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Abstract— This paper investigates the capability of self-sensing 

in a position actuator based on a dielectric elastomer membrane. 

The approach uses voltage and current measurements to estimate 

electrical resistance and capacitance online, by injecting a high-

frequency low-amplitude voltage component in the actuation 

signal. The actual deformation is subsequently reconstructed 

using a model-based estimate of the electrical parameters, 

implemented on a FPGA platform with a sampling frequency of 

20 kHz. The main peculiarity of the approach is the use of 

recursive identification and filtering algorithms that avoid the 

need of charge measurements. The self-sensing algorithm is 

extensively validated on a precision linear-motion actuator, 

which uses a non-linear biasing system to obtain large actuation 

strokes. 

 
Index Terms—Dielectric Elastomer, Dielectric Electro-Active 

Polymer, Self-Sensing, Smart Materials. 

 

I. INTRODUCTION 

ielectric Elastomers (DE), also known as Dielectric 

Electro-Active Polymers, represent a family of smart 

materials in which the application of an electric field between 

compliant electrodes placed on the elastomer surface generates 

a controllable deformation. Such actuation principle can be 

exploited to generate different kind of actuation modes [1], 

[2]. Prototypes of DE Actuators (DEA) operating as pumps 

[3], valves [4], robots [5], and micropositioning stages [6] 

have been documented in recent literature. In comparison with 

other smart materials, DE offer relatively large deformation, 

high energy density, low power consumption and fast dynamic 

response. As for most actuators based on smart materials 

actuators, another attractive characteristic of DEA is the 

possibility to perform self-sensing of output variables or, in 

other words, to use the polymer simultaneously as sensor and 

actuator [7], [8]. In fact, the electrical response of the material 

is influenced by the instantaneous state of deformation, since 

 
The authors would like to acknowledge support of Parker Hannifin, 

BioCare Business Unit. 
G. Rizzello and D. Naso are with the Department of Electrical and 

Information Engineering, Politecnico di Bari, Bari, IT (e-mail: 

gianluca.rizzello@poliba.it, david.naso@poliba.it). 
A. York and S. Seelecke are with the Department of Mechatronics, 

Universität des Saarlandes, Saarbrücken, DE (e-mail: 

alexander.york@mmsl.uni-saarland.de, stefan.seelecke@mmsl.uni-

saarland.de). 

the material electrical parameters (i.e. capacitance, resistance, 

and inductance) change with the geometry of the material. By 

performing electrical measurements while actuating, one can 

reconstruct the material deformation and use it in various 

ways, for example, as a feedback signal for a position control 

algorithm [9], [10]. This is particularly significant in 

micrometric positioning systems because it eliminates the 

need of an additional precise position sensor which, in many 

applications, is the most expensive component of the system 

[11]. Moreover, self-sensing can be performed without any 

additional sensing hardware as electrical measurements such 

as voltage and current are typically available from the same 

electronic circuit used to drive the actuator. 

To enable self-sensing, the relationship between the 

electrical behavior of the material and its state of deformation 

needs to be characterized and modeled [12]–[16]. Several 

authors have proposed sensor applications based on DE 

membranes [17]–[20], and a number of authors also 

considered the possibility of combining sensing with 

actuation. For instance, in [21] self-sensing is performed by 

constructing a RC high-pass filter whose capacitive element is 

represented by the DEA. By applying a sinusoidal excitation 

and measuring the voltage on the series resistor by means of 

an oscilloscope, the electrical impedance is acquired and then 

used to reconstruct the applied force. The paper includes some 

preliminary results without an explicit validation of the 

estimated force. A similar experimental hardware is used in 

[22], in which the approach is validated at several actuation 

frequencies. The authors represent the DEA as a pure 

capacitor, thus neglecting the resistance of the electrodes. 

Since the approximation of the DEA dynamics as a pure 

capacitor does not hold at high frequencies, it may generate 

significant sensing errors as the sensing frequency increases. 

Moreover, the approach requires a peak detection method to 

reconstruct the sensed variable, which complicates the overall 

implementation. Matysek et al. present in [23] an electronic 

circuit capable to drive and sense up to 8 DEA devices for a 

tactile display. The approach uses the integration of the 

measured current in some predefined time interval to estimate 

the charge and then the capacitance. In [24] a regression 

algorithm based on measurement of charge, voltage and 

current is proposed to obtain capacitance measurements taking 

into account resistive effects. As clarified in [25], this 

approach requires pulse width modulation in the voltage 
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amplification, therefore it is designed for a specific hardware. 

The same algorithm is also used in [26] to perform closed loop 

control of various types of materials. In [27], Hoffstadt et al. 

present and experimentally test a frequency domain self-

sensing algorithm, which exploits the high-frequency 

oscillations of a dual active bridge to estimate both the DEA 

capacitance and series resistance from voltage and current 

measurements. Also in this case, the implementation of the 

proposed method requires specific hardware and peak/phase 

detection algorithms. 

