
01 June 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Automated reasoning for the semantic web of everything / Bilenchi, Ivano. - ELETTRONICO. - (2024).

This is a PhD Thesis

Original Citation:

Automated reasoning for the semantic web of everything

Published version
DOI:

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/269380 since: 2024-05-02

Publisher: Politecnico di Bari

Politecnico di Bari

Department of Electrical and Information Engineering

Electrical and Information Engineering Ph.D. Program
SSD: ING-INF/05 – Information Processing Systems

Final dissertation

Automated Reasoning for the
Semantic Web of Everything

by
Ivano Bilenchi

Ph.D. program
Coordinator:

Prof. Mario Carpentieri

Supervisors:

Prof. Michele Ruta
Prof. Floriano Scioscia

36th Course, 01/11/2020 – 31/01/2024

Politecnico di Bari

Department of Electrical and Information Engineering

Electrical and Information Engineering Ph.D. Program
SSD: ING-INF/05 – Information Processing Systems

Final dissertation

Automated Reasoning for the
Semantic Web of Everything

by
Ivano Bilenchi

Ph.D. program
Coordinator:

Prof. Mario Carpentieri

Supervisors:

Prof. Michele Ruta
Prof. Floriano Scioscia

Referees:
Prof. Stefano Mariani
Prof. Hasan Ali Khattak

36th Course, 01/11/2020 – 31/01/2024

In the pursuit of knowledge, every day something is acquired.
In the pursuit of wisdom, every day something is dropped.

- Laozi, Tao Te Ching [64]

To Giusy and Yuri.

Abstract

The evolution from the Internet of Things (IoT) into the Internet of Every-
thing (IoE), driven by the miniaturization of IoT technology and the ever
increasing connection of individuals, processes, and data through mobile and
ubiquitous networks, represents a transformative change in how we interact
with the digital world. In the IoE, living entities, objects, locations, and
processes are interconnected and continuously generate streams of data, fu-
elling sophisticated analytics to derive actionable insights. While this shift
enhances operational efficiency and data-driven decision-making, it also intro-
duces new challenges, particularly in the realms of network bandwidth, power
consumption, data protection, and privacy. In the IoE, intelligent informa-
tion management becomes crucial to enable versatile autonomous processing
and advanced, interoperable services for large-scale machine-to-machine and
human-machine interactions.

Central to addressing these challenges is the concept of edge computing,
which involves moving computational processes closer to data sources. This
shift is pivotal for handling the volume and velocity of data generated by
the IoE, and for mitigating the latency and bandwidth issues inherent in
centralized processing models. One of the first incarnations of an intelligent
information processing framework leveraging the edge computing paradigm
is the Semantic Web of Things (SWoT), where ontology-based annotations
of devices, objects, and phenomena are locally processed by ubiquitous
intelligent agents via automated reasoning, facilitating autonomous actions
towards specific goals.

The progression of the SWoT towards a Semantic Web of Everything
(SWoE) mandates further integration of semantic technologies in a variety
of pervasive computing interactions among people, things, processes, and
data. This vision demands robust knowledge representation languages and
automated inference capabilities, even on devices with strict processing,
memory, and energy constraints. On-device local inference procedures are

critical in the SWoE, given the high volatility and limited reachability of more
powerful devices.

Implementing the SWoE architecture poses significant challenges. Ex-
isting Semantic Web reasoners and Knowledge Base Management Systems
(KBMS), primarily designed for powerful computing environments like servers
or high-end mobile devices, are ill-suited for deployment on nano-scale devices.
Reasoning engines that could potentially operate on smaller devices often lack
support for crucial inference services, hindering their usefulness. Moreover,
developing SWoE systems requires rethinking evaluation and benchmarking
frameworks to account for the peculiar constraints of the novel paradigm.

This dissertation presents the work devoted towards realizing the SWoE
vision, encompassing architectural designs and optimization approaches for
several key elements of a complete toolchain, including: Cowl, a lightweight
knowledge representation library tailored for resource-constrained devices,
addressing the limitations of existing KBMS in the context of embedded and
IoT devices, while remaining versatile enough to be useful at other scales of
computation; Tiny-ME, a novel multi-platform reasoner and matchmaking
engine for the SWoE, offering efficient reasoning capabilities suitable for cloud,
desktop, mobile, and edge devices; evOWLuator, a cross-platform, energy-
aware evaluation framework for Semantic Web reasoners, with a focus on
power consumption estimation and support for inferences on remote devices,
filling critical gaps in existing evaluation tools.

Strong emphasis is placed on the evaluation of the developed technologies
through comprehensive experimental campaigns, whose results provide in-
sights on performance, efficiency, and applicability in typical SWoE settings.
Additionally, practical applications are demonstrated through case studies in
diverse contexts. The first presented case study showcases how a smart city
environment can be semantically enhanced using Cowl, demonstrating the
SWoE’s impact in city management by enabling nano-devices to exchange
semantically augmented data. In a second scenario, Tiny-ME has been de-
ployed to an unmanned aerial vehicle, facilitating autonomous, real-time
decision-making for reliable drone operations. A third application, focused on
supporting patients through semantic reasoning on wearable devices, shows
how Tiny-ME can be used for real-time, explainable inferences on wearables

in highly dependable settings. Finally, a client-side Web reasoning use case
emphasizes user privacy while granting efficiency and flexibility of personalized
resource discovery. Collectively, the discussed evaluations and applications
highlight the versatility and wide applicability of the proposed methods and
technologies, underscoring the broad potential of the SWoE.

Contents

Introduction 1

1 From the Semantic Web to the Semantic Web of Everything 5
1.1 The Semantic Web . 5

1.1.1 Knowledge representation in the Semantic Web 7
1.1.2 Automated reasoning in the Semantic Web 11

1.2 The Semantic Web of Things 15
1.2.1 Ubiquitous knowledge bases 16
1.2.2 Micro-reasoners and non-standard inferences 19
1.2.3 Open issues . 23

2 Cowl: knowledge representation from nano to Web scale 26
2.1 Background . 27
2.2 Capabililties . 30
2.3 Architecture . 31
2.4 Axiom streams . 35
2.5 Optimizations for embedded platforms 37
2.6 Evaluation . 40

2.6.1 Laptop tests . 40
2.6.2 Embedded board tests 44

3 Tiny-ME: a reasoning engine for the Semantic Web of
Everything 49
3.1 Background . 50
3.2 Inference services . 55
3.3 Architecture . 61
3.4 High-level interaction . 65

3.4.1 Platform-specific APIs 66

I

3.4.2 Server-side OWLlink API 67
3.4.3 Client-side Web API 69

3.5 Evolution . 72
3.5.1 Support for the ALN (D) DL 73
3.5.2 Improved penalty computation 75
3.5.3 Updated architecture 79

3.6 Evaluation . 82
3.6.1 Workstation and mobile 83
3.6.2 Client-side WebAssembly 88
3.6.3 Evolution . 92

4 evOWLuator: multiplatform benchmarking for OWL toolkits 97
4.1 Background . 98
4.2 Using evOWLuator . 102

4.2.1 Setup . 103
4.2.2 Running evaluations 103
4.2.3 Visualizing results . 105

4.3 Architecture . 106
4.4 Available interfaces . 108

4.4.1 Reasoners . 108
4.4.2 Reasoning tasks . 110
4.4.3 Energy footprint . 111

4.5 Case study: benchmarking classification and consistency . . . 113
4.5.1 Testbed, reasoners and datasets 113
4.5.2 Setup . 115
4.5.3 Results . 116

5 Application case studies 129
5.1 Extending the Web of Things to embedded sensor networks . . 130
5.2 Drone autopilot on-board reasoning 136
5.3 Explainable reasoning on wearables for personal healthcare . . 143
5.4 Privacy-conscious (mobile) Web 148

Conclusion and perspectives 152

Bibliography 157

List of publications 174

II

Introduction

In an increasingly connected world, the intricate network of the Internet
of Things (IoT) weaves through the fabric of industry, environments, and
daily lives. This dense mesh, where devices communicate and interact with
each other over the Internet, has marked a significant stride in technological
advancement. The IoT influences sectors ranging from home and building
automation to industrial operations and environmental monitoring. It stands
as a testament to the evolution of connectivity and computing devices, enhanc-
ing efficiency and convenience as well as enabling large-scale data collection
and insightful analytics, thereby reshaping interactions between a spectrum
of human activities and the physical world.

The integration of people, processes, and data in the communication fabric,
along with the rapid proliferation and miniaturization of IoT technology, is
ushering in the Internet of Everything (IoE), where living beings, objects,
places and processes are interconnected and generate data streams, thus
creating new opportunities in a wide range of economic and societal domains
[32]. This transition exacerbates some of the well-known IoT challenges, such
as network bandwidth usage and power consumption, and poses new concerns
of its own, especially with respect to data protection and privacy.

The edge computing [110] paradigm attempts to mitigate some of these
issues by moving computation and storage closer to where data are produced
and used, namely towards the edge of the network, thus improving response
time, saving bandwidth, and enabling the shift of ownership of collected
data from service providers to end-users. A transition towards the edge is
underway in the Semantic Web [13], which is shifting into the Semantic Web
of Things (SWoT) [106]: under the SWoT vision, ontology-based annotations
are associated to devices, objects, and phenomena to describe them in a

1

rich, structured, and unambiguous way. These metadata can be processed
by intelligent agents via automated reasoning procedures to infer implicit
knowledge, allowing them to act autonomously in the pursuit of their specific
goals.

The progression of the IoT toward the IoE calls for a corresponding evo-
lution of the SWoT toward a Semantic Web of Everything (SWoE), where
semantic technologies permeate and enable interactions among people, things,
processes, and data, ranging from the World Wide Web (WWW) to nanode-
vices with very strict processing, memory and energy constraints. This vision
requires supporting Knowledge Representation languages and automated infer-
ence on tiny devices, enabling autonomous decision-making, self-coordination
and self-management, while also providing timely and unobtrusive decision
support to end users. In the SWoE, inference procedures must be available
locally, since the reachability of more powerful companion devices acting as
semantic facilitators cannot be taken for granted. In fact, the high volatility
of devices, resources and data requires quick on-the-fly processing capabilities,
which are not always available on external devices or cannot tolerate the
latencies of wireless low-power network links in request-response interactions.

Achieving the SWoE vision requires building a practical software infras-
tructure that is aligned with its peculiarities and constraints, which turns
out to be a pretty daunting task. Implementing such an architecture using
existing technology, if at all possible, leads to sub-optimal results for a variety
of reasons:

• Existing Semantic Web reasoners are mostly oriented to the WWW
and expected to run server-side, or at least on powerful mobile devices
such as high-end tablets and smartphones. As such, their deployment
to nano-scale devices is usually unfeasible, due to technological and
performance constraints. As will be shown in Chapter 3, very few
systems are currently starting to meet SWoE requirements, though their
use is still impractical due to either hardware constraints or platform
interoperability issues.

2

Cowl Tiny-ME evOWLuator

Inferred
knowledge

Structured
knowledge

Data-driven updates

Experimental
results

Ontology
document

Figure 1: The proposed SWoE toolchain.

• As discussed in Chapter 2, similar considerations can be made for Knowl-
edge Base Management Systems (KBMS), whose issues are aggravated
by the dearth of libraries targeting the technological stacks of embedded
and IoT devices.

• Reasoning engines that could theoretically be deployed to relatively
small devices usually lack the support for non-standard inference services,
which – as motivated in Section 1.2 – are crucially useful in the SWoT
and, consequently, the SWoE.

Moreover, porting existing systems or designing new ones specifically
for the SWoE requires rigorous evaluation methodologies, benchmarks, and
software frameworks, as computational resource usage tends to become one of
the primary limiting factors. The deployment of Semantic Web technologies
to mobile and embedded devices also introduces concerns regarding energy
usage, which has been historically disregarded in desktop-oriented systems.
As will be detailed in Chapter 4, existing evaluation tools for Semantic Web
technologies lack crucial features to be useful in the SWoE, such as power
consumption estimation and support for running inference tasks on remote
devices.

This dissertation summarizes findings of the Ph.D. program work con-
ducted towards the achievement of the SWoE vision. The main academic
results concern the following contributions, which make up the toolchain illus-
trated in Figure 1, hereby discussed in both their design and implementation:

• Cowl [14]: a lightweight knowledge representation library, specifically

3

tailored for resource-constrained devices.

• Tiny-ME [94][71]: a novel multi-platform reasoner and matchmaking
engine for the SWoE.

• evOWLuator [104]: a cross-platform, energy-aware evaluation tool for
Semantic Web reasoners able to run inference tasks on remote devices.

The remainder of the dissertation is organized as follows: Chapter 1
introduces the research context and recalls its technological background;
Chapter 2 considers the requirements of a knowledge representation stack
that is suitable for the SWoE, and discusses the design and implementation of
the Cowl library; Chapter 3 presents the theoretical grounding behind efficient
reasoning for devices in edge computing, and discusses the architecture and
optimizations of the Tiny-ME reasoner; Chapter 4 introduces evOWLuator
and demonstrates its effectiveness by reporting the results of a comparative
evaluation campaign involving multiple state-of-the-art Semantic Web reason-
ers; Chapter 5 describes practical applications and case studies that validate
the proposal, before conclusion and discussion about future perspectives.

4

Chapter 1

From the Semantic Web
to the Semantic Web of Everything

1.1 The Semantic Web

The Semantic Web [13], often envisioned as the next evolution of the World
Wide Web, is a collaborative movement led by the World Wide Web Con-
sortium (W3C). It aims to transform the Web into a universal medium for
the exchange of data, information, and knowledge, enabling machines to
understand the semantics, i.e., the meaning, of information on the WWW,
thus making it a network of machine-interpretable Linked Data [47], in a way
that is meaningful and useful for automated processes and applications.

To achieve this, the W3C has overseen the specification of a stack of
technologies and standards. Cornerstones include: the Resource Description
Framework (RDF) [103], which provides a framework for describing resources
on the Web in a structured way; the Web Ontology Language (OWL) [85],
which allows the creation of complex vocabularies for interpreting the meaning
of terms and relationships within data; and the SPARQL Protocol and RDF
Query Language (SPARQL) [122], a powerful query language to retrieve and
manipulate information in RDF format.

The goal of the Semantic Web is not creating a new Web, but rather
enhancing the existing one by providing meaning to Web resources through

5

semantically rich metadata, thus extending the Web of (human-oriented)
documents with a Web of (machine-oriented) data that can be processed
directly by automated agents, enabling them to support users more efficiently
or execute tasks on their behalf. This includes improved search engines,
advanced data integration, and more personalized user experiences, as ma-
chines can understand and respond to complex human requests based on the
semantic understanding of digital information.

Central to realizing the Semantic Web’s potential are two fundamental
disciplines of the Artificial Intelligence (AI) field: Knowledge Representation
(KR) and Automated Reasoning [4]. Knowledge Representation is concerned
with creating a structured model of information, where data is not only stored
but also linked to other relevant data in a way that defines their context and
mutual relationships. This is where RDF and OWL play crucial roles, as
they allow for the explicit representation of the semantics of data, making
it possible for machines to understand and reason about the relationships
between different pieces of information.

Automated reasoning, on the other hand, refers to the ability of computers
to interpret the information and make logical deductions based on it. This is
crucial for the Semantic Web, as it enables machines to perform complex tasks
such as intelligent search, data integration, and even decision-making based on
the understanding of data semantics. With automated reasoning, computer
agents can infer new information from existing data, identify inconsistencies,
and provide more accurate responses to complex queries.

Together, Knowledge Representation and Reasoning (KRR) techniques
are essential for turning the WWW into a more intelligent and responsive
environment, enabling a new level of interaction where machines can effectively
process, analyze, and even anticipate user needs based on the rich semantic
structure of annotated Web resources.

6

1.1.1 Knowledge representation in the Semantic Web

An ontology is an “explicit specification of a conceptualization” [42], i.e., a
structured and machine-understandable representation of a domain, encom-
passing its key concepts, relationships, and constraints. It defines a shared
vocabulary for users and user agents, and enables reasoning about knowl-
edge concerning the domain [114]. The OWL [85] W3C standard ontology
language for the Semantic Web is formally grounded in Description Logics
(DLs) [4], a family of knowledge representation languages that provides the
underlying semantics to represent knowledge and reason about it. DLs are
decidable fragments of First Order Logic (FOL) [20, 33] which allow the
formal representation of knowledge by means of:

• concepts, representing sets of objects of the domain;

• individuals, instances of concepts, i.e., actual objects in the domain;

• roles, defining relationships between pairs of individuals.

These elements can be combined via constructors to create DL expressions,
whose formal semantics is specified by means of an interpretation I = (∆, ·I)
associating each term to a subset of the universe of discourse (the domain ∆)
by means of an interpretation function ·I . Concept conjunction is interpreted
as set intersection: (C⊓D)I = CI∩DI . Concept disjunction is interpreted as
set union: (C ⊔D)I = CI ∪DI . The connector ¬, if present, is interpreted as
complement. More constructs exist, which distinguish each language of the DL
family, determining their expressiveness and the computational complexity of
inference tasks.

In the context of DLs, an ontology (a.k.a. terminology, terminological
box, TBox) [114] is composed of two types of assertions involving concepts
and roles: inclusion, which allows the definition of is-a relationships between
concepts (A ⊑ D where A and D are concept expressions); equivalence, which
allows naming expressions, or specifying that two expressions represent the

7

same set of instances (A ≡ D). Individuals, and relationships between them,
make up the so-called assertion box (ABox). A Knowledge Base (KB) consists
of a ⟨TBox, ABox⟩ pair. With respect to OWL, oftentimes the term “ontology”
is informally used to refer to a KB as whole, rather than just its terminological
part.

The W3C published official Recommendations for two versions of OWL,
in 2009 and late 2012, respectively. OWL 2 built upon the foundational
principles of the initial version by increasing the language expressiveness, and
extending datatype support and annotation capabilities.

Entities are the essential building blocks of OWL 2 ontologies and serve as
the foundation for defining the vocabulary of an ontology, consisting of named
terms. Each entity is uniquely identified by an Internationalized Resource
Identifier (IRI) [34], an extension of the Uniform Resource Identifier (URI)
[12] with a larger alphabet of allowed characters. Entities encompass the
following categories:

• Classes: sets of individuals, corresponding to a DL concept. For
instance, the class Dog might include individuals like Scooby-Doo and
Snoopy. Classes can have hierarchies, where one class is a subclass of
another. For example, Dog can be a subclass of Mammal, meaning
every dog is also a mammal.

• Individuals: specific instances or objects that belong to classes. For
instance, Shaggy can be an individual of the class Person.

• Object Properties: relationships between individuals, corresponding
to DL roles. For instance, the property friendOf can relate the individual
Scooby-Doo to the individual Shaggy, indicating that Scooby-Doo is
Shaggy’s friend.

• Datatype Properties: assign data values to individuals, corresponding
to DL functional roles on concrete domains. For instance, an age
property might assign the value 17 to the individual Shaggy.

8

• Annotation Properties: encode information about parts of the ontol-
ogy itself, rather than the domain of interest. For example, they might
provide metadata about when an axiom was added or who the author
of a particular part of the ontology is.

Additionally, OWL allows defining anonymous individuals, which are
useful for representing information about something without specifying a
unique identifier. For instance, if one wants to state that there exists a person
who is an enemy of Shaggy but does not want to specify who that person is,
they might use an anonymous individual to represent that person.

Just as in DLs, OWL entities can be combined in more complex expressions
by using logical constructors, characterizing sets of individuals by precisely
outlining criteria related to their properties. Individuals that fulfill these
criteria are deemed instances of the corresponding class expressions. For
instance, atomic classes like Dog and Cartoon can be conjunctively combined
to describe the class of cartoon dogs. Every OWL 2 ontology is a collection
of axioms, basic statements that assert what is true in the domain of interest
by combining entities and expressions. OWL allows for a variety of axiom
types, allowing the composition of entities and expressions into many types
of logical assertions.

