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Abstract

This thesis addresses one of the most pressing challenges in satellite development:
accurately predicting shock loads during launch to optimize structural design and
reduce the need for costly and time-consuming testing. As satellites are exposed
to severe dynamic loads from rocket stage separations and pyrotechnic events, en-
suring resilience against these forces is crucial for mission success. Traditional em-
pirical methods for shock load prediction often rely on conservative assumptions,
leading to over-design and added costs. This research, conducted in collaboration
with SITAEL SpA and supported by insights and tools from the European Space
Agency (ESA), introduces a novel methodology for more precise shock load predic-
tion. The proposed model, based on modal decomposition and transfer function
analysis, enables engineers to calculate shock transmissibility from low to high fre-
quency spectrum, overcoming the limitations of empirical methods. The method-
ology was initially validated through simulations on simple 2-DOF systems and
subsequently applied to the complex ShockSat case study, an open-source satel-
lite project by NASA. Simulations carried out during a research period at ESA
provided critical industry insights and further refined the model’s accuracy and
practical relevance. These simulations revealed the model’s capability to predict
shock responses in real satellite structures, offering potential design optimizations
to mitigate shock effects. While experimental validation remains a future goal, this
thesis establishes a robust foundation for advancing shock analysis in aerospace
engineering. By shifting away from conservative assumptions toward more accu-
rate prediction, the research holds promise for reducing dependency on extensive
physical testing, ultimately leading to more efficient and sustainable satellite de-
velopment. As the space industry places greater emphasis on cost-effectiveness and
reliability, this predictive shock model meets the needs of today’s market, opening
up new possibilities for building more resilient spacecraft and making the design
process more efficient.
Keywords: Shock Load Prediction, Modal Decomposition, Transfer Function
Analysis, Shock Response Spectrum (SRS), Mechanical Environmental Shock Test-
ing.
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Nomenclature

αj, αi Angles between adjoining sections in a shock path

ẍ(t) Synthesized acceleration in the time domain

üb(t) Base acceleration input in a shock event

ẍ(t) Absolute acceleration of mass in a system

∆dB Slope in decibels per octave

λr Complex root of the system for the r-th mode

xmax Maximum displacement vector after shock event

ω Angular frequency

ωr Natural frequency of the r-th mode

ϕm Phase angle for the m-th wavelet frequency

ψr Mode shape vector for the r-th mode

CoG Center of gravity coordinates

Ixx, Iyy, Izz Moments of inertia around principal axes

Ixy, Iyz, Izx Product of inertia terms

MoI Moment of Inertia for composite materials

Qaxial,Qradial Shock load inputs for axial and radial directions

ξm Damping ratio for the m-th wavelet

ζ Damping ratio

Am Amplitude of wavelet in synthesis

v



NOMENCLATURE vi

AttDistance Distance attenuation factor

AttJoint Joint attenuation factor

B(s) Dynamic stiffness matrix in the Laplace domain

c Damping coefficient

COR Synthesis Correlation Coefficient

dB Decibel level

e, f Section orientation factors for axial and radial directions

E(t) Envelope function for damped sinusoids

f Frequency in Hz

F (s) Force vector in the Laplace domain

fn Resonant frequency for the n-th mode

fcritical Critical frequency where damping is highest

H(s) Transfer function matrix

H11, H21 Partitions of the FRF matrix H(iω)

k Spring stiffness

KJoint Configuration factor for joint attenuation

KStruct Configuration factor for structure attenuation

Li Adjusted length for distance attenuation based on section properties

Lr Modal participation vector for the r-th mode

m Mass

Nm Number of oscillations in a wavelet component

Q Quality factor

rax Axial ratio for attenuation calculation

rrad Radial ratio for attenuation calculation



NOMENCLATURE vii

s Complex frequency variable in the Laplace domain

SA(ω) Peak response function in SRS calculation

SRSin Input Shock Response Spectrum

SRSout Output Shock Response Spectrum

T Time duration for a synthesized waveform

T (iω) Global transmissibility function in the frequency domain

T (iω) Global transmissibility in modal analysis

Tshock Shock transmissibility

tdm Delay time for wavelet component in synthesis

X(s) Displacement vector in the Laplace domain

z(t) Relative displacement in the system
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Introduction

Figure 1: Launch of a rocket, render

The journey of satellite development and its impact on space exploration has
taken off in remarkable ways since the 1970s. This period marked the beginning
of a new era, transforming how we communicate, observe our planet, and even un-
derstand the universe. Satellites became essential tools, allowing us to collect data
that informs everything from weather forecasts to environmental monitoring. Yet,
sending these technological marvels into the unknown is fraught with challenges.
Space is an extreme environment, and once we push beyond the protective veil of
Earth’s atmosphere, our satellites face harsh conditions. They are bombarded by
intense radiation, extreme temperatures, and the vacuum of space itself. Given
the immense costs involved in developing and launching these spacecraft, ensuring
they can withstand these challenges is critical. Repairs in orbit are not a financially
feasible option, for now. To prepare for the rigours of space, every satellite under-
goes extensive testing to mimic the harsh realities of launch and operation. The
launch phase is particularly intense, subjecting the spacecraft to a combination of
mechanical, acoustic, thermal, and radiation stresses. However, the environmental
testing process is not just necessary; it can also be time-consuming and expensive.

1
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This has led engineers to seek more efficient ways to develop spacecraft. They
use advanced mathematical models to predict how these structures will handle
dynamic loads, hoping that these simulations will eliminate the need for major
redesigns after testing. But getting these predictions right is vital. During launch,
spacecraft experience a wide range of dynamic loads, with vibrations and shocks
that vary greatly in intensity. At higher frequencies, traditional methods often fall
short, making statistical approaches essential for understanding the forces at play.
One of the most crucial tests is the shock test, which evaluates how well a satellite
can endure the intense forces from sudden events, like when stages of a rocket sepa-
rate or when the protective fairing is jettisoned. These moments generate extreme
loads, largely due to pyrotechnic devices in the launch vehicle. The mechanical
stresses can be brutal, and if a satellite isn’t ready for them, the consequences can
be disastrous [1–4]. In recent years, the space industry has really shifted focus
toward making satellite launches more efficient and cost-effective. Companies like
SpaceX are leading the way with reusable rockets, which are designed to return
safely to Earth and be launched again. This approach not only reduces costs but
also changes how we think about spacecraft durability. As we continue to explore
and push the boundaries of what’s possible in space, mastering the art of predict-
ing and testing for extreme conditions will be essential. With reusable technology,
the stakes are higher, and getting it right has never been more important for the
future of space exploration.

Figure 2: Space launch system booster separation that causes shock loads

My research addresses the challenge of predicting shock loads on satellite struc-
tures by developing a virtual simulation methodology. This PhD project, con-
ducted in collaboration with SITAEL SpA, an aerospace company, aims to es-
tablish a predictive shock model adaptable for multiple launchers and satellite
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configurations. The goal is to optimize the design process while minimizing the
number of experimental tests required. This project is part of an industrial PhD
program, integrating theoretical advancements in shock analysis with both aca-
demic rigour and practical applications within the aerospace industry. Although
the proposed methodology has not yet undergone experimental validation, it lays
a foundation for future shock testing and design optimization. The final valida-
tion of the methodology will be carried out following the completion of my PhD,
with shock tests planned according to the specifications we have developed. The
aim of this research is to create a predictive shock analysis method that is both
more accurate and less conservative than current industry standards, while remain-
ing computationally efficient and straightforward to implement. By developing a
versatile tool that can be tailored to various satellite configurations and launch
vehicles, this research endeavours to optimize satellite design processes and reduce
the need for costly experimental tests.

Figure 3: Shock signal, represented in form of an acceleration in the time domain, caused
by a pyrotechnic explosion

This thesis is divided into several chapters that reflect the theoretical frame-
work, industrial application, and the development of the shock prediction model.
1 provides a comprehensive overview of the state-of-the-art in shock analysis, high-
lighting both deterministic and data-driven methods. It traces the historical evolu-
tion of shock prediction techniques, beginning with early earthquake research and
extending to modern aerospace applications. The chapter emphasizes the critical
importance of predicting structural responses to dynamic loads throughout a wide
frequency spectrum, illustrating how different methodologies serve this purpose. It
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discusses the efficacy of traditional deterministic approaches at low frequencies and
the need for statistical methods as frequencies increase, particularly in high-density
modal environments. The text also introduces hybrid techniques that merge phys-
ical modelling with data-driven approaches, leveraging the strengths of both to
enhance predictive capabilities. Additionally, the chapter explores the transfor-
mative role of Artificial Intelligence (AI) and Machine Learning (ML) in shock
prediction, while addressing the challenges inherent in experimental and numerical
methods. Ultimately, it sets the stage for understanding how these techniques can
streamline spacecraft development processes and improve reliability during critical
mission phases. 2 shows an extended overview of shock phenomena, focusing on
the fundamental principles of vibration analysis and the response of mechanical
systems to non periodic excitations, particularly shocks. For this chapter, the
theoretical framework has been drawn from fundamental educational texts in vi-
bration dynamics and vibroacoustic [5–13], providing a comprehensive basis for
understanding shock phenomena and the response of mechanical systems to non-
periodic excitations. It begins with an introduction to vibration analysis, followed
by a discussion of wave motion and its relevance in shock contexts. The chapter
then delves into modal analysis for single-degree-of-freedom (SDOF) systems, ex-
ploring the dynamic behaviour of these systems under shock loads. Furthermore,
it extends to multi-degree-of-freedom (MDOF) systems, highlighting frequency re-
sponse functions and modal decomposition techniques. The significance of modal
parameters is addressed, along with an introduction to Statistical Energy Analysis
(SEA), providing insights into energy distribution in complex systems. Lastly, the
chapter covers methodologies for transitioning from low to high frequencies, estab-
lishing a framework for shock analysis applicable to various engineering contexts.
3 introduces the Shock Response Spectrum (SRS) as a critical tool in assessing sys-
tem resilience to transient shock events. Beginning with the historical context, the
chapter traces the evolution of SRS as a standardized method across various indus-
tries, from civil engineering to aerospace. A rigorous mathematical derivation of
the SRS is presented for both SDOF and MDOF systems, emphasizing the impor-
tance of frequency response in shock analysis. Additionally, the chapter explores
various time-domain synthesis methods, such as wavelets and damped sinusoids,
comparing their effectiveness in replicating SRS input signals. These synthesised
signals are subsequently applied to different system models, providing insight into
the SRS practical applications and limitations in predicting shock responses across
diverse systems. 4 investigates the industry standards for shock analysis, with a
focus on the practices employed at SITAEL for the Multi-Application Minisatel-
lite project. The chapter begins by introducing the V-Model as a framework for
spacecraft development, outlining its role in managing systematic verification and
validation at every design stage. The Structural Model (SM) of The Minisatellite
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serves as a case study, where mechanical properties and shock response are exam-
ined through modal analysis and physical testing. The chapter proceeds to outline
the shock test specifications, including the experimental setup, instrumentation,
input conditions, and pass/fail criteria, which will guide future testing of the Min-
isatellite SM. Although the shock test for the Multi-Application Minisatellite has
not yet been conducted, the methodology developed during this PhD provides a
foundation for future experimental validation. Existing industrial shock testing
methods are discussed, highlighting the technical challenges of simulating real-
world shock conditions in a clean room setting and the limitations of current em-
pirical methods, underlining the complexities involved in achieving accurate shock
testing outcomes. The chapter also introduces the empirical methods traditionally
used in industry to estimate shock loads, which serve as benchmarks for compari-
son with the proposed methodology. These empirical methods rely on conservative
assumptions about the attenuation of shock loads through the satellite structure,
often resulting in over-design and increased costs. A significant contribution of
this research is the improvement of these empirical methods through a predictive
shock model based on modal decomposition and transfer function analysis. This
model, as demonstrated in later chapters, offers more accurate predictions of shock
loads, facilitating optimised satellite designs that better balance performance with
cost efficiency.

Figure 4: Render of the Multi-Application Minisatellite with a recurrent platform, com-
patible for multiple launchers and missions

5 introduces a novel predictive methodology for calculating the shock response
of mechanical structures, aimed at improving the accuracy and reliability of tra-
ditional shock load estimation. The approach leverages modal decomposition and
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transfer function analysis to calculate shock transmissibility and predict shock re-
sponses with greater precision, reducing the conservatism often associated with
empirical methods. The methodology is validated through applications to both
simple 2-DOF systems and complex case studies, including the ShockSat project,
which serves as an open-source test-bed for shock prediction improvement. In
5.4.3 some snippets of the MATLAB code are shown. The chapter also explores
shock propagation in composite materials, presenting Carrera’s Unified Formula-
tion (CUF) as an effective tool for capturing the intricate behaviour of aerospace
composites under dynamic loads. Through comparative analyses of the proposed
method and traditional industry standards, the chapter demonstrates the predic-
tive model’s ability to offer enhanced accuracy while optimising the design and
testing process. By combining theoretical advancements with practical validation,
this chapter marks a significant contribution to improving shock response pre-
diction in aerospace engineering. In conclusion, this research provides a novel,
predictive methodology for analysing shock loads in satellite structures, address-
ing the limitations of traditional empirical methods. Through simulations initially
conducted on simple systems and later applied to the complex ShockSat case study,
the methodology was rigorously tested and refined. These simulations were carried
out during a visiting research period at the European Space Agency (ESA), where
I was able to access industry-standard tools and collaborate with leading experts.
By advancing a model that combines modal decomposition and transfer function
analysis, this work contributes a more precise tool for shock prediction that holds
the potential to optimize satellite design, reduce testing costs, and increase re-
silience. The simulations conducted on ShockSat, as well as collaborations with
industry leaders like SITAEL and ESA, highlight the model’s adaptability across
different satellite configurations and missions. This thesis thus serves as both
a theoretical and practical foundation for enhancing the efficiency and accuracy
of shock analysis in aerospace engineering. Looking forward, the integration of
predictive shock models in spacecraft design could drive more sustainable develop-
ment practices, supporting the aerospace industry in meeting the challenges of an
era marked by cost-effectiveness and increased demands for reliability in satellite
missions.
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State-of-art of shock analysis:
Deterministic and data-driven
methods

Contents
1.0.1 Numerical and experimental . . . . . . . . . . . . . . . . . 9

1.1 Model-Based Techniques for Shock Environment Prediction . . . . . 11
1.1.1 From Deterministic to Statistical methods . . . . . . . . . . 11

Finite Element Method (FEM) in Vibro-Acoustic Analysis
of Composite Materials . . . . . . . . . . . . . . . 13

1.1.2 Stochastic methods . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Data-Driven Techniques for Shock Environment Prediction . . . . . 15

1.2.1 The Role of Digital Twins in Data-Driven Models . . . . . . 17
1.3 Hybrid Approaches: Combining Model-Based and Data-Driven Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Research on shocks began in the 1930s, focusing on the impact of earthquakes
on buildings, which led to the concept of the shock response spectrum. Equip-
ment testing gained momentum during World War II, and methods advanced fur-
ther with the increased power of exciters, enabling the generation of synthetic
shocks. In the 1970s, the advent of computerization brought another significant
evolution, allowing tests to be conducted directly on exciters using the shock re-
sponse spectrum [14]. In the aerospace industry, mechanical shock prediction and

7



Chapter 1 8

testing are crucial not only for ensuring reliability during critical mission phases
but also for enhancing the sustainability of spacecraft development. A promising
approach in this context is identifying techniques that can accurately predict a
spacecraft’s structural response to dynamic loads across the entire frequency spec-
trum encountered during launch. Such methods, if integrated into the early design
phase, could significantly reduce the need for mechanical environmental test cam-
paigns, streamlining the development process and cutting costs. The prediction
of mechanical responses, particularly across varying frequency bands—low, mid,
and high—plays a vital role, as each range induces distinct structural behaviours.
At low frequencies, deterministic models like Finite Element Method (FEM) are
highly effective because they capture the first few natural modes of the structure.
However, as the frequency increases, especially into the mid and high-frequency
ranges, the behaviour becomes more complex due to modal density and overlap,
leading to less predictable responses. This shift highlights the need for statistical
methods that can handle the stochastic nature of high-frequency shock responses,
reflecting the ongoing debate between deterministic and probabilistic approaches
in aerospace engineering. Further complicating matters, the debate between finite
element analysis (FEA) and simplified analytical methods, along with the balance
between predictive software and physical testing, intersects with new predictive
techniques such as model-based design and data-driven approaches. Traditional
model-based methods, rooted in the physical characteristics of the spacecraft, are
essential for early-stage predictions but often fall short in capturing the complexi-
ties of high-frequency dynamics. This gap is increasingly being addressed through
Artificial Intelligence (AI) and Machine Learning (ML) technologies, which en-
hance the predictive power of Digital Twins (DT) and improve decision-making
processes. These AI-driven methods align with the black box approach, where
the system’s dynamics are not fully known but can be learned from available
data. By exciting the system with input signals and using output data to train
models, AI and ML algorithms can predict how a spacecraft will respond under
various dynamic conditions. However, reliance solely on black box methods has
limitations, particularly when little is known about the underlying physics of the
system. To address this, hybrid approaches, often referred to as grey box meth-
ods, combine rough physical knowledge of the system with data-driven techniques.
This blend allows engineers to set up a preliminary model based on first principles
or multi-body dynamics and refine it using data. Such hybrid models offer a bal-
ance between the flexibility of data-driven methods and the structural insights of
traditional physics-based models, making them particularly valuable in aerospace
applications where both accuracy and adaptability are critical. This grey box
approach, known as system identification, enables engineers to learn model pa-
rameters dynamically while retaining the power to optimise other features based
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Figure 1.1: Shock prediction paradigm

on known system behaviour. In comparing these methods—model-based, data-
driven, and hybrid—it becomes clear that each has its role in spacecraft shock
prediction, depending on the frequency range and complexity of the system. At
lower frequencies, where the system is more predictable, deterministic models are
typically sufficient, but as the complexity grows with higher frequencies, more flex-
ible, data-driven, or hybrid methods become necessary. By benchmarking these
techniques, engineers can optimize their prediction strategies, combining the pre-
cision of traditional models with the adaptability of AI-driven solutions to meet
the increasingly stringent demands of modern aerospace systems. Ultimately, the
careful integration of these techniques into the design phase holds the potential
to significantly enhance the sustainability and efficiency of spacecraft development
by reducing the need for extensive physical testing and enabling more accurate
predictions of dynamic responses.

1.0.1 Numerical and experimental

This section is dedicated to highlight the complementary roles of experimental
and numerical approaches in structural analysis, particularly in aerospace appli-
cations. An effective integration of these methodologies can be achieved through
an iterative, holistic approach, where low-fidelity numerical models are used in
the initial stages to explore the parameter space and refine the design. These
simplified models can iteratively feed into high-fidelity simulations, providing a
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Figure 1.2: Relationship between numerical and experimental

cost-effective means to achieve an optimized balance between computational effort
and predictive accuracy. The use of such a multi-tiered modelling strategy allows
for the early identification of potential issues and accelerates convergence towards
reliable high-fidelity results, thereby enhancing the robustness of structural valida-
tion processes and ensuring consistency between numerical predictions and exper-
imental findings. However, both experimental and numerical approaches present
significant challenges. Experimental methods often suffer from complex position-
ing requirements, limited instrumentation such as accelerometers, and difficulty in
replicating exact launch conditions. Moreover, the static and dynamic properties
can be affected by the use of dummy masses, reducing the accuracy of the ex-
perimental setup. On the other hand, numerical methods face challenges such as
the need for linear approximations of shock propagation dynamics and the non-
deterministic behaviour of the model at high-frequency ranges, which complicates
accurate predictions. Additionally, numerical models often struggle with adequate
damping estimation and boundary condition modeling, leading to uncertainties in
their outcomes. To overcome these challenges, adopting an iterative approach that
combines low-fidelity and high-fidelity models proves advantageous. Low-fidelity
models, being less resource-intensive, enable rapid calibration and initial explo-
ration of the parameter space, while high-fidelity models, whether experimental
or numerical, provide a more detailed and accurate representation. This iterative
refinement process, wherein insights from lower fidelity feed into higher fidelity,
creates a robust framework that ensures the strengths of each approach are ef-
fectively leveraged, ultimately leading to a more comprehensive understanding of
structural behaviour under complex loading conditions.



Chapter 1 11

Figure 1.3: Close-up on shock prediction approaches

1.1 Model-Based Techniques for Shock Environ-
ment Prediction

Model-based techniques rely on physical equations and first-principles to simulate
the behaviour of mechanical structures under dynamic loads. In this section, we
will distinguish deterministic methods, where the outcome is fully determined by
the initial conditions and inputs, from stochastic methods, in which randomness
and uncertainty are involved.

1.1.1 From Deterministic to Statistical methods

For spacecraft, the mechanical environment during launch is typically measured in
terms of acceleration (Gs) across a wide frequency range, from 10 Hz to 10,000 Hz.
Predicting responses across this frequency spectrum is challenging, particularly
due to the division between low and high frequencies. At low frequencies, where
the first two modes usually lie, deterministic models such as the Finite Element
Method (FEM) have been highly effective. FEM is widely accepted for its accuracy
in predicting structural behaviour at frequencies where the first few natural modes
dominate [15] , [16]. For low-frequency ranges, where identical structures produce
similar responses, FEM provides deterministic results. However, as frequency in-
creases, the behaviour of the structure becomes less deterministic, particularly at
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mid and high frequencies where modal density and overlap occur. In this regime,
minor differences between otherwise identical structures can result in vastly dif-
ferent responses. Consequently, FEM becomes overly sensitive to minor details,
and its accuracy diminishes as mesh sizes must decrease to capture the smallest
characteristic deformations [17]. Moreover, for middle-high frequency FEM have
the deficiencies of high computation costs. and statistical approach needs to be
applied. [18, 19] show how FEM predictions are not comparable with test results
at high frequencies. Compared to deterministic methods, energy-based methods
are more efficient and statistical, among which Statistical Energy Analysis (SEA)
is probably the most popular [20–22]. SEA is a powerful method used to predict
the distribution of vibrational energy in complex mechanical systems, as they are
described as a network of subsystems where the stored and exchanged energies are
analysed [23]. The method is based on the assumption of statistical equilibrium,
where the energy within each subsystem is evenly distributed among its modes,
and the coupling between subsystems is relatively weak. This allows for the use of
energy balance equations to describe the flow of vibrational energy between subsys-
tems. SEA is particularly effective for systems with a large number of modes and
high modal overlap, characteristics common in high-frequency regimes. In such
cases, the precise behaviour of individual modes is less important than the over-
all statistical distribution of energy. The development of SEA began in the early
1960s, focusing on vibroacoustic challenges in aerospace engineering. "Statistical"
refers to the fact that the variables are drawn from a statistical population, and
the results are considered expected values. "Energy" indicates the use of energy-
related variables, and as [24] explains, "Analysis" signifies that SEA represents a
broad approach rather than a specific method. When dealing with mid frequency
there is no universally accepted method as the structure does show neither a de-
terministic nor a chaotic behaviour. Accordingly, [25–27] proposed an improved
methodology based on the Hybrid Finite Element-Statistical Energy Analysis (FE-
SEA) method. Since SEA is able to deal with high frequency problems, combining
FEM and SEA it is possible to cover the entire frequency range with rationality and
sufficient accuracy of the prediction results. The hybrid method can predict the
middle and high frequency shock response more effectively and reasonably, and the
computational efficiency is greatly improved, compared with the traditional FEM.
Dalton [28–35] proposed the Virtual Mode Synthesis Simulation (VMSS) method,
where the dynamical system is numerically convoluted with a measurement or sim-
ulated excitation force to obtain the dynamic response in the time domain. This
numerical method resulted to be suitable to solve the problem of transient and high
frequency environment prediction. [36–39] successfully combined SEA in conjunc-
tion with VMSS for shock prediction during launch. In literature, there are many
others alternative that requires a lower mesh density and fewer modes without
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Figure 1.4: From deterministic to statistical

loss of accuracy for high-frequency vibration analysis, which makes it more com-
putationally efficient than FEA. [40] combines the use of deterministic calculations
with empirical analyses at high frequencies. The FEM provides the low-frequency
content of the acceleration and a database of measured transmissibility magni-
tudes, coupled to a local random phase reconstruction concept, provides the high-
frequency content. [41] showed a computational scaling method based on SEA as
an alternative to the pyrotechnic shock scaling method used in industry [42]. [43]
proposes transient energy finite element analysis (TEFEA). Energy Finite Ele-
ment Analysis (EFEA) expands traditional FEM by incorporating energy transfer
between subsystems, useful in damping-heavy systems [44]. [45] improved deter-
ministic and energy-based methods. Moreover, the meshless method [46,47], aims
to make the model independent of the mesh, which reduces some computation
and make it applicable to more complex structures. The dynamic stiffness method
(DSM) [48] can always provide more accurate results independent of the number
of elements.

