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Abstract: Recently, several prominent logistic companies in Europe and U.S. are seriously considering the idea of using drones 
launched from trucks and working in parallel to deliver packages. In the relevant literature, a novel problem formulation 
called Traveling Salesman Problem with Drone (TSP-D) has been introduced, and some modeling and solution approaches 
have been presented. Existing approaches are based on the main assumption that the truck can dispatch and pick up a drone 
only at a node, i.e., the depot or a customer location. In this work, we present a novel approach aimed to maximize the drone 
usage in parcel delivering. We consider that a truck can deliver and pick a drone up not only at a node but also along a route 
arc (en-route). In this way, the operations of a drone are not strictly related to the customers’ position, but it can serve a 
wider area along the route. We tested the proposed heuristic on benchmark instances and analyzed the benefits introduced 
with the en-route approach. 

 

1. Introduction 

Several companies which are interested in logistics 

have put considerable effort into developing delivery systems 

using drones, also called unmanned aerial vehicles (UAVs), 

for transporting parcels, e.g. Amazon’s Prime Air project. 

The new distribution method has been deployed to support 

parcel delivery traditionally handled only by trucks. It brings 

different benefits to logistic transportation such as avoiding 

the congestion of traditional road networks by flying over 

them, higher speeds than trucks, and lower transportation 

costs per kilometer. However, some disadvantages should be 

considered since the drones are small battery-powered 

vehicles. Indeed, their flight distance and loading capabilities 

are limited, resulting in restricted travel distance and parcel 

size. Instead, a truck has the advantage of long-range travel 

capability and can carry large and heavy cargo, but it is also 

heavy, slow and cost inefficient. For these reasons, the joint 

use of truck and drones working in parallel can overcome 

some disadvantages and increase benefits. In fact, a truck 

travels with the drone until reaching a close customer location, 

allowing the drone to serve a customer while remaining 

within its flight range (launch operation). In the meanwhile, 

the truck can serve other customers. The drone then returns to 

the truck at a different location (rendezvous operation). In this 

way, we can effectively increase the usability and make the 

schedule more flexible for both drones and trucks. 

Several remarkable events occurred since 2013. First, 

Jeff Bezos announced Amazon’s plans for drone delivery [1]. 

The project called Amazon Prime Air ambitiously plans to 

deliver packages using drones within 30 minutes [2]. Google 

was awarded a patent that outlines its drone delivery method 

[3]. Google project, called Wing, is expected to launch in 

2017 [4]. In 2016, Australia Post successfully tested drones 

for delivering small packages [5]. Drone deliveries have also 

been tested for medical applications, such as Matternet, a 

startup in California [6]. Additionally, a Silicon Valley 

startup named Zipline International is now serving 21 

hospitals across Rwanda [7]. 

However, there are some practical problems which are 

still limiting drone usage in parcel delivery. First, drones 

cannot work for heavy parcels and have a limited autonomy. 

Moreover, there are some safety reasons such as the presence 

of thieves, hacking activities and restricted areas or paths 

where drones cannot fly over.  

In the literature, the truck drone distribution concept 

gives rise to a novel optimization problem called Traveling 

Salesman Problem with Drone (TSP-D) [8].  The problem 

generalizes the vehicle routing problem, which is already NP-

hard, resulting in a harder problem. Its complexity motivates 

the development of heuristics to solve the problem 

approximately. In the literature, different heuristics have been 

proposed to solve the TSP-D. At the best of our knowledge, 

all these approaches assume that a truck can dispatch and pick 

up a drone only at a node, i.e., the depot or a customer location. 

This assumption can bring some disadvantages related to 

drone coverage limits and reduce its usage. In this paper, we 

propose a novel heuristic which considers the minimization 

of waiting times and battery consumption at truck-drone 

operations. It includes the possibility to launch and 

rendezvous the drone along a route arc. In this way, we can 

increase drone coverage and usage. Moreover, we can extend 

drone endurance since they travel for shorter distances.  

