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Investigating the antecedents of general purpose technologies. A patent
per spectivein the green energy field

Abstract

This research analyzes the emergence of general purpose tedsmdpgcifically, we examine the
relationship between how broadly organizations search across diverseetgevdomains in the
invention process (i.e., their search breadth) and the technolggivatality of resulting inventive
outcomes. Based on a sample of 88,748 patents belonging to the "Altemargy production”
and "Energy conservation" classes, we reveal that search bisaciinvilinearly related to an
invention's technological generality. Furthermore, we assasgabgraphically dispersed inventive
team moderates the costs and benefits of searching broadlyinghinat it makes organizations

more able to benefit from a wider search breadth.

Keywords. general purpose technologies; search breadth; geographically dispersed teams; green

energy technologies

1. Introduction
General purpose technologies (GPTs) refer to technologies “the exploitation of which will yield

benefits for a wide range of sectors of the economy and/or society” (Keenan, 2003:132), such as
the steam engine, nanotechnology, and the ICT (Banerjee and Cole, 2010; Bresnahan and
Trajtenberg, 1995; Shea, 2005). This characteristic is ascribed to their high level of technological
generality, which indeed favors their use and spread in a broad range of industries and market
applications (Bresnahan and Trajtenberg, 1995; Gambardella and Giarratana, 2013; Keenan, 2003;
Thoma, 2009). GPTs have gained more and more attention across both academics and practitioners

in the last years. Nevertheless, as stated by Thoma (2009:108), “our understanding of GPTs is still
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somewhat limited”, hence requiring more in-depth studies on how W@k and emerge.
Particularly, this article attempts to shed more lighthrenemergence of GPTs.

Previous research has argued that the ability to developganegic technologies is associated
to the use of diverse technological fields in the inventingviies (eg., Argyres and Silverman,
2004; Hicks and Hegde, 2005), which in turn increases the probability to thakeesulting
inventions applicable in diverse industrial contexts (Banerjee afej 2010). This drives us to the
research question of the present study, as what are théseffea firm's strategy to search for
knowledge across a broad range of technological domains on thiercifaa GPT? Indeed, among
other types of search strategy, such as search depth and sepelieg., Katila and Ahuja, 2002),
organizations can vary the diversity of knowledge to solve afspchnical problem, by deciding
to expand the breadth of their search across diverse knowledme Ve refer to this search
strategy as search breadth (see also Capaldo and Messemzéle, 2011), where the more
different the knowledge areas searched across, the broadeeda¢hbof search (Subramanian and
Soh, 2010).

We argue that organizations can gain from search broadly atirggegeneric technologies
and extend this logic by suggesting also that these benefits aretsdligedecreasing and negative
returns. Specifically, we draw on theories that support the assumtpiat searching in diverse
technological domains improves recombination possibilities andseoignitive myopia (Fleming,
2001; Levinthal and March, 1993; Maggitti et al., 2013), which mayl l® the creation of
technologies that more easily span industry realms. Howeven thhenumber of knowledge fields
searched across rises beyond a certain threshold, cogmtiveanagerial constraints related to the
ability to link them together arise (Capaldo and Messeni Pelityz2011), hence suggesting an
inverted U-shaped relationship between search breadth and techalotmgierality. Furthermore,
since people actually lie at the core of the recombinant prodem®cterizing organizations’
inventing activities (Fleming, 2001), we also claim that tusvilinear relationship is moderated by

the degree of geographic dispersion of the inventive teane gimay alter the threshold level of
2
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search breadth at which decreasing and negative returns Ieeteied, the past literature has argued
that organizations’ learning and recombination opportunities can beriofldeby pursuing a R&D
internationalization strategy, as reflected by the use of rgpbmally dispersed teams (e.g.,
Gajendran and Joshi, 2012; Gassmann and von Zedtwitz, 2003; O'Leary amedideioy 2010;
Susman et al., 2003). This, in turn, depends on the possibilityptonta unique bodies of
knowledge that reside in specific geographic locations, and acnewerelational capital and
problem-solving techniques (e.g., Doz and Wilson, 2013; Gajendradoahd 2012; Kratzer et al.,
2006; Singh, 2008).