Finite Element Method (FEM) in Vibro-Acoustic Analysis of Composite
Materials

For low-frequency scenarios, FEM is a widely recognised and efficient tool for mod-
elling vibro-acoustic behaviour, particularly when system components are small
compared to the wavelength of the frequency range. Atalla [49] demonstrated
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FEM’s efficacy in capturing physical behaviour in vibro-acoustic systems but high-
lighted challenges in applying it to innovative materials like composites and meta-
materials, which possess orthotropic and frequency-dependent properties [50]. For
high-frequency problems or complex geometries, hybrid techniques like combin-
ing FEM with SEA [?] have been proposed. In composite materials, FEM must
account for orthotropic properties and layer-wise behaviours. Carrera’s Unified
Formulation (CUF) [51] provides advanced modelling capabilities for layer-wise
methods, as implemented in tools like MUL2, enabling high-fidelity simulations.
By contrast, FEM-based tools like Actran use an equivalent single-layer (ESL)
approach, which, while computationally efficient, may yield inaccuracies in com-
plex composites [?]. Hybrid LW/ESL models [?] and updated ESL formulations
enhance both efficiency and accuracy. Further studies, such as those by Danu
et al. [52], have explored how material microstructures, like fibre orientation and
volume fraction, affect coupled responses. Works by Gorman et al. [?,?, 53] and
Yu et al. [?] have advanced understanding of modal shapes and natural frequen-
cies in orthotropic plates. FEM’s ability to predict composite materials’ dynamic
behaviour makes it critical for aerospace applications, particularly in launch sce-
narios. However, its limitations at higher frequencies necessitate hybrid methods,
such as FE-SEA, to improve accuracy and computational efficiency. These ad-
vancements in FEM modelling align with the broader goal of reducing physical
testing in spacecraft development while ensuring precise structural predictions.

1.1.2 Stochastic methods

Stochastic methodologies for mechanical shock prediction provide an alternative to
deterministic models by accounting for inherent uncertainties in materials, geom-
etry, and loading conditions. These methodologies extend classical models, such
as FEM, by incorporating randomness into the analysis, making them essential
for systems with unpredictable behaviour due to high variability in operating con-
ditions. The simplest and most common of these approaches is the Full Monte
Carlo simulation [54]. Although MCS approach is well known to bring accurate
and robust predictions, is applicability is hindered by the high computational ef-
fort that is required [55] . Stochastic Finite Element Method (SFEM) extends the
classical FEM by incorporating stochastic parameters, offering a robust framework
for analysing systems under uncertainty. [56] provided a comprehensive foundation
for SFEM, showing how randomness can be introduced into both mechanical and
geometric properties. [57] presented a novel decomposition-based stochastic FEM
specifically for spacecraft vibroacoustic simulation, which allows prediction of a
nominal response and variations due to structural uncertainties as accurate as full
Monte Carlo simulations but at a fraction of the computational effort. Polynomial
Chaos Expansion (PCE) is an efficient tool for representing stochastic variables,
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making it suitable for mechanical shock prediction under uncertainty [58,59].

1.2 Data-Driven Techniques for Shock Environment
Prediction

The substantial increase in computational power over recent decades has driven
notable advancements in statistical and machine learning techniques. This devel-
opment has produced a suite of algorithms and data mining methods that serve
as the mathematical backbone of artificial intelligence (AI) systems. Although AI
has a longstanding role in scientific discovery, contemporary data-driven methods
in high-performance computing environments now enable large-scale algorithmic
processing. These advancements are largely due to the sharply reduced costs of
sensors, computational resources, and data storage technologies. As a result, the
vast amounts of available data present new avenues for data-driven discovery, often
described as the "4th paradigm" of science [60]. Unlike model-based approaches,
data-driven methods does not require prior knowledge of the system’s physical
properties. Instead, they learn from input-output data and builds predictive mod-
els based on observed patterns. This characteristic makes data-driven techniques
particularly attractive for predicting responses when the system’s physical be-
haviour is complex or poorly understood. An example of this is demonstrated by
system identification techniques, as discussed in [61]. Machine learning models,
particularly the latest deep learning models, can extract features, namely quantifi-
able attributes or characteristics of the observed phenomenon, from various data
types, including images, text, time series, and more. ML models of dynamic loads
on mechanical structures have been carried out mainly for damage detection [62],
structural health monitoring [63], and load identification [64]. For all these exam-
ples, ML requires no prior knowledge of the structure, and it is easy to be adapted
for different applications. [65] used Data-Driven Surrogate Modelling in the field
of computational dynamics to develop a fast and accurate predictive method for
extreme close-in detonations of high explosive. [66] made use of Evolutionary Com-
putation (EC) methods and ML techniques to predict the dynamic loads of several
helicopters. The addition of EC to the traditional deterministic approach revealed
to be successful in terms of accuracy and correlation. [67] developed a methodology
that can determine the worst-case gust loads of a generic aircraft without excessive
computation. It was shown that considerable savings in computational time can
be made without sacrificing accuracy. Deep Machine Learning (DML) has been
implemented to characterize material properties of dynamic shock-compression
experiments [68] , and fault prognostics [69]. [70] used a nonlinear autoregression
(NAR) model to predict the timing and locations of random shocks. [71] presents
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an alternative experimental data driven approach for virtual shaker testing. Artifi-
cial Neural Networks (ANNs) have become a dominant data-driven technique due
to their flexibility in modelling nonlinear relationships in large datasets. This tech-
nology takes inspiration from a simplified biological neural network: an artificial
neuron receives a signal then processes it through mathematical functions and send
it to the connected neurons, which are typically aggregated in layers. The output
of each layer is the weighted sum of the outputs from the previous one. During
the learning or training process, the weighting factors are modified so that the cal-
culated output match the actual output, trying to minimise the error. An ANN
is thus a dynamic system. This feature would result in a highly robust system in
which, changing the information stored in one element will have a little effect
on the final output. [72] classified a range of different ANN systems according to
four principal characteristics, each of them determining its suitability for solving
certain classes of problems: the format and interpretation of data, the way neu-
rons are connected, the operation functions, and the training scheme. The latter
specify if the learning process is supervised or unsupervised, meaning that solution
examples of the problem are present a priori or not. [73] proposed an ANN model
for complex contacting bodies that, compared with the conventional model-based
methods, is simple in principle and easy to implement. The method was capable
of learning the underlying nonlinear mapping relations among data efficiently and
accurately, with no extensive knowledge of the system physical behaviours being
required. It demonstrates great advantages of ANN when the internal mechanisms
are unknown or too complicated to be explored so far. Compared to conventional
digital computing techniques, neural networks are advantageous because they can
learn from example and generalize solutions to new renderings of a problem, can
adapt to fine changes in a problem, are tolerant to errors in the input data, can
process information rapidly, and are readily transportable between computing sys-
tems. [74] employed ANN to predict cyclic loading, displacement, stiffness, and
strains of an advanced biological composite structure. [75] presented a method
for solving both ordinary differential equations (ODE’s) and partial differential
equations (PDE’s) that relies on the function approximation capabilities of feed-
forward neural networks and results in the construction of a solution written in a
differentiable, closed analytic form. The method could be extended for aerospace
purposes, as for example eigenvalue problems for differential operators. [76] pro-
posed an ANN model that approximately detects ice mass accumulated in different
zones defined along the blade based on its natural frequencies. ANNs have been
applied in various aerospace applications, such as damage detection based on the
structural dynamic response [77, 78] and health monitoring [79]. Recently, some
new approaches, such as deep learning neural network [80,81], have also attracted
widespread attention owing to their high efficiency and advantages in addressing
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the uncertainties. Autoencoders, recurrent neural networks (RNNs), recursive long
short-term memory (LSTM) network have also been employed for seismological ap-
plications [82–84]. Neural networks do, however, suffer from a few shortcomings,
notably, a lack of precision, limited theory to assist in their design, no guarantee
of success in finding an acceptable solution, and a limited ability to rationalise
the solutions provided. The effectiveness of artificial neural networks (ANNs) is
closely tied to both the quality and quantity of the training data they rely on.
While data-driven methods have demonstrated significant potential and accuracy,
challenges persist, particularly around securing high-quality, labelled datasets es-
sential for training accurate predictive models. Furthermore, understanding how
models can be interpreted and ensuring they generalize effectively across different
contexts remain pressing research issues.

1.2.1 The Role of Digital Twins in Data-Driven Models

Up until recently, modelling the behaviour of a physical object was an expensive
and time-consuming activity. It was necessary to physically create the object, or
even a more sophisticated system, and the environment where it was impacted by
actual forces. Often, the applied forces during the experimental phase would result
in destruction of the system, dramatically increasing the expense. Moreover, dur-
ing the actual use, many unforeseen conditions or emergent behaviours could over-
come, resulting in failure of the system. Later, whit CAD models, it was possible
to extract more accurate information by three-dimensional static representations
hanging in empty space, time independent. Nowadays simulations have become
dynamic representations of the system’s behaviour. We can strip the information
from a physical object and create what we are calling a Digital Twin (DT), that
can simulate physical forces on the system over time to determine its behaviour.
The concept of the digital twin, a virtual replica of a physical system that is con-
tinuously updated with real-time data, has emerged as a significant advancement
in data-driven models. Digital twins enable a more dynamic, data-driven approach
to mechanical shock prediction by integrating sensor data, simulation models, and
machine learning techniques. The digital twin framework typically consists of
three main components: the physical system, the virtual twin (model), and the
communication layer that enables real-time data exchange. The idea of the Digital
Twin is to be able to design, test, manufacture, and use the virtual version of the
systems, in order to understand whether our designs are manufacturable, and the
modes of failure when the system is in use before the physical system is actually
produced. This will reduce failures of the physical system when it is deployed and
in use, reducing expenses, time, and harm to its users [85]. DT technology could
potentially be implemented to simulate a mechanical environment that consider
certain boundary conditions, and several variables that are update over time. The
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Digital Twin (DT) concept was originally developed and applied within aerospace
research and development. More recently, it has gained traction in the manufactur-
ing sector. However, the literature indicates that DT adoption in manufacturing
is still in its early stages. In this context, Cyber-Physical Systems (CPS) have
expanded DT applications beyond traditional prognostics and diagnostics, estab-
lishing a foundational role for DT in production engineering. In manufacturing,
the main objectives of simulation are to represent the complex behaviour of the
system, also considering the possible consequences of external factors, human in-
teractions and design constraints. [86] proposed simulation-based DT for complex
behaviour of production in product life cycle. The proposed framework combin-
ing the real-life data with the simulation models from design to give predictions
based on the realistic data. [87] proposed DT based simulation to optimize system
behaviours during design phase in a smart CPS. In aerospace, simulations repli-
cate the continuous time history of flights, generating extensive data to analyse
an aircraft’s experiences and predict future maintenance needs and interventions.
These simulations employ various application-based techniques, including Com-
putational Fluid Dynamics (CFD), Computer-Aided Engineering (CAE), Finite
Element Methods (FEM), and Monte Carlo simulation [88–91], mostly for reduc-
ing unplanned downtime for engines and other systems [92]. The concept of Digital
Twin (DT) is strictly linked to the aerospace field. It was conceived by National
Aeronautics and Space Administration (NASA) and the US Air Force that needed
to integrate a predictive tool for health maintenance and for the remaining useful
life of their aerospace vehicles. They invented a way to replicate the flight model
for mirroring on ground and in real time its condition during the mission [93]. In
the literature, DT in aerospace is mostly used for Structural Health Monitoring
(SHM) or Fatigue-damage prediction [94] . [95] pointed out that the application of
DTs has reduced the time originally spent on aerospace material testing and veri-
fication by 80% and 25% respectively. Increasingly digitalisation in the aerospace
industry is increasing the importance of two particular aspects of manufacturing
and design: modularity and autonomy. DT can be used either for the whole life
cycle and only for a step. The adoption of collaborative model-based engineering
practices implies the use of aircraft digital models as the reference definition of the
aircraft and the need to guarantee the data harmonisation and interoperability
along the whole life cycle, from the aircraft beginning of life to the aircraft end of
life.

While the use of digital twins for mechanical shock prediction has shown great
potential, several challenges remain. Many digital twin models still rely on simpli-
fied assumptions, which can lead to errors in predicting shock effects on non-linear
systems. Additionally, the integration of real-time data from multiple sources
introduces challenges related to data fusion and uncertainty quantification in ac-
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Figure 1.5: Life Cycle Assesment in Space ref: ESA

curately combining sensor data and simulation results, especially in the presence
of noisy or incomplete data.

1.3 Hybrid Approaches: Combining Model-Based
and Data-Driven Techniques

The current emphasis is put on data-centric techniques. The status of research
is based on a collection of ad hoc methods, established on the earlier phases of
AI-based models. We are facing the need of a more rigorous standard solution
that can formalize purely data-driven models. In order to go beyond this limita-
tion, we could combine the advantages of white and black box approach, namely
grey box approach, that makes use of first-principles knowledge to put basis on
more stochastic methods. The development of hybrid approaches could improve
performances and overcome the limitations of individual physical and data-driven
methods used separately. Pure physics-driven simulations are employed in cases
where there is insufficient data for ML and the governing physical laws are well
understood. On the other hand, typical data-driven approaches are for cases where
data availability is high, and risks associated with failed predictions are low. Al-
gorithmic advances need to be made to ensure that hybrid algorithms can leverage
the best of both worlds i.e., retain the high predictive accuracy and computa-
tionally cheap nature of data-driven models, and at the same time incorporate
elements of interpretability, encoding of physical laws and trustworthiness of sim-
ulation models [96]. [97] formulated a hybrid data-driven method for real-time
prediction and uncertainty quantification (UQ) of fatigue failure under stochastic
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loading. [98] developed and study an integrated analytical and computational data-
driven grey box environment needed to describe transient phenomena in large-scale
power system. [99] successfully trained a range of neural networks using random
data and FE strains as inputs. [100] proposed a hybrid model that fuses physical
modelling and data-driven techniques to predict fatigue crack growth. The hybrid
approach demonstrated improved predictive performance over stand-alone mod-
els. [101] proposes a fusion of state-space modeling and artificial neural networks
for the creation of predictive computational pyroshock models. In [102] hybrid
state-space and data-based approach is developed for computational simulation
of shock response prediction for both time histories and shock response spectra
(SRS).

In a synthesis

• Historical development of shock analysis techniques, from early earth-
quake studies to modern aerospace applications.

• Importance of accurately predicting structural responses to dynamic
loads across the entire frequency spectrum.

• Role of deterministic methods (like FEM) in low-frequency predictions
and the transition to statistical methods for mid and high frequencies.

• Overview of hybrid approaches that integrate model-based and data-
driven techniques, enhancing predictive accuracy and reliability.

• Emerging significance of AI and ML in developing more effective pre-
dictive models.

• Challenges faced by both experimental and numerical methods and the
benefits of an iterative, multi-level modelling approach.
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2.1 Introduction to Vibration Analysis and Shock
Response

The study of mechanical vibration involves understanding the oscillatory behaviour
of structures, which can be approached from both wave and mode perspectives.
The fundamental characteristics that allow bodies to exhibit oscillatory behaviour
are inertia and elasticity. Inertia enables momentum transfer between adjacent
elements of the body and is related to mass density, while elasticity provides the
restoring force that tends to return a body to its equilibrium position. Vibrations
of a linear system can be categorized as free or forced, and this analysis can apply
to both periodic and non-periodic excitations. In this work, we will focus on the
behaviour of systems under non-periodic excitations such as pulses and transients.
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2.1.1 Elastic continuum viewpoint - Wave Motion

Solids can store energy in shear and compression, hence several types of waves are
possible, like compressional (longitudinal), flexural (transverse or bending), shear
and torsional waves. Wave motion is a balance between potential and kinetic
energies, with the potential energy being stored in different forms for different
wave types. Compressional waves store potential energy in longitudinal strain,
flexural waves in bending strain. It is convenient to represent the time-varying
time motions as a summation of single frequency (harmonic) waves. There are
two different types of velocity associated with wave motion: wave velocity, the
velocity of the propagation of the disturbance through the medium (related to the
characteristic of the medium and the external force), and particle velocity, the
velocity of the oscillating mass particles in the medium (measure of the amplitude
of the disturbance). For the compressional wave, there are alternate regions of
expansion and compression of the mass particle, and particle and wave velocities
are in the same direction. For flexural waves, the particle velocity is perpendicular
to the direction of wave propagation. The wave motion can be represented as
a function of time and space. Time variations in harmonic wave motion can be
represented by the circular frequency ω. This parameter represents the phase
change per unit increase of time ω = 2π

T
, where T is the temporal period of the

wave motion. The phase of a wave is the time shift relative to its initial position.
Space variations in wave motions are represented by the phase change per unit
increase of distance. This parameter is the wave-number k, where k = ω

c
. With

c being the wave velocity or phase velocity of the wave, because is the ratio of
the phase change per unit increase of time to the phase change per unit increase
of distance. The spatial period of a harmonic wave motion is described by its
wavelength λ, such that k = 2π

λ
. If the wave velocity c of a time-varying motion

is constant, then the relationship, between ω and k is said to be non-dispersive,
meaning that the spatial form of the wave does not change with time. On the other
hand, if the spatial form is dependent of time the wave motion is dispersive. This is
the case for groups of particle that most likely will form several waves propagating
in different directions. The gradient of dispersion is called group velocity cg = δω

δk

and indicates the velocity of the overall envelope shape of the wave’s amplitudes
propagates through space.

2.1.2 Macroscopic viewpoint - Modal Analysis Using Mass-
Spring-Damper Models

A macroscopic (modal) analysis requires a understanding of the concept of degrees
of freedom (DOF), which represent the minimum number of independent coordi-
nates required to describe the system’s motion. For example, a single particle in
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space has three degrees of freedom, a rigid body has six, and a continuous elastic
body has an infinite number, one for each point in the body. A system with n
degrees of freedom will have n natural frequencies and n modes of vibration. For
certain structures, however, mechanical vibrations can be simplified by assuming
rigid-body behaviour, reducing the infinite degrees of freedom to a finite number.
In the context of modal analysis, the dynamics of a system can be approximated
using lumped-parameter models, where the real structure is represented by a fi-
nite set of rigid masses, springs, and dampers. For continuous systems, the de-
grees of freedom are infinite, leading to a distributed-parameter model where the
wave equation governs the response. The differential equation is the same but
the mass, stiffness and damping are now continuous and a wave-type solution can
be obtained. Modal analysis is more appropriate to study the first few natural
frequencies of a system. The system is represented with multiple, discrete, mass-
spring-damper oscillators and a excitation, that provides the force that is stored by
the mass and the spring and dissipated by the damper. The mass is modelled as a
rigid body that gains or loses kinetic energy. The spring stiffness ks has negligible
mass and possesses elasticity. The work done by the compression or expansion of
the spring is converted into potential energy, because the strain energy is stored
in the spring. The viscous damper will produce damping when there is a relative
motion between its ends. The viscous damping cv is proportional to velocity and is
the most common model. The concepts of multiple, discrete, mass-spring-damper
systems can be extended to analyse the vibrations of continuous systems at higher
frequencies by re-modelling the structure in therms of continuous or distributed
elements. The problem is usually first set up in terms of the wave equation and
then generalised as an eigenvalue problem in terms of modal mass, stiffness and
damping. The total response is the summation of the modal responses for the
frequency range of interest.

2.2 Dynamics of Single-Degree-of-Freedom Systems
For a single-degree-of-freedom (SDOF) system, the motion is described by a single
coordinate, and the system is typically modelled using a mass-spring-damper sys-
tem. The governing equation of motion for an SDOF system subjected to external
forces can be written as:

mẍ(t) + cẋ(t) + kx(t) = F (t) (2.1)

where:

• m is the mass,

• c is the damping coefficient,
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• k is the stiffness of the spring,

• F (t) is the external forcing function,

• x(t) is the displacement of the mass as a function of time.

2.2.1 Free Vibration of an Undamped System

First, consider the case where the system is undamped (c = 0) and free of external
forces (F (t) = 0). The equation of motion becomes:

mẍ(t) + kx(t) = 0 (2.2)

This is a second-order homogeneous differential equation. To solve it, assume
a solution of the form:

x(t) = Aeiωnt (2.3)

where ωn is the natural angular frequency of the system. Substituting this into
the equation of motion gives the characteristic equation:

m(−ω2
n) + k = 0 (2.4)

Solving for ωn, we obtain:

ωn =

√
k

m
(2.5)

The natural frequency in Hertz is given by:

fn =
ωn

2π
=

1

2π

√
k

m
(2.6)

Thus, the general solution for the displacement is:

x(t) = A cos(ωnt) +B sin(ωnt) (2.7)

where A and B are constants determined by the initial conditions.