The paper is organized as follows. Section 2 presents 

the literature review on existing methods. Section 3 describes 

the problem and its formulation. In Section 4, we present the 

proposed method based on en-route operations. Section 5 

presents the proposed heuristic. We present the application to 

benchmark instances and the obtained results in Section 6. 

Finally, Section 7 presents our concluding remarks. 

2. Existing approaches  

The problem we are dealing with is related to the field 

of vehicle routing problems. The common idea of all these 

problems is that there is a given fleet of trucks which has to 

deliver a given set of packages to certain positions. We can 

find several approaches in the literature considering 

deliveries in urban areas and using electric vehicles [9-11].  
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An increasing number of works in the literature is 

investigating the routing problem related to the truck-drone 

joint delivery. First, Murray and Chu [12] introduce the 

problem, called the Flying Sidekick Traveling Salesman 

Problem (FSTSP). They introduced a mixed integer 

programming (MIP) formulation and a heuristic approach. 

Their heuristic starts from an initial TSP tour and iteratively 

tries to consider whether a node is suitable for use as a drone 

node. The relocation procedure for TSP-D results in an 

improvement approach since it evaluates all the possible 

moves and executes the best one.  

Agatz et al. [8] proposed a slightly different problem, 

called Traveling Salesman Problem with Drone (TSP-D), in 

which the drone has to follow the same road network as the 

truck. This problem is also treated as a different MIP 

formulation and solved by a heuristic in which drone route 

construction is based on either local search or dynamic 

programming. Ponza [13] extended the work of Murray and 

Chu [9] to solve the FSTSP proposing an enhancement to the 

MIP model and solving the problem by a heuristic method 

based on Simulated Annealing.  

Wang et al. introduced the vehicle routing problem 

with drones (VRPD) [14]. They considered a fleet of trucks 

equipped with drones delivering packages to customers. 

Drones can be dispatched from and picked up by the trucks at 

the depot or any of the customer locations. They extended the 

work in [15]. 

All the works mentioned above aim to minimize the 

total traveling time to complete the route and return to the 

depot. Ha et al. [16] considered a min-cost objective function 

to solve TSP-D taking into account the total transportation 

cost. More recently, Dorling et al. [17] proposed a cost 

function that considers an energy consumption model and 

drone re-use. They applied it in a simulated annealing (SA) 

heuristic to solve the VRPD. 

At the best of our knowledge, all the mentioned 

studies consider as a basic assumption that launch and 

rendezvous operations must be performed at customer nodes. 

This paper presents a novel variant of TSP-D relaxing the 

constraint mentioned above. Starting from a greedy heuristic 

based on the waiting time that can occur at each truck-drone 

operation, we improve the TSP-D solution inserting arc-

based truck-drone operations. In this way, we implicitly 

consider in the optimization approach the maximization of 

drone coverage and usage. 

3. Problem description and formulation 

In the TSP-D, we consider a list of customers to whom 

a truck and a drone will deliver parcels. In a truck-drone 

operation, the drone is launched from the truck and later re-

joins the truck at another location. Each customer is visited 

only once and is served by either the truck or the drone. Both 

vehicles must start from and return to the depot. When a 

customer is served by the truck, this is called a truck delivery, 

while when a customer served by the drone, this is called a 

drone delivery. We can represent a truck-drone operation by 

a 3-tuple (𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘) as shown in Fig.1. Node 𝑣𝑖 is a launch 

node at which the truck launches the drone. The launching 

operation must be carried out at a customer location. Node 𝑣𝑗 

is a node served by the drone, called drone node. Node 𝑣𝑘 is 

a customer location where the drone re-joins the truck, called 

rendezvous node. The truck can make other truck deliveries 

(𝑣.), while the drone is performing a delivery too. 

A truck-drone operation is called feasible if it contains 

one drone node, two combined nodes (launch and rendezvous) 

and a non-negative number of nodes served only by the truck. 

Moreover, it must take into account whether the drone has 

sufficient endurance to launch from 𝑣𝑖, deliver to 𝑣𝑗 and re-

join the truck at 𝑣𝑘. The drone can be launched from the depot 

but must subsequently re-join the truck at a customer location. 

