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Abstract

In this paper, using variational methods, we look for non-trivial solutions to the following problem

⎧⎨
⎩−div

(
a(|∇u|2)∇u

)
= g(u), in RN, N ≥ 3,

u(x) → 0, as |x| → +∞,

under general assumptions on the continuous nonlinearity g. We assume growth conditions of g at 0 and, 
in the zero mass case, growth conditions at infinity are imposed. If a(s) = (1 − s)−1/2, we obtain the well-
known Born-Infeld operator, but we are able to study also a general class of a such that a(s) → +∞ as 
s → 1−. We find a radial solution to the problem with finite energy.
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1. Introduction

Almost a century ago, Born and Infeld introduced a new electromagnetic theory in a series of 
papers (see [16–19]) as a nonlinear alternative to the classical Maxwell theory. This theory was 
proposed to provide a model presenting a unitarian point of view to describe electrodynamics 
and had the notable feature to be a fine answer to the well-known infinite-energy problem. In 
the Born-Infeld model, indeed, the electromagnetic field generated by a point charge has finite 
energy. A crucial role is played by the following peculiar differential operator

Q(u) = −div

(
∇u√

1 − |∇u|2

)
.

Such an operator is present also in classical relativity, where it represents the mean curvature 
operator in Lorentz-Minkowski space, see for instance [6,20].

In the last years many authors focused their attention on problems related to Q in the whole 
RN , with N ≥ 1. In particular, some results for

−div

(
∇u√

1 − |∇u|2

)
= ρ, in RN,

can be found in [10,12–15,24,27,28], under different assumptions about ρ. Here ρ can be con-
sidered as an assigned charge source. See also [5], where the Born-Infeld equation is coupled 
with the nonlinear Schrödinger one.

Little is still known, on the contrary, in the presence of a nonlinearity, namely, for equations 
of this type

−div

(
∇u√

1 − |∇u|2

)
= g(u), in RN. (1.1)

Let us observe that classical variational techniques do not work directly for this problem, due 
to the particular nature of the operator Q. Indeed, at least formally, solutions of (1.1) are critical 
points of the functional

I (u) =
∫
RN

(
1 −

√
1 − |∇u|2

)
−
∫
RN

G(u)dx,

where G is a primitive of g. However, since we have to impose the condition |∇u| ≤ 1 a.e. in 
RN , the lack of regularity of the functional on the set {x ∈RN : |∇u| = 1} requires different and 
non-standard strategies.

One of the first paper dealing with this kind of problem using variational methods is [11], 
where g(s) = |s|p−2s, for p > 2∗ = 2N

N−2 and N ≥ 3. By means of suitable truncation arguments 
(that will be crucial in our approach, as we will see later), the existence of finite energy solutions 
is proved.

We mention, moreover, [2,3,33], where (1.1) was studied by means of ODE-techniques find-
ing solutions which could have infinite energy. In particular, in [2,3], the existence of positive or 
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sign-changing radial solutions is considered for a pure power nonlinearity or under suitable sign 
assumptions on g (a prototype of such nonlinearity is g(s) = −λs + sp , for λ > 0 and p > 1). In 
[33], instead, the existence of oscillating solutions of (1.1), namely, with an unbounded sequence 
of zeros, is proved for nonlinearities such that g′(0) > 0. Finally, in [7], a similar problem is 
considered in an exterior domain.

Our aim is to show existence of finite energy radial solutions involving a large class of opera-
tors and nonlinearities in the spirit of Berestycki and Lions [8,9] and we will present an adequate 
variational approach for the problem. More precisely we consider

{−div
(
a(|∇u|2)∇u

)= g(u), in RN, N ≥ 3,

u(x) → 0, as |x| → +∞,
(1.2)

under the following assumptions about a:

(a0) a : [0, 1) → (0, +∞) is continuous, of class C1 on (0, 1), and [0, 1) 
 s �→ a(s)s is strictly 
convex;

(a1) lim
s→1− a(s) = +∞;

and g:

(g0) g : R → R is continuous and odd;
(g1) for some γ ≥ 2, we have

−∞ < lim inf
s→0

g(s)

|s|γ−1 ≤ lim sup
s→0

g(s)

|s|γ−1 = −m < 0;

(g2) there exists ξ0 > 0 such that G(ξ0) > 0, where

G(s) =
s∫

0

g(t) dt, for s ∈ R.

Clearly, a(s) = (1 − s)α with α < 0 satisfies (a0), (a1), and we get the operator Q for α = −1/2. 
Another important example is the following general mean curvature operator arising in the study 
of hypersurfaces in the Lorentz–Minkowski space LN+1 and in RN+1 given by

a(s) := β(1 − s)−1/2 − γ (1 + s)−1/2, β > 0, γ ≥ 0, (1.3)

see [20,23,29] and references therein.
With regard to g, by assumption (g1), the problem is in the so called positive mass case. We 

will consider also the zero mass case, namely, instead of (g1), we will assume

(g1′) for some γ > 2∗, we have

−∞ < lim inf
s→0

g(s)

γ−1 ≤ lim sup
g(s)

γ−1 = 0.
|s| s→0 |s|
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If the constant γ in the assumption (g1′) is not greater than N , we need also a condition at infinity 
on g. More precisely, we require

(g1′′) whenever N ≥ γ > 2∗, lim sup
s→+∞

g(s)/|s|q∗−1 = 0, for some q ∈
(

Nγ
N+γ

,N
)

,

where q∗ = qN
N−q

. Observe that, clearly, we have 2∗ < γ < q∗ and it is easy to see that a pure 

power non-linearity g(s) = |s|p−2s, with p > 2∗, satisfies assumptions (g1′) and (g1′′). There-
fore we generalize the existence results contained in [11].

We recall that these kinds of hypotheses about g were introduced for the first time in [8,9] for 
the study of

−�u = g(u), in RN, (1.4)

where γ = 2. However, we want to remark that, in contrast to what happens in these previous 
papers, in our case there is no assumption about the behaviour at infinity of g in the positive 
mass case or in the zero mass case if, in (g1′), γ > N . This is a direct consequence of the natural 
framework associated with (1.2), which has to take into account the condition |∇u| ≤ 1 a.e. in 
RN : this ensures that each function is, actually, bounded. See Section 2 for more details.

An intermediate step for the study of (1.2), based on an approximation argument, has been 
widely studied in the literature, e.g., see [34] and references therein. Indeed, by the Taylor ex-
pansion of 1√

1−|u| to the k-th order, we arrive at the approximated problem

Q(u) ≈ −�u − 1

2
�4u − 3

2 · 22 �6u − · · · − (2k − 3)!!
(k − 1)! · 2k−1 �2ku = g(u) in RN. (1.5)

Note that [34] deals precisely with (1.5), where g satisfying more restrictive Berestycki-Lions-
type assumptions. In [34] (see also the references therein), it is not clear if one can solve (1.1)
passing to the limit, as k → +∞. We would like to mention that some partial results using this 
approximation process have been obtained only in case of the fixed-charge source ρ on the right 
hand side instead of the nonlinear term g(u), see, e.g., [12,13,27,28]. Therefore (1.1) requires a 
different variational approach presented in this work.