2.2.2 Damped Free Vibration

Now consider the case of a damped system (c ̸= 0) without external forcing (F (t) =
0). The equation of motion becomes:

mẍ(t) + cẋ(t) + kx(t) = 0 (2.8)
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To solve this, assume a solution of the form x(t) = eλt. Substituting this into
2.2 yields the characteristic equation:

mλ2 + cλ+ k = 0 (2.9)

The solution to this quadratic equation is:

λ1,2 =
−c±

√
c2 − 4mk

2m
(2.10)

Define the damping ratio ζ as:

ζ =
c

2
√
km

(2.11)

The roots of the characteristic equation are:

λ1,2 = −ζωn ± ωn

√
ζ2 − 1 (2.12)

There are three cases depending on the value of the damping ratio ζ:
1. Underdamped System (ζ < 1): The solution is oscillatory with an exponen-

tially decaying amplitude:

x(t) = e−ζωnt (A cos(ωdt) +B sin(ωdt)) (2.13)

where ωd = ωn

√
1− ζ2 is the damped natural frequency.

2. Critically Damped System (ζ = 1): The system returns to equilibrium
without oscillating:

x(t) = (A+Bt)e−ωnt (2.14)

3. Overdamped System (ζ > 1): The system does not oscillate and returns to
equilibrium slowly:

x(t) = Aeλ1t +Beλ2t (2.15)

where λ1 and λ2 are the real roots of the characteristic equation.

2.2.3 Forced Vibration

Now consider the case where the system is subjected to a periodic forcing function
F (t) = F0 cos(ωt). The equation of motion is:

mẍ(t) + cẋ(t) + kx(t) = F0 cos(ωt) (2.16)

The steady-state solution can be obtained using the method of undetermined
coefficients. The steady-state response is given by:



Chapter 2 27

x(t) = X0 cos(ωt− ϕ) (2.17)

where the amplitude X0 and phase ϕ are given by:

X0 =
F0/m√

(ω2
n − ω2)2 + (2ζωnω)2

(2.18)

ϕ = tan−1

(
2ζωnω

ω2
n − ω2

)
(2.19)

The system exhibits resonance when the driving frequency ω approaches the
natural frequency ωn, resulting in a large amplitude response. The maximum
amplitude occurs at:

ωres = ωn

√
1− 2ζ2 (2.20)

In modal analysis of an SDOF system, we primarily focus on determining the
natural frequencies and mode shapes (or oscillation patterns) of the system. For
free vibration, these are dictated by the system’s mass and stiffness. In damped
systems, the damping ratio plays a critical role in shaping the response. For forced
vibration, resonance and phase shift are key factors in understanding the system’s
dynamic behaviour. These principles are essential when analysing the response
of systems to non-periodic excitations, such as shocks and transient forces, which
will be explored in the following sections.

2.3 Response of Single-Degree-of-Freedom Systems
to Nonperiodic Excitations

In practical applications, many mechanical systems are subjected to nonperiodic
excitations, such as shock loads or transient pulses. The response of these systems
can be analysed by solving linear differential equations derived from the system’s
equivalent lumped-parameter model. For single-degree-of-freedom (SDOF) sys-
tems, the response to nonperiodic excitations can be found using time-domain
methods, such as the convolution integral. This chapter provides a theoretical
overview of shock phenomena, focusing on time-domain techniques that are par-
ticularly effective for analysing systems subjected to deterministic, nonperiodic
excitations. These excitations, often termed transient, differ from steady-state
conditions in that they typically begin at t = 0 and are not continuous. An ex-
ample of this would be a force that is zero for t < 0 and follows a sine wave for
t ≥ 0; although harmonic for t ≥ 0, such a force is still classified as transient.
Using the superposition principle, the response of linear systems to nonperiodic
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excitations can be combined with the response to initial conditions to compute
the total system behaviour. Shock, as defined in this context, refers to a sudden,
high-magnitude disturbance applied over a short duration. These disturbances
often induce transient motion within mechanical systems, which can be effectively
modelled using mathematical functions such as the unit pulse, unit step, and unit
ramp. [5,14] introduce these fundamental concepts, providing a framework for un-
derstanding how shocks influence system dynamics. The response of systems to
shocks can be idealized through the use of impulse response functions, which are
crucial for predicting the behaviour of a system under various input conditions.
In particular, the unit pulse represents instantaneous forces, the unit step corre-
sponds to forces that are applied suddenly and remain constant, and the unit ramp
models forces that increase linearly over time. By analysing the system’s response
to these idealized inputs, it is possible to develop a comprehensive understanding
of how shocks affect the dynamic behaviour of mechanical systems.

2.3.1 The Unit Pulse Function

The unit pulse, often represented by the Dirac delta function δ(t), is a mathemat-
ical abstraction used to model an impulse—a force of infinitesimal duration but
finite magnitude. This function is frequently used to represent shock inputs in
vibration analysis due to its simplicity and its role in linear systems theory. It is
defined as:

δ(t) =

{
0 if t ̸= 0

∞ if t = 0
(2.21)

and satisfies the following integral property:∫ ∞

−∞
δ(t) dt = 1 (2.22)

Physically, the Dirac delta function represents an instantaneous impulse applied
to the system at t = 0. The response of a linear time-invariant (LTI) system to such
an impulse, denoted as the unit impulse response, enables the determination of the
system’s response to more complex inputs via convolution. The pulse function is
ideal for modelling short-duration forces, such as impacts or collisions, which are
frequently encountered in mechanical systems.

The response of a system to a unit pulse is denoted by h(t), which characterizes
the system’s dynamic behaviour. For a linear time-invariant (LTI) system, the
output response for any arbitrary input f(t) can be computed using the convolution
integral:
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y(t) =

∫ ∞

−∞
h(τ)f(t− τ) dτ (2.23)

This response to an impulse is essential for shock analysis because it serves as
the foundation for constructing the response to arbitrary time-varying inputs.

Impulse Response of a Mass-Damper-Spring System

One of the most important concepts in vibrations is the impulse response, denoted
by g(t) and defined as the response to δ(t), i.e., the response of a system to a unit
impulse applied at t = 0, with the initial excitations being equal to zero. The
importance of the impulse response derives from two facts. In the first place, g(t)
embodies in a single function all the system characteristics. More important, how-
ever, is the fact that the impulse response can be used to synthesize the response
of linear time-invariant systems to arbitrary excitations.

We have considerable interest in the impulse response of a mass-damper-spring
system. The mass-damper-spring system can be modelled by the following second-
order linear differential equation:

mẍ(t) + cẋ(t) + kx(t) = f(t) (2.24)

For the case of the impulse response, the external force is a Dirac delta function
f(t) = δ(t), which models an instantaneous impulse at t = 0. Letting x(t) = g(t)
and f(t) = δ(t), we can write the equation for the impulse response in the form

mg̈(t) + cġ(t) + kg(t) = δ(t) (2.25)

where m is the mass, c the coefficient of viscous damping and k the spring
constant. The impulse response g(t) is subject by definition to the initial conditions

g(0) = 0, ġ(0) = 0 (2.26)

so that, integrating the previous equation over the duration ϵ of the impulse,
we have ∫ ϵ

0

(mg̈ + cġ + kg)dt =

∫ ϵ

0

δ(t)dt = 1 (2.27)

Next, we take the limit of the integral on the left side of the equation as ϵ
approaches zero and evaluate the integral. To this end, we assume that g(t) is
continuous and ġ(t) is not. Now, consider Eq. 2.26 and write

lim
ϵ→0

∫ ϵ

0

mg̈(t)dt = mġ(0+) (2.28)
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lim
ϵ→0

∫ ϵ

0

cġ(t)dt = 0 (2.29)

lim
ϵ→0

∫ ϵ

0

kg(t)dt = 0 (2.30)

where ġ(0+) denotes the slope of the impulse response curve at the termination
of the impulse, as opposed to ġ(0) = 0 at the initiation of the impulse, according
to Eq. 2.26. Hence, inserting Eqs. 2.28,2.29, and2.30 into Eq.2.27 and taking the
limit as ϵ→ 0, we obtain

mġ(0+) = 1 (2.31)

from which we conclude that the effect of a unit impulse at t = 0 is to produce
an equivalent initial velocity

ġ(0+) =
1

m
(2.32)

which explains that impulsive forces produce initial velocities. At this point,
instead of considering a non homogeneous system subjected to a unit impulse,
we consider a homogeneous system subjected to an equivalent initial velocity as
given by Eq. 2.31. We recall that we derived the response of a mass-damper-spring
system to initial excitations

x(t) = Ce−ζωnt cos (ωdt− ϕ) (2.33)

where C and ϕ represent the amplitude and phase angle of the response, re-
spectively, having the values

C =

√
x20 +

(
ζωnx0 + v0

ωd

)2

, ϕ = tan−1

(
ζωnx0 + v0

ωdx0

)
(2.34)

Hence, inserting Eq. 2.31 into Eqs. 2.34, we have

C =
1

mωd

, ϕ = tan−1 (∞) =
π

2
(2.35)

so that, using Eq. 2.33 with x(t) replaced by g(t), we obtain the impulse re-
sponse of a mass-damper-spring system in the form

g(t) =

{
1

mωd
e−ζωnt sin(ωdt) for t > 0

0 for t < 0
(2.36)

where we recognized that the response must be zero before the impulse has
occurred. The symbols appearing in Eq. 2.36 are defined as the viscous damping
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factor ζ = c
2
√
mk

, the natural frequency ωn =
√

k
m

, and the frequency of damped

oscillation ωd = ωn

√
1− ζ2. Equation 2.36 implies an underdamped system, ζ < 1.

A typical plot of the impulse response based on Eq. 2.36 is shown in Fig. 4.5.

2.3.2 The Unit Step Function

The unit step function u(t), is defined as:

u(t) =

{
0 if t < 0

1 if t ≥ 0
(2.37)

This function models a sudden force that switches on at t = 0 and remains
constant thereafter. The unit step function is particularly useful for analysing
systems subjected to sudden load applications, such as the start of a machine or
a sudden change in boundary conditions.

The unit step response of a system is the output when this type of input is
applied. The relationship between the unit step and the unit pulse is crucial, as
the unit step can be expressed as the integral of the unit pulse function:

u(t) =

∫ t

−∞
δ(τ) dτ (2.38)

Thus, the response of a system to a step input can be obtained by integrating
the impulse response:

y(t) =

∫ t

0

h(τ) dτ (2.39)

Where h(τ) is the impulse response of the system. This integration is crucial
for shock analysis because it allows engineers to understand how a system evolves
when subjected to a force that remains constant after its application. In real-
world systems, this scenario is typical in applications involving steady forces, such
as constant load bearings or sustained vibrations.

2.3.3 The Unit Ramp Function

The unit ramp function, r(t), represents a continuously increasing force, defined
as:

r(t) =

{
0 if t < 0

t if t ≥ 0
(2.40)
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Ramp inputs are suitable for modelling gradually applied forces or increasing
loads. For instance, the ramp function can simulate scenarios where a system is
subjected to a progressively increasing stress or strain.

The unit ramp function can be interpreted as the integral of the unit step
function:

r(t) =

∫ t

0

u(τ) dτ (2.41)

Consequently, the response of a system to a ramp input is obtained by inte-
grating the system’s response to a step input:

y(t) =

∫ t

0

∫ τ

0

h(σ) dσ dτ (2.42)

This double integration demonstrates how the system reacts to a gradually
increasing force, which can be critical in applications involving slow-loading pro-
cesses, such as pressure build-up in hydraulic systems or structural deformation
under increasing load.

2.3.4 Response to arbitrary excitations, the convolution in-
tegral

In this section, we focus on the response of LTI systems to arbitrary excitations.
While responses to simple excitations like harmonic, impulse, step, and ramp func-
tions can be described explicitly in terms of time, more complex excitations re-
quire a different approach to obtain their system response. The general method
for handling complicated excitations is to express them as linear combinations of
simpler excitations, for which the response is either readily available or can be
computed with relative ease. Simple excitations, such as harmonic, impulse, step,
and ramp functions, serve as fundamental building blocks, as their responses are
well-known and can be used to model more complex systems. There are two pri-
mary methods for deriving the response to arbitrary excitations, based on how the
excitation function is described. One method is to treat the arbitrary excitation
as periodic, which allows for its representation as a Fourier series. By applying a
limiting process, the period of the function is extended indefinitely, transforming
the Fourier series into a Fourier integral, effectively converting a periodic function
into an arbitrary one. This frequency-domain approach is typically more suitable
for analysing random excitations. The second method, and the one emphasized
here, is the time-domain approach. In this method, the arbitrary excitation is
regarded as a superposition of impulses of varying magnitude, applied at different
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Figure 2.1: Arbitrary excitation

times. By representing the excitation as a sum of these impulse inputs, the sys-
tem’s response can be determined using known impulse response functions. This
time-domain representation is particularly useful for deterministic excitations and
provides a practical way to analyse the system’s behaviour in response to complex,
time-varying inputs. We consider an arbitrary excitation F (τ) like in 2.1 and fo-
cus our attention on the contribution to the response of an impulse corresponding
to the time interval τ < t < τ + ∆τ . Assuming that the time increment ∆τ is
sufficiently small. Assuming that F (τ) remains approximately constant over the
small time interval, the shaded region can be treated as an impulse applied during
τ < t < τ + ∆τ , with a magnitude of F (τ)∆τ . The excitation corresponding to
this shaded area can be considered as an impulsive force represented as:

F̂ (τ)δ(t− τ) = F (τ)∆τδ(t− τ) (2.43)

The response of a linear time-invariant system to this impulsive force is:

∆x(t, τ) = F (τ)∆τg(t− τ) (2.44)

where g(t − τ) represents the system’s impulse response, delayed by the time
interval τ . By considering the excitation F (t) as a series of these small impulsive
forces, we can approximate the system’s total response as:

x(t) =
∑
τ

F (τ)∆τg(t− τ) (2.45)

In the limit, as ∆τ → 0, the summation can be replaced by an integral to yield
the exact response:

x(t) =

∫ t

−∞
F (τ)g(t− τ)dτ (2.46)

This equation, known as the convolution integral, expresses the system’s re-
sponse as a superposition of impulse responses. For this reason, Eq. 2.46 is also
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referred to as the superposition integral. In many cases, the excitation function is
so complex that solving the convolution integral analytically becomes extremely
challenging. For example, in the case of pyroshock, a high-frequency transient vi-
bration generated by explosive events, the excitation signal is irregular and often
difficult to describe with standard mathematical functions. Furthermore, there
are situations where the excitation cannot be expressed analytically at all, but is
instead provided as a graph or a set of discrete data points. In such instances,
numerical methods must be employed to evaluate the convolution integral, as
closed-form solutions are not feasible.

2.4 Modal Analysis on MDOF Systems
In real-world structures, the response to dynamic loading is often more complex
than can be represented by a Single-Degree-of-Freedom (SDOF) system. For
more complex structures, the response must be modelled using Multiple-Degree-
of-Freedom (MDOF) systems, which can capture the influence of multiple modes
of vibration. Modal analysis transforms the system dynamics from physical co-
ordinates into modal coordinates in such a way that each mode of the system
behaves as if it were a single degree of freedom. The SRS can then be applied to
the system in the modal domain based on the mode frequency and the degree of
participation that each mode has to the overall system response. The individual
modal responses are then transformed back into physical coordinates using the
modal transformation. The modal transformation between physical and modal
coordinates is accomplished by an eigenvalue extraction of the matrix equations of
motion. The resulting eigenvalues and eigenvectors are the frequencies and mode
shapes for each mode of vibration of the system, respectively. The mode shapes, or
eigenvectors, are used to transform the system from physical coordinates to modal
coordinates and vice versa. The mathematics to accomplish this transformation
are summarized below. In structural dynamics and vibration analysis, modal anal-
ysis is used to study the natural frequencies and mode shapes of a system. The
frequency response function (FRF) is an essential tool that describes how a sys-
tem responds to external dynamic forces in the frequency domain. This document
presents the derivation of the FRF for a multi-degree-of-freedom (MDOF) system
using modal analysis. The approach is based on the works of [6, 7], which cover
both analytical and experimental modal analysis.

2.4.1 Free Vibration: Eigenvalue Problem

We begin with the general equation of motion for a linear MDOF system:
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Mẍ(t) +Kx(t) = F(t) (2.47)

where:

• M is the mass matrix (n× n), representing the system’s mass distribution.

• K is the stiffness matrix (n× n), representing the stiffness characteristics of
the system.

• x(t) is the displacement vector (n × 1), representing the displacements of
each degree of freedom.

• F(t) is the external force vector (n× 1), containing the forces applied to the
system at different points.

• n is the number of degrees of freedom (DOF) in the system.

For systems with proportional damping, the damping matrix C is a linear
combination of the mass and stiffness matrices:

C = αM+ βK (2.48)

where α and β are constants representing mass-proportional and stiffness-
proportional damping, respectively.

For the free vibration case, where no external forces are applied, i.e., F(t) = 0,
the system’s motion is governed by:

Mẍ(t) +Kx(t) = 0 (2.49)

We assume a harmonic solution of the form:

x(t) = x̂est (2.50)

Substituting this assumed solution into the free vibration equation gives:

(K− s2M)x̂ = 0 (2.51)

This is a generalized eigenvalue problem. The goal is to solve for s2 = λ,
where λ represents the eigenvalues of the system, and x̂ are the corresponding
eigenvectors or mode shapes. Thus, we can write:

(K− λM)x̂ = 0 (2.52)

The eigenvectors (mode shapes) are orthogonal with respect to both the mass
and stiffness matrices:
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x̂T
i Mx̂j =Miδij, x̂T

i Kx̂j = Kiδij (2.53)

This orthogonality property is crucial for decoupling the system of equations
in the modal domain, allowing us to treat each mode separately.

2.4.2 Modal Superposition Method

The total displacement x(t) of a MDOF system can be represented as a linear
combination of its mode shapes (eigenvectors). This is the basis of the modal
superposition method, where the system’s response is expressed in terms of the
contributions of its individual modes. The total displacement is written as:

x(t) = Φq(t) (2.54)

Substituting this into Eq. 2.47:

MΦq̈(t) +KΦq(t) = F(t) (2.55)

To simplify this, we pre-multiply both sides by ΦT. Using the orthogonality
properties of the eigenvectors with respect to the mass and stiffness matrices:

ΦTMΦ = M∗, ΦTKΦ = K∗ (2.56)

we decouple the system of equations into n independent scalar equations:

Miq̈i(t) +Kiqi(t) = fi(t), i = 1, 2, . . . , n (2.57)

Each of the n modes can now be treated independently, as they are decoupled.
The total displacement response of the system is obtained by summing the con-
tributions from each mode. The displacement in the physical coordinates is given
by the modal superposition:

x(t) =
n∑

i=1

x̂iqi(t) (2.58)

where x̂i is the mode shape of the i-th mode, and qi(t) is the generalized
coordinate (modal coordinate) corresponding to the i-th mode.

Each of the n modes can now be treated independently, as they are decoupled.
The total displacement response of the system is obtained by summing the con-
tributions from each mode. The displacement in the physical coordinates is given
by the modal superposition:

x(t) =
n∑

i=1

x̂iqi(t) (2.59)
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where x̂i is the mode shape of the i-th mode, and qi(t) is the generalized
coordinate (modal coordinate) corresponding to the i-th mode.

For each mode, the response can be calculated independently, using methods
developed for single-degree-of-freedom (SDOF) systems. The response for non-
periodic excitations, for example, can be determined using the convolution integral
or the shock response spectrum (SRS) in the modal domain. Once the modal
responses qi(t) are computed for each mode, the total response is transformed
back into physical coordinates using the modal transformation of Eq. 2.59:

x(t) = Φq(t) (2.60)

2.5 Frequency Response Function (FRF)
The modal superposition method allows us to decompose the response of a multi-
degree-of-freedom (MDOF) system into contributions from each mode in the time
domain. This approach is particularly useful for understanding how individual
modes evolve over time when the system is subjected to dynamic loading. How-
ever, many problems in structural dynamics and vibration analysis are more con-
veniently addressed in the frequency domain, especially when the system is excited
by harmonic forces. In this context, the Frequency Response Function (FRF) pro-
vides a direct relationship between the input force and the output displacement as
a function of frequency. To derive the FRF, we transform the equations of motion
into the frequency domain using the Fourier transform or Laplace transform, where
s = iω represents the frequency variable in the Laplace domain. The equation for
each mode in the frequency domain is:

−Miω
2q̂i(ω) +Kiq̂i(ω) = f̂i(ω) (2.61)

where:

• Mi is the modal mass of the i-th mode,

• Ki is the modal stiffness of the i-th mode,

• q̂i(ω) is the frequency-domain modal coordinate for the i-th mode,

• f̂i(ω) is the generalized force in the frequency domain.

Solving for q̂i(ω) gives the modal response in the frequency domain:

q̂i(ω) =
f̂i(ω)

Ki −Miω2
(2.62)
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The total system response x̂(ω) in the frequency domain can be written as:

x̂(ω) = Φq̂(ω) = Φ

(
f̂(ω)

K∗ −M∗ω2

)
(2.63)

where:

• K∗ and M∗ are the diagonal matrices of modal stiffnesses and modal masses,
respectively,

• Φ is the modal matrix (with each column being a mode shape).

2.6 Transfer Function and Modal Decomposition
The transfer function, H(ω), describes the relationship between the input force
F̂(ω) applied to a system and the resulting output displacement x̂(ω) as a function
of frequency. This function is essential for analysing the dynamic response of
systems in the frequency domain. In the context of modal analysis, the transfer
function can be written as a sum of contributions from each mode of vibration.
For an n-degree-of-freedom system, the displacement response in the frequency
domain is related to the transfer function by:

x̂(ω) = H(ω)F̂(ω) (2.64)

Each mode r contributes to the system’s response, and the transfer function
for mode r is given by:

Hr(ω) =
x̂rx̂

T
r

Kr −Mrω2
(2.65)

where:

• x̂r is the eigenvector (mode shape) corresponding to the r-th mode,

• Mr is the modal mass of mode r,

• Kr is the modal stiffness of mode r,

• ω is the excitation frequency.

The total transfer function, H(ω), for the MDOF system is the sum of the
modal contributions:

H(ω) =
n∑

r=1

x̂rx̂
T
r

Kr −Mrω2
(2.66)
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This shows that each mode r contributes to the system’s response depending
on its mode shape, stiffness, and mass.

2.7 Partial Fraction Expansion and FRF
To analyse the system’s response in the presence of damping, we introduce a
damping ratio ζr for each mode. Damping causes the poles of the system to shift
from the imaginary axis into the complex plane. The dynamic stiffness for a lightly
damped system becomes:

Dr(ω) = Kr −Mrω
2 + i2ζrωrMrω (2.67)

where:

• ζr is the damping ratio for mode r,

• ωr is the natural frequency of mode r,

• i is the imaginary unit, indicating that damping introduces a complex com-
ponent to the dynamic stiffness.

The transfer function now becomes a complex function of frequency due to the pres-
ence of damping. Using partial fraction expansion, the system’s transfer function
can be expressed in terms of its poles λr, which are the complex-valued solutions
to the characteristic equation:

λr = −ζrωr ± iωr

√
1− ζ2r (2.68)

These poles represent the system’s natural frequencies modified by the damp-
ing. The transfer function in terms of the poles is:

H(ω) =
n∑

r=1

(
Ar

iω − λr
+

A∗
r

iω − λ∗r

)
(2.69)

where:

• Ar =
x̂rx̂T

r

2λrMr
is the modal residue for mode r,

• λ∗r is the complex conjugate of λr,

• A∗
r is the complex conjugate of the modal residue Ar.

