from 14 volunteers.

For each video, a score representing the intensity of elicited emotion was computed

based on the ratings provided by volunteers. This score was calculated by dividing

the mean rating (µx) by the standard deviation (σx), yielding
µx

σx
. Subsequently, for

each quadrant where the videos were positioned, the videos situated at the extreme

corners of the quadrant were selected. Through this iterative process, 40 videos were

ultimately selected. We defined the corresponding labels of these videos as external

labels. Panel E of Figure 5.29 illustrates the main steps.
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5.7.2 Experimental Setup

Materials and Setup The experiments were conducted in laboratory settings with

controlled illumination in the Department of Electrical and Information Engineering

premises at the Polytechnic University of Bari. EEG signals were recorded using a

Muse 2 device 26, equipped with four electrodes, connected to a dedicated recording

computer, a MacBook Pro (Retina, 15-inch, Mid 2015).

Stimuli presentation was facilitated through a dedicated PC monitor (HP), and

the software for stimuli presentation was developed using Max/MSP 27. This system

featured a graphical user interface (GUI) with corresponding numerical identifiers

linked to the videos to be played. Upon the operator pressing the button associated

with a specific video, a marker was transmitted to a server using the LabStreamingLayer

(LSL) protocol 28. Labrecorder software 29 was employed to record EEG signals and

synchronize markers.

The music videos were displayed on a 17-inch screen with a 1280 × 1024 pixel

resolution. To minimize eye movements, the videos were presented at a reduced

resolution of 800×600 pixels, filling approximately two-thirds of the screen. Participants

were seated approximately one meter away from the screen. Yamaha-HS 8 speakers were

used for audio playback, with the volume set relatively loud. However, participants were

consulted beforehand regarding their comfort level with the volume, and adjustments

were made accordingly.

The device used for the acquisition is the previously described Muse 2 EEG device.

Experimental Protocol

A total of 30 healthy participants (50% female), aged between 19 and 30 years (mean

age 23.5), were recruited for the experiment. Participants for this study were recruited

through university-wide advertisements and social media platforms to ensure a diverse

and representative sample. All participants provided informed consent before partici-

pating, and no monetary compensation was offered. Ethical permission was obtained

from the Local Ethical Committee of the University of Bari. The participants received

comprehensive information regarding the experimental protocol, including detailed

explanations of the various self-assessment scales. Once the protocol was thoroughly

explained, the EEG device was positioned, and signal quality was meticulously assessed

using the MuseLSL library for EEG signal window [20].

26https://choosemuse.com/products/muse-2
27https://cycling74.com/products/max
28https://labstreaminglayer.org
29https://github.com/labstreaminglayer/App-LabRecorder
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The experiment began with the presentation of 40 videos across 40 separate trials,

each lasting 1 minute. Each trial followed a standardized sequence of events comprising:

• a 2-second display indicating the current trial number to inform participants of

their progress.

• A 5-second recording of baseline activity, represented by a fixation cross.

• Presentation of a 1-minute music video.

• Subsequent rating of the participants’ arousal, valence, liking, and dominance

levels.

Upon completion of 20 trials, participants were given a brief break. During this

intermission, the facilitator assessed signal quality and electrode placement to ensure

accuracy before instructing participants to proceed with the second part of the test.

Participant Self-assessment

Participants were tasked with assessing their levels of arousal, valence, liking, and

dominance after each trial. To facilitate this process, Self-Assessment Manikins (SAMs)

[34] were employed, providing visual representations of the scales. For example, the

liking scale featured symbols of thumbs-down and thumbs-up, positioned at the center

of the screen with numbers 1 to 9 displayed below them. Figure 5.30 illustrates an

example of the various scales utilized in the questionnaire. Participants indicated their

self-assessment levels horizontally, moving the mouse beneath the numbers and clicking

on their chosen level. They were informed of the flexibility to click anywhere below or

between the numbers, effectively creating a continuous scale for self-assessment.

The valence scale ranged from unhappy or sad to happy or joyful, allowing partici-

pants to rate the emotional tone of their experience. The arousal scale spanned from

calm or bored to stimulated or excited, enabling participants to gauge their level of

stimulation or excitement. The dominance scale ranged from submissive (indicating a

lack of control) to dominant (indicating a sense of control or empowerment).

A fourth scale was also included to assess participants’ personal liking for the

video. It was essential to distinguish this scale from the valence scale, as it measured

preferences rather than emotional responses. For instance, participants could like

videos that elicited feelings of sadness or anger.

Following the experiment, participants were requested to rate their familiarity with

each song on a scale from 1 ("Had never heard it before the experiment") to 5 ("Knew

the song very well").
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The questionnaire structure is outlined below:

• User ID (i.e., the numerical code representing each participant).

• Video ID (i.e., the numerical identifier associated with each of the 40 videos).

• Valence score (Likert scale 1-9).

• Arousal score (Likert scale 1-9).

• Dominance score (Likert scale 1-9).

• Liking (3 options: liked, neutral, dislike).

• Familiarity with the song heard (Likert scale 1-5, ranging from "Never heard of

it before the experiment" to "I know it very well").

Fig. 5.30 Self-Assessment Manikins (SAMs) used in the experiment. The figures show the
SAMs used by participants to rate their emotional responses across three dimensions: valence
(ranging from unpleasant to pleasant), arousal (ranging from calm to excited), and dominance
(ranging from submissive to dominant). Additionally, participants rated their liking for each
video using a three-option scale: liked, neutral, or dislike.
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5.7.3 System Architecture

We developed a ML framework to test the effectiveness of ML on the collected EEG

data.

Acquisition

Self-
assessment

EEG

Dataset creation Preprocessing
Time-sliding
estimation

ML algorithm

Probability scores
Classification of

samples

External labels
Reliability of

external labels

Fig. 5.31 Illustration of the workflow representing all the key steps in our proposed system
for emotion recognition using EEG data. The figure outlines the following stages: data
acquisition via the Muse 2 EEG device, data creation and organization, preprocessing of EEG
signals (including noise reduction, filtering, and epoch segmentation), time-sliding estimation
for identifying ROIs, machine learning-based classification of emotional states, and statistical
analyses for correlation and participant reliability assessment.

The architecture of our ML framework, as illustrated in Figure 5.31, is composed

of six principal components, each playing a crucial role in the processing and analysis

of EEG data for emotion recognition:

• acquisition module: this component collects EEG data, utilizing the Muse device

as the primary source.

• Data creation: this module systematically collects and organizes EEG data from

each participant, ensuring precise alignment with the timestamps of baseline

periods and stimuli presentations.

• Preprocessing module: upon receiving EEG signals from the Muse device, this

module applies a series of processing techniques to refine the data for analysis.

The preprocessing pipeline enhances signal quality by eliminating noise and

artefacts commonly associated with EEG data. The steps involved are as follows:

1. creation of an EEG epochs structure, utilizing the MNE framework 30 for

efficient data segmentation and organization.

2. Application of a Finite Impulse Response (FIR) filter with a cutoff frequency

range of 1 − 45 Hz with fir window=‘hamming’ to isolate the relevant

frequency bands for emotion recognition.
30https://mne.tools/stable/index.html
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3. Implementation of ringing artifact reduction techniques, specifically devised

to remove non-brain artefacts without compromising the integrity of the

EEG signal.

4. Division of the processed EEG data into sub-epochs of 5 seconds each,

facilitating a granular analysis of emotional responses over time.

• Time-sliding estimation: a dynamic strategy to pinpoint the most informative

regions of interest (ROI) within the EEG signals as they evolve over time.

• ML module: this module is at the heart of our framework, where different ML

algorithms are employed to interpret the preprocessed EEG signals. Leveraging

state-of-the-art models, this component predicts the emotional state represented

by the input data.

• Statistical analyses involve two main steps. First, the Pearson correlation between

self-assessment scores and external labels for arousal and valence is calculated to

evaluate label reliability. Second, the self-assessment and ML probability scores

are analyzed to identify non-trustworthy or poorly performing participants.

A description of the operations performed is provided in the Algorithm 1. It details

all the previously described steps.

Moreover, additional details about each step are provided in the following subsec-

tions.

Dataset Creation

The development of our dataset formed the foundational phase of our research. We

meticulously collected EEG data files for each participant, augmented by timestamps

indicating the onset of baseline periods and specific stimuli. This compilation was

methodically structured into a dictionary format, integrating the EEG recordings with

corresponding timestamps and markers for the pertinent stimuli.

After data collection, we delineated EEG epochs for each experimental condi-

tion, including baseline and stimulus-exposure intervals. These epochs were then

subjected to a series of preprocessing steps. The dataset will be publicly available at

https://sisinflab.poliba.it/neurosense-dataset-request/.

Preprocessing

The EEG signal preprocessing process is crucial due to its sensitivity to noise and

artifacts. Initially, we extracted baseline and stimuli epochs and filtered the data
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Algorithm 1: Pseudocode for subject-specific data processing and classifica-
tion

1: Initialize a data table containing user data, with each user having a unique subject ID
2: for each unique subject ID do

3: Create subject-specific training dataset
4: Create subject-specific testing dataset
5: for each file in the subject’s training dataset do

6: Extract trial epochs and corresponding labels from the training dataset
7: Extract baseline epochs from the training dataset
8: end for

9: for each file in the subject’s testing dataset do

10: Extract trial epochs and corresponding labels from the testing dataset
11: Extract baseline epochs from the testing dataset
12: end for

13: end for

14: Initialize a processing pipeline with predefined configurations (e.g., feature extraction,
normalization, classification)

15: Define hyperparameter grids for optimization (e.g., number of features, maximum
dilations per feature, regularization parameters)

16: Initialize grid search for hyperparameter optimization based on the processing pipeline
17: Train the model using the training data (Xtrain,ytrain)
18: Generate predictions and classification probabilities using the testing data (Xtest,ytest)
19: Store the results in a dictionary for further analysis
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between 1-45 Hz using MNE, minimizing artifacts by instructing participants to limit

movement. Given the limited electrode setup, we utilized simple denoising methods,

treating ocular artifacts as outliers and applying interpolation if samples exceeded

thresholds determined by a K-NN algorithm.