Our main result reads as follows.

Theorem 1.1. Suppose that a satisfies (a0), (a1) and g satisfies (g0) and (g2). If, in addition,
(g1) holds, or γ > N and (g1′) holds, or γ ≤ N and both (g1′), (g1′′) hold, then there exists a 
nontrivial radial solution u to (1.2) such that

∫
RN

A(|∇u|2) dx,

∫
RN

a(|∇u|2)|∇u|2 dx,

∫
RN

|G(u)|dx < +∞,

where A(s) = ∫ s

0 a(t) dt .

We use a truncation argument applied to a in a similar way as in [11], but due to the lack of 
scaling of the nonlinearity, we use a different variational approach for (1.2). Inspired by [25,26]
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(see also [1,4,21,22]), we will adapt to our problem the method explored considering an auxil-
iary functional that allows to construct a suitable Palais-Smale sequence, which almost satisfies 
a Pohozaev type identity. The compactness properties of the general nonlinear term will be in-
vestigated in a similar way as in [31,32], see Sections 3 and 4 for more details.

The paper is organized as follows. In Section 2, we introduce our functional framework and 
some technical tools. Section 3 and Section 4 will deal, respectively, with the positive mass case 
and the zero mass one and, therein, we will prove our main result.

We conclude this introduction fixing some notations. For any p ≥ 1, we denote by Lp(RN) the 
usual Lebesgue spaces equipped by the standard norm | · |p . In our estimates, we will frequently 
denote by C > 0, c > 0 fixed constants, that may change from line to line, but never depend on 
the variable under consideration. We also use the notation on(1) to indicate a quantity which goes 
to zero as n → +∞. Moreover, for any R > 0, we denote by BR the ball of RN centred at the 
origin with radius R. Finally, if u is a radial function of RN , with an abuse of notation, for any 
x ∈RN , we denote u(x) = u(r), with r = |x|.

Acknowledgments
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nology. This work has been also partially carried out during a stay of A.P. in Poland at Nicolaus 
Copernicus University in Toruń, and at Institute of Mathematics of the Polish Academy of Sci-
ences in Warsaw. J.M. and A.P. would like to express their deep gratitude to these prestigious 
institutions for the support and warm hospitality.
The authors wish to thank Prof. Antonio Azzollini for many inspiring comments and discussions.
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including the case γ = 2 in (g1).

2. Functional framework

In this section we introduce the functional framework related to (1.2) with some useful con-
tinuous and compact embedding properties. Moreover, following [11], we present a truncated 
problem which will play a crucial role in our arguments.

Take any q > 2. Let X 2,q
0 be the completion of C∞

0 (RN) with respect to the following norm

‖u‖0 = (|∇u|22 + |∇u|2q
)1/2

.

Recall that

X 2,q

0 ↪→ Lp(RN), for p ∈

⎧⎪⎨
⎪⎩

[2∗, q∗] if q < N,

[2∗,+∞) if q = N,

[2∗,+∞] if q > N,

and, denoting

X0 := X 2,q = {u ∈ X 2,q : u radially symmetric
}
,
0,rad 0
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we have

X0 ↪→↪→ Lp(RN), for p ∈
{

(2∗, q∗) if q < N,

(2∗,+∞) if q ≥ N,

see e.g. [11,34]. Moreover, as in [11,35], we have the following

Lemma 2.1. Let p ∈ [2, q], if q < N , and p ∈ [2, N), if q ≥ N . Then there exists C > 0 (depend-
ing only on N and p) such that for all u ∈X0, there holds

|u(x)| ≤ C|x|− N−p
p |∇u|p,

for almost every x ∈RN \ {0}.

In the positive mass case we always assume that q > N and let X 2,q,γ be the completion of 
C∞

0 (RN) with respect to the following norm

‖u‖ = (|∇u|22 + |∇u|2q + |u|2γ
)1/2

and, clearly, if γ ≥ 2∗, then X 2,q,γ and X 2,q

0 coincides. Moreover X 2,q,γ is continuously em-
bedded into Lp(RN) for p ∈ [min{2∗, γ }, +∞] and

X := X 2,q,γ

rad = {u ∈ X 2,q,γ : u radially symmetric
}

embeds compactly into Lp(RN), for p ∈ (min{2∗, γ }, +∞).
The following lemma is an extension of the well-known Strauss Lemma [35] and the proof is 

standard, cf. [36].

Lemma 2.2. Let p ≥ 2. There exists C = C(N, p) > 0 such that for all u ∈ W
1,p

rad (RN), N ≥ 2
there holds

|u(x)| ≤ C|x|− N−1
p ‖u‖W 1,p ,

for all |x| ≥ 1.

Lemma 2.3. Let N ≥ 2, γ ≥ 2 and q > max{N, γ }. There exists C = C(N, γ, q) > 0 such that 
for all u ∈X there holds

|u(x)| ≤ C|x|− N−1
γ ‖u‖,

for all |x| ≥ 1.

Proof. Since γ ≥ 2 and q > max{N, γ }, by interpolation arguments X ↪→ W
1,γ

rad (RN) and the 
conclusion follows from Lemma 2.2, where p = γ . �
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In a similar way as in [11] for Q we introduce a truncated problem. Let us fix θ1 ∈ (0, 1). For 
any θ ∈ (0, θ1] we fix q = q(θ) > N such that

q ≥ 2
a′(1 − θ)(1 − θ) + a(1 − θ)

a(1 − θ)
. (2.1)

Then we define a continuous function aθ : [0, +∞) → R+ by

aθ (s) :=
{

a(s) if 0 ≤ s ≤ 1 − θ,

(1 − θ)−
q−2

2 a(1 − θ)s
q−2

2 if s > 1 − θ.

The functions aθ (s) and ϕ(s) := aθ (s)s are differentiable in [0, +∞) \ {1 − θ} and, by (2.1) and
(a0), we deduce that ϕ′(s1) < ϕ′−(1 − θ) ≤ ϕ′+(1 − θ) < ϕ′(s2), for any s1 < 1 − θ < s2.

Lemma 2.4. The map ϕ(s) is strictly convex.

Proof. Clearly ϕ is strictly convex on [0, 1 − θ ] and on [1 − θ, +∞). Take 0 < s < 1 − θ < t . If 
s+t

2 ≤ 1 − θ , then by the convexity we obtain

ϕ(s) − ϕ
( s + t

2

)
> ϕ′( s + t

2

)(
s − s + t

2

)
,

ϕ(1 − θ) − ϕ
( s + t

2

)
> ϕ′( s + t

2

)(
1 − θ − s + t

2

)
,

ϕ(t) − ϕ(1 − θ) > ϕ′+(1 − θ)(t − 1 + θ).

In view of (2.1) we get ϕ′+(1 − θ) ≥ ϕ′( s+t
2

)
and we conclude

ϕ(s) + ϕ(t)

2
> ϕ

( s + t

2

)
.