Following the research trends emerging in the 

aforementioned references, this paper proposes a new self-

sensing method for DEAs. The approach is based on a 

recursive parameter identification method that has relatively 

low implementation effort, is suitable for real-time 

applications and has a good accuracy. In particular, the 

approach does not use peak detection algorithms, and requires 

only voltage and current measurements. Additional digital 

filters, i.e. low-pass and comb filters, are included to obtain 

further noise rejection and improvement in accuracy. The 

method is validated with an extensive experimental 

investigation, in a wide set of experimental conditions and up 

to an actuation frequency of 10 Hz. A circular membrane with 

a bistable biasing system is considered as a case study for the 

experimental validation of the proposed methodology. In 

particular, the bistable biasing element introduces further 

nonlinearities to the system, making it a challenging platform 

to test the self-sensing approach in realistic operative 

condition. The present paper is an extension of the preliminary 

ideas presented in the paper [28]. 

The reminder of this paper is organized as follows. Section 

II presents the DEA operating principle and modeling, while 

Section III illustrates the self-sensing algorithm. Experimental 

results are shown in Section IV, and section V draws some 

conclusions and ideas for future developments.  

II. DEA ELECTRICAL MODEL 

A DEA consists of a polymeric film material (i.e. silicone, 

acrylic elastomer) with compliant electrodes printed over the 

external surfaces, forming a compliant capacitor. When a 

voltage is applied to the electrodes, the resulting electric field 

in the polymeric film generates compressive forces that induce 

a reduction in thickness and a subsequent expansion in area. 

The mechanical compressive stress which arises in the 

thickness axis of the membrane as a consequence of the 

electric field is typically referred as Maxwell stress, and is 

given by the following equation 

 
2

0M r E  = − ,  (1) 

where the void permittivity ε0 and the polymer relative 

permittivity εr act as proportional factors between the square 

of the electric field E and the Maxwell stress M. Thus (1) 

describes the electromechanical transduction principle of 

DEAs. 

A. Actuator Description 

This work focuses on the DEA shown in Fig. 1 (a), 

consisting of a circular membrane which operates out-of-

plane. The outer and inner frames (green) are made of rigid 

plastic, while the intermediate ring is constituted by a 50 m 

DEA silicon film (gray) surrounded by carbon based 

electrodes (black). A mechanical pre-stretch is also applied 

during the membrane manufacturing process, resulting into an 

actual thickness of 40 m. In order to prevent electrical 

breakdown, the maximum voltage is set to a safety value of 

2.5 kV.  

In order to generate motion, a biasing force provided by 

means of mechanical elements, such as masses or springs, 

must be applied to the membrane. As remarked in [29], the 

choice of the biasing elements strongly affects the actuation 

performance. The biasing mechanism considered in this paper 

consists of a combination of a Negative-Rate Biasing Spring 

(NBS), i.e. a bi-stable nonlinear spring, and a Linear Biasing 

Spring (LBS). The adoption of the NBS produces a dramatic 

increase in stroke with respect to other biasing solutions, i.e., 

linear springs or masses [29], but it increases the number of 

nonlinear phenomena that must be taken into account. In 

particular, when the NBS is used as biasing element, a large 

voltage-displacement hysteresis is observed. It has to be 

remarked that such hysteresis does not represent a limitation 

from the application point of view, as it can be effectively 

compensated by means of feedback control laws of relatively 

low complexity [30]. Fig. 1 shows a sketch of the NBS-LBS-

DEA system in the unactuated (b) and actuated (c) 

configuration.  

 

 

Fig. 1.  DEA circular membrane (a), DEA biased with LBS + NBS, voltage 

OFF (b) and ON (c). 

B. Electrical Model 

A DEA is essentially a compliant capacitor, but a 

description based on a RC circuit rather than a simple 

capacitive element, see e.g. [15], [23], [31], is more frequently 

used in order to take into account the electrical dissipation. 

The parameters of the equivalent circuit of the DEA strongly 

depend on the geometry, which changes during the actuation, 

making it necessary to use nonlinear or time-varying models 

of the phenomenon. The typical circuit used for modeling a 

DEA is shown in Fig. 2. C is the DEA capacitance, Rl models 

the leakage resistance of the material, Re represents the 

resistance of the electrodes, and Ra is an external resistor, 

which, in general, represents connection cables or a filtering 

resistor. Each electrical element related to the DEA depends 

on the current state of deformation of the membrane, which is 

described in terms of out-of-plane stroke d. The electrical 
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quantities of interest are the applied voltage v, the resulting 

current i, and the electric charge on the capacitor q. After 

defining the overall series resistance as 

 ( ) ( )2s a eR d R R d= + ,  (2) 

the circuit in Fig. 2 can be described by means of the 

following state-space model 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1

l s s

s s

d
q q v

dt R d C d R d C d R d

i q v
R d C d R d

  
= − + +  

   



= − +



.  (3) 

All the coefficients in equation (3) are expressed as functions 

of the out-of-plane deformation d. As reported in [15], this 

model provides sufficient accuracy in describing several 

practical operating conditions of the device.  