The green energy sector is chosen as the research settitige fstudy. Indeed, related
inventions often arise from the recombination of multiple technadbgireas (OECD, 2012), and
their underlying knowledge is geographically dispersed (Albind.e2@14), hence making search
breadth and team dispersion relevant factors to be taken into acddust.choice, more
particularly, also follows the need to comprehend how to develgngGPTs, which has become
more and more as an urgent issue (Cecere et al., 2014; Peadseoxan, 2012). Accordingly, to
test our predictions, we collected 88,748 patents successfullydiléhe U.S.PTO. from 1971 to
2009 and belonging to the “Alternative energy production” and “Energy o@iss1’ green
technological classes, as identified by the InternationaihP&tassification (IPC) Green Inventory.

The key contribution of this paper consists in empirically testihng impact of an
organization’s search breadth in the invention process on thedeaal invention’s technological
generality, and how the internationalization of the inventiamtealters the benefits of a wide
breadth of search. In addition, we focus our attention on a n@edneh setting, as represented by
the green energy sector, hence allowing us to shed more lighheoriattors favoring the
development of green GPTs in that industry.

The reminder of the paper is structured as follows. Rirstprovide the theoretical framework

and present the hypotheses. Then, we describe the sampleheangsearch methodology.
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Afterwards, we expose data analysis and results. Finedlyprovide discussion and implications, as

well as limitations and directions for future research.

2. Theoretical framework and hypotheses

2.1. General purpose technologies

The idea that a technical solution can be applied across raulijphains dates back to Smith
(1776) in The Wealth of Nations and was further re-examined bieS{P51), who referred to it
as “general specialities”. More recently, instead, ttezdture has focused on the concept of GPTs,
which has captured the attention of many scholars and executivlke last two decades (e.g.,
Bresnahan and Trajtenberg, 1995; Gambardella and Giarratana, 2@1#n2003). With the term
GPTs, they mainly refer to technologies characterized by s#ivieschnological fields, forming a
knowledge base “with high levels of innovative complementaritied an ever-expanding set of
new applications in a wide variety of industrial contexts” (Anka009:666). Indeed, a GPT is a
pervasive technology that allows economic agents to combinangxistchnical solutions of
different sectors with it, or build new innovative activities uplb@ same GPT, hence acting as a
platform for subsequent complementary technological developmergsn@an and Trajtenberg,
1995; Gambardella and McGahan, 2010). In turn, this complemesftacy enhances the impact of
the GPT and helps it to drive the overall technical progress amuhope economic growth
(Bresnahan and Trajtenberg, 1995; Helpan and Trajtenberg, 1998)by hiereentions can differ
along a particular attribute, namely technological gener@éBigmbardella and Giarratana, 2013),
which influences their breadth of impact (Argyres and 8&ihan, 2004; Banerjee and Cole, 2010),
facilitating the recombination of an invention with technologicaligtant components and its
consequent diffusion.

Recognizing the presumed role of GPTs as “engines of gropdist,studies have been long

interested in the benefits and impacts of these technologicailbsd, thus revealing their important
4
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role in creating value at both the microeconomic and macroecon@vit (Bresnahan and
Trajtenberg, 1995; Helpan and Trajtenberg, 1998; Rosenberg anehnbeajj, 2004; Shane, 2004).
However, the commercialization and diffusion of GPTs are matgsitforward, being principally
limited by the high adaptation efforts required to apply themvarde industries (Gambardella and
Giarratana, 2013). Thereby, in the recent past, the literdtase delved into the invention
commercialization strategies that should be adopted to make &Rilable and diffused on the
market (Gambardella and Giarratana, 2013; Gambardella and MoG2010; Maine and Garnsey,
2006; Majumdar et al., 2010; Rainer and Strohmaier, 2014; Thoma, 200@xtiNdess, only few
insights about the antecedents of GPTs have been offered (Thoma, R@Y9¢s and Silverman
(2004) first dug into this topic, proving that organizations with arabpéd R&D structure, rather
than a R&D lab for each product division, create inventions that smhustry realms. This is
explained by arguing that these organizations are more likely tgenuiferent knowledge areas
into a single technology, since they manage diverse types of édgavisimultaneously (see also
Banerjee and Cole, 2010). Further, looking at the types of orgamizainbroiled in inventive
activities, Hicks and Hegde (2005) suggested that serial tlegynsuppliers are more able to
create GPTs. Accordingly, since their aim is to sellrtieientions to as many organizations as
possible, these companies tend to create technical solutions Wwhosgedge base is highly
diversified, so as to allow to a number of different downstrepecialized companies, both in the
same and other sectors, to understand the inventions’ underlying knevaedduild on them. In
line with this reasoning, it emerges that developing techredaginbodying a diversified variety of
knowledge may contribute to the emergence of GPTs. In other wibrotlgreases inventions’
technological generality.