Similarly we argue if s+t
2 > 1 − θ and we conclude. �

For the positive mass case we will consider the following truncated problem

{
−div

(
aθ (|∇u|2)∇u

)= g(u) in RN,

u ∈X .
(2.2)

For the zero mass case, instead, we will consider the following truncated problem

{
−div

(
aθ (|∇u|2)∇u

)= g(u) in RN,

u ∈X0.
(2.3)

Clearly, if uθ is a solution of (2.2) or of (2.3) such that |∇uθ | ≤ 1 − θ , then uθ is a solution also 
of (1.2).
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Observe that there exists c̄θ = c̄θ (θ) > 0 such that

c̄
(
s2 + |s|q

)
≤ aθ (s

2)s2 ≤ c̄θ

(
s2 + |s|q

)
, for all s ∈R, (2.4)

c̄
(
s2 + |s|q

)
≤ Aθ(s

2) ≤ c̄θ

(
s2 + |s|q

)
, for all s ∈R, (2.5)

where Aθ(s) =
∫ s

0 aθ (t) dt and

c̄ := 2

q
· (1 − θ1)

q−2
2

1 + (1 − θ1)q−2 · min
s∈[0,1)

a(s)

is independent of θ .
We conclude this section with the following lemma, which will play a crucial role in our argu-

ments. The proof of this result seems to be standard but we give the proof for the completeness.

Lemma 2.5. Suppose that un ⇀ u0 in X0 and

lim
n→+∞

∫
RN

aθ (|∇un|2)|∇un|2 dx =
∫
RN

aθ (|∇u0|2)|∇u0|2 dx. (2.6)

Then un → u0 strongly in X0.

Proof. Let ϕ : RN → R be given by ϕ(v) := aθ (|v|2)|v|2, for v ∈ RN . By Lemma 2.4, ϕ is 
strictly convex, hence the map  :X0 → R, such that

(u) :=
∫
RN

ϕ(∇u)dx, for u ∈X0,

is well defined and strictly convex as well. So, since 1
2(∇un + ∇u0) ⇀ ∇u0, we obtain

lim inf
n→+∞

∫
RN

ϕ
(1

2
(∇un + ∇u0)

)
dx ≥

∫
RN

ϕ(∇u0) dx. (2.7)

Then, taking into account the convexity of ϕ, we know that, a.e. in RN ,

ξn := 1

2

(
ϕ(∇un) + ϕ(∇u0)

)− ϕ
(1

2
(∇un + ∇u0)

)
≥ 0,

hence, by (2.6) and (2.7),

lim sup
n→+∞

∫
N

ξn dx = 0. (2.8)
R
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For any k ≥ 1 we define

μk := inf

{
1

2

(
ϕ(v1) + ϕ(v2)

)− ϕ
(1

2
(v1 + v2)

)
: v1, v2 ∈ RN s.t. |v1|, |v2| ≤ k, |v1 − v2| ≥ 1

k

}
,

�n,k :=
{
x ∈ RN : |∇un|, |∇u0| ≤ k, |∇un − ∇u0| ≥ 1

k

}
.

Since μk > 0, by the strict convexity of ϕ, and (2.8) holds, we infer that the Lebesgue measure 
|�n,k| → 0, as n → +∞. Take any ε > 0, we find a subsequence {nk} such that | ⋃∞

k=1 �nk,k| <
ε. Again letting ε → 0 and passing to a subsequence we obtain that ∇un → ∇u0 a.e. on RN . 
Note that aθ is of class C1 on (0, 1 − θ) and (1 − θ, +∞), hence ϕ′ exists almost everywhere. 
Now take s ∈ [0, 1], by (2.4) we observe that the sequence {ϕ′(∇un − s∇u0)∇u0} is uniformly 
integrable and tight and converges a.e. to ϕ′((1 − s)∇u0

)∇u0. In view of the Vitali Convergence 
Theorem we get

∫
RN

ϕ(∇un)dx −
∫
RN

ϕ(∇un − ∇u0) dx =
1∫

0

∫
RN

ϕ′(∇un − s∇u0)∇u0 dx ds

−−−−→
n→+∞

1∫
0

∫
RN

ϕ′((1 − s)∇u0
)∇u0 dx ds

=
∫
RN

ϕ(∇u0) dx.

Since (2.6) holds, we get

∫
RN

ϕ(∇un − ∇u0) dx → 0,

as n → +∞, and by (2.4) we conclude. �
3. The positive mass case

In this section we deal with the positive mass case, namely, we will assume on g (g0), (g1)
and (g2).

Let g1(s) := max{g(s) + msγ−1, 0}, for s ≥ 0, and g2(s) = g1(s) − g(s), for s ≥ 0, and 
gi(s) = −gi(−s) for s < 0. Then g1(s), g2(s) ≥ 0, for s ≥ 0,

lim
s→0

g1(s)/s
γ−1 = 0, (3.1)

g2(s) ≥ msγ−1, for s ≥ 0. (3.2)
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If we set

Gi(s) =
s∫

0

gi(t) dt, for i = 1,2,

then, by (3.2), we have

G2(s) ≥ m

γ
|s|γ , for s ∈R. (3.3)

By (g1) and (3.1), we have that there exist two fixed positive constants, c̄1, c̄2 such that

|g(s)| ≤ c̄1|s|γ−1, for all |s| ≤ c̄2, (3.4)

|G(s)| ≤ c̄1|s|γ , for all |s| ≤ c̄2, (3.5)

|g1(s)| ≤ c̄1|s|γ−1, for all |s| ≤ c̄2, (3.6)

|G1(s)| ≤ c̄1|s|γ , for all |s| ≤ c̄2. (3.7)

Lemma 3.1. For any u ∈ X , 
∫
RN G(u) dx and 

∫
RN g(u)u dx are well defined. The same is true 

for 
∫
RN Gi(u) dx and 

∫
RN gi(u)u dx, for 1 = 1, 2.

Proof. Let u ∈ X . Since X is embedded into Lγ (RN) ∩ L∞(RN), we have that

∫
RN

|G(u)|dx =
∫

{|u|≤c̄2}
|G(u)|dx +

∫
{|u|>c̄2}

|G(u)|dx

≤ c̄1

∫
{|u|≤c̄2}

|u|γ dx + meas{|u| > c̄2} · max{s≤‖u‖∞} |G(s)|

≤ c̄1|u|γγ + meas{|u| > c̄2} · max{s≤‖u‖∞} |G(s)| < +∞.

The arguments are similar for 
∫
RN g(u)u dx, 

∫
RN Gi(u) dx and 

∫
RN gi(u)u dx, 1 = 1, 2. �

Lemma 3.2. If un ⇀ u0 in X , then

lim
n

∫
RN

g1(un)un dx =
∫
RN

g1(u0)u0 dx (3.8)

and

lim
n

∫
N

G1(un) dx =
∫
N

G1(u0) dx. (3.9)
R R
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Proof. Here we follow some ideas of [31, Corollary 3.6] (cf. [32]) and we divide the proof into 
three intermediate steps by which the conclusion follows immediately.
STEP 1: We claim that

lim
n

∫
RN

g1(un)(un − u0) dx = 0. (3.10)

Since {un} is bounded in X then, by the continuous embedding of X into L∞(RN), we infer that 
there exists M > 0 such that |un|∞ ≤ M , for any n ≥ 1. Take any ε > 0 and β > 2∗. Then, by 
(3.1), we find 0 < δ < M and cε > 0 such that

|g1(s)| ≤ ε|s|γ−1 if |s| ∈ [0, δ],
|g1(s)| ≤ cε|s|β−1 if |s| ∈ (δ,M].