 

 

Fig. 2.  DEA equivalent circuit. 

III. SELF-SENSING ALGORITHM 

As discussed above, the coefficients affecting the DEA 

electrical response are strongly dependent on the deformation. 

In principle, model (3) can be inverted and used to predict the 

state of deformation, using voltage and current as inputs. 

However, such an inversion, even if analytically tractable, is 

not particularly useful. In fact, typical values of the leakage 

resistance (order of G) are orders of magnitude larger than 

the series resistance (order of M), leading to a very small 

steady-state current. When this is the case, small uncertainties 

in the model parameters and measurement bias tend to 

produce a significant drift in the estimated charge, making the 

displacement reconstruction by means of the model 

ineffective.  

The idea proposed in this paper is instead to use the 

structure of the model equations in conjunction with an online 

identification algorithm. This solution enables real-time 

estimation of the model coefficients that minimize the 

difference between the measured and predicted signals. The 

approach requires voltage and current measurement only, 

without any prior information on model coefficients. 

Moreover, several recursive identification algorithms are 

available for solving the real-time estimation problem [32]. As 

remarked in Section II, the series resistance shows a nonlinear, 

hysteretic dependence on the deformation, and therefore it is 

not suitable for self-sensing. The leakage resistance, instead, 

may be too large in comparison with the series resistance, and 

therefore hard to be accurately estimated if the adopted current 

sensor has a limited accuracy. On the other hand, the 

capacitance-deformation relationship is monotonic and non-

hysteretic, so it can be effectively employed for self-sensing. 

Fig. 3 shows an example of an experimental capacitance-

displacement curve recorded with a Hameg® LCR-bridge 

model HM8118. The curve shows a parabolic trend, in 

agreement with the physical model developed in [15]. On the 

other hand, measurements of DEA resistances are omitted in 

this paper, as the LCR-bridge showed some difficulties when 

trying to record their values. 

 

 
Fig. 3.  DEA measured capacitance for different deformations. 

 

As (3) is a high-pass filter, the current resulting from a low-

frequency actuation, with typical values of leakage resistance, 

is not large enough to be accurately measured. For this reason, 

when performing self-sensing, the DEA must be driven by a 

composite signal consisting of the sum of two contributions 

with different harmonic content [22]. An example of such 

signal is shown in Fig. 4, where the low and high frequency 

are chosen equal to 1 and 50 Hz sinewaves, respectively. The 

high-amplitude, low-frequency component is responsible for 

the electromechanical actuation but the resulting current is 

negligible. Conversely, the low-amplitude, high-frequency 

component does not produce motion as it is filtered by the 

actuator mechanical bandwidth, while it generates a current 

signal which is large enough to be accurately measured. 

 

 
Fig. 4.  Actuation signal for self-sensing, consisting of the sum of a 1 Hz and a 

50 Hz harmonic components. 

A. Online parameter estimation based on full model 

When a composite voltage signal as the one in Fig. 4 is 

applied to the DEA, it is expected that the current response 

will exhibit the same high-frequency dynamics of the input, 

while the capacitive and resistive coefficients will vary in a 

much slower way according to the mechanical deformation 
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induced by the low-frequency voltage component. Under the 

additional requirement of sufficiently fast sampling, it is 

realistic to assume that the changes in capacitance and 

resistances between two successive samples will be 

significantly smaller than the changes in voltage and current, 

and therefore that they can be approximated as constant terms, 

i.e. 

 1 , 1 , , 1 ,, ,k k s k s k l k l kC C R R R R+ + +   ,  (4) 

where the subscript k denotes the discretized time. If the 

derivative is approximated with the forward Euler method, 

 1k k

s

q qd
q

dt T

+ −
 ,  (5) 

where Ts is the sampling time, system (3) can be approximated 

in the discrete time as follows: 

 

1

, , ,

, ,

1 1 1

1 1

C

k k
k k

s l k k s k k s k

k k k
s k k s k

q q
q v

T R C R C R

i q v
R R

+
  −

= − + +  
   




= − +



.  (6) 

The state-space model (6) can then be reformulated as the 

following difference equation 

 
,

1 , , 1
, ,

1
s k ss s

k k s k k s k k
l k k k l k k

R TT T
v v R i R i

R C C R C
− −

   
= − + + + −   

   
   

. (7) 