The poles λr represent the frequencies at which the system resonates, and the
residues Ar encapsulate the contribution of each mode to the overall response.
The system’s total response is the sum of the contributions from all modes, and
each mode’s behaviour is governed by its natural frequency, damping ratio, and
mode shape.
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2.8 Modal parameters

2.8.1 The residue

The residue, denoted as Ar, is a fundamental parameter in the frequency response
function (FRF) and plays an essential role in defining the contribution of each
mode to the system’s response. Mathematically, the residue for mode r is given
by:

Ar =
x̂rx̂

T
r

2λrMr

(2.70)

where:

• x̂r is the eigenvector (mode shape) corresponding to mode r,

• λr = −ζrωr ± iωr

√
1− ζ2r are the system’s complex poles for each mode,

with ζr being the damping ratio and ωr the natural frequency for mode r,

• Mr is the modal mass associated with mode r.

The residue Ar determines how strongly each mode contributes to the overall
system response in the frequency domain. In particular, residues describe the
amplitude and phase of the system’s response at frequencies near the system’s
poles. Large residues indicate modes that have significant influence on the dynamic
behaviour, especially in systems with lightly damped modes where the response
peaks sharply near the natural frequencies. In the context of FRF synthesis, the
residue also provides insights into how the system’s response can be reconstructed
from its modal properties. Modal synthesis involves generating the FRF from the
system’s natural frequencies, mode shapes, and damping ratios. The residues, as a
part of this synthesis process, link the modal parameters to the system’s physical
response in both analytical and experimental settings. When using finite element
(FE) models or experimental data to generate FRFs, residues can be calculated
directly from modal analysis, as explained by [9] in their work on modal scaling
and FRF synthesis.

2.8.2 Alternate Definition of the Residue

Another way to define the residue, Apqr , is in terms of the components of the
eigenvectors at specific coordinates p and q. The residue can be expressed as:

Apqr = Qrx̂pr x̂qr (2.71)

where:
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• Qr is a scaling constant for mode r,

• x̂pr and x̂qr are the components of the mode shape x̂r at coordinates p and
q, respectively.

The scaling constant Qr is typically related to the modal mass and natural fre-
quency. When the modal mass is normalized to unity, Qr can be expressed as:

Qr =
1

j2ωrMr

(2.72)

where:

• ωr is the damped natural frequency for mode r,

• Mr is the modal mass,

• j is the imaginary unit.

This scaling ensures consistency when modal masses are normalized, simplify-
ing the interpretation of the residues in terms of the system’s physical properties.
This alternative definition is especially useful when the modal components x̂pr and
x̂qr are obtained directly from FE Modal Analysis or experimental modal testing.
The scaling constant Qr is often retrieved from modal analysis using techniques,
particularly when the modal mass is set to unity.

2.8.3 The modal participation factor

The modal participation factor (MPF) is a measure of how much a specific mode
contributes to the response of the system under a given loading condition. It
quantifies the extent to which the external force excites a particular mode. The
participation factor for mode r is defined as:

Γr =
x̂T
r Mv

Mr

(2.73)

where:

• x̂r is the eigenvector corresponding to mode r,

• M is the mass matrix of the system,

• v is the load vector, typically representing the direction or point of applica-
tion of external forces,

• Mr is the modal mass for mode r.
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The participation factor describes how effectively the external force aligns with
the mode shape x̂r. A larger value of Γr means that mode r will contribute
more significantly to the system’s overall response. Conversely, if the participation
factor is small, the mode is less likely to be excited by the applied loading. For
systems with multiple modes, the total dynamic response is often dominated by
a few modes with high participation factors. Thus, the MPF is critical in modal
reduction techniques, where only the modes with significant participation factors
are retained in the analysis.

2.8.4 Modal Effective Mass

Another important concept is the modal effective mass (MEM), which quantifies
the contribution of each mode to the system’s total mass in the dynamic response.
It is defined as:

MEMr =
(
x̂T
r Mv

)2 (2.74)

The modal effective mass is related to the participation factor and provides a way
to estimate the influence of each mode on the overall motion of the system. Modes
with high effective mass are critical in determining the system’s dynamic response.
The modal effective mass fraction (MEMF) is the ratio of the modal effective mass
to the total mass of the system:

MEMFr =
MEMr

Mtotal
(2.75)

where Mtotal is the total mass of the system. The MEMF is useful for identifying
the modes that contribute most to the dynamic behaviour.

2.9 Transitioning from Low to High Frequencies
Analysing the dynamic behaviour of structures across a wide frequency range poses
significant challenges. In the low-frequency domain, traditional modal analysis
methods suffice to extract modal parameters accurately. However, as we transition
to higher frequencies, modal densities increase, and modes become more closely
spaced, making it difficult to identify and characterize individual modes using
conventional techniques. To address this, alternative methods such as local mode
phase reconstruction and virtual mode synthesis are employed [8, 13].

2.9.1 Local Mode Phase Reconstruction

The transition between low and high-frequency domains is often determined by
transmissibility, which indicates how acceleration levels are transmitted from a
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source of excitation to any other point on the structure. This transmission occurs
due to global modal behaviours. Local Mode Phase Reconstruction (LMPR) is an
approach used to accurately capture the modal parameters in the high-frequency
range by focusing on local dynamics. To understand this, let’s first review the
equations of motion for a structure consisting of two subsystems: the interface
subsystem (junction) and the unit subsystem (internal). Neglecting damping, the
equation of motion for the system can be written as:[

Mjj Mji

Mij Mii

] [
üj
üi

]
+

[
Kjj Kji

Kij Kii

] [
uj
ui

]
=

[
Rj

0

]
(2.76)

where:

• M and K are the mass and stiffness matrices, respectively,

• uj represents the displacements at the junction (interface),

• ui represents the internal displacements (unit subsystem),

• Rj are the force reactions at the junction.

The dynamic transmissibility matrix T̃ij(ω) links the interface displacements
uj to the internal displacements ui, and is defined as:

ui = T̃ij(ω)uj (2.77)

The dynamic transmissibility matrix T̃ij(ω) can be expanded as a summation
of the contributions from individual modes:

T̃ij(ω) =
m∑
k=1

Tk(ω)T̃ij,k (2.78)

where:

• Tk(ω) is the dynamic transmissibility factor for mode k,

• T̃ij,k is the effective transmissibility matrix for mode k.

The effective transmissibility matrix T̃ij,k is given by:

T̃ij,k =
ΦikLkj

mk

(2.79)

where:

• Φik is the matrix of eigenmodes for the internal displacements ui,
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• mk is the generalized mass for mode k,

• Lkj is the participation factor for mode k.

The participation factor Lkj is defined as:

Lkj = Φik (MiiSij +Mij) (2.80)

where Sij is the junction static mode matrix, defined as:

Sij = −KiiK
−1
ij (2.81)

The static mode matrix Sij represents the contribution of static modes at the
junction. The summation of the effective modal transmissibility matrices across
all modes converges to the junction static mode matrix:

+∞∑
k=1

T̃ij(ω) =
+∞∑
k=1

ΦikLkj

mk

= Sij (2.82)

This shows that the dynamic transmissibility matrix accounts for the contribution
of each mode to the overall response of the system. The combination of the
transmissibility factor Tk(ω) and the mode-specific term ΦikLkj

mk
characterizes the

contribution of each mode to the unit system response.

2.9.2 Virtual Mode Synthesis

In cases where LMPR is insufficient, an alternative method known as Virtual Mode
Synthesis (VMSS) can be used to estimate the modal parameters in the high-
frequency domain. VMSS involves generating "virtual modes" that approximate
the behaviour of the system in frequency ranges where the physical modes are
difficult to extract.

Consider the generalized equation of motion:

Mq̈(t) + Cq̇(t) +Kq(t) = F (t) (2.83)

where:

• M , C, and K are the mass, damping, and stiffness matrices,

• q(t) are the generalized coordinates,

• F (t) is the external force.
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VMSS approximates the response by using fictitious or "virtual" modes to
capture the aggregate effect of the high-frequency modes. These virtual modes
are synthesised by approximating the modal parameters over a selected frequency
range. The virtual mode response can be written as:

q(t) ≈
nv∑
k=1

qvk(t) (2.84)

where qvk(t) are the responses due to the virtual modes and nv is the number of
virtual modes required to capture the response in the high-frequency range. The
parameters for the virtual modes are chosen such that the overall response of the
system matches the measured or expected response in the high-frequency domain.
This method allows for accurate approximation of the system behaviour without
needing to explicitly calculate each high-frequency mode.

2.10 Statistical Energy Analysis
Statistical Energy Analysis (SEA) is a powerful method used to predict the distri-
bution of vibrational energy in complex mechanical systems, especially at high fre-
quencies where traditional deterministic methods like the Finite Element Method
(FEM) become computationally intensive or impractical. Originally developed in
1960 for acoustics problems, SEA has been extended to various fields, including
vibration and shock analysis. SEA models a complex system as an assembly of
subsystems, each representing a portion of the total structure. The method is
based on the assumption of statistical equilibrium, where the energy within each
subsystem is evenly distributed among its modes, and the coupling between sub-
systems is relatively weak. This allows for the use of energy balance equations to
describe the flow of vibrational energy between subsystems. SEA is particularly
effective for systems with a large number of modes and high modal overlap, charac-
teristics common in high-frequency regimes. In such cases, the precise behaviour
of individual modes is less important than the overall statistical distribution of
energy. In this section, we will discuss the fundamental concepts of SEA, derive
the basic energy balance equations, and explain how to apply SEA to complex
systems. We will also explore wave propagation in plates, as understanding wave
behaviour is essential for determining coupling between subsystems.

2.10.1 Wave Propagation in Plates

Understanding wave propagation in subsystems is essential for calculating coupling
loss factors. In the case of plates, which are common structural elements, different
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types of waves can propagate, including in-plane (longitudinal and shear) waves
and bending waves. We consider thin, flat plates, which can be described by
classical plate theory under the following assumptions:

1. The thickness h of the plate is much smaller than the other dimensions
(length and width).

2. The in-plane strains are small compared to unity.

3. Transverse shear strains ϵxz and ϵyz are negligible (Kirchhoff-Love plate the-
ory).

4. Tangential displacements u and v are linear functions of the thickness coor-
dinate z.

5. The transverse shear stresses vanish at the surfaces z = ±h/2, so σzz =
σzy = σxz = 0 at these surfaces.

The in-plane motion of a plate involves displacements u(x, y, t) and v(x, y, t) in the
x and y directions, respectively. The governing equations for in-plane waves can
be derived from the equations of motion and constitutive relations. For isotropic
plates, the equations of motion in the absence of external body forces are:

C
∂2u

∂x2
+ S

∂2u

∂y2
+ S

1 + ν

1− ν

∂2v

∂x∂y
− ρh

∂2u

∂t2
= F ′′

x,ext,

C
∂2v

∂y2
+ S

∂2v

∂x2
+ S

1 + ν

1− ν

∂2u

∂x∂y
− ρh

∂2v

∂t2
= F ′′

y,ext,

(2.85)

where:

• C =
Eh

1− ν2
is the extensional stiffness.

• S =
Ehν

1− ν2
is the coupling stiffness.

• E is the Young’s modulus.

• ν is the Poisson’s ratio.

• ρ is the material density.

• F ′′
x,ext and F ′′

y,ext are external in-plane forces per unit area.
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These equations show that the in-plane motions u and v are coupled due to
Poisson’s effect. To simplify the analysis, we can decouple the equations by in-
troducing potential functions or considering plane wave solutions. For isotropic
materials and in the absence of external forces, the equations can be decoupled
into separate wave equations for longitudinal and shear waves. Assuming a plane
longitudinal wave propagating in the x-direction and neglecting v, we obtain:

∂2u

∂x2
− 1

c2LP

∂2u

∂t2
= 0, (2.86)

with the longitudinal plate wave speed:

cLP =

√
E

(1− ν2)ρ
. (2.87)

Assuming a plane shear wave and neglecting u, we obtain:

∂2v

∂x2
− 1

c2S

∂2v

∂t2
= 0, (2.88)

with the shear wave speed:

cS =

√
G

ρ
, (2.89)

where G =
E

2(1 + ν)
is the shear modulus. The general in-plane motion is

a superposition of longitudinal and shear waves. The coupling between u and v
means that an initial disturbance in one direction will, in general, generate motion
in both directions due to Poisson’s ratio effects. For out-of-plane (bending) motion,
the governing equation is derived from the plate’s flexural rigidity. The equation
of motion for bending waves in a thin plate is:

B

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρh

∂2w

∂t2
= p(x, y, t), (2.90)

where:

• w(x, y, t) is the transverse displacement.

• B is the bending stiffness.

• p(x, y, t) is the transverse load per unit area.
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The bending stiffness B is given by:

B =
Eh3

12(1− ν2)
. (2.91)

This is a fourth-order partial differential equation, reflecting that bending in-
volves curvature of the plate.

2.10.2 Fundamental Concepts of SEA

Consider a mechanical system divided into n subsystems. Each subsystem can ex-
change vibrational energy with other subsystems and with the environment. The
energy exchange is characterized by power inputs and losses, which are related to
the vibrational energy stored in each subsystem. Let Ei denote the time-averaged
vibrational energy stored in subsystem i, and ω denote the angular frequency of
interest. The power input Pi into subsystem i can be due to external excitations
such as forces or moments acting on the subsystem. Each subsystem also expe-
riences power dissipation due to internal damping, characterized by the Damping
Loss Factor (DLF) ηi. The power dissipated within subsystem i due to damping
is proportional to its stored energy:

Pdiss,i = ωηiEi. (2.92)

When subsystems are coupled, there is also power flow between them. The
power transmitted from subsystem i to subsystem j is proportional to the stored
energy in subsystem i and is characterized by the Coupling Loss Factor (CLF) ηij:

Pij = ωηijEi. (2.93)

Similarly, the power transmitted from subsystem j to subsystem i is:

Pji = ωηjiEj. (2.94)

Under the assumption of weak coupling, the net power flow from subsystem i
to subsystem j is:

Pi→j = Pij − Pji = ω(ηijEi − ηjiEj). (2.95)

The global energy balance for subsystem i can then be written as:

Pi = ωηiEi +
∑
j ̸=i

ω(ηijEi − ηjiEj), (2.96)

where Pi is the total power input into subsystem i, including external excita-
tions and net power exchange with other subsystems.
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Figure 2.2: Energy flow in single and coupled subsystems.

Figure 2.2 illustrates the energy flow for a single subsystem and for coupled
subsystems. In the single subsystem, energy is input and dissipated internally. In
coupled subsystems, energy is also exchanged between subsystems.

Reciprocity Relation

An important property in SEA is the reciprocity relation between the coupling
loss factors ηij and ηji. Under certain conditions, the coupling loss factors satisfy
the reciprocity relation:

niηij = njηji, (2.97)

where ni and nj are the modal densities (modes per unit frequency) of sub-
systems i and j, respectively. This relation ensures energy conservation and reci-
procity in energy exchange between subsystems.

SEA Equations for Multiple Subsystems

For a system with n subsystems, we can write a set of n energy balance equations:

Pi = ωηiEi +
∑
j ̸=i

ω(ηijEi − ηjiEj), i = 1, 2, . . . , n. (2.98)

These equations can be arranged into matrix form:

P = ω(ΓE), (2.99)

where:

• P = [P1, P2, . . . , Pn]
T is the vector of power inputs,

• E = [E1, E2, . . . , En]
T is the vector of stored energies,
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• Γ is the system matrix incorporating damping and coupling loss factors:

Γii = ηi +
∑
j ̸=i

ηij, Γij = −ηji (i ̸= j). (2.100)

Solving these equations yields the vibrational energy levels Ei in each subsys-
tem, from which other quantities of interest, such as vibration amplitudes and
response spectra, can be derived.

Coupling Loss Factors

In SEA, the coupling loss factor between two subsystems depends on the power
transmitted across their interface. For plates connected at an angle, the coupling
loss factor can be calculated based on the wave transmission coefficients for bending
and in-plane waves. Consider two plates connected along a common edge at an
angle θ. The coupling loss factor ηij can be expressed as:

ηij =
cg,i

2πfni

Tij, (2.101)

where:

• cg,i is the group velocity of waves in subsystem i.

• f is the frequency.

• ni is the modal density of subsystem i.

• Tij is the transmission coefficient from subsystem i to j.

The transmission coefficient Tij depends on the properties of the connection, ma-
terial properties, and wave types involved. For bending waves at a joint between
plates, Tij can be calculated using continuity conditions for displacements and
moments.

Modal Density

The modal density ni is a key parameter in SEA, representing the number of modes
per unit frequency in subsystem i. For rectangular plates simply supported on all
edges, the modal density for bending waves is:

n(f) =
Af 2

2πc2B
, (2.102)

where:
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• A is the area of the plate.

• cB is the bending wave speed, given by:

cB =

(
ω2B

ρh

)1/4

=

(
2πf

cg

)1/2

, (2.103)

• cg is the group velocity for bending waves:

cg = 2

(
B

ρh
ω

)1/2

= 2

(
B

ρh
2πf

)1/2

. (2.104)

By combining the understanding of wave propagation in plates with the SEA
framework, we can model the energy distribution in complex structures made up
of plate-like components. The SEA method allows us to estimate the vibrational
energy levels in each subsystem and predict the system’s response to external
excitations. The key steps involve calculating the modal densities, damping loss
factors, and coupling loss factors for each subsystem, and then solving the SEA en-
ergy balance equations. This approach is particularly powerful for high-frequency
vibration analysis, where traditional deterministic methods are less effective.

2.10.3 Applying SEA to Complex Systems

To apply SEA to a complex system, the following steps are typically followed:

1. Subdivision into Subsystems: The system is divided into subsystems based
on structural features, material properties, and expected modal behaviour.
Subsystems should be large enough to contain many modes in the frequency
range of interest.

2. Calculation of Modal Densities: The modal density ni of each subsystem
is calculated, usually using analytical expressions for simple geometries or
numerical methods for complex shapes.

3. Determination of Damping Loss Factors: The damping loss factor ηi for
each subsystem is determined, either from experimental measurements or
estimated based on material properties and empirical data.

4. Calculation of Coupling Loss Factors: The coupling loss factors ηij between
subsystems are calculated. This often involves understanding the wave trans-
mission between subsystems, which depends on their interface properties and
the types of waves involved.
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5. Assembly of SEA Equations: The energy balance equations are assembled
using the calculated parameters.

6. Solution of SEA Equations: The equations are solved for the stored energies
Ei.

7. Post-Processing: From the stored energies, other response quantities are
calculated, such as mean-square velocities, accelerations, or sound pressure
levels.

Virtual SEA Analysis

Computational Vibroacoustic analysis at high frequencies presents several chal-
lenges. The grid refinement needed to accommodate short wavelengths often leads
to overwhelming requirements in computational resources. But even when such
requirements are met, the high modal density and high modal overlap of both
structure and acoustic components introduce variability and uncertainty in local
response results, rendering them highly inefficient indicators. Spatial and fre-
quency averaging techniques, on the other hand, provide global indicator results
that offer a better insight into the behaviour of complex systems under such cir-
cumstances. Originally, the theoretical foundations of SEA were set in a modal
context. This description starts by considering two subsystems that are denoted in
the following with subscripts 1 and 2, and are connected via non-dissipative cou-
pling. The subsystems have a large number of modes N1, N2, with similar damping
values, spread in equidistant frequency intervals throughout the frequency range
of interest. Further, it is assumed that each mode of one subsystem is coupled to
all modes of the other subsystem, but not to any of the modes within the same
subsystem. For an isolated pair of two oscillators p and q that are excited with
white noise forces, Lyon showed that the time-averaged energy flow between them
is proportional to their vibration energy difference. In particular, the energy flow
from p to q is given by:

ppq = gpq · (ep − eq) (2.105)

where ep and eq stand for the vibrational energy of the oscillators, and gpq
depends only on their characteristics. Back to the interaction of the two subsys-
tems, it is now additionally assumed that the total vibration energy E of each
subsystem is equally distributed among its modes, so that if p is a mode of subsys-
tem 1, ep = E1/N1. Then, the total energy flow from subsystem 1 to subsystem
2, P12, equals the sum of the energy flows between the individual mode interac-
tions. At this point, another important expression in SEA theory is introduced,
the reciprocity relation:
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n11η12 = n12η21 (2.106)

where n1, n2 are the modal densities, and η12, η21 are the coupling loss factors
(CLFs). The coupling loss factor is a parameter that appears exclusively in SEA.

P12 = ω(η12E1 − η21E2) (2.107)

This expresses the energy that flows out of subsystem 1 due to its interaction
with subsystem 2. Further, introducing the power that is injected into subsystem
1, and the power dissipated in each subsystem due to its damping, ηj = ωηjEj,
the power balance for subsystem 1 becomes:

P1 = P11 + P12 = ωη1E1 + ω(η12E1 − η21E2) (2.108)

The coefficient ηj that appears in the above expression is also called the Damp-
ing Loss Factor (DLF) of subsystem j. The power balance can be generalized to
express the power balance of subsystem 1 in a global system that comprises an
arbitrary number of k subsystems by invoking the Coupling Power Proportionality
assumption. According to it, the energy flow between two subsystems is indepen-
dent of the presence of a third subsystem or any number of subsystems. Then, the
power balance for subsystem j in the general case can be written as:

Pi = ωηiEi + ω
∑
i ̸=j

(ηijEi − ηjiEj), i = 1, . . . , k (2.109)

Or in compact matrix form:

P = ω · [η]E (2.110)

As soon as matrix [η] is known, it can be used repeatedly to predict the re-
sponse of the subsystems for any given vector of injected powers at a negligible
computational cost. This matrix constitutes a reduced model, which describes
the global system in terms of the energy content of its subsystems. This is what
renders it well-suited for high-frequency simulations, where local indicator results
are inefficient. We can deduce that the following relations hold for the CLFs and
DLFs:

ηij = −ηji and ηj =
∑
i ̸=j

ηij (2.111)
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Virtual SEA (Commercial Software)

Virtual SEA is a novel method that proposes to compute the SEA parameters
via an energy distribution model, similar to the experimental SEA, but using
FEM computations instead of performing experiments in a laboratory. All the
challenges linked to setting up experiments in the lab are now irrelevant. Also, the
energies used to build the energy model no longer depend exclusively on bending
waves. Instead, the contributing wave types can be controlled by the analyst,
by appropriately configuring their simulation and computing the corresponding
quantities.

Virtual Power Injection Method

The numerical tool relies on the global modes of the components to compute
frequency- and space-averaged injected powers and energy quantities. The vir-
tual PIM is implemented by launching a series of automatically configured FE
simulations, in which each of the subsystems is excited in turn. The setup of
these simulations requires the frequency- and space-averaging parameters of the
problem.