Therefore

∫
RN

|g1(un)(un − u0)|dx ≤ ε

∫
RN

|un|γ−1|un − u0|dx + cε

∫
RN

|un|β−1|un − u0|dx,

and, by the compact embedding of X into Lβ(RN), the boundedness of the sequence {un} in X , 
we infer that

lim sup
n

∫
RN

|g1(un)(un − u0)|dx ≤ εC

for some constant C > 0 and so (3.10) is proved.
STEP 2: We claim that

lim
n

∫
RN

g1(un)u0 dx =
∫
RN

g1(u0)u0 dx.

Since the sequence {g1(un)u0} is uniformly integrable and tight, then the conclusion follows by 
Vitali Convergence Theorem.
STEP 3: We claim that

lim
n

⎛
⎜⎝ ∫
RN

g1(un)un dx −
∫
RN

g1(un)(un − u0) dx

⎞
⎟⎠=

∫
RN

g1(u0)u0 dx.

Indeed, if we set φn(s) = g1(un)(un − su0), for any n ∈ N and s ∈ [0, 1], taking in account 
Step 2, we have
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lim
n

⎛
⎜⎝ ∫
RN

g1(un)un dx −
∫
RN

g1(un)(un − u0) dx

⎞
⎟⎠

= lim
n

∫
RN

(
φn(0) − φn(1)

)
dx = − lim

n

∫
RN

⎛
⎝ 1∫

0

φ′
n(s) ds

⎞
⎠dx

=
1∫

0

⎛
⎜⎝lim

n

∫
RN

g1(un)u0 dx

⎞
⎟⎠ds =

1∫
0

⎛
⎜⎝ ∫
RN

g1(u0)u0 dx

⎞
⎟⎠ds = −

1∫
0

⎛
⎜⎝ ∫
RN

φ′
0(s) dx

⎞
⎟⎠ds

=
∫
RN

(
φ0(0) − φ0(1)

)
dx =

∫
RN

g1(u0)u0 dx.

The proof of (3.9) is similar. �
Solutions of (2.2) will be found as critical points of the functional Iθ :X →R defined as

Iθ (u) = 1

2

∫
RN

Aθ (|∇u|2) dx +
∫
RN

G2(u) dx −
∫
RN

G1(u) dx.

The functional is well defined in X by (2.5).

Lemma 3.3. For any θ ∈ (0, θ1], the functional Iθ :X →R verifies the mountain pass geometry. 
More precisely:

(i) there are α, ρ > 0 such that Iθ (u) ≥ α, for ‖u‖ = ρ;
(ii) there is ū ∈ X \ {0}, independent of θ ∈ (0, θ1], with ‖ū‖ > ρ and |∇ū| < 1 − θ1, almost 

everywhere in RN , and such that Iθ (ū) < 0.

Proof. (i) By the continuous embedding of X into L∞(RN), and by (3.1), we can consider ρ > 0
sufficiently small such that

G1(u(x)) ≤ m

2γ
|u(x)|γ , a.e. x ∈RN and for any u ∈ X with ‖u‖ = ρ.

Hence, by (3.3) and (2.5), for any u ∈X with ‖u‖ = ρ, we have

Iθ (u) ≥ c̄

2

(
|∇u|22 + |∇u|qq

)
+ m

2γ
|u|γγ ≥ c‖u‖β ≥ α > 0,

where β = max{2, q, γ }.
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(ii) Let uR ∈X such that, for any x ∈RN ,

uR(x) :=

⎧⎪⎨
⎪⎩

ξ0 in BR,

− ξ0√
R

|x| + ξ0(1 + √
R) in B

R+√
R

\ BR,

0 in RN \ B
R+√

R
.

Arguing as in [8], for R sufficiently large, we have 
∫
RN G(uR) dx > 0 and, clearly, |∇uR| < 1 −

θ1. Moreover, for any t > 1, we have also that |∇uR(·/t)| ≤ 1 − θ1 and so, denoting ū = uR(·/t), 
with R and t sufficiently large and independently by θ ∈ (0, θ1], we have ‖ū‖ > ρ and

Iθ (ū) ≤ c1

(
tN−2|∇uR|22 + tN−q |∇uR|qq

)
− tN

∫
RN

G(uR)dx < 0. �

Let us define the mountain pass level for the functional Iθ

mθ := inf
γ∈�

max
t∈[0,1] Iθ (γ (t)),

where

� := {γ ∈ C([0,1],X ) | γ (0) = 0, γ (1) = ū}.
By Lemma 3.3, we deduce that mθ ≥ α, for any θ ∈ (0, θ1].

Observe that, since |∇ū| < 1 − θ1, we have that Iθ1(t ū) = Iθ (t ū), for any t ∈ [0, 1] and for 
any θ ∈ (0, θ1]. Hence we deduce that

mθ ≤ max
t∈[0,1] Iθ (t ū) = max

t∈[0,1] Iθ1(t ū),

for any θ ∈ (0, θ1]. Hence there exists c > 0 (independent of θ ∈ (0, θ1]) such that

0 < mθ ≤ c, for any θ ∈ (0, θ1]. (3.11)

Following [25,26], we define the functional Jθ : R ×X → R as

Jθ (σ,u) = Iθ (u(e−σ ·)) = eNσ

2

∫
RN

Aθ (e
−2σ |∇u|2) dx + eNσ

∫
RN

G2(u) dx − eNσ

∫
RN

G1(u) dx.

With similar arguments of Lemma 3.3, also Jθ has a mountain pass geometry and we can define 
its mountain pass level as

m̃θ := inf
(σ,γ )∈�×�

max
t∈[0,1]Jθ

(
σ(t), γ (t)

)
,

where

� := {σ ∈ C([0,1],R) | σ(0) = σ(1) = 0}.
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Observe that arguing as in [25, Lemma 3.1], we obtain

Lemma 3.4. For any θ ∈ (0, θ1], the mountain pass levels of Iθ and Jθ coincide, namely mθ =
m̃θ .

Now, as an immediate consequence of Ekeland’s variational principle [37, Theorem 2.8] (cf. 
[26, Lemma 2.3]) we obtain the following results.

Lemma 3.5. Let θ ∈ (0, θ1] and ε > 0. Suppose that γ̃ ∈ � × � satisfies

max
t∈[0,1]Jθ (γ̃ (t)) ≤ mθ + ε,

then there exists (σ, u) ∈R ×X such that

(1) distR×X
(
(θ, u), γ̃ ([0, 1]))≤ 2

√
ε;

(2) Jθ (σ, u) ∈ [mθ − ε, mθ + ε];
(3) ‖DJθ(σ, u)‖R×X ∗ ≤ 2

√
ε.

