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Non-Pharmaceutical Stochastic Optimal Control
Strategies to Mitigate the COVID-19 Spread

Paolo Scarabaggio, Graduate Student Member, IEEE, Raffaele Carli, Member, IEEE,
Graziana Cavone, Member, IEEE, Nicola Epicoco, and Mariagrazia Dotoli, Senior Member, IEEE

Abstract—This paper proposes a stochastic non-linear model
predictive controller to support policy-makers in determining ro-
bust optimal non-pharmaceutical strategies to tackle the COVID-
19 pandemic waves. First, a time-varying SIRCQTHE epidemi-
ological model is defined to get predictions on the pandemic
dynamics. A stochastic model predictive control problem is then
formulated to select the necessary control actions (i.e., restric-
tions on the mobility for different socio-economic categories)
to minimize the socio-economic costs. In particular, considering
the uncertainty characterizing this decision-making process, we
ensure that the capacity of the healthcare system is not violated in
accordance with a chance constraint approach. The effectiveness
of the presented method in properly supporting the definition
of diversified non-pharmaceutical strategies for tackling the
COVID-19 spread is tested on the network of Italian regions
using real data. The proposed approach can be easily extended
to cope with other countries’ characteristics and different levels
of the spatial scale.

Note to Practitioners—This paper is motivated by the emerg-
ing need for developing effective methods to support policy-
makers in mitigating the effects of the COVID-19 pandemic.
The proposed feedback control strategy – combining a multi-
region epidemiological model with a non-linear stochastic model
predictive control approach – allows the robust identification
of the most effective restrictive measures taking into account
the corresponding effects on the healthcare and socio-economic
systems. The proposed framework is a general and flexible
method that can be applied to various real scenarios, leveraging
mobility data, available from the Google mobility service, to
recognize patterns and predict future behaviors of individuals.

Index Terms—COVID-19, pandemic modeling, epidemic con-
trol, mitigation strategies, stochastic model predictive control.

I. INTRODUCTION AND PAPER POSITIONING

S INCE the beginning of 2020, in about a year the coron-
avirus SARS-CoV-2 (commonly called as COVID-19) has

exceeded 3 million deaths worldwide, with more than 150 mil-
lion of confirmed cases in 222 countries, areas, or territories,
thus resulting in one of the most impacting pandemics in the
recent decades [1]. As currently vaccinations against this virus
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have not yet completed the mass coverage, the main control
action still relies on the adoption of some Non-Pharmaceutical
Interventions (NPIs), which consist in mobility restrictions,
social-distancing, and use of masks [2].

The recent research trends in the COVID-19 framework
have been devoted to disease transmission modeling and
control, with the aim of suppressing, or at least mitigating,
the spread of the infection [3]–[5]. In particular, while several
studies focus on epidemiological modeling, less attention has
been devoted to the development of control strategies [4], [6].
The next subsections detail the research trends of the two
research topics and the paper contribution, respectively.

A. Dynamical Modeling of COVID-19 Pandemic
The description of the pandemic dynamics can take advan-

tage of the existing compartmental epidemiological models
[6]. In fact, several models are nowadays available in the
literature to describe the COVID-19 dynamics. Basically, all
the presented models are variants of the classical SIR-based
epidemiological model. An overview on SIR-based epidemio-
logical models in the field of COVID-19 is presented in [7].

In particular, since one of the main characteristics of
COVID-19 is that many of the persons who contract the
disease are asymptomatic, a SIDARTHE model is presented
in [3] for predicting transmission dynamics of the COVID-19
pandemic in Italy. Similarly, the contribution in [8] presents a
SEIAHR model for Ethiopia.

Another group of works deepens the analysis at a regional
level, thus allowing to take into account the economic and
social differences existing within almost any country [4],
[9]. Among the literature contributions addressing the spatial
dynamics of the COVID-19 epidemic, a SIR-based model is
presented in [10] to describe the virus dynamics at the country
level and a subsequent local model referred to a single node
of the health system network to model the flows of patients
at the level of a regional hospital care center for COVID-19
infected patients. The contribution in [11] divides the society
into a set of relatively homogeneous regions proposing a SAIR
model for each region. In addition, a SEIR model is presented
in [12] to support planning the Italian inter-regional mobility,
while a SEIIR model is proposed in [13] to assess how
the school closure and telework have impacted some French
regions during the COVID-19 lockdown. Furthermore, a multi-
region SIR model and its SI2R2 extension is suggested in [14].
Finally, the Italian regional healthcare systems’ characteristics
are considered in [9], where a model dividing the population
into six compartments is presented.
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B. Control Strategies for COVID-19 Mitigation

The above recalled contributions present a relevant limi-
tation. In fact, although some of these mathematical models
are used to investigate the effects of different NPIs (mainly
through scenario-based simulations), they do not provide a
feedback control method to properly identify the most effective
action(s) dynamically [15]. In a nutshell, these approaches aim
at containing the pandemic rather than at taking into account
continuously and in a feedback loop the current state of the
system [6], which conversely is crucial since severe lockdown
measures cause significant socio-economic damages.

As a matter of fact, actually, only a few literature contribu-
tions exist on the definition of proper NPIs control actions to
mitigate the COVID-19 spread. Among these, the work in [16]
proposes a classical SIR model to test on/off social distancing
measures aiming at minimizing the number of symptomatic
infectious individuals and the duration of the social distancing
policies, while considering the occupancy of Intensive Care
Units (ICUs). Similarly, the work presented in [17] proposes
a fast switching policy, where multi-shot interventions are
adopted to switch between social isolation and work days
depending on the outcomes of two different predictive models.

A more advanced solution to tackle the COVID-19 control
problem relies on the use of Model Predictive Control (MPC).
Indeed, MPC has already been used to define NPIs for control-
ling other epidemic and has the advantage of integral feedback
control and optimization, thus allowing to take into account
the deviations of the predictive model from the real evolution
of the pandemics [18]. In fact, since defining the proper
strategies to mitigate the COVID-19 spread is a strategic
decision making process, the large amount of computational
resources required is not an issue [19].

Nevertheless, only a few papers have yet investigated the
use of MPC in the COVID-19 framework. Robust MPC in
combination with a SIDARTHE model is proposed in [15]
to determine proper social distancing measures in Germany
so that the number of fatalities caused by COVID-19 over
time and the economic cost of the measures are minimized.
An optimal dynamic control strategy aimed at minimizing the
social and economic cost while ensuring that the maximum
number of infected people remains under a given peak value is
proposed in [20]. Moreover, an age-structured optimal control
approach aimed at reaching herd immunity is proposed in [21].
Finally, the contribution by the authors in [4] proposes the joint
use of a SIRQTHE model and of non-linear MPC to minimize
the cost of the mitigation strategies on a regional basis, while
ensuring that the capacity of the network of regional healthcare
systems is not violated.

C. Paper Contribution

Within the described background, this paper revises and
extends our contribution in [4] by presenting a time-varying
SIR-based epidemiological model in conjunction with a non-
linear stochastic MPC approach. The proposed approach is
able to define the specific NPIs to be undertaken while taking
into account the uncertainty of the model parameters. In par-
ticular, we adopt a chance-constrained optimization technique

to consider the variation of the spreading parameters. More in
detail, we refer to mobility restrictions that allow mitigating
the effect of the pandemic assuming the inefficiency of primary
NPIs (i.e., for instance, social-distancing measures and use of
face masks in public). Using real data from the Italian civil
protection department [22], we analyze the Italian scenario,
where the healthcare system is regionally based [23].