The variety of logical constructors supported by OWL makes it highly
expressive, allowing the specification of intricate domain knowledge, but also
posing challenges for the computability and implementation of inference tasks.
To address this, OWL 2 introduced several profiles, streamlined versions of
the language tailored to meet specific industrially relevant use cases, such as
enhanced reasoning scalability and efficient query answering:

• OWL 2 EL is optimized for ontologies with large numbers of properties
or classes. It is particularly suited for fields like life sciences, due to its
support for extensive hierarchies.

• OWL 2 QL is designed for applications requiring efficient access to large
amounts of instance data. It facilitates easy integration with relational

9

databases, making it ideal for applications where ontology-based data
access is critical.

• OWL 2 RL is targeted at applications that require scalable reasoning
without sacrificing too much expressiveness. It is particularly useful in
scenarios where reasoning can be implemented using rule-based systems.

Each profile strikes a balance between expressiveness and performance,
allowing practicioners to choose the most appropriate subset for their specific
use case, ensuring that OWL remains versatile and applicable across a wide
range of domains. In any case, knowledge-based systems are not required to
fully conform to any specific OWL profile: supported OWL constructs may
be arbitrarily restricted, so that they align with DLs that are proven to have
favorable computational complexity and practical performance characteristics,
while still being sufficiently expressive for useful applications. One such DL is
the Attributive Language with unqualified Number restrictions (ALN), which
provides moderate expressiveness while keeping polynomial space and time
complexity for inferences [30]. Since ALN will be the reference expressiveness
for most of this dissertation, its constructors are reported in what follows
and Table 1.1 summarizes the syntax and semantics of its constructors and
assertions.

• ⊤, universal concept. All the objects in the domain.

• ⊥, bottom concept. The empty set.

• A, atomic concepts. All the objects belonging to the set A.

• ¬A, atomic negation. All the objects not belonging to the set A.

• C ⊑ D, intersection. The objects belonging to both C and D.

• ∀R.C, universal restriction. The objects x such that if x is related to y

by the relation R, then y belongs to the set C.

• ∃R, unqualified existential restriction. The objects that are related to
at least one object by the relation R.

10

• ≥ nR, ≤ nR, = nR, unqualified number restrictions1. The objects that
are related to at least, at most, or exactly n objects by the relation R.

Table 1.1: Syntax and semantics of ALN

Name Syntax Semantics

Top ⊤ ∆I

Bottom ⊥ ∅
Intersection C ⊓D CI ∩DI

Atomic negation ¬A ∆I\AI

Universal quantification ∀R.C {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}

Number restrictions
≥ nR {d1 | ♯{d2 | (d1, d2) ∈ RI} ≥ n}
≤ nR {d1 | ♯{d2 | (d1, d2) ∈ RI} ≤ n}

Inclusion A ⊑ D AI ⊆ DI

Equivalence A ≡ D AI = DI

In practical usage, a specific syntax is required for storing and exchanging
ontology documents across tools and applications. Ontologies can be serialized
in any triple-based RDF syntax, such as RDF/XML [103] (RDF encapsulated
in eXtensible Markup Language) or Turtle [90]. Further OWL-specific syn-
taxes, such as Functional [85] and OWL/XML [77], directly encode OWL
axioms without translating them into the corresponding RDF triples. Finally,
the Manchester syntax [50] is designed to be more readable for users without
a background in logic. Tools are available for translating between different
syntaxes, ensuring flexibility and adaptability for various use cases and user
preferences.

1.1.2 Automated reasoning in the Semantic Web

The close relationship with DLs allows OWL ontologies to capture complex
domain knowledge, supporting automated reasoning to infer new knowledge
1It is useful to notice that ∃R is equivalent to ≥ 1R and that = nR is a shortcut for
≥ nR⊓ ≤ nR.

11

based on explicitly defined facts and relationships. As a result, tools and
systems built on OWL can make sophisticated deductions and answer complex
queries by leveraging the foundational principles of DLs. Automated reasoning
algorithms usually fall in one of the following categories:

• Structural algorithms focus on the structure of logical expressions. They
work by analyzing and manipulating the form of the expressions, often
transforming them into simpler or more standardized forms. These
algorithms are particularly useful in contexts where the logical structure
itself is complex or plays a crucial role in the reasoning process, and they
are usually very efficient (polynomial). Their disadvantage is that they
are incomplete, i.e., they cannot detect all the existing relationships,
for very expressive DLs.

• Tableaux-based algorithms work by constructing a tableau, a tree-like
structure representing various interpretations of the ontology. By ex-
panding this tableau according to specific rules and checking for contra-
dictions, these algorithms can determine, as an example, if an ontology
is consistent or if a certain concept expression is satisfiable. This family
of algorithms can handle much more expressive DLs, albeit at a signifi-
cantly greater (exponential, and sometimes double exponential) time
and space complexity.

• Rule-based algorithms operate by applying sets of predefined rules,
typically in the antecedent-consequent form, to a set of asserted facts,
generating new (inferred) facts. In forward chaining, rules are applied
iteratively to the growing set of facts, until some specific fact is derived
(e.g., if the system is asked to answer a query) or until no more facts
can be derived. Similarly, backward chaining starts with the query
and works backwards, applying rules to determine which facts must be
true to satisfy it. Rule-based algorithms are usually efficient, requiring
polynomial time in the size of the input, however they are rather rigid
and do not allow non-monotonic reasoning, i.e., whose conclusions can
be retracted based on further contradicting facts.

12

With regard to the ALN DL, complete structural inference algorithms are
well known both for standard ([4], 2.3.1) and non-standard, non-monotonic
inferences [93]. They are based on the concept unfolding and Conjunctive
Normal Form (CNF) normalization preprocessing steps. Basically, concept
unfolding recursively expands terminological axioms in the TBox within
concept expressions, so that the TBox is not needed anymore during subse-
quent inferences. In order to have finite unfoldings, and to ensure polynomial
time and space complexity of inference procedures, ALN TBoxes are subject
to the following limitations [93]:

• the left-hand side (LHS) of inclusion (⊑) and definition (≡) axioms
must be atomic, i.e., general concept inclusions are not allowed;

• if an atomic concept A is the LHS of a definition axiom, then it cannot
be the LHS of any other inclusion or definition axiom;

• TBoxes must be acyclic, i.e., the concept at the LHS of inclusion and
definition axioms must not appear in the unfolding of the right-hand
side (RHS) of the same axiom. This requirement can be partly relaxed,
by allowing told subsumption cycles [124].

CNF normalization translates the unfolded concept expression in a
canonical form that preserves its semantics. In ALN CNF, every concept
expression is either ⊥ or the conjunction (⊓) of:

• (possibly negated) atomic concepts;

• greater-than (≥) and less-than (≤) number restrictions, no more than
one per type per role;

• universal restrictions (∀), no more than one per role, with fillers recur-
sively in CNF.

Given a DL ontology T and S, R two concepts in T , the satisfiability and
subsumption standard inference services provided by DL-based systems [4]
can be formalized as follows:

13

• Subsumption: checks if S is more specific than R w.r.t. the ontology
T , i.e., T |= S ⊑ R. In this case, all instances of S are also instances
of R.

• Satisfiability: checks if S can have instances w.r.t. the ontology T ,
i.e., T ̸|= S ⊑ ⊥. An unsatisfiable class contains a contradiction, which
implies that it cannot have any instance.

Once ALN concept expressions have been unfolded and normalized, sub-
sumption and satisfiability can be carried out by looking at the structure of
the expressions, comparing them as if they are sets of primitive atoms repre-
senting the ALN constructs in Table 1.1. The algorithmic implementation
of the above services, along with illustrative examples of their application on
a toy ontology, are reported in Section 3.2.

General knowledge-based applications usually require additional, more
complex inference services over ontologies, such as ontology coherence, consis-
tency, and classification:

• Ontology Coherence involves checking that all named concepts in
the TBox are satisfiable [76]. If the ontology has an unsatisfiable class,
then it is incoherent, though useful inferences can still be drawn from it.
As such, incoherent ontologies can be and are often used in applications.

• Ontology Consistency determines whether it is possible to interpret
the axioms in the ontology such that there is at least one class which
has an instance. If the ontology is inconsistent, every class is interpreted
as the empty set, and as such no useful conclusions can be drawn. This
is generally regarded as a severe error in ontology modeling, and most
reasoners just abort inferences when faced with this condition.

• Ontology Classification computes the overall concept taxonomy
induced by the subsumption relation, from ⊤ to ⊥. Essentially, classifi-
cation is logically equivalent to computing all the subsumption relations
between all pairs of concepts in the TBox. As such, it is a rather

14

complex reasoning task, which requires careful optimization in order to
be completed in reasonable time and space over large ontologies.

1.2 The Semantic Web of Things

The Semantic Web of Things (SWoT) [106] is an emerging concept that
combines the Semantic Web’s goal of creating a more meaningful and usable
web with the Internet of Things (IoT), which connects everyday devices to
the Internet. The fundamental idea is to apply semantic technologies to the
IoT, thereby facilitating better data integration, interpretation, and usability
across various interconnected devices.

In the SWoT, ontology-based annotations are used to describe devices,
objects, and phenomena in a detailed and standardized manner. These
semantically rich metadata become the language through which intelligent
agents understand and interact with the world. By leveraging automated
reasoning procedures, agents can infer implicit knowledge from the explicit
descriptions provided, and act autonomously in the pursuit of their specific
goals without requiring constant human oversight or intervention. This
aspect of the SWoT opens up possibilities for more responsive, adaptive, and
intelligent IoT systems.

A critical distinction between the SWoT and the traditional Semantic
Web lies in the nature and scale of the KBs they operate upon and the
queries they handle. In the conventional Semantic Web, the focus is often on
complex queries across large KBs that exhibit moderate-to-high expressiveness.
These inferences are typically run as intensive batch jobs, requiring significant
processing power and time. However, the SWoT is highly heterogeneous
and characterized by the need to cater to a wide range of specialized use
cases, which often involve smaller KBs with low-to-moderate expressiveness.
The nature of inferences in the SWoT is also markedly different, emphasizing
quick, on-the-fly queries to respond to rapidly changing conditions and provide
insights or enable actions immediately.

15

This paradigm shift is pivotal in making the SWoT practical and effective
in real-world applications. By focusing on smaller, more agile KBs and
rapid queries, the SWoT can be more effectively integrated into a variety of
environments, from smart homes and cities to industrial settings and beyond.
This approach allows for a more dynamic interaction between the semantic
layer and the physical world, enabling IoT devices to not only collect and
exchange data but also to understand and respond to it in meaningful ways.

1.2.1 Ubiquitous knowledge bases

The ubiquitous Knowledge Base (u-KB), originally introduced in [97], is
a cornerstone in realizing the Semantic Web of Things, standing as the
architectural model that underpins the integration of the Semantic Web and
the IoT. In this framework, physical objects imbued with semantic-enabled
capabilities can be discovered, queried and inventoried in a peer-to-peer,
collaborative way, without requiring any central control and coordination.
The u-KB provides a comprehensive architectural blueprint that connects
mobile ad-hoc networks used in ubiquitous computing with the Internet. It also
incorporates a distributed application-layer protocol that operates on a peer-
to-peer basis, enabling the dissemination and discovery of knowledge. Various
identification and sensing technologies are employed to collect information,
which is then used by inference engines and semantic-aware applications
through a uniform set of operations, in pervasive environments as well as in
the Web.

The essence of u-KB lies in its ability to handle the challenges posed by the
dynamic and decentralized nature of the SWoT environments, addressing the
need for efficient information storage, management, and discovery, and offering
transparent access to information sources within a given area. It adopts Se-
mantic Web languages and technologies, allowing for a detailed annotation and
categorization of resources, thereby empowering semantic-based applications
to leverage tools for querying, reasoning, and matchmaking, all underpinned
by formal logic principles inherited by the Semantic Web initiative. This

16

semantic enrichment is crucial for enabling nuanced machine-to-machine
communication and supporting the automation required in dynamic IoT
environments.

Central to the framework’s design is the content-centric networking ap-
proach: instead of addressing the physical locations of data storage, this
technique focuses on the content itself, aligning with the fluid nature of IoT
where devices are often mobile or transient. This shift is essential for the
network’s adaptability, ensuring that content can be retrieved irrespective
of the changing states or positions of devices. The framework is also de-
signed to be fully decentralized, with a two-level infrastructure that includes
a field layer for connecting embedded micro-devices, and a discovery layer
for inter-host communication. Adoption of suitable peer-to-peer protocols
enhances the system’s decentralization, resilience, and scalability, allowing
devices to discover and query information autonomously, without relying on
a centralized authority.

Semantic query languages and reasoning tools embedded within the u-KB
framework enable sophisticated resource discovery and matchmaking, thus
allowing the system to go beyond simple data retrieval: user queries and
device data are interpreted according to a specific context, finding and linking
information that is most pertinent to the user’s current needs. A peculiarity
of the framework is its support for autonomy and collaboration among devices.
Through shared vocabularies and ontologies, devices participating in a u-
KB can independently register, deregister, and identify other devices and
services, while ensuring that they can communicate effectively, by sharing
and interpreting information in a unified language.

The u-KB framework adopts a multi-layered architecture designed to
support semantic information dissemination and resource discovery in perva-
sive environments. The layers of the framework, sketched in Figure 1.1 and
outlined in what follows, interact to orchestrate the information flow from the
physical world to the application layer, allowing for intelligent decision-making
and data processing.

17

UDP/IP

Data link / physical

Semantic support micro-layer

RFID, Bluetooth, ZigBee, KNX, ...

u-KB

Local reasoning services Remote reasoning services

Ubiquitous applications Semantic Web applications

Figure 1.1: Ubiquitous Knowledge Base framework.

• Data Link/Physical Layer: includes field layer protocols and tech-
nologies that enable the physical interconnection of embedded devices in
the environment, such as RFID [26], Bluetooth [17], ZigBee [27], KNX
[60], and others. A discovery layer handles the discovery of resources
and services, allowing each network host to act as a cluster head for field
devices in its direct range using available communication interfaces.

• Semantic Support Micro-Layer: at the base of the framework, this
layer ensures interoperability with mobile ad-hoc networks of embedded
devices and sensors. It adapts the mobile identification and sensing
technologies of the physical layer to the semantic requirements of the
framework.

• u-KB Layer: provides common access to information from semantically
enhanced devices and sensors populating a smart environment. It
uses the Internet Protocol (IP) for basic addressing and routing in
local networks and between autonomous networks, including wide area
networks and the Internet.

• Local and remote reasoning services: provided to both local
pervasive applications and remote Semantic Web applications. They
enable logic-based queries and reasoning capabilities that are crucial
for processing semantically annotated information.

This layered approach allows for a robust, flexible, and scalable system
that can handle the dynamic and diverse requirements of the Semantic Web

18

of Things. The framework supports semantic-aware applications in mobile
ubiquitous contexts as well as in the Web, ensuring that information gathered
through different identification and sensing technologies can be effectively
exploited, both in ubiquitous and classical Semantic Web applications.

1.2.2 Micro-reasoners and non-standard inferences

The standard inference services introduced in Section 1.1.2, while useful in
traditional semantic-enabled applications, are usually not enough in scenarios
that require more than just a Boolean answer, such as in matchmaking or
negotiation, which are customary in the SWoT and, consequently, the SWoE.
In those cases, non-standard, non-monotonic inferences [93] are more useful,
as they provide explanations for inference outcomes, and allow retracting
conflicting information in the Open World Assumption. Non-standard infer-
ence services are formally introduced in what follows, while their algorithmic
implementation and some illustrative examples are reported in Section 3.2.

Semantic matchmaking is defined as the problem of finding the most
relevant element in a set of resources given a request, where both request and
resources are represented as satisfiable concept expressions with respect to
a common set of axioms T in a DL. The output of semantic matchmaking
consists of a set of concepts, each with a score representing its semantic
relevance to the submitted query. Besides resource discovery, matchmaking
can support data stream analytics, allowing the conversion of statistical
classification problems into semantic matchmaking ones. As an example, in
[100] features of samples were annotated with conjunctive concept expression
fragments and target classes with concept expressions, both referring to a
common ontology. These two use cases are highly relevant in SWoT/SWoE
scenarios, characterized by volatile data and fragmented information [28, 95,
138]. The present work refers to the theoretical framework grounded on the
classification of match types proposed in [30]. Similar classifications were
suggested in [66] and [83]. Differing from those earlier works, however, the
framework considered in this dissertation has a different order of preference

19

Matchmaking

Request R, Resource S

No Yes
Consistent?

Concept Contraction:
find inconsistent part G and

consistent part K of R

R ← K
G, K

Concept Abduction:
find the part H of R that is

missing from S

H

Score computation

Request
refinement

Concept Bonus:
find what is provided by S
but was not requested in R

Figure 1.2: Semantic matchmaking framework.

among the various non-exact match category, with full/subsume being the
favorite one due to not needing to hypothesize additional information about the
resource, as explained in what follows. Furthermore, the adopted framework
enables ranking different resources within the same match category. More
recent works [93, 87] are oriented to resource discovery in the SWoT and
combine reasoning and quantitative contextual attributes in utility functions.

The semantic matchmaking framework sketched in the flow chart of
Figure 1.2 combines the standard and non-standard inference services outlined
hereafter. Let us consider a set of axioms T in ALN , and R, S two concepts
in L –representing a request and a resource, respectively– both satisfiable in
T . Semantic matchmaking requires a preliminary Consistency check to
assess whether R ⊓ S is satisfiable w.r.t. T ; in formulae, T |= R ⊓ S ̸⊑ ⊥. If
the check fails, the resource is a partial match for the request, and Concept
Contraction (CC) can be computed. Its output consists of a pair of concepts
⟨G,K⟩ such that T |= R ≡ G ⊓ K, and T |= K ⊓ S ̸⊑ ⊥. Basically,

20

Contraction determines which part of R clashes with S. By retracting only
conflicting requirements G (for Give up) from R, an expression K (for Keep)
remains, i.e., a contracted version of the original request. The solution G

to Contraction explains “why” the conjunction of R and S is not satisfiable,
providing a way to move from a partial match to a potential match scenario.

Concept Abduction (CA) can be computed in case of potential match,
which occurs if S does not clash with R but is not subsumed by it, i.e.,
T |= R ⊓ S ̸⊑ ⊥ and T |= S ̸⊑ R. The output of CA consists of a concept
H ∈ L such that T |= S ⊓H ⊑ R and S ⊓H is satisfiable in T . It should
be noted CA and the other inference services for semantic matchmaking are
defined under the Open World Assumption [93], i.e., missing information in
a concept expression is not equivalent to negation, but it simply represents
an unspecified constraint, e.g., because unknown or deemed irrelevant. The
solution H (for Hypothesis) can be interpreted as what is requested in R and
not specified in S, providing an explanation for missed Subsumption and a
way to move from a potential to a full match (a.k.a. subsume match [66, 83]),
which is the desired outcome of the matchmaking framework and occurs when
S ⊑ R, i.e., all features in the request are provided by the resource.2

Concept Bonus (CB) is also useful in matchmaking settings, since a
resource S could contain features not requested in R –possibly because the
requester was not aware of them or did not care– which could be exploited
in a query refinement process. CB extracts and returns a Bonus concept B

from S, denoting what the resource provides even though the request did not
ask for it.

The ALN CNF for concept expressions induces the definition of a metric
space with a norm operator ∥ · ∥. In the above matchmaking framework, the
CNF norm of G and H then represents a semantic distance penalty for CC
and CA, respectively, used to rank resources w.r.t. a given request. Similarly,
∥B∥ provides a relevance measure for the Bonus. In [93] penalty values have
2Exact match, occurring when S ≡ R, is obviously the best possible outcome, but full
match is equally desirable from the point of view of requesters, since all their preferences
are met.