Subsystem Energy Computation

Once the results of the virtual Power Injection Method are obtained, it is possible
to produce the SEA parameter matrix, which in turn will yield the CLFs and DLFs
of the model.

Analytic SEA

Even though the underlying idea for the derivation of SEA equations is based on a
modal context, most of the commercially available implementations of SEA employ
Analytic SEA, which is a method based on the wave approach. According to this
method, each subsystem of the physical model is represented in the SEA matrix by
as many subsystem entries as the number of wave-types assumed to propagate in
it. For example, a plate may correspond to three subsystems in the SEA matrix,
standing for its bending, longitudinal, and shear waves. Further, the CLF at the
junction between two subsystems is derived from the transmission coefficient of the
junction. In other words, the coupling coefficient is derived as the ratio of energy
flow associated with outgoing waves and energy associated with incident waves.
A side effect of this process is that, since the transmission coefficients must only
be calculated at the junctions between subsystems that are physically in contact,
otherwise known as indirect CLFs, are zero. This, in general, results in sparse SEA
matrices.
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Experimental SEA

One way to obtain the SEA parameters in complex geometries is via an energy
flow analysis in situ.

Power Injection Method

In this approach, the SEA parameter matrix [η] is regarded as a transformation
matrix, and its computation is carried out by successive substitutions of P and
E values in the same expression. The simplest way to achieve this is by injecting
power into a single subsystem and taking energy measurements for the ensemble
of the subsystems in the model. Iterating on these processes as many times as
the number of subsystems, and injecting power in a different subsystem each time,
eventually produces a diagonal matrix P on the left-hand side and a full E matrix
on the right-hand side. Since the values of these matrices are the measurement
results from the experiments, computing [η] is then a trivial task. For example,
energy Eij corresponds to the energy measured on subsystem i when power is
injected on subsystem j. Given the size of the model, the SEA parameter matrix
will be of size 2× 2. The following system of equations can then be solved:

P1 = ω · [η]
[
E11

E21

]
, P2 = ω · [η]

[
E12

E22

]
(2.112)

Matrix [η] results from the above expression with a simple matrix inversion.
Once the SEA matrix is known, the CLFs and DLFs can be computed.
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In a synthesis

• Introduction to vibration analysis and shock response.

• Discussion on wave motion and its significance in shock analysis.

• Overview of modal analysis using mass-spring-damper models.

• Response of single-degree-of-freedom systems to nonperiodic excita-
tions.

• Response of multi-degree-of-freedom systems to nonperiodic excita-
tions.

• Frequency response function (FRF) analysis.

• Transfer function and modal decomposition techniques.

• Importance of modal parameters in understanding system dynamics.

• Statistical Energy Analysis (SEA) and its role in shock analysis.

• Strategies for transitioning from low to high frequencies in dynamic
analysis.

• Application of SEA to complex systems and energy flow analysis.



Chapter 3

Shock Response Spectrum
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3.1 A bit of history
The concept of the Shock Response Spectrum (SRS) has a rich history that reflects
the advancements in both theoretical mechanics and computational tools. It began
in the early 20th century when engineers and scientists sought ways to understand
and predict how mechanical systems respond to transient, high-intensity loads.
During World War II, there was a growing need to analyse the effects of shock
waves on structures and equipment, particularly in military contexts such as naval
and aerospace applications. One of the early foundational works was by [103] in
1942, who explored the elastic and viscoelastic response of systems to transient
excitations. Biot’s work was significant because it laid the groundwork for the
mathematical framework used to describe how structures behave when subjected
to sudden, short-duration forces. Early research and application of the SRS began
in the 1950s within the seismic community [104, 105], primarily to characterize
the shock environment associated with earthquakes. Following, the use of SRS
expanded considerably across the seismic, aerospace, and defence fields. In the
early 1960s, the advent of digital computers significantly advanced the calculation
of shock responses. Researchers like [106, 107] contributed to developing methods
for numerically solving differential equations that governed system dynamics under
transient loads. As computational power grew, engineers could simulate more
complex systems and shocks with higher accuracy. This period saw the gradual
adoption of the SRS as a standardised tool, especially in defence and aerospace
fields [108–112] . By the 1970s, the SRS had become widely recognized as a tool for
designing equipment that could survive the rigours of shock environments. [113]
in 1979 introduced an improved recursive formula for calculating shock response
spectra, which further simplified the process of determining how structures react to
shock. Smallwood’s formula made the calculation of SRS more efficient, which was
especially important for real-world applications that required engineers to analyse
complex systems in a timely manner. In subsequent decades, the automotive
industry also saw the value of the SRS in understanding how vehicles and their
components withstand impacts, such as crash scenarios. The development of more
advanced computational tools and software, such as finite element analysis (FEA),
has further enhanced the precision and ease with which engineers can calculate and
interpret the SRS. Today, the Shock Response Spectrum remains an essential tool
in engineering design, safety testing, and failure analysis. Modern applications
of SRS range from evaluating the effects of earthquakes on structures to testing
the durability of consumer electronics subjected to accidental drops or vibrations
during shipping. As technology continues to evolve, especially with advancements
in high-performance computing and real-time data analysis, the SRS will likely see
further refinements and applications in new areas of engineering and technology.
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3.2 Definition of SRS
Many structures are occasionally subjected to relatively large forces that are ap-
plied suddenly and over time intervals much shorter than the structure’s natural
period. These forces can lead to local damage or excite undesirable vibrations
within the structure. In some cases, this vibration causes significant cyclic stresses,
potentially damaging the structure or degrading its performance. Forces of this
nature are referred to as shocks. Understanding the structural response to shocks
is crucial for effective design. The severity of a shock is typically quantified by
the maximum response of the system. For comparison, it is common practice to
reference the response of an undamped single-degree-of-freedom system. The plot
showing the peak response of a mass-spring system to a particular shock, as a
function of the system’s natural frequency, is known as a Shock Response Spec-
trum (SRS). The SRS helps in characterizing the dynamic behaviour of a structure
or component under shock conditions by revealing which frequencies are most af-
fected by the transient shock. Engineers commonly use SRS analysis in industries
like aerospace, automotive, and defence to ensure components can survive and
perform under sudden shock loads, like those encountered during rocket launches,
seismic events, or explosions. This methodology not only helps in identifying the
critical frequencies where the system might fail or suffer damage but also in design-
ing structures or components to mitigate these effects by adjusting the system’s
natural frequencies to avoid excessive resonance or using damping to limit peak
responses.

Figure 3.1: SRS graphical representation

A Shock Response Spectrum (SRS) provides a graphical representation that
illustrates the maximum response of a system subjected to a shock input. The
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SRS graph is created by considering a series of Single Degree of Freedom (SDOF)
systems with varying natural frequencies. These systems are exposed to a transient
shock event, and the maximum response for each system is plotted as a function
of its natural frequency, as shown in 3.1. In constructing the SRS, the assump-
tion is made that the base input to these SDOF systems does not interact with
the systems themselves, meaning that the base motion remains unaffected by the
oscillators. As you progress through the frequencies, each SDOF system responds
differently. Lower-frequency systems tend to show smaller peak responses, while
systems at intermediate frequencies may exhibit the highest peak accelerations.
After reaching this peak, the response tends to decrease as the frequencies con-
tinue to increase, as observed in "stiffer" systems with higher natural frequencies.
The damping values used in an SRS measurement are constant for all frequen-
cies. For pyrotechnic events the damping used is typically 5% critical damping.
In earthquake testing, 2% critical damping is typically used. The highest damage
potential due to a shock input is at the natural frequencies of the test article. The
SDOF model is used to predict the response of a product at its natural frequency
to a given shock input. Since the natural frequency can be anywhere within the
test frequency range, the SRS computes the peak SDOF response as a function of
frequency at nth octave spacing.

3.3 SRS Analysis and Mathematical Derivation
In this section, we will derive and explain the SRS for both SDOF and MDOF
systems.

3.3.1 SRS Analysis for SDOF Systems

The SRS represents the maximum response of a system subjected to a base accel-
eration üb(t) across a range of natural frequencies. This is widely used in dynamic
analysis to evaluate how systems respond to transient shock events. The equation
of motion for an SDOF system subjected to base motion is given by:

mẍ(t) + k (x(t)− ub(t)) = 0 (3.1)

where:

• m is the mass,

• k is the spring stiffness,

• x(t) is the absolute displacement of the mass,
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• ub(t) is the base displacement.

We define the relative displacement z(t) as:

z(t) = x(t)− ub(t) (3.2)

Substituting this into the equation of motion and rearranging, we obtain the stan-
dard form:

z̈(t) + ω2z(t) = −üb(t) (3.3)

where ω =
√
k/m is the natural frequency of the system.

Damped SDOF System

In the case of a damped SDOF system, the equation of motion is modified to
include a damping term:

z̈(t) + 2ζωż(t) + ω2z(t) = −üb(t) (3.4)

where:

• ζ is the damping ratio.

The response of the system can be solved using Duhamel’s Integral or numeri-
cally:

z(t) = − 1

ω

∫ t

0

üb(τ)e
−ζω(t−τ) sin(ω(t− τ))dτ (3.5)

The absolute acceleration of the mass is then related to the relative displace-
ment by:

ẍ(t) = −ω2z(t) (3.6)

3.3.2 Shock Response Spectrum for SDOF

The SRS is defined as the maximum absolute acceleration ẍ(t) for each natural
frequency ω:

SA(ω) = max
t

|ẍ(t)| (3.7)

Substituting the expression for ẍ(t) into this formula gives:

SA(ω) = max
t

∣∣∣∣ω ∫ t

0

üb(τ)e
−ζω(t−τ) sin(ω(t− τ))dτ

∣∣∣∣ (3.8)

This equation calculates the peak response at each frequency, which is key in
determining the dynamic performance of the system when subjected to transient
loads.
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3.3.3 MDOF Systems and SRS

When analysing MDOF systems, the response is more complex because the sys-
tem has multiple natural frequencies and mode shapes. The response of each mode
can be approximated using mode superposition, where the system’s dynamics are
transformed from physical coordinates to modal coordinates. The governing equa-
tion of motion for the displacement ηi(t) of mode i in an MDOF system subjected
to base excitation is:

η̈i + 2ζiωiη̇i + ω2
i ηi = −Γiüb(t) (3.9)

where:

• ηi(t) is the generalized coordinate for mode i,

• ζi is the damping ratio for mode i,

• ωi is the natural frequency for mode i,

• Γi is the modal participation factor for mode i,

• üb(t) is the base excitation acceleration.

This equation is similar to the SDOF system, but now each mode of the system
has its own natural frequency and damping. The modal participation factor Γi

accounts for how much each mode contributes to the overall response. Using mode
superposition, the physical coordinates are transformed into modal coordinates:

x(t) = Φη(t) (3.10)

where:

• x(t) is the vector of physical displacements,

• Φ is the modal matrix (containing eigenvectors),

• η(t) is the vector of modal displacements.

The equations of motion for each mode decouple into a series of independent
SDOF systems, allowing the use of the SRS method for each mode. The maximum
response for the system in terms of physical displacements can be calculated using:

xmax =
n∑

i=1

ΓiΦi max (SA(ωi)) (3.11)

This equation sums the contributions from all modes, using the modal participation
factors and the peak SRS values for each mode. Since the maxima for all modes
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do not occur at the same time, a root-sum-square (RSS) method is often used to
estimate the total maximum response:

xmax =

√√√√ n∑
i=1

(ΓiΦiSA(ωi))
2 (3.12)

Two common methods for estimating the total maximum response in MDOF
systems are:

Absolute Sum (ABSSUM)

This method conservatively assumes that all modes reach their maximum at the
same time. The maximum relative displacement is calculated as:

(zi)max ≤
N∑
j=1

|q̂ij| |ηj|max (3.13)

where q̂ij is the mass-normalized eigenvector coefficient for coordinate i and mode
j.

Square Root of the Sum of the Squares (SRSS)

This method assumes that the maxima of different modes occur at different times
and calculates the maximum displacement as:

(zi)max ≈

√√√√ N∑
j=1

(q̂ijηj)
2
max (3.14)

3.4 SRS synthesis
When a physical system must be shock tested to SRS requirements, the SRS
itself cannot directly control the test machine. Synthesizing an acceleration time-
history compatible with a design SRS is crucial, especially for tests using electro-
dynamic shakers [114, 115]. These machines have physical constraints on force
and displacement. The peak shaker force is determined by the peak acceleration
of the time-history and the test equipment’s mass, while low-frequency tests face
peak displacement issues. Therefore, in both cases, a synthesised SRS-compatible
shock acceleration time-history is essential for accurate testing and analysis [116].
The transformation from the time domain to the Shock Response Spectrum (SRS)
is relatively straightforward because it involves calculating the peak responses of
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a series of single-degree-of-freedom (SDOF) systems subjected to a given time-
domain acceleration input. The steps are as follows:

1. A known time-domain acceleration input is applied to a range of SDOF
systems with varying natural frequencies and damping ratios.

2. The differential equation governing the motion of each SDOF system is solved
to determine the response at each frequency.

3. For each SDOF system, the peak response (e.g., maximum displacement,
velocity, or acceleration) is extracted from the time history.

4. The peak responses are plotted against the natural frequencies to generate
the SRS.

This process is straightforward because it involves a direct calculation of the sys-
tem’s response to a known input using established equations of motion. The inverse
transformation from SRS to the time domain is much more complex due to several
factors:

• Loss of Temporal Information: The SRS only captures the peak responses
of the system and does not retain any information about the time sequence
or phase of the original acceleration signal. This means that multiple time-
domain signals can produce the same SRS, making the inverse problem un-
derdetermined.

• Non-uniqueness: Given an SRS, there are infinitely many possible time-
domain signals that can correspond to it because the SRS is a summary
of peak responses without phase information. This non-uniqueness requires
additional constraints or assumptions to narrow down the possible solutions.

• Causality and Physical Constraints: Ensuring that the synthesised time-
domain signal is causal (i.e., physically realizable) and adheres to the laws
of physics adds another layer of complexity. Methods must carefully balance
matching the SRS with maintaining causality, often leading to the use of
iterative and approximate techniques.

These challenges highlight the need for iterative methods to accurately extract
time-domain signals that are consistent with physical constraints. [117–125] have
significantly contributed to defining SRS synthesis methods using various ap-
proaches such as wavelets, damped and enveloped sinusoids. Their work provides
detailed methodologies for generating time-history waveforms that meet specific
SRS criteria. These methods are particularly valuable for creating realistic shock
testing scenarios and ensuring that synthesised signals can be effectively used in
practical applications like electro-dynamic shakers [126].
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3.4.1 Time-Domain Synthesis Methods

This section aims to compare different SRS synthesis methods to determine the
most suitable technique for various types of systems subjected to a ground impulse
load. The comparative analysis involves generating artificial SRS accelerations to
replicate the input of a real experimental pyrotest and applying these to an LTI
system and a viscoelastic system. Previous studies by [127, 128] have provided
foundational methods for SRS synthesis, but this study aims to provide a com-
prehensive comparison of wavelets, damped sinusoids, and enveloped sinusoids. In
this section, we explain the process of generating artificial SRS accelerations to
replicate the input profile of a pyroshock pulse and we compare the effectiveness of
the SRS synthesis on two single-degree-of-freedom systems, respectively LTI and
viscoelastic.

Wavelets

A wavelet is a discrete waveform of limited duration that is suited for approximat-
ing data with sharp discontinuities [129]. The original signal can be reconstructed
as a summation of a set of wavelets with specified parameters. The equation of a
single wavelet Wm(t) is:

Wm(t) =


0 for t < tdm

Am sin(2πfmNm(t− tdm)) sin(2πfm(t− tdm)) for tdm ≤ t ≤ tdm + Nm

2fm

0 for t > tdm + Nm

2fm

(3.15)

Damped sinusoids

The sinusoid approach shows a difference in the way the rise, peak, and decay of
the waveform are controlled compared to the previously presented method. In this
case, the parameters to control are slightly different:

Wm(t) =

{
0 for t < tdm

Ame
−ξm2πfm(t−tdm) sin(2πfmNm(t− tdm)) sin(2πfm(t− tdm)) for t ≥ tdm

(3.16)
It can be noted an extra term ξm that is the damped sinusoid damping ratio.

Enveloped sinusoids

The enveloped sinusoids with random phase angles approach is similar to the one
of damped sinusoids. The equation for enveloped sinusoids is given by:
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Wm(t) = E(t)Am sin(2πfmt+ ϕm) (3.17)

Where ϕm are random phase angles for each frequency n. The rise, plateau, and
decay of Wm(t) is controlled by an envelope function E(t) rather than damping.
For all the three methods, iterations for the parameters of a set of m waveforms
at time t yield a synthesised acceleration that is expressed as:

ẍ(t) =
Nm∑
m=1

Wm(t) (3.18)

An example of a synthetized time history from the SRS input in Table 3.1 with
a duration of T = 0.06 s can be seen in Fig. 3.2.

Frequency [Hz] Amplitude [g]
100 56
1000 2820
10000 2820

Table 3.1: Shock load input

(a) Reconstructed time his-
tory of a shock input with
wavelets

(b) Reconstructed time his-
tory of a shock input with
damped sines

(c) Reconstructed time his-
tory of a shock input with en-
veloped sines

Figure 3.2: synthesised time history for the given shock input.

The synthetized accelerations have been converted to SRS and compared to
the reference input as shown in 3.3.

Furthermore, the Synthesis Correlation Coefficient (COR) [6] in 3.2 has been
computed in low, middle and high frequency range to compare the efficiency.

COR =

∣∣∣∑f2
f1
f 2
nSRSr(fn)SRSs(fn)

∣∣∣2∑f2
f1
f 2
nSRSr(fn)2

∑f2
f1
f 2
nSRSs(fn)2

(3.19)

Where SRSr and SRSs are respectively the reference and synthesised SRS.
Globally, a good level of accuracy (near the unity) has been achieved. In particu-
lar, the enveloped sines method seems to be the most effective. It can be observed
that the methods are less accurate in the middle frequency range (200-1000 Hz).
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Figure 3.3: Synthetized SRS comparison.

Frequency Range Damped sines Enveloped sines Wavelets
100-200 Hz 0.98186 0.99566 0.99773
200-1000 Hz 0.97651 0.98699 0.96599
1000-10K Hz 0.98934 0.99421 0.98707

Table 3.2: Synthesis correlation coefficient

Overall, the investigated techniques, namely the summation of damped sines, en-
veloped sines, and wavelets, have shown good levels of accuracy in reproducing
the desired SRS input. Further studies should be conducted by exploring differ-
ent parameter settings and types of input profiles to enhance the understanding
of these techniques. Additionally, the development of an optimization algorithm,
such as the least square fitting method or genetic algorithm, should be pursued to
combine the methods and synthesize a single SRS that minimizes the error and
achieves a higher level of accuracy.

3.5 Application of SRS Methods to SDOF Systems
The synthesised SRS have been applied on a SDOF. A pyrotechnic signal derived
by an experimental shock test was used 3.4. From the time domain we derived the
signal in frequency domain using the SRS form 3.5. Using this SRS as a reference,
an algorithm was employed to generate synthesised signals through three different
methods (see Figures 3.6a, 3.6b, and 3.6c). Each synthesised signal was crafted to
closely replicate the original shock response, resulting in a high degree of overlap
between the original and reproduced signals across all methods. These synthesised
signals were then used as input for both the Single Degree of Freedom (SDOF)
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linear time-invariant (LTI) system and the viscoelastic system to analyse their
respective responses.

Figure 3.4: Pyrotechnic signal derived by an experimental shock test

Figure 3.5: SRS derived by the pyrotechnic signal

3.5.1 LTI Single-Degree-of-Freedom System

The three synthesised SRS were applied to a system to compare the resulting re-
sponses with the solution obtained when using the original signal as input. The
responses of the system to the synthesised signals were computed by solving the
equation of motion of a single-degree-of-freedom (SDOF) linear time-invariant
(LTI) system, chosen here as a simple example (see 3.7). The four SRS inputs
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(a) Damped sines (b) Enveloped sines (c) Wavelets

Figure 3.6: SRS comparison between the test-derived SRS and the synthetised SRS using
the three synthesis methods

were applied as base acceleration, and the system’s response over time was com-
puted by numerically integrating the differential equations, as illustrated in 3.9a,
3.9b, and 3.9c. A close overlap among the system responses in SRS form can be
observed in Figure 3.10. Subsequently, the original signal was used to analyse the
system’s behaviour through frequency response analysis. In this approach, the
frequency response of the SDOF system is derived from the transfer function:

H(jω) =
1

m(jω)2 + cjω + k
(3.20)

where jω is the frequency variable in the complex domain, and m, c, and k
are the system’s mass, damping, and stiffness, respectively. By evaluating H(jω)
across a range of frequencies, the magnitude and phase of the system’s response to
the original signal can be determined 3.11. This frequency-domain response serves
as a comparison point to verify the accuracy of the responses obtained using the
synthesised inputs 3.12.

Figure 3.7: Single-Degree-of-Freedom Mass-Spring-Damper linear system
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Figure 3.8: Base input acceleration in SRS form

(a) Damped sines (b) Enveloped sines (c) Wavelets

Figure 3.9: Matlab lsim for LTI system

3.5.2 Viscoelastic Single-Degree-of-Freedom System

In this subsection, we repeat the same procedure as in the previous analysis, but
now applied to a viscoelastic system, as shown in 3.13 .

The viscoelastic model chosen is the standard linear viscoelastic model, which
consists of a Maxwell element (a spring in series with a dashpot) arranged in
parallel with a purely elastic spring. This configuration captures both immediate
elastic behaviour and delayed viscous response, representing the time-dependent
properties characteristic of viscoelastic materials. In a viscoelastic system, the
total force applied, F (t), is the sum of the forces on each branch of the model. For
the Maxwell element, which consists of a spring k1 in series with a dashpot c, the
force can be expressed as:

F2(t) = k1 (u(t)− v(t)) = cv̇(t) (3.21)

where u(t) is the displacement, v(t) is the displacement of the dashpot, and
v̇(t) is its velocity. The force in the parallel spring, with stiffness k0, is:
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Figure 3.10: SRS response of a SDOF LTI system to a shock base input

Figure 3.11: Analytical solution of the sdof LTI system for comparison

F1(t) = k0u(t) (3.22)

Thus, the total force is given by:

F (t) = F1(t) + F2(t) = k0u(t) + k1 (u(t)− v(t)) = k0u(t) + cv̇(t) (3.23)

By manipulating these equations, we can derive a linear differential equation
for the system’s behaviour with respect to the unknown displacement u(t), as
shown in [130]. Next, to express the creep function J(t), which describes the time-
dependent deformation under a constant load, we solve the differential equation
with an applied force F (t) as a step function. The creep function for this standard
linear model is given by:
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Figure 3.12: SRS response of a SDOF LTI system to a shock base input, comparison
with the analytical solution

Figure 3.13: Standard linear viscoelastic model

J(t) =
1

k0

(
1 +

1

β

(
1− e−t/β

))
(3.24)

where β = k0
k1

, representing a characteristic time for the viscoelastic response.
The relaxation function G(t), which describes the system’s response to a unit step
in strain, also reflects the viscoelastic nature. For the standard linear model, the
relaxation function is expressed as:

G(t) = k0 + k1e
−t/τ (3.25)

where τ = c
k1

is the characteristic relaxation time associated with the Maxwell
element.