Compared with other existing literature contributions in the
field of COVID-19, the novelties of this work are as follows:

1) We define a SIRCQTHE model to describe the spread
of COVID-19. Differently from most contributions like [10]–
[12], where the authors propose simple compartmental models,
we propose a more accurate epidemic model since we consider
eight compartments that fully describe the epidemic dynamics.
Nevertheless, differently from more detailed models presented
in the related literature, we introduce several simplifying
assumptions that allow a realistic application of the proposed
model. In particular, differently from [3] we disregard the dif-
ference between asymptomatics and symptomatics individuals
as in most countries data related to these two categories is
absent or unreliable, while differently from the model in [9],
we split the compartment of the recovered individuals into two
classes, that is, Healed (i.e., recognized individuals that heal
after a transition in the status of Quarantined), and Removed
(i.e., never detected people). Furthermore, we improve our
previous contribution [4] by proposing a novel model that
better fits the COVID-19 secondary waves. In fact, the model
in [4] suitably represents the dynamics of an epidemic in the
early stage. In contrast, the novel model shows its potentialities
with the epidemic’s progress when more accurate data become
available. In particular, we divide the Infected individuals into
Contagious and Infected yet not contagious, and we assume
that Threatened people must observe a quarantine period when
recovered. Moreover, we disregard the time dependency of
the death rate, and we model its relation with the number
of Threatened people. It is essential to remark that, even
employing several classes, in our model we assume only a
pure constant delay between the Infected and the Contagious
individuals. At the same time, three parameters (of the nine
in totals) belong to terminal compartments, and are thus
easily identifiable with raw data. In addition, while other
contributions dynamically identify the model parameters over
a shifting subset of the fitting period, in our work time-
varying functions are presented to model the time-varying
parameters. In addition, to the best of the authors’ knowledge,
the SIRCQTHE model is the only compartmental model that
leverages the Google mobility reports in [24] to better describe
the time dependency of the infection rate. At the same time,
we use the ratio between new daily discovered cases and the
daily swabs to consider the variability of the rate of Contagious
people identified and Quarantined.

2) As regards the control approach and differently from
the aforementioned literature [15]–[17], where the proposed
control actions aim at minimizing the number of fatalities
or at ensuring that the healthcare system is not overloaded,
our work also takes into account the impact of the control
strategies on the economic framework. In fact, the proposed
approach aims at reducing the cost of mitigation strategies
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while respecting the maximum capacity of the healthcare
system. Moreover, differently from other existing works such
as [20] and [21], where testing and isolation measures costs
are considered, we model the control actions as interventions
affecting the mobility levels associated with different socio-
economic categories, and consequently we assign a different
economic impact to different restrictive measures.

3) Since the proposed model is highly non-linear, the
accurate identification of its characteristic parameters is chal-
lenging. Hence, uncertainty in the model parameters should be
analyzed. Differently from other works such as e.g. [15], which
typically only consider the infection rate uncertainty, our work
considers the variability and uncertainty of all model param-
eters. We propose a stochastic optimal control problem that
intrinsically considers uncertainty on each parameter based on
specific bounds. Moreover, it focuses on control of the number
of fatalities while we enforce the number of Threatened people
under a safety threshold by defining a chance-constrained
formulation for the optimization problem that ensures that the
probability of meeting the specific constraint is above a certain
acceptable level of risk.

4) The application of our approach to the Italian scenario
shows its effectiveness in supporting the definition of diver-
sified regional strategies. In this context, our contribution is
twofold. On the one hand, thanks to the proposed dynamical
identification procedure, we show the advantages of our model
in describing and predicting the COVID-19 secondary waves
using real data from the Italian civil protection department. On
the other hand, we discuss the results achieved by the proposed
stochastic MPC scheme.

D. Paper Organization

The rest of this work is structured as follows. Section II
presents the SIRCQTHE model and its dynamical equations.
Section III proposes the stochastic MPC framework, describ-
ing the corresponding control variables, objectives, and con-
straints, and the relation with the SIRCQTHE model. Section
IV reports the numerical outcomes achieved by the simulations
based on the real data of the Italian regions. Finally, Section V
concludes the paper highlighting possible future developments.
Appendix A details the parameters identification procedures
for the SIRCQTHE model.

II. THE MODEL OF THE COVID-19 DYNAMICS

Typically, compartmental models are considered appropriate
to model the proliferation of a virus within a large pop-
ulation. In these models, the population is partitioned into
compartments and can flow from one compartment to another
according to specific rates [7].

In this paper, a novel time-varying discrete-time epidemio-
logical model for the COVID-19 spread is proposed, named
SIRCQTHE, which classifies individuals into eight classes.

More in detail, the overall population is divided into eight
compartments that correspond to the state variables of the
model. Denoting by a Latin letter each state variable, and
denoting the time step as k, the population is divided into:

• Susceptible S̃(k): this class represents people that can be
infected;

• Infected Ĩ(k): this class represents people that are in-
fected (undetected) but not yet contagious;

• Removed R̃(k): this class represents infected (undetected)
people that are recovered and thus not contagious;

• Contagious S̃(k): this class represents contagious (unde-
tected) people that can infect other people;

• Quarantined Q(k): this class represents infected (de-
tected) people that are currently isolated;

• Threatened T (k): this class represents infected hospital-
ized people in a life-threatening or noncritical situation;

• Healed H(k): this class represents infected (detected)
people that are recovered and thus not contagious;

• Extinct E(k): this class represents dead people.
The state variables are indicated with a tilde to indicate that

they cannot be directly observed with reasonable confidence,
since no official data is available. Nevertheless, these state
variables can be estimated with the Dynamical Identification
algorithm presented in Appendix A.

We remark that the proposed model aims at coping with
the urgent need of representing and predicting the COVID-19
pandemic diffusion with a high level of accuracy. As shown in
Section I, various papers aimed at representing the dynamics
of the COVID-19 pandemic present different compartmental
models, but they generally lack an accurate identification of the
model parameters since this is a challenging task. Therefore,
in order to perform a fruitful parameters identification and get
reliable forecasting, we employ a highly data-driven approach
defining a model that takes the available epidemiological data
into account. The proposed model allows representing all the
facets of the pandemic diffusion since it comprehends more
compartments than most of the other compartmental models
proposed for COVID-19 modeling. However, thanks to several
data-based simplifying assumptions, we preserve the model’s
applicability to any scenario.

We remark here the mere assumptions of the model. In
particular, as for other compartmental models, we assume that
the pandemic dynamics is faster than the dynamics of birth
and death; therefore, such events can be considered negligible.
In addition, based on the current level of knowledge, we
reasonably assume that the probability of becoming suscep-
tible after being healed is negligible too, i.e., this dynamics
is much lower than the main time constant of the pandemic
[25]. In the SIRCQTHE model we compress or eliminate some
of the classes that are often considered, and we disregard
some connections between the compartments. For instance,
we consider a single class for Quarantined people, without
distinguishing between asymptomatics and symptomatics. In
fact, in most countries, data on Quarantined people’s health
conditions are absent or unreliable. Following the current
regulations, we assume that Threatened people must observe a
quarantine period when recovered. Moreover, although several
models include a class for people requiring intensive care
treatments and a class for people requiring general clinical
treatments, we consider a single compartment for hospitalized
people. In fact, statistical data show that the above compart-
ments are correlated with a 0.1 ratio, i.e., people requiring
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Fig. 1. Scheme of the SIRCQTHE model: the compartments whose states
are directly observable are indicated by filled rectangles.

general treatments to combat the COVID-19 symptoms are
ten times those requiring intensive care treatments. Differently
from other works, we divide the recovered individuals into the
Removed and the Healed compartments. In fact, even if indi-
viduals in these two classes are immune, their epidemiological
and clinical path is different. Moreover, by dividing these
two compartments we can perform a more precise parameter
identification since official data are available only for the latter
class. Lastly, we employ time-varying functions to model time-
varying parameters. In fact, as the pandemic is continuously
evolving, we cannot rely on constant parameters. Despite these
simplifying assumptions, as shown in Appendix A, which is
dedicated to the model calibration, the presented SIRCQTHE
model is effective in the identification phase by only requiring
a minimal set of epidemiological data, which are typically
available in most occidental countries.