For dynamic region of interest (ROI) detection over time, we employed the SlidingEs-

timator within MNE, fitting models at each time point to capture the temporal evolution

of emotional responses. By analyzing EEG in 5-second intervals across the emotional

quadrants, we identified the ROIs best distinguishing between baseline and target

emotions, selecting intervals based on accuracy percentiles. This comprehensive pipeline

was repeated for each emotion, refining our understanding of emotional response dy-

namics.

Machine Learning Algorithm

In this study, we utilized a binary logic framework to identify high-performing models

across Russell’s circumplex model’s four emotional quadrants. This model categorizes

emotions along two axes: arousal (high vs. low) and valence (positive vs. negative),

providing a structured approach to understanding emotional states. By framing our

task as a multi-class problem within this dimensional space, we sought to decode these

emotional states from EEG data. Classification accuracy within these quadrants serves

as a proxy for assessing how well EEG data can capture underlying emotional states.

Our methodology implemented a Leave-One-Subject-Out (LOSO) validation strat-

egy to ensure robust model performance. Post-training, we selected the top 30 models

based on predefined performance metrics for further analysis and prediction.

Feature extraction was performed using the MiniRocket algorithm, a streamlined

version of Rocket designed for efficient time series feature extraction [73], as implemented

in the sktime library [173]. This process involved convolving each time series with

random kernels, performing global max pooling, and utilizing the proportion of positive

outcomes from each convolution as features. These extracted features, capturing critical

patterns in multivariate EEG data, supported the classification task using a Support

Vector Machine (SVM).

Hyperparameter optimization was conducted within Python pipelines, initially

adjusting kernel size and length in MiniRocket, followed by selecting an appropriate

normalization method (MinMaxScaler, StandardScaler, or RobustScaler [218]) and fine-

tuning the SVM’s regularization parameter C. Evaluations were carried out through

3-fold cross-validation within each LOSO round, with hyperparameters optimized via

Random Search across 50 iterations. We implemented the ML models and evaluations
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in Python, utilizing the Scikit-learn library [218].

Statistical Analysis

We conducted an initial analysis to evaluate the correlation between the self-

assessment scores and the external labels, providing a foundation for the subsequent

ML model development. In particular, the Pearson correlation index was calculated

for arousal and valence scores averaged across participants for each video.

Classification of Samples

After training the ML model to predict the quadrant location of each video on a

bivariate plane defined by arousal and valence scores, we used the decision probability

scores to assess the average performance of each participant. The probability scores

were averaged across the videos to obtain a single numeric performance score for each

participant. Moreover, for each participant, we calculated the standard deviation (STD)

of the self-assessment scores for arousal, dominance, and valence across the 40 videos.

These STD values served as proxies for the credibility of the participants’ engagement

and understanding of the task, given the expected high variability across the videos.

We compared these STD values to the decision probabilities output by the ML model.

By setting the 25th percentile as the lower threshold, we identified participants with

low variability in their scores and/or low classifier decision probabilities, flagging them

as potentially non-credible or poorly performing participants.

5.7.4 Key Findings and Experiments

Reliability of External Labels

Figures 5.32, 5.33, and 5.34 display the results of self-assessment concerning valence,

arousal, and dominance scales, respectively. The X-axis represents the 30 participants

(user IDs), while the Y-axis depicts the 40 video IDs.

The correlation analysis reported in Figure 5.35 revealed varying degrees of align-

ment between self-assessment scores and external labels. Generally, there was a strong

correlation for valence, while arousal and dominance correlations were comparatively

weaker and not significant. This discrepancy underscores the challenge of matching

subjective self-assessments with external labels obtained from a broader population

database.

Nevertheless, external labels derived from a large-scale population study provided a

standardized and objective measure of emotional response, essential for the consistency
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required in ML model training and evaluation. This approach mitigated individual

variability and biases inherent in self-assessment data, allowing for more robust model

performance. Hence, we opted to utilize the Valence-Arousal Quadrant Estimate

available in the DEAP dataset.

Fig. 5.32 Representation of participants’ self-assessed V alence scores resulting from the SAM
questionnaire.

Fig. 5.33 Representation of participants’ self-assessed Arousal scores resulting from the SAM
questionnaire.
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Fig. 5.34 Representation of participants’ self-assessed Dominance scores resulting from the
SAM questionnaire.

(a) Correlation between external
and self-assessed valence scores.

(b) Correlation between external
and self-assessed arousal scores.

(c) Correlation between exter-
nal and self-assessed dominance
scores.

Fig. 5.35 Correlation between external and self-assessed indexes.

Region of Interest Computation

Table 5.15 presents the outcomes of the ROI analysis in terms of scores associated

with each of Russell’s quadrants across different time segments. The results indicate

that the most effective time segment for Russell’s quadrants is the interval from 0 to 5

seconds. Hence, our pipeline enabled us to identify the EEG signal trial that optimally

discriminates between EEG data corresponding to emotional stimulation and EEG

data from the resting condition using binary classification methods.
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Table 5.15 Time-sliding accuracy.

Time Segment [seconds] 1° RQ 2° RQ 3° RQ 4° RQ

0-5 63.36 62.60 62.12 58.24

5-10 62.44 61.76 60.68 55.6

10-15 62.76 61.12 60.56 55.92

15-20 62.88 62.24 61.72 58.08

20-25 61.47 61.04 61.36 57.88

(a) In detail, columns two, three, four, and five represent the average frequency with which the
accuracy exceeds the threshold in the first, second, third, and fourth Russell quadrants. RQ = Russel’s
quadrant.

Classification Performance

Table 5.16 shows the average accuracy and standard deviation of each model in

the LOSO training strategy for binary classification between stimuli and baseline

conditions.

Table 5.16 Average model accuracy scores and standard deviations for binary classification
between stimuli and baseline conditions.

Models Average Test score Accuracy Std score

1 0.77 0.035

2 0.78 0.022

3 0.76 0.024

4 0.80 0.028

The results described above highlight that for most users, we observe consistent

accuracy levels above 75%, with standard deviations indicating relatively stable model

performance across LOSO cross-validation splits. This suggests that our EEG-based

ML framework reliably classifies emotional states and is able to distinguish between

baseline conditions and stimuli with high accuracy, making it a promising tool for

emotion recognition using EEG data from sparse electrode configurations.

5.7.5 Implications and Future Prospects of NeuroSense

NeuroSense introduces a novel dataset, accessible to EEG-based emotion recognition

using the low-cost Muse 2 device with only four electrodes, challenging the standard

reliance on dense EEG setups. By achieving an average accuracy above 75% in
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classifying emotions across Russell’s circumplex model, NeuroSense demonstrates the

feasibility of accurate emotion detection with minimal hardware.

Our methodology combines an adaptive preprocessing pipeline tailored for sparse

EEG signals and incorporates a dynamic time-sliding estimation to pinpoint regions of

interest (ROI) within EEG epochs. This approach, alongside machine learning models

such as MiniRocket and SVM, enables robust feature extraction and classification. Uti-

lizing a Leave-One-Subject-Out (LOSO) validation strategy, we ensured model stability

and generalizability across participants, a critical factor for practical applications.

The NeuroSense dataset was validated against self-assessment scores, revealing

strong correlations for valence, underscoring its reliability for future affective computing

research. By simplifying EEG setups without compromising accuracy, NeuroSense opens

new avenues for emotion recognition in human-computer interaction and mental health

applications where portability and affordability are crucial. This project highlights the

potential of sparse EEG configurations and invites further exploration of continuous

emotional state tracking in real-world settings.

5.8 Summary

In this chapter, we presented a progression of research aimed at harnessing the potential

of EEG-based emotion recognition and machine learning within BCIs to address a

range of challenges in emotional support, neurorehabilitation, and creative expression

in music composition. The series of studies introduced here represents a comprehensive

exploration of EEG and ML technologies in diverse applications, with a focus on the

practical and theoretical advancements each project contributes to the field of affective

computing and beyond.

Our initial study explored the classification of human emotions using EEG signals,

demonstrating that ML techniques could achieve reliable, real-time emotion detection.

This foundational work underscored the feasibility of capturing complex emotional

states with high accuracy, establishing a robust basis for the development of responsive

and interactive applications.

Building on this groundwork, we introduced ARIEL, an innovative framework

that merges EEG-driven emotion recognition with large language models (LLMs)

to create an emotionally aware conversational agent. ARIEL represents a notable

advancement in affective computing, where real-time emotion analysis enables the

system to dynamically adapt its conversational approach. This approach not only

fosters emotionally supportive interactions but also sets a new standard for integrating
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emotion detection into AI-driven dialogue systems, with potential applications in

mental well-being support and therapeutic engagement.