Proposition 3.6. For any θ ∈ (0, θ1], there exists a sequence {(σn, un)} ⊂ R × X such that, as 
n → +∞, we get

(1) σn → 0;
(2) Jθ (σn, un) → mθ ;
(3) ∂σ Jθ (σn, un) → 0;
(4) ∂uJθ (σn, un) → 0 strongly in X ∗.

Proof. In view of Lemma 3.5 we conclude by letting ε → 0. �
Now we find a radial solution of the truncated problem (2.2).

Proposition 3.7. For any θ ∈ (0, θ1], there exists uθ ∈ X a non-trivial solution of (2.2) such 
Iθ (uθ ) = mθ . Moreover there exists C > 0 such that

‖uθ‖ ≤ C, for any θ ∈ (0, θ1]. (3.12)

Finally uθ is a weak solution of

−(rN−1aθ (|u′
θ (r)|2)u′

θ (r)
)′ = rN−1g(uθ (r)), (3.13)

namely

+∞∫
0

rN−1aθ (|u′
θ (r)|2)u′

θ (r)v
′(r) dr =

+∞∫
0

rN−1g(uθ (r))v(r) dr,

for all v ∈ X .
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Proof. Fix θ ∈ (0, θ1]. By Proposition 3.6, there exists a sequence {(σn, un)} ⊂ R ×X such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eNσn

2

∫
RN

Aθ (e
−2σn |∇un|2) dx + eNσn

∫
RN

G2(un) dx − eNσn

∫
RN

G1(un) dx = mθ + on(1),

NeNσn

2

∫
RN

Aθ (e
−2σn |∇un|2) dx − e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx

+ NeNσn

∫
RN

G2(un) dx − NeNσn

∫
RN

G1(un) dx = on(1),

e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx + eNσn

∫
RN

g2(un)un dx

− eNσn

∫
RN

g1(un)un dx = on(1)‖un‖.

(3.14)
From the first and the second equation of the previous system we get

e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx = Nmθ + on(1).

Therefore, since σn → 0, as n → +∞, by (2.4) we deduce that {un} is a bounded sequence in 
X0 and so also in L∞(RN), namely there exists C̄ > 0 such that |un|∞ ≤ C̄, for any n ≥ 1. This 
implies that, by (3.1) and Lemma 2.1, there exists R > 1 such that

G1(un(x)) ≤ m

2γ
|un(x)|γ , a.e. x ∈ RN with |x| ≥ R and for any n ≥ 1.

Hence∫
RN

G1(un) dx =
∫
BR

G1(un) dx +
∫

RN\BR

G1(un) dx ≤ C max
{s≤C̄}

|G1(s)| + m

2γ

∫
RN

|un(x)|γ dx.

By this, by (3.3) and by the first equation of (3.14), we infer that {un} is a bounded sequence also 
in X . Then there exists uθ ∈X such that un ⇀ uθ in X . Since ∂uJθ (σn, un) → 0 strongly in X ∗
and σn → 0, we have that uθ is a weak (possibly trivial) solution of (2.2) and so it satisfies

∫
RN

aθ (|∇uθ |2)|∇uθ |2 dx +
∫
RN

g2(uθ )uθ dx =
∫
RN

g1(uθ )uθ dx.

Since un ⇀ uθ in X , by the weak lower semicontinuity and the Fatou’s Lemma we have that
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∫
RN

aθ (|∇uθ |2)|∇uθ |2 dx ≤ lim inf
n→+∞

∫
RN

aθ (|∇un|2)|∇un|2 dx,

∫
RN

g2(uθ )uθ dx ≤ lim inf
n→+∞

∫
RN

g2(un)un dx;

while, by Lemma 3.2, we have∫
RN

g1(uθ )uθ dx = lim
n→+∞

∫
RN

g1(un)un dx.

Therefore, by the third equation of (3.14),∫
RN

aθ (|∇uθ |2)|∇uθ |2 dx +
∫
RN

g2(uθ )uθ dx

≤ lim inf
n→+∞

⎡
⎢⎣ ∫
RN

aθ (|∇un|2)|∇un|2 dx +
∫
RN

g2(un)un dx

⎤
⎥⎦

= lim inf
n→+∞

⎡
⎢⎣e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx + eNσn

∫
RN

g2(un)un dx

⎤
⎥⎦

= lim inf
n→+∞

⎡
⎢⎣eNσn

∫
RN

g1(un)un dx + on(1)‖un‖
⎤
⎥⎦

=
∫
RN

g1(uθ )uθ dx =
∫
RN

aθ (|∇uθ |2)|∇uθ |2 dx +
∫
RN

g2(uθ )uθ dx

and so ∫
RN

aθ (|∇uθ |2)|∇uθ |2 dx = lim
n→+∞

∫
RN

aθ (|∇un|2)|∇un|2 dx, (3.15)

∫
RN

g2(uθ )uθ dx = lim
n→+∞

∫
RN

g2(un)un dx. (3.16)

In view of Lemma 2.5 equation (3.15) implies that un → uθ strongly in X0.
Moreover, since, by (3.2), we know that for any s ∈ R we can write g2(s)s = m|s|γ + h(s), 
where h is a non-negative continuous function, by Fatou’s Lemma we deduce that∫

N

|uθ |γ dx ≤ lim inf
n→+∞

∫
N

|un|γ dx,
R R
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∫
RN

h(uθ ) dx ≤ lim inf
n→+∞

∫
RN

h(un) dx.

These last two inequalities and (3.16) imply that∫
RN

|uθ |γ dx = lim
n→+∞

∫
RN

|un|γ dx

and so, actually, un → uθ strongly in X and so Iθ (uθ ) = mθ .
Finally, since ∫

RN

aθ (|∇uθ |2)|∇uθ |2 dx = Nmθ,

by (3.11) and (2.4), we prove that there exists C > 0 such that ‖uθ‖0 ≤ C, for any θ ∈ (0, θ1]. 
Since {uθ } are uniformly bounded in X0 and so also in L∞(RN), there exists C̄ > 0 such that 
|uθ |∞ ≤ C̄, for any θ ∈ (0, θ1]. This implies that, by (3.1) and Lemma 2.1, there exists R > 1
such that

G1(uθ (x)) ≤ m

2γ
|uθ (x)|γ , a.e. x ∈RN with |x| ≥ R and for any θ ∈ (0, θ1].

Hence∫
RN

G1(uθ ) dx =
∫
BR

G1(uθ ) dx +
∫

RN\BR

G1(uθ ) dx ≤ C max
{s≤C̄}

|G1(s)| + m

2γ

∫
RN

|uθ (x)|γ dx.

By this, by (3.3), since Iθ (uθ ) = mθ and by (3.11), we infer that exists C > 0 such that ‖uθ‖ ≤ C

for any θ ∈ (0, θ1]. �
We are now able to conclude the proof of our main theorem in the positive mass case.