When not actively involved in a delivery, the drone is carried 

by the truck. Furthermore, the truck and the drone each have 

their own transportation costs per unit of distance. In practice, 

the drone’s cost is much lower than the truck’s cost because 

it is not run by gasoline but by batteries.  

The TSP-D can be modeled in a graph 𝐺 = (𝑉, 𝐸) 

where the node 𝑣𝑜 represents the depot and nodes (𝑣1, … , 𝑣𝑁) 

are the locations of N costumers. Let O be the set of feasible 

operations, and let co denote the cost of operation 𝑜 ∈ 𝑂. We 

can consider the following IP formulation as proposed by 

Agatz et al. [8]: 

 

min ∑ 𝑐𝑜𝑥𝑜

𝑜∈𝑂

                                                            (1) 

 

subject to 

 

∑ 𝑥𝑜

𝑜∈𝑂(𝑣)

≥ 1        ∀𝑣 ∈ 𝑉                                       (2) 

 

∑ 𝑥𝑜

𝑜∈𝑂+(𝑣)

≤ 𝑛 ∙ 𝑦𝑣        ∀𝑣 ∈ 𝑉                             (3) 

 

∑ 𝑥𝑜

𝑜∈𝑂+(𝑣)

= ∑ 𝑥𝑜

𝑜∈𝑂−(𝑣)

       ∀𝑣 ∈ 𝑉                     (4) 

 

∑ 𝑥𝑜

𝑜∈𝑂+(𝑣)

≥ 𝑦𝑣        ∀𝑆 ⊂ 𝑉{𝑣0}, 𝑣 ∈ 𝑆              (5) 

 

∑ 𝑥𝑜

𝑜∈𝑂(𝑣0)

≥ 1                                                           (6) 

 

𝑦𝑣0
= 1                                                                       (7) 

𝑥𝑜 , 𝑦𝑣 ∈ {0, 1}                                                           (8) 

 
 
Fig. 1.  A truck-drone operation composed by a launch 

node (vi), a drone node (vj), a rendezvous node (vk), any 

possible truck node (v.) between node vi and vk. 
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where 𝑥𝑜 indicates whether an operation o is chosen (𝑥𝑜 = 1) 

or not (𝑥𝑜 = 0). Sets 𝑂−(𝑣) ⊂ 𝑂 and 𝑂+(𝑣) ⊂ 𝑂 represent 

the set of operations with node 𝑣 as end node and start node 

respectively, while 𝑂(𝑣) ⊂ 𝑂  is the set of all operations 

containing node 𝑣. Similarly, for each set of nodes 𝑆 ⊂ 𝑉, 

𝑂−(𝑆) ⊂ 𝑂 is the set of all operations with start node in 𝑆 and 

end node in 𝑉\𝑆 , 𝑂+(𝑆) ⊂ 𝑂  represents the set of all 

operations with end node in 𝑆 and start node in 𝑉\𝑆. 𝑦𝑣 is an 

auxiliary variable indicating whether node 𝑣 is chosen as start 

node in at least one operation. 

The objective function (1) minimizes the total cost of 

the tour, which is the sum of the costs of the operations. 

Constraints (2) ensure that all nodes are covered. Due to 

constraints (3), 𝑦𝑣 is 1 if at least one chosen operation uses 𝑣 

as a start node. The left-hand side of (3) is at most n because 

each operation must contain at least one previously unvisited 

node in any optimal solution. 

Considering operations as arcs from their start node to 

their end node, constraints (4-6) ensure that the chosen 

operations represent a feasible truck-drone tour. Constraint (7) 

ensures that this tour starts (and ends) at the depot. Constraint 

(8) forces the variables 𝑥𝑜 and 𝑦𝑣 to be binary. 

4. En-route truck-drone operations 

In this work, we include in the problem formulation 

the possibility to construct arc-based truck-drone operations, 

i.e. launch and rendezvous operations can be performed along 

a route arc (en-route). In practice, the truck should stop at a 

point of an arc (e.g. parking space), execute the launch 

operation and start again. Similarly, the truck should stop at a 

rendezvous point, complete the operation and start again. 