Extending these advancements to the field of neurorehabilitation, we proposed a

biofeedback system that leverages EEG signals to classify users’ mental states into

Focus and Relaxation categories. This system then tailors music-based feedback to

enhance therapeutic engagement, aligning with research that emphasizes the importance

of adaptive, emotion-sensitive interventions in accelerating recovery processes. This

work demonstrates the potential of ML-driven, EEG-based biofeedback systems to

personalize neurorehabilitation experiences and improve patient outcomes.

Our subsequent study, NeuralPMG, applies EEG-based emotion recognition to the

field of music composition, presenting a novel framework that combines EEG-based

mental state detection, Slonimsky’s theoretical grammar, and interactive tools for

professional composers. The system leverages EEG data to recognize Focused and

Relaxed mental states, using this information to control aspects of music generation.

While the system was validated in a laboratory setting, future research involving

real-world scenarios is anticipated to assess its long-term usability and creative impact.

Furthermore, incorporating additional mental state parameters, such as stress and

interest, could expand the system’s capabilities and offer deeper insights into the

creative process.

Concluding the chapter, we introduced the NeuroSense dataset, a novel resource

aimed at making emotion recognition more accessible and practical by using a low-cost,

four-electrode EEG device (Muse 2). This open-source dataset demonstrates that even

with a sparse electrode setup, it is possible to achieve competitive performance in

recognizing emotional states, thus lowering barriers to entry for affective computing

research. NeuroSense underscores the potential of low-cost EEG devices to expand

applications in real-world settings, particularly in fields like mental health monitoring

and human-computer interaction, where simplicity and accessibility are crucial. The

dataset invites further research and innovation, serving as a foundational tool for

developing regression models that could capture a continuous spectrum of emotions in

line with the current trends in affective computing.

Looking forward, several avenues for future work emerge from these studies. For

ARIEL, in-vivo studies in clinical settings could validate its effectiveness in providing

emotional support. For NeuralPMG, deploying the system in authentic composition

environments will allow for a more comprehensive evaluation of its effectiveness in the

creative field. Finally, further exploration of the NeuroSense dataset using advanced

ML models could enhance the understanding of emotion-related EEG patterns and
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improve model accuracy. The potential for continuous emotion regression models

in NeuroSense is also promising, aligning with trends in affective computing that

emphasize the importance of capturing the full spectrum of human emotional states.

In summary, the works presented in this chapter highlight the transformative

role of affective BCIs and AI in creating empathetic, responsive technologies. These

technologies offer new possibilities for personalized healthcare, interactive assistance,

and creative expression, underscoring their growing impact on mental well-being,

neurorehabilitation, and artistic domains. Collectively, these contributions suggest

promising directions for future research and practical applications that will continue to

push the boundaries of affective computing.



Chapter 6

Applications of Artificial

Intelligence in Bioelectrical Signals

6.1 Research Objectives and Chapter Contributions

This chapter explores the advanced use of AI and ML in biosignal analysis, extending

the scope beyond EEG to include other physiological signals such as ECG and EMG.

With applications in both health care and sports performance, addressing critical gaps

in the current literature, particularly with regard to early diagnosis, movement analysis

and personalised interventions. Through the development of interpretable ML models,

we aim to support timely clinical decisions and enhance research in sports biomechanics

by highlighting the potential of biosignal processing in different real-world contexts.

6.1.1 Objectives

Chapter 6 explores advanced applications of AI and ML in the analysis of biosignals,

extending the methods used for EEG to other physiological signals such as ECG and

EMG. The overarching aim is to harness machine learning for versatile applications in

healthcare diagnostics and sports performance, addressing gaps identified in existing

literature. Our research objectives are outlined below.

We first aim to develop and apply advanced ML and XAI techniques to ECG

data, targeting the early detection and classification of cardiac conditions, including

Normal Sinus Rhythm (NSR) and Arrhythmia (ARR). This goal emphasizes creating

interpretable models that not only achieve high predictive accuracy but also provide

actionable insights for clinicians, enabling more timely and informed medical decisions.
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The second objective focuses on leveraging EMG data in the realm of sports

biomechanics, specifically targeting performance analysis and injury prevention in

fencing. By integrating ML models with sensor data, we aim to classify and distinguish

movement patterns among novice and elite athletes, providing valuable feedback for

optimizing training and refining athletic techniques.

Finally, we aim to evaluate the potential of wearable sensor technologies and real-

time monitoring systems for dual applications in clinical and sports settings. This

includes assessing the cross-domain adaptability of biosignal processing methods and

their role in developing personalized, data-driven interventions.

6.1.2 Chapter Contributions

The contributions of this chapter are multifaceted, advancing the field of biosignal

analysis through the following key innovations:

• Advanced ECG Analysis: We have created a robust machine learning frame-

work that extracts and analyzes temporal and morphological features from ECG

data. By incorporating XAI methods, we ensure model transparency, making

our approach clinically relevant and interpretable for medical professionals.

• EMG-Driven Biomechanical Insights: We introduce ML models for classify-

ing biomechanical performance in sports, with a particular emphasis on fencing.

This work not only distinguishes between different levels of expertise but also

provides actionable insights to improve athletic performance and prevent injuries.

• Cross-Domain Applicability: Our research demonstrates the flexibility and

adaptability of biosignal processing techniques across various physiological data

types. This highlights the potential for real-time, personalized applications in

both healthcare and sports science.

6.1.3 Limitations of Current Methodologies

Despite significant advancements, current methodologies for biosignal analysis still

encounter several critical limitations, which this thesis seeks to address.

ECG Analysis: Existing ECG-based approaches for heart disease detection

frequently face challenges related to data quality and diversity. While high accuracy

can often be achieved within individual datasets, models tend to exhibit substantial

performance drops when applied to new, unseen datasets. This highlights issues with
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data generalizability and robustness, as well as persistent problems like class imbalance

that hinder the reliability of these systems across diverse populations.

EMG in Sports Biomechanics: In the realm of sports science, the precision of

ML-driven motion analysis is highly dependent on factors such as sensor placement and

the quality of data collected. Even slight misalignments or inconsistencies in sensor

calibration can significantly impact model performance. Furthermore, many current

methods lack explainability, making it difficult for athletes and coaches to interpret

the results and apply them effectively for training and injury prevention.

Explainability and Interpretability: While ML models such as CNNs and

Random Forests deliver impressive performance, their complexity can make them

difficult to interpret, a critical limitation in healthcare and sports applications. The

absence of XAI methods in most existing studies restricts the models’ practical usability

and acceptance in real-world scenarios.

By addressing these limitations, this chapter aims to contribute a comprehen-

sive and interpretable framework for biosignal analysis, enhancing the usability and

generalizability of AI-based models in both clinical and sports settings.

6.2 Background

To begin, it is essential to outline the background and guiding principles that shape

the research focus highlighted in this chapter.

Machine Learning Applications in Sports Biomechanics and Fencing Training

ML and its applications have become of central interest to sports scientists, primarily

due to the substantial impact on performance enhancement and injury prevention.

In recent years, ML has significantly transformed various aspects of sports science,

including:

• Data collection devices used in biomechanics;

• Insights derived from device-captured data, such as 3D kinematics and vertical

ground reaction forces;

• Data processing, where classification methods can now efficiently separate and

analyze data previously requiring extensive manual analysis;

• Enhanced understanding of athletic performance and predictive models for injury

risk.
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The increasing adoption of ML is expected to notably advance objectivity in

decision-making within sports science over the coming decade. Research shows ML’s

effectiveness in predicting future injuries based on pre-season measurements, identifying

movement strategies within athlete cohorts, and recognizing injury-prone movement

patterns in otherwise healthy individuals [235].

Application of MLL in Fencing Biomechanics

Malawski et al. [186] investigated the effectiveness of inertial measurement units (IMUs)

and Kinect for classifying fencing footwork to aid athlete and coach training. Using a

SVM model, they achieved high recall and precision (100%) using Kinect, while the

IMU-based technique yielded 99.38% recall and 98.77% precision. Although effective,

this study suggested further improvements in accuracy for parameters like hand timing,

potentially enhancing fencers’ movement refinement. The authors noted that while

Kinect is ideal for frontal postures, it is less suited for side-view tracking as required in

fencing. They highlight that for IMU to match Kinect’s performance, precise body

positioning of sensors is crucial [186].

O’Reilly et al. [205] placed five IMUs on the lumbar spine, thighs, and shanks to

classify correct and incorrect lunge techniques as well as variations in lunge execution.

They evaluated SVM, k-Nearest Neighbors, Naïve Bayes, and Random Forest classifiers,

finding Random Forest optimal due to its superior classification performance. Using

permutation feature importance, they identified key factors contributing to lunge

accuracy. For binary classification, the setup with five IMUs achieved 90% accuracy,

while a reduced configuration using three IMUs (lumbar and both shanks) maintained

similar classification reliability [205].

Another study by Malawski et al. [187] focused on classifying core fencing move-

ments (step forward, step backward, rapid lunge, etc.) in a group of 10 fencers using

a single IMU placed on the knee. The authors compared Dynamic Time Warping

(DTW), SVM, and other models, concluding that SVM, based on time-domain features,

provided high recognition accuracy and superior generalization potential. Their findings

underscore the importance of appropriate feature selection and data segmentation

techniques, especially when processing data for classification [187].

Machine Learning in Hearth disease

For the work related to ECG analysis, this bibliography has been reviewed as it provides

a comprehensive overview of prominent methodologies, addressing diverse challenges
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in signal preprocessing, feature extraction, and classification accuracy across different

ECG datasets.