Finally, in the frequency domain analysis, the viscoelastic behaviour can be
fully described by the complex modulus K(ω), which combines the real (storage)
and imaginary (loss) components of the material’s response. For the standard
linear viscoelastic model, the complex modulus K(ω) is given by:
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(a) Relaxation function G(t)

(b) Creep function J(t)

Figure 3.14: Relaxation and creep functions for the standard linear viscoelastic model.

K(ω) = k0 + k1
iωτ

1 + iωτ
(3.26)

Splitting K(ω) into its real and imaginary parts, we obtain:

K(ω) = k0 + k1
ω2τ 2

1 + ω2τ 2
+ ik1

ωτ

1 + ω2τ 2
(3.27)

The response of the system to the synthesised SRS inputs was obtained in
the same manner as with the LTI system, by numerically solving the differential
equations of motion for the system under base excitation. The solution involves
applying the synthesised accelerations as base input and computing the system’s
response over time using numerical integration techniques 3.15a, 3.15b, and 3.15c.
The results for each input signal in terms of system response and comparison with
the analytical solution are shown in Figures 3.16. For frequency-domain analysis,
the transfer function of the viscoelastic system is derived, analogous to the transfer
function used in the previous LTI system analysis 3.17. This frequency response
was calculated to compare with the response obtained using the synthesised signals,
allowing us to validate the accuracy of the synthesised inputs 3.18.
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(a) Damped sines (b) Enveloped sines (c) Wavelets

Figure 3.15: Matlab lsim for Viscoelastic linear system

Figure 3.16: SRS response of a SDOF viscoelastic linear system to a shock base input

Figure 3.17: Analytical solution of the sdof viscoelastic linear system for comparison
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Figure 3.18: SRS response of a SDOF viscoelastic linear system to a shock base input,
comparison with the analytical solution
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In a synthesis

• Historical development and significance of the Shock Response Spec-
trum (SRS) in engineering.

• Definition and construction of the SRS, including its role in evaluating
system responses to transient shocks.

• Detailed derivation of the SRS for Single-Degree-of-Freedom (SDOF)
and Multi-Degree-of-Freedom (MDOF) systems.

• Overview of time-domain synthesis methods for constructing SRS-
compatible waveforms, such as wavelets, damped sinusoids, and en-
veloped sinusoids.

• Comparative analysis of time-domain synthesis methods and their ef-
fectiveness across frequency ranges.

• Application of the time-domain synthesis methods to calculate the re-
sponse of a SDOF Linear-Time-Invariant (LTI) system and to a SDOF
viscoelastic linear system

• Application of synthesised SRS signals to SDOF and viscoelastic sys-
tems for practical shock response evaluation.
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Shock Analysis Standard in Industry
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In this chapter, we will explore the industrial aspect of this work, focusing
on the activities carried out at SITAEL, specifically on a Multi-Application Min-
isatellite project. The case study presented here centres on the Structural Model
(SM) of the Minisatellite, a satellite developed by the company. In this section, we
will describe SITAEL’s spacecraft development processes, provide an overview of
shock phenomena during the service life of the launcher/spacecraft and tests that
are performed on ground. Successively, we will present the Minisatellite structure
and its key parameters, share the results of the modal analysis, and present the
shock test specification developed to validate the predictive shock method. Finally,
we will introduce the empirical standard methodology used in industry to predict
the shock response at the critical units.

4.1 Industry Standards and Challenges
A critical step of the spacecraft development process is the qualification phase,
which is where the mechanical environmental test campaign is performed. Qualifi-
cation testing shall be performed to provide evidence that the spacecraft performs
in accordance with its specifications in the intended environments with the spec-
ified qualification margins [131]. Among the several tests that can be applied to
a spacecraft during the mechanical environmental test campaign, one of the most
severe is the shock test. Shocks in space structures are produced by pyrotech-
nic devices placed in the launchers initiating the stage or fairing separations. In
addition, other less intense shock sources can be the deployment mechanisms for
solar cells, antennas, and other satellite components [132]. Because of the high
frequency content, many hardware elements and small components are susceptible
to pyroshock failure while resistant to a variety of lower frequency environments.
Specifically, cracks and fractures in crystals, ceramics epoxies and solder joints,
relay and switch chatter and transfer, failures in circuit boards and computer
memory are attributed to pyroshock exposure [110]. Hence, shock tests are per-
formed to measure how much an electronic unit can withstand at the interface.
High frequencies may make traditional analytical methods and computational pro-
cedures insufficient for system verification under pyroshock loading. Thus, after
the analysis on the model, pyroshock verification should be accomplished experi-
mentally. However, shock test results to be expensive and time consuming. There
are two notably reasons. The former is due to the shock properties: they are very
high amplitude and short duration transient loads that mainly occurs through im-
pact or pyrotechnic explosions. In order to prevent damage of any component,
the Structural Model (SM) of the spacecraft is commonly built. The SM usu-
ally consists of a representative structure, with structural dummies of the flight
equipment, and also includes representative mechanical parts of other subsystems
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(e.g., mechanisms and solar panels). Shock tests are hardly ever executed on the
flight model, which is the spacecraft manufacture prefixed to launch. The latter
reason is that replicating a pyrotechnic explosion could be very challenging. [133]
found out that the pyrotechnic explosion shock and strain energy release shock
are the two sources of the separation shock, which are difficult to simulate due
to their boundary conditions. Also, boundary conditions can significantly affect
the behaviour of the spacecraft during tests. There is another issue related to
the spacecraft qualification. Even if the test is well performed and successful,
the dynamic response of the SM could be above the expected levels. Thus, it
is necessary to inspect and, eventually, fix any problem that has occurred in the
manufacturing and design processes. For these reasons, being able to predict the
response to any input, boundary condition, and design of the structure would be
very advantageous. There would not be any need to qualify the SM through a test
and redesign the structure. The aim of the work within the industry framework is
to model, with a certain accuracy and robustness, the dynamical behaviour of the
spacecraft when it is subjected to shock loads. This approach helps optimise both
time and cost during the environmental test campaign, ensuring the spacecraft can
reliably operate in the extreme conditions of space.

4.1.1 The V Model

At SITAEL, the V-Model is employed as a systematic development methodology.
It provides a structured, step-by-step approach that ensures each phase of the
spacecraft’s design and development is thoroughly verified and validated. It can
be observed in 4.1. The V-Model is similar to a waterfall approach, where broad
design phases lead into progressively more detailed ones, with testing and verifi-
cation occurring in parallel to ensure alignment with the system’s requirements.
In spacecraft development, this model is crucial as it helps to map the various
stages of satellite design, moving from the satellite level down to its subsystems
and finally individual components. In the case of the Multi-Application Minisatel-
lite, for example, the spacecraft’s structure includes the bus module, which houses
key systems such as avionics, propulsion, and thermal regulation, and the pay-
load module, which is designed to support the main mission. Each step of this
process has associated requirements, and the V-Model helps ensure that these re-
quirements are met at each level. Once the design phase is complete, the analysis
phase begins. This involves developing mathematical models that simulate how
the spacecraft will respond to various environmental factors, including mechanical
stress and thermal conditions. These simulations are then tested against real-
world data, allowing for a cycle of verification and adjustment. For instance, in
our case study, thermomechanical analysis on the spacecraft provides data that
feeds into the mechanical environmental tests, such as the shock tests performed
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Figure 4.1: Honeycomb materials properties

on the Structural Model (SM). After the tests are conducted, the data collected
(such as the loads transmitted to individual units) is compared with the values
predicted by earlier models, including those calculated using the "linear extrapo-
lation law." The goal is to determine whether the real-world results align with the
predictions:

• If the transmitted loads match or fall below the predicted values, no further
action is needed, and the components can proceed to qualification on the
Engineering Qualification Model (EQM).

• If the transmitted loads exceed the predicted values, further analysis and
testing must be conducted. This may involve adjusting the design specifica-
tions and performing new tests to ensure the equipment can withstand the
actual conditions.

If the equipment has already passed the EQM/EM tests, a "delta test" may be
performed to quickly confirm its ability to handle the updated load conditions. If
the load exceeds the design’s tolerance, modifications to the unit may be required
to bring it up to standard. In short, SITAEL’s use of the V-Model ensures that
each phase of spacecraft development is rigorously tested and validated, preventing
issues from escalating during later stages, such as flight testing.

4.1.2 Types of Mechanical Shocks and Sources

As presented in 4.2 we can make a distinction between shocks that happen in real
life, and the tests we can perform on ground in order to ensure that the structure
and the equipment will withstand the operational loads. In this subsection a
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Figure 4.2: Ground shock tests and shocks in service life

brief explanation of the shocks that occur during service life of the spacecraft is
provided.

Launcher-induced shocks

Launcher-induced shocks encompass all shocks generated within the launcher struc-
ture, which propagate through both the launcher itself and the payload adapter
up to the spacecraft interface. These shocks are predominantly attributed to stage
separation and fairing jettisoning events. However, clampband release is not typi-
cally classified as a launcher-induced shock. The intensity of the launcher-induced
shock experienced by the spacecraft largely hinges on the type of separation de-
vices utilized during stage separation or fairing jettisoning 4.3, as well as on the
overall architecture of the launcher, specifically the spatial separation and load
path characteristics between the shock sources and the spacecraft interface. Each
launcher exhibits unique characteristics in terms of shock transmission, preventing
a universal rule from being applied across all designs. For example, the VEGA
launcher experiences its most significant shock from fairing separation, primarily
for frequencies up to approximately 3 kHz. For higher frequencies, however, the
dominant shock source shifts to upper stage separation. The nature of launch-
induced shocks is shaped by the type of separation mechanism employed, and
several key characteristics can be identified:

• Frequency Content of the Excitation: Launcher-induced shocks contain
mainly low-frequency components, typically ranging from 300 Hz to 1 kHz.
These components stem from the modal responses of certain launcher ele-
ments, which effectively transmit to the spacecraft-launcher interface. The
stiffness and diameter of the separation interface critically influence these
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Figure 4.3: Fairing jettisoning

low-frequency components.

• Distance-Related Attenuation: High-frequency shock levels attenuate
more rapidly with increasing separation distance from the shock source, due
to dissipation and diffraction effects, which are amplified by the complexity of
the propagation path, such as structural joints. This attenuation effect is less
prominent for low and medium frequencies, which are efficiently transmitted
to the spacecraft-launcher interface.

Clampband Release

The clampband release system is a commonly used separation mechanism, com-
prising a clampband set, release mechanism, and separation springs, as depicted
in 4.4. The clampband typically includes clamp segments that secure the payload
adapter to the spacecraft rings, and a retaining band that applies clamping forces
to the segments. For separation, a pyrotechnic mechanism (e.g., bolt-cutters) sev-
ers the tension bolts, allowing the clamp segments to release the payload adapter
and spacecraft rings. This release event generates a shock with two main compo-
nents:

• A high-frequency component, induced by the pyrotechnic device used to cut
the clampband tension.

• A medium-frequency component, resulting from the rapid relaxation of the
clampband’s pre-tension.

When cylindrical symmetry is maintained, the pre-tension release excites the first
breathing mode (n=0), leading to radial expansion and contraction. The frequency
of this mode is directly linked to the interface diameter and the material properties
of the pre-loaded structure. Analytical expressions for the frequency and associated
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Figure 4.4: Clampband Release System

maximum acceleration can be derived, accounting for material characteristics, ring
radius, tensile load distribution, and effective ring area.

4.1.3 Shock Test Methods and Facilities

These industry-standard test methods provide reliable approaches to qualifying
spacecraft for the shocks expected during various stages of launch. Each method
is tailored to replicate specific launcher configurations, thereby supporting effective
spacecraft shock qualification.

Clampband Release Test

In this test, the spacecraft and launch vehicle adapter are hoisted in a free-free
condition, with the clampband tension set close to its flight value. The assembly
is lifted with a dedicated frame, and a foam mat is positioned to cushion the drop
upon clampband release. This setup aims to replicate the physical separation of
the spacecraft from its adapter.

Pyronuts Release System

For pyronuts systems, it is essential to replicate flight boundary conditions. The
spacecraft is hung, and after firing, the pyronut is released, simulating in-flight
conditions.

SHOGUN Method

The SHock Generator UNit (SHOGUN), shown in 4.5, is a specialised tool for
replicating Ariane 5 launcher shock characteristics. The SHOGUN method mimics
stage separation by utilizing a pyrotechnic tube that generates shock through
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Figure 4.5: SHOGUN Test

Figure 4.6: VESTA Test

controlled expansion, though with boundary conditions distinct from actual flight
conditions.

VEGA/VESTA Method

The VEga Shock Test Apparatus (VESTA) is a test tool specifically designed for
the VEGA launcher to simulate shocks during fairing jettisoning. It employs a re-
alistic model of the VEGA upper composite, which includes key components like
the fairing belt and bolt cutters, achieving shock levels representative of in-flight
events. The VESTA method allows for shock tuning by adjusting the tension of
the Horizontal Separation System (HSS) belt, providing a validated procedure for
spacecraft qualification. 4.6 illustrates the VESTA setup, highlighting the compo-
nents involved and the control over shock levels through belt tension adjustments.
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Appendage release

It is not necessary to have a free-free configuration as the boundary conditions for
the appendage and its supporting structure are made by the neighbouring parts
of the structure and not by the spacecraft global boundary conditions. However
installation of zero-g compensation equipment is usually necessary.

Real launch vehicle stage separation

When fully representative LV stage separations are performed at system level, the
test configuration and the associated boundary conditions are more complex as
several pieces of structure are involved.

4.2 Case Study: Multi-launcher Platform
The Multi-launcher Platform of the Multi-Application Minisatellite is composed
by:

• Bus Module structure: supports mechanically the overall Payload Module.

• Payload Module (PM) structure is mated onto the Bus Module and includes
the specific supporting structure required to link (thermo-)mechanically the
Payload System to Platform Module.

Our study case is the Structural Model of the spacecraft. The SM is designed to be
mechanically representative of the spacecraft and it is used to perform qualification
tests. A drawing of the SM is shown in Figure 4.7. The SM is composed by two
parts:

• Structural part

• Dummy masses, that simulate the mechanical properties of the equipment
and the harness.

The peculiarity of this item lies in its recurrent platform, meaning that the platform
can be adapted to multiple launchers and payloads.

4.2.1 Mechanical properties

In 4.1 the mechanical properties of the SM are reported, namely its mass, CoG,
MoI.

The material properties are summed up in 4.8, 4.9, 4.10 and 4.11:
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Figure 4.7: Drawing of the Structural Model (SM)

Value Property
Mass [Kg] 324
CoG [mm] X: 5.86 Y: -6.097 Z: 569.862

MoI [Kg m2] Ixx: 69.512 Iyy: 81.774 Izz: 50.196
Ixy: -0.511 Iyz: -1.351 Izx: 0.506

Table 4.1: Mechanical properties of the SM

Figure 4.8: Isotropic materials properties

Figure 4.9: Honeycomb materials properties
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Figure 4.10: Orthotropic materials properties

Figure 4.11: Composite materials list
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4.2.2 Modal analysis and resonance search

The SM has undergone a modal analysis to evaluate the main modes of the S/C
structure. The goal of the analysis was to identify the set of modes with effective
mass higher than 5% of the total mass. The results of the modal analysis are com-
puted for the first 55 modes of the S/C stand-alone, meaning that the Vibration
Test Fixture (VTF) has been removed from the analysis. The analysis considered
the S/C in hard-mounted boundary conditions. For modal extraction from 100 to
10k Hz, a new modal analysis has to be conducted, because the boundary condi-
tions are different. In this case, the S/C will be hanged from above, simulating
free-free configuration that will give different results. Furthermore, the SM has
undergone a mechanical vibration test campaign. Among other tests, the space-
craft was subjected to a sine sweep low level test on a shaker from 10 to 2k Hz,
in order to find the resonant points. During the test, the response of 64 triaxial
accelerometers has been collected and correlated with the FEM analysis. As an
example, the relevant results of the correlation are reported in 4.12, 4.13, 4.16,
4.14, 4.15 and 4.17. The plots display the values collected by accelerometers AC05
and AC38, that were mounted on the bottom and top plates, respectively. The
correlation criteria are:

• The difference on the principal modes shall be less than 5% for frequency
shifts.

• The difference on the principal modes shall be less than 20% for amplitude
shifts.

• Only modes of the S/C with a mass fraction higher than 10% are correlated.
These are:

– The first mode in the Y direction at 28.8 Hz (test);
– The first mode in the X direction at 30.6 Hz (test);
– The first two modes in the Z direction at 78.0 Hz and 83.9 Hz (test);

4.2.3 Damping evaluation

The damping has been derived from the Frequency Response Functions (FRFs)
of the mechanical vibration test campaign. The damping has been hypothesized
as viscous and computed through the Half-power Method. In this method, the
peak is qualitatively selected from the FRF values of each measurement where the
peak of a global mode is evident and well isolated, providing both amplitude and
frequency (fn). The -3dB line is derived from the peak value reduced of 3dB, and
intersects the curve in two points, at frequencies f1 and f2, as shown in 4.18.
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Figure 4.12: Channel 5, bottom plate, x
direction

Figure 4.13: Channel 5, bottom plate, y
direction

Figure 4.14: Channel 38, top plate, x di-
rection

Figure 4.15: Channel 38, top plate, y di-
rection

The damping value is evaluated by means of the following formula:

ζ =
f1 − f2
2fn

(4.1)

4.3 Experimental set up
In this section the potential experimental set up is described. It has been tailored
for a shock test that will be performed on the SM. A graphical representation of it
is depicted in 4.19 and 4.20. The aim of the test is to measure the SRS response,
that are induced by the stage’s separation of the launcher during flight, in the
relevant locations of the spacecraft. The test will be conducted in the following
configuration:

• The SM will be hoisted on a crane, representing free-free boundary condi-
tions.

• The SM will be connected to a dummy launcher, representing the mechanical
properties of the last stage of the launcher, through the Launcher Vechicle
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Figure 4.16: Channel 5, bottom plate, z
direction

Figure 4.17: Channel 38, top plate, z di-
rection

Figure 4.18: Half-Power Damping Evaluation Method

Adapter (LVA).

• The LVA will be connected to the spacecraft interface with the use of a
Marman Clampband, which is held closed by pre-loaded screws that apply
pressure to secure the structure.

• Pyrotechnic devices will be positioned at the bottom interface of the space-
craft, near the screws.

When the pyrotechnic devices are activated, the screws break, releasing the clamp-
band and allowing the LVA and dummy launcher to separate from the spacecraft.

Ensuring that an experimental setup accurately replicates real shock phenom-
ena, especially in terms of boundary conditions (BCs), presents significant tech-
nical challenges. In shock testing for space systems, the aim is to replicate the
forces and vibrations that occur during actual events, such as stage separation
in flight. However, achieving this fidelity in a lab setting requires careful control
over the setup’s boundary conditions, which often differ from the real operational
environment. Here are some specific technical challenges:
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Figure 4.19: Schematization of a pos-
sible experimental setup inspired by
VESTA

Figure 4.20: Real experimental setup for
pyrotechnic shock testing

• In an actual space environment, the spacecraft and launcher are essentially
"free" in space, meaning they aren’t rigidly fixed to anything. This condi-
tion is simulated in the lab by suspending the Structure Model (SM) on a
crane, intending to minimize the influence of external constraints. However,
true free-free conditions are hard to achieve. Any residual interaction with
the suspension (e.g., vibrations or slight oscillations) may alter the shock
response, potentially reducing the accuracy of the test results.

• The dummy launcher and Launcher Vehicle Adapter (LVA) are meant to
represent the mechanical properties of the actual launcher stage. If these
components do not accurately mimic the stiffness, damping, and mass dis-
tribution of the real launcher, the shock response could differ. Variances in
these properties could alter the natural frequencies and modes of vibration,
which play a critical role in determining the Shock Response Spectrum (SRS)
observed at different points on the spacecraft.

• The Marman Clampband is designed to release the spacecraft by breaking
screws using pyrotechnic devices. In the lab, replicating the exact dynamics
of this release can be challenging, as it involves complex, non-linear interac-
tions that influence the shock waves transmitted through the structure. If
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the timing or energy release from the pyrotechnics differs even slightly from
actual conditions, the test setup might not replicate the precise shock levels
experienced in flight.

• Even small differences in material damping between the dummy compo-
nents and actual flight components can influence the shock response. In a
controlled lab environment, damping characteristics might not fully match
those of the actual system, especially if real materials age differently under
the unique stresses of the space environment.

• Suspension methods or test equipment in contact with the SM can introduce
unintended constraints that absorb or reflect shock waves differently than in
flight.

4.3.1 Instrumentation

The structure will be equipped with triaxial piezo-electric accelerometers (on crit-
ical equipment and structure locations) suitable to measure the shock event in
the bandwidth 100-10k Hz. The accelerometers should be triaxial to measure the
shock levels in all three axes and not only in the main excitation direction. The
accelerometers situated near the shock source should be bolted to the structure.
Among the other mounting techniques, the direct coupling, stud mounted to a very
smooth surface, generally yields the highest transmissibility, mechanical resonant
frequency and, therefore, the broadest usable frequency range. For the accelerome-
ters located in the upper part of the structure, adhesive mounting is recommended,
since vibrations are damped and there is less risk of detachment of sensors. About
30 sensors have been chosen to cover all the location of interest. Some examples are
shown in 4.21,4.22 and 4.23. The registration shall be delivered as time history
and SRS graphical representations, each of them plotting acceleration, velocity,
and position.

4.3.2 Input and tolerances

The input values to be applied to the bottom interface of the spacecraft, where the
shock source is located, are shown in 4.2 and 4.24. The input is represented in form
of SRS. A SRS is a powerful tool used to assess the shock response of a physical
structure to a transient input shock. It provides a graphical representation of the
maximum accelerations response at each frequency point. Each point on the graph
represents the maximum acceleration response of an SDOF system, each one with
a different natural frequency. Regarding the tolerances, the lower test tolerance of
-3 dB is a minimum requirement to ensure coherence with the qualification margin.
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Figure 4.21: Instrumentation plan, Bottom Plate, lower side

Figure 4.22: Instrumentation plan, Bottom Plate, upper side

Whereas the upper test tolerance of +6 dB acts as the upper bound to reduce the
risk of failure, as displayed in 4.25.

4.3.3 Pass/Fail criteria

The Pass/Fail criteria after vibration test are:

• All the measurements are properly acquired and stored

– The initial slopes of both the positive and negative SRS curves shall
have an overall trend of 6 to 1 dB/octave. The corresponding slope
equations for sine and shock are:

N =
log y2

y1

log f2
f1

(4.2)
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Figure 4.23: Instrumentation plan, EP box

Frequency [Hz] Value [g]
100 56
1600 2820
10000 2820

Table 4.2: Shock load input values (Q=10)

The dB/octave slope is:

∆dB = 20N log 2 (4.3)

The initial slope (100 − 1600 Hz) of the shock test levels indicated in
Figure is acceptable as it measures 8,5 dB/octave.