Moreover, an invention can be considered as the result of “a protescombinant search
over technology landscapes” (Fleming and Sorenson, 2001:1019). Therbirejversity of
knowledge that is searched in the inventive activities toesaltechnical problem plays a key role

in developing general technologies. In fact, it affects théetyaof technological fields that will
5
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characterize the subsequent invention (Ejermo and Karlsson, 200@jttMagal., 2013), hence
influencing the probability that a technology further spans industry baesdand market
applications. Building on this argument, we more specificallyyaealhe costs and benefits of an
organization’s strategy to search broadly in the invention proomsshé development of
technologically general inventive outcomes. Furthermore, weialestigate how these costs and
benefits may change when organizations pursue a R&D internateti@liztrategy, as reflected by
the decision to form a geographically dispersed inventive.téaeed, relevant knowledge inputs
that are required to innovate in many sectors are often disparsmty diverse geographical areas
(Doz and Wilson, 2013; Singh, 2008). Thereby, distributed teams cam fhg access and
acquisition of this unique body of knowledge, hence increasing thetywalf the exploitable
knowledge (Chen et al., 2012; Hoegl et al., 2007). In addition, treeydeemed to have better
combination capabilities and act more creatively than coddcttams, since they also tap into
foreign sources of know-how and relational capital (Gajendran and 20412i; Kratzer et al., 2006;

O'Leary and Mortensen, 2010).

2.2. Search breadth

It has been suggested that the more diverse the technologicahdapan which an invention
is based, the higher its level of technological generatitysubsequent breadth of impact (Argyres
and Silverman, 2004; Banerjee and Cole, 2010). Thus, it is reastmalsleume a positive effect of
a wide search breadth on the emergence of GPTs. Indeed, entichidgersity of knowledge
domains in the search process increases the number of techrigdaagiea that will characterize an
invention, as well as the potential linkages and associatione®ethe diverse technological areas
(Capaldo and Messeni Petruzzelli, 2011; Fleming, 2001; Kauffmard; M8ggitti et al., 2013;
Maine et al., 2014). In addition, a broad search breadth proviieslisor cross-fertilization of
different knowledge fields, perspectives, and ideas (Bjorkdahl, 20&@adon and Sutton, 1997),

hence favoring the use of different knowledge pieces simultaneandlytheir integration into a
6
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comprehensive whole. In turn, this can raise the likelihood thatefaéchnological developments,
independently from their specific industrial context, can be builhwantions arising from search
efforts spanning multiple technological boundaries. Furthermoreide kreadth of search also
leads to the development of new problem-solving techniques (Ahujaaangddrt, 2001) and avoid
cognitive myopia toward different types of commercial applicafleevinthal and March, 1993;
Novelli, Forthcoming; Rosenkopf and Nerkar, 2001). Thereby, this cateslio reduce the risks to
focus on a single market, hence increasing the probability to pdrgeesified objectives at the
same time, as well as to recognize a wider varietyotérgial commercial opportunities that may
unfold as the different knowledge areas are searched and cambBinally, inventions resulting
from search efforts directed toward multiple diverse technab@ields can have more chances to
be understood by organizations operating in different industriese hmeaking these technologies
as more widely used in many sectors (Banerjee and Cole, 2010).