Merdjanovska et al. [194] developed a deep learning model trained on four different

arrhythmia-annotated datasets. Their approach aimed to address class imbalance

using Synthetic Minority Over-sampling Technique (SMOTE) and trained a CNN on

segmented raw signals across two scenarios: (i) cross-dataset validation, where training

occurred on one dataset and testing on another, and (ii) dataset-specific training

for network validation. Cross-database testing revealed lower metrics for Positive

Predictive Value (PPV), True Positive Rate (TPR), and f1-score compared to accuracy,

indicating challenges with data diversity and model generalizability.

Sannino et al. [246] employed a deep learning method on the MIT-BIH Arrhythmia

dataset, using denoising, peak detection, and segmentation to preprocess the data,

followed by RR interval-based temporal feature extraction within a sliding window.

They employed subsampling to address class imbalance, ensuring unique subjects

across training and test sets. A trained CNN demonstrated accuracy, sensitivity, and

specificity above 98%, underscoring the model’s robust performance within the dataset.

Ali et al. [7] utilized a data mining approach with filtering to replace missing

values and applied various supervised algorithms. High sensitivity, specificity, and

accuracy metrics were achieved across K-nearest Neighbors (KNN), Decision Tree

(DT), Random Forest (RF), Logistic Regression (LR), AdaboostM1 (ABM1), and

Multilayer Perceptron (MLP) models. Using a heart disease dataset from Kaggle, they

reported 100% accuracy, sensitivity, and specificity with the RF model. Their approach

primarily utilized biological features instead of ECG signal characteristics.

Malakoutiica [190] explored multiple classifiers, including Naïve Bayes Gaussian

(NBG), RF, LR, and Linear Discriminant Analysis (LDA), using 10-fold cross-validation

to mitigate metric variance. NBG performed best with 96% accuracy and 97% precision,

although none of these approaches analyzed explainability.

All this reviewed works was essential for the development of the proposals outlined

in this chapter.

6.3 Explainable AI in Cardiac Health: Enhancing

Transparency in Heart Disease Diagnosis

This section opens with an analysis of research focused on leveraging AI and ML in the

detection of cardiovascular disease (Cardiovascular Diseases (CVD)), with a particular

emphasis on Heart failure (HF). HF, a condition directly associated with CVD, is a
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significant global health issue, ranking as a leading cause of morbidity and mortality.

Given the limitations of traditional diagnostic methods—such as patient history and

physical examination—there is an urgent need for advanced tools, particularly those

involving ECG-based approaches, to enhance the early detection and management of

HF.

In this work, the focus is on extracting temporal and morphological features from

ECG signals to compare the performance of various ML classification models in HF

detection. The authors propose a Light Gradient Boosting (LGBM) model, demonstrat-

ing its efficacy in distinguishing Normal Sinus Rhythm (NSR) from Arrhythmia (ARR)

with a high accuracy of 0.99, alongside strong precision and recall metrics. To further

enhance the interpretability of model predictions, the study integrates XAI techniques,

which clarify the model’s decision-making process and provide meaningful insights for

healthcare professionals.

With the growth of big data and wearable devices, ML models in predictive medicine

present significant potential for early HF detection and scalable healthcare solutions.

This work has two primary objectives: creating a reliable classification model for ECG

signals and using XAI for post-hoc analysis to understand the prediction process. The

study examines these objectives through experimental evaluations using data from the

MIT-BIH PhysioNet database, exploring the following Research Questions (RQs):

• RQ1: Can the newly extracted ECG signal-based features train a classification

model to accurately predict heart failure?

• RQ2: Which model trained on our new ECG signal-based features is most

effective in predicting heart failure?

• RQ3: Can each subject-based prediction related to the best model classification

be explained to support physicians in diagnosis?

All these research questions focus on to the prediction of heart failure in a real-time

environment.

To address these questions, a comprehensive experimental evaluation was conducted

using signals from the MIT-BIH PhysioNet Database1, widely recognized for its datasets

containing cases of arrhythmia and normal sinus rhythm.

1https://physionet.org/content/mitdb/1.0.0/
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6.3.1 Methods

Our work employs ECG signals from two datasets. Data went through a selection

step with which only files containing information and annotations are kept. Then,

the remaining signals are preprocessed with three steps: filtering and segmentation

(section 6.3.1), and subsampling (section 6.3.1). Then, features are extracted based on

the records sampling rate.

Dataset Description

ECG recordings are collected from the MIT-BIH physio-net database [99]. The

considered conditions in order to build the dataset employed in this study are listed

below:

• MIT-BIH Arrhythmia (ARR) database [197]: consists of 48 ambulatory two-

channel ECG recordings sampled at 360Hz from 47 subjects. The subjects

included in the study were 25 men aged 32 to 89 years, and 22 women aged 23

to 89 years. The recordings are 30 min long and include both arrhythmia and

normal sinus rhythm recordings as well as 4 recordings with a pace-maker. Also,

rhythm and beat annotations by experts are provided for each record.

• MIT-BIH Normal Sinus Rhythm (NSR) database [125]: consists of 18 ambulatory

long-term ECG recordings sampled at 128Hz. The recordings are from healthy

adult subjects distributed as follows: 5 men aged 26 to 45 years, and 13 women

aged 20 to 50 years. The duration of each recording is about 24 hours. The

dataset includes both rhythm and beat annotations.

Since the classification is performed beat-wise, paced beats were excluded in order

to maintain data consistency.

Data Preprocessing

The preprocessing pipeline was designed to ensure data consistency and optimize

model performance. The dataset was parsed using the pandas library2, removing

inconsistent data to retain only entries containing raw signals and annotations. For

computational efficiency, Normal Sinus Rhythm (NSR) signals were segmented into one-

hour intervals. Noise filtering and segmentation were performed using NeuroKit2 [185],

2https://pandas.pydata.org/
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a Python library specialized in neurophysiological signal processing, which was also

employed to extract relevant ECG signal peaks (P, Q, R, S, T) and their corresponding

segment boundaries.

The dataset was split into 74% training and 26% test sets to avoid overlap of sub-

jects across the sets. Continuous features were standardized using the RobustScaler 3

technique [230] to reduce the impact of outliers.

Subsampling

Beat annotations centered on R peaks were used to segment beats for each sample

in the ML models. NeuroKit2’s segmentation functions helped extract beat segments

as pandas DataFrames, labeling each beat according to R peak annotations. Normal

beats were taken from NSR signals, while only abnormal beats were extracted from

ARR records. Non-beat annotations were excluded to maintain dataset consistency.

Feature Extraction and Selection

From the segmented recordings, 26 initial features were computed, including:

• Duration of each segment in a beat (e.g., P, PQ, QRS, QR, QT, RS, ST, T, PT

segments);

• Angles at key points (e.g., ∠PonPQ, ∠Roff QR, ∠QRS, ∠RST , ∠STToff );

• Segment slopes (e.g., PQ, QR, RS, ST slopes);

• Voltage values at each peak (e.g., P, Q, R in [mV]);

• Proportional values of QR/QS and RS/QS to represent durations within the

QRS wave.

Each feature’s duration was calculated as sample distances divided by the sampling

frequency to obtain values in milliseconds. After removing samples with missing

values, a recursive feature selection (Recursive Feature Elimination (RFE)) with 5-

fold cross-validation was performed using GridSearchCV4 across eXtreme Gradient

Boosting (XGBoost) [52], RF [25], and LGBM [146] models to identify optimal model

parameters.

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
RobustScaler.html

4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
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The final feature set consisted of 13 selected features: PQ segment, QRS segment,

RS segment, ST segment, ∠QRS, ∠STToff , PQ slope, QR slope, RS slope, ST

slope, and peak values for P, Q, and R. The dataset was undersampled with the

RandomUnderSampler technique from the imblearn library [162] to balance the

classes, resulting in 8259 samples each for NSR and ARR classes, and the 13 selected

features as input for the models.

Classification Models

To identify the most effective classifier for predicting the HF condition, we compared

several models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light

Gradient Boosting (LightGBM). These models were implemented in Python using the

Scikit-learn5 [219], xgboost libraries6,and LightGBM7. We employed a GridSearchCV

(5-fold) cross-validation to tune the classifiers, maximizing metrics including Precision,

Recall and f1-score to achieve optimal classification performance. Table 6.1 presents

the range of hyperparameters values explored for each model during the tuning process.

Table 6.1 Hyperparameter list and values for the classification models reported in this work.
x_train.shape[1] is equal to 13

Algorithm Hyperparameter Values

Random Forest

seed {42}

n_estimators {np.arange(50,201,50)}

max_features {np.arange(1, x_train.shape[1])}

max_depth [4, 6, 8]

eXtreme Gradient Boosting

seed {42}

n_estimators {np.arange(50, 201, 50)}

learning_rate [0.001, 0.01, 0.1, 1]

max_depth [4, 6, 8]

max_features {np.arange(1, x_train.shape[1])}

Light gradient boosting

seed {42}

n_estimators {np.arange(50, 201, 50)}

learning_rate [0.001, 0.01, 0.1, 1]

max_depth [4, 6, 8]

max_features {np.arange(1, x_train.shape[1])}

5http://scikit-learn.org
6https://xgboost.readthedocs.io/en/stable/
7https://lightgbm.readthedocs.io/en/stable/
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Explainability Techniques

This study adopts SHAP [178] approach to explain the predictions of the best model

for the independent test set. SHAP represents the marginal contribution of each

input variable in model decision making. This algorithm is based on game theory

and in particular Shapley’s approach to evaluate the contribution of each player in a

cooperative game. SHAP introduces a variant of Shapley’s approach through the use

of a local contribution function, which calculates the contribution of each variable for

each input instance of the test set.