Finally, equation (7) can be written in the following Linear In 

Parameters (LIP) form as follows 

 
T

k k ky  = ,  (8) 

with 

 k ky v= ,  (9) 

  1 1

T

k k k kv i i − −= ,  (10) 

 
,

, ,
, ,

1

T

s k ss s
k s k s k

l k k k l k k

R TT T
R R

R C C R C


    
= − + −    

   
     

.  (11) 

Assuming that yk and k can be measured online (which is the 

case), the LIP structure of equation (7) allows to perform real-

time estimation of the unknown coefficients vector k by 

means of online regression algorithms. In this work, we focus 

on the standard RLS [32]. Alternative choices are possible, 

e.g. Least Mean Squares (LMS), see [32] for further details), 

even if in [28] it is shown that RLS provides faster and more 

accurate estimations than LMS (at the expense of a higher 

computational effort). We also remark that performance 

comparison between RLS and LMS represents a topic which 

has been investigated by several authors, see e.g. [33]–[35]. 

The RLS updates the estimation according to the following 

algorithm 

 

( )1
1 1

1

1 1
1

1

ˆ ˆ ˆ

1

1

1

Tk k
k k k k kT

k k k

T
k k k k

k k T
k k k

P
y

P

P P
P P

P


   

 

 

  

−
− −

−

− −
−

−


= + −

+


  = −   + 

.  (12) 

where notation ˆ
k  represents the estimate of θ at the k-th 

sampling time. The coefficient  ≤ 1 is the forgetting factor, a 

tuning parameter that permits to take into account the time-

varying behavior of θk. The smaller , the faster is the RLS in 

tracking time-varying parameters, but the effects of the noise 

are consequently amplified. Coefficient  needs to be properly 

tuned by taking into account the trade-off between estimation 

speed and noise filtering. A simple empirical rule for setting  

is the following one: 

 
1

1
W

 = − . (13) 

This rule gives more emphasis on the last W samples of the 

prediction error. It is worth mentioning that standard 

implementation of RLS algorithm provided by (12) may be 

affected by numerical instability due to propagation of round-

off error [36]. In such case, different implementations of the 

algorithm need to be considered. However, as (12) did not 

show such numerical instability in our experiments, we did not 

considered alternative implementation in this work. 

Once the estimate ˆ
k  is obtained, the corresponding 

capacitance and resistances estimations are given by 

1, 2, 3,
, , 2,

1, 2, 3, 1,

ˆ ˆ ˆ
ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ1

k k ks
k s k l k k

k k k k

T
C R R

  


   

 +
  =    + −  

,  (14) 

with 

 1, 2, 3,
ˆ ˆ ˆ ˆ
k k k k    =

 
.  (15) 

B. Online parameter estimation based on simplified model 

In principle, the approach presented in the previous section 

could be used to perform online estimation of all DEA 

parameters, but it is obviously preferable to restrict the online 

identification to the smallest subset of parameters with a 

significant influence on the variable of interest. Moreover, the 

sensitivity of the response on the model parameters is strongly 

related to the frequency used for self-sensing, hereafter 

indicated as fe. In fact, it is possible to prove that the voltage-

current transfer function corresponding to (3) is characterized 

by a stable pole and a stable zero, whose cut-off frequencies fp 

and fz can be calculated as follows [28] 

 ( )
1 1 1 1

2 2
p l s

l s s

f if R R
C R R CR 

 
= +  

 
?   (16) 

 
1

2
z

l

f
CR

=   (17) 

If the frequency fe is sufficiently far away from fp or fz, we can 

neglect the effects of the corresponding zero or pole from the 

transfer function without introducing a significant error. Note 

that fz depends on Rl, while fp is mainly related to Rs. Such 

considerations are only valid for constant or slow-varying 

deformations. 

The first proposed approximation regards to the leakage 

resistance. If the sensing frequency fe is such that 

 z ef f= ,  (18) 

then we can assume that the effects of the zero generated by 

the leakage resistance are negligible. Typical values of leakage 

resistance (order of M) and capacitance (order of fractions of 

nF) lead to fz of the order of fractions of Hz. Therefore, 
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condition (18) is often true for typical values of fe of hundreds 

or thousands of Hz. Condition (18) is particularly true when 

the leakage resistance is very large (i.e., the leakage current is 

very small). In fact, if (18) is true, it can be assumed that 

 
1

0
2

z l
l

f R
R C

=  → =  ,  (19) 

which implies that model (6) is equivalent to the following 

difference equation 

 1 , , 1
s

k k s k k s k k
k

T
v v R i R i

C
− −

 
− = + − 

 
.  (20) 

Equation (20) corresponds to the RC series model portrayed in 

Fig. 5 (b) and is valid for high-frequency regimes. The new 

model (20) corresponds to a new regression problem, which 

can be addressed with the same online estimation technique 

discussed in Section III.A.  