These en-route operations need an additional time which will 

be taken into account. Fig.2 shows how the truck-drone 

operation has been modified. We obtain a new launch point 

𝑣𝑖
∗  and rendezvous point 𝑣𝑘

∗ . Note that these points can be 

placed wherever along the partial truck tour, also between two 

different arcs as reported in the example shown in Fig.3. The 

optimal positioning of 𝑣𝑖
∗  and 𝑣𝑘

∗  is obtained finding the 

intersections between the best drone coverage circle with 

radius R* around node vj and arcs along the partial truck tour. 

The best radius R* corresponds to minimum waiting time 

𝑡𝑖∗,𝑗,𝑘∗
𝑤  defined as: 

 

𝑅∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑅𝑚𝑖𝑛< 𝑅 < 𝑅𝑚𝑎𝑥
 𝑡𝑖∗,𝑗,𝑘∗

𝑤 (𝑅)                         (9) 

 

𝑡𝑖∗,𝑗,𝑘∗
𝑤 (𝑅) = |𝑡𝑖∗,𝑘∗(𝑅) − (𝜏𝑖∗,𝑗(𝑅) + 𝜏𝑗,𝑘∗(𝑅))|        (10) 

 

where Rmin and Rmax are respectively the minimum and 

maximum coverage radius related to the closest and farthest 

node along the partial truck tour; 𝑡𝑖∗,𝑘∗(𝑅) is the truck travel 

time between the points 𝑣𝑖
∗ and 𝑣𝑘

∗  obtained by intersecting 

the circle of radius R with the arcs in the route; 𝜏𝑖∗,𝑗(𝑅) and 

𝜏𝑗,𝑘∗(𝑅) are the drone travel time between the drone node vj 

and points 𝑣𝑖
∗  and 𝑣𝑘

∗  respectively. The new truck-drone 

operation is considered feasible if the following condition is 

satisfied: 

 

𝑡𝑖∗,𝑗,𝑘∗
𝑤 (𝑅) + 𝑐∗ <  𝑡𝑖,𝑗,𝑘

𝑤                                                     (11) 

 

where 𝑐∗ is an additive cost representing the time spent by the 

truck to stop and start for drone launch and rendezvous along 

the arcs. In other words, eq. (11) means that an en-route 

operation is useful if and only if the waiting time of the new 

assignment ( 𝑣𝑖
∗ , 𝑣𝑗 , 𝑣𝑘

∗ ) is lower than the node-based 

assignment (vi, vj, vk). 

Therefore, we can easily understand all the possible 

benefits that can occur using en-route drone operations, such 

as:  

 a reduction of drone traveling time along a given 3-

tuple; 

 an increase in drone remaining endurance with a 

consequent increase in battery life; 

 an increase in drone coverage and usage with a 

consequent reduction of total traveling costs. 

5. The proposed heuristic 

In this section, we present the proposed optimization 

approach based on a novel greedy heuristic. The proposed 

heuristic is a modification of the Greedy Randomized 

Adaptive Search Procedure (GRASP) proposed by Ha et al. 

[16]. Like GRASP, the procedure begins by considering the 

basic assumption that a truck-drone operation must be 

performed at customer nodes. Moreover, the heuristic 

constructs the TSP-D solution starting from a solution of the 

related TSP that assigns to the truck all the customers in the 

network. In this work, since we want to consider also 

medium/large sized problems (more than 20 customers), we 

skipped the integer programming (IP) solution of the TSP due 

to the well-known high computational times in finding the 

 
 
Fig. 2.  An arc-based truck-drone operation composed by a 

new launch node (𝑣𝑖
∗), a drone node (vj), a new rendezvous 

node (𝑣𝑘
∗), any possible truck node (v.) between node 𝑣𝑖

∗ and 

𝑣𝑘
∗  

 

 
 
Fig. 3.  An example of an en-route truck-drone operation 

obtained by Eq. 9 
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global optimum. Hence, in our approach, we considered the 

Lin-Kernighan heuristic [18] to obtain low computational 

times in solving the overall TSP-D. We chose this heuristic 

for its good performances in finding near-optimal TSP 

solutions.  