21

been proposed where:

1. each (possibly negated) atomic concept counts as 1;

2. for each role, number restrictions are weighted as the relative difference
between cardinality values in R and S w.r.t. the cardinality value in R

(if R lacks a number restriction on that role, the penalty is 1);

3. for each value restriction, the penalty is computed recursively as above.

For CA, CB, and CC, algorithms aim to a minimality criterion, since one
usually wants to hypothesize or give up as little as possible. Conversely, a
maximality criterion is adopted for the Concept Difference reasoning service
(CD), which defines a way to subtract information in a concept description
from another one: in the original definition by Teege [120], if T |= R ⊑ S,
then the output of difference D = CD(R, S) is a concept D ∈ L such that
R ≡ S ⊓D. In that case, one typically wants to subtract as much as possible.

While CA, CB, CC, and CD are useful in one-to-one discovery, matchmak-
ing and negotiation scenarios, the Concept Covering (CCov) non-standard
inference can be exploited to compose a set of elementary expressions to
answer complex requests [107]. Basically, CCov takes a set of resources and a
request and aims to (i) cover (i.e., satisfy) features expressed in the request
as much as possible through the conjunction of resources, and (ii) provide
an explanation of the possibly uncovered part. In formulae, given a concept
expression R (request) and a set of concept expressions S = {S1, S2, ..., Sn}
in a KB (available resources), where R and S1, S2, ..., Sn are satisfiable in
the reference ontology T , the output of CCov is a pair ⟨Sc, H⟩ where Sc ⊆ S
contains concepts in S forming a (possibly incomplete) covering of R w.r.t.
T and concept H is the (possible) part of R not covered by elements in Sc.

22

1.2.3 Open issues

By joining the Semantic Web vision of a meaningful and usable Web with
the ubiquitous networking capabilities of the IoT, the SWoT has marked a
significant stride in semantic-enabled digital ecosystems. However, as the
SWoT progresses towards the more pervasive and encompassing SWoE, a new
set of issues arises. The transition is not merely an expansion in scale or scope,
but involves a fundamental shift in the deployment and application of KRR
technologies. The core of the challenge lies in the need to implement them on
an even more granular level, moving from mobile devices to microcontrollers
and nano-scale devices that form the very fabric of the IoE.

This leap forward is fraught with complexities, as the constraints of these
smaller devices in terms of computational power, memory, and energy are
significantly more stringent. The challenging task of embedding semantic
capabilities into such constrained environments, while retaining compatibility
with conventional Semantic Web and SWoT contexts, requires novel solutions
and a rethinking of existing paradigms. Moreover, the inherent volatility
of devices, the high velocity of data streams, platform heterogeneity, and
the intrinsic need for cross-platform interoperability further complicate this
transition. As such, the journey from the SWoT to the SWoE exposes a
multitude of open issues, demanding a concerted effort to develop robust,
efficient, and scalable solutions that can support novel machine-to-machine
and human-to-machine interaction models, applications and services to really
realize the vision to it full potential.

One of the primary challenges of the IoE is the high volatility of devices
and network links. Devices in typical IoE ecosystems are often mobile, leading
to dynamic network topologies that constantly change, and intermittent avail-
ability of Internet access. In this setting, relying on powerful external devices
to provide semantic support is not always feasible, and thus KB manipulation
and automated inference primitives must be locally available. Additionally,
the reliance on battery power for many of these devices introduces constraints
on their operational lifetime and performance. Addressing these issues re-

23

quires the development of lightweight, energy-efficient KRR technologies that
can adapt to the highly dynamic nature of SWoE environments.

Velocity of the generated data is a significant hurdle for traditional
Semantic Web systems, especially in real-time processing settings within the
IoT. As recalled previously, their focus is usually on large and expressive
KBs, and highly sophisticated and costly boolean inferences, which are often
incompatible with applications involving high-velocity data streams. SWoE
systems must instead emphasize quick queries on small and moderately
expressive KBs, possibly through more versatile non-monotonic inferences, to
respond to rapidly evolving conditions with immediate insights and actions.

The SWoE is also characterized by a high degree of platform heterogene-
ity, stemming from the vast array of hardware configurations and software
ecosystems present in the IoE landscape, where devices range from powerful
servers to the most constrained microcontrollers, each with its own set of
capabilities, operating systems, and communication protocols. While several
Java-based Semantic Web reasoners have been ported to Android [18], the
landscape is almost completely barren for iOS devices [98] and embedded
real-time operating systems. A practical SWoE infrastructure requires new
cross-platform inference frameworks, services and tools that are capable of
functioning effectively on high-capacity workstations and mobile devices, as
well as being sufficiently lightweight to run on nano-devices with limited
computational resources.

The resources constraints of the lower end of the SWoE device spectrum,
in fact, pose significant constraints on the deployment of traditional Semantic
Web technologies. Most existing Semantic Web reasoners and KBMS are
designed for the WWW, with expectations of running on plugged-in servers
or at least on capable mobile devices like tablets and smartphones. Porting
existing tools is often unfeasible because of deep hardware and software
platform differences, and even when possible it is a major effort which does
not always pay off in terms of performance. Specifically, energy consumption
has seldom been considered in reasoner design for conventional computing
architectures. There is a pressing need for the development of lightweight,

24

energy-efficient semantic technologies specifically tailored for the SWoE.

Finally, to really find out whether new or adapted solutions are really fit
for the SWoE, rigorous evaluation methodologies and frameworks are needed.
As will be shown in Chapter 4, current OWL reasoner evaluation frameworks
and tools do not provide a fully satisfactory solution in terms of flexible
support of both standard and non-standard reasoning services, wide platform
compatibility, energy consumption estimation, and ability to run inference
tasks on remote devices, in a single package.

25

Chapter 2

Cowl: knowledge representation from
nano to Web scale

This chapter introduces Cowl [14], an innovative OWL manipulation library
tailored for handling ontologies on a wide variety of platforms, from work-
stations and mobile devices to embedded systems with stringent processing
and storage constraints. Its source code1 is openly available under a very
permissive license2, seeking to encourage adoption in both academia and
industry. The library supports parsing, querying, editing, and serializing
OWL ontologies, and focuses on processing efficiency and low memory usage
by means of targeted design choices, features, and optimizations. The toolkit
also introduces the axiom streams technique, a novel approach to ontology
processing at the axiom level which does not rely on an intermediate data
store, optimizing resource usage and aligning with settings characterized by
tight resource limitations. A comprehensive evaluation campaign on a popular
embedded platform validates its usability on the smallest end of the SWoE
device spectrum, constituting the first successful deployment and evaluation
of a fully featured OWL library on a microcontroller with less than 100 KiB
of RAM.

The remainder of the chapter is as follows: Section 2.1 discusses relevant
related work and tools, while Section 2.2 and Section 2.3 describes capabilities
1Cowl source code: https://github.com/sisinflab-swot/cowl
2Eclipse Public License v2.0: https://www.eclipse.org/legal/epl-2.0/

26

https://github.com/sisinflab-swot/cowl
https://www.eclipse.org/legal/epl-2.0/

and architecture of the Cowl library, respectively; Section 2.4 introduces
the novel axiom stream technique for ontology parsing and serialization;
Section 2.5 focuses on peculiarities and optimizations that enable its use on
any device category; finally, experiments are reported and results discussed
in Section 2.6.

2.1 Background

The available software tools designed for OWL manipulation generally rely
on high-level abstractions, enabling applications to interact with ontologies
without dealing with the details of the underlying serialization formats. His-
torically, the design of OWL software has been influenced by the the strong tie
that exists between OWL and RDF. As such, the first OWL toolkits adopted
a triple-based abstraction, where ontologies are seen as sets of RDF triples,
and APIs are provided to help the user manipulate them consistently with
the OWL specification.

One such tool is Apache Jena [75], a Java framework that provides
manipulation primitives for RDF, RDF Schema (RDFS) [24] and OWL
models, and an inference Application Programming Interface (API) to support
reasoning and rule engines. Another example is the Protégé-OWL Plugin [59]
for the Protégé ontology editor [78], which is built on top of Jena and is
particularly effective for developing graphical applications. The owlcpp [65]
C++ open-source library allows parsing OWL ontologies in RDF/XML format
into an RDF triple store constructed on the Redland [9] application framework,
further employing the Fact++ [124] engine for reasoning tasks.

Tools grounded on the triple-based abstraction usually adopt RDF state-
ments and triple stores as their core data models, and target RDF-based
OWL serializations. This is problematic for a number of reasons: firstly, they
often mandate varying levels of familiarity with the way OWL ontologies map
to RDF graphs, making them more technical and challenging to use; secondly,
they represent OWL axioms as one or more RDF triples, making updates

27

and queries more complex and usually introducing memory overhead; finally,
RDF-based serializations mandate the presence of parsers and renderers for
RDF syntaxes, and sometimes XML as well, increasing code size and memory
requirements.

The OWL API [49], a widely adopted Java-based OWL toolkit, pioneered
a different approach to OWL abstractions, where ontologies are seen as
collections of axioms, and APIs are more closely aligned with the OWL
specification. This axiom-based abstraction completely hides serialization
details, effectively enabling the use of arbitrary memory storage techniques,
and smoothening the learning curve for practitioners. The OWL API for
iOS [96] is a partial Objective-C port of the OWL API targeted at Apple
devices, which can be combined with the Mini-ME Swift reasoner [98] to
enable semantic-enhanced applications and services on the iOS operating
systems lineup. This approach is also adopted by Horned-OWL [70], an early-
development Rust-based OWL 2 manipulation library aimed at large-scale
ontologies, which provides full parsing for OWL-XML and nearly full parsing
for OWL-RDF.

A further abstraction, the so-called ontology-oriented programming tech-
nique, integrates ontologies directly into a runtime environment, treating
ontology entities like objects in a programming language. This strategy
leverages the similarities between ontology structures and object-oriented
programming (OOP) models to simplify the integration of ontologies and
reasoning in software development by adopting a familiar syntax, though it
often requires significant introspection support at the language level. Owl-
ready [62], one of the first proponents of this paradigm, is a popular toolkit
for manipulating OWL ontologies and their constructs as Python objects,
as well as for reasoning over them via modified versions of the HermiT [38]
and Pellet [113] engines. A similar approach is adopted by OWLOOP [25],
an extension of the OWL-API that reduces the code required to manipulate
ontologies by enabling interaction with OWL entities as objects within the
OOP paradigm, though it currently only supports a subset of OWL 2 axioms.

Despite the abundance of OWL manipulation tools highlighted in this

28

Table 2.1: Comparison of OWL toolkits.

Toolkit Language Updated Memory usage

Apache Jena [75] Java 2023 High [11]
Protegé-OWL [59] Java 2020 N.A.
owlcpp [65] C++ 2016 Medium [14]
OWL API [49] Java 2023 High [14]
horned-owl [70] Rust 2023 N.A.
OWL API for iOS [96] Objective-C 2020 Medium [96]
Owlready2 [62] Python 2023 High [14]
OWLOOP [25] Java 2022 N.A.
Cowl C 2023 Low [14]

short literature review, most of them exhibit significant issues that hinder
their suitability for resource-constrained platforms, as outlined in Table 2.1,
including:

• dependency on the Java and/or Python runtime environments, which
are incompatible with embedded devices3;

• designs tailored for conventional computing environments, assuming
high availability of processing power and memory resources;

• lack of comprehensive performance evaluations, especially concerning
memory usage and targeting resource-constrained devices;

• not actively maintained projects.

A preliminary version of the Cowl library was described in [14], where
an early assessment indicated a promising alignment with the requirements
of the Semantic Web of Everything. Subsequently, critical functionalities
have been added, such as support for ontology editing and serialization, and
3The availability of Python interpreters designed for embedded systems like MicroPython
[10] does not overcome this issue, as they include only a subset of standard Python runtime
environment libraries, thus porting existing OWL manipulation tools would require at
least a partial rewrite.

29

management of ontologies as continuous streams of axioms. Additionally, the
tool has been thoroughly evaluated on an embedded platform.

2.2 Capabililties

Cowl is a complete implementation of the OWL 2 Structural Specification
[85]. It supports OWL 2 ontologies with no restrictions on the structure of
axioms and expressions. At a high level, the library provides the following
features:

• parsing ontology documents;

• submitting programmatic ontology queries;

• creating and editing ontologies;

• serializing and writing ontology documents.

Ontology documents can be parsed into an optimized in-memory store,
which can then be queried to retrieve knowledge. The store can be edited by
adding and removing axioms, and then serialized to make changes persistent.
Ontologies can also be read and written as axiom streams, a novel technique
(cfr. Section 2.4) where the document is processed axiom-by-axiom without
needing an intermediate store, which is particularly desirable for memory-
constrained platforms.

Cowl currently supports ontology documents serialized in the functional
syntax [85], though its architecture allows for multiple readers and writers
which can be implemented in future updates. The functional syntax has been
chosen as the reference format because it has a few useful characteristics:

• simple, unambiguous grammar which can be parsed with very little
resources;

30

• no requirement for underlying serialization formats, such as RDF or
XML, which would require dedicated readers and writers;

• guarantee that the byte representation of an axiom is never interleaved
with that of any other axiom. As explained in what follows, this enables
significant memory savings when processing OWL knowledge graphs as
axiom streams.

2.3 Architecture

The foundational design choice concerns the selection of an appropriate
programming language, which must certainly be a systems language so that
the library can be deployed to embedded devices, but also interoperable enough
to be easily integrated in other, higher-level languages and runtimes, granting
support for mobile devices, desktops, and cloud servers. The C language
is a sensible choice, as it is the most widely used language on embedded
devices [46] and also among the most interoperable [16]. The library has thus
been implemented in standard C11, with no compiler-dependent extensions
or platform-specific API calls, allowing it to be effortlessly deployed to any
platform equipped with a C compiler, and integrated into any programming
environment that provides C interoperability.

This choice has ruled out the adoption of the ontology-oriented program-
ming abstraction, as the C language lacks the required object-oriented features
and introspection capabilities. The triple-based abstraction has also been
discarded, as it would require additional software components and computa-
tional resources. The architecture of the Cowl library is sketched in Figure 2.1.
It employs the axiom-based abstraction, and its data model and APIs are
designed to closely follow the OWL 2 Structural Specification [85] W3C
Recommendation. Mirroring the specification in C is a design challenge:
relationships between OWL constructs are often hierarchical, and cannot
be easily rendered with C types due to the purely procedural nature of the
language, with no support for object-oriented features such as inheritance.

31

CowlObject CowlComposite

uLib

CowlAxiom CowlClsExp CowlDataRange CowlIndividual ...

CowlClass CowlNamedIndCowlDatatypeCowlSubClsAxiom ...

CowlOntology

CowlIStream CowlOStream CowlIterator

CowlReader CowlWriter

CowlManager

CowlImportHandler CowlErrorHandler

Base data structures Immutable data model Mutable data store Input / Output Configuration Querying

Figure 2.1: Architecture of the Cowl library.

In Cowl, hierarchical relationships are thus emulated through the use of
the pseudo-inheritance technique, which exploits specific features of the C
language to simulate inheritance at the structure level: the C11 specification
([52], §6.7.2.1-15) guarantees the absence of padding at the beginning of a
struct, ensuring that its memory address coincides with that of its first mem-
ber. By nesting structs in a manner where the base type (the “superstruct”) is
the first member of the derived type (the “substruct”), casts between pointers
of the two types, which are prohibited by the C standard in the general case,
become legal.

As reported in the OWL 2 specification [85], OWL constructs can be
grouped into families, which the library models as base types and then
extends to concrete types as allowed by the pseudo-inheritance technique:

• Axioms (CowlAxiom): statements that specify what is true in the
domain the ontology represents;

• Class expressions (CowlClsExp): sets of individuals identified by a
formal specification of certain constraints on their properties;

• Data ranges (CowlDataRange): like class expressions, but for sets of
literals, i.e., data values such as strings or numbers;

32

• Individuals (CowlIndividual): instances of the knowledge domain,
which may be named or anonymous ;

• Object property expressions (CowlObjPropExp): relationships be-
tween pairs of individuals;

• Data property expressions (CowlDataPropExp): relationships be-
tween individuals and literals.

The data model has been carefully designed so that OWL constructs are
immutable, i.e., they cannot be modified after creation. Besides simplifying
software design, immutability can be exploited to enable a whole family of
performance optimizations that are critical for resource-constrained devices,
as detailed in Section 2.5. The data model is built on top of uLib4, an open
source library that provides base data structures and utilities with an explicit
focus on computational efficiency and low memory footprint.

Cowl uses the reference counting technique for memory management: every
construct in the data model has a reference count attribute that is incremented
when a new reference is created, and decremented when a reference is no
longer needed, e.g., when a referencing construct is destroyed. The idea is that
a construct can be safely deallocated when its reference count reaches zero, as
this entails that there are no more references pointing to it, and therefore it is
no longer needed. Pseudo-inheritance easens the implementation of reference
counting by allowing all constructs to share a common ancestor, CowlObject,
which provides the necessary state and primitives.

Ontologies are modeled in Cowl through the CowlOntology object, which
is essentially a collection of axioms. Under the hood, a CowlOntology is an
optimized self-organizing in-memory store, which keeps axioms indexed by
type and referenced entities, allowing for significant speed-ups when querying
knowledge stored therein. The CowlOntology API provides facilities to add
or remove axioms, annotations, and other constructs, allowing users to edit
existing ontologies or create and populate new ones.
4uLib source code: https://github.com/ivanobilenchi/ulib

33

https://github.com/ivanobilenchi/ulib

Ontologies can be queried through dedicated endpoints in the CowlOntol-
ogy API, accepting CowlIterator instances as arguments. A CowlIterator is
a C implementation of the closure pattern [63], a functional programming
construct that allows bundling a function and its call site environment, en-
abling the function to reference local variables outside its scope. High-level
languages supporting closures usually allow capturing the environment by
simply referencing variables visible at the function call location. This is,
however, not possible in C, therefore the programmer must explicitly pass
the environment by providing a pointer to a generic context object. The
CowlIterator function is called for each element matched by the query, and the
presence of generic user-provided state allows for arbitrarily complex queries.
Iteration can be stopped by returning false, enabling early termination for
queries such as finding the first construct that matches some condition.

Ontologies can be read and written through the CowlManager object,
which is able to handle many kinds of input sources and output targets. The
whole I/O system is built on top of uLib streams, which unify access to files,
memory buffers, network streams, and so on, as byte streams that can be
read from and written to. Cowl’s architecture allows for multiple readers
and writers, either built-in or provided by the user. Readers (CowlReader)
basically map from byte streams to sequences of OWL constructs, while
writers (CowlWriter) can carry out the opposite transformation. The way
OWL constructs are parsed and rendered depends on the specific ontology
document format.

The base facility for ontology modularization in OWL 2 is the imports
system, where ontologies can import other ontologies in order to gain access to
their entities, expressions, and axioms. Imported ontologies may be retrieved
from storage devices, network streams, or other input sources. Cowl delegates
handling of imports to the user via the CowlImportLoader object, which
must be implemented by returning the CowlOntology corresponding to a
certain IRI. A similar approach is adopted for the management of parsing
and serialization errors, where a user-specified CowlErrorHandler instance
allows handling failures as fit for the application.