The second simplification considers the case in which fe is 

much larger than the zero cut-off frequency and, at the same 

time, much smaller than the pole cut-off frequency, namely 

(18) must hold in combination with 

 e pf f= .  (21) 

If (18) and (21) hold true, we can neglect the effects of both 

leakage and electrodes resistance, and therefore assume that 

the DEA behaves as a pure capacitor. Even if this is a strong 

approximation, as mentioned in the previous section it is 

commonly adopted in DEA sensing applications, e.g. [18], 

[22]. Typical values of electrodes resistance (order of fractions 

of M) results into a fp of the order of kHz. This frequency is 

close to typical values of fe, therefore the purely capacitive 

approximation must be performed carefully. Reducing fe in 

order to meet (21) does not overcome the problem, because if 

fe is not large enough, it may happen that the resulting current 

is too low to be measured or fe may not be large enough in 

comparison to the mechanical frequency, thus violating (4), 

and possibly introducing additional mechanical vibrations. 

Thus, the selection of the sensing frequency and the 

consequent model for self-sensing must be performed 

depending on the individual application. If (21) is admissible, 

we have 

 
1

0
2

z s
s

f R
R C

   → = ,  (22) 

therefore the approximation holds for small values of 

electrodes resistance. Combining (19) and (22), the model (6) 

is approximately equivalent to the following regression 

problem, which can be again addressed via RLS 

 1 1
s

k k k
k

T
v v i

C
− −− = .  (23) 

Finally, we point out the case in which only the leakage 

resistance is considered, while neglecting the electrodes 

resistance is not considered here. Even if theoretically 

tractable, this case is not of practical interest for self-sensing 

because, for typical values of DEA electrical parameters, the 

model including only the leakage resistance is valid for very 

low frequencies (some Hz), while self-sensing applications are 

typically focused on high frequency (hundreds or thousands of 

Hz). Nevertheless, the development of the equations for this 

particular case can be obtained in a straightforward way, and 

therefore omitted. 

A further useful remark regards the fact that the outputs of 

both regressions in (20) and (23) contain the derivative of the 

measured voltage. This differentiation may introduce 

additional noise, which can be partially compensated by using 

the filtering technique discussed in the next section.  

 
Fig. 5.  Different DEA electrical models, complete model (a), capacitance plus 

series resistance approximation (b) and pure capacitance approximation (c). 

C. Filtering 

The degradation of the performance of the estimation 

process caused by the measurement noise can be attenuated by 

using appropriate pre- and post-filtering. In order to reduce the 

noise amplification due to the differentiation, or to reduce the 

measurement noise in general, it is possible to apply a low-

pass filter to both members of (8) (e.g. a first order low-pass 

filter). The filter bandwidth must be wide enough to preserve 

significant components of the signals. The new filtered version 

of equation (8), assuming small variations on k, is given by 

 ' ' T
k k ky  = ,  (24) 

with 

 ( )'k ky F z y= ,  (25) 

 ( )'k kF z = ,  (26) 

and F(z) is the chosen filter transfer function. In case of 

vector-values quantities, the scalar filter is applied on each 

component of yk and k. 

It has been experimentally observed that capacitance and 

resistance estimations are affected by high-frequency noise 

and disturbances at frequencies that are multiples of the 

sensing signal frequency. For this reason, it may be useful to 

perform additional post-filtering to remove these undesired 

harmonic components [37]. We first define the quantity M, 

representing the ratio between sampling frequency fs, 

reciprocal of the sampling time Ts, and sensing signal 

frequency fe 

 s

e

f
M

f
= .  (27) 

The filter can be chosen as a notch filter  

 ( )

1 2

0
1 2 2

2
1 2cos

2
1 2 cos

z z
M

H z b

z z
M




 

− −

− −

 
− + 

 
=

 
− + 

 

,  (28) 

where b0 and ρ < 1 are positive tuning parameters and M is 

defined by (27). One or multiple notch filters are efficient 

solutions if the disturbance is located at a single frequency or 

around a small number of isolated frequencies. If the 



 6 

disturbance presents non-negligible harmonics at several 

multiples of a given frequency (i.e. the sensing signal 

frequency), an effective solution is provided by a comb filter  

 ( )
1

1 1

1

Mz
H z

M z

−

−

−
=

−
, (29) 

which has a very simple structure and allows to eliminate all 

the frequencies which are integer multiples of fe. Once the 

filtered capacitance estimation is obtained, it can be related to 

the deformation by a look-up table or a polynomial 

interpolation. In this paper, the second solution is preferred. 

An advantage of relating capacitance to deformation with a 

polynomial interpolation rather than using a physical model 

(see e.g. [24], [27]) is that we can automatically compensate 

the strain-dependency of the material permittivity, which is 

typically hard to model. Finally, the overall block diagram of 

the self-sensing algorithm is shown in Fig. 6. 