Starting from a TSP solution to construct the TSP-D 

tour, differently from the other approaches, we considered as 

cost function co of a single truck-drone operation the sum of 

the total travel time ci,j,k, the waiting time 𝑡𝑖,𝑗,𝑘
𝑤  and the inverse 

of the remaining endurance 𝑒𝑖,𝑗,𝑘 . They are defined by the 

following equations: 

 

𝑐𝑖,𝑗,𝑘 = 𝑡0,𝑖 + 𝑡𝑘,0 + max{𝑡𝑖,𝑘, 𝜏𝑖,𝑗 + 𝜏𝑗,𝑘}                 (12) 

 

𝑡𝑖,𝑗,𝑘
𝑤 = |𝑡𝑖,𝑘 − (𝜏𝑖,𝑗 + 𝜏𝑗,𝑘)|                                          (13) 

 

𝑒𝑖,𝑗,𝑘 = (𝜏𝑖,𝑗 + 𝜏𝑗,𝑘 − 𝐸𝐷) 𝐸𝐷⁄                                      (14) 

 

𝑐𝑜 =  𝑐𝑖,𝑗,𝑘 + 𝑡𝑖,𝑗,𝑤
𝑤 + (𝑒𝑖,𝑗,𝑘)−1                                    (15) 

 

where 𝑡0,𝑖  and 𝑡𝑘,0  are the truck travel times between the 

depot and a launch node vi, and between a rendezvous node 

vk and the depot, respectively. 𝑡𝑖,𝑘  is the truck travel time 

between a launch node vi and a rendezvous node vk (see Fig.1). 

𝜏𝑖,𝑗 and 𝜏𝑗,𝑘 are the drone travel time between node pairs (vi, 

vj) and (vj, vk), respectively. 𝐸𝐷 is the drone endurance time. 

The travel times are defined as: 

 

𝑡𝑖,𝑘 = 𝑑𝑖,𝑘
𝑀𝐴𝑁 𝑠𝑇⁄                                                              (16) 

 

𝜏𝑖,𝑗 = 𝑑𝑖,𝑗
𝐸𝑈𝐶𝐿 𝑠𝐷⁄                                                             (17)  

 

where 𝑑𝑖,𝑘
𝑀𝐴𝑁 is the sum of the Manhattan distances of all node 

pairs between node vi and vk in the truck route; 𝑑𝑖,𝑗
𝐸𝑈𝐶𝐿 is the 

Euclidean distance between node vi and vk in the drone route; 

𝑠𝑇  and 𝑠𝐷  are the truck and drone speed respectively. We 

considered two different distance metrics to take into account 

road network for the truck and straight line paths for the drone. 

The proposed greedy heuristic, starting from the TSP 

tour, finds all the feasible truck-drone operations that can 

occur between a node pair (vi, vk) so that the time to reach vi 

(Ti) is lower than the time to reach vk (Tk). In particular, the 

procedure considers all the possible insertions of a drone node 

vj, where Ti < Tj < Tk, subject to the drone endurance 

constraint. Moreover, for each node pair (vj, vk), we evaluate 

if the truck-drone operation cost 𝑐𝑖,𝑗,𝑘 is lower than the TSP 

route cost between the nodes vi and vk. In other words, we 

should obtain a saving over TSP solution by using truck-

drone operations as represented by the following expression: 

 

(𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘)𝜖 𝑂 ⟺ 𝑐𝑖,𝑘
𝑇𝑆𝑃 − 𝑐𝑖,𝑗,𝑘 > 0                          (18)  

 

In this way, the procedure constructs the set O of all 

the best feasible operations. In the next step, the procedure 

sorts operations in the set O according to ascending costs. 

Then, according to the previous order, each truck-drone 

operation is inserted in the TSP tour by removing node vj from 

the truck tour and adding the 3-tuple (vi, vj, vk) in the drone 

tour list. At the end of the procedure, we obtain two subtours, 

one related to the truck and the other one related to the drone.  