34

2.4 Axiom streams

One of Cowl’s main novelty points concerns the way ontologies are read
and written. Many existing OWL toolkits provide access to knowledge
in an ontology document by deserializing it to an intermediate RDF data
store. Likewise, serializing knowledge requires building the data store first,
and then writing it as an OWL ontology document. This restriction stems
from the close relationship between OWL and RDF, which allows OWL
ontologies to be rendered as RDF graphs. Due to the inherent simplicity of
the RDF language, each OWL axiom may need to be encoded by multiple
RDF statements, possibly even scattered throughout the document, as there
is no requirement on the adjacency of the triples that encode a specific
axiom, as illustrated in Figure 2.2. In the example, three different axioms are
serialized in Functional [85] and the RDF triple-based Turtle [90] syntaxes: in
the former, byte (character) sequences encoding each axiom are consecutive,
while they can be intermingled in the latter. This mandates the creation of
an intermediate data store, which is populated and subsequently translated
into a set of axioms when processing OWL ontologies serialized as RDF
documents. Due to its simplicity and versatility for most applications, and
likely to avoid fragmentation at the API level, this store-based approach to
ontology processing has historically been adopted by OWL tools for both
RDF-based and OWL-specific serializations. However, this technique proves
to be wasteful for a number of scenarios: for example, if one already has a
data model representation and wishes to render it as an OWL document, or is
interested in a small subset of the axioms within an existing OWL document,
avoiding the construction of a potentially large intermediate representation
becomes desirable to save memory and minimize CPU usage.

The OWL functional syntax, as well as all standard OWL serialization
formats, allows ontologies to be serialized in such a way that the resulting
byte sequence respects the following structure:

• Header: containing IRI prefix declarations, the ontology IRI, import

35

SubClassOf(:A :B)
EquivalentClasses(
 :B ObjectIntersectionOf(:C :D)
)
ClassAssertion(
 ObjectUnionOf(
 :C ObjectIntersectionOf(:B :D)
) :I
)

:A rdfs:subClassOf :B .
:B owl:equivalentClass _:a1 .
:I rdf:type _:a2 .
_:a2 rdf:type owl:Class .
_:a1 rdf:type owl:Class .
_:a2 owl:unionOf (:C _:a3) .
_:a1 owl:intersectionOf (:C :D) .
_:a3 rdf:type owl:Class .
_:a3 owl:intersectionOf (:B :D) .

Functional syntax Turtle RDF syntax

Axiom 1 Axiom 2 Axiom 3

Figure 2.2: Valid encodings of three axioms in Functional syntax and Turtle.
RDF provides no guarantees that triples belonging to each axiom are
consecutive in the byte sequence.

statements, and ontology annotations.

• Axioms: a sequence of axiom definitions, usually the largest part of
the byte sequence.

• Footer: a usually small and fixed sequence of bytes that closes the
document.

Apart from the header and footer, it is clear that it is generally possible
to serialize any data model as an ontology document by producing a suitable
sequence of axioms, i.e., an axiom stream. Cowl implements axiom stream
serialization through the CowlOStream API, which allows user code to drive
the serialization process by writing the ontology header, individual axioms,
and finally the footer, without requiring the construction of an intermediate
axiom store.

Even more interestingly, if the chosen OWL document format guarantees
that the serialization of two different axioms can never be interleaved in the
byte sequence, then ontologies can also be read as axiom streams. It is the case
that OWL-specific serializations, including the functional, OWL/XML, and
Manchester syntaxes, respect this constraint. Thus, the library implements
this parsing technique through a separate API, CowlIStream: the user provides
an arbitrary state pointer and a set of handler functions, which are called by
the parser when the relevant construct is detected in the inbound byte stream.

36

Since the population of the CowlOntology data store is entirely bypassed, this
approach to parsing is generally much more lightweight, as also evidenced
by the experiments in Section 2.6. On the other hand, axiom stream parsing
does not support ontology editing and programmatic queries, for which a
CowlOntology store is needed, and it cannot be adopted in general for RDF-
based serializations. However, it is worth noting that if the aforementioned
property is enforced while serializing, i.e., all triples that make up each axiom
are written consecutively, then RDF documents may also be processed as
axiom streams. This of course requires making the parser aware that the
RDF document respects this property, via e.g., an optional flag or a special
comment at the beginning of the document. In any case, axiom stream
parsing is not entirely ruled out for RDF, and may be efficiently implemented
in future iterations of the library.

Combining axiom stream serialization and parsing with the byte stream
capabilities of the uLib library proves to be especially effective in scenarios
where devices must communicate semantically annotated information, such as
in networked multi-agent systems. In such scenarios, the transmitter and the
receiver can potentially exchange OWL knowledge graphs at the axiom level
without ever materializing the entire data store on either end. An example of
the interactions enabled by Cowl is showcased in Section 5.1.

2.5 Optimizations for embedded platforms

Most of the design and implementation choices made while developing the
library are oriented towards an efficient use of hardware resources, with
memory usage and code size being the primary focus, as they are the most
heavily constrained aspects on embedded platforms. The techniques detailed
hereafter are enabled by three core features exploited throughout the library,
which have been described in Section 2.3: data model immutability, pseudo-
inheritance, and reference counting.

• Instance sharing: objects that are likely to be referenced by multiple

37

axioms are stored in an instance pool, and constructor functions are
designed to return shared instances from this pool. This technique is
also conditionally exploited for strings representing common language
constructs, ensuring that duplicate instances of such strings are never
created.

• Optimized IRI storage: IRIs can be split into a namespace and a
local name. Since namespaces are often shared among multiple IRIs,
Cowl internally represents IRIs with two strings: the namespace and
the remainder. Every time an IRI is detected in the byte stream, Cowl
extracts the namespace according to the XML Namespaces specification
[23] and adds it to the string instance pool. This allows multiple IRIs to
share references to the same namespace instance, significantly reducing
the memory required to store them. The technique is sketched in
Figure 2.3.

• Faster equality checks: instance sharing and immutability are ex-
ploited to speed up equality checks: by definition of instance sharing,
equal objects must be the same instance, therefore equality checks can
be performed as pointer comparisons, eliminating the need for more
costly comparisons of object contents. Speeding up equality checks is
crucial, as the library makes extensive use of hash-based data structures,
where they are needed for all CRUD (Create, Read, Update, Delete)
operations. A further optimization is implemented for strings, whose
hashes are cached and used to expedite checks: a proper hash function5

guarantees that identical strings have equal hashes, therefore compar-
isons can be avoided for strings with different hash values, eliminating
the need for the vast majority of them.

• Code size reduction: even though Cowl’s data model reflects the
whole OWL 2 structural specification type-wise, most types and their
related APIs are placeholders or thin wrappers for a shared low-level
implementation. Since most OWL constructs can be viewed as struc-
turally equivalent to typed tuples of other constructs, Cowl implements

5Cowl uses the DJBX33A [36] hash function for strings.

38

http://website.com/ontology.owl#

classA

classB

classCNamespace Remainder

http://website.com/ontology.owl#

http://website.com/ontology.owl#

http://website.com/ontology.owl#

classA

classB

classC

Figure 2.3: Optimized IRI storage: namespace instances are shared among IRIs.

them as a single CowlComposite structure holding a variable number of
CowlObject fields, as shown in Figure 2.1. All types that inherit from
CowlComposite share the same implementation for facilities such as
field getters, equality checks, hash computation, field enumeration, and
so on. This greatly reduces code size without sacrificing type safety at
the API level.

• Low-level optimizations: further memory savings are allowed by a
number of optimizations on low-level types. The size of numeric types
can be controlled at compile time, so that integers can vary between
two, four, and eight bytes, and floats between four and eight bytes,
with smaller representations being obviously desirable for resource-
constrained devices. This of course introduces compromises for certain
implementation details, such as the maximum size of collections, or the
maximum number of references that can be held for any object. Strings
and vectors make use of the small buffer optimization, a technique
where buffers that are smaller than the size of the enclosing structure
are stored directly within it, without allocating additional memory
on the heap. Cowl also implements the pseudo-generics technique for
collections: type definitions and code for collections of different data
types can be generated by means of a set of preprocessor directives,
mimicking a template system. This introduces a trade-off between
runtime performance, in terms of both speed and memory overhead,
and code size, therefore specialized versions of collections are only
generated for frequently used and performance-critical data structures.

39

2.6 Evaluation

Performance evaluation is necessary to validate Cowl’s suitability for the
heterogeneous contexts and platforms required by the SWoE. A preliminary
experimental campaign was carried out in [14], comparing an alpha version of
the library to state-of-the-art OWL ontology manipulation toolkits. Results of
the evaluation are recalled in Section 2.6.1, before reporting those of a further
evaluation of a stable version of the library on a popular microcontroller
platform, as detailed in Section 2.6.2.

For both campaigns, the evOWLuator framework (see Chapter 4) was
leveraged for test automation, exploiting its ability to invoke command line
tools over arbitrary OWL datasets and gather performance metrics concerning
turnaround time and memory usage.

2.6.1 Laptop tests

An alpha version of the library has been compared to the following state-
of-the-art OWL tools: OWL API (version 5.1.20), Owlready2 (0.37), and
owlcpp (0.3.3). To be integrated into evOWLuator, all libraries have been
wrapped in straightforward command line tools that accept the path to the
ontology as an argument. The testbed is a 2021 Apple MacBook Pro 16"6.
All reported performance results are the average of 5 cold runs.

The dataset used for the tests consists of 109 knowledge bases, extracted
from the 2014 OWL Reasoner Evaluation Workshop (ORE2014) competition
corpus7 as follows: all ontologies in functional-style have been considered and
sorted by size, then one sample has been extracted at each MiB boundary (if
available). Tests have concerned ontology parsing and querying time, and peak
memory usage. The following queries have been selected for benchmarking:
(Q1) retrieval of all axioms in the ontology; (Q2) retrieval of all classes in
6Apple M1 Max System-on-Chip with 64 GB RAM, 1 TB SSD, macOS Monterey 12.3.
7ORE2014 corpus: http://dl.kr.org/ore2014

40

http://dl.kr.org/ore2014

the ontology and, for each class, retrieval of all subclass axioms directly
referencing it as the subclass or superclass.

Before presenting the results of the experimental campaign, it is important
to point out a few key differences among the evaluated tools:

• They support different OWL serializations: the OWL API features
parsers for most syntaxes in literature; Owlready2 only supports RD-
F/XML, OWL/XML and Turtle; owlcpp is limited to RDF/XML, while
Cowl currently only features a functional syntax parser. The libraries
have therefore been configured as follows: Owlready2 and owlcpp have
been run on RDF/XML documents, while the OWL API and Cowl
have processed their functional syntax variants. This is apparent from
data points in the scatterplots, spanning larger ontology sizes for tools
using the RDF/XML serialization.

• They adopt different data model architectures: the OWL API and
Cowl provide a direct mapping to OWL axioms and constructs, while
Owlready2 and owlcpp store ontologies in RDF triple stores. This entails
that ontology queries have considerably different implementations, with
significant influence on performance.

Figure 2.4 shows peak memory usage metrics, computed by evOWL-
uator as the maximum resident set size (MRSS) of the process. Cowl
exhibits a significantly lower memory footprint than all other tools, with
the margin being especially wide when compared to the non-native OWL
API and Owlready2 libraries. All libraries follow a roughly linear trend for
memory occupancy in relation to ontology size, even though absolute values
on the most resource-constrained nodes –such as nodes classified as Class 0
and Class 1 by the Internet Engineering Task Force (IETF) [22]– may be
different from the 64 bit testbed workstation.

Figure 2.5 reports results on turnaround times for ontology parsing. Similar
considerations apply here, with Cowl outperforming the other tools, and all
libraries behaving linearly in relation to ontology size. The OWL API performs

41

OWL API OWLReady owlcpp Cowl

Min Avg Max
1

10

100

1000

10000

100000

71.12

1436.07 5550.81

20.65

629.93
3512.41

3.95

362.39
1934.00

1.67

94.83
359.04

(a) Dataset-wide min, avg and max (MiB).
0 200 400 600 800 1000

0

1000

2000

3000

4000

5000

6000

(b) Memory peak by ontology size (MiB).

Figure 2.4: Comparison of peak memory usage.

OWL API OWLReady owlcpp Cowl
0

500

1000

1500

2000

412.83

1112.87
851.91

88.28

(a) Cumulative time (s).
0 200 400 600 800 1000

0
10000
20000
30000
40000
50000
60000

(b) Time (ms) by ontology size (MiB).

Figure 2.5: Comparison of parsing time.

remarkably well with respect to parsing time, even outperforming the native
owlcpp library, albeit at the cost of a consistently and significantly higher
memory usage than all other tested toolkits.

Figure 2.6 displays turnaround times for the retrieval of all axioms. Cowl is
consistently faster than the other frameworks; interestingly, the OWL API is
almost able to match owlcpp. As the query entails iterating over all constructs
in the KB, triple store based tools are penalized, as they must process a
larger number of constructs, since OWL axioms are generally encoded through
multiple RDF statements.

Figure 2.7 shows turnaround times for the retrieval of all subclass axioms
for all classes: owlcpp is the top performer, followed by Cowl, while the
OWL API and Owlready2 exhibit very similar, much higher figures. This

42

OWL API OWLReady owlcpp Cowl

OWL API OWLReady owlcpp Cowl

1

10

100

1000

2.15

142.39

0.91
0.21

(a) Cumulative time (s).
0 200 400 600 800 1000

0.01

1

100

10000

(b) Time (ms) by ontology size (MiB).

Figure 2.6: Comparison of time taken to retrieve all axioms.

OWL API OWLReady owlcpp Cowl

1

10

100

1000

73.77 101.88

0.51

2.42

(a) Cumulative time (s).
0 200 400 600 800 1000

0.01

1

100

10000

(b) Time (ms) by ontology size (MiB).

Figure 2.7: Comparison of time taken to retrieve all subclass axioms for all classes.

query was deliberately chosen to be easily answered by triple stores (through
e.g., the SPARQL query in Listing 1), as it strongly relies on access to
constructs that directly reference specific entities. Axiom-based tools, on the
other hand, must populate auxiliary indices to speed up references to specific
OWL entities, and may still end up processing unrelated axioms, depending
on the indexing strategy. Performance of such queries can be improved by
introducing additional indices or more sophisticated data structures, though
this usually comes at the expense of memory usage, therefore it was not
deemed a worthwhile trade-off due to Cowl’s focus on memory-constrained
platforms.

43

SELECT *
WHERE {

{ ?a_class rdfs:subClassOf ?b_class . }

UNION

{ ?b_class rdfs:subClassOf ?a_class . }

FILTER (!isBlank(?a_class))

}

Listing 1: Retrieval of all subclass axioms for each class from a triple store.

2.6.2 Embedded board tests

While the previous results highlighted state-of-the-art performance with
respect to other popular OWL toolkits, those tests were carried out on a
laptop testbed. Proving that the proposed system can really permeate the
SWoE device spectrum requires evaluations on a suitably small nano-scale
device. Furthermore, comparing the novel axiom-based approach to ontology
manipulation with the traditional store-based technique is crucial to really
understand its usefulness in SWoE contexts.

Arduino8 boards are among the most popular microcontroller platforms.
Their open-source nature, combined with a vast community and availability of
compatible hardware and software libraries, make them a versatile environment
for all kinds of applications, spanning from simple automation projects to
complex robotics and IoT infrastructures. As such, the Arduino Due board9

has been chosen as the testbed for a comprehensive experimental campaign.
To the best of our knowledge, this is the first time a fully capable OWL
library is deployed and evaluated on a microcontroller this small.

The experimental setup is illustrated in Figure 2.8. The board has been
connected to a PC, and the evOWLuator framework has been used to
manage all experiments. The framework’s modular architecture and support
for running reasoning tasks on remote devices (see Section 4.4) have been
exploited by implementing a plugin that lets the PC communicate with
8Arduino home: https://arduino.cc
9Equipped with 32 bit ARM Cortex M3 CPU clocked at 84 MHz, 96 KiB of SRAM, and
512 KiB of flash storage.

44

https://arduino.cc

evOWLuator Native USB port data flow
Programming port data flow

ontologies

serialize
sketch

metrics

01100101...

01011001...

Figure 2.8: Experimental setup for tests on Arduino Due.

the board using both its UART10 and USB11 2.0 ports. More precisely,
the UART programming port has been used to flash Arduino “sketches”
responsible for the execution of on-board tests involving the Cowl library, and
to report performance metrics back to the evaluation framework. Concurrently,
the faster USB port has been leveraged for larger data transfers, such as
loading serialized ontology documents to and from the board. Since Cowl’s
ontology I/O primitives are built on top of uLib streams, reading and writing
ontologies through the USB port has just required the implementation of
custom input/output streams that leverage the built-in Arduino USBSerial
class.

The dataset used for the experiments is the whole 2014 OWL Reasoner
Evaluation Workshop (ORE2014) [6] competition corpus, consisting of 16555
ontologies in functional syntax, ranging from 10 KiB to over 500 MiB in
size. Tests focus on ontology parsing, serialization, and querying time, and
peak memory usage. For parsing and serialization times, the time required
to transfer the ontology document over the USB port is factored out in the
results reported hereafter, since it strictly depends on the port’s transfer
speed and it dominates the overall time, making it hard to understand how
much time is actually spent processing the ontology.

The first test has concerned loading ontologies from the USB port into
the in-memory data store, querying them, and serializing them back to the
USB port. Figure 2.9a displays, on a logarithmic scale, the time required to
parse and serialize ontologies as a function of their size. Both parsing and
10Universal Asynchronous Receiver-Transmitter.
11Universal Serial Bus.

45

0.01 0.1

10

100

1000
Parsing
Serialization

(a) Store-based parsing and serialization time (ms)
by ontology size (MiB).

0.01 0.1

0.1

1

10
Query (entities)
Query (axioms)

(b) Retrieval time (ms) by ontology size (MiB).

0.01 0.1 1 10 100

0.01

0.1

1

10

100

1000 Parsing
Serialization

(c) Stream-based parsing and serialization time (s)
by ontology size (MiB).

0.01 0.1 1 10 100

100

20

30

40

60

Memory (store)
Memory (stream)

(d) Store- vs stream-based memory usage (KiB) by
ontology size (MiB).

Figure 2.9: Performance metrics on Arduino Due.

200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0
Ok
Out of memory

(a) Store-based approach.
103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0
Ok
Out of memory

(b) Stream-based approach.

Figure 2.10: Ratio of out-of-memory events by axiom count in ontology parsing.

46

serialization times show a linear trend, as expected. The board has been
able to process 9543 ontologies (57.6% of the whole dataset), with the largest
ontology being 228 KiB. The remaining ontologies could not be processed
due to memory exhaustion.

Figure 2.9b plots the time spent to retrieve: (i) all the entities within an
ontology; (ii) for each ontology class, all subclass axioms directly referencing
it as the subclass or superclass. The first query can be carried out in less than
1 ms even on the largest ontologies, while the second, more complex query
takes about 3 ms at most. This result demonstrates that the architecture
of the CowlOntology store, combined with the optimizations described in
Section 2.5, allows efficient queries even on devices with strict processing
limitations.

The second test has involved processing the ontology document as an
axiom stream, while simultaneously serializing detected axioms. In this specific
case, since the USB 2.0 port is not capable of full-duplex communication,
serialization has been carried out over a dummy byte stream which discards
its output. In this configuration, Cowl is able to process nearly the entire
ontology dataset (16464 ontologies, 99.5%), as shown in Figure 2.9c: the
largest processed ontology is also the largest ontology in the dataset, with
a size of 563 MiB. This is mainly due to fact that ontologies are processed
one axiom at a time, removing the need for the intermediate data store,
which results in a substantial reduction in memory usage. This advantage
becomes even more apparent when comparing peak memory usage, depicted
in Figure 2.9d. While the conventional approach is limited by the size of the
ontology being processed, the boundary of the stream-based strategy is solely
determined by the size of the largest axiom in the ontology. As such, the
memory usage trend changes from linear to roughly constant, with only a few
exceptions, thus creating the potential to manage ontologies of much greater
size.