 

Fig. 6.  Self-Sensing algorithm block diagram. 

IV. EXPERIMENTAL RESULTS 

The proposed self-sensing method is validated by means of 

the experimental benches shown in Fig. 7 and Fig. 8. The first 

setup, in Fig. 7, consists of a linear actuator (Aerotech™, 

Model ANT 25-LA with an Aerotech™ Ensemble ML 

controller) used to deform the DEA membrane while its 

displacement is recorded with a Keyence™ LK-G37 laser 

sensor. A Trek model 610E voltage amplifier is used to send 

voltage to the DEA. Due to the limited bandwidth of the 

current sensor embedded in the voltage amplifier, a sensing 

circuit was designed for measuring the current (range ± 200 

μA, accuracy 0.1 %). The second setup is shown in Fig. 8, and 

is used to test the self-sensing on the overall DEA. The Trek 

voltage amplifier, the current measurement circuit and the 

Keyance™ laser displacement sensor are part of this setup as 

well. A Zaber T-NA08A25 linear actuator and a Zaber T-

LA28A linear actuator used to modify the relative position of 

the two loading springs with respect to the DEA. The 

algorithm is implemented in LabVIEW with an FPGA data 

acquisition system working at a sampling frequency of 20 

kHz. A first order low-pass pre-filter F(z) with unit gain and 

time constant τf, and a comb filter H(z) tuned according to (29) 

are also implemented in the overall scheme. The filter time 

constant f and the RLS forgetting factor  have been hand 

tuned in order to achieve minimal peak in the displacement 

estimation error. Their final values are shown in Table I. 

 

 

 

Fig. 7.  Experimental setup for testing the DEA membrane, picture (upper) 

and sketch (lower). 

 

Fig. 8.  Experimental setup for testing the DEA system, picture (left) and 

sketch (right). 

TABLE I 

SELF-SENSING ALGORITHM PARAMETERS 

Parameter Value Unit 

τf 250 [s] 

μ 0.7 [-] 

A. Sensing results 

In the first set of experiments, the setup shown in Fig. 7 is 

used to apply a mechanical deformation of 5 mm to the DEA 

membrane at different mechanical frequencies (0.5, 1 and 2 

Hz), while its displacement is recorder with the laser and a 

high frequency excitation is applied. As suggested in [22], our 

first choice for the high-frequency sensing signal consists of a 

sinewave. Several frequencies are tested (200, 400, 600, 800, 

and 1000 Hz). In this test, the membrane is deformed by an 

external force and therefore this experiment aims to evaluate 

the pure sensing capabilities of DEA.  

The first step is the evaluation of which of the three model 

discussed in  Section III.A and Section III.B is the most 

suitable for self-sensing. For this reason, the experimental 

results corresponding to mechanical frequency of 1 Hz were 

used as inputs for the self-sensing algorithm based on the three 

models in (7), (20) and (23). The resulting estimated electrical 

parameters are plotted in Fig. 9 with respect to the 

experimentally measured displacement. It can be observed that 

the best trade-off between accuracy, consistency and 

computational complexity is provided by the RC series model 
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in Fig. 5 (b). In fact, the capacitance estimations are consistent 

at each electrical frequency, and moreover they are in good 

agreement with the experimental capacitance measurement 

performed with the LCR-bridge discussed in Section III. The 

estimation of the series resistance exhibits poor accuracy when 

performed at lower electrical frequency, but it becomes more 

consistent as the frequency increases. Moreover, it can be 

noted how the resistance curves show a hysteretic dependency 

on the displacement, which is not present in the capacitance. 

Similar results are obtained by adopting the complete model in 

Fig. 5 (a), but the resulting leakage resistance estimation is 

poor. This happens because the value of Rl appears too large in 

the case under investigation, and its effects are practically 

unobservable at the selected operating frequencies. Therefore, 

the complete model for self-sensing seems to introduce an 

unnecessary increase of computational complexity with 

respect to the simple RC series model. On the other hand, the 

purely capacitive model shows poor consistency of the 

estimated capacitance, which tends to degrade as the sensing 

frequency changes. If the continuous model is discretized via 

backward Euler rather than forward Euler (simply replace ik-1 

with ik in (23)), the results tend to be more consistent, as 

shown in Fig. 15. However, there is still a change of the 

estimated curve depending on the sensing frequency, which is 

not observed in the RC series model. Therefore, the sensing 

test suggests that to obtain a self-sensing with a good trade-off 

between accuracy and computational complexity, the effects 

of the leakage resistance should be neglected while the 

electrodes resistance should be included in the model. Fig. 10 

shows the capacitance and series resistance estimation 

obtained at several mechanical frequencies, namely 0.5, 1 and 

2 Hz. It can be observed that the capacitance estimations are 

consistent independently of the electrical or mechanical 

frequencies, making the capacitance the most suitable 

parameter for effective self-sensing. The resistance 

estimations are consistent for a fixed mechanical frequency. 