Proof of Theorem 1.1. By Proposition 3.7, for any θ ∈ (0, θ1], there exists uθ ∈ X a nontrivial 
solution of (2.2) such Iθ (uθ ) = mθ . Since q > N , uθ ∈ L∞(RN) and since uθ is a solution of 
(3.13) in (0, +∞), it is easy to check that uθ is regular for r > 0.
CLAIM 1: uθ ∈ C1,α in a neighbourhood of 0 for some α ∈ (0, 1).
Integrating the equation (3.13), for any r2 > r1 > 0, we have

−rN−1
2 aθ (|u′

θ (r2)|2)u′
θ (r2) + rN−1

1 aθ (|u′
θ (r1)|2)u′

θ (r1) =
r2∫

r1

sN−1g(uθ (s)) ds.

Observe that

r2∫
sN−1|g(uθ (s))|ds ≤ C(rN

2 − rN
1 ),
r1
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for some constant C > 0. Thus A := limr→0 rN−1aθ (|u′
θ (r)|2)u′

θ (r) exists and it is finite. If 
A �= 0, then limr→0 |u′

θ (r)| = +∞. Since we can find constants c1, c2, ρ > 0 such that

c1|s|q ≤ aθ (s
2)s2 ≤ c2|s|q, for |s| > ρ,

and uθ is constant on a sphere centred at 0, in view of Lieberman’s result [30], uθ ∈ C1,α in 
a neighbourhood of 0 for some α ∈ (0, 1). This contradicts limr→0 |u′

θ (r)| = +∞. Therefore 
A = 0. Furthermore, since for any r2 > r1 > 0

−aθ (|u′
θ (r2)|2)u′

θ (r2) + rN−1
1

rN−1
2

aθ (|u′
θ (r1)|2)u′

θ (r1),= 1

rN−1
2

r2∫
r1

sN−1g(uθ (s)) ds,

and letting r1 → 0, we deduce that

∣∣∣aθ (|u′
θ (r2)|2)u′

θ (r2)

∣∣∣≤ 1

rN−1
2

r2∫
0

sN−1|g(uθ (s))|ds ≤ Cr2.

Therefore

lim
r→0

aθ (|u′
θ (r)|2)u′

θ (r) = 0,

hence

lim
r→0

u′
θ (r) = 0.

Since, for some constants c1, c2, ρ > 0, we also have

c1s
2 ≤ aθ (s

2)s2 ≤ c2s
2, for |s| < ρ,

in view of [30], we conclude the claim.
CLAIM 2: There exists C > 0 such that

|aθ (|u′
θ (r)|2)u′

θ (r)| ≤ C, for any r ≥ 0 and θ ∈ (0, θ1]. (3.17)

By the regularity of uθ , we infer that u′
θ (0) = 0 and so also

aθ (|u′
θ (0)|2)u′

θ (0) = 0.

Now, integrating the equation (3.13), for any r > 0, we have

−aθ (|u′
θ (r)|2)u′

θ (r) = 1

rN−1

r∫
sN−1g(uθ (s)) ds.
0
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By Lemma 2.3 and by (3.12), we deduce that there exists R > 1, such that

|uθ (r)| ≤ c̄2, for any θ ∈ (0, θ1] and for any r > R, (3.18)

where c̄2 is defined in (3.4).
By the continuous embedding of X in L∞(RN) and by (3.12), there exists C > 0 such that 
|uθ |∞ ≤ C‖uθ‖ ≤ C, for any θ ∈ (0, θ1], and so we have that, for any 0 < r ≤ R and θ ∈ (0, θ1],

|aθ (|u′
θ (r)|2)u′

θ (r)| ≤
1

rN−1

r∫
0

sN−1|g(uθ (s))|ds ≤ C.

If r > R, then

|aθ (|u′
θ (r)|2)u′

θ (r)| ≤
1

rN−1

r∫
0

sN−1|g(uθ (s))|ds

≤ 1

rN−1

⎛
⎝ R∫

0

sN−1|g(uθ (s))|ds +
r∫

R

sN−1|g(uθ (s))|ds

⎞
⎠

≤ C

rN−1 + c1

rN−1

r∫
1

sN−1|g(uθ (s))|ds

︸ ︷︷ ︸
(A)

.

We have to estimate (A). First of all, Lemma 2.3 and (3.12), for r > 1, we have that

|uθ (r)| ≤ Cr
− N−1

γ ‖uθ‖ ≤ C̄r
− N−1

γ .

From (3.18) and (3.4), and since γ ≥ 2, we get

(A) ≤ C

rN−1

r∫
1

sN−1|uθ (s)|γ−1 ds ≤ C

rN−1

r∫
1

s
N−1− N−1

γ
(γ−1)

ds ≤ C
(
r

1− N−1
γ

(γ−1) + 1
)

≤ C.

Therefore the claim is proved.
CLAIM 3: There exists θ̄ ∈ (0, θ1] such that

|u′̄
θ
(r)| ≤ 1 − θ̄ , for any r ≥ 0. (3.19)

Suppose by contradiction that (3.19) does not hold, then there exists a sequence {θn} ⊂ (0, θ1]
which tends to zero and a sequence {rn} ⊂ R+ such that

lim |u′
θn

(rn)| = 1,

n
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which implies, by (a1), that

lim
n

aθn(|u′
θn

(rn)|)|u′
θn

(rn)| = +∞.

Thus we obtain a contradiction with (3.17).

Finally, observe that uθ̄ solves (1.2). Moreover, taking into account (2.4), (2.5) and Lemma 3.1, 
we get

∫
RN

A(|∇uθ̄ |2) dx,

∫
RN

a(|∇uθ̄ |2)|∇uθ̄ |2 dx,

∫
RN

|G(uθ̄ )|dx < +∞. �

4. The zero mass case

In this section we deal with the zero mass case, namely, we will assume that g satisfies (g0)
and (g2). Moreover γ > N and (g1′) holds, or γ ≤ N and both (g1′), (g1′′) hold. In the former 
case, for the definition of X0, we fix q ∈ (N, γ ), while in the latter, q is given by (g1′′).

Let g1(s) := max{g(s), 0} and g2(s) := g1(s) − g(s) for s ≥ 0 and then we can extend them 
as odd functions for s < 0. Then g1(s), g2(s) ≥ 0, for s ≥ 0 and

lim
s→0

g1(s)/|s|γ−1 = 0, for some γ > 2∗. (4.1)

Moreover, whenever γ ∈ (2∗, N ], we have

lim
s→+∞g1(s)/|s|q∗−1 = 0. (4.2)

For i = 1, 2 we set

Gi(s) =
s∫

0

gi(t) dt

and note that Gi(s) ≥ 0 for s ∈R.
In view of (g1′), there exist two positive constants, c̄1 and c̄2, such that

|g(s)| ≤ c̄1|s|γ−1, for all |s| ≤ c̄2, (4.3)

|G(s)| ≤ c̄1|s|γ , for all |s| ≤ c̄2, (4.4)

|g1(s)| ≤ c̄1|s|γ−1, for all |s| ≤ c̄2, (4.5)

|G1(s)| ≤ c̄1|s|γ , for all |s| ≤ c̄2. (4.6)

Moreover, in the case γ ∈ (2∗, N ], by (g1′) and (g1′′), there exists a positive constant c̄3 such 
that
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|g(s)| ≤ c̄3

(
|s|γ−1 + |s|q∗−1

)
, for all s ∈R, (4.7)

|G(s)| ≤ c̄3

(
|s|γ + |s|q∗)

, for all s ∈R, (4.8)

|g1(s)| ≤ c̄3

(
|s|γ−1 + |s|q∗−1

)
, for all s ∈R, (4.9)

|G1(s)| ≤ c̄3

(
|s|γ + |s|q∗)

, for all s ∈R. (4.10)

Arguing as in the proof of Lemma 3.1, we have

Lemma 4.1. For any u ∈X0, 
∫
RN G(u) dx and 

∫
RN g(u)u dx are well defined. The same is true 

for 
∫
RN Gi(u) dx and 

∫
RN gi(u)u dx, for 1 = 1, 2.