Another noteworthy observation emerges when comparing the rate of out-
of-memory errors between the store- and stream-based approaches. Figure 2.10
is the histogram plot of ontologies grouped by axiom count (x-axis) over the

47

percentage of ontologies that result in an out-of-memory (OOM) event within
each bin (y-axis). As illustrated in Figure 2.10a, in the store-based approach
the ratio of OOM events steadily increases towards the 1.0 limit for ontologies
with more than ∼1100 axioms. This behavior is consistent with the limited
availability of SRAM memory, which quickly gets saturated by the in-memory
store. Conversely, as shown in Figure 2.10b, the stream-based approach
enables the handling of ontologies with a very large number of axioms, greatly
minimizing the chances of experiencing memory saturation.

This experimental campaign has demonstrated the capability of the Cowl
library to handle OWL knowledge graphs on embedded devices, indicating that
it can efficiently manage and process ontologies, even under the constrained
resources typical of embedded systems. Its architecture and optimizations
enable it to handle a substantial portion of the dataset through the classical
store-based approach, allowing embedded applications to query and edit
moderately sized ontologies. The stream-based technique, other than being
useful on its own for a subset of use cases, can act as a practical fallback
when memory limitations do not allow keeping larger ontologies entirely in
memory, allowing the tool to scale up to graphs of virtually any size. These
results collectively suggest that Cowl’s architecture, optimizations, and novel
processing techniques effectively address the challenges of OWL ontology
management on limited-capacity devices, broadening the pervasivity of SWoE
applications.

48

Chapter 3

Tiny-ME: a reasoning engine for
the Semantic Web of Everything

This chapter introduces Tiny-ME 1 [94] (the Tiny Matchmaking Engine), a
SWoE-oriented matchmaking and reasoning engine. It features a multiplat-
form architecture designed from the ground up, with a common core in C
language granting both portability and efficient implementation of KB manage-
ment primitives and reasoning services. On top of the low-level core, multiple
high-level APIs are provided to facilitate integration in a variety of platforms
and technological stacks, ranging from the Web to tiny resource-constrained
devices.

The reasoner provides standard (Ontology Classification, Ontology Coher-
ence, Concept Subsumption, and Concept Satisfiability) and non-standard
(Concept Abduction, Contraction, Bonus, Difference, and Covering) inference
services in an OWL 2 subset corresponding to the ALN (D) Description Logic
(Attributive Language with unqualified Number restrictions and Datatypes).
All major desktop and mobile operating systems are compatible out of the
box, as well as all major browser platforms through a port of the system to the
WebAssembly2 runtime, [91] allowing its use in client-side Web applications.
Tiny-ME can also be used for reasoning in microservice architectures for Web
and cloud applications: to this aim, the standard OWLlink [69] protocol
1Tiny-ME: http://swot.sisinflab.poliba.it/tinyme/
2WebAssembly: https://webassembly.org/

49

http://swot.sisinflab.poliba.it/tinyme/
https://webassembly.org/

for remote reasoner invocation has been extended, adding support for the
provided non-standard inference services. Architectural and technological
design choices allow the system to be also deployed on nano-scale devices, such
as embedded drone autopilots and microcontrollers. Such platform diversity
is a first in the OWL reasoning landscape, making the system a candidate for
the development of a practical SWoE infrastructure.

The remainder of this chapter is as follows: after background in Section 3.1,
Section 3.2 discusses the supported inference services; Section 3.3 describes the
main principles that drove the design of the system and details its architecture
and main data structures; Section 3.4 outlines platform-specific and Web APIs
that allow easier cross-platform integration; Section 3.5 details updates to the
system extending expressiveness beyond ALN ; finally, Section 3.6 presents
the results of experiments on desktop, mobile, browser, and microcontroller
platforms.

3.1 Background

Classical Semantic Web contexts are characterized by the consistent availabil-
ity of substantial computational and networking resources. In contrast, the
SWoE operates under markedly different conditions, with resource-constrained
hardware and micro-devices dispersed across various physical locations, acting
as sources of information. The availability of these devices is highly variable
and unpredictable, influenced by factors such as user and device mobility,
constraints of wireless communication links, and energy supply limitations.
Consequently, executing batch workloads on highly expressive and complex
Knowledge Bases is out of place in SWoE contexts. Instead, inference engines
must be capable of rapidly processing queries on smaller and less complex
annotations. This shift requires a reconsideration of the expressiveness of the
adopted logical languages, tailoring them to suit these specific operational
constraints. Historically, the intractable worst-case complexity of OWL DL
has led to the development of OWL 2 profiles. These profiles simplify the
language and the admissible KB axioms, enabling the use of efficient algo-

50

rithms while maintaining sufficient expressiveness for practical applications.
EL++ [3] expanded upon the basic EL (Existential Language) Description
Logic to accommodate a range of applications, particularly those involving
large ontologies with moderate expressiveness. The proposal introduced a
polynomial-complexity Ontology Classification algorithm, fostering the cre-
ation of high-performance EL++ classifiers such as ELK [57]. Similarly, one
of the initial methods for adapting non-standard inferences like Concept
Contraction and Concept Abduction to pervasive computing [92] involved
implementing structural algorithms on acyclic TBoxes within the AL (At-
tributive Language) DL through a mobile Relational Database Management
System (RDBMS) query layer.

The initial wave of mobile and IoT-focused inference engines adopted
streamlined methods compared to traditional Semantic Web reasoners to cope
with the limited memory capacity of devices. Pocket KRHyper [112], a Java
Micro Edition library for theorem proving and model generation based on
the hyper tableau calculus, was the earliest example of lightweight inference
engine, albeit suffering from the severe memory limitations of the target
platform. The µOR [2] reasoner implemented a simple resolution and pattern
matching algorithm on a subset of OWL-Lite. Analogously, MiRE4OWL
[58] was a rule-based mobile inference engine leveraging OWL-DL semantics,
resolved with the classic RETE algorithm.

More recently, efforts were devoted to miniaturize reasoning engines for
embedded devices. In [41] consequence-driven EL+ reasoning was ported
to a Programmable Logic Controller (PLC) for industrial automation. The
modular rule-based reasoner in [118] combined selective rule loading and a
two-stage RETE algorithm, exhibiting satisfactory performance on the Sun
SPOT sensor platform for small- and medium-sized ontologies.

A second category of reasoners includes those initially developed for tradi-
tional computer platforms and later adapted for mobile devices, capitalizing
on the growing availability of computational resources in smartphones and
tablets. As detailed in [18], five Java-based OWL reasoners were modified
for use on Android, though this adaptation required significant effort. In

51

[56], the ELK reasoner was re-engineered to transition from Java Standard
Edition (SE) to Android, minimizing memory usage and adding support for
multi-core CPU architectures. Beyond adaptations, native mobile inference
engines have also been developed. For instance, Mini-ME 2.0 [107] is designed
specifically for Android, functioning as both a matchmaker and a reasoner,
and maintains compatibility with Java SE. In [126] a rule engine for Android
adopts the novel RETEpool algorithm on OWL 2 RL rulesets, capable of
balancing memory usage and time performance. Mini-ME Swift [98] is the
first OWL reasoner for iOS, re-designed from the above Mini-ME using the
OWL API for iOS [96], an iOS-specific knowledge manipulation library.

The World Wide Web iself is a prevalent deployment environment for
new software tools and applications, and the browser has become the default
channel for many relevant scenarios [119]. Web applications typically exploit
remote services for DL reasoning. The Web-oriented JavaScript (JS) language
has been seldom chosen for reasoning engine development, primarily due to its
inferior performance compared to other programming languages, and because
it has been deemed simpler to invoke DL inferences through client-server
protocols such as OWLlink [69], which is supported by many Semantic Web
reasoners. A large number of semantic-enabled Web applications for conven-
tional desktop clients follow this approach, covering a wide range of domains;
unfortunately, both technological and user interface design choices prevent
their adaptation to mobile and ubiquitous contexts. Notable semantic-enabled
mobile-oriented Web apps include the DBpedia Mobile [8] and LOD4AR [132]
location-based discovery clients for mobile devices. OntoWiki Mobile [35] is a
mobile knowledge management applications exploiting HTML5 and jQuery
Mobile to locally store knowledge annotated by users in the field, even without
Internet connection, and synchronize it with a remote server when a con-
nection becomes available. Overall, the survey in [138] on semantic-enabled
mobile apps has found that only 4 out of 36 apps had been developed with
Web-based cross-platform technologies.

Efforts on using client-side Web technologies for cross-platform reasoning
engines are sparse. The EYE (Euler Yet another proof Engine) [131] is a

52

notable example, capable of forward and backward rule chaining over Euler
paths. It has been adapted to JS-based environments such as the Web and
Node.js,3 as made possible by employing a JS porting of the SWI Prolog [136]
engine. The MobiBench mobile semantic rule engine evaluation framework
[127] facilitates the integration of rule engines developed in JS for the Web and
other platforms. This integration is achieved through the Apache Cordova4

Software Development Kit (SDK). HyLAR+5 [121] is a hybrid OWL 2 EL
reasoner: both the server side and the client side can execute reasoning tasks
by running the same JS code with Node.js and AngularJS 6, respectively. It
leverages the JSW semantic technology framework for JS7, which includes
the BrandT browser-hosted OWL 2 EL inference engine [116].

WebAssembly [91] discloses a viable path to developing or porting reason-
ing engines to Web applications and stand-alone runtime environments like
Node.js with minimal performance penalty. Proposals, however, are in very
early stages. EYE JS 8 is an initial WebAssembly port of EYE.

Table 3.1 summarizes relevant features of related reasoning systems: with
respect to semantic matchmaking functionality as recalled in Section 1.2.2,
the “Full ” label refers to systems supporting only exact or full/subsume
match degrees [66], thus requiring that resources are subsumed by request;
the “Approximated ” label marks systems that are able to support further
match degrees like potential/intersection and partial/disjoint, respectively
when subsumption does not hold and when the conjunction of request and
resource is unsatisfiable. Finally, the Explanation column refers to the ability
of systems to provide formal justifications for their outcomes, e.g., “why”
subsumption does not hold between two concept expressions.

3Node.js: https://nodejs.org/
4Apache Cordova home: https://cordova.apache.org/
5HyLAR GitHub repository: https://github.com/ucbl/HyLAR-Reasoner
6AngularJS home: https://angularjs.org/
7JSW GitHub repository: https://github.com/JS-WindowFramework/JSW
8EYE JS GitHub repository: https://github.com/eyereasoner/eye-js

53

https://nodejs.org/
https://cordova.apache.org/
https://github.com/ucbl/HyLAR-Reasoner
https://angularjs.org/
https://github.com/JS-WindowFramework/JSW
https://github.com/eyereasoner/eye-js

Table 3.1: Features of related reasoning systems
Features Platforms

Name DL Algorithm family Matchmaking Explanation Language Web/Cloud Desktop Mobile Embedded

µOR [2] OWL-Lite- Pattern matching Full Java JVM JamVM

COROR [118] SHOIN (D) RETE Full Java JVM Sun SPOT

ELK [56] EL+ Consequence-based Java JVM Android

HermiT [38, 18] SROIQ(D) Tableaux Full Java OWLLink JVM Android

JFact [18] SROIQ(D) Tableaux Full Java OWLLink JVM Android

Konclude [115] SROIQV(D) Hybrid Full C++ OWLLink Native

Mini-ME [107] ALN Structural Full, Approx. Yes Java OWLLink JVM Android

Mini-ME Swift [98] ALN Structural Full, Approx. Yes Swift macOS iOS

MiRE4OWL [58] SHOIN (D) RETE Full C++ Native Windows

Pellet [18] SROIQ(D) Hybrid Full Yes Java JVM Android

PLC-based [41] EL+ Consequence-based SCL SIMATIC

Pocket KRHyper [112] ALC+ Tableaux Full Java JVM J2ME

RETEpool [126] OWL-RL RETE Full Java JVM Android

Tiny-ME ALN (D) Structural
Full,

Approx.
Yes

C, Obj-C,
Java

OWLLink,
JavaScript

Native,
JVM

Android,
iOS

Any with
C support

54

3.2 Inference services

The first release of Tiny-ME [94] has targeted the ALN DL, which has been
recalled and motivated in Section 1.1.1. It implements polynomial-complexity
structural algorithms on ALN concept expressions. This section concerns
the algorithmic implementation of the inference services, which have been
formally introduced in Chapter 1.

As recalled in Section 1.1.2, in the ALN DL, comparisons between un-
folded and normalized concept expressions basically come down to set opera-
tions. As an example, let us consider the following ALN TBox:

A ≡ ∀P.D ⊓ ≥ 3P

B ⊑ ∀P.D
C ⊑ B ⊓ ≥ 2P

E ⊑ D

F ≡ E ⊓ ¬D

By applying unfolding and CNF normalization, we get the following concept
expressions (CEs):

A → ∀P.D ⊓ ≥ 3P

B → B ⊓ ∀P.D
C → B ⊓ C ⊓ ∀P.D ⊓ ≥ 2P

D → D

E → E ⊓D

F → ⊥

It can be noticed B and C appear among the conjuncts of their own unfolded
concept expressions, while A does not: as explained in [4, §9.2.3], in ALN
DL an atomic concept must be included in its own unfolding iff it is the LHS
of an inclusion axiom, while it is omitted if it is the LHS of an equivalence
one.

55

Another noteworthy consideration concerns F , whose concept expression
became ⊥: F was originally defined as the intersection of E and ¬D, which
unfolds to E⊓D⊓¬D, resulting in a clear contradiction. Its concept expression
is therefore collapsed to ⊥ while computing the CNF, entailing that the F

concept is not satisfiable.

Finally, let us suppose we need to check whether subsumption holds
between A and B: after unfolding and normalizing, we just need the CEs of
A and C, i.e., the whole TBox is not required anymore. In this case, A ⊑ C

holds because ∀P.D is in both the CEs of A and C, and (≥ 3P) is more
specific than (≥ 2P). The exact algorithm for subsumption will be described
in what follows.

Preprocessing

Unfolding and CNF normalization are crucial preprocessing steps, there-
fore care has been devoted to their optimization. In [98], both were improved
by caching completely unfolded and normalized concepts. However, while
designing Tiny-ME it quickly became clear that caching could be extended to
intermediate unfolded concepts as well [94]: given an acyclic concept B, every
other concept C recursively unfolded as part of the unfolding of B is also
completely unfolded, making it suitable for caching. However, C is not yet in
normal form, therefore the concept cache must keep track of whether stored
concepts have been only unfolded or both unfolded and normalized. This
strategy has two benefits: (i) it enables the reuse of the unfolded description
of C as part of the normalization of further concepts; (ii) it minimizes com-
putation when C needs to be normalized, since the unfolding step is executed
just once.

Satisfiability and Subsumption

Satisfiability is trivially checked by performing CNF normalization. As
recalled in Section 1.1.2, a CNF-normalized concept expression A is either ⊥,
or the conjunction of an arbitrary number of supported constructs. In order
to check whether A is satisfiable, it is sufficient to verify that it is not ⊥.

56

Subsumption exploits the classic structural algorithm in [4]. Given two
CNF-normalized concept expressions R and S, to assess if R ⊑ S holds:

1. if R ≡ ⊥, then R ⊑ S.

2. for each atomic concept A in S, if A is not in R, then R ̸⊑ S.

3. for each negated atomic concept ¬A in S, if ¬A is not in R, then R ̸⊑ S.

4. for each role P such that ≤ xP is in S, if ≤ yP with x < y is in R,
then R ̸⊑ S.

5. for each role P such that ≥ xP is in S, if ≥ yP with x > y is in R,
then R ̸⊑ S.

6. for each role P such that ∀P.E is in S, if ∀P.F with F ̸⊑ E is in R,
then R ̸⊑ S.

7. otherwise, R ⊑ S.

Concept Contraction

Having R and S unfolded and CNF-normalized concept expressions in ALN ,
CC(R, S) is computed by means of the following structural algorithm:

1. set K := R and G := ⊤;

2. for each atomic concept A in K, if ¬A is in S, then move A from K to
G;

3. for each negated atomic concept ¬A in K, if A is in S, then move ¬A
from K to G;

4. for each role (object property) P such that ≥ xP is in K and ≤ yP

is in S with y < x, replace ≥ xP in K with ≥ yP and put ≥ xP in
conjunction with the concept expression for G;

57

5. for each role P such that ≤ xP is in K and ≥ yP is in S with y > x,
replace ≤ xP in K with ≤ yP and put ≤ xP in conjunction with the
concept expression for G;

6. for each role P s.t. ∀P.E is in K and ∀P.F is in S, if ∃ ≥ xP with
x > 0 either in K or in S, then compute Contraction recursively on
the fillers: ⟨G′, K ′⟩ = CC(E,F), put ∀P.G′ in conjunction with the
concept expression for G and replace ∀P.E with ∀P.K ′ in the concept
expression for K.

For example, referring to the above example TBox:
⟨G,K⟩ = CC(A,≤ 2 P) = ⟨≥ 3 P,≥ 2 P ⟩.

Concept Abduction and Bonus

Having R and S unfolded and CNF-normalized concept expressions in ALN ,
the structural algorithm for CA(R, S) is:

1. set H := ⊤;

2. for each (possibly negated) atomic concept A in R, if ̸ ∃ B in S s.t.
B ⊑ A, then put A in conjunction with the concept expression for H;

3. for each role P such that ≥ xP is in R, if ≥ yP is not in S or ≥ yP

is in S with y < x, then put ≥ xP in conjunction with the concept
expression for H;

4. for each role P such that ≤ xP is in R, if ≤ yP is not in S or ≤ yP

is in S with y > x, then put ≤ xP in conjunction with the concept
expression for H;

5. for each role P s.t. ∀P.E is in R and ∀P.F is in S, then compute
Abduction recursively on the fillers: H ′ = CA(E,F) and put ∀P.H ′ in
conjunction with the concept expression for H.

For example, referring to the above example TBox: H = CA(A,B) = ≥ 3 P .

58

The algorithm for finding the Bonus B of S w.r.t. R is the same for the
CA problem where R and S are swapped, i.e., R acts as resource and S as
request.

Concept Difference

Given two unfolded and CNF-normalized ALN concept expressions R and
S, CD(R, S) is computed structurally as in what follows:

1. if R ⊓ S ⊑ ⊥, i.e., R and S are not consistent, then use Concept
Contraction to retrieve the part K of S that is consistent with R.
Otherwise, K := S.

2. return the Concept Bonus between K and R: D := CB(R,K).

For example, referring again to the example TBox:
CD(B,A) = B and CD(A,B) = ≥ 3 P .

Concept Covering

The structural algorithm for CCov, given a set {R, S1, S2, ..., Sn} of unfolded
and CNF-normalized concept expressions, is:

1. set S := ∅ and H := R;

2. repeat the following steps until Smax ≡ ⊤:

(a) set rmin := ∥H∥ and Smax := ⊤;

(b) for each Si in S, if Si ⊓ R ̸⊑ ⊥ (i.e., Si and R are consistent)
and CD(Si, H) ̸≡ ⊤ (i.e., Si covers H), then compute Hi, ri :=

CA(H,Si). If ri < rmin, update rmin := ri, Smax := Si and
Hmax := Hi;

(c) if Smax ̸≡ ⊤, add Smax to Sc, remove it from S, and set H := Hmax;

3. return Sc, H.

59

In step 2, each iteration of the loop computes Hi and ri respectively as
the CA hypothesis and penalty with respect to the remaining uncovered part
H. The resource with minimal penalty, i.e., with maximal covering of H, is
added to the set Sc, until no resources further increase the covering.