The improvement to the proposed heuristic consists in 

optimizing the construction procedure of the truck-drone 

operations’ set O through en-route drone operations. Thus, 

each operation can be modified if a feasible en-route 

operation exists along the related 3-tuple according to (11). 

At the end of the procedure, we obtain a new set O* containing 

both node-based and en-route operations. The block diagram 

of the proposed approach is reported in Fig. 4. 

6. Numerical Example 

In this section, we present a numerical example for a 

better understanding of the proposed approach. Let us 

consider a small test network with one depot (node 0) and 7 

customers distributed in a region of 5.5 by 7 km as reported 

in Fig. 5. Let us assume that the speed of both truck and drone 

is 40 km/h. The endurance of the drone has been chosen to be 

30 min and the en-route operation cost c* is one minute. 

First, we found the initial TSP tour by applying the 

Lin-Kernighan heuristic (Fig. 5a). The total traveling time of 

the TSP tour is 0.49 h, considering Manhattan distances 

between all node pairs. 

In the second step, we constructed the initial set of all 

feasible truck-drone operations for each node pair (vi, vk). In 

this case, we obtained a set of 56 drone operations as 3-tuples. 

For example, between the node pair (0, 2) we have four 

feasible 3-tuples: (0, 7, 2), (0, 5, 2), (0, 6, 2) and (0, 4, 2). 

The initial operations’ set is then filtered according to 

(18). In this case, the obtained set O contains 12 feasible 

truck-drone operations. Table 1 reports the list of the obtained 

3-tuples and corresponding travel time, waiting time, 

remaining endurance and cost according to equations (12)-

(15). Moreover, the reported list is already sorted by 

ascending costs as required for constructing the final TSP-D 

solution. The greedy construction procedure considers one 3-

tuple at a time, according to the ordered list. The procedure 

inserts a 3-tuple when no overlaps occur with previously 

entered operations. In this case, the final drone tour list 

 
 
Fig. 4.  Block diagram of the proposed heuristic approach. 
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contained the operations (7, 5, 4) and (4, 3, 1). All the other 

operations were skipped, e.g. operation (0, 5, 6) overlapped 

with the operation (7, 5, 4). Fig. 5b shows the obtained tours 

without considering en-route operations. We can observe the 

waiting time that occurs at each truck-drone operation. In 

particular, the truck should wait for 0.02 h at node 4 and 0.05 

h at node 1. The resulting total travel time is 0.46 h, obtaining 

a saving of 0.04 h over the TSP tour. 

Finally, we applied the proposed en-route approach to 

the set O reported in Table 1. We obtained for each operation 

the best radius value according to (9). Table 2 reports the final 

set O* of the feasible en-route operations according to (11). 

 

Table 1 The obtained set O of feasible truck-drone operations 

Operation 𝒄𝒊,𝒋,𝒌 [𝒉] 𝒕𝒊,𝒋,𝒌
𝒘  [𝒉] 𝒆𝒊,𝒋,𝒌 𝒄𝒐 [𝒉] 

(7, 5, 4) 0.48 0.02 0.77 1.80 

(0, 5, 6) 0.47 0.004 0.72 1.86 

(4, 3, 1) 0.48 0.05 0.74 1.88 

(7, 5, 2) 0.48 0.02 0.70 1.93 

(0, 5, 4) 0.46 0.002 0.67 1.95 

(6, 3, 1) 0.47 0.05 0.69 1.96 

(7, 5, 3) 0.47 0.004 0.66 1.98 

(0, 3, 1) 0.42 0.10 0.64 2.08 

(0, 5, 2) 0.47 0.002 0.60 2.12 

(5, 3, 1) 0.45 0.03 0.58 2.18 

(7, 3, 1) 0.42 0.002 0.56 2.19 

(0, 5, 3) 0.47 0.02 0.56 2.26 

 

 

Table 2 The obtained set O* of feasible en-route operations 

Operation 𝑹∗ 𝒄𝒊,𝒋,𝒌 [𝒉] 𝒕𝒊,𝒋,𝒌
𝒘  [𝒉] 𝒆𝒊,𝒋,𝒌 𝒄𝒐 [𝒉] 