The SIRCQTHE model is thus composed of eight time-
varying difference equations, which represent the dynamics
of individuals’ flows between the various compartments. We
consider as state variables of the model the fraction of the
overall population related to the various compartments. The
model can be written as follows:

S̃(k+1)= S̃(k)− β(k)C̃(k)S̃(k)/N (1a)

Ĩ(k+1)= Ĩ(k) + β(k)C̃(k)S̃(k)/N − ρĨ(k) (1b)

R̃(k+1)=R̃(k) + γC̃(k) (1c)

C̃(k+1)= C̃(k) + ρĨ(k)− (γ + θ(k) + λ)C̃(k) (1d)

Q(k+1)=Q(k) + θ(k)C̃(k) + πT (k)− (δ + µ)Q(k) (1e)

T (k+1)=T (k) + µQ(k)+λC̃(k)−(π+ε(T (k)))T (k) (1f)
H(k+1)=H(k) + δQ(k) (1g)
E(k+1)=E(k) + ε(T (k))T (k) (1h)

where N represents the whole population.
The overall interconnections between the above compart-

ments are shown in Fig.1. The eight classes are connected
by directed arcs whose weights correspond to the parameters
that put in relation the corresponding classes. In particular,
β(k) ∈ R+ is the time-varying infection rate, whose values
depend on the population behavior and on the adopted social
distancing measures. Moreover, θ(k) ∈ R+ is the time-varying
detection rate that describes the rate of Contagious people

that are recognized and Quarantined; this must be modeled
as a time-varying parameter since it largely depends on the
epidemiological situation. As demonstrated in Appendix A,
parameter β(k) can be correlated with people’s mobility
through the use of the Google Mobility Reports [24] and
parameter θ(k) with the ratio between new daily discovered
cases and the daily swabs. Parameter ρ ∈ R+ is the so-called
incubation rate. Parameters γ ∈ R+ and δ ∈ R+ are the so-
called healing rates. However, γ describes the rate of healing
of Contagious and unrecognized people (thus, not requiring
hospitalization) that are no more infectious. In contrast, δ is
the healing rate of Quarantined people who can leave this
class when they are no more infectious or legally obligated
to stay at home. Parameters λ ∈ R+ and µ ∈ R+ are
the hospitalization rates: λ is the rate of people recognized
and immediately hospitalized when a severe symptomatic
condition occurs, while µ is the rate of Quarantined people
that need for hospitalization. The parameter π ∈ R+ is the
healing rate of Threatened people, here we assume that after
released from the hospital, people must observe a quarantine
period. Lastly, ε(T (k)) ∈ R+ is the time-varying death rate.
The latter is defined as a time-varying parameter dependent
on the number of Threatened people. The assumptions made
on each parameter and their relation are discussed in detail in
Appendix A.

III. MODEL PREDICTIVE CONTROL OF THE COVID-19
OUTBREAK

Before introducing the proposed stochastic MPC frame-
work, we first remark that this work aims at supporting policy-
makers in identifying robust optimal mitigation strategies
based on NPIs to tackle pandemic waves. In particular, we
assume that the basic NPIs actions (e.g., the use of face masks
and the measures aimed at social-distancing) are ineffective
or their application have been relaxed. Consequently, as vac-
cination requires a long time to achieve the mass coverage,
any long term control of the COVID-19 spread is assumed to
be focused on reaching heard immunity; however, any short
term mitigation strategy simultaneously should ensure that the
healthcare capacity is not violated and the economic loss is
minimized. This goal can be reached by effectively applying
and optimally controlling some more restrictive mobility inter-
ventions than the basic NPIs [2]. Consequently, in this section,
we present a stochastic optimal control framework which
supports decision-makers in determining the most effective
strategies to be undertaken during pandemic wave mitigation
phases. In particular, in the following subsections first the
modeling of control actions and the architectural overview
of the predictive control scheme are provided, and then the
underlying optimization problem is detailed.

As for the receding horizon scheme, in the remainder of
the paper we assume that the prediction and control horizon
have the same length [26]. Specifically, at the generic sampling
step h ∈ Z+ the horizon K(h) = {h, . . . , k, . . . , h + K − 1}
contains K equally spaced time slots with length ∆k.
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A. The Control Actions

In this section we introduce the different control actions
that are adopted to tackle the consequences of the COVID-19
outbreak. First, we assume that no structural parameter related
to the healthcare system can be directly affected by the control
actions. Conversely, we assume that any control action is fo-
cused only on reducing parameter β(k), i.e., the infection rate.
Indeed, this parameter is controllable. For example, a region
lockdown significantly reduces the corresponding infection
rate. In this context, following [27], [28], and [29], we assume
that the infection rate is strongly influenced by people’s mobil-
ity in different socio-economic categories. Hence, let us denote
by G = {1, . . . , G} the set of socio-economic categories, e.g.,
transport, retail, restaurants, workplaces. We assume that the
infection rate can be decomposed into different terms, each of
which is mainly affected by a given category [27], [29]. Given
the results obtained in several preliminary experiments on real
data, we consider that a reduction of the mobility associated
with the different socio-economic categories can be, with a
good approximation, represented with a linear decrease of the
infection rate as follows:

β(k) = β0 + β>m(k), ∀k ∈ K(h) (2)

where β0 is the infection rate not explicable with a variation of
the mobility (e.g., household infection), β = (β1, ..., βG)> is
the column vector collecting the term βg of the infection rate
corresponding to each socio-economic category g ∈ G, and
m(k) = (m1(k), ...,mG(k))> is the column vector collecting
the mobility level mg(k) at time step k for each socio-
economic category g ∈ G. We assume that mg(k) = 1 when
the g-th category’s mobility level equals the nominal value,
i.e., the value in absence of mobility restrictions.

Let us preliminarily define a vector of control variables u :=
(u(h)>, ...,u(h+K−1)>)> that models the interventions that
affect the mobility rate associated to all the G socio-economic
categories over the given control horizon: the control action
at time step k is denoted as u(k) := (u1(k), ...., uG(k))>.
Hence, we correlate the infection rate coefficients with the
activity restriction measures for each time step k in accordance
with the following linear equation:

β(k) = β0 + β>(1− u(k)), ∀k ∈ K(h). (3)

We assume that the control action ug(k) related to the
restriction of activities in the g-th socio-economic category at
time step k gets a value in the [0, 1] interval. We also assume
that ug(k) cannot be chosen independently from the other con-
trol actions ui(k), ∀i 6= g. For instance, a restrictive measure
that aims at reducing the mobility in the retail category will
also affect mobility in the transport category. Therefore, since
any restrictive measure applied by the government has at the
same time impacts on different socio-economic categories, we
assume that the control action u(k) gets values in the discrete
set U := {ν1, ...,νP } with cardinality P . The control system
can impose the proposed policies by properly defining the
constraint set on the given decision variable:

u(k) ∈ U := {ν1, ...,νP } , ∀k ∈ K(h). (4)

It should be noted that, in order to avoid too frequent and
impractical changes in the strategies, the control actions can
be kept constant over ω consecutive time slots. For instance,
if ∆k corresponds to one day, it could be meaningful to
set the periodicity of the control actions equal to one week
(i.e., ω = 7). Assuming that K = Lω, with L ∈ N, the
following additional constraints on the control actions are
then introduced to keep the control actions constant over ω
consecutive time slots:

u(h+ ωl+1)= · · ·=u(h+ ωl+ω), ∀l=0, ..., L−1. (5)

It should be noted that the proposed scheme can be applied
with any desired data granularity or design choices by simply
varying the sampling time step ∆k and the parameter ω.

B. The Proposed Control Scheme
Figure 2 shows the control scheme proposed in this paper:

the MPC integrates as a core component the prediction of the
COVID-19 dynamics (i.e., the SIRCQTHE model), defining
the control law (i.e., the optimal control actions collecting the
previously described social restrictions) in accordance with an
output-feedback formulation. The online optimization problem
aims at minimizing the impact of the mitigation strategies on
the economic framework taking into account a safety threshold
on the number of hospitalized people. In particular, according
to the rolling horizon method, the optimization problem is
solved at each ω time steps in an iterative manner, based
on the most recent input data. The MPC optimizer employs
the SIRCQTHE dynamical model to predict the pandemic
evolution and thus to keep the number of hospitalized people
under a safety threshold. The obtained control actions (i.e.,
the mobility restrictions) related to the first ω time steps are
applied to the system to steer its behavior to the desired one,
while the horizon is shifted forward. Then, a new optimization
problem is solved over the shifted prediction horizon, based
on the updated information on forecasts and system states.

It must be noticed that the presented framework is a closed-
loop feedback control technique that may depend on quantities
that are both directly and not directly measurable. Hence, at
each time step, an identification procedure is performed in
order to estimate the parameters of the SIRCQTHE model.
In particular, the identification procedure consists of using, at
each time step, the most recent epidemiological data (such
as, for instance, the number of Hospitalized or Quarantined
person) and the mobility trends to dynamically update the
remaining SIRCQTHE parameters (see, e.g., in Appendix A
the Dynamical Identification algorithm referred to the Italian
scenario).