Ontology Classification

Tiny-ME adopts a variant of the enhanced traversal algorithm in [5], which also
accounts for subsumption cycles detected while preprocessing the ontology.
Subsumption check results are cached, as customary for OWL reasoners,
though significant effort was devoted in avoiding checks whenever possible:
classification is performed according to the concept definition order [5], which
allows skipping the costly bottom search step of the traversal algorithm
for primitive concepts having acyclic descriptions. The exploitation of told
disjoints [124] and told subsumers has been implemented by pre-populating
the subsumption cache according to the explicitly stated subclass, class
equivalence, and class disjointness axioms. Moreover, the implementation of
synonym merging (e.g., if it is inferred that B ≡ C, then the taxonomy nodes
for B and C are merged) reduces memory usage and search time by making
the tree smaller.

Ontology Coherence

A naive approach involves performing CNF normalization for every concept
in the TBox [107]. However, previous experiments [98] have demonstrated
that this method can be time-intensive, especially for larger TBoxes. One
possible solution to mitigate this issue is the implementation of aggressive
caching policies for unfolded concepts, although this comes at the cost of
increased memory usage. Tiny-ME addresses this challenge by executing
the Coherence check using a modified version of the Classification algorithm,
which halts immediately upon detecting an unsatisfiable concept. Since
normalization in Tiny-ME is lazy, i.e., it occurs only when necessary for
an inference task, and considering that the Classification algorithm actively
avoids costly subsumption checks as much as possible, the total number
of required normalizations is also diminished. Consequently, this approach

60

typically yields a substantial enhancement in both time and memory efficiency
compared to the naive method. Furthermore, the Coherence check of a TBox
T can be skipped in the following cases:

• T is trivially incoherent if ∃ a concept expression C in T | C ⊑ ⊥;

• T is trivially coherent if T contains no disjoint concept axioms and
number restrictions are either absent or all of the same type (i.e., either
minimum or maximum cardinality).

Both conditions can be verified inexpensively while loading the KB, since
this only entails checking whether given constructors are in the TBox.

3.3 Architecture

In designing a reasoner capable of adapting to a broad spectrum of use cases,
several challenges emerge: the system must be flexible enough to cater to
diverse needs, user-friendly and straightforward to maintain, while also being
highly resource-efficient. Overlooking any one of these critical requirements
significantly hampers its successful application in SWoE scenarios. In order to
meet the above goals, the design of Tiny-ME has followed a few fundamental
criteria:

• Inference services ought to be implemented only once and designed
to function across the broadest possible range of platforms. This ap-
proach is vital because porting reasoning algorithms, especially when
optimization comes into play, poses significant challenges. By adopting
shared implementations, the maintainability of the overall system can
be substantially enhanced, streamlining development while ensuring
consistency and efficiency of algorithm outcomes and performance across
different environments.

61

Applications

Tiny-ME Core
Axiom Provider String Provider

Core interfaces Low-level API High-level API Desktop

Tiny-ME Java API Tiny-ME C API Tiny-ME Obj-C API

Windows Linux macOS Android iOS OWLLink

OWL API

<< implements >>

Cowl OWL API for iOS

Mobile / Embedded Web / Cloud

. . .NuttX

Figure 3.1: Tiny-ME high-level architecture.

• The implementation of inference services must be very efficient, particu-
larly regarding memory usage. This is crucial for enabling deployment
on small, resource-constrained devices, where optimal utilization of
limited memory is essential to effectively support useful inferences.

• Applications should be provided simple, language-specific APIs to in-
teract with the reasoner, and it must be feasible to develop one for a
new language with relative ease, leveraging the existing implementation
of inference algorithms. This approach guarantees that the system
maintains both flexibility and user-friendliness, accommodating a wide
range of development needs and preferences.

• It is advisable to segregate knowledge representation (KR) and reasoning
functionalities into distinct modules. KR incurs substantial computa-
tional resource costs, as OWL data models and parsers are typically
extensive in terms of both code and data. In prevalent interchange syn-
taxes for the Semantic Web, language constructs are essentially strings,
which take up significant amounts of memory and are sometimes not
strictly necessary for reasoning procedures. Additionally, the OWL 2
specification mandates support for the RDF/XML [103] serialization,
requiring the inclusion of XML parsers and further increasing code size
and memory demand.

62

High-level architecture

The overall high-level architecture of Tiny-ME is reported in Figure 3.1 and
described as in what follows:

• Core layer: its implementation adheres to standard C11 without re-
lying on compiler extensions or platform-specific API calls. The layer
provides highly optimized standard and non-standard inference algo-
rithms, supported by their respective data structures, and it is crafted
to remain independent of the way in which knowledge is represented or
stored. ALN OWL entities (i.e., named constructs like classes, object
properties, and named individuals) are represented as numerical iden-
tifiers, called entity pointers, and their string representation is never
required during the reasoning process. The conversion from structured
KB axioms to expressions of entity pointers is carried out through the
Axiom provider interface, which the reasoner consults when populating
its data structures. An optional writer API is able to carry out the
inverse transformation, by interacting with the String provider inter-
face for acquiring the string representations of entity pointers. In a
distributed SWoE architecture, some devices may lack the need or mem-
ory capacity for string representation capabilities. In such scenarios,
they can solely implement the Axiom provider API and still effectively
perform reasoning tasks on (unlabeled) entities.

• Platform-specific APIs: the modularity of the architecture facili-
tates the implementation of multiple APIs across various programming
languages, as detailed in Section 3.4. Generally, the adoption of C11 for
the reasoning core paves the way for an array of potential higher-level
APIs. This is primarily because the runtimes of most programming
languages provide, at a minimum, basic interoperability with C code.

Core architecture

The reasoning core can be compiled both as static or dynamic linking library,
and can run on any platform for which a C compiler is available. It is notewor-

63

TmeReasoner

TmeKB

TmeSemDesc

TmeAxiomProvider TmeStringProvider

TmeAbduction

TmeContraction

TmeComposition

TmeEntityPtr TmeCardinalityRole

TmeUniversalRole

TmeBonus

TmeTaxonomy

User interfaces Reasoner API Private data structures Public data structures

Figure 3.2: Tiny-ME core architecture.

thy that, while C lacks native object-oriented features, it is entirely feasible to
construct highly cohesive components by logically bundling structured data
with functions that operate on them. This approach has been consistently
applied across the core, leading to a codebase that is both highly modular
and easily maintainable. The key components of the core architecture are
depicted in Figure 3.2 and are described hereafter:

• TmeAxiomProvider: retrieval of axioms from KBs is abstracted away
by means of this interface. Implementors must essentially map ALN
OWL class expressions to TmeSemDesc structures, described hereafter.

• TmeStringProvider: returns string representations of entity pointers,
making it possible to visualize class expressions when using the built-in
writer API.

• TmeReasoner: implements reasoning tasks over ontologies, namely Clas-
sification and Coherence, and supplies a facade API to inference services
on class expressions, which are in turn provided by lower-level compo-
nents.

• TmeKB: exposes KB management primitives, which mostly involve load-
ing and preprocessing class expressions via unfolding and CNF nor-
malization. Both are lazy : an internal cache keeps track of whether a

64

concept has been only unfolded, or both unfolded and normalized, in
order to avoid unnecessary computations [98].

• TmeTaxonomy: allows manipulating the concept hierarchy resulting from
Classification, supporting insertion, deletion, merging, and retrieval of
ancestors and successors of classes.

• TmeSemDesc: the numerical representation of an ALN class expression
in CNF. It models the conjunction of CCN , C≥, C≤, C∀ components
storing (possibly negated) atomic classes, minimum cardinality, maxi-
mum cardinality, and universal object property restrictions, respectively.
Class expression elements are stored in vectors, whose type depends
on the kind of atom. In particular, atomic classes and their nega-
tion are represented by TmeEntityPtr, a typedef for an integer type;
TmeCardinalityRole models unqualified number restrictions with a
property identifier (TmeEntityPtr) and a cardinality (of integer type);
universal quantifiers are represented by TmeUniversalRole, using an
integer type for the property identifier and a pointer to the filler. The
whole class description is therefore made of just integers, allowing for a
compact memory representation and lower computational overhead.

• TmeAbduction, TmeContraction, TmeBonus, TmeComposition: model
the result of CA, CB, CC, and CCov, respectively. All these structures
also include a penalty score, as explained in Section 3.2.

3.4 High-level interaction

As introduced in Section 3.3, the integration of Tiny-ME in a variety of
platforms and technological stacks is facilitated by a number of high-level
APIs, described in what follows.

65

3.4.1 Platform-specific APIs

Tiny-ME provides the following platform-specific APIs:

• C: the native interface of the system, providing access to the public API
of the reasoning core. It achieves this by implementing the axiom and
string providers through the Cowl library, discussed in Chapter 2. This
interface is compatible with any platform that supports a C compiler,
making it a highly versatile choice. It is particularly recommended
for performance-critical and embedded software development scenarios,
as C remains the most widely used language in these areas due to its
efficiency and ease of implementation [46].

• Java: this interface is tailored for the Java SE and Android runtime
environments. It implements axiom and string providers through the
OWL API [49]. The data model is essentially a mapping between Java
classes and methods to the corresponding C structures and functions.
This is achieved via the Java Native Interface (JNI).9 For instance,
inference services are accessible through the Reasoner class, which
encapsulates the native TmeReasoner structure and conforms to the
OWL API’s OWLReasoner interface. Class expressions are represented
by the SemanticDescription class, linking to the native TmeSemDesc

structure. This pattern is replicated for other logic constructors. Signif-
icant attention has been given to the management of native memory:
Java objects that are backed by native structures are monitored by
the NativeMemoryManager, exploiting phantom references10 to track
objects on the verge of being garbage-collected, allowing for the timely
invocation of native deallocators.

• Objective-C: the preferred interface for iOS and macOS applications.
Axiom and string providers are implemented via the OWL API for iOS

9Java Native Interface: https://docs.oracle.com/en/java/javase/13/docs/specs/jni/

index.html
10PhantomReference: https://docs.oracle.com/en/java/javase/13/docs/api/java.

base/java/lang/ref/PhantomReference.html

66

https://docs.oracle.com/en/java/javase/13/docs/specs/jni/index.html
https://docs.oracle.com/en/java/javase/13/docs/specs/jni/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/ref/PhantomReference.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/ref/PhantomReference.html

[96]. As in the Java API, class instances and methods map lower-level
C structures and functions, although the wrapping logic is thinner:
since Objective-C is an extension of C, it does not require additional
interfaces, leading to a simpler architecture and enhanced performance,
as detailed in Section 3.6. Memory management in this environment is
also more straightforward, as Automatic Reference Counting (ARC)11

and the existence of reliable finalizers12 enable the synchronization of
the lifespan of C allocations with their Objective-C wrappers.

3.4.2 Server-side OWLlink API

To facilitate client-server interactions in Web environments and microservice
architectures for cloud and edge computing, Tiny-ME leverages and extends
the standard OWLlink protocol [69]. OWLlink provides a declarative interface
for OWL reasoners, enabling the assertion of axioms in KBs and the execution
of standard inference tasks via standard HTTP requests. Tiny-ME is equipped
to handle key reasoning services like Subsumption, Satisfiability, Classification,
and Coherence checks. Moreover, it introduces a novel extension to the
OWLlink protocol, adhering to the official protocol extension guidelines
[68], to incorporate non-standard reasoning capabilities. Drawing from the
inference definitions outlined in Section 3.2, new types of requests and their
corresponding responses have been defined, as highlighted in Figure 3.3, along
with their HTTP/XML binding:

• GetAbduction, GetBonus, GetDifference: used to invoke CA, CB, and
CD, respectively. These messages require two ExpressionOrIndivid-
ual arguments, encoding either an OWL class expression or a named
individual in the reference KB, corresponding to a request R and a
resource S. Replies to these inferences consist of: (i) an OWL class
expression, representing the uncovered part of a request in CA, the
additional information provided by a resource in CB or the remaining

11ARC: https://clang.llvm.org/docs/AutomaticReferenceCounting.html
12NSObject: https://developer.apple.com/documentation/objectivec/nsobject

67

https://clang.llvm.org/docs/AutomaticReferenceCounting.html
https://developer.apple.com/documentation/objectivec/nsobject

KBRequest

ExpressionOrIndividual
2 22

classes classes classes

KBResponse

owl:ClassExpression Norm
value: float1

class

1

GetAbduction GetCovering

classes

2
1

norm

norm

1
classes2 norm

1 uncovered
SetOfIndividuals

owl:NamedIndividual

selectedResources
1

individuals
0..*

1..*

resources

GetBonusGetDifference GetContraction

PairOfClassExpressionsWithNormClassExpressionWithNorm SetOfIndividualsWithClassExpressionAndNorm

Figure 3.3: OWLlink extension – requests and responses are grouped by color.

expression after a CD, respectively; (ii) a non-negative penalty score,
that is the semantic distance of R from S, computed as the CNF norm
of the returned class expression, to be intended as the explanation of
the numerical result.

• GetContraction: the message requires two ExpressionOrIndividual ar-
guments modelling a request R and a resource S. The response object
consists of two OWL class expressions, corresponding to the conflicting
requirements G (Give up) and the contracted (compatible) version K

(Keep) of R, with a penalty score measuring the incompatibility degree
between R and S.

• GetCovering : the request for a CCov non-standard reasoning service
includes an ExpressionOrIndividual argument R and one or more OWL
individuals in the KB acting as available resources. This service replies
with the subset of the input resources able to cover the request as much
as possible, together with an OWL class expression of the uncovered
part (possibly ⊤) and a penalty score evaluating the percentage of R
that has not been covered.

68

A fork of the Java-based OWLlink API 13 [81] compatible with OWL API
version 5 has been developed to implement the extended interface.14 It should
be pointed out that Tiny-ME currently does not support Tell OWLlink
requests to assert axioms to a KB; they are left for a future update. Load

Ontologies requests are supported, instead, for loading a KB from a URL. A
Dockerfile is available on Tiny-ME’s homepage to build a Docker15 container
featuring the reasoner working as an OWLLink server.

3.4.3 Client-side Web API

In order to support client-side reasoning in Web contexts, a port of the system
to the WebAssembly runtime has been developed [71], allowing Tiny-ME to
run on all major modern desktop and mobile Web browsers. Web developers
can use the reasoner through a straightforward JS API, mapping the low-level
native API. This has been enabled by the highly portable nature of the
system’s C core, which allows it to be cross-compiled for the WebAssembly
runtime through the Emscripten16 toolchain, and then invoked from JS.

Emscripten does provide mechanisms to call C functions from JS,17 but
they are cumbersome and bug-prone, as they rely either on specifying function
signatures via strings, or on manually marshalling parameters to appropriate
types. A better alternative involves creating JS wrappers for all exported C
functions, though this results in a procedural API, which is rather unnatural
for JS development, and leaves most native memory management to the
programmer. A third method consists in providing a thin object-oriented
C++ wrapping layer and generating bindings to JS classes through Embind.18

13OWLlink adapter: https://github.com/ignazio1977/owllink-owlapi
14OWLlink matchmaking extension: https://github.com/sisinflab-swot/

owllink-matchmaking-extension
15Docker: https://www.docker.com/
16Emscripten: https://emscripten.org
17Connecting C and JavaScript: https://emscripten.org/docs/porting/connecting_

cpp_and_javascript/Interacting-with-code.html
18Embind documentation: https://emscripten.org/docs/porting/connecting_cpp_and_
JS/embind.html

69

https://github.com/ignazio1977/owllink-owlapi
https://github.com/sisinflab-swot/owllink-matchmaking-extension
https://github.com/sisinflab-swot/owllink-matchmaking-extension
https://www.docker.com/
https://emscripten.org
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html
https://emscripten.org/docs/porting/connecting_cpp_and_JS/embind.html
https://emscripten.org/docs/porting/connecting_cpp_and_JS/embind.html

Tiny-ME C++ API
Tiny-ME Core Cowl

Emscripten SDK

Embind
useCMake build system

Tiny-ME JS API
JavaScript loader Wasm module

Web browser
useJavaScript engine Wasm virtual machine

Figure 3.4: Porting workflow and architecture of Tiny-ME for WebAssembly.

This results in a more natural object-oriented JS API, and allows delegating
most native memory management to the C++ runtime. Thus, the porting
workflow of the reasoner, illustrated in Figure 3.4, has involved the following
steps:

• Implementing an object-oriented C++ API by wrapping the Tiny-ME
core component and the Cowl library, used by the reasoner to access
and parse OWL 2 ontologies.

• Providing appropriate binding annotations, in order to allow Embind
to generate a JS interface that directly maps the low-level C++ API.

• Configuring the CMake19 build system to use Emscripten and invoking
it to cross-compile the system for the WebAssembly runtime.

Emscripten generates two output artifacts: a Wasm module containing
bytecode for the WebAssembly virtual machine, and a JS file responsible for
loading the module and setting up the runtime environment. The latter can
19CMake home: https://cmake.org

70

https://cmake.org

Cowl

Tiny-ME Core C++ API

Reasoner

SemanticDescription

TmeReasoner

TmeSemDesc

CowlIRI

...

...

C structures C++ classes

CowlOntology

...

Factory

CardinalityRestriction

FillerRestriction

IRI

CPtr<T>

C++ classes exposed to JavaScript

Figure 3.5: Low-level architecture of Tiny-ME for WebAssembly.

be imported in any Web application by means of HTML script tags or JS
modules,20 allowing client-side code to use the reasoner as a regular JS library.

Figure 3.5 summarizes the low-level system architecture. The object-
oriented design of the C API of the reasoner, described in Section 3.3, has
resulted in a relatively straightforward mapping of C structures and related
functions to C++ classes and methods. One friction point is due to the
significantly different memory management paradigms of the underlying
libraries, as the Tiny-ME core follows the traditional malloc/free approach,
while Cowl adopts reference counting. Care has been devoted to standardizing
object lifecycles under the Resource Acquisition Is Initialization (RAII)
paradigm, by encapsulating C pointers in a CPtr<T> template type, that
implements type-specific memory management logic. This approach simplifies
the handling of dynamic memory by delegating it to the C++ runtime, and
allows the resulting JS bindings to correctly dispose of unneeded allocations.

Compatibility of the JS API has been tested on the following browser/-
platform combinations:

• Chrome (version 90.0.4430) and Firefox (version 88.0.1) on Windows
10 May 2020 Update, Ubuntu 20.10, macOS Big Sur and Android 10;

20JS modules: https://developer.mozilla.org/en-US/docs/Web/JS/Guide/Modules

71

https://developer.mozilla.org/en-US/docs/Web/JS/Guide/Modules

• Edge (version 88.0.705.74) on Windows 10;

• Safari (version 14.0) on macOS Big Sur, iPadOS 14 and iOS 14.

Full compatibility has been observed in all tests. The usefulness of the client-
side API was demonstrated in [72], where a preliminary WebAssembly port
was included in a Web application for semantic-based quality of experience
adaptation in Web multimedia streaming. A further usage example will follow
in Section 5.4.

3.5 Evolution

The reasoner has undergone significant evolutions since its original 1.0 release
[94]. This section provides details about the latest design and development
efforts, which have been devoted in three fundamental areas:

• Extending the expressiveness of the provided inference services by
providing support for additional DL constructs.

• Improving the flexibility of penalty computation for non-standard infer-
ences, so that they can be tailored for specific use-cases and applications.

• Improving the architecture of the reasoner, and optimizing it so that it
can be deployed to increasingly low-footprint platforms.

An evaluation of the latest Tiny-ME version (1.3), with regard to inference
correctness and performance, is provided in Section 3.6.3. The updated
system is significantly more efficient than the previous iteration with respect
to both turnaround time of inferences and memory usage, and is able to run
demanding inference tasks, such as ontology classification, on microcontrollers
with less than 100 KiB of RAM.