Although the benefits of enlarging the breadth of search acessra$ technological
domains for the development of GPTs can be considerable,isheegoint where this search effort
is subjected to diminishing or even negative returns. Seareltirugs a wide range of knowledge
domains extensively can in fact limit the creation of more gersolutions. At some point,
organizations’ cognitive capabilities required to find and creatful knowledge combinations
drastically drop, due to the increasing probability to work witfamiliar knowledge domains and
the lack of the required absorptive capacity (Cohen and Levinthal, 1896sen and Salter, 2006).
Hence, also the organizations’ ability to recognize the techmalbgnd market potential of the
diverse knowledge diminishes (Lin and Chang, Forthcoming). Taisthus reduce the likelihood
to come up with a discovery of more generalizable impacizddiition, as search breadth becomes
wider, the probability to conceive too many ideas respect tonasons’ ability to select and
implement them grows (Capaldo and Messeni Petruzzelli, 2011; KbgRit). Thereby, they might
then focus on a restricted set of more familiar knowledge pigcerder to limit the number and

complexity of the potential knowledge combinations (Fleming, 2001x;eheeducing the diversity
7
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of the knowledge base characterizing inventive outcomes. Furthermganizations tend to
conduct their search processes in a path-dependent way, whiolftear characterized by a well-
established modus operandi (Nelson and Winter, 1982; Peteraf, 1993veétpwince expanding
the search breadth needs the creation of new routines witinthte mtegrate multiple knowledge
areas, they often face managerial constraints in perforsuiclg a task, hence limiting the effective
use and integration of a diversified knowledge stock (Capaldo andekliePetruzzelli, 2011;
Nelson and Winter, 1982). Finally, searching broadly comes withrianattes regarding the future
value of the inventions (Messeni Petruzzelli et al., Forthegniraylor and Greve, 2006). Thus,
economic agents’ capacity to assess their worthiness, whiahcentral prerequisite to make a
technology exploited and applied across several economic secémexj@& and Cole, 2010; Nelson
and Winter, 1977), is hampered. Therefore, on the basis of the abasening, we posit the

following hypothesis:

Hypothesis 1. An organization’s search breadth has a curvilinear (ené#j effect on the level of

technological generality of the resulting invention.

2.3. Team geogr aphic dispersion and search breadth

We argue that organizations relying upon a geographically dispeaeddf inventors have a
better chance of benefiting from a wider search breadtht, Fine diverse knowledge inputs and
resource endowments that an organization can search acrossesftknand develop in different
regional clusters, such as Silicon Valley for microetsutts and Detroit for automotive equipment
(Doz and Wilson, 2013; Myles et al., 2000). Thereby, establistlispersed teams lets
organizations get closer to these different locations in dodactually understand and acquire the
various specific bodies of knowledge (Gassmann and von Zedtwitz, 2603tHl., Forthcoming;
Singh, 2008; Penner-Hahn and Shaver, 2005). In fact, these differentekige is usually not

easily transferable across geographic regions unless orgam&#aR&D members “participate in
8
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locale-specific practices{Sole and Edmondson, 2002:S17; see also Singh, 2008). Accordingly,
dispersed teams may increase the organizations’ absorptivetg@patreduce the extent of coping
with unfamiliar knowledge when they search broadly. This mayallesuiate the problems related
to the recognition of the technological and market potential ofditerse knowledge searched
across, hence favoring its integration and use for multiple coomh@pportunities. Second, the
internationalization of the inventive team can also help orgaomzato identify and implement
potential relevant ideas, without reducing the diversity ofkim@wvledge domains recombined to
develop a given invention. Indeed, members at different $iesdes having a better chance to
understand a particular piece of knowledge, acquire new problem-salyimgaches and relational
capital, which allow them to generate more higher quality solutmm&ldress a technical problem
(Edmondson and Nembhard, 2009; Gajendran and Joshi, 2012). In turn, this pésthéel to
perform more creatively, and so come up with more ideas for knogvlealmbination (Gajendran
and Joshi, 2012; Polzer et al., 2006). Thereby, the cognitive tiomsarelated to the integration of
different technological domains can be mitigated. Third, imgermationalized context, interactions
between team members are more spontaneous and characterizewigevia relational patterns
(Hinds and Mortensen, 2005), which let organizations using disperset téavelop “R&D
capabilities through improvisational learning” (Parida et2411,3:46). Thus, they are less subject to
the managerial and coordination difficulties that arise fromnéed to create ad-hoc routines for
favoring the exchange and integration of the various knowledge piedhs invention process.