– The velocity time history should oscillate in a stable manner about the
zero baselines

• The shock loads are correctly applied within the tolerances (see Figure)

• No detectable cracks with the naked eye on the test item parts will be ob-
served

4.4 Shock prediction using Empirical method
The Unified Approach And Practical Implementation Of Attenuation Rules For
Typical Spacecraft Shock Generated Environments , explained thoroughly in [132],
is a common technique that allows to determine the acceleration at the mounting
points of most critical components. This method traces the path of the shock
load that propagates from its source (or S/C interface), where the acceleration is
known, to the locations of the critical units. An example of a load path is shown
in 4.26. The attenuation factor is computed for each section of the path. It de-
pends mainly on distance, angle, type of structure (e.g., honeycomb, skin-frame,
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Figure 4.24: Shock load input plot

Figure 4.25: Test tolerances of +6/-3 dB

monocoque, etc.) and presence of joints. These data have been collected mainly
during an experimental activity performed several years ago.

More in details, Junction Attenuation Factor AttJoint(axial,radial) and Distance
Attenuation Factor AttDistance(axial,radial) are calculated from the procedure. In
order to calculate the attenuation over a joint, the section orientation factors e
and f are introduced (where αj is the angle between section i and section (i+1)):

fj =
1 + cos2(αj)

2
(4.4)

for axial direction and

ej =
1 + sin2(αj)

2
(4.5)

for radial direction. Then we have

AttjJoint(axial) = 1− rax, j ∗
Kjoint

20
(4.6)

and
AttjJoint(radial) = 1− rrad, j ∗

Kjoint

20
(4.7)
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Figure 4.26: Load path example

with

rax, j =
ej
fj

(4.8)

rrad, j =
fj
ej

(4.9)

The axial/radial total junction attenuation factorsAttJoint(axial) andAttJoint(radial)
are the product of all single junction attenuation factors. KJoint is a factor that
depends on 3 different types of joint configuration, as shown in 4.27. For distance
attenuation, the formulas are the following

AttiDistance(axial) = e−ei∗Li (4.10)

for axial direction and
AttiDistance(radial) = e−fi∗Li (4.11)

for radial direction. With

ei =
1 + sin2 αi

2
(4.12)

and
fi =

1 + cos2 αi

2
(4.13)

Moreover,
Li = li ∗KStruct (4.14)
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Figure 4.27: KJoint definition

Figure 4.28: KStruct definition

is the adjusted length calculated in order to consider different types of sections
influencing the section attenuation factors with the help of an additional factor
Kstruct, which depends from the structural characteristic of the section, as in 4.28.
Again, the axial/radial total distance attenuation factors AttDistance(axial) and
AttDistance(radial) are the product of all single distance attenuation factors.

Finally, two total attenuation factors are defined:

Att(axial) = AttJoint(axial) ∗ AttDistance(axial) (4.15)

and
Att(radial) = AttJoint(radial) ∗ AttDistance(radial) (4.16)

The attenuation should be scaled to their input specification. This last step re-
quires the knowledge of the nature of shock input to the spacecraft (e.g. axial input,
radial input or balanced axial/radial input) provided by the launcher authority.
Therefore, the shock output results from a multiplication between attenuation
factor and shock input.

• Case of shock specification defined for each direction axial and
radial (e.g., Ariane 5 HSS1 separation event, with 2 specifications provided
by the launcher authority):

Shock output = max (SPEC(α axial)× Att(axial), SPEC(radial)× Att(radial))
(4.17)

• Case of balanced input axial/radial to the spacecraft (case of lack of
knowledge on the nature of the shock input, e.g., typical launcher separation
event):

Shock output = max (SPEC(envelope)× Att(axial), SPEC(envelope)× Att(radial))
(4.18)
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• Case of shock specification dominated by axial input to the space-
craft (e.g., VEGA HSS separation, or point source excitation):

Shock output = SPEC(axial)× Att(axial) (4.19)

• Case of shock specification dominated by radial input to the space-
craft (e.g., Clampband):

Shock output = SPEC(radial)× Att(radial) (4.20)

However, it must be stressed that the procedure does not considers a number
of parameters, e.g., material and thickness of the panels, so that it often leads to
inaccurate results. It follows that alternative techniques are needed.
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In a synthesis

• Exploration of SITAEL’s application of the V-Model in spacecraft de-
velopment, focusing on the systematic verification and validation pro-
cesses.

• Analysis of shock testing methods in industry and their issues, empha-
sizing the rigorous qualification tests required for spacecraft compo-
nents to withstand shock loads.

• Detailed description of the Multi-Application Minisatellite project
Structural Model (SM) as a case study for shock response testing and
structural integrity verification.

• Outline of shock test specifications, including the experimental setup,
instrumentation, input conditions, and pass/fail criteria developed to
guide future testing on the Minisatellite SM.

• Overview of empirical methods traditionally used in industry to es-
timate shock loads, highlighting the conservative assumptions about
shock attenuation that often result in overdesign and increased costs.

• Introduction of an improved predictive shock model using modal de-
composition and transfer function analysis, offering more accurate
shock load predictions to enable optimized satellite design.
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Shock Response Prediction in
Mechanical Structures
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In the final chapter, we present the development and preliminary application
of the shock prediction methodology. The chapter begins with a theoretical ex-
planation of the method, followed by an initial application to a simple 2-DOF
mass-spring-damper system. Here, an input SRS is synthesised using the three

100



Chapter 5 101

methods discussed in previous chapters, and the system response is evaluated.
Additional analyses were conducted on other configurations, including a single
plate and two orthogonal plates, to explore the methodology’s applicability fur-
ther. Furthermore, using the same methodology, an analysis of shock propagation
through composite materials was conducted to evaluate its potential for complex
material structures. Due to the absence of experimental data, however, validation
of these results remains pending, despite comparisons with commercial software,
which provided no absolute confirmation of accuracy. Subsequently, we extended
the application to NASA’s open-source ShockSat platform, which includes a FEM
and provides valuable test data, including both modal (hammer test) and shock
(pyroshock test) results. ShockSat serves as an essential reference point, support-
ing the refinement of this methodology, which is still undergoing validation. Upon
validation, the ultimate goal will be to apply the method to the Multi-Application
Minisatellite and validate it with pyroshock tests conducted at SITAEL, as repre-
sented in the block diagram 5.1.

Figure 5.1: Block Diagram of the roadmap for the validation of the methodology

5.1 R-FRFs and Shock Transmissibility
To address the challenges associated with measuring excitation forces directly in
real-world applications, [134–137] used Response-based Frequency Response Func-
tions (R-FRFs) as an alternative to traditional FRFs. Unlike standard FRFs, which
require both excitation forces and responses, R-FRFs are derived solely from struc-
tural responses. As a subset of Transmissibility Functions (TFs), they bypass the
need for force measurement and rely only on the coordinates where forces act,
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offering significant advantages in applications where force measurements are im-
practical. R-FRFs provide additional insights by introducing poles and modal
information that correspond to conditions where certain DOFs are virtually con-
strained. This virtual constraint introduces supplementary poles in the R-FRF,
enhancing the local modal information without altering the physical boundary
conditions of the structure. By leveraging this property, we gain an enriched set
of data specific to portions of the structure, which is invaluable for localized di-
agnosis and dynamic behaviour analysis, particularly in shock load contexts. The
poles derived from R-FRFs reflect how the structure would behave under these
virtual constraints, thus offering critical insights into how shock loads propagate
and interact with different structural areas. In this chapter, R-FRFs are employed
to determine shock transmissibility, as they are especially effective in local modal
analysis and provide indicators of load propagation through specific structural re-
gions. We consider a linear, time-invariant, damped vibrating system having N
degrees of freedom (dofs), for which the well-known input–output relationship in
the Laplace domain s, from rest initial conditions, is:

B(s)X(s) = F (s) (5.1)

The dynamic stiffness matrix B(s), the displacement X(s), and the force F (s)
vectors can be partitioned as:[

B11(s) B12(s)
B21(s) B22(s)

] [
Z(s)
Y (s)

]
=

[
Q(s)
0

]
(5.2)

where Z(s) is the displacement vector that includes the n output responses
dofs in which the input forces are applied. Let’s consider the transfer matrix as:

H(s) = B−1(s) (5.3)

It can be decomposed with the modal partial fraction decomposition:

H(s) =

Np∑
r=1

(
ψrL

T
r

s− λr
+
ψ∗
rL

H
r

s− λ∗r

)
(5.4)

where (.)H indicates Hermitian transposition, (.)∗ denotes complex conjugation,
Np is the number of modes, ψr are the mode shape vectors, and Lr are the modal
participation vectors. In addition, λr are the complex-valued roots, appearing in
complex conjugate pairs:

λr = −ζrωr ± iωr

√
1− ζ2r (5.5)

with ωur being the undamped natural frequency and ζr the damping ratio. The
defined transfer function establishes a relationship between the external force and
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the resulting displacements. Since we will be computing the shock response using
SRS, it may be beneficial to make this term dimensionless, thereby obtaining the
system’s global transmissibility. In general, a transmissibility is defined as the
transfer function that relates the displacements (or velocities, accelerations) at the
output and input locations. Specifically, R-FRFs, indicated here as T (iω), can be
calculated by using partitions of the FRF matrix throughout the following relation:

T (iω) = H21(iω)H
−1
11 (iω) (5.6)

where H11 and H21 indicate the corresponding partitions of the FRF matrix
H(iω) = B−1(iω). R-FRFs can also be obtained using modal decomposition. The
global transmissibility can now be used to get the shock transmissibility, which
ECSS [131] defines as: √

T (ω) ≤ Tshock(ω) ≤
√

2T (ω) (5.7)

Shock transmissibility, especially at frequencies below 2000 Hz, is lower than
the transmissibility obtained by the modal test. The latter is usually performed on
a thick resonant plate with a hammer impact as an impulse generator. Therefore,
the cross-correlation between all interface points is stronger than it would be during
a pyrotechnic shock, and the shock transmissibility at low frequency can thus be
overestimated. The shock transmissibility is directly used to compute the system’s
response to a shock load, where the input shock load is represented in the form of
an SRS:

SRSout = Tshock(ω)SRSin (5.8)

The proposed methodology offers an alternative to existing approaches. Nu-
merical methods like FEM-SEA are complex and time-consuming, requiring the
development of two entirely separate models and the creation of virtual modes to
link them. In contrast, calculating shock transmissibility from the modal param-
eters is faster, yet still reliable and less conservative than the similarity-heritage-
extrapolation methods commonly used in industry.

5.2 Application of the method on simple systems

5.2.1 2-DOF System

In this section the method has been applied on a 2 degree-of-freedom system 5.2.
The FRF obtained by modal partial fraction decomposition has been compared
with the FRF obtained by other two methods. The former was obtained by an-
alytical computation, using the dynamic stiffness; the latter was obtained from a
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Figure 5.2: Ground acceleration applied on a 2 dof mass-spring-damper system

commercial software. We can observe how the three methods are perfectly over-
lapped in 5.3,5.4,5.5,5.6.

Figure 5.3: Frequency Response Func-
tion, H11

Figure 5.4: Frequency Response Func-
tion, H12

After that, an input was chosen from a real pyroshock test. In 5.7 the derived
SRS input specification is plotted. The obtained response is shown in 5.8 and 5.9.
The explanation of the 2 methodologies is explained in the following section.
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Figure 5.5: Frequency Response Func-
tion, H21 Figure 5.6: Frequency Response Func-

tion, H22

Figure 5.7
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Figure 5.8: Theoretical output via SRS Figure 5.9: Theoretical output via In-
verse Fast-Fourier Transform
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5.3 ShockSat Case Study
NASA’s ShockSat has been used as open-source case study. This project is de-
signed to tackle the persistent challenges linked to pyroshock sources used in launch
vehicles and spacecraft. While pyroshock systems are highly reliable, ensuring that
separation mechanisms function seamlessly, this reliability comes with a downside:
shock waves travel through the structure and can potentially harm sensitive elec-
tronics. Despite advances in many areas of spacecraft design, shock propagation
prediction remains behind, with outdated semi-empirical methods from the 1970
still being used, even though numerous studies have proven them to be insufficient.
Newer methods are either proprietary or come with uncertainties in data and mod-
els, making it difficult to trust the results. ShockSat aims to change that by of-
fering data that can genuinely push the field forward in the public domain. The
project focuses on creating a mobile test-bed to develop improved shock prediction
methodologies and conducting a broad range of tests to build a robust database.
ShockSat1 features a straightforward architecture with standard spacecraft man-
ufacturing techniques like bolted joints, material mismatches, and multiple shock
sources. Its ultimate goal is to provide unquestionable input data, engage the com-
munity with benchmark problems, and push the boundaries of current methods.
ShockSat1 was designed with a simple sheet-metal structure that incorporates key
shock transmission features, making it an ideal test-bed for shock studies, as in
5.10. The structure is free from any proprietary or secret restrictions, allowing for
open access and community engagement. A well-correlated Finite Element Model
(FEM) was developed alongside a real physical model, where hammer test data
was used for characterization and correlation with the FEM modal analysis, as
shown in 5.10. Additionally, ShockSat1 underwent shock tests with various py-
roshock sources, including point-source tests using NSD and line-source tests with
frangible joints, providing comprehensive data to validate the model’s performance
and refine shock prediction methodologies.

5.3.1 Extrapolation of Modal Data and computation of FRFs

Analytical FRF

To explore the dynamic behaviour of the ShockSat structure, a modal analysis was
performed using NASTRAN on the FEM of ShockSat within the frequency range
from 0 to 2000 Hz. The analysis provided a .f06 file containing eigenvalues and
eigenvectors, as shown in 5.12 and 5.13, which represent the natural frequencies
and mode shapes of the system. This data was subsequently processed in MAT-
LAB using a custom code, detailed in Appendix A, to synthesize the Frequency
Response Function (FRF) through the modal partial fraction summation decom-
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Figure 5.10: ShockSat Physical model Figure 5.11: ShockSat FEM model

position approach. In this synthesis, a viscous damping ratio of 0.025 (equivalent
to Q = 20) was applied to the poles, formulated as:

λ1,2 = −ζωn ± i
√

1− ζ2ωn

where ζ denotes the damping ratio and ωn is the undamped natural frequency. A
scaling factor, Qr(j) = 1

2ωn(j)
, was applied to achieve unity modal mass normal-

isation. This approach provided the FRF in terms of acceleration-to-force ratio
(g/N), thus enabling a direct comparison with experimentally derived FRFs.

Experimental FRF

On the experimental side, a characterization test was conducted on ShockSat using
a hammer test in the x, y, and z directions, as in 5.14 and 5.15. The input force
(an impulse) and the output accelerations recorded from accelerometers at various
points on the satellite were used to compute the experimental FRFs through a
system identification algorithm. 5.17, 5.16 and 5.18 show the configuration of
some accelerometers, namely on top plate, +X panel and +y panel. Subsequently,
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Figure 5.12: Eigenvalues on the .f06 NASTRAN file

both the analytically synthesised and experimentally derived FRFs were compared,
though further investigation is ongoing to finalize and validate these results.
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Figure 5.13: Eigenvectors on the .f06 NASTRAN file

Figure 5.14: SRS experimental output, channel 1
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Figure 5.15: Hammer Test on Shocksat

Figure 5.16: ShockSat Top Plate
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Figure 5.17: ShockSat +X Panel Figure 5.18: ShockSat +Y Panel
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FRF Comparison

The FRFs obtained from experimental and modal data are computed up to 10k
Hz on the relevant locations. As an example, the comparison of FRFs is reported
for X+ plate in 5.19,5.20,5.21, for Y+ plate in 5.22 and for top plate in 5.23.

Figure 5.19: FRF of accelerometer 1, x
direction Figure 5.20: FRF of accelerometer 1, y

direction

Figure 5.21: FRF of accelerometer 1, z direction
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Figure 5.22: FRF of accelerometer 4, x
direction

Figure 5.23: FRF of accelerometer 31, x
direction
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5.3.2 Shock Transmissibility

After deriving the FRF from modal parameters, it cannot be used directly to
calculate the shock response. To address this, we must first convert it into a di-
mensionless form, which is where the previously introduced R-FRFs come into
play. By transforming the FRF to a transmissibility function, we shift from a
force-based relationship to an acceleration-to-acceleration format, which is more
appropriate for shock response analysis. The transmissibility function, specifi-
cally the global transmissibility, represents the relationship between the dynamic
responses (such as displacements, velocities, or accelerations) at various locations
on the structure. It is computed by using 5.6, where H21 is the FRF matrix at the
output location and H11 is the FRF matrix at the input location. This dimension-
less transmissibility function encapsulates how disturbances propagate through the
structure without dependency on the absolute values of the input force, making
it ideal for calculating shock responses under various input conditions. Once the
global transmissibility is obtained, we use it to derive the shock transmissibility, as
detailed in Equation (5.1). On the experimental side, several pyroshock tests, as
in 5.24, were performed in the configuration represented in 5.25. We extracted the
recorded acceleration data from accelerometers placed in the structure along the
three principal axes (X, Y, Z). To ensure that the data was correctly extracted, it
has been compared with the available results in SRS form, like the ones in 5.26.

Figure 5.24: Pyroshock Tests performed on ShockSat
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Figure 5.25: Shocksat Shock setup

Figure 5.26: Experimental SRS responses
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Figure 5.27: Pyroshock Test on ShockSat

5.3.3 Input identification

To compute the shock response, it is essential first to identify an appropriate
shock input. Ideally, an experimental input that closely resembles the actual shock
conditions would be used. However, precise measurements of accelerations due
to pyrotechnic explosions are not feasible due to the highly non-linear nature of
the phenomenon in the near field (within the first 5 cm of the shock source).
Additionally, it is impractical to place sensors directly at the shock origin. As a
result, we relied on accelerometer data recorded in the vicinity of the shock event,
like the ones shown in 5.27. This choice was somewhat arbitrary, as different
accelerometers or combinations of accelerometer data would produce variations in
the computed response. The used signal can be seen in 5.28 in time domain and
in 5.29 in Fast Fourier Transform form.

Figure 5.28: Synthesised input signal Figure 5.29: Fast Fourier Transform in-
put signal
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5.3.4 Shock Response Calculation

Once the shock input is selected, we employed two approaches for calculating the
response:

1. Frequency-Domain Approach: In this approach, the chosen input accel-
eration signal was first converted from the time domain to a SRS. This SRS
was then multiplied by the shock transmissibility to obtain the final shock re-
sponse. This approach is particularly convenient because it allows for direct
application of the transmissibility function in the frequency domain, yielding
a straightforward prediction of the shock response.

2. Time-Domain Approach: In this alternative approach, the analysis was
conducted directly in the time domain. The key difference between these
two methods is that, in the frequency-domain approach, we work with the
SRS of the input signal, while in the time-domain approach, we utilise the
Fourier Transforms of the signals. The latter method is expected to be more
precise, as it applies the transmissibility to the complete frequency content
of the time-domain signals.

To calculate the shock response using the Inverse Fast Fourier Transform (IFFT)
method, we start with an input shock signal in the time domain. The process
involves transforming this time-domain signal into the frequency domain, where it
can be effectively multiplied with the shock transmissibility to obtain the desired
response. The detailed steps are as follows:

1. The input shock signal in the time domain of 5.28 is first transformed into the
frequency domain using the Fast Fourier Transform (FFT). This transforma-
tion provides a complex frequency spectrum that represents the amplitude
and phase of each frequency component of the input signal.

2. After obtaining the FFT of the input signal, we need to ensure that the
frequency spectrum is symmetric. This symmetrisation step is crucial to
ensure that the IFFT yields a real-valued time-domain response. When per-
forming an IFFT on a non-symmetric frequency-domain signal, the result
is generally complex. Symmetry, specifically Hermitian symmetry, around
the zero frequency guarantees that the IFFT will produce a real response,
which is necessary for meaningful physical interpretation. Symmetrisation
is achieved by mirroring the positive frequency components across the ori-
gin into the negative frequency range, resulting in a Hermitian symmetric
spectrum, as in 5.29.
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3. Next, we multiply the symmetric frequency spectrum of the input signal by
the shock transmissibility in the frequency domain in 5.30. The shock trans-
missibility is also made symmetric, as it needs to be compatible with the sym-
metric input spectrum. This multiplication effectively applies the frequency-
dependent transfer function to the input signal, yielding the Fourier Trans-
form of the system’s response.

4. After the multiplication, we use the IFFT to transform the product back
into the time domain. The shock response in time domain can be seen in
5.31

5. Finally, we convert the time-domain shock response into a SRS.

Figure 5.30: Transmissibility obtained
by analytical/experimental FRF

Figure 5.31: Output in time domain

In both cases, the shock response was computed using two types of transmis-
sibility: one derived from modal FEM data and the other from experimental data
obtained through hammer tests. This dual approach allowed for a comprehensive
evaluation of the shock response methodology. Although the results are still under
investigation, preliminary findings are presented in Figures 5.32 and 5.33. These
examples show analyses conducted on accelerometer 1. Hereinafter, the differences
between the shock transmissibility derived from experimental data and that ob-
tained from modal analysis are presented in 5.34. The results shown are based on
the iFFT method. These graphs illustrate that while theoretical models, whether
derived from time-domain or frequency-domain analyses, offer useful insights into
the shock response, they fall short of capturing the full complexity observed in
experimental data. Up to approximately 500 Hz, the theoretical predictions align
relatively well with the experimental results, indicating that the model captures
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the general behaviour of the system in this lower frequency range. However, be-
yond 500 Hz, notable discrepancies begin to emerge, particularly as the frequency
increases. This divergence suggests that higher frequencies introduce additional
complexities, such as damping effects and non-linear interactions, which the cur-
rent models do not adequately account for.