6.3.2 ECG Model Analysis

In this section we detail the results obtained from our experimental approach. In

particular, in Table 6.2, we report the results obtained from the identified best model.

To determine the best, we also analyze the performance of these models in terms of

precision, recall and f1-score for each class. From the table 6.2, we assert that LGBM

with learning_rate = 1, max_depth = 4, max_features = 1, n_estimator = 200 is

the best model, as it performs better than RF with respect to all considered metrics,

while, compared to XGB, LGBM obtains equal performance except for precision

and recall on the arrhythmia class where LGBM reaches better performance. In

summary, LGBM, according to the confusion matrix in Figure 6.1, obtains the lowest

number of misclassified samples for both classes. Indeed, the performance achieved

by LGMB allows minimizing the number of misclassified, and reaches an accuracy

of 0.99, the best value of precision (1.00), and recall (0.99), in the prediction of

Normal Sinus, and a high value of f1-score in the prediction of Arrhythmia (0.99).

Figure 6.2 reports a graphical representation of feature importance global explanation

(in descending order from top to bottom). Moreover, the horizontal position of each

point shows whether the feature moves the prediction towards positive or negative

class and colors refer to the feature value, red for high values and blue for lower

ones. Specifically, all features seem to have the same importance except for ∠QRS

PQsegment, ∠STToff , PPeakvalue and QPeakvalue which contribution results to

be marginal. This behaviour reflects on figures 6.3 and 6.4 which provide examples

of local explanation on a negative and a positive sample, respectively. In detail, the

negative sample in figure 6.3 shows that RPeakvalue is the most important feature,

furthermore RSsegment, QRSsegment and PQslope have almost the same cardinality.

Whereas, all features from ∠STToff onwards appear to provide marginal contribution

to the prediction, resulting less discriminating. On the other hand, a different trend is

presented in figure 6.4 where features have different importance in classifying a positive
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sample. Besides QRSsegment and RSsegment, STslope seems to provide a lot of

information to the classification of positive samples rather than negative ones.
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Fig. 6.1 Confusion matrix of the considered models.

Model Condition Precision Recall F1-score Accuracy

LGBM
Normal sinus 1.00 0.99 0.99

0.99
Arrhythmia 0.99 1.00 0.99

XGBoost
Normal sinus 1.00 0.99 0.99

0.99
Arrhythmia 0.98 0.99 0.99

Random Forest
Normal sinus 0.99 0.98 0.98

0.98
Arrhythmia 0.97 0.98 0.98

Table 6.2 Evaluation metrics for all considered models.
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Fig. 6.2 Global interpretation using SHAP of ECG considered features.

Fig. 6.3 Overview of individual feature contributions in the prediction of an NSR subject
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Fig. 6.4 Overview of individual feature contributions in the prediction of an ARR subject

6.3.3 Analysis Outcomes and Clinical Implications

In this work, we present an approach based on feature extraction, feature selection,

and XAI to identify the optimal ML model for predicting HF in real-time. By training

and testing various ML algorithms, we determined the model best suited for the task,

utilizing only the most discriminative features. This approach is advantageous as it

enhances model selection while ensuring interpretability of the prediction process.

Our HF classification approach shows high effectiveness in distinguishing arrhythmic

cases, which is critical for medical applications. This framework could support both

epidemiological studies and clinical screenings by prioritizing a reduced set of features

derived from raw signals, potentially decreasing time and resource demands for further

testing.

RQ1: Can extracted ECG signal-based features train a model to accu-

rately predict HF? Our study demonstrates the feasibility of using specific ECG

features for HF prediction. By leveraging these features, we identified informative

characteristics within the signals that were used to train our models, underscoring the

potential for further exploration to enhance predictive capabilities.

RQ2: Which model is most effective for HF prediction based on these

ECG features? Through extensive evaluation, we found that Light Gradient Boosting

(LGBM) achieved the best performance, with an accuracy of 0.99, a precision of 1.00,

a recall of 0.99, and an F1-score of 0.99 for the NSR class, and similar metrics for

the ARR class. These results align with the current state-of-the-art, highlighting the

suitability of classification models for HF prediction tasks.
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RQ3: Can the model predictions be explained in a clinically meaningful

way? Integrating XAI techniques, our approach provides a transparent view of the

model’s predictions. The XAI analysis explains the feature contributions, offering

clinicians interpretability of model predictions and enhancing the model’s usability as

a support tool in clinical decision-making.

Future Directions and Applications

While this study utilized a limited dataset, future work will focus on expanding the

dataset to cover a broader range of heart diseases, enabling further testing with DL

and anomaly detection models. In addition, this study serves as a basis for evaluating

model interpretability both for ML engineers, in understanding feature relevance, and

for clinical practitioners, who can benefit from a clinically validated, explainable model.

In conclusion, ML models based on carefully selected ECG features have shown

substantial potential for HF classification tasks and could be further explored for

applications in medical decision-making.

6.4 AI-Based Performance Analysis for Fencers

In line with the overarching themes of this chapter, which explores the application

of artificial intelligence to bioelectrical signal processing, we now shift our focus

to electromyographic (EMG) signal analysis. EMG provides a unique window into

muscle activity and neuromuscular responses, offering valuable insights that can inform

personalized therapeutic approaches.

This section introduces a study dedicated to analyzing EMG signals to distinguish

different performance levels in fencers. Building on the foundational concepts discussed

in the previous sections, this research utilizes machine learning algorithms to process

EMG data from elite and novice fencers. The goal is to identify characteristic muscle

activation patterns that correlate with skill levels, which could serve as a supportive

tool for training and injury prevention in sports.

Through this work, we aim to extend the scope of AI applications in bioelectrical

signals beyond EEG and ECG, showcasing the potential of EMG-based analysis for

performance assessment and skill differentiation in sports settings. This study thus

reinforces the central thesis of this chapter by demonstrating AI’s capacity to yield

actionable insights from bioelectrical signals across diverse clinical and performance-

oriented applications.

Fencing, one of the oldest sports, places considerable demands on the body in terms

of neuromuscular coordination, strength, and power, particularly during the execution
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of movements like the lunge [54]. The effectiveness of a fencer’s technique depends on

quick reactions to visual, kinaesthetic, and auditory cues [269]. The rapid execution of

"propulsion" and "dodge" actions in both offensive and defensive maneuvers subjects

the body to varying forces, with notable impacts on musculoskeletal stability [30, 54].

These biomechanical complexities make fencing an ideal candidate for applied sports

science and the analysis of muscle activity patterns.

With advancements in wearable sensor technology, sports biomechanics has greatly

benefited from non-invasive, high-accuracy data collection. These sensors allow real-

time analysis of athletic movements, which is instrumental in preventing injuries and

optimizing performance [29, 41]. Combining these wearable technologies with ML

techniques enables the extraction of meaningful biomechanical data, providing essential

feedback for both athletes and trainers. Recent studies have shown that elite fencers

exhibit distinct muscle activation patterns compared to novices, allowing for a nuanced

differentiation of skill levels [54].

Through this work, we aim to extend the scope of AI applications in bioelectrical

signals beyond EEG and ECG, showcasing the potential of EMG-based analysis for

performance assessment and skill differentiation in sports settings. This study thus

reinforces the central thesis of this chapter by demonstrating AI’s capacity to yield

actionable insights from bioelectrical signals across diverse clinical and performance-

oriented applications.

6.4.1 Methods

Thanks to newly available technologies, biomechanical data acquisition in sports can

be done using optical or non-optical systems. Optical systems include optoelectronic

systems (MoCap), which can be marker-based or markerless, such as the Kinect

(RGB camera and depth sensor). Non-optical systems include inertial systems. The

following considerations guided the choice of experimental settings reported in this

paper. Firstly, effective motion tracking using an RGB camera is highly difficult due

to quick motions, the presence of several people, and challenging lighting conditions

in training rooms. However, deep learning techniques accurately identified persons

in RGB movies. Secondly, MoCaps are computationally too expensive to offer the

necessary precision for real-time sports. They demand the use of numerous synchronized

cameras and the wearing of many markers, making them expensive and impracticable

for use in sporting events. Furthermore, to avoid occlusions, the area between the

sensor and the tracked person must remain empty, which is a substantial restriction in

training facilities. The athlete also needs to stay within the depth camera’s field of
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vision. Finally, monitoring joint rotation with depth sensors is challenging, which is

crucial in sports [186]. On the other hand, IMUs, even though they must be placed

on the athlete, they do not need a well-organized workspace to be used [41]. IMUs

can measure acceleration and angular velocity, but because errors can accumulate

during the integration of the acceleration data, they are far less helpful for monitoring

position and velocity. For these reasons, magnetometer information is integrated using

a sensor fusion technique, usually a Kalman filter. Moreover, IMUs have a greater

sampling frequency, often between 50 Hz and 400 Hz, as opposed to a typical depth

sensor’s 30 Hz. When compared to the visual data from the Kinect (RGB camera),

the information provided by IMUs regarding acceleration, angular velocity, and the

magnetic field is very different. Nevertheless, previous studies have found that both

modalities help support real-time sports training. Therefore, when selecting the sensor

for sports motion analysis, ease of use may be a deciding factor. It is worth noting

that tracking direction with an IMU may be essential for assessing sports actions that

involve rotation, such as fencing during the lunge [186].