According to the foregoing discussion, we hypothesize:

Hypothesis 2. Team internationalization moderates the relationship bresgaech breadth and the
level of technological generality of an invention, such that the thrédbetl of search breadth at
which diminishing or negative returns arise will be higher for éh@sganizations that use a

geographically dispersed team.
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3. Dataand methods

3.1. Industry setting

The green energy sector serves as the research settittte fetudy. We believe this is an
appropriate setting because, first, the need to favor the telnéird more efficient low-carbon
energy systems in many sectors of the society, while prognetionomic growth, is more and more
recognized as a an urgent issue. Hence, the relevanceenf@RI's in the energy field, such as the
case of insulation technologies (Sorrell, 2007), have drastigaéin (Cecere et al., 2014; Pearson
and Foxon, 2012). Second, technological developments in the gregy seetor include solutions
having origins in diverse industries (OECD, 2012). Thereforeextent of different technologies
that can be potentially recombined within the invention procesarisus, thus making the search
effort toward diverse knowledge domains as an important factore toobsidered. Third, the
technical knowledge underlying the development of green energy teclesoisglispersed among
many countries (Albino et al., 2014). Thereby, employing a R&D niatigsnalization strategy is
seen as an effective way to tap into new knowledge and 8kitlsvelop green technical solutions
(Wagner, 2007). Finally, intellectual property protection is of fayst importance in the green
energy sector (OECD, 2012). Thereby, patents serve as appropraties to capture the

technological inventions developed in this field.

3.2. Sample and data

Following previous studies (e.g., Albino et al., 2014; Kemp andsBea2008; Popp, 2006),
we use patent data in order to identify inventions developed gréesm energy sector. In particular,
we refer to the IPC Green Inventory for patent collectiomi( et al., 2014; Shapira et al., 2014).
It is a well-defined classification that was developed hyRC Committee of experts working for
the World Intellectual Property Organization in 2008. Specific#éifie IPC Green Inventory allows

to search for patents related to the so called EnvironmerBalyd Technologies (ESTSs), as
10
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defined in the Chapter 34 of the Agenda 21 (UN, 1992), by suggesticifjs{feC codes for patent
retrieval. Specifically, seven green technological ckasgere taken into account, in turn divided
into a hierarchical set of subclasseSor the purpose of this study, we limit our attention to the
“Alternative Energy Production” and “Energy Conservation” classtence, we collected all the
patents successfully filed at the U.S.PTO. from 1971 to 2009 #fat to the two green
technological classes above mentioned. For each patent vgdtieered bibliographic information
(i.e., backward, forward, and scientific-based citationsyels as information about the inventing
team and assignees). Being primarily interested in the hsegfforts undertaken by a given
organization, we limit our sample to those patents registeyeplist one assignee, leaving out
patents owned by individuals working autonomously, as well as thostedreo more than one
organization in order to avoid network-specific effects. This gulace yielded a final sample of

88,748 patents.

3.3. Measures

3.3.1. Dependent variable

Technological generalityFollowing previous studies (e.g., Argyres and Silverman, 2084eigece
and Cole, 2010; Gambardella and Giarratana, 2013; Hicks and Hegde, B0O&)yler to
operationalize technological generality we refer to the gétyeradex proposed by Hall et al.
(2001). In particular, this refe® a Herfindhal-type index that measures the diversity of the
technological classes assigned to patents that cite adieedlhe rationale behind this index is that
the higher the variety of technological classes of the cpaignts, the higher the focal patent’s
technological generality. On the contrary, if citing pateares concentrated in few technological
fields, the focal patent’s technological generality is low. Hmvethis measure has been revealed

to be biased downward when the number of forward citations is sattedr (Hall, 2005; Hall et al.,

! See http://www.wipo.int/classifications/ipc/en/est
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2001). Hence, we correct this measure according to Hall (2005) sudgested to multiply the
generality index by the ratio of the number of forward citatieegived by a focal patentdFover

Fr minus one. Therefore, our measure of technological genesatiymputed as follows:

Fp
Fp—-1

[1- 222,

Fp

Technological generality =

where Fp stands for the number of citations received by the focal pBRtémtthe three digit U.S.

class i.