Predicting the characteristic variables that influence the
epidemic dynamics can be challenging since several variables
are not directly observed by sensors and the presence of
disturbances influences the accuracy of the model response.
In this context, the proposed stochastic MPC framework can
limit such uncertainties thanks to a probabilistic constraint on
the maximum number of Threatened people and to a rolling
horizon approach where we compute the feedback control
actions based on the periodic update of the state of the system
and the consequent prediction of its evolution.
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Fig. 2. Scheme of the proposed control framework.

C. The Stochastic Optimal Control Problem

The proposed approach aims at minimizing the cost of
mobility reduction, i.e., the impact of the restrictive measures
on the economic framework, while respecting a threshold on
the number of hospitalized people. For the sake of making
the obtained control strategies practical, in addition to the
economic cost of the control inpus, the objective function is
enhanced with terms aimed at smoothing the control action
variation over time. To this aim, recalling that the control
actions computed at time h over the whole control horizon
(i.e., from time step h to time step h+K − 1) are defined as
u := (u(h)>, ...,u(h + K − 1)>)>, we indicate the control
actions computed at time h− 1 for the whole control horizon
(i.e., from time step h − 1 to time step h + K − 2) with
ū := (ū(h− 1)>, ..., ū(h+K − 2)>)>.

Specifically, the objective function, denoted as J (ū,u) is
formulated as follows:

J (ū,u) = φ>K u + α1 φ
>
K∆u + α2 φ

>
K∆ū. (6)

where the following quantities are introduced:

• φK is a parameter vector defined as φK = 1K ⊗ φ,
where ⊗ is the so-called Kronecker product and φ =
(φ1, ..., φG)> is the column vector containing all the cost
coefficients φg that represent the impact on the economic
framework of the different categories.

• ∆u collects the differences between the control actions
related to consecutive time steps of the control horizon
computed at the current time (i.e., h) ∆u := (0>G, (u(h+
1) − u(h))>, ..., (u(h + K − 1) − u(h + K − 2))>)>.
Note that, in vector ∆u, we include 0>G as first block to
make the overall vector size equal to the dimension of
the control vector u.

• ∆ū collects the difference values between the control
actions related to corresponding time steps of the control
horizon computed at the current time step (i.e., h) and
at the previous one (i.e., h − 1) ∆ū := (0>G, (u(h) −
ū(h))>, ..., (u(h + K − 2) − ū(h + K − 2))>)>. Note
that, in vector ∆ū, we do not include the terms related
with time step (h + K − 1), since at each shift of the
control horizon we apply the first action.

Summing up, that the cost function (6) is composed of three
parts. The first term takes the economic impact of restrictive
measures into account. The second part is a regularization
term: by tuning the coefficient α1, we smooth the variability
of the restrictive measures over the control horizon, which is
represented by the vector ∆u. In fact, we aim at reducing
switches avoiding a bang-bang control action (i.e., avoiding
that the solution jumps back and forth between the extreme
values). For instance, by increasing α1, we avoid the solution
jumping from u(h) = (1, ..., 1)> (i.e., full lockdown) to
u(h + 1) = (0, ..., 0)> (i.e., no lockdown). The third part
of (6) is a memory term. In fact, by modifying term α2, we
reduce the occurrence of cases where decisions taken in a
given time step are modified in the subsequent time step, which
is represented by the vector ∆ū. In fact, we aim at avoiding
that the restrictive decisions, related to a region over a time
period, taken in a by an authority (e.g., a government) and
communicated to the population change continuously, which
would be unrealistic in a practical application.

On the basis of the above defined objective function, the
control variables and related constraint set defined in Sec-
tion III.A, and the SIRCQTHE state model introduced in
Section II, the optimal control problem is defined as follows:

minimize
u

J(ū,u)

subject to SIRCQTHE model (1a)-(1h), ∀k ∈ K(h)

constraints (4)-(5), ∀k ∈ K(h)

T− Tmax 1K ≤ 0K

(7)

where T − Tmax 1K ≤ 0K is the non-linear constraint that
ensures the containment of Threatened cases under a safety
threshold. The optimization problem (7) has PK integer
decision variables; furthermore, it presents non-linearities in
the state model. Consequently, it is a Mixed-Integer Non-
Linear Programming (MINLP) problem.

In order to take into account uncertainty in the problem,
several approaches are available. However, since the aim
of this contribution is to keep the number of Threatened
people below a safety threshold by including a constraint for
the optimization problem, we employ the so-called chance-
constrained approach, which is one of the most commonly
adopted techniques to solve optimization problems under un-
certainties [30]. In detail, the chance-constrained formulation
of an optimization problem ensures that the probability of
meeting a specific constraint is above a certain level. Hence,
we do not require to satisfy a specific constraint, but we
settle it in a probabilistic way. By regrouping the SIRCQTHE
model’s parameters in ξ = (β0,β, ρ, γ, θ, λ, δ, µ, π, ε), we can
rewrite the previous optimal control problem as:

minimize
u

J(ū,u)

subject to SIRCQTHE model (1a)-(1h), ∀k ∈ K(h)

constraints (4)-(5), ∀k ∈ K(h)

P {T(ξ)− Tmax 1K ≤ 0K} ≥ 1− ε

(8)

where P {T(ξ)− Tmax 1K ≤ 0K} is the probability of sat-
isfying the constraint. Moreover, we denote with ε ∈ [0, 1]
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the risk level that the decision-maker is willing to accept. We
underline the dependence from ξ of the Threatened cases.

Probabilistic optimization problems like (8) are hard to
solve except in a few special cases. Most of the time
this is because the probabilistic constraint (i.e., the quantity
P {T(ξ)− Tmax 1K ≤ 0K}) is hard to compute and because
the feasibility solution set defined by probabilistic constraints
is generally nonconvex. However, we can approximately solve
this problem using the Sample Approximation Approach
(SAA) based on Monte Carlo samplings of the model’s pa-
rameters ξ [31]. In fact, we can substitute the constraint with
its approximated counterpart by:

1

M

M∑
m=1

I (T (ξm)− Tmax 1K ≤ 0K) ≥ 1− ε (9)

where I (·) denotes the indicator function which takes value 1
when the constraint is fulfilled and 0 otherwise. Moreover,
ξm is a sampling of the model parameters based on their
Probability Density Function (PDF), and M is the number of
samplings. The SAA technique is mainly based on having an a
priori known PDF, from which M Independent and Identically
Distributed (IID) random samples of the stochastic variables
are obtained [31]. In our case, we obtain the M samples using
a specific PDF for each model parameter.

We finally remark that the proposed MPC is as an economic
MPC, i.e., it employs an economic-related cost function for
feedback control, which is not linked to a stabilization or
tracking problem with respect to any reference trajectory or
steady state [32]. Unlike standard MPC [33] where stability
issues are relevant [34], the economic MPC optimizes the
controlled system operations in a time-varying fashion, rather
than driving or maintaining its variables around desired steady
states [32]. Indeed, several SIR based models such as the
SIRCQTHE model do not show a steady state, unless the total
eradication of the pandemic is obtained at the expense of a
heavy socio-economic crisis [7]. In addition, thanks to the
presence of the state constraint, leveraging on the restriction on
the people’s mobility, the feedback control aims at reducing the
impact of the pandemic on the healthcare system by keeping
the number of hospitalized people under a safety threshold.

IV. NUMERICAL EXPERIMENTS BASED ON THE ITALIAN
EPIDEMIOLOGICAL SCENARIO

In order to assess the effectiveness of the proposed stochas-
tic optimal control approach, in this section we apply the
methodology to the Italian scenario of the COVID-19 out-
break. In particular, we report and analyze the optimal miti-
gation strategies determined by solving the stochastic optimal
control problem (8) for each of the 20 Italian regions. In effect,
the Italian scenario well fits the framework addressed by the
proposed control approach, since Italy’s national healthcare
system is regionally based. Indeed, regions have healthcare
facilities with different quality levels; moreover, they adopt
diverse regulations and procedures concerning hospitalization,
therapy, swabs, and prevention during the pandemic.

In the sequel, we first describe the estimation of the model
parameters for the SIRCQTHE model based on the real data

available for the Italian pandemic. Then, we discuss the
outcomes that are provided by the proposed methodology.