72

3.5.1 Support for the ALN (D) DL

The expressiveness of inference services provided by the reasoner has been
extended to support the following constructs:

• Axioms about ⊤: it is now possible to specify that ⊤ is a subclass of
an arbitrary conjunction of constructs, including cardinality and value
restrictions. This allows stating ontological knowledge that affects all
the concepts and individuals in the KB.

• Functional roles: one can now specify that some role R is functional,
i.e., that for each individual I1, there can be at most one distinct
individual I2 such that I1 is connected by R to I2.

• Role ranges: it is now possible to specify that the range of some role
R is an arbitrary class expression C, i.e., if some individual is connected
by R with an individual I, then I is an instance of C.

Support for functional roles and role ranges is actually a byproduct of the
improved handling of axioms about ⊤, as they are semantically equivalent
to ⊤ ⊑ ≤ 1R, and ⊤ ⊑ ∀R.C, respectively. Axioms about ⊤ are supported
by explicitly handling the ⊤ concept expression during the unfolding and
normalization preprocessing steps: previously, the ⊤ concept expression was
ignored by the reasoner as it would result in an infinite unfolding if it contained
value restrictions. However, since by definition ∀C : C ⊑ ⊤, which in ALN
entails that the ⊤ concept expression is common to all concept expressions
C, it can be subtracted through the Concept Difference inference service
from all C, as long as its compatibility with C is checked beforehand. The
unfolding and normalization procedures can thus be modified as follows:
firstly, C is unfolded and normalized as usual; subsequently, C is checked for
compatibility with ⊤: if compatibility holds, Concept Difference between C

and ⊤ is performed; otherwise, C is collapsed to ⊥.

It can be trivially proved that the application of the modified unfolding
and CNF normalization procedure results in a concept expression that is

73

equivalent to the original concept expression, which in turn proves that the
correctness and completeness of inferences is maintained.

Proof. Let T be an ALN TBox; let C and ⊤d be arbitrary ALN concept
expressions; let T |= ⊤ ⊑ ⊤d, or equivalently T |= ⊤ ≡ ⊤d. If C ⊓ ⊤d ⊑ ⊥,
then C ⊓ ⊤ ⊑ ⊥, i.e., C is unsatisfiable. Otherwise, let Cd = CD(C,⊤d).
Then, by the definition of CD: Cd ≡ C ⊓ ⊤d ≡ C ⊓ ⊤ ≡ C. ■

Other than supporting axioms about ⊤, inference services have been
extended to concrete domains through OWL datatypes, effectively increasing
the expressiveness of the reasoner to the ALN (D) DL. Tiny-ME adopts a
layered approach to concrete domains, where datatypes as defined in the
system core have specific semantics, and high-level APIs provide a mapping
between OWL and Tiny-ME datatypes. Datatype support, as implemented
in the core, is subject to the following semantics:

• All datatypes are disjoint, i.e., the reasoner assumes that their
intersection is always unsatisfiable. The only exception is TME_DT_TOP,
the top datatype, which subsumes all other datatypes.

• Datatypes can be restricted: it is possible to define data ranges, re-
stricting the range of allowed values, by applying type-specific predicates
to the original datatype.

• Data ranges do not need to be disjoint: data ranges obtained
by restricting the same datatype do not need to be disjoint, enabling
support for datatype subsumption (D1 ⊑ D2, with D1 and D2 data
ranges of the same datatype). The reasoner is able to check subsumption
between two different datatypes, however in that case it never holds,
with the exception of TME_DT_TOP.

• Data ranges can be intersected: it is possible to combine predicates
on the same datatype through the intersection operator (D1 ⊓D2, with
D1 and D2 predicates on the same datatype). The reasoner also allows

74

intersecting different datatypes, however the result is always TME_DT_-

BOTTOM, the unsatisfiable datatype.

• Datatypes and predicates can be the fillers of universal quan-
tifiers: datatype support is plugged into the existing architecture by
allowing the fillers of (functional) role value restrictions to be datatypes
and predicates (∀R.D, with D being a datatype or predicate).

With respect to OWL 2, support for concrete domains enables working
with datatypes and data properties, i.e., properties that connect individuals
to literals. Data ranges can also be defined, by restricting the value spaces of
datatypes through a restraining facet, as per the specification. Furthermore,
support was added for datatype definitions, which allow defining new datatypes
as being semantically equivalent to some data range. Table 3.2 lists all the
new OWL constructs supported by the reasoner.

Table 3.2: New supported OWL 2 features in Tiny-ME 1.3.

Axioms
ObjectPropertyRange, FunctionalObjectProperty, DataPropertyRange,
FunctionalDataProperty, DatatypeDefinition

Datatypes

rdf:PlainLiteral, xsd:integer, xsd:long, xsd:int, xsd:short, xsd:byte, xsd:negativeInteger,
xsd:nonPositiveInteger, xsd:positiveInteger, xsd:nonNegativeInteger, xsd:unsignedLong,
xsd:unsignedInt, xsd:unsignedShort, xsd:unsignedByte, xsd:float, xsd:double, xsd:dateTime,
xsd:string, xsd:hexBinary, xsd:base64Binary, xsd:anyURI, xsd:boolean, xsd:XMLLiteral

Data
ranges

DataIntersectionOf, DataAllValuesFrom, DataSomeValuesFrom, DataMinCardinality,
DataMaxCardinality, DataExactCardinality, DatatypeRestriction

Facets minInclusive, minExclusive, maxInclusive, maxExclusive, minLength, maxLength, length

3.5.2 Improved penalty computation

Penalty computation for non-standard inference services can be summarized
as in Equation 3.1:

penalty(x, y) =Nxy +

Mxy∑︂
i=1

|rxi − ryi|
max(rxi, ryi)

+

Kxy∑︂
i=1

|dxi − dyi|
2 ·max(|dxi|, |dyi|)

+

Lxy∑︂
i=1

penalty(uxi, uyi)

(3.1)

75

with:

• x, y: arbitrary concept expressions (resource and hypothesis for CA,
resource and give up for CC).

• Nxy: number of atomic and negated concepts that contribute to the
penalty.

• Mxy: number of cardinality restrictions that contribute to the penalty.

• Kxy: number of datatype restrictions that contribute to the penalty.

• Lxy: number of value restrictions that contribute to the penalty.

• rxi, ryi: cardinalities of number restrictions that contribute to the
penalty.

• dxi, dyi: datatype restrictions (e.g., minInclusive, minExclusive, ecc.)
that contribute to the penalty.

• uxi, uyi: fillers of value restrictions that contribute to the penalty.

The datatype restriction component in the above formula is related to
datatypes with number semantics, the only datatypes currently supported by
the system. In this case, the penalty score is computed similarly to cardinality
restrictions, i.e., as the relative difference of two values (|x− y|/max(|x|, |y|)).
However, since numerical values for datatypes may have opposite signs, which
entails that the relative difference function has a maximum in 2.0 rather than
1.0, the score is computed as 1/2 · (|x− y|/max(|x|, |y|)).

Other than being rather static, with no way for the user to tailor penalty
computation for specific use cases and applications, the current penalty system
sometimes leads to undesired outcomes. As an example, if two concepts have
different taxonomic depths, then the “deeper” concept usually has a larger
effect on the penalty score as a result of concept unfolding, which usually
requires careful taxonomy engineering in order to ensure that concepts that
may take part in semantic matchmaking are similarly weighted. Another issue

76

concerns cardinality and datatype restrictions: if the numerical values of the
restrictions are large but close, their relative differences are small, therefore
they contribute very little to the penalty score. This is problematic because
sometimes restriction values may vary in a small range around a common
(large) origin, which reduces their relevance when compared with smaller
numerical values. Penalty computation has been therefore modified as in
Equation 3.2:

penalty(x, y) =

Nxy∑︂
i=1

αci · (1 + βci)+

Mxy∑︂
i=1

αri · |rxi − ryi|
2 ·max(|rxi + βri|, |ryi + βri|)

+

Kxy∑︂
i=1

αdi · |dxi − dyi|
2 ·max(|dxi + βdi|, |dyi + βdi|)

+

Lxy∑︂
i=1

αui · [penalty(uxi, uyi) + βui]

(3.2)

Basically, multiplicative factors (αi ∈ R, weights) and additive factors (βi ∈ R,
biases) are added, which are configurable for each class, datatype and role.
Appropriate default values can also be set globally. A few considerations are
necessary:

• The cardinality restrictions component is modified to be similar to that
of the datatype restrictions, as adding the bias can cause the value to
become negative.

• The bias does not appear in the numerator of cardinality restrictions
and datatypes as it is elided by the difference.

• Biases are unnecessary for atomic concepts, negated concepts, and value
restrictions, as they could be absorbed into the weight, however they
have been retained for consistency with the other components.

The proposed formula enables the attribution of different weights to con-
cepts, datatypes and roles, and also allows the numerical origin of cardinality

77

Table 3.3: Annotation properties for weights and biases.

Annotation property Corresponding parameter

swot:conceptWeight αc, weight for atomic and negated concepts
swot:conceptBias βc, bias for atomic and negated concepts
swot:objectCardinalityWeight αr, weight for cardinality restrictions on object properties
swot:objectCardinalityOrigin −βr, origin for cardinality restrictions on object properties
swot:dataCardinalityWeight αr, weight for cardinality restrictions on data properties
swot:dataCardinalityOrigin −βr, origin for cardinality restrictions on data properties
swot:dataRestrictionWeight αd, weight for value restrictions on data properties
swot:dataRestrictionOrigin −βd, origin for value restrictions on data properties
swot:objectValueWeight αu, weight for value restrictions on object properties
swot:objectValueBias βu, bias for value restrictions on object properties

and datatype restrictions to be shifted so that they are centered more ap-
propriately depending on the domain of interest. The ability to set different
weights for each concept also has the potential to solve the often unwanted
asymmetries deriving from concepts with different taxonomic depths. As an
example, this system could allow cancelling weights of all the concepts with
the exception of “leaf” ones that are intended to contribute to the penalty,
which is also simplified by the aforementioned default mechanism. For com-
patibility with the early formula in Equation 3.1, the following default values
are adopted:

• αc, αd, αu = 1.0

• αr = 2.0

• βc, βr, βd, βu = 0.0

Other than through the reasoner’s API, weights and biases can be specified
within OWL ontologies through annotation assertion axioms. In this case, the
subject of the assertion is the IRI of the targeted OWL entity, the predicate
is one of the annotation properties in Table 3.3, whose IRIs fall under the
swot namespace (http://swot.sisinflab.poliba.it/owl#), and the object
is a literal that represents the weight or bias. As a special case, the IRI of
the subject may be swot:defaultWeight, in which case default values are
updated.

78

3.5.3 Updated architecture

Datatype support

The core of the reasoner adopts a plugin approach to concrete domains,
allowing high-level APIs to define their own datatypes according to a set of
pre-defined semantics, specifying allowed restrictions and how the datatype
is processed during inferences. This system allows defining multiple disjoint
datatypes that share the same semantics, i.e., that can be processed in an
algorithmically analogous way. Furthermore, implementing new datatype
semantics can be easily achieved by providing a set of primitives that perform
basic operations on data ranges, such as their intersection, containment,
difference, and so on. This extensible system may allow the reasoner to
support custom datatypes beyond those defined by OWL 2.

Datatypes are represented by TmeDatatype, an integer type that allows
high-level APIs to define supported datatypes and their semantics via the
tme_datatype_def function. Invoking the function generates a new datatype,
whose bits are the encoding of:

1. A TmeDataSemantics enumeration, used by the reasoner to select the
set of manipulation primitives to use when handling the datatype. The
values the enum can take are currently: TME_DS_NONE for datatypes
that do not provide restrictions, and TME_DS_INT or TME_DS_FLOAT for
datatypes with integer and floating point semantics, respectively.

2. An ascending ordinal, that allows distinguishing one datatype from
another.

Data ranges are encapsulated within the TmeDataRange structure, com-
prising a TmeDatatype and an optional restriction field. This field can be
either TmeIntRestr or TmeFloatRestr, denoting minimum and maximum
value restrictions for integer and floating-point data types, respectively. Data
property value restrictions (DataAllValuesFrom in OWL 2) are finally mapped

79

into the TmeDataRestr structure which, analogously to object property value
restrictions, contains a TmeEntity identifier for the data property, and a
TmeDataRestr filler. Data property value restrictions have been exposed in
TmeSemDesc through a dedicated field. Regarding data property cardinality
restrictions, neither TmeSemDesc modifications nor inference level changes have
been required. The existing data structures are sufficient to represent the
corresponding OWL constructs, now supporting restrictions on both object
and data properties.

These changes have enabled supporting datatypes such as integers, floats,
doubles, booleans, etc. but also strings, dates and URIs, operating as follows:

1. Support for the pattern facet has been discarded at the moment, due
to complexity and code size concerns: finding out whether a regular
expression is a subset of another one would require the inclusion of a
regular expression library that supports set operations, which would
significantly increase the overall size of the library.

2. The remaining facets required by the specification (minInclusive, minEx-
clusive, maxInclusive, maxExclusive, minLength, maxLength and length)
have been mapped to the TmeIntRestr and TmeFloatRestr structures.

3. For datatypes whose literal representation is different from that of an
integer (e.g. xsd:dateTime), a conversion mechanism from literal to
integer and vice versa has been implemented. In the case of dates,
the date literal is converted into Unix time,21 allowing the reasoner to
treat it as an integer datatype, and then converted back to a string for
visualization purposes.

Following this strategy, support for many of the OWL 2 datatypes has been
provided in a relatively non-invasive and lightweight manner, with enough
flexibility to easily allow support for additional datatypes.
21Computed as the seconds elapsed since midnight, January 1, 1970.

80

Penalty computation

The enhancements to penalty computation described in Section 3.5.2 are
facilitated by the TmeWeightMap data structure and its API, which supports
setting and retrieving weights and biases used to control the computation of
penalty scores of non-standard inference services, as described in Section 3.5.2.

Other than setting weights and biases programmatically, they can be
automatically parsed from annotations in the source ontology, in which case
annotation axioms are processed alongside logical axioms when instantiating
the reasoner, and the TmeWeightMap structure is updated accordingly.

Optimizations

The updated system implements a plethora of architectural and low-level
optimizations, which together enable its deployment to the very low end of
the SWoE device spectrum, as will be showcased in Section 3.6. The most
relevant optimizations are reported hereafter.

• Tiny-ME is now built on top of the uLib library, which acts as the
foundation of the whole KRR infrastructure, providing highly optimized
data structures that are shared between Cowl and the Core component,
allowing for a reduced code section when the two components are used
simultaneously, such as when using the C API of the system.

• The axiom streams feature of the Cowl library has been adopted by the
Tiny-ME C API. In the previous iterations, the ontology document was
first parsed into a CowlOntology data store, which was later queried
in order to populate the reasoner’s internal data structures. Version
1.3 parses the ontology as an axiom stream (see Section 2.4), and each
axiom is translated and added to the reasoner’s internal knowledge base
on the fly. This significantly lowers the memory peak during reasoner
initialization, as the axiom store and the reasoner are never simultane-
ously in memory, and allows skipping the processing of unsupported
axioms and other extra-logical constructs such as annotations.

81

• The most performance-critical data structures have been further opti-
mized, focusing on memory usage and computation time. As an example,
the TmeSemDesc structure, representing ALN concept expressions, has
been redesigned so that its baseline memory usage is lower, and it takes
up progressively more memory the more construct types it contains.
Furthermore, vectors of constructs are kept in sorted order, so that
queries can occur in O(log(N)) time via binary search, while still keep-
ing a compact in-memory representation which would be lost by using
alternate data structures such as hash tables or trees. This of course
entails that insertion and removal of constructs happen in O(Nlog(N))

time, though it still results in an overall performance gain as the data
structures are read much more often than they are modified. Finally,
the structure now internally tracks its unfolding and normalization
state, eliminating the need to maintain a dedicated cache. This saves
memory, due to the absence of a separate data structure, but also time,
as checking whether the description needs to be unfolded or normalized
can be done by accessing an internal field rather than through a much
more expensive hash table lookup. The TmeTaxonomy data structure
has been also optimized, by reducing the baseline memory usage of
each node and removing the subsumption cache, obsoleted by the much
improved performance of TmeSemDesc during queries.

3.6 Evaluation

This section reports the results of a number of experimental campaigns carried
out with Tiny-ME on various reference testbeds and inference tasks, with
the goal to validate its adaptability to different technological and resource
constraints, and to compare it to other state-of-the-art reasoning systems.

82

3.6.1 Workstation and mobile

The first experimental campaign has been carried out in [94] to evaluate the
computational performance of Tiny-ME 1.0 in Ontology Classification and non-
standard inference tasks. Tests have been executed on small workstation and
mobile platforms by means of the evOWLuator framework (see Chapter 4).
The workstation testbed is an Apple Mac Mini (2014)22, while mobile tests
have been carried out on an Apple iPhone 7 23 and a HTC/Google Nexus 9
tablet24.

The dataset exploited for the classification test consists of 1364 knowl-
edge bases obtained from the 2014 OWL Reasoner Evaluation Workshop
competition25 out of the 16555 KBs in the DL classification corpus (8.24%),
considering only KBs having at most ALN as indicated expressiveness. As
said, tests refer to both workstation and mobile platforms.

Correctness evaluation has involved comparing the outputs of the system
with Konclude and Mini-ME Swift, used as test oracles respectively for
Ontology Classification and the non-standard Matchmaking task. All Tiny-
ME variants have provided correct and complete inferences for all supported
ontologies and reasoning tasks.

In what follows, all performance results are the average of five cold runs.
Peak memory usage refers to the maximum resident set size (MRSS) of the
reasoner process, measured by means of the getrusage POSIX call on iOS
and Android, and by evOWLuator itself on desktop/workstation platforms.
Standard deviations for time and memory results are not reported to avoid
clutter in tables and plots, as they are consistently small (about 5% and 1%
of the mean values, respectively).
22Intel i7 4578u dual-core CPU at 3.0 GHz, 16 GB DDR3 RAM at 1600 MT/s, 1 TB HDD
+ 128 GB SSD (Fusion Drive), macOS Mojave 10.14.5

23Apple A10 CPU (2 high-performance cores at 2.34 GHz and 2 low-energy cores), 2 GB
LPDDR4 RAM, 32 GB flash storage, iOS 10.1.1

24Nvidia Tegra K1 dual-core CPU at 2.3 GHz, 2 GB LPDDR3 RAM at 1600 MT/s, 32
GB flash storage, Android 7.1.1 Nougat, patch level 5 October 2017

25ORE 2014 corpus: http://dl.kr.org/ore2014

83

http://dl.kr.org/ore2014

Konclude
Mini-ME Java SE

Mini-ME Swift
Tiny-ME 1.0 C

Tiny-ME 1.0 Java SE
Tiny-ME 1.0 ObjC

0.01 0.1 1 10 100
0.001

0.01

0.1

1

10

100

(a) Time (s) by ontology size (MiB).
0.01 0.1 1 10 100
1

10

100

1000

10000

(b) Memory peak (MiB) by ontology size (MiB).

Figure 3.6: Comparison of classification time and memory peak on workstation.

Konclude has been considered as reference reasoner, due to previous
campaigns [84, 98] indicating it is the most reliable and high-performance
reasoner with respect to Ontology Classification. Basically, it has been selected
as an oracle for inference correctness, whilst the performance report does not
imply a direct comparison with Tiny-ME, as the two systems are grounded
on DLs with different expressiveness and diverse feature sets. However, since
no other actively developed reasoner targets the ALN DL specifically (and a
fair comparison is only possible with Mini-ME), Konclude performance has to
be taken into consideration when assessing the system. Figures 3.6a and 3.6b
depict inference turnaround time and memory peak as a function of ontology
size. The comparison involves the Tiny-ME C, Java SE and Objective-C
(ObjC) platform-specific interfaces, Mini-ME 2.0 for Java SE, and Mini-ME
Swift for macOS.