3.3.2.Independent and moder ating variables

Search breadthTo compute this variable we follow the measure of originadisydefined by Hall

et al. (2001) (see also Capaldo and Messeni Petruzzelli, 201lseMePRetruzzelli et al.,
Forthcoming). It is based on the same rationale of the gegparaisure, except for the fact that it
refers to a focal patents’ backward citations. Thus, the miverse the extent of technological
classes assigned to the patents cited by a focal onejdéeis assumed to be the breadth of search

(Capaldo and Messeni Petruzzelli, 2011). Specifically, sdaeddth is operationalized as follows:

Search breadth = 1 — Z(Bi)z,

Bp
where B is the number of citations made by the focal patent P belongitite three digit U.S.

class i, and Bis the total number of backward citations of the focal p&ent

Team dispersiorPatent documents report information about the team involved irreghgan of a
given invention. Particularly, for each inventor it is indicatiee name and where he/she resides.
Based on this data, according to previous studeeg., Lahiri, 2010; Nielsen, 2010), we

operationalize the dispersion of the inventive team as fellow

Tepy2
Tp)’

Team dispersion =1 — Y(
whereT,p is the number of inventors being part the inventing tearheofdcal patent P that resides

in the country c, andglis the total number of inventors of the focal patent P.
12
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3.3.3.Control variables

Other factors can influence the level of technological gdiheia an invention. Therefore,
control variables are also included in our model. First, we denshesize of the inventive team
(Team sizg It is measured by counting the number of people reported as inventibies patent
document (Singh, 2008). Second, we control for the total number kivhat citations made by a
focal patent Cited) (Banerjee and Cole, 2010). Third, we include the number of ¢laisneported
in the patent documentlaimg (Tong and Frame, 1994). Fourth, the use of scientific knowledge in
the invention process is also taken into account, by measuring the moimmbferences made by a
patent to non-patent literature (Narin et al., 1997). Fifth,ctmant for potential time effects, we
include a set of three dummy variables to reflect four itambitime periods that have characterized
the green energy sectaummy periol Specifically, the first time period ranges from the 1971 to
the 1987, year in which the Brundland report was published (WCED, IB&%)second one refers
to the period between 1988 and 1997, which ends when the Kyoto protacsignad. The third
one goes from 1998 to 2002, whigre Johannesburg Declaration on Sustainable Development was
adopted at th&Vorld Summit on Sustainable Developm@dN, 2002). The last one captures all the
years after the 2002 till 2009. Sixth, we include three oubof Bummy variables capturing the
different types of patent assignekitmy assign@enamely research centers, companies, financial
institutions, and governmental organizations. Finally, in ordercdatrol for the patent’s
technological class, we add a dummy variable having value time patent belongs to the “Energy

conservation” class, zero otherwiskihmy class

3.4. Analysis

Since our aim is to assess the influence of an organizabogeslth of search on the level of an
invention’s technological generality, the single patent is usdatleaunit of analysis. Our dependent
variable assumes values that range from zero to one. Inafes & Tobit regression model is more

appropriate for hypothesis testing (Banerjee and Cole, 2010). Inde®d,Saregression may lead
13
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to inconsistent parameter estimates, since predictions ¢édetaodels can go outside the range
between our dependent variable is defined (Long, 1997; Wooldridge, 2tite making OLS

less than ideal. In other words, it does not approach the figpailation parameters (Long, 1997).

4. Results

Table 1 shows descriptive statistics and pairwise correlagwasenting values below the 0.70
threshold (Cohen et al., 2013), hence limiting multicollingacbncerns. Results of the Tobit
regression models are presented in Table 2. Model 1 is theneaseldel and includes the control
variables only. Model 2 is used to test Hypothesis 1 and incluelshs breadth as linear and
quadratic terms. Finally, Model 3 includes the moderator anchtiésaictions with the linear and
squared term of search breadth.

The baseline model shows that enlarging the dimension of the imyedeam leads to more
general solutions, being the coefficientTafam sizgpositive and significanf3(= 0.021, p < 0.001).
Similarly, an invention’s technological generality increasés whe number of citations made to
previous patents3(= 0.002, p < 0.001) and with the number of clainfis=0.002, p < 0.001). On
the contrary, it decreases with the reliance on baseareh [ = — 0.001, p < 0.001).