Figure 5.32: Comparison between the
experimental response and the predic-
tion obtained from modal data

Figure 5.33: Comparison between the
experimental response and the predic-
tion obtained from experimental data

Figure 5.34: Comparison between the theoretical outputs obtained by the time domain
method
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5.4 Shock through composites
Shock propagation through composite materials has been the subject of significant
research. Composite materials have gained significant attention for their ability
to withstand high-impact forces while remaining lightweight, making them ideal
for aerospace applications. These materials pose unique challenges due to their
heterogeneous, anisotropic nature, which results in complex wave behaviour under
dynamic loading. Composite laminates are formed by stacking layers of different
materials and/or different fibre orientations. In general, their planar dimensions
are two orders of magnitude larger than their thickness. Therefore, in many cases,
composite laminates can be modelled using a shell element based on the Equiv-
alent Single-Layer Theory (EST). This theory was initially developed to simplify
the complex 3D problem of laminated composites into a 2D problem by mak-
ing assumptions about displacement through the thickness. ESL theories simplify
the problem by assuming a continuous displacement field through the thickness,
expanded using Taylor polynomials:

U(x, y, z, t) = F0U0 + F1U1 + ...+ FNUN = Fτ (z)U(x, y, t), (5.9)

where Fτ = zτ and τ = 0, 1, ..., N . While EST provides accurate global responses
for very thin laminates with minimal computational effort, it performs poorly in
capturing local responses at the interfaces and cannot represent the zig-zag dis-
tribution of in-plane displacements. In contrast, elasticity solutions based on 3D
displacement-based FEM provide precise displacement and stress fields but come
with high computational costs. Layerwise Theories (LWT), considered a quasi
3D method, offer greater accuracy than most ESTs while requiring less computa-
tional power than 3D FEMs, making them increasingly popular with advances in
computing technology. The method is described by the following equation:

Uk(x, y, z, t) = Fτ (xk)Uk
τ (x, y, t) (5.10)

where F k
τ are defined as Lagrange interpolation polynomials:

F k
τ (ζk) =

N∏
i=0,i ̸=τ

ζk − ζki
ζkτ − ζki

(5.11)

in which −1 ≤ ζk ≤ 1 is the adimensional thickness coordinate in the layer k. For
example ζk0 = −1 represents the bottom surface of the k-th layer, while ζkN = 1
the top surface. [138] presents an overall review for the LWTs of the laminated com-
posite structures and their applications. The Carrera Unified Formulation (CUF)
generalises LW and ESL theories under a unified framework, allowing advanced 2D
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models to approximate 3D behaviour effectively. The displacement field in CUF
is expressed as:

U(x, y, z, t) = Fτ (z)Uτ (x, y, t), (5.12)

where the thickness functions Fτ (z) depend only on the z coordinate. CUF splits
the original 3D problem into 2D in-plane and 1D thickness components, enabling
efficient shell modelling. This flexibility makes CUF particularly suitable for
analysing shock propagation in composite materials. CUF [139] uses the LWT
theory to discretise the thickness with a mesh or higher-order expansion along the
thickness direction. Using CUF allows to capture detailed, layer-by-layer varia-
tions in material properties providing a significant advantage over FEM in terms
of accuracy and computational cost. [140] compares EST and LWT approaches
in composite plates and structures using FEM and CUF. This section highlights
the differences between the two methodologies when calculating shock propagation
through composites structures. The objective is to show the superiority of CUF
compared to FEM when studying the propagation of shock load through the thick-
ness of the structure in a composite material. This section presents an alternative
approach to evaluating the shock response of aerospace composite structures sub-
jected to high-frequency transient loads, using a refined modeling methodology.
The approach leverages CUF to describe the structure, which enhances a broad
class of advanced 2D plate theories under a unified framework. This formula-
tion provides a more comprehensive understanding of the dynamic behaviour of
aerospace structures under shock loading. Applying the Finite Element (FE) ap-
proximation within the CUF framework involves introducing shape functions Ni

to discretise the structural displacement field:

Uk
τ (x, y, t) = Ni(x, y)U

k
τ (t), (5.13)

where i = 1, ..., ns, and ns is the number of nodes in the 2D structural element.
Substituting this approximation into the displacement field expression yields:

Uk
τ (x, y, z, t) = Fτ (z)Ni(x, y)U

k
τ (t). (5.14)

This formulation supports both ESL and LW approaches, depending on the chosen
thickness functions Fτ . The LW approach’s higher-order accuracy, combined with
the computational efficiency of CUF, offers a significant advantage for analysing
shock propagation through composite materials, particularly under high-frequency
transient loads. A key focus of this section is the comparison between the modal
analyses obtained from commercial FEM software and those derived using the
MUL2 code, which has shown superior accuracy for modeling composite materials.
Using the modal analysis results from MUL2, the shock response of the composite
structure is synthesised along its thickness, offering insights into its dynamic be-
haviour under high-frequency loading conditions. The methodologies discussed in
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this section aim to improve the accuracy of predictive models, helping to ensure
that spacecraft structures can withstand shock loads without requiring extensive
redesigns. The findings contribute to enhancing the resilience of aerospace com-
posite structures, reducing discrepancies between predicted and tested structural
behaviour, and ultimately optimizing the spacecraft development process.

5.4.1 Comparison of FEM and MUL2

In this section, the response of a plate to a shock input is calculated using the
previously described methodology. A half-sine pulse, shown in Fig. 5.35, is used
as the input.

Figure 5.35: Half-sine pulse input

The time domain signal is converted to SRS, as shown in Fig. 5.36, to be used
in Eq. 5.8.

Figure 5.36: SRS of the half-sine pulse input
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The response to this input has been applied on two different models: an
isotropic aluminium plate and a composite plate composed of two layers of or-
thotropic material. Both models use a modal analysis computed up to 2000 Hz,
and the differences between FEM and CUF methodologies are highlighted.

5.4.2 Aluminium Isotropic Plate

The system that has been studied is a thin plate of aluminium, with dimensions
1x1x0.01 m. The plate is clamped around all the edges. The FEM mesh is formed
by QUAD elements with dimension 0.05 m. The mesh on MUL2 is composed of
MITC elements that prevent locking phenomena, which could affect the analysis
in the high-frequency range.

Figure 5.37: Clamped plate mesh on FEMAP

A modal analysis up to 2000 Hz has been performed on two commercial software
packages, FEMAP and MUL2. The resulting natural frequencies present evident
differences in the higher frequency range.

Then, the FRF (Frequency Response Function) of the structure has been com-
puted using modal partial fraction decomposition of Eq. 5.4. The results obtained
for the point located at [0.75, 0.75, 0] in the out-of-plane direction are shown in
Figures 5.39 and 5.40.

The transmissibility is computed with Eq. 5.6.
The half-sine input is applied to the centre node of the plate at [0.5, 0.5, 0].

The shock response is then calculated using Eq. 5.8, and the results are shown in
5.42.
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Figure 5.38: Natural frequencies comparison of the isotropic plate

Figure 5.39: Isotropic composite plate,
FRF Analysis - Magnitude

Figure 5.40: Isotropic composite plate,
FRF Analysis - Phase

5.4.3 Composite Orthotropic Plate

The same procedure is applied to a plate with the same geometry and boundary
conditions. The material is substituted with two layers of orthotropic composite
material, positioned at 90 degrees to one another. The natural frequencies, FRF,
and transmissibility comparison, as well as the response at the same location of
the previous case, are shown in 5.43 ,5.44, 5.45, 5.46 and 5.47.



Chapter 5 126

Figure 5.41: Transmissibility of the isotropic plate

Figure 5.42: SRS output to half-sine input, isotropic plate
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Figure 5.43: Natural frequencies comparison of the orthotropic plate

Figure 5.44: Orthotropic composite
plate, FRF Analysis - Magnitude

Figure 5.45: Orthotropic composite
plate, FRF Analysis - Phase

Figure 5.46: Transmissibility of the orthotropic plate



Chapter 5 128

Figure 5.47: SRS output to half-sine input, orthotropic plate
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In a synthesis

• Presentation of a predictive methodology for calculating shock re-
sponses in mechanical structures using modal decomposition and trans-
fer functions.

• Application of the proposed methodology to both simple (2-DOF sys-
tems) and complex cases (e.g., ShockSat).

• Evaluation of shock propagation in composite materials, utilizing CUF
to improve the accuracy of dynamic modeling in aerospace applica-
tions.

• Validation of the methodology through real-world data, including FEM
models and physical shock tests, underscoring the method’s effective-
ness in predicting shock response across various aerospace structures.



Conclusions

In response to the growing need for accurate shock prediction in the aerospace in-
dustry, this thesis presents a new methodology for analysing shock loads on satel-
lite structures. Satellite launches expose structures to complex dynamic loads,
including shocks from pyrotechnic events and stage separations, which challenge
traditional modelling and validation methods. This thesis has thus focused on
addressing these challenges, ultimately developing an adaptable, resource-efficient
predictive model. The proposed model emphasizes modal analysis over traditional
force-based measurements and extensive Finite Element Modelling (FEM), offer-
ing a practical alternative for the industry’s cost-sensitive, high-stakes design and
testing requirements. The scene was set by discussing the unique environmental
challenges satellites encounter during launch and the critical need for structural
resilience. Shock prediction models must account for the extreme and varied loads
a satellite undergoes from the moment of lift-off through orbit insertion. Tradi-
tionally, the aerospace industry has relied on highly conservative methods that
require considerable testing and over-design, which lead to increased costs. The
challenge, therefore, is to find a balance between reducing the intensity and vol-
ume of physical tests while ensuring that models remain reliable across different
satellite platforms and missions. The introduction also emphasized the unique role
of this research in contributing to sustainable satellite development, particularly
for reusable platforms. To start the research, an extensive review of current meth-
ods provided context for this research. Deterministic methods, like FEM, have
long been industry standards, especially for low-frequency shock responses. How-
ever, deterministic approaches often fail to capture the nuances of high-frequency
loads, which are characteristic of many launch and in-orbit events. Statistical ap-
proaches, such as Statistical Energy Analysis (SEA), address some of these limita-
tions by averaging responses across the system, offering better predictive accuracy
at higher frequencies. The chapter also examined hybrid methods, which blend
deterministic and statistical techniques to enhance the flexibility and accuracy
of predictions. The most innovative part of the state-of-art come from of data-
driven and machine-learning-based approaches, which have seen increasing use in
shock prediction modelling. The rise of Digital Twins, virtual representations of
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physical systems updated in real-time with sensor data, has opened new possibil-
ities for shock analysis. The chapter explored how integrating Digital Twins with
Artificial Intelligence (AI) and Machine Learning (ML) can offer dynamic shock
predictions. However, while these data-driven techniques present exciting oppor-
tunities, the research highlighted limitations, including reliance on high-quality
data, potential inaccuracies in data fusion, and the need for further refinement
to ensure consistency across diverse shock scenarios. In developing the shock
prediction methodology, a strong theoretical foundation was laid by examining
vibration analysis and shock phenomena from both microscopic and macroscopic
perspectives. This involved studying modal analysis for single-degree-of-freedom
(SDOF) and multi-degree-of-freedom (MDOF) systems, which provided insights
into how structures respond to transient, non-periodic excitations such as shocks.
By modelling the structure as discrete mass-spring-damper systems, this approach
allowed complex satellite structures to be broken down into analysable compo-
nents, enabling a clear understanding of both local and global shock responses.
The study introduced Frequency Response Functions (FRFs) as essential tools,
enabling precise calculations of the structure’s reaction to shocks across a wide
frequency range. This method provided a framework to assess how shock energy
propagates through a structure, which is critical for accurately simulating high-
frequency events like launch-induced shocks. Furthermore, SEA was incorporated
to address high-frequency behaviours that are difficult to capture through deter-
ministic models. Part of the research was dedicated to deepen the understanding
of how shock inputs could be characterized and synthesised to match real-world
conditions. SRS synthesis is vital in shock prediction as it captures the peak
response of a structure to a transient shock event. Three primary synthesis tech-
niques—wavelets, damped sinusoids, and enveloped sinusoids—were explored and
applied to linear time-invariant (LTI) single degree-of-freedom (SDOF) systems as
well as more complex viscoelastic SDOF systems. Afterwards, the research tran-
sitioned from theory to real-world implementation,. The fourth chapter is focused
on the activities carried out in SITAEL, specifically on the Multi-Application Min-
isatellite platform as a case study, showcasing the challenges faced in validating
shock loads for satellites with repeated design features. Additionally, the chap-
ter covered the requirements for shock testing, as well as the test setup that I
helped design and implement to meet these stringent requirements. By reviewing
existing shock tests and empirical methods currently used in industry, the chapter
highlighted the limitations of traditional approaches and underscored the need for
a more precise, efficient shock prediction model. This industry-focused analysis
provided both a practical perspective on shock testing and validation, as well as
a benchmark against which the proposed methodology could be compared and
refined. Reaching the core of the research, a novel methodology based for calcu-
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lating shock responses in both frequency and time domains was presented. Initial
case studies were conducted on simplified mechanical models, beginning with a
2-degree-of-freedom (2-DOF) mass-spring-damper system. Although these early
applications did not provide full experimental validation, they served as valuable
test-beds for evaluating the consistency and coherence of the method. Synthe-
sised input SRS values were derived using multiple approaches, and comparisons
with the calculated system responses indicated a promising alignment with ex-
pected behaviours. This stage of research not only confirmed the feasibility of the
method in a controlled setting but also laid the foundation for more complex appli-
cations. Over the following months, the methodology was systematically applied
to increasingly intricate configurations, including single plates, orthogonal plate
assemblies, and even composite materials. Another advancement in this research
was the decision to integrate Carrera’s Unified Formulation (CUF) as an alterna-
tive to traditional FEM analysis, especially for composite materials. Composites,
with their anisotropic and layered structures, present unique challenges under dy-
namic loads, and CUF provided an innovative way to capture the localised shock
propagation along the thickness of these materials. By addressing the limitations
of conventional isotropic assumptions, CUF integration offered a pathway towards
more precise, reliable predictions for shock-sensitive components made of advanced
materials. The methodological development reached its peak of complexity with
the application to NASA’s ShockSat platform, a comprehensive test-bed designed
explicitly for validating shock prediction models. Leveraging ShockSat’s FEM and
its rich set of experimental data, including modal tests and pyroshock tests, al-
lowed a robust assessment of the proposed methodology’s real-world applicability.
Although full validation remains pending, ShockSat case study highlighted the po-
tential of the methodology to align closely with observed experimental outcomes.
This milestone not only underscored the scalability of the approach but also served
as a stepping stone towards potential industry-standard applications. The next
steps for this methodology include its application to the Multi-Application Min-
isatellite platform, with planned pyroshock tests at SITAEL, furthering the devel-
opment of a fast and efficient approach to shock validation for recurrent satellite
structures. This capability could enable SITAEL to streamline the structural val-
idation process, reducing the need for repeated physical testing each time the
platform structure is reused. This represents a highly valuable outcome for a com-
pany focused on creating reusable satellite platforms. The methodology has been
investigated both frequency-domain and time-domain shock response calculations.
In the frequency domain, the dimensionless shock transmissibility function was
applied to the synthesised input SRS to model shock load propagation through
various points on the structure. The time-domain approach, meanwhile, involved
transforming the input shock signal into the frequency domain, symmetrising it,
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and applying the shock transmissibility, followed by an inverse Fourier transform
to return the response to the time domain. Reflecting on the broader implica-
tions, this thesis highlights the potential of this shock prediction methodology
to drive industry-wide advancements in satellite design and testing. By reducing
the dependency on extensive FEM simulations and direct force measurements, the
R-FRF-based approach offers a practical and versatile alternative to current meth-
ods. This adaptability is particularly relevant for companies like SITAEL, which
focus on developing reusable satellite platforms. The model’s reduced computa-
tional burden and reliance on response-based rather than force-based data make
it suitable for a range of satellite configurations, from simple plates to complex,
multi-material assemblies.

The original contribution of the thesis is summed up as following:

• Provided an in-depth evaluation of deterministic, statistical, data-driven and
hybrid shock prediction techniques, highlighting their limitations and propos-
ing improvements tailored to the aerospace industry’s needs.

• Developed a novel framework leveraging response-based transmissibility func-
tions, offering a practical alternative to traditional FE methods.

• Applied the methodology to increasingly complex configurations, including
composite materials, demonstrating its scalability and coherence with ex-
pected behaviours.

• Outlined the major obstacles to implementing shock analysis methodologies
at an industry-wide level, paving the way for targeted advancements in shock
prediction and validation techniques.

However, the research also revealed several limitations that need to be ad-
dressed to fully realize the model’s potential:

• The absence of direct experimental validation remains a critical gap, partic-
ularly in assessing the accuracy of the model in real-world conditions. Col-
laborations with industry partners and aerospace institutions, including ESA
and additional testing phases with SITAEL’s Multi-Application Minisatellite
platform, would be invaluable in achieving full experimental validation.

• The arbitrary selection of accelerometers as inputs introduces variability in
the shock response, and further work is required to establish a standardized
protocol for input selection to reduce these uncertainties.

• Capturing the precise shock characteristics of pyrotechnic events poses in-
herent challenges, as near-field recordings are impractical, and the shock
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behaviour is highly non-linear. This research relied on accelerometer data
from nearby locations, acknowledging the inherent limitations of such an
approach.

Promising future improvements include:

• Incorporate advanced techniques to better account for damping effects in
dynamic load propagation.

• Extend the methodology to address non-linear behaviour, which is a main
characteristic of shock loads.

• Conduct experimental validation using simplified models as a starting point,
progressing towards full-scale satellite tests.

• Development of a user-friendly interface accessible to engineers, allowing
seamless application of the methodology in industrial settings.

• Expand the model’s applicability to frequencies up to 10 kHz, ensuring com-
patibility with a broader range of shock events.

• Integrating machine learning techniques for model calibration, particularly
in input selection and shock response prediction, could also enhance the
adaptability of the model. AI-based calibration could allow the model to dy-
namically adjust to different shock scenarios, reducing the need for extensive
input data and further streamlining the prediction process.

In conclusion, the R-FRF-based approach stands out as a practical and precise
alternative to current shock prediction methods. It shows the potential to surpass
the traditional ECSS empirical approach in accuracy, avoiding overly conserva-
tive assumptions, while being simpler and faster to implement than the complex
FEM-SEA models, which require separate setups for different frequency ranges.
By balancing accuracy with efficiency, this methodology promises to become an in-
valuable tool for the aerospace industry, supporting sustainable and cost-effective
satellite design and validation.
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Appendix A

1 %FRF Synthesis
2 %Generation of a synthetic FRF that matches the frequency

resolution of the experimental FRF
3 file = 'modal -000. f06';
4 NaturalFrequencies = natf(file); %Hz
5 ModeShapes = eigenfind(file);
6

7 %Read the eigenvectors for the desired nodes , include input node
at the beginning

8 Node 3 is X+ face , where the pyro test occurred , 1021515 is Y face
, 2 is Z direction

9 node = [2 ,3 ,1021515 ,9900001:1:9900034];%3 X+ (pyro), 1021515 Y, 2
Z

10

11 Phi_input_x = [ModeShapes.T1(7:end ,2)];
12 Phi_input_y = [ModeShapes.T2(7:end ,3)];
13 Phi_input_z = [ModeShapes.T3(7:end ,1)];
14

15 INPUT = cat(2, Phi_input_x ,Phi_input_y ,Phi_input_z);
16 INPUT = permute(INPUT , [2 1]);
17

18 phi_x = ModeShapes.T1(7:end ,[4: end]);
19 phi_y = ModeShapes.T2(7:end ,[4: end]);
20 phi_z = ModeShapes.T3(7:end ,[4: end]);
21

22 phiR_x = ModeShapes.T1(1:6 ,[4: end]);
23 phiR_y = ModeShapes.T2(1:6 ,[4: end]);
24 phiR_z = ModeShapes.T3(1:6 ,[4: end]);
25

26 PHI = cat(3, phi_x ,phi_y ,phi_z);
27 PHI = permute(PHI , [3 2 1]); % [m]
28

29 PHIreshaped = reshape(PHI ,[size(PHI ,1)*size(PHI ,2) size(PHI ,3)]);
30

31 PHI_R = cat(3, phiR_x ,phiR_y ,phiR_z);
32 PHI_R = permute(PHI_R , [3 2 1]); % [m]
33
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34 PHI_Rreshaped = reshape(PHI_R ,[size(PHI_R ,1)*size(PHI_R ,2) size(
PHI_R ,3)]);

35

36 %Scaling factor
37 wn = NaturalFrequencies (7:end)*2*pi ';
38 nmodes = numel(wn);
39 Q = zeros(1, nmodes);
40

41 for j = 1: nmodes
42 Q(j) = 1/(2* wn(j));
43 end
44

45 Q = Q';
46

47 PHIAll = nan(size(PHIreshaped ,1)+3,size(PHIreshaped ,2));
48 for mi = 1: nmodes
49 PHIAll(:,mi) = [INPUT(:,mi); PHIreshaped (:,mi)];
50 end
51

52 ngdl = size(PHIAll ,1)
53

54 % FRF calculation
55 frequencies = f_frf;
56 numFreqs = length(frequencies);
57

58 omg = 2*pi*frequencies;
59

60 % Viscous damping
61 zita = 0.05; %1/20
62 wnd = -zita*wn+1i*sqrt(1-zita ^2)*wn;
63

64 FRF = zeros(ngdl ,3,numFreqs);
65 FRFmodal_acc_ms = zeros(ngdl ,3,numFreqs);
66

67 for fi = 1: numFreqs
68 for p = 1:3
69 for mi = 1: nmodes
70 FRF(:,p,fi) = FRF(:,p,fi) + PHIAll(:,mi) .* ...
71 ((-1i*Q(mi)*INPUT(p,mi)' / (1i*omg(fi) + wnd(mi)))

+ ...
72 (1i*Q(mi)*INPUT(p,mi)' / (1i*omg(fi) + conj(wnd(mi

)))));
73 FRFmodal_acc_ms (:,p,fi) = FRFmodal_acc_ms (:,p,fi)

- omg(fi).^2 * FRF(:,p,fi);
74 end
75 end
76 end
77

78 FRFsyn = FRFmodal_acc_ms / 9.81;
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1

2 %% % Transmissibility calculation %%
3 addpath '.\FRF␣synthesis '
4 addpath '.\ Hammer␣test'
5 load('FRFexp.mat', 'f_frf', 'FRFexp '); %Experimental FRF
6 load('FRFsyn.mat', 'FRFsyn '); %Analytical FRF
7

8 %% Tsyn
9

10 Tsyn = FRFsyn (1:end -1,:,:)./ FRFsyn(end ,1,:);
11

12 sizeTsyn = size(Tsyn);
13

14 Tsyn2 = reshape(Tsyn ,[ sizeTsyn (1)*sizeTsyn (2) sizeTsyn (3)]);
15

16 %% Texp
17

18 Texp = (FRFexp (1:end -1,:,:)./ FRFexp(end ,1,:));
19

20 sizeTexp = size(Texp);
21

22 Texp2 = reshape(Texp ,[ sizeTexp (1)*sizeTexp (2) sizeTexp (3)]);
23

24 %% %... impose simmetry of FRFs ...
25

26 % Simmetry
27 N = size(Texp2 ,2);
28

29 Tsynsym = nan(103,N);
30 Texpsym = nan(103,N);
31

32 for idrow = 1:103
33 % Analytical FRF symmetry
34 Tsyn_pos = real(Tsyn2(idrow , 1:ceil((N+1)/2)));
35 Tsyn_neg = fliplr(real(Tsyn2(idrow , 2:ceil(N/2))));
36 Tsynsym(idrow , :) = [Tsyn_pos , Tsyn_neg ];
37

38 % Experimental FRF symmetry
39 Texp_pos = real(Texp2(idrow , 1:ceil((N+1)/2)));
40 Texp_neg = fliplr(real(Texp2(idrow , 2:ceil(N/2))));
41 Texpsym(idrow , :) = [Texp_pos , Texp_neg ];
42 end
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