A. Set-up of Experiments

In this section, we report the main outcomes of the dy-
namical identification procedure, together with the initial con-
ditions for the considered control approach. For the detailed
description of the fitting procedure, the reader is referred to
Appendix A.

The proposed MPC approach is tested over a simulation
period of 10 weeks starting from December 6, 2020, using a
prediction horizon of six weeks. The sampling interval ∆k is
set to one day (i.e., K = 42). A daily implementation of the
restrictive measures would be unrealistic in a real-life scenario,
therefore, we assume weekly based control actions (i.e., L = 6
and ∆l = ω∆k, with ω = 7). We set the initial number for
the classes Quarantined, Threatened, Recovered, and Extinct
to the values of December 5, 2020, according to the real data
available in [22].

We implement the stochastic optimal control problem (8)
in MATLAB [35] employing the Global Optimization toolbox
on a laptop with a 1.3 GHz Intel Core i7 CPU and 8 GB
RAM. Problem (8) is a MINLP problem; thus, its resolution
is challenging mainly due to its combinatorial complexity and
non-linearity. In order to solve such a problem, we employ
a two-step Genetic Algorithm (GA) based on the MATLAB
GA [36]. In the first step, denoting by n the number of
control variables, we perform 1, 000n parallel computations
of the MATLAB GA with 1, 000n generations (i.e., an initial
population size of 1, 000n). In the second step, we use as the
initial population for an additional run of the MATLAB GA
optimization process the outcome of the first step.

The maximum number of Threatened people Tmax is specif-
ically defined for each region due to the high heterogeneity of
the Italian healthcare system. In particular, for each region we
set Tmax = α3T

tot, where T tot is the sum of the number of
ICUs and Noncritical Care Beds (NCBs) reserved for COVID-
19 cases as defined by the Italian Ministry of Health’s protocol
[37]. Note that assuming a threshold lower than the maximum
number of beds is reasonable and realistic since this is one of
the indicator values set up by the Italian government to decide
whether or not to introduce additional restrictive measures.

We assume that the finite set of mobility restriction combi-
nations U corresponds to the different strategies applied by the
Italian government to tackle the COVID-19 outbreak. We indi-
cate these scenarios with different colors: white, green, yellow,
orange, and red, respectively, corresponding to an increasing
severity level of the applied restrictions. A detailed description
of these scenarios can be found in Appendix A. In order to
estimate the value of the control actions in the given scenarios,
we make use of the Google mobility reports [24]. In fact, in
our work, we assume that the infection rate is a function of
the mobility level in different socio-economic categories. The
Google Mobility Reports are divided into several categories;
however, we select G = 3 categories that are the most signif-
icant from the socio-economic perspective: the Workplaces,
Retail & recreation, and Public transport categories (see
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TABLE I
SET OF THE ESTIMATED CONTROL ACTIONS RELATED TO THE SCENARIO CONSIDERED IN THE NUMERICAL EXPERIMENTS.

White Green Yellow Orange Red
Name Retail Workplaces Transport Retail Workplaces Transport Retail Workplaces Transport Retail Workplaces Transport Retail Workplaces Transport
Piedmont 0.11 0.20 0.18 0.22 0.19 0.25 - - - - - - 0.55 0.34 0.54
Aosta - - - 0.40 0.22 0.40 - - - - - - 0.69 0.39 0.63
Lombardy 0.15 0.24 0.25 0.25 0.23 0.33 - - - - - - 0.57 0.36 0.59
Trentino - S. Tyrol 0.07 0.15 0.00 0.28 0.15 0.14 0.54 0.32 0.40 - - - - -
Veneto 0.06 0.17 0.13 0.17 0.14 0.21 0.30 0.22 0.42 - - - - -
Friuli-Ven. Giulia 0.07 0.17 0.05 0.17 0.15 0.10 0.29 0.21 0.27 0.49 0.26 0.36 - -
Liguria 0.06 0.13 0.07 0.22 0.18 0.22 0.31 0.24 0.32 0.41 0.29 0.37 - -
Emilia-Romagna 0.07 0.16 0.15 0.17 0.14 0.20 0.29 0.21 0.40 0.45 0.24 0.47 - -
Tuscany 0.07 0.15 0.10 0.21 0.16 0.22 0.32 0.23 0.35 0.43 0.28 0.43 0.54 0.31 0.52
Umbria 0.07 0.15 0.00 0.21 0.15 0.11 0.34 0.23 0.25 0.44 0.26 0.35 - -
Marche 0.03 0.12 0.01 0.18 0.13 0.12 0.28 0.20 0.27 0.43 0.23 0.38 - -
Lazio 0.15 0.25 0.31 0.24 0.24 0.36 0.32 0.29 0.47 - - - - -
Abruzzo 0.01 0.12 0.00 0.16 0.15 0.10 0.28 0.22 0.29 0.41 0.27 0.42 0.53 0.34 0.55
Molise - - - 0.15 0.11 0.06 0.31 0.24 0.34 - - - - -
Campania 0.07 0.22 0.14 0.26 0.26 0.31 0.37 0.33 0.45 - - - 0.55 0.40 0.59
Apulia 0.00 0.16 0.04 0.15 0.16 0.20 - - - 0.39 0.29 0.49 - -
Basilicata 0.00 0.13 - 0.13 0.12 0.29 0.29 0.22 0.47 0.41 0.29 0.56 - -
Calabria 0.00 0.12 0.00 0.17 0.16 0.10 - - - - - - 0.52 0.38 0.51
Sicily 0.04 0.16 0.05 0.19 0.17 0.19 - - - 0.43 0.30 0.49 - -
Sardinia 0.00 0.14 0.00 0.15 0.15 0.12 0.25 0.23 0.33 - - - - -
Mean 0.06 0.16 0.09 0.20 0.17 0.20 0.32 0.24 0.36 0.43 0.27 0.43 0.56 0.36 0.56

Appendix A for a detailed description). Accordingly, we define
m(k) = (m1(k),m2(k),m3(k))>, where m1(k), m2(k), and
m3(k) are the mobility level related to the Workplaces, Retail
& recreation, and Public transport categories at time step
k, respectively. In particular, we assume that the different
restrictions applied by the government lead to a reduction in
the mobility; consequently, we compute the control actions at
time step k as ug(k) = 1−mg(k) for each category g = 1, 2, 3,
and thus we have u(k) = (u1(k), u2(k), u3(k))> ∈ U .

As a consequence, we estimate the value of the control
action for the white, green, yellow, orange, and red scenario by
averaging the control actions, computed employing the Google
Mobility Reports from September 1 to December 5, 2020, in
the periods when the different measures have been applied. In
Table I, we show the estimated control actions with different
restrictive scenarios.

As for the objective function in (8), the cost coefficients are
based on the percentage of the Italian gross domestic product
correlated with the different categories and are thus set to
0.15, 0.80, and 0.05, i.e., φ = (0.15, 0.8, 0.05)>. Note that
the selection of these parameters is a choice of policy-makers;
indeed, our approach allows administrators to adopt different
governmental policies.

B. The Proposed Control Approach: Results and Discussion

In order to simulate the spread of COVID-19 under the
effects of restrictive strategies, we divide the test bed into
two different and independent components: the model of the
COVID-19 dynamics and the control system.

The first part relies on the SIRCQTHE model to generate,
at each time step, the new value for the different classes,
i.e., what we consider as the real value in our simulation.
However, to simulate the uncertainty and correctly evaluate
the proposed stochastic framework, we include at each time
step randomly generated disturbances on the number of people
in each class with a maximum of ±10% percentage variation.
Moreover, at each ω time step we change the model parameters

with a maximum of ±20% in order to simulate a profound
variation in the spreading scenario. However, to maintain the
significance of the simulation we keep the parameters in the
bound defined in Table II in Appendix A. Finally, it should be
noted that the model of the COVID-19 dynamics is susceptible
to the control system input, that is, the reduction of the people
mobility caused by the application of the restrictive measures.

The second component, namely the control system, obtains,
at each time step, the COVID-19 dynamics data. However,
it gets only the real value of state variables that can be
directly observed, i.e., the value of Quarantined, Threatened,
Recovered, and Extinct individuals. In contrast, the value
of the Susceptible, Infected, and Contagious people are not
observed and as such must be estimated with the model.
Consequently, the control system estimates the SIRCQTHE
model parameters and state variables, every ω time steps
through the Dynamical Identification Algorithm presented in
Appendix A with a fitting window τ1 equal to 3 weeks.