Hypothesis 1 posits an inverted U-shaped relation between thahbodaskarch and the level
of technological generality of an invention. Our results supporiptiediction. Indeed, estimates of
Model 2 show that the linear term 8karch breadths positive and significanf3(= 0.401, p <
0.001), while its squared term is negative and significgnt {0.249, p < 0.001). Using the
coefficient estimates of Model 2 (Zelner, 2009) we also grdwghsearch breadth against the
predicted level of technological generality (Figure 1), providinther support to our hypothesis.
The inflection point beyond which the impact of search breagithedses technological generality

corresponds to a value of 0.807.

14
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Our second hypothesis refers to the moderation effe€eam dispersianConsistent with
Hypothesis 2, both the interaction terms with the linear andreduarm ofSearch breadthare
significant and in the expected directiond8=(0.574,p < 0.001 andB=-0.567,p < 0.01,
respectively). To gain further insight into the interaction ¢f$fquedicted by Hypotheses 2, we
decompose the interaction terms and conduct simple slope ans¥sisonsider two levels of the
moderating variables - low (one standard deviation below then)mead high (one standard
deviation above the mean) - and estimate the effeSeafch breadtlton Technological generality
for both levels (Hoetker, 2007; Lahiri, 2010; Poppo et al., 2008). Wesgdwth breadth against the
predicted level of technological generality of an invention at bmth and high level ofTeam
dispersion(Figure 2), and compute the maximum of the two resulting indesteves. Figure 2
shows that when the level dkam dispersions low decreasing and negative returnsStarch
breadthset in if Technological generalitis above the value of 0.75Differently, at the high level
of Team dispersiomegative returns arise whérechnological generalitexceeds the value of
0.882. In other words, the maximum of the curve describing theorelaétweenSearch breadth
and Technological generalityshifts to the right if organizations tend to adopt a R&D
internationalization strategy during inventing activities. sThuggests that using R&D dispersed

teams amplifies the benefits of a wider breadth of search

<Insert Table 1 about here

<Insert Table 2 about here

<Insert Figure 1 and Figure 2 about here

15



O©CoO~NOUAWNE

5. Discussion and conclusions

The previous literature has mainly focused on the advantageRBTs in the economy (e.g.,
Bresnahan and Trajtenberg, 1995; Rosenberg and Trajtenberg, 200fellass on the
commercialization strategies that should be set to enter ahdsadithem within the market
(Gambardella and Giarratana, 2013; Gambardella and McGahan, @tOgxtant research has
scantly analyzed the antecedents of GPTs (Thoma, 2009). biutis we explore the impact of an
organization’s strategy to search widely across diverse knowlddgains on the level of the
resulting invention’s technological generality, thus providing aebetomprehension of the
emergence of GPTs. Furthermore, we also assess how a R&Dnationalization strategy,
involving the establishment of geographically dispersed teaoderates the costs and benefits of a
broad search breadth. Based on a sample of 88,748 patents belontfieg‘Alternative energy
production” and “Energy conservation” technological classes, resoligcate that when
organizations search across various knowledge domains technologmalalgg increases,
although up to a certain threshold, thus revealing an invertdthjped effect. Furthermore, when
organizations’ inventive activity is dispersed across R&Dnteathey are in a position to derive
greater benefit from a wider search breadth.

The implications for theory that arise from these resuéstlznreefold. First, we corroborate
findings of previous research on the emergence of GPTs, whichsatbae expanding the
knowledge base charactering an invention increases its breadthpa€t in diverse industrial
contexts (Argyres and Silverman, 2004; Hicks and Hegde, 2005). IneEsdhing broadly across
multiple technological domains helps organizations in creating ar \Witevledge base (Capaldo
and Messeni Petruzzelli, 2011; Maine et al., 2014). Moreovalsat provides advantages such as
the reduction of cognitive myopia, increasing recombination posi&bjliand the incentive to
cross-fertilize different market ideas (e.g., Bjorkdahl, 2008gqitti et al., 2013). Furthermore, we
add to previous research by arguing that there exists a threshelddfter which a wide search