This section introduces (i) study population, (ii) study design, and (iii) algorithm

used for preprocessing and classification purposes. Specifically, section 6.4.1 depicts the

study population and inclusion criteria; section 6.4.1 depicts the instrumentation used

during data collection; section 6.4.1 depicts the acquisition protocol; while section 6.4.1

depicts the biomechanical data preprocessing to identify the data associated with lunge

movement; section 6.4.1 depicts the Principal Component Analysis algorithm used

for dimensionality reduction; section 6.4.1 depicts the Machine Learning algorithm

selected and used in this study and how Machine Learning algorithms were trained

and tested. The data follows the logical flow represented in the Figure 6.5.
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Fig. 6.5 Logical Data Flow.

Data Collection

Twenty-one male and female fencers (17 male and 4 female fencers) participated in

this cross-sectional study, all belonging to the A.s.d. CLUB SCHERMA BARI team.

Eight of them were classified as novice fencers, while the other thirteen fencers were

élite fencers. They practised epée and foil. The age of fencers ranged from 8 to 35

years old. In the last six months before the test, they were free of lower extremity

musculoskeletal injuries. Subjects unable to understand the required actions were

excluded from the study. Study with its measurements and data collections before

starting following the Helsinki Declaration of 1975. All participants provided written

informed consent for the study before their trial.

Data collected from the athletes during the study, using the devices described

in section 6.4.1, represented the dataset for the ML algorithms, which consisted of

samples on the rows and features on the columns. Each subject performed all the

different tasks at least two times, for a total of 6 trials per subject placed in rows

within our dataset. There were 13 features used to train the different Machine Learning

algorithms: tri-axial accelerations, tri-axial angular velocities, tri-axial pelvis angles,

and four muscle envelopes. Each of these features is a two-dimensional signal over

time each being represented by 500 records. Each column of the dataset is a one-

record of the individual feature. Therefore, our dataset had 126 rows and 6500 columns.
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Instruments

A professional fencing competition field setup was recreated with a platform measur-

ing 1.80 m in length, equipped with a scoring system at one end to confirm successful

touches. Kinematic data were collected using the BTS G-SENSOR 2 (BTS Bioengi-

neering S.p.A., Italy), a wearable inertial motion system with a sampling frequency of

100 Hz. This device includes a triaxial accelerometer (sensitivity: ±2, ±4, ±8, ±16g),

a tri-axial gyroscope (sensitivity: ±250, ±500, ±1000, ±2000◦/s), and a magnetometer

with a dynamic range of ±1200µT . Positioned at the L5/S1 vertebrae with an elastic

band, the IMU transmitted data via Bluetooth to a PC for analysis.

Surface electromyographic (sEMG) signals were gathered using four wearable BTS

FREEEMG 1000 probes (BTS Bioengineering S.p.A., Italy), sampling at 1000 Hz with

a 16-bit A/D converter. Following SENIAM guidelines, the probes were applied with

Ag/AgCl adhesive electrodes on selected muscles: Deltoideus Anterior (DLTA) and

RF on the armed side, and Erector Longissimus muscle (LONG) and Gastrocnemius

Medialis (GAM) on the opposite side. To ensure stability during movement, an adhesive

patch was applied to secure the probes. Both devices are lightweight and compact, thus

minimally intrusive during motor tasks. Synchronization of all devices was managed

by BTS EMG-Analyzer software, where the testing protocol was defined. Additionally,

an iPhone camera on a tripod was positioned 3.80 m from the platform at a height of

1.14 m to capture sagittal plane movements.

Experimental Protocol

Each participant began with stretching and a five-minute warm-up. After familiar-

ization with the test area, biographical (e.g., name, age) and anthropometric data were

collected, including weight (W), height (H), height in en garde position (HGUARD),

front leg length in en garde (LLL), thigh circumference (CLL), and armed arm cir-

cumference (CUL), alongside category, specialty, and weapon length (Leq). Table 6.3

presents sociodemographic and anthropometric data for novice and élite fencers, with

Effect Size (ES) calculated using Cohen’s criteria to determine the magnitude of

differences between categories.
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Table 6.3 Sociodemographic and anthropometric variables by fencers’ category (novice and
élite). Data are shown as mean ± standard deviation for continuous variables.

Variables Novice élite Effect Size (ES)

Age (years) 10.50±3.14 16.31±5.85 0.72(0.48,0.97)

BMI (kg/m2) 18.87±3.87 22.29±3.82 0.39(0.09,0.73)

W (kg) 39.30±11.87 61.95±11.86 0.68(0.48,0.9)

H (m) 1.43±0.08 1.66±0.12 0.75(0.63,0.9)

HGUARD (m) 1.32±0.08 1.56±0.13 0.76(0.63,0.91)

LLL (cm) 73.66±7.3 90.00±8.36 0.74(0.61,0.9)

CLL (cm) 40.70±6.38 50.28±9.58 0.53(0.26,0.83)

CUL (cm) 22.70±5.55 27.46±7.67 0.44(0.12,0.77)

Leq (cm) 79.5±2.67 88.75±2.23 0.86(0.77,0.95)

After preparing the skin, sEMG probes were attached to the muscles. Each subject

performed four motor tasks to record Maximum Voluntary Contraction (MVC) for

each muscle, with each test lasting 30 seconds, repeated three times with 5 seconds

rest in between. The inertial system was then secured to the fencer, who received

instructions on the tasks.

The fencing test consisted of three exercises:

• Explosive lunge: A rapid lunge aimed at hitting the target as quickly as possible.

• Step forward lunge: The fencer steps forward to reach lunging distance before

scoring a hit.

• Step back lunge: The fencer steps back to adjust to lunging distance before

scoring.

Each task started from a static position; upon command, the fencer moved to the

en garde stance, performed the lunge, and returned to en garde. The lunging cycle is

shown in Figure 6.6, illustrating the start position (a), en garde (b), and final lunge

(c). Each task was repeated twice, with distance self-adjusted by each fencer.



162 Chapter 6 Applications of Artificial Intelligence in Bioelectrical Signals

(a) Representation of the Start position during Explosive lunge

in the test environment.

(b) Representation of the en garde position during Explosive

lunge in the test environment.

(c) Representation of the Final Lunge position during Explosive

lunge in the test environment.

Fig. 6.6 Cycle of movement for lunging during the Explosive lunge task: start (a), en garde

(b), lunge (c).

Data Pre-processing

Collected data were imported to MATLAB R2020a8. The inertial system provided in

output its orientation in time in the form of Euler angles referred to as the reference

8https://it.mathworks.com/products/new_products/release2020a.html
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system of the sensor itself. These data made it possible to calculate the pelvis joint

kinematics, also expressed as Euler angles, referred to as the pelvis reference system.

The latter is obtained by making an anticlockwise rotation of the sensor reference

system’s 180◦. EMG signals were processed with the following protocol: Butterworth

bandpass filter with cut-off frequencies of 10 Hz and 450 Hz and Butterworth low pass

filter with a cut-off frequency of 6 Hz. A threshold algorithm was applied to detect the

start and the end of each lunge task. First, the Euclidean acceleration norm (Eq. 6.1)

was calculated as follows:

ACC =
√

ACC2
x +ACC2

y +ACC2
z (6.1)

where ACCx, ACCy, and ACCz are, respectively, the acceleration components

expressed in the sensor reference system along the x, y, and z axes.

The subject was at rest in the first 3 seconds of acquisition due to the necessary

sensor stabilization phase. Therefore, this time window (Eq. 6.2) was used to calculate

the mean value and the standard deviation to obtain the threshold T value as follows:

T = µ+J ×σ (6.2)

where µ and σ are the mean and standard deviation of the acceleration norm

during a period of inactivity (time window), and J represents a numerical constant

that takes on varying values depending on the case. In this study, J = 3. The signal

was considered a "lunge movement" if its over-threshold duration was greater than 70

ms. The end of the lunge coincided with the index of the last over-threshold sample,

0.2 seconds before the first activation was considered as the beginning of the movement

for the first task, 0.3 seconds for the other two tasks. Therefore, both kinematic data

and EMG signals were aligned in the duration of the lunge cycle. The EMG signals

were normalized using the maximum peak of the EMG envelope within the movement

cycle to allow multiple subjects comparison. For each biomechanical data, a sampling

of 500 samples was performed to standardize the number of samples of each signal, as

this depends on how fast each subject was in performing the task. These biomechanical

features were used to create a dataset consisting of 21 subjects and 13 features: the

four EMG signals, the three components of accelerations, the three components of

angular velocity, and the three components of pelvic angles, each expressed as a vector

of 500 samples.
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(a) Accelerations signals along IMU reference

system axes.

(b) Angular velocity signals along IMU reference

system axes.

(c) Pelvis angle signals along Pelvis reference

system axes.

(d) Muscles envelope signals of the four target

muscles.

Fig. 6.7 Feature dataset signals during Explosive lunge cycle: accelerations (a), angular
velocities (b), pelvis angles (c), muscle envelopes (d).

In Figure 6.7 biomechanical data of an élite fencer during Explosive lunge are shown,

in particular in Figure 6.7a accelerations on x, y and z-axis are shown, Figure 6.7b

shows angular velocities on x, y and z-axis, Figure 6.7c shows pelvis angles on x, y

and z-axis and in Figure 6.7d target muscles envelopes are shown.