(7, 5, 6*) 1.39 0.46 0.001 0.86 1.62 

(4, 3, 1*) 2.29 0.43 0.03 0.77 1.76 

 

We can see that operation (7, 5, 6*) replaced the 

operation (7, 5, 4) resulting in a very low waiting time (0.001 

h) and a higher remaining endurance (0.86). Similarly, 

operation (4, 3, 1) changed in (4, 3, 1*) reducing the cost from 

1.88 to 1.76 h. The construction procedure is then applied as 

previously described. Fig. 5c shows the tours obtained using 

en-route operations. The resulting total travel time is 0.40 h, 

with a saving (0.09 h) greater than the basic heuristic (0.04 h) 

over the TSP tour. Moreover, the average remaining 

endurance (0.82) is greater than the basic heuristic (0.76).  

7. Application and results 

We carried out some numerical experiments were 

conducted to assess the effectiveness of the proposed 

heuristic. We compared the proposed greedy heuristic and the 

same heuristic including en-route drone operations. All 

computational work was conducted on a desktop PC 

equipped with a quad-core Xeon processor and 4 GB RAM. 

The heuristic has been coded in Python version 3.5 to obtain 

good computational performances. Numerical experiments 

are based on the benchmark instances by Bouman et al. [19]. 

We adapted the coordinates range to obtain almost real travel 

times since the basic coordinates refer to a 100 by 100 square 

region. We considered 90 instances with 10, 20 and 50 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5.  The test network: (a) initial TSP solution; (b) greedy 

heuristic solution; (c) improved heuristic solution using en-

route operations. 
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customers arranging the square region to 15 by 15 km, 30 by 

30 km and 50 by 50 km respectively. Each group is composed 

of 30 instances where customers are generated using a 

uniform, single center and double center random distributions. 

The endurance of the drone has been chosen to be 30 min. 

Drone speeds have been selected as 40 or 60 km/h. We have 

not considered the case in which the drone is slower than the 

truck since it has resulted not useful neither realistic. The 

truck speed was assumed to be 40 km/h. The en-route 

operation cost c* has been assumed to be one minute.  

In Figs. 6-8, we reported the obtained results 

considering the following indicators: 

 the percentage of savings over TSP solution cost 

(Sav. %); 

 the percentage of battery savings related to the 

remaining endurance for each operation (Bat. %); 

 the waiting time in minutes as defined in (10) and (13) 

(Wait.). 

Tables 3-5 report the statistical comparison between 

the greedy and the en-route heuristic in terms of average, 

minimum and maximum values of the considered indicators. 

We can observe that the proposed heuristic with en-route 

operations outperformed the greedy heuristic for all the 

considered indicators. It is interesting to see that, regarding 

savings over TSP solution, the en-route operations seem to be 

less useful when the drone is faster than the truck. In this case, 

better results are obtained when truck and drone have the 

same speed. This result is understandable since the faster the 

drone, the higher the number of truck-drone operations that 

can be selected by both approaches. However, significant 

improvements can be seen regarding battery savings and 

waiting time. We obtained an average increase of 10% in 

battery savings using en-route operations. Moreover, the best 

results are observable regarding waiting times. We obtained 

an average waiting time of less than 1 minute when the drone 

is faster than the truck compared to 3 minutes on average 

without en-route operations. Thus, the waiting time is highly 

related to the relative speed between the truck and the drone. 

We should expect that the drone flies faster than the truck to 

significantly reduce waiting times. 

Fig. 9 shows a solution for an instance with 20 

customers and sT = 40 km/h, sD = 60 km/h. The initial TSP 

 
(a) 

 

 
(b) 

 

Fig. 6.  Comparison of savings over TSP route between the 

proposed heuristic with and without en-route operations for 

(a) experiments with the same speed and (b) experiments with 

drone faster than truck. 