breadth comes with decreasing or even negative returns. Inttiactognitive and managerial
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limitations related to the management of a too wide body of knig®leas represented by the lack
of absorptive capacity, the unfamiliarity with all knowledge damwaiand the necessity to
coordinate knowledge integration, cannot be underestimated (e.gld@€apd Messeni Petruzzelli,
2011). Second, our study further advances our understanding of how to GRas when
organizations span multiple knowledge domains. Particularly,d@maonstrate that in order to
relieve the diminishing and negative returns of a wide searcdttre R&D internationalization
strategy allows to alleviate organizations’ cognitive and agarial limitations (Gajendran and
Joshi, 2012). Accordingly, it favors a better understanding of thesaiwaowledge pieces and the
acquisition of new problem-solving techniques, which in turn enhaee®s members’ creativity
(Hinds and Mortensen, 2005). Furthermore, it also encourages spontameoastions between
members, hence reducing the need to create ad-hoc routinasofviedge exchange. Third, ESTs
in the energy sector have been deemed to play an important raeh@ncing economic growth
and environmental performance in several industries (Albino eR@l4; Malek et al., 2014;
Suzuki, Forthcoming). Nevertheless, while promising, these teofjical solutions faced several
difficulties in diffusing on the market and failed to regawurrent carbon-based systems (Olson,
2014). Thereby, developing green energy technologies that canreesasily adopted and diffused
in different industry domains has been recognized as a relevaet (Ssizuki, Forthcoming).
Accordingly, our results contribute to this debate, revealingih@possible to create green GPTs
in the energy sector (Cecere et al., 2014; Pearson and Foxon, 2012)

Findings of this study inspire also some managerial implicatibirst, managers are
advised of the double-edge word of a wide search breadth for teopeent of GPTs. Thereby,
we suggest balancing the search efforts toward a wide m@nigeowledge domains, in order to
avoid the risks to incur in the inability to gain returns from thdéerts. Second, establishing
dispersed teams may reduce the problems organizations faceh&fiesearch broadly, being these
useful to support the acquisition and integration of a diversif@ty of knowledge. Third, given

the ever increasing need to develop more green general sol@ecere et al., 2014), our findings
17
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guide organizations to focus on the conditions that are mosiattitir creating green GPTs in the
energy field.

Of course, this study presents some limitations that may hoviexe to new interesting
lines of inquiry. We only consider organizations’ search breadtherGearch strategies, such as
search scope and search depth (Katila and Ahuja, 2002) may be wmesstiFurthermore,
additional characteristics of the inventive team, besidasitiiernationalization, can be considered.
For instance, future studies may take into account the preserstardcientists, whether team
members have repeated experiences within the same groupheasdttof norms characterizing
team activities (e.g., Mathieu et al., 2013). We limit attention to inventions developed by a
single organization. Analyzing potential network-specific éffean the emergence of GPTs also
require more in depth studies. Finally, this study has the gneengy sector as its research setting.

Further research considering other sectors may be useful idgfarther support to our findings.
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Table

Table 1. Descriptive statistics and pairwise correlations

Min  Max Mean S.D. 1 2 3 4 5 6
1-Technological generality 0 1 .360 377 1 258" -.003
2-Search breadth 954 334 307 2587 1 033"
3-Team internationalization 0 1 017 .088 -003 033" 1
4-Team size 1 27 2300 1.684  .083" 147 1487 1
5-Scientific knowledge 0 858 5460  22.088 -0507 .0117 062" 122" 1
6-Cited 0 1328 10290 25382 .094” 1777 0117 .0807 3117 1
7-Claims 1 900 11.040 16.074 1337 1447 0257 108" 055" 134"
n=88,748; *p<0.05; **p<0.01
Table 2. Results of the Tobit regression models
Model 1 S.e. Model 2 S.e. Model 3 S.e.
Technological breadth A01*** 014 A411%** .014
Technological breadth? - 249%** 019  -.258*** .020
Team internationalization .037 .023
Technological breadth x Team
internationalization - 574%** .158
Technological breadth? x Team
internationalization 567** .209
Team size 021%** 001  .015**= 001  .015*** .001
Scientific knowledge -.001%** .000 -.001*** .000 -.001*** .000
Cited .002%** .000 .001*** .000 .001*** .000
Claims .002*** .000 .002*** .000 .002*** .000
dummy class .203*** .003 .168*** .003 .168*** .003
dummy period Included Included Included
dummy assignee Included Included Included
Constant .006*** .003  -.041*** 003 -.042*** .003
Log likelihood -38341.23 -36715.66 -36699.20
Observations 88,748 88,748 88,748

*p<0.05; **p<0.01; ***p<0.001
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Figure 2. Moderation effect of Team internationalization