The following compactness results hold.

Lemma 4.2. If un ⇀ u0 in X0, then

lim
n

∫
RN

g1(un)un dx =
∫
RN

g1(u0)u0 dx

and

lim
n

∫
RN

G1(un) dx =
∫
RN

G1(u0) dx.

Proof. In the case γ > N , the arguments are similar to those of the proof of Lemma 3.2. Here 
we treat only the case γ ∈ (2∗, N ], enlightening the main differences.
By (4.1) and (4.2), take any ε > 0 and β ∈ (2∗, q∗), then we find δ > 0 and cε > 0 such that

|g1(s)| ≤ ε|s|γ−1 if |s| ∈ [0, δ],
|g1(s)| ≤ cε|s|β−1 if |s| ∈ (δ,1/δ),

|g1(s)| ≤ ε|s|q∗−1 if |s| ∈ [1/δ,+∞).

Therefore∫
RN

|g1(un)(un − u0)|dx ≤ ε

∫
RN

|un|γ−1|un − u0|dx + cε

∫
RN

|un|β−1|un − u0|dx

+ ε

∫
RN

|un|q∗−1|un − u0|dx,

and, by the compact embedding of X0 into Lβ(RN), the boundedness of the sequence {un} in 
X0, we infer that
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lim sup
n

∫
RN

|g1(un)(un − u0)|dx ≤ εC

for some constant C > 0. Now the proof goes on in a similar way as in Lemma 3.2. �
Solutions of (2.3) will be found as critical points of the functional Iθ :X0 →R defined as

Iθ (u) = 1

2

∫
RN

Aθ (|∇u|2) dx +
∫
RN

G2(u) dx −
∫
RN

G1(u) dx,

which is well defined in X0. Here and in what follows, with an abuse of notation, we use Iθ , Jθ , 
mθ , m̃θ , �, and � in the zero mass setting, as well.

We show that Iθ satisfies the mountain pass geometry.

Lemma 4.3. For any θ ∈ (0, θ1], the functional Iθ : X0 →R verifies the mountain pass geometry. 
More precisely:

(i) there are α, ρ > 0 such that Iθ (u) ≥ α, for ‖u‖0 = ρ;
(ii) there is ū ∈ X0 \ {0}, independent of θ ∈ (0, θ1], with ‖ū‖0 > ρ and |∇ū| < 1 − θ1, almost 

everywhere in RN , and such that Iθ (ū) < 0.

Proof. (i) We start with the case γ > N . Since q ∈ (N, γ ), by the continuous embedding of X0
into L∞(RN), and by (4.4), we can consider ρ > 0 sufficiently small such that

G(u(x)) ≤ c̄1|u(x)|γ , a.e. x ∈ RN and for any u ∈X0 with ‖u‖0 = ρ.

Hence, by (2.5) and since X0 is embedded into Lγ (RN), for any u ∈X0 with ‖u‖0 = ρ, we have

Iθ (u) ≥ c
(
|∇u|22 + |∇u|qq − |u|γγ

)
≥ c

(
|∇u|22 + |∇u|qq − |∇u|γ2 − |∇u|γq

)
≥ α > 0.

Let us consider now the case γ ∈ (2∗, N ]. By (4.1) and (4.2), take any ε > 0 and β ∈
(max{2∗, q}, q∗), then we find cε > 0 such that

0 ≤ G1(s) ≤ ε
(
|s|γ + |s|q∗)+ cε|s|β, for all s ∈ R.

Hence, if ρ < 1, we have

Iθ (u) ≥ c
(
|∇u|22 + |∇u|qq

)
− ε

(
|u|γγ + |u|q∗

q∗
)

− cε|u|ββ
≥ c

[
|∇u|22 + |∇u|qq − ε

(
|∇u|γ2 + |∇u|γq + |∇u|q∗

2 + |∇u|q∗
q

)
−
(
|∇u|β2 + |∇u|βq

)]
≥ c

[
‖u‖q

0 − ‖u‖β
0 − ε

(
‖u‖γ

0 + ‖u‖q∗
0

)]
≥ α > 0.

(ii) As in the proof of Lemma 3.3. �
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Let us define the mountain pass level for the functional Iθ

mθ := inf
γ∈�

max
t∈[0,1] Iθ (γ (t)),

where

� := {γ ∈ C([0,1],X0) | γ (0) = 0, γ (1) = ū}.

By Lemma 4.3, we deduce that mθ ≥ α, for any θ ∈ (0, θ1].
Observe that, since |∇ū| < 1 − θ1, we have that Iθ1(t ū) = Iθ (t ū), for any t ∈ [0, 1] and for 

any θ ∈ (0, θ1]. Hence we deduce that

mθ ≤ max
t∈[0,1] Iθ (t ū) = max

t∈[0,1] Iθ1(t ū),

for any θ ∈ (0, θ1]. Hence there exists c > 0 (independent of θ ∈ (0, θ1]) such that

0 < mθ ≤ c2, for any θ ∈ (0, θ1]. (4.11)

As done in Section 3, we define the functional Jθ : R ×X0 → R as

Jθ (σ,u) = Iθ (u(e−σ ·)) = eNσ

2

∫
RN

Aθ (e
−2σ |∇u|2) dx + eNσ

∫
RN

G2(u) dx − eNσ

∫
RN

G1(u) dx.

The functional Jθ has a mountain pass geometry and we can define its mountain pass level as

m̃θ := inf
(σ,γ )∈�×�

max
t∈[0,1]Jθ

(
σ(t), γ (t)

)
,

where

� := {σ ∈ C([0,1],R) | σ(0) = σ(1) = 0}.

The following holds

Lemma 4.4. For any θ ∈ (0, θ1], the mountain pass levels of Iθ and Jθ coincide, namely mθ =
m̃θ .

Lemma 4.5. Let θ ∈ (0, θ1] and ε > 0. Suppose that γ̃ ∈ � × � satisfies

max
t∈[0,1]Jθ (γ̃ (t)) ≤ mθ + ε,

then there exists (σ, u) ∈R ×X0 such that

(1) distR×X0

(
(θ, u), γ̃ ([0, 1]))≤ 2

√
ε;

(2) Jθ (σ, u) ∈ [mθ − ε, mθ + ε];
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(3) ‖DJθ(σ, u)‖R×X ∗ ≤ 2
√

ε.

Proposition 4.6. For any θ ∈ (0, θ1], there exists a sequence {(σn, un)} ⊂ R × X0 such that, as 
n → +∞, we get

(1) σn → 0;
(2) Jθ (σn, un) → mθ ;
(3) ∂σ Jθ (σn, un) → 0;
(4) ∂uJθ (σn, un) → 0 strongly in X ∗

0 .