Based on the observed and estimated state variables, the
control system selects the most suitable strategy to apply by
solving the optimal control problem. Therefore, let us first
evaluate the forecasting system’s prediction over the control
horizon and the results of the stochastic optimization problem
when α3 = 1 (i.e., the threshold for the Threatened cases is set
to half the total number of beds.). In particular, we solve the
stochastic optimal control problem by generating M = 1000
IID samplings of the model parameters and assuming that the
level of the risk that the decision-maker is willing to accept is
ε = 0.2. The samplings are made employing truncated normal
distributions with bounds defined in Table II and standard
deviation equal to the 10% of the size of the interval between
the two bounds. The results are the restrictive measures that
the government should apply for the whole control horizon,
highlighted with different background colors in Fig. 3. Having
defined the control actions for the control horizon, a Monte
Carlo simulation with 1,000 iterations is performed by ran-
domly changing the model parameters at each time. Then,
we calculate the expected value for the Threatened cases
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Fig. 3. Results of the Monte Carlo simulation in terms of the Threatened
cases over the control horizon for each Italian region: expected Threatened
cases (blue line), confidence interval for the Threatened cases (cyan area),
maximum number of Threatened cases for each region (black dotted line), and
the evolution of the control action in the control horizon (different background
colors). For each region, the x-axis reports times in days and the y-axis
represents the number of Threatened individuals.

and its confidence interval, in the presence of the restriction
measures determined by the Stochastic MPC. As shown in
Fig. 3, where the blue line represents the time evolution of
the expected Threatened cases, the cyan area represents its
confidence interval, and the black line represents the maximum
number of Threatened cases that can be treated by each Italian
region, it is apparent that the proposed approach is able to keep
the average number of cases under the maximum level.

In the objective function of the optimal control problem (6),
we include two penalizing factors: α1 smooths the optimal
control action avoiding bang-bang controls, whilst α2 reduces
the number of times that a change of decision taken in the
previous time step occurs. However, the selection of these pa-
rameters should be made also taking into account other aspects
that lie outside the mere technical aspects. Therefore, let us
analyze the impact these two parameters have on reducing
the control action switches. Let us preliminarily call by ∆s
the total number of switches occurring in the current control
action over the simulation period and by ∆m the total number
of switches that the current control action shows with respect
to the previous time step decision over the simulation period.
We analyze the variation of these two kinds of switches with
respect to the independent variation of α1 and α2 by varying
one of the two parameters while keeping the other equal to
zero. We summarize the results of this analysis in Fig. 4 (a)-
(b), where it is clear that, by increasing these parameters, the
number of switches decreases until an asymptotic value.

The selection of the best performing control actions is not
the only aspect to be considered. Various aspects increase
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Fig. 4. Analysis of the results over the simulation period with respect to
tuning parameters: total number of switches ∆s as a function of parameter
α1 (a), total number of switches ∆m as a function of parameter α2 (b),
total number of deaths as a function of parameter α3 (c), total economic cost
as a function of parameter α3 (d), total number of deaths as a function of
parameter ε (e) and total economic cost as a function of parameter ε (f).

the complexity of the decision-making process. For instance,
the selection of a proper threshold value is nontrivial; in the
previous experiments, we set α3 = 1. However, this value
profoundly influences other aspects that must be quantified to
identify the gap between the best performing control actions
and the others. Comparing the different control actions from
various individual points of view can help policy-makers
deeply analyze and choose the most effective action. There-
fore, in Fig. 4 (c)-(d) we show the total number of Extinct
people in the simulation period and the economic cost with
respect to parameter α3. As expected, the number of deaths
increases with this value, while the economic cost decreases.
Moreover, in the last sensitivity analysis, we estimate the
impact on the control problem of parameter ε ∈ [0, 1] which
describes the risk level that the decision-maker is willing
to accept when selecting the best control action to apply.
In fact, as we employ a chance constrained approach, we
aim at satisfying the safety threshold in a probabilistic way.
Hence, in Fig. 4 (e)-(f) we show the total number of Extinct
people in the simulation period and the economic cost by
changing parameter ε. Obviously, increasing the risk level the
percentage of fatalities will increases while the economic cost
will decreases.

Let us now show the results of our approach in a rolling
horizon fashion over the chosen simulation period of 10 weeks,
and let us analyze in detail the proposed framework by setting
α3 = 0.5. Figure 5 shows the results obtained for two different
set of values of parameters α1 and α2. In particular, Fig. 5 (a)
is related to α1 = α2 = 0.1, while in Fig. 5 (b) we set
α1 = α2 = 1. In both Figs. 5 (a)-(b), the blue line represents
the time evolution of the Threatened cases, the black line
represents the maximum number of Threatened cases that can
be treated by each region, while the different background
colors represent the evolution of the control action applied
in different weeks. The simulations in Figs. 5 show that,
by employing higher values of α1 and α2, it is possible
to smooth the control action, while keeping the number of
cases lower, albeit with an increased socio-economic cost.
This comparative analysis is beneficial for policy-makers
when suitable restrictive measures must be enforced. In fact,
selecting the most beneficial strategy is not straightforward,
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Fig. 5. Results obtained by the stochastic MPC for each region when α1 =
α2 = 0.1 and α3 = 0.5 (a) and α1 = α2 = 1, α3 = 0.5 (b): Threatened
cases (blue line), maximum number of Threatened cases that can be treated
by each region (black line), and evolution of the control action in the control
horizon (different background colors). For each region, the x-axis reports times
in days and the y-axis represents the number of Threatened individuals.

since various factors increase the complexity of the decision-
making context. On the aforementioned machine, the solution
of one instance of the optimal control problem (8) requires,
on average, one hour for the Italian scenario, that is composed
of 20 regions and approximately 60 millions of inhabitants.
Note that this run time is clearly compatible with a strategic
planning, even in the case of larger countries, being the control
actions implemented (at least) on weekly basis.

Summing up, the reported experiments show that the pro-

posed optimal control approach is able to keep the number
of Threatened cases below a maximum limit, while minimiz-
ing the economic cost of the eventually required restriction
periods. Specifically, selecting a suitable threshold on the
maximum number of Threatened cases may profoundly in-
fluence the outcomes for the proposed approach, with obvious
significance for policy-makers.

V. CONCLUSIONS AND FUTURE WORKS

Over the last year, the COVID-19 pandemic has affected
the whole world. It is therefore essential to develop suitable
methods to support policy-makers in efficiently mitigating
the effects of COVID-19 contagions. To this aim, this pa-
per presents a novel feedback control strategy which makes
joint use of an epidemiological SIR-based model aimed at
modeling the system dynamics and predicting its evolution
in conjunction with a non-linear stochastic model predic-
tive control aimed at identifying the most effective non-
pharmaceutical control actions to tackle contagions. Since
the infection rate depends on people’s mobility, the control
actions are modeled as interventions affecting the mobility
levels associated to different socio-economic categories. The
optimal control approach thus aims at minimizing the socio-
economic cost of the mobility reduction, that is, the impact of
the adopted restrictive measures, and, thanks to its stochastic
formulation, also ensures a robust solution of the problem. The
proposed approach is tested on real data of the Italian scenario
showing its effectiveness in tackling the problem by keeping
the number of Threatened cases below a fixed maximum limit,
while minimizing the socio-economic impact of the required
restriction periods.

Future research should address integrating additional con-
straints in the optimal control problem and extending the
objective function. Moreover, we can use other types of models
and machine learning techniques to identify the model’s char-
acteristic parameters, such as estimating the relation between
the infection rate and the mobility level. With the ongoing
vaccination for the COVID-19 disease, we also plan to inves-
tigate the most effective way for distributing the vaccine to
the population.

APPENDIX A
PARAMETERS IDENTIFICATION

Several epidemiological models have been proposed in the
literature for modeling the dynamics of COVID-19; however,
the quantity and quality of measured data makes challenging
the calibration of the related parameters.