Interestingly, the series resistance value tends to increase as 

the mechanical frequency increases. As the deformation is the 

same in each test, this result suggests that the series resistance 

could have some dependency on the material stress. However, 

this statement requires additional experimental investigation 

which go beyond the purpose of this paper. Finally, Tables II 

and III summarize the energetic performance for each test, in 

terms of average and peak values of the electrical power 

supplied to the actuator. The power is obtained as the product 

of measured voltage and current signals. The average power 

increases for increasing electrical and mechanical frequencies, 

while the peak power increases for increasing electrical 

frequency and it is quite insensitive to the mechanical 

frequency. 

B. Self-Sensing results 

This section investigates the performance of the algorithm 

validated in Section IV.B in real-time self-sensing 

applications. The DEA used as case of study is the same one 

shown in Fig. 8. The results of the previous section suggest 

that a better estimation is achieved by using RC series model 

and higher sensing frequencies, as this allows for a better 

decoupling between electrical and mechanical  

 
TABLE II 

SENSING RESULTS, AVERAGE POWER CONSUMPTION FOR DIFFERENT 

ELECTRICAL AND MECHANICAL FREQUENCIES 

Average Power 

[mW] 

200 Hz, 

el. 

400 Hz, 

e. 

600 Hz, 

el. 

800 Hz, 

el 

1000 Hz, 

el. 

0.5 Hz, mec. 0.17 0.63 1.33 1.36 1.85 

1 Hz, mec. 0.19 0.69 1.42 1.43 1.91 
2 Hz, mec. 0.21 0.76 1.54 1.51 1.98 

 
TABLE III 

SENSING RESULTS, PEAK POWER CONSUMPTION FOR DIFFERENT  

ELECTRICAL AND MECHANICAL FREQUENCIES 

Average Power 

[mW] 

200 Hz, 

el. 

400 Hz, 

e. 

600 Hz, 

el. 

800 Hz, 

el 

1000 Hz, 

el. 

0.5 Hz, mec. 6.28 13.24 20.02 16.34 18.83 

1 Hz, mec. 6.32 13.25 19.95 16.20 18.52 

2 Hz, mec. 6.38 13.25 19.67 15.74 17.74 

 

behaviors. Moreover, a higher sensing frequency results in a 

lower order for the comb filter, thus reducing the overall 

memory requirement. For these reasons, a 100 V, 1000 Hz 

sensing signal is superimposed to the actuation signal in all the 

self-sensing experiments. We remark, however, that higher 

sensing frequencies have the drawback of increasing the 

power consumption, as highlighted in Tables II and III. The 

first experiment, shown in Fig. 11, is used for calibrating the 

capacitance-displacement curve. The calibration is performed 

with a third order polynomial fitting, which was proven to be 

sufficiently accurate. The actuation signal consists in a 0.5 Hz 

unipolar sinewave. Validation is performed with several kind 

of actuation signals: a filtered, amplitude modulated square 

wave, a sinesweep from 0 to 2 Hz and a sinesweep from 0 to 

10 Hz. The capacitance estimation is used to reconstruct the 

displacement in real time by means of the previously 

calibrated polynomial, and the results are shown in Fig. 12-

Fig. 14, where the estimated displacement is compared to the 

measured one. The self-sensing has a remarkable accuracy, 

since the displacement error is considerably small in each test. 

The estimation error peak values are always smaller than 1.89 

%. The error mean, RMS and peak values are summarized in 

Table IV. 

The benefits introduced by the comb filter are illustrated in 

Fig. 16, where the capacitance signal is shown before (blue) 

and after (magenta) the filtering process, both in frequency 

(left) and time domain (right). The capacitance possesses some 

components at multiples of the estimation frequency (the most 

relevant appear at 1000, 2000, 4000 and 6000 Hz), and such 

components are significantly attenuated by the proposed filter.  

 
TABLE IV 

SELF-SENSING ERRORS 

Experiment 
Mean error 

[%] 

RMS error 

[%] 

Peak error 

[%] 

Sinewave at 0.5 Hz -0.12 1.71 1.74 

Sinesweep from 0 to 2 Hz -0.02 1.17 1.89 

Sinesweep from 0 to 10 Hz -0.18 1.11 1.73 

Increasing square wave -0.66 1.40 1.86 
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Pure capacitance model Capacitance plus series resistance model 

   
Capacitance plus series and parallel resistance model 

   
Fig. 9.  DEA membrane electrical parameters estimations using 100 V sinusoidal signals at different electrical frequencies (200, 400, 600, 800, 1000 Hz), and 

deforming the DEA by 5 mm at a mechanical frequency of 1 Hz with an external actuator. Comparison of various electrical models. 