 

 
(a) 

 

 
(b) 

 

Fig. 7.  Comparison of battery savings between the proposed 

heuristic with and without en-route operations for (a) 

experiments with the same speed and (b) experiments with 

drone faster than truck. 
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solution obtained by the Lin-Kernighan heuristic [18] is 

reported in Fig. 9a. Fig. 9b and 9c report the solution found 

by the greedy heuristic and the heuristic with en-route 

operations respectively. In this case, we obtained the same 

drone nodes and truck tour, but the solution has been 

improved regarding waiting time and battery savings.  

8. Conclusion 

In this paper, we presented a novel approach to solving 

the Traveling Salesman Problem with Drone (TSP-D). The 

problem is of current interest, and many logistic companies 

are seriously considering this new concept in parcel delivery. 

In our approach, we relaxed the basic assumption of all 

methods in the literature which consider that truck-drone 

operations must be performed at customer nodes. We 

introduced the possibility of performing truck-drone 

operations also along arcs, called en-route operations. In this 

way, we can obtain some benefits regarding drone battery life 

and usage. To solve the problem with en-route operations, we 

developed a greedy heuristic, based on the GRASP [16], and 

modified to take into account the waiting time in the cost 

function. Thus, we included the en-route operations in the 

procedure related to operations’ list generation. To evaluate 

the outcomes of the proposed approach, we applied the 

heuristic to 90 benchmark instances proposed by Bouman et 

al. [19], arranged to obtain realistic scenarios. Results have 

been carried out regarding savings over TSP solution, battery 

savings and waiting time. The obtained results have 

highlighted the effectiveness of the proposed approach and 

give new ideas for further works. First, a dynamic simulation 

model can be developed considering en-route operations in 

urban traffic networks. Moreover, we can consider 

performing these operations also when the truck travels along 

congested arcs. In this way, we can overcome congestion 

situations and significantly reduce total transportation costs.  

 
(a) 

 

 
(b) 

 

Fig. 8.  Comparison of waiting times between the proposed 

heuristic with and without en-route operations for (a) 

experiments with the same speed and (b) experiments with 

drone faster than truck. 

 

Table 4 Statistical comparison of the obtained results for 

instances with 20 customers 

ST/SD 

[km/h] 
Index 

Avg Min Max 

G E G E G E 

40/40 

Sav.% 5.73 9.83 2.58 3.88 8.04 15.3 

Bat.% 45.2 54.5 30.0 47.8 53.7 61.7 

Wait. 3.57 2.02 1.59 0.36 8.86 5.28 

40/60 

Sav.% 10.4 10.9 5.23 6.62 21.9 24.8 

Bat.% 63.7 71.6 56.3 63.9 70.8 80.2 

Wait. 3.63 0.22 2.12 0.00 4.96 1.02 

* G: Greedy Heuristic; E: En-route Heuristic.  

 

Table 3 Statistical comparison of the obtained results for 

instances with 10 customers 

ST/SD 

[km/h] 
Index 

Avg Min Max 

G E G E G E 

40/40 

Sav. % 4.83 10.4 0.01 3.18 7.80 25.6 

Bat. % 60.0 71.8 41.1 58.5 74.2 83.2 

Wait. 2.03 1.01 0.45 0.00 4.87 3.88 

40/60 

Sav. % 10.5 10.6 3.83 3.83 18.7 25.6 

Bat. % 74.2 83.1 60.6 70.4 81.7 93.5 

Wait. 2.26 0.27 1.29 0.00 3.95 1.64 

* G: Greedy Heuristic; E: En-route Heuristic.  

Table 5 Statistical comparison of the obtained results for 

instances with 50 customers 

ST/SD 

[km/h] 
Index 

Avg Min Max 

G E G E G E 

40/40 

Sav.% 4.12 14.2 0.27 9.19 7.10 19.2 

Bat.% 40.9 49.9 15.3 39.6 52.2 56.1 

Wait. 4.02 2.37 0.44 1.34 9.34 4.08 

40/60 

Sav.% 13.2 15.2 4.59 7.95 18.4 27.3 

Bat.% 59.6 72.2 54.6 67.0 62.5 77.7 

Wait. 4.42 0.51 2.98 0.02 7.46 1.09 

* G: Greedy Heuristic; E: En-route Heuristic.  
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