Therefore, in this appendix, we explain how we calibrate the
SIRCQTHE model to the Italian scenario for the considered
numerical experiments. We divide the appendix into four parts.
In the first part, we explain the Italian epidemiological scenario
in the COVID-19 second wave of contagions, together with the
Italian government’s response actions and strategies adopted
to tackle the outbreak. In the second part, we describe the raw
data available for the Italian scenario and the main assumptions
on the system parameters. In the third part, we present the
different step of the fitting procedure, while in the last part,
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we present the algorithm for the dynamical fitting of the
SIRCQTHE model used in the predictive control framework.

A. Description of the Italian Scenario

After being one of the most affected nations in the first stage
of the COVID-19 outbreak, thanks to a two-months lockdown,
in Italy the pandemic started to decline in May 2020. Con-
sequently, inter- and intra-region mobility was re-established
on May 4, while other not essential activities were re-opened
later in the same month. After a relatively stable situation
during the summer, a rise of contagions has been experienced
from September 2020. Consequently, renewed restrictions have
been progressively introduced (decree-laws of October 7, 13,
18, and 24 2020). Moreover, after the exponential growth
of cases, from November 6 2020, the Italian regions have
been grouped into three different epidemiological categories,
identified by the yellow, orange, and red colors that include
different restrictive measures [37]. Nevertheless, this division
is not static, since a region can change its color due to a
modified epidemiological scenario.

Hereafter, we describe the restrictive measures adopted by
the Italian Government grouped by period of adoption and by
type of restrictions. For a matter of clarity we indicate each
group by a different color.

White: In this class, we include all the restrictions adopted
by the Italian government at a national level from the end of
the emergency (namely June 15) to October 8. Almost all the
restrictions are withdrawn, except for the closure of discos and
nightclubs (not in all regions). The number of seats in cinemas
and theaters is limited.

Green: In this class, we include all the actions taken at a
national level as the number of cases in November rapidly
increased. The maximum number of people allowed in parties
and ceremonies is limited. Moreover, congresses and festivals
are suspended. Other measures are adopted with the closure
of gyms, swimming pools, theaters, and cinemas. Lastly, the
government imposes the closure at 6.00 p.m. of restaurants
and bars.

Yellow: In this class, all the restrictions of the green class
are considered. Moreover, a curfew from 10:00 p.m. to 5:00
a.m. is introduced. Shopping centers are closed on holidays.
Tele-education for high schools is introduced. Universities are
also closed.

Orange: In this class, all restrictions of the previous strate-
gies are considered. Moreover, it is forbidden to travel between
regions and between municipalities unless proven reasons.
Bars and restaurants are closed while the take-away service
is allowed until 10 p.m.

Red: In this class, all the restrictions of the previous
strategies are considered. Moreover, it is forbidden to move
also inside a municipality without a justified reason. Stores
are closed except for supermarkets. Distance education is
provided for high school and third-grade classes in middle
school. Almost all sports competitions are suspended while
sports activity is allowed only near home in individual form.

B. Data Availability for the Italian Scenario and Main As-
sumptions on the SIRCQTHE Model Parameters

The Italian civil protection department is the state body
responsible to collect and elaborate all the data related to
the pandemic. As soon as the very first cases of COVID-19
affected individuals were confirmed, the Italian civil protection
department made available several epidemiological data [22].

The main problem related to these data, as well as to almost
all the data similarly available worldwide, is that they represent
a screenshot of the epidemiological situation each day. For
each class, there is only available the number of people each
day without any indication about the flows within the different
categories. Most data are not updated regularly; e.g., some
may not be updated on weekends. Therefore, the available
data are affected by uncertainties and as such can lead to an
imprecise identification of the model parameters. To overcome
this limitation, we pre-process the data with a finite impulse
response filter. In particular, we perform a fourteen-days
weighted moving average with linearly decreasing weights in
order to smooth the impact of outliers and irregular data on
the identification process.

Besides the effects of uncertain data on the identification
process, it is fundamental to consider the time-dependency of
the parameters to perform a realistic and fruitful selection of
the model parameters, especially on a long analysis period. In
the related literature, a common approach adopted in order to
overcome this problem consists of fitting the model with differ-
ent time windows, following the stages of the pandemic [17].
This leads to a good fitting only when additional knowledge
is introduced. Conversely, in our work, we fit the proposed
SIRCQTHE model by assuming that some parameters can be
correlated with proper time-dependent functions. Hereafter,
we detail the assumptions considered for each of the model
parameters.

1) β(k): The so-called infection rate β(k) for the COVID-
19 pandemic (see, e.g., the work in [9]) is usually assumed
within 0.25 and 0.8 in the absence of any social distancing
policies and people awareness. Nevertheless, lockdown periods
can profoundly reduce this parameter. The use of different
coefficients for each region helps the model fitting since β
is likely to increase in the regions with a higher population
density (we refer the interested reader to [38]). In our work,
in order to achieve a continuous fitting of the COVID-19
evolution in the second outbreak, we assume that the evolution
of β is related to the evolution of people’s mobility estimated
through the Google mobility reports [24]. The Google mobility
reports show how visits and length of stay at different places
change compared to a baseline. Changes for each day are
compared to a baseline value for that day of the week. This
dataset is based on data from users who have turned on the
location history for their account; hence, the data represent a
sample of all Google users. In particular, the mobility trends
are divided into different categories.

We select the Workplaces, Retail & recreation, and
Public transport categories as the most significant in
terms of socio-economic importance. We define m(k) =
(m1(k),m2(k),m3(k))>, indicating respectively the mobil-
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ity level of Workplaces, Retail and recreation and Public
transport. Accordingly we set β = (β1, β2, β3)>. Hence, the
infection rate is estimated as in (2).

2) ρ: The so-called incubation rate ρ is the rate of infected
people that become contagious; consequently, they can infect
other people. In the literature, the incubation time is estimated
between 2 and 7 days [39]–[41].

3) γ: The healing rate of unrecognized Contagious people
γ can be approximated by a constant since there is no proof
that the virus has mutated. In particular, the literature findings
show that the healing time is approximately 14 days. However,
in our model, we do not remove people from the Contagious
compartment when they are completely healed, but when they
are not contagious or have a really low viral load. In the
literature, this period is estimated between 3 and 10 days [25],
[42], [43].

4) δ: The healing rate of Quarantined people who do not
need hospitalization δ can also be approximated by a constant
value. Moreover, δ can be substituted with γ when a person is
removed from the Quarantined compartment immediately after
he/she becomes not contagious. However, in several countries,
someone may be forced to be in quarantine even after clinically
healed because the procedure requires two negative tests. In
particular, in Italy, the quarantine period cannot be shorter
than 10-14 days, depending on the swabs’ tests results [23].
Nevertheless, due to the national health system’s overload and
the delay of swabs processing, this value may considerably
increase [44]. Thanks to the structure of the SIRCQTHE model
the healing rate δ can be expressed as follows:

δ = (H(k)−H(k − 1)) /Q(k). (10)

5) θ(k): The parameter θ(k) models the rate of Contagious
people recognized and Quarantined, the so-called detection
rate. This is mainly related to the specific policy adopted by
each region and the number of laboratory testing capacities
(e.g., in terms of tested swabs). However, when laboratory
limits are reached, the number of tested swabs becomes
constant. Numerous researches point out that the ratio between
new daily discovered cases p(k) and daily swabs w(k) is
crucial to understand how the tracking system is operating.
When this ratio increases, it means that the tracking system
is not working well and that the pandemic is out of control,
i.e., the real number of infected people is much higher than
the recognized cases. Conversely, when this number is low,
it means that few cases have been recognized with respect to
the total amount of analyzed swabs; therefore, the pandemic is
under control. Note that the aforementioned assumptions only
hold when the tests are made in a stochastic way. In fact, if a
country has a well-organized tracking system, it can perform
only the necessary tests on people surely infected. Therefore,
to consider the variability of the parameter θ(k), we relate it
with the aforementioned ratio as:

θ(k) = θ0 (1− r(k)) (11)

where r(k) = p(k)/w(k).
6) λ and µ: These parameters are the hospitalization rates

(i.e., the rate of people recognized only when severe symp-
tomatic conditions occur and the rate of Quarantined people to

TABLE II
SIRCQTHE MODEL PARAMETER BOUNDS

Description Bound Reference
β0 Base infection rate S → I 0.01− 0.1 [9], [12], [44], [47]
βg Mobility coefficients S → I 0.1− 0.5 [9], [12], [44], [47]
ρ Incubation rate I → C 0.15− 0.5 [39]–[41]
θ0 Detection rate C → Q 0.001− 0.5 [9], [12]
γ Healing rate C → R 0.1− 0.3 [9], [25], [42]
δ Healing rate Q→ H 0.01− 0.1 [9], [12], [23], [44]
λ Threatening rate C → T 0.001− 0, 02 [3], [9], [12]
µ Threatening rate Q→ T 0.001− 0, 08 [3], [9]
π Healing rate T → H 0.01− 0, 2 [3], [9], [12]

be hospitalized, respectively). We assume these two parameters
as constant because they are correlated only to the virus’s
characteristics.