 

0.5 Hz, mechanical 1 Hz, mechanical 2 Hz, mechanical 

   

   
Fig. 10.  DEA membrane capacitance and series resistance estimations using 100 V sinusoidal signals at different electrical frequencies (200, 400, 600, 800, 1000 

Hz), and deforming the DEA by 5 mm at different mechanical frequencies (0.5, 1, 2 Hz) with an external actuator. 
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Fig. 11.  0.5 Hz sinewave response voltage, current, displacement and self-

sensing error. Peak errors are emphasized with continuous lines. 

 
Fig. 12.  Increasing amplitude square wave voltage, current, displacement and 

self-sensing error. Peak errors are emphasized with continuous lines. 

V. CONCLUSION 

This paper proposed and experimentally validated a self-

sensing algorithm for Dielectric Elastomer Actuators. The 

approach consists of using voltage and current measurements 

for real-time estimation (via Recursive Least Squares) of the 

DEA capacitance and electrodes resistance, which can in turn 

be used to reconstruct information on the deformation of the 

membrane. The capacitance estimation can be related to the 

membrane deformation, leading to self-sensing. The validity 

of the methodology was confirmed by several experiments, 

proving how the real time estimation algorithm, in conjunction 

with some ad-hoc filters, enables to reconstruct the actuator 

deformation with satisfactory accuracy. A comparison 

between estimated and measured displacement shows that the  

 
Fig. 13. 0 to 2 Hz sinesweep response voltage, current, displacement and self-

sensing error. Peak errors are emphasized with continuous lines. 

 
Fig. 14.  0 to 10 Hz sinesweep response voltage, current, displacement and 

self-sensing error. Peak errors are emphasized with continuous lines. 

peak error is always smaller than 1.86 % for a mechanical 

actuation up to 10 Hz. We also point out that a sufficiently 

accurate self-sensing was achieved even if the order of 

persistent excitation of the high-frequency signal, i.e. a 

sinewave, is not high. This is probably due to the fact that for 

the simple RC series model, consisting of 2 parameters only, 

the information provided by a single sinewave having a 

properly tuned frequency is enough to reconstruct all the 

system parameters. This may not be true when a 3 parameters 

model is adopted (including both electrodes and leakage 

resistance), and more complex sensing signal with a higher 

order of persisting excitation must be considered to perform a 

complete identification in such case. 
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Since the algorithm consists of algebraic operations and 

difference equations only, it can be successfully implemented 

in real-time microcontrollers at relatively high rates (20 kHz in 

this paper). Differently from most of the self-sensing methods 

presented in literature, the proposed strategy does not require 

extra measurement or signal processing hardware (e.g. peak 

detectors, PWM driving electronics, charge sensors, external 

resistors with voltage sensors), provided that voltage and 

current measurements are integrated in the driving electronics 

(which is typically true). Moreover, since the algorithm is 

based on time-domain rather than frequency domain, different 

kind of excitation signals can be used without affecting the 

validity of the result. The combination of online estimation 

algorithms and digital filtering makes it also possible to 

perform self-sensing with tunable accuracy and bandwidth. On 

the other hand, the proposed algorithm requires that the ratio 

between the sampling frequency and the sensing signal 

frequency is sufficiently high, in order to let the discretized 

approximation of the model be admissible. This may represent 

a limitation in case one is interested in performing self-sensing 

when having a microcontroller with limited computational 

capabilities. Therefore, the methodology presented in this 

work is best suited in case one is interested in a self-sensing 

solution that can be easily implemented using voltage and 

current measures directly available in the driving amplifier 

circuitry, and does not require additional specific sensing or 

signal processing.” 

Future developments will be devoted to the analysis of the 

limits of the proposed approach, the degradation of the 

capacitance-displacement relationship when operating at 

different temperatures, the evaluation of alternative self-

sensing methods based on charge measurement, the 

investigation of different kind of high-frequency sensing 

signals having higher order of persistent excitation than a 

simple sinewave, and the experimentation of the developed 

self-sensing methods in closed loop sensor-free control 

schemes. Moreover, experimental evidence has shown a 

dependency between the resistance estimation and the 

membrane force, possibly due to the viscoelastic relaxation 

process of the electrodes. Therefore, further investigations will 

be performed to evaluate if also information on force can be 

extracted from the available signals. 

 

 

Fig. 15. DEA membrane capacitance estimations, alternative representation of 

pure capacitance model via backward Euler discretization. 

 

Fig. 16.  Estimated capacitance signal, before (blue) and after (magenta) the 

application of the comb filter, both in frequency (left) and time domain (right). 
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