Proposition 4.7. For any θ ∈ (0, θ1], there exists uθ ∈ X0 a non-trivial solution of (2.2) such 
Iθ (uθ ) = mθ . Moreover there exists C > 0 such that

‖uθ‖0 ≤ C, for any θ ∈ (0, θ1]. (4.12)

Finally uθ is a weak solution of

−(rN−1aθ (|u′
θ (r)|2)u′

θ (r)
)′ = rN−1g(uθ (r)), (4.13)

namely

+∞∫
0

rN−1aθ (|u′
θ (r)|2)u′

θ (r)v
′(r) dr =

+∞∫
0

rN−1g(uθ (r))v(r) dr,

for all v ∈ X0.

Proof. Fix θ ∈ (0, θ1]. By Proposition 4.6, there exists a sequence {(σn, un)} ⊂ R ×X0 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eNσn

2

∫
RN

Aθ (e
−2σn |∇un|2) dx + eNσn

∫
RN

G2(un) dx − eNσn

∫
RN

G1(un) dx = mθ + on(1),

NeNσn

2

∫
RN

Aθ (e
−2σn |∇un|2) dx − e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx

+ NeNσn

∫
RN

G2(un) dx − NeNσn

∫
RN

G1(un) dx = on(1),

e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx + eNσn

∫
RN

g2(un)un dx

− eNσn

∫
RN

g1(un)un dx = on(1)‖un‖.

From the first and the second equation of the previous system we get
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e(N−2)σn

∫
RN

aθ (e
−2σn |∇un|2)|∇un|2 dx = Nmθ + on(1).

Therefore, since σn → 0, as n → +∞, by (2.4) we deduce that {un} is a bounded sequence in 
X0. Then there exists uθ ∈ X0 such that un ⇀ uθ in X0. Since ∂uJθ (σn, un) → 0 strongly in X ∗

0
and σn → 0, we have that uθ is a weak (possibly trivial) solution of (2.3) and so it satisfies∫

RN

aθ (|∇uθ |2)|∇uθ |2 dx +
∫
RN

g2(uθ )uθ dx =
∫
RN

g1(uθ )uθ dx.

Arguing as in proof of Proposition 3.7 we can show that∫
RN

aθ (|∇uθ |2)|∇uθ |2 dx = lim
n→+∞

∫
RN

aθ (|∇un|2)|∇un|2 dx.

In view of Lemma 2.5, we have that un → uθ strongly in X0 and so Iθ (uθ ) = mθ .
Finally, since ∫

RN

aθ (|∇uθ |2)|∇uθ |2 dx = Nmθ,

by (4.11) and (2.4), we prove that there exists C > 0 such that ‖uθ‖0 ≤ C, for any θ ∈ (0, θ1]. �
We are now able to conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. By Proposition 4.7, for any θ ∈ (0, θ1], there exists uθ ∈ X0 a nontrivial 
solution of (2.3) such Iθ (uθ ) = mθ . When γ > N , since q > N , the space X0 is embedded into 
L∞(RN) and the regularity arguments and the estimates of Section 3 can be adapted with slight 
changes. Therefore, here we deal just with the case 2∗ < γ ≤ N and so we have to assume, in 
addition, (g1′′). Being q < N , we cannot repeat the arguments of the previous section and now 
we follow some ideas of [11, Lemma 3.2]. Since uθ is a solution of (4.13) in (0, +∞), it is 
easy to check that uθ is regular for r > 0. Moreover, rN−1aθ (|u′

θ (r)|2)u′
θ (r) satisfies the Cauchy 

condition at the origin so that it has a finite limit as r → 0. We claim that

lim
r→0

rN−1aθ (|u′
θ (r)|2)u′

θ (r) = 0. (4.14)

Suppose, by contradiction, that it is different from zero and then there should exist r0 > 0 such 
that |u′

θ (r)| > 1 − θ , for r ∈ (0, r0]. Therefore, for r sufficiently small,

C ≤
∣∣∣rN−1aθ (|u′

θ (r)|2)u′
θ (r)

∣∣∣= rN−1|u′
θ (r)|q−1,

namely

|u′ (r)| ≥ Cr
− N−1

q−1 .
θ
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By this we have

rN−1aθ (|u′
θ (r)|2)|u′

θ (r)|2 = rN−1|u′
θ (r)|q ≥ Cr

− N−1
q−1

near 0, which is not integrable since q < N . Since uθ is a solution of (4.13), we get a contradic-
tion.
Let us prove the following
CLAIM: there exists C > 0 such that

|aθ (|u′
θ (r)|2)u′

θ (r)| ≤ C, for any r ≥ 0 and θ ∈ (0, θ1].

By the regularity of uθ , we infer that u′
θ (0) = 0 and so also

aθ (|u′
θ (0)|2)u′

θ (0) = 0.

We now consider the case r > 0. Integrating the equation (4.13), for any r > 0, we have

−aθ (|u′
θ (r)|2)u′

θ (r) = 1

rN−1

r∫
0

sN−1g(uθ (s)) ds.

By Lemma 2.1 and by (4.12), we deduce that there exists R > 1, such that

|uθ (r)| ≤ c̄2, for any θ ∈ (0, θ1] and for any r > R, (4.15)

where c̄2 is given in (4.3).
By the continuous embedding of X0 in Lp(RN), for p ∈ [2∗, q∗], and (4.12), there exists C > 0
such that |uθ |p ≤ C‖uθ‖0 ≤ C, for p ∈ [2∗, q∗] and any θ ∈ (0, θ1]. So, using (4.7), we have 
that, for any 0 < r ≤ R and θ ∈ (0, θ1],

|aθ (|u′
θ (r)|2)u′

θ (r)| ≤
1

rN−1

r∫
0

sN−1|g(uθ (s))|ds ≤ C.

If r > R, then

|aθ (|u′
θ (r)|2)u′

θ (r)| ≤
1

rN−1

r∫
0

sN−1|g(uθ (s))|ds

≤ 1

rN−1

⎛
⎝ R∫

sN−1|g(uθ (s))|ds +
r∫
sN−1|g(uθ (s))|ds

⎞
⎠

0 R
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≤ C

rN−1 + c1

rN−1

r∫
1

sN−1|g(uθ (s))|ds

︸ ︷︷ ︸
(A)

.

We have to estimate (A). First of all, by Lemma 2.1 and (4.12), for r > 1, we have that

|uθ (r)| ≤ Cr− N−2
2 |∇uθ |2 ≤ C̄r− N−2

2 .

Hence, by (4.15) and (4.7), since 2∗ < γ < q∗,

(A) ≤ C

rN−1

r∫
1

sN−1(|uθ (s)|γ−1 + |uθ (s)|q∗−1)ds

≤ C

rN−1

r∫
1

sN−1− N−2
2 (γ−1) ds ≤ C

(
r1− N−2

2 (γ−1) + 1
)

≤ C.

Therefore the claim is proved.
Now we conclude as in the previous section. �
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