Data Splitting and Dimensionality Reduction

The whole dataset consisted of 6500 columns, given by 13 features times 500 samples,

for 126 records, given by 21 athletes executing two times the three exercises. Then,

the dataset was split into training and test sets. The split percentages were 80% for

the training set and 20% for the test set. The split has been developed by exploiting
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the train_test_split function from Scikit-learn v1.0.2 library [219] with Python

3.9.0.

Since the dataset is affected by the curse of dimensionality, we applied a Principal

Component Analysis (PCA) [86] to reduce the number of samples incrementally for

each feature. Hence, we first made a train/test split, then fit the PCA with the training

set and transformed both the training set and the test set with the fitted PCA. It is

worth noting that, for each feature, every group of 500 samples has been individually

taken and reduced with PCA as follows:

• k = 50, for an overall of 650 total features;

• k = 25, for an overall of 325 total features;

• k = 10, for an overall of 130 total features;

• k = 5, for an overall of 65 total features.

The reduction has been developed by exploiting the Scikit-learn v1.0.2 library,

feeding in input n_components = k. Therefore, four training and test sets have been

produced.

Machine Learning Algorithms

In order to determine the best classifier to predict the athlete class (Novice or élite),

we analyzed the following models:

• XGBoost Classifier [52].

• Multilayer Perceptron (MLP) [121].

• Random Forest (RF) Classifier [36].

• Support Vector Machine (SVM) Classifier [66].

All four algorithms considered were supervised learning models. Afterward, a code

was developed, and due to the interaction Python, it recalled the functions of the

Machine Learning contained in the scikit-learn v1.0.2 library. This library was

used to compare all models to identify the best suited to classify the élite and novice

athletes and the model minimizing false-negative predictive values.
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6.4.2 Evaluation and Model Performance for Fencer Classifi-

cation

This section presents an in-depth analysis of the model performance after hyperparam-

eter tuning and optimization. The primary goal was to identify the best performing

model with an optimal balance between feature number and accuracy.

Hyperparameter Tuning of Best Model

The optimal model, identified as the MLP with k = 50, was fine-tuned using the

GridSearchCV function in Python, utilizing a 5-fold cross-validation strategy to enhance

its performance. GridSearchCV from the scikit-learn library was employed to optimize

key parameters. The best hyperparameters obtained were:

• hidden_layer_sizes: (586,),

• activation: relu,

• solver: lbfgs,

• alpha: 0.1,

• learning_rate: constant.

Evaluation Setup and Experimental Protocol

The steps involved in the experiment setup and model evaluation included:

• Acquisition and preprocessing of raw data,

• Creation of a structured dataset for model training,

• Application of PCA for feature dimensionality reduction, with k selected based

on the model’s performance,

• Training the ML algorithm on the optimized dataset.

An 80/20 dataset split was used, with the training set subjected to 5-fold cross-

validation to ensure robust model evaluation and to reduce sensitivity to data parti-

tioning. Each fold’s performance was independently evaluated, and the best hyperpa-

rameters for each classifier were chosen based on the cross-validation results.
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Performance Metrics of the Final Model

The MLP model achieved a training accuracy of 100% and a validation accuracy

of 96.0%. Additionally, the model’s diagnostic capability was assessed using the Area

Under the Curve (AUC) metric, shown in Figure 6.8, which reflects high discriminative

power for classifying fencer expertise level. The confusion matrix in Figure 6.9 provides

further insights into model reliability, highlighting a minimal misclassification rate

between novice and élite fencers.

Fig. 6.8 ROC curves with the AUC value: 0 = novice, 1 = élite.

Fig. 6.9 Confusion matrix for MLP model during testing phase.

Overall Model Metrics
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Table 6.4 provides the final precision, recall, and F1-score for both novice and

élite categories during the test phase, demonstrating the model’s high accuracy and

balanced performance across classes.

Table 6.4 Performance metrics for MLP classifier.

Category Precision Recall F1-Score

Novice (0) 90% 90% 90%

élite (1) 93% 93% 93%

In summary, the MLP model with k = 50 PCA components demonstrated excellent

predictive capability, with accuracy, recall, and AUC values suggesting robust perfor-

mance without overfitting. This high performance supports the model’s suitability for

reliably distinguishing between novice and élite fencers, offering a valuable tool for

enhancing training strategies based on performance level assessment.

6.4.3 Key Findings and Insights

Effective analysis of sports movements requires a comprehensive understanding of

their purpose, mechanics, and the factors influencing performance. In this study, we

employed ML techniques to enhance fencing training by classifying fencers based on

their skill level (élite vs. novice). Our approach utilized various data inputs, including

acceleration, angular velocities, pelvis angles, and four surface sEMG signals. We

compared multiple ML algorithms and identified the MLP model as the most suitable

for this application. Through hyperparameter tuning, we optimized the MLP model,

which was trained on a dataset comprising 650 features. The MLP demonstrated high

classification accuracy, with a slight advantage in identifying élite fencers, a feature that

can greatly aid in designing training regimens focused on improving critical movements,

such as the lunge.

Structured and precise training plans are crucial for performance enhancement

in all sports, and biomechanical analysis is especially significant in fencing to refine

primary movements and prevent injuries [288]. While previous research has utilized ML

algorithms to classify specific fencing tasks, such as footwork [187] or lunge phases [186],

often reducing sensor requirements, our method advances these efforts. By integrating

multiple biosignals, we provide a comprehensive framework that leverages wearable

technology to capture and process data, delivering real-time feedback to athletes and

coaches. This approach enhances training strategies and offers a holistic view of

performance metrics.
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Our methodology provides several key advantages: (i) it uncovers hidden patterns

within training data, (ii) it efficiently manages large and complex datasets, and (iii) it

is well-suited for integration into platforms that collect biomechanical data and supply

instant feedback. Given the complexity and nonlinearity of human movement, predic-

tive modeling, classification, and dimensionality reduction are crucial for extracting

actionable insights [306]. The trend towards classifying athletic tasks using motion

data from inertial sensors reflects the increasing demand for such advanced analytical

tools.

A recent review by Hammes et al. [113] on artificial intelligence in élite sports

emphasizes the growing emphasis on signal and image processing, as well as the

challenges in sports analytics, including data acquisition, model explainability, and

the practical controllability of AI. Addressing these challenges through AI-driven

kinematic analysis can lead to standardized and optimized training protocols, enabling

athletes and coaches to balance risks and opportunities effectively during training and

competition.

6.5 Summary

To conclude, this chapter has presented two pivotal studies exploring the application of

Machine Learning (ML) techniques in analyzing bioelectrical signals, specifically ECG

and EMG, with substantial implications for clinical and sports applications. These

works demonstrate the transformative potential of AI in harnessing bioelectrical signals

to enhance medical diagnostics and improve athletic performance, underscoring how

data-driven insights can be integrated into practice to benefit both fields.

The first study focused on ML applications in ECG analysis for early detection

of cardiovascular abnormalities, particularly HF. By testing multiple classifiers, we

identified LGBM as the most accurate model for distinguishing NSR from ARR,

achieving high precision and recall. Beyond classification accuracy, XAI techniques

provided interpretability to model predictions, making them more applicable and

reliable for medical practitioners. These findings highlight the feasibility of AI-driven

ECG analysis as a complementary tool in cardiovascular diagnostics, aiding in early

detection, reducing diagnostic time, and supporting more targeted patient care.

The second study extended the analysis to EMG signals to differentiate skill

levels among fencers by capturing neuromuscular responses during specific movements.

Through rigorous testing of ML algorithms, the Multilayer Perceptron (MLP) model

emerged as the best approach, demonstrating high accuracy in classifying élite and
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novice fencers. Importantly, this work reveals the potential for EMG-based analysis to

extend beyond sports training, providing a framework for rehabilitation applications.

The same wearable sensors and data monitoring used to assess fencing movements,

such as the lunge, could be repurposed in clinical settings as a rehabilitative tool. This

approach could support young and elderly individuals alike in neuromuscular training,

strength recovery, and movement precision—areas critical to injury prevention and

rehabilitation.

In summary, these studies collectively validate the utility of ML in processing

and interpreting bioelectrical signals, showing extensive applicability in healthcare

and sports science. In cardiology, ECG-based models can support early-stage CVD

detection and continuous patient monitoring, promoting preventative strategies and

enhancing patient outcomes. Similarly, EMG-based analysis, initially applied to athletic

training, could become a valuable component of personalized rehabilitation programs

for various age groups, enabling clinicians to monitor neuromuscular function closely

and optimize therapeutic exercises.

Overall, this chapter underscores that AI-driven bioelectrical signal analysis offers

significant potential to bridge the gap between raw data and actionable insights for

practitioners. These methods represent a forward-looking approach in clinical and

sports domains, where improved diagnostics, performance assessments, and rehabilita-

tive planning can be achieved through data-informed decision-making, setting a new

standard in healthcare and athletic training.
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Conclusion

To conclude this doctoral thesis, we have thoroughly examined the transformative

impact of AI on healthcare, specifically through its application in both intelligent

diagnostic systems and the analysis of bioelectrical signals. The research was organized

around two core themes: leveraging AI for improving diagnostic accuracy and developing

innovative methods for analyzing bioelectrical signals, such as EEG, EMG, and ECG,

to support personalized healthcare.

In Chapter 2 and Chapter 3, we established the foundational knowledge of intelligent

diagnostics and bioelectrical signals. These chapters provided essential definitions,

background concepts, and technological advancements in AI-based healthcare solutions,

setting the stage for the subsequent research.

Chapter 4 explored the application of AI-based techniques for healthcare, particu-

larly focusing on dietary and nutritional pattern analysis for predicting health outcomes.