7) π: The recovery rate π during the first outbreak of
COVID-19 was far from being constant; in fact, the national
healthcare system was not prepared and did not have healing
procedures. However, after the implementation of new stan-
dardized clinical approaches, we assume that this parameter is
constant.

8) ε(k): The death rate ε at the beginning of a new epi-
demic is not constant and hopefully decreases with time. This
is mainly due to the availability of new clinical treatments. The
death rate for each time step k can be formulated as follows:

ε(k) = (E(k)− E(k − 1)) /T (k). (12)

With the pandemic’s ongoing, this parameter becomes easily
identifiable, and it only depends on how much the healthcare
system is under pressure.

C. Long-term Identification of the Model Parameters

As we analyze the case of the 20 Italian regions that
are heterogeneous in terms of the health care system, size,
population, economy, and demography method should focus
on how to design a predictive model with a strong capability
of learning big data. Therefore we estimate the relationships
between real data and the SIRCQTHE model’s characteristic
parameters employing some of the most known machine
learning techniques [45], [46]. In particular, let us adopt an
approach based on a least-squares optimization technique com-
bined with constraints to enforce the prior scientific knowledge
of the COVID-19 pandemic by defining specific bounds on
each parameter as summarized in Table II.

Due to the high non-linearity of the proposed model, the
fitting is highly non-convex and, in general, challenging.
Therefore, let us introduce a multi-step fitting procedure
that considers at each step a smaller sub-model with fewer
parameters to be estimated.

In the first stage, we analyze the following sub-model:

S̃(k+1)=S̃(k)−(β0 + β>m(k))C̃(k)S̃(k)/N (13a)

Ĩ(k+1)=Ĩ(k)−ρĨ(k) +(β0 +β>m(k))C̃(k)S̃(k)/N (13b)

R̃(k+1)=R̃(k) +γC̃(k) (13c)

C̃(k+1)=C̃(k) +ρĨ(k)−(γ +λ+θ0 (1−r(k)))C̃(k) (13d)

Z(k+1)=Z(k) +(λ+θ0 (1−r(k)))C̃(k) (13e)

where Z(k) = Q(k) +T (k) +H(k) +E(k) is the cumulative
number of Infected people. It is clear that β0, β, ρ, γ, θ0, λ and
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the initial conditions Ĩ(0) and C̃(0) are the only parameters
to be estimated. The estimation of such parameters consists in
minimizing the mean squared error (MSE) of the model with
respect to the real data, which is defined as:

MSE(Ξ1) =
1

K

K∑
k=1

(
Ẑ(Ξ1, k)−Z(k)

Z(k)

)2

(14)

where Ξ1 = (β0,β, ρ, γ, θ0, λ, Ĩ(0), C̃(0)) collects the un-
known parameters. Moreover, based on serological testing data
[48] when searching for realistic parameters we assume that
C̃(k) < 20(Q(k) + T (k)).

In the second stage, we estimate the healing rate by:

δ =
1

K

K∑
k=1

(
H(k)−H(k − 1)

Q(k)

)
. (15)

For the sake of space, we do not plot this rate over time;
however, our findings show that the assumption made on its
constancy is well based. We observe (excluding outliers) that
this rate remained almost constant during the second wave.
Nevertheless, we point out that this parameter is different
in the north of Italy and southern regions. In the latter, this
parameter is significantly lower. This can be explained with
the poorer and less organized healthcare systems.

Moreover, as aforementioned we assume that the death
rate follows a linear relation with respect to the number
of hospitalized individuals T (k) at time k. This relation is
described by two characteristic parameters: the ordinate-axis
intercept ε0 and the gradient ε1. The estimation of such
coefficients consists in minimizing the mean squared error
(MSE) of the linear approximation with respect to the real
data, which is defined as:

MSE(ε0, ε1) =
1

K

K∑
k=1

(
(ε0 + ε1T (k))− ε(k)

ε(k)

)2

. (16)

The correlation between the death rate and the number
of Threatened people is evident in Fig. 6, where we show
the Italian regions’ death rate with respect to the number of
Threatened cases computed employing the data from Septem-
ber to December 2020.

Having computed the aforementioned parameters, and hav-
ing obtained an estimation of C̃(k), we analyze the following
sub-model:

Q(k+1)=Q(k) +(θ0 (1−r(K))) C̃(k)

+πT (k)−(δ +µ)Q(k)
(17a)

T (k+1)=T (k) +µQ(k)+λC̃(k)−(π+ε(T (k)))T (k) (17b)
H(k+1)=H(k) +δQ(k) (17c)

and we minimize the following MSE:

MSE(Ξ2) =
1

K

K∑
k=1

(
Q̂(Ξ2, k)−Q(k)

Q(k)

)2

+

(
T̂ (Ξ2, k)− T (k)

T (k)

)2

+

(
Ĥ(Ξ2, k)−H(k)

H(k)

)2

(18)
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Fig. 6. Death rate with respect to the number of Threatened cases in all
Italian regions: Real data (red asterisks) and fitting result (blue line).

where Ξ2 = (µ, π, θ0, λ). Note that for the sake of a better
fitting we estimate again the parameters θ0 and λ.

In order to improve the overall fitting procedure, an addi-
tional fitting procedure can be done considering the overall
SIRCQTHE model employing as the initial guess for the opti-
mizer the parameters computed with the sub-model procedure
and using a ±5% bound around the guess.

Figure 7 shows the real data and the outputs of the fitting
procedure for compartments Q, T , H , and E, hence proving
the effectiveness of the proposed procedure.

D. Dynamical Identification of the Model Parameters

In the previous section, we present a procedure that allows
us to fit the SIRCQTHE model over a long period. However,
since we aim to introduce this identification procedure in a
rolling horizon fashion, let us present the Dynamical Identifi-
cation (DI) Algorithm.

The definition of the algorithm is reported in Algorithm 1
and is summarized in the sequel. The algorithm runs at
each time step d and requires two integers: τ1 that indicates
the fitting window and τ2 that is the forecasting period.
Consequently, the algorithm requires in input the data related
to the observable classes Q(k − τ1 : k), T (k − τ1 : k),
H(k − τ1 : k), E(k − τ1 : k), and the data related to the
mobility m(k − τ1 : k), and the swabs’ ratio r(k − τ1 : k).

In the first phase, all the time series are pre-processed
with a weighted moving average filter, while all zeros and
NaN (i.e., Not a Number) values are substituted. In the
second phase, we compute the first set of model parameters
β0, β1, β2, β3, ρ, γ, θ0, λĨ(0), and C̃(0) based on fixed bounds
given by the literature knowledge. Furthermore, we calculate
the healing rate δ and and the coefficients ε0 and ε1 of the
death rate linear relation. Next, we compute once again θ0
and λ with the last parameters µ and π. After having all the
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Fig. 7. Results of the fitting procedure for all the Italian regions: Quarantined (a), Healed (b), Threatened (c), and Deaths (d). Real data (red asterisks) and
SIRCQTHE model output (blue line) over the evolution of restriction measures (different background colors).

parameters, we extrapolate a trend from the mobility value and
the swabs ratio, and we estimate a value for the subsequent τ2
time steps. Lastly, we simulate the SIRCQTHE model with the
fitted parameters and the estimated mobility and swabs ratio
values over the τ2 time steps.

Note that, due to the lack of space, we do not show the
results of the DI Algorithm and the fitted value for the Italian
regions. The interested readers is referred to our website [49]
where the fitted parameters are reported for all the regions
and the forecasting (in different time scale) is shown in detail
for the Apulian region. Moreover, further details on the fitting
procedure can be found in [50].
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