Using machine learning methodologies, we demonstrated how AI could enhance the

prediction of health conditions like diabetes, frailty, and cognitive disorders, thereby

offering more personalized healthcare interventions. The integration of XAI was crucial

in ensuring transparency, which is essential for the adoption of these technologies by

healthcare providers and patients alike.

Chapter 5 concentrated on enhancing devices for analyzing electroencephalographic

(EEG) signals through AI. We developed systems for emotion recognition using deep

learning and BCIs, providing real-time emotional assessments that can be applied in

therapeutic contexts, such as mental health support. The chapter also covered the

development of neurofeedback tools that help individuals monitor and adjust their

emotional states. Additionally, the NeuroSense dataset was introduced to explore

emotion recognition using EEG signals recorded from sparse, low-cost devices. The

versatility of these approaches was further illustrated through the NeuralPMG system,
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a framework for emotion-driven polyphonic music generation, demonstrating potential

uses in both rehabilitation and creative applications.

Chapter 7 extended the application of AI in bioelectrical signals to practical perfor-

mance and clinical contexts, including AI-based systems for analyzing cardiac signals

using ECG data. The chapter also discussed the use of EMG signals for classifying

expertise levels in fencing athletes, with potential applications in rehabilitation settings

for both young and elderly individuals. These applications showcased the potential of

combining machine learning algorithms and wearable sensor data to enhance training,

rehabilitation, and sports performance.

The findings and methodologies presented in this thesis underscore the significant

role of AI in revolutionizing healthcare. AI-assisted diagnostics have shown promising

results in predicting and managing various health conditions, thereby contributing to

personalized medicine and proactive healthcare. Similarly, AI-enhanced bioelectrical

signal analysis provides deeper insights into physiological and emotional states, offering

a range of applications from rehabilitation to emotional support systems.

The practical implications of this research are substantial. The methods and systems

developed throughout this thesis bridge the gap between cutting-edge AI technology

and clinical applications, with a particular emphasis on interpretability and real-world

usability. By focusing on XAI principles, we aimed to make these advanced AI systems

accessible and trustworthy for healthcare professionals and patients.

Looking ahead, this research lays a foundation for future advancements in AI-driven

personalized medicine, mental health support, and rehabilitation. The integration

of AI with bioelectrical signals offers a wide range of potential applications across

healthcare, sports, and creative fields, ultimately aiming to improve patient outcomes

and overall quality of life.

Key Contributions

Throughout this thesis, several key contributions were made to the field of AI in

healthcare, particularly in the areas of bioelectrical signal analysis and intelligent

diagnostics. These contributions are summarized as follows:

• Advancements in AI for Medical Diagnostics: Developed novel machine

learning and deep learning models specifically designed for healthcare applica-

tions, including predictive models for chronic disease and personalized treatment

recommendations, thereby enhancing clinical decision support systems in terms

of accuracy and efficiency.
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• Integration of Explainable AI (XAI): Applied XAI techniques to ensure

transparency and interpretability in diagnostic models. This contribution enables

healthcare professionals to gain insights into AI-based predictions, fostering trust

and supporting critical decision-making processes.

• Bioelectrical Signal Analysis: Explored and implemented AI-driven methods

for the analysis of bioelectrical signals, including EEG, ECG, and EMG, with

applications spanning BCIs for emotion recognition, neurofeedback for mental

health, and arrhythmia detection for cardiac care.

• Applications in Public Health and Personalized Medicine: Leveraged

large-scale epidemiological data to propose data-driven strategies for chronic

disease management and public health interventions, aligned with the goals of

personalized medicine.

• Applications Beyond Clinical Settings: Demonstrated the potential of AI

in fields beyond clinical healthcare, such as sports science and rehabilitation.

This includes analyzing bioelectrical and biomechanical data for athlete perfor-

mance assessment, injury prevention, and developing assistive technologies for

rehabilitation in both young and elderly populations.

Future Directions

This thesis represents the beginning of a longer and increasingly interesting research

path. Despite the numerous analyses and proposals presented, other research questions

and open challenges naturally arose. Therefore, we have intentionally decided not to

report the possible future work of the thesis in this chapter. Instead, several initial

research directions and ideas have been formalized and tested over the last few months

before the submission of the thesis. Their preliminary outcomes will be presented in

the next (and last) chapter, following the same thematic structure provided in this

chapter. Although it is probable that the majority of these ideas may not be successful

upon further investigation, even a small percentage that yields valuable insights will

be regarded as a significant achievement.

In conclusion, the contributions made in this thesis have laid a solid foundation

for future research in the application of AI to healthcare. The methodologies and

frameworks developed have the potential to significantly advance the field, offering

new tools and strategies for improving healthcare outcomes. As we move forward, the
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integration of AI with bioelectrical signal analysis and intelligent diagnostics promises

to open new frontiers in personalized medicine, ultimately enhancing patient care and

well-being.
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Appendix
Supplementary table 1

Concordance of the single foods in the questionnaire and the food grouping used in the
analyses.

Final Food Groups Single Foods from Questionnaire

1. DAIRY Latte intero (whole-fat milk), Scamorza-Caciottina fresca-Stracchino-
Fontina (semi-seasoned italian cheese), Bel Paese-Gorgonzola (ital-
ian blue cheese), Provolone-Caciocavallo (seasoned italian cheese),
Grana-Parmigiano, Svizzero (swiss cheese), Pecorino-Vacchino (goat
cheese, cow cheese), Formaggino (cheese spread), Mozzarella (moz-
zarella cheese), Gelato (ice cream), Yogurt

2. LOW FAT DAIRY Latte scremato–parzialmente scremato (skimmed and semi-skimmed
milk), Ricotta (cottage cheese)

3. EGGS Uova (eggs)
4. WHITE MEAT Pollo (chicken), Coniglio (rabbit)

5. RED MEAT Vitello (veal), Cavallo (horse), Maiale (Pork), Fegato (liver), Agnello
(lamb)

6. PROCESSED MEAT Salsiccia fresca (fresh sausages), Prosciutto crudo (raw ham), Mor-
tadella (a typical Italian cured meat), Prosciutto cotto (ham), Salame
(salami)

7. FISH Sogliola-Orata-Dentice-Spigola-Cernia (sole, sea bream, snapper, sea
bass, grouper), Merluzzo-Razza-Palombo (codfish, stingray, dogfish),
Triglia-Cefalo-Sgombro (goatfish, mullet, mackerel), Acciughe-Sarde
(anchovies, sardines), Tonno sott’olio (tuna in oil)

8. SEAFOOD/SHELLFISH Polpo-Seppie-Calamari-Gamberi (octopus, cuttlefish, squid, prawns),
Cozze-Altri frutti di mare (mussels, other seafoods)

9. LEAFY VEGETABLES Spinaci (spinach), Bietole-Cicorie (chard, chicory), Insalata (salad)
10. FRUITING VEGETABLES Pomodori (tomatoes), Zucchine-Melanzane (zucchini, eggplants),

Peperoni (peppers), Carciofi (artichokes), Cetrioli-cocomeri (cucum-
bers)

11. ROOT VEGETABLES Carote (carrots)
12. OTHER VEGETABLES Minestrone (vegetable soup), Cavoli–Cavolfiori-Cime di Rape-Rape

(cabbage, cauliflower, broccoli, green turnips), Finocchi-Sedano (fen-
nels, celery)

13. LEGUMES Ceci - Lenticchie–Fagioli (chickpeas, lentils, beans), Piselli (peas), Fa-
giolini (green beans), Fave con Verdura (broad beans with vegetables)

14. POTATOES Patate (potatoes)
15. FRUITS Arance-Mandarini-Pompelmi (oranges, tangerines, grapefruits), Pesche

(peaches), Fichi (figs), Albicocche (apricots), Uva (grapes), Anguria
(watermelon), Melone giallo (melon), Mele-Pere (apples, pears), Kiwi,
Ciliege (cherries), Banane (bananas)

16. NUTS Frutta secca (nuts)
17. GRAINS Pane (bread), Pasta asciutta (pasta), Riso o risotti (rice or risotti),

Pastina o riso in brodo (pasta or rice in broth)
18. OLIVES AND VEGETABLE OIL Olive da tavola (olives), Olio di oliva (olive oil)

19. COOKING EDIBLE FATS Olio di semi (seed oil), Olio di oliva per frittura (olive oil for frying),
Olio di semi per frittura (seeds oil for frying), Olio di oliva per cucinare
(olive oil for cooking), Olio di semi per cucinare (seeds oil for cooking),
Burro (butter), Margarina (margarine), Burro per frittura (butter
for frying), Margarina per frittura (margarine for frying), Burro per
cucinare (butter for cooking), Margarina per cucinare (margarine for
cooking)

20. SWEETS Caramelle (sweets), Cioccolata (chocolate), Pasticceria (pastries), Bis-
cotti–Paste secche (cookies, biscuits)

21. SUGARY Zucchero (sugar), Frutta sciroppata (fruit in syrup)
22. JUICES Succhi di frutta (fruit juice)

23. CALORIC DRINKS Coca Cola–Aranciata–Chinotto (coke, orange juice, chinotto)
24. READY TO EAT DISH Pizza, Focaccia (a typical Apulian bakery product)

25. COFFEE Caffè (coffee), Caffè d’orzo (barley coffee)
26. WINE Vino (wine)
27. BEER Birra (beer)

28. SPIRITS Liquore (liquor)
29. WATER Acqua (water)
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