Aggregated performance metrics, such as those reported in Table 3.4,
refer to the set of 1168 ontologies that all reasoners could classify correctly
within a 20 minutes timeout (wall-clock time) and with no runtime errors.
This is required to allow for a fair comparison of cumulative execution times.
Conversely, scatterplots show all data points for all reasoners.

As highlighted in Table 3.4, Tiny-ME C has outperformed all the other
systems with respect to both time and memory usage. The gap is particularly

84

Mini-ME Android Tiny-ME 1.0 Android Mini-ME Swift iOS Tiny-ME 1.0 iOS

0.01 0.1 1 10 100
0.01

0.1

1

10

100

1000

(a) Time (s) by ontology size (MiB).
0.01 0.1 1 10 100

100

1000

(b) Memory peak (MiB) by ontology size (MiB).

Figure 3.7: Comparison of classification time and memory peak on mobile.

evident for ontologies smaller than 1 MiB, which is a relevant outcome for
resource-constrained SWoE scenarios.

The Objective-C API exhibits lower times and memory usage than the Java
one, as expected due to thinner Objective-C wrappers than those necessary
to interface with the JNI, as explained in Section 3.4.1. Tiny-ME ObjC
and Mini-ME Swift are fairly close, with the former having slightly better
performance: even though they share the same OWL parser and data model,
Tiny-ME ObjC benefits from the more efficient C core. Mini-ME 2.0 and
Tiny-ME Java SE show similar trends in terms of processing time and memory
occupancy for small ontologies, but they diverge when the input size grows
(see Table 3.4). Both systems use the OWL API 3.x library for ontology
parsing, which contributes the most to the overall classification time for
smaller ontologies; as the size grows, reasoning time becomes dominant and
the benefits of the C core get evident. The analysis of memory peaks produces
analogous findings, reported in Table 3.4.

Figure 3.7 plots classification results obtained by Mini-ME and Tiny-ME
variants built and run on the Android and iOS operating systems. For both
mobile platforms, performance analysis confirms observations made on the
workstation tests. Reasoners running on iOS have been able to process all
the ontologies in the dataset within the imposed timeout and without errors,

85

Table 3.4: Dataset-wide evaluation results for classification.

Platforms Reasoners
Errors
and

Timeouts

Parsing
Time (s)

Classification
Time (s)

Minimum
Memory

Peak (MiB)

Maximum
Memory

Peak (MiB)

Workstation

Konclude 0 82.16 64.37 15.53 1559.52
Mini-ME
Java SE

196 443.01 4516.83 62.49 11237.72

Mini-ME
Swift

0 131.80 30.08 8.41 1065.92

Tiny-ME
1.0 C

0 27.26 8.41 0.96 307.55

Tiny-ME
1.0 Java SE

0 447.96 67.02 62.98 1408.6

Tiny-ME
1.0 ObjC

0 131.14 12.31 5.62 1032.87

Mobile
platforms

Mini-ME
Android

237 326.71 8084.61 43.09 259.88

Tiny-ME
1.0 Android

9 343.05 96.54 44.18 133.71

Mini-ME
Swift iOS

0 450.07 344.95 24.94 1140.18

Tiny-ME
ObjC iOS

0 446.41 113.68 23.95 1117.37

Table 3.5: Features of KBs used for non-standard inference tests.

Knowledge Base Toy Agriculture Building MatchAndDate

Size (KiB) 30.43 128.35 142.08 590.54
#concepts 48 134 180 157
#roles 8 17 27 11
#instances 7 16 29 100
#matchmaking 28 48 493 10000

while Android reasoners have started running out of memory while classifying
ontologies larger than about 20 MiB. This issue is evident in both Figure 3.7,
where missing data points are observable for larger ontologies on Android, and
Table 3.4, which shows lower maximum memory peaks for Android reasoners
compared to their iOS counterparts, attributable to memory exhaustion
errors.

All Tiny-ME variants have been also evaluated on non-standard infer-
ence tasks, using four ALN KBs summarized in Table 3.5. Following the
approach in [98], a matchmaking task starts with a compatibility check be-

86

Mini-ME Java SE
Mini-ME Swift
Tiny-ME 1.0 C

Tiny-ME 1.0 Java SE
Tiny-ME 1.0 ObjC
Mini-ME Android

Tiny-ME 1.0 Android
Mini-ME Swift iOS
Tiny-ME 1.0 iOS

10 100
1

10

100

(a) Time (ms) by ontology size (KiB)
10 100

1

10

100

(b) Memory peak (MiB) by ontology size (KiB)

Figure 3.8: Overall processing time and memory peak for the matchmaking task.

tween a ⟨request, resource⟩ pair: Concept Abduction is performed in case
their conjunction is satisfiable, otherwise Concept Contraction is executed,
followed by Concept Abduction on the contracted version of the request. This
corresponds to the matchmaking scheme outlined in Section 1.2.2, bar the
final Concept Bonus calculation.

Figure 3.8 recalls main outcomes. It should be noted that ontology size
varies between reasoners using the OWL API for iOS and Cowl, which only
support the RDF/XML and functional serializations, respectively. The latter
has been also adopted for reasoners using the Java OWL API. Results are
similar to those of Classification tests: Tiny-ME C significantly outperforms
the other reasoners; Mini-ME Swift and Tiny-ME Obj-C have similar behavior,
and they are both more efficient than Java-based implementations. Figure 3.8a
highlights lower turnaround times on Android than on Java SE, as the overall
time includes parsing, which is slower on the Mac Mini compared to the Nexus
9 (the latter has faster mass storage). Figure 3.8b shows that the Android
and Java SE variants have similar memory requirements, with slightly higher
peaks reached on Java SE: this is presumably because the garbage collector
is triggered more frequently on mobile, as a consequence of stricter resource
management policies. The opposite trend is observed on iOS because, as
stated in [98], iOS reasoner variants are affected by a systematic memory

87

overhead due to their graphical user interface, while the other ones can run
as command-line tools.

3.6.2 Client-side WebAssembly

An experimental campaign has been conducted [71] in order to evaluate the
performance of the WebAssembly port of the reasoner in terms of turnaround
time of standard and non-standard inference services. For each test, the
following metrics have been measured:

• Fetching: the time spent by the client to request and download the
target ontology. This value does not depend on the reasoner, but only
on the device, the ontology size, and the network link between the client
and the server.

• Parsing: the time required by the reasoner to deserialize the ontology
into its internal data structures.

• Reasoning: the time elapsed to carry out the requested inference
service.

Tests have been executed on a 2021 MacBook Pro,26 an iPhone 12 Pro,27

and a OnePlus 7T,28 to achieve a sufficiently fair and diverse representation
of Web content fruition devices, both hardware- and software-wise.

The reference datasets are the same as those used in Section 3.6.1, but
considering only ontologies whose file size does not exceed 1 MiB in OWL 2
26Apple M1 Max SoC, 8 performance cores @3.2GHz and 2 efficiency cores @2.0GHz, 64

GB UM RAM, 1 TB SSD, macOS Ventura 13.3.1, Safari 16.4 browser.
27Apple A14 Bionic, 2 high-power cores @3.1 GHz and 4 low-power cores @1.8 GHz, 6

GB LPDDR4X RAM at 4266 MT/s, 128 GB NVMe SSD, iOS 15.1, Safari Mobile 15.1
browser.

28Qualcomm Snapdragon 855+, 1 core @2.96 GHz, 3 cores @2.42 GHz and 4 cores @1.8
GHz, 8 GB LPDDR4X RAM, 128 GB UFS 3.0 storage, Android 12, Chrome 112.0.5615.47
browser

88

functional-style syntax [85]. The classification corpus is thus reduced to 1140
ontologies. This does not affect the dataset used for non-standard tests.

The experimental method consists in visiting a Web page containing
client-side JS code responsible for performing all test operations. For each
ontology in the dataset, the script retrieves the ontology document, then
invokes the Tiny-ME JS API to carry out the target inference. Results are
saved to a Comma-Separated Values (CSV) file, which is then fed to the
evOWLuator framework to generate visualizations (see Section 4.2.3). The
test Web pages and ontologies are served by an NGINX 29 instance hosted on
a desktop computer,30 configured to serve all requests without caching. All
devices are located in the same IEEE 802.11n WLAN.31

Times are collected using the performance.now()32 JS API call. By de-
fault, most browsers limit the resolution of the returned timestamp to 1-2
milliseconds as a mitigation for timing-based attacks and fingerprinting. This
is enough for fetching and parsing, but it is often too coarse for inferences.
Therefore, reasoning times have been computed by running multiple consec-
utive iterations of each task (10 for the two mobile devices, and 50 for the
laptop), subtracting the cumulative fetching and parsing times from the total
execution time, and averaging over all iterations.

Figure 3.9 illustrates the results of the ontology classification standard
inference service. The bar graph in Figure 3.9a shows the total time required
for fetching, parsing, and reasoning across all ontologies. The scatter plot in
Figure 3.9b depicts the relationship between the size of the ontology and the
total time required for parsing and reasoning, with the worst case requiring
about 200 ms on the least capable device. Outcomes demonstrate satisfactory
performance of inference services oriented to ontology management, which
is essential for supporting interactive semantic-enabled Web applications
in mobile environments. Although fetching time is the most prominent
29https://www.nginx.com/
30Intel Core i7-3770k CPU, 4 cores @3.5GHz, 12 GB DDR3 RAM @1600 MT/s, 2 TB

SATA SSD, Windows 10.
31Hosted by a TP-Link TN-WR841N router.
32https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

89

https://www.nginx.com/
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

iOS Android macOS
100

1000

10000

100000
58448 60077

45553

10337
17519

5168

1466
2035

774

Fetching
Parsing
Reasoning

(a) Cumulative Reasoning Time (ms).
10 100 1000

1

10

100

iOS
Android
macOS

(b) Reasoning Time (ms) by ontology size (KiB).

Figure 3.9: Ontology classification results for the JS API.

component, the domain ontology can usually be fetched just once and cached
to improve application responsiveness.

Figure 3.10 depicts performance metrics for the matchmaking non-standard
service. The Wasm reasoner can carry out this inference in a few milliseconds,
with 40 ms being the highest time measured for the largest ontology of the
corpus. These outcomes align with the ones for Ontology Classification, but
they are particularly relevant, as non-standard inferences are often more
useful in SWoE scenarios, which Tiny-ME explicitly targets.

A preliminary matchmaking memory usage test has been carried out on
the aforementioned MacBook Pro testbed, by profiling the system via the
snapshotting capabilities embedded into the Mozilla Firefox browser developer
tools [72]. By default, the Emscripten compiler statically allocates a 16 MiB
contiguous chunk of memory for the Wasm module, which is problematic
because it does not allow to know how much memory is actually needed at
runtime by the matchmaking task. Therefore the initially allocated memory
has been decreased to 192 KiB, the minimum amount for which the code
would compile, and the Wasm module has been recompiled with the ALLOW_-

90

iOS Android macOS
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

7460
7797

4540

1333

2933

588856
1281

471

Fetching
Parsing
Reasoning

(a) Cumulative Reasoning Time (ms).
10 20 30 40 50 60 70 80 90

10

iOS
Android
macOS

(b) Reasoning Time (ms) by ontology size (KiB).

Figure 3.10: Semantic matchmaking results for the JS API.

MEMORY_GROWTH flag33 enabled, which lets the browser allocate additional
memory for the module if necessary. Given the above configuration, the
following memory snapshots have been taken:

1. Baseline: blank page, before loading the Wasm module.

2. Wasm module: after loading the Wasm module.

3. Runtime: memory usage peak, while matchmaking.

Loading the Wasm module introduces a 1.16 MiB memory overhead over
the baseline, which includes the Wasm memory buffer (initially sized at 192
KiB, as said). While matchmaking, an additional maximum of 0.31 MiB of
memory is allocated, and the Wasm memory buffer is dynamically resized by
the browser to 320 KiB. The results evidence a tolerable memory overhead
for the matchmaking process, corroborating the feasibility of the proposed
approach.

The overall evaluation confirms that the JavaScript API of the system can
be effectively integrated into interactive Web applications, providing standard
33https://emscripten.org/docs/optimizing/Optimizing-Code.html

91

https://emscripten.org/docs/optimizing/Optimizing-Code.html

and non-standard client-side inference services without negative impact on
performance and user experience.

3.6.3 Evolution

A third evaluation has concerned the updated system, as described in Sec-
tion 3.5. Tests have been carried out to assess the correctness and completeness
of inference services, which have been extended to the ALN (D) DL, and to
determine the effect of the optimizations reported in Section 3.5.3.

Workstation trials have been carried out on a 2021 Apple MacBook Pro
16”.34 Comparative performance tests between Tiny-ME versions 1.3 and 1.0
have used the same dataset as in Section 3.6.1, in order to allow for a direct
comparison. All other tests have been executed on a subset of the ORE 2014
dataset, limited to ontologies having ALN (D) expressiveness at most, i.e., a
superset of the previous dataset which also includes ontologies with datatypes.
This new dataset consists of 1498 ontologies, of which 134 contain datatypes.

Classification correctness tests have used HermiT [38] as a test oracle.
HermiT has been preferred to Konclude in this case as it supports all OWL
2 datatypes, while Konclude implements only part of the OWL 2 datatype
map.35 Tiny-ME has returned correct and complete results for all supported
ontologies in the ORE 2014 ALN (D) dataset. With respect to matchmaking,
since there is no other system that supports non-standard inferences on the
ALN (D) DL, inference correctness and completeness have been determined
by constructing a test ontology and verifying the results manually.

Results of comparative performance tests between Tiny-ME 1.3 and Tiny-
ME 1.0 are in Figure 3.11 and Figure 3.12. The updated system significantly
outperforms the earlier version when running the ontology classification
inference service: cumulative reasoning time is 55% lower, while the average
and maximum memory peaks are 56% and 68% lower, respectively. Similar
34Apple M1 Max System-on-Chip with 64 GB RAM, 1 TB SSD, macOS Sonoma 14.1.2.
35As reported on its public source repository: https://github.com/konclude/Konclude

92

https://github.com/konclude/Konclude

0.01 0.1 1 10 100

1

10

100

1000

10000
Tiny-ME 1.0
Tiny-ME 1.3

(a) Time (ms) by ontology size (MiB).
0.01 0.1 1 10 100

10

100

1000
Tiny-ME 1.0
Tiny-ME 1.3

(b) Memory peak (MiB) by ontology size (MiB).

Figure 3.11: Classification performance metrics on workstation.

Tiny-ME 1.0 Tiny-ME 1.3
0

5

10

15

20

25

30

35

40

32.40

18.30

24.61

7.49

Parsing
Reasoning

(a) Cumulative time (s).
Min Avg Max

1

10

100

1000

1.55

8.44

986.83

1.45

3.68

313.77
Tiny-ME 1.0
Tiny-ME 1.3

(b) Dataset-wide memory peak (MiB).

Figure 3.12: Dataset-wide classification performance metrics on workstation.

considerations apply for the matchmaking task, as shown in Figure 3.13
and Figure 3.14: cumulative reasoning time is 48% lower, while average
and maximum memory peaks are 27% and 29% lower, respectively. These
results validate the impact of the significant architectural and performance
improvements of the updated system. The substantial memory usage reduction
is mainly due to the adoption of the axiom streams technique for ontology
parsing, as allowed by the Cowl library, and to the removal of the unfolding and
subsumption caches, enabled by the architectural updates to the TmeSemDesc

core data structure. The latter also brings about improvements in reasoning
time for classification and matchmaking, which are similar in magnitude,
underlining the performance importance of that data structure.

To really prove that Tiny-ME 1.3 is now able to power a larger band of

93

20 40 60 80
0

1

2

3

4

5

6

7

8
Tiny-ME 1.0
Tiny-ME 1.3

(a) Time (ms) by ontology size (KiB).
20 40 60 80

1.6

1.8

2

2.2

2.4
Tiny-ME 1.0
Tiny-ME 1.3

(b) Memory (MiB) by ontology size (KiB).

Figure 3.13: Matchmaking performance metrics on desktop.

Tiny-ME 1.0 Tiny-ME 1.3
0

100

200

300

400

500

600

700

159.62 153.82

612.20

246.66

Parsing
Reasoning

(a) Cumulative time (s).
Min Avg Max

0

0.5

1

1.5

2

2.5

3

1.58

2.24
2.49

1.50 1.64 1.77

Tiny-ME 1.0
Tiny-ME 1.3

(b) Dataset-wide memory peak (MiB).

Figure 3.14: Dataset-wide matchmaking performance metrics on desktop.

the SWoE device spectrum, it has been deployed and tested on an Arduino
Due board, using the same configuration as in Section 2.6. The ontology
classification reasoning task has been chosen as a benchmark, as it is one of the
most demanding inference services for OWL reasoners. Each inference request
is carried out by instantiating the reasoner on the inbound USB byte stream,
which is transformed into an axiom stream by the Cowl stream-based parser.
Each axiom is converted into a suitable internal data model representation
and added to the reasoner core data structures. Once the ontology is fully
loaded, the reasoner performs classification, building the complete concept
taxonomy, and reporting performance metrics to evOWLuator through the
UART port.

Figure 3.15 displays the time and memory required to parse and classify

94

0.01 0.1

100

1000

(a) Time (ms) by ontology size (MiB).
0.01 0.1

100

(b) Memory (KiB) by ontology size (MiB).

Min Avg Max
0

20

40

60

80

100

16.58

44.59

94.77

(c) Dataset-wide min, avg, and max memory (KiB).
250 500 750 1000 1250

0.0

0.2

0.4

0.6

0.8

1.0

Ok
Out of memory

(d) Ratio of out-of-memory events by axiom count.

Figure 3.15: Classification performance metrics on Arduino Due.

ontologies as a function of their size. Tiny-ME has been able to classify 1006
ontologies (67.2% of the aforementioned dataset), with the largest ontology
being 290 KiB, using 44.59 KiB of RAM on average, i.e., about half of the
available RAM on the Arduino Due board. The remaining KBs could not be
processed due to memory exhaustion, whose trend is displayed in Figure 3.15d
as the histogram plot of ontologies grouped by processed axiom count (x-axis)
over the percentage of ontologies that result in an out-of-memory (OOM)
event within each bin (y-axis). The plot shows the board is able to handle
up to 400 axioms without significant issues, while the ratio of OOM events
quickly increases after this threshold, reaching 0.8 around 500 axioms. When
compared with Figure 2.10a, it is evident that the reasoning process increases
memory requirements significantly w.r.t. pure parsing, as the 0.8 mark is
reached around 900 axioms when just loading and indexing axioms in the

95

CowlOntology store.

Overall, system performance aligns well with the requirements of the
SWoE, as it demonstrates the capability to perform complex inferences
on moderately articulated knowledge bases, making it viable for real world
applications. The system’s ability to classify a significant portion of ontologies,
especially considering the size and memory limitations of the Arduino Due
board, underscores its practical utility, proving that even with the inherent
challenges of limited resources, Tiny-ME can effectively support key reasoning
tasks on severely constrained devices.

96

Chapter 4

evOWLuator: multiplatform
benchmarking for OWL toolkits

This chapter presents evOWLuator [104], a multi-platform framework
for the evaluation of OWL reasoners. It is is characterized by high flexi-
bility, expandability, and scalability, achieved through unique architectural
choices which set it apart from the state of the art. evOWLuator runs
on GNU/Linux, macOS, and Windows (through the Windows Subsystem
for Linux, WSL), can support any ontology corpus, and is able to evaluate
common reasoning services, such as ontology consistency and classification,
as well as non-standard ones like semantic matchmaking. Moreover, the set of
supported inference services can be expanded by the user through a plug-in
mechanism.

One of the key features of the framework is its ability to deploy tests
either locally or on remote devices, allowing for integration with mobile and
embedded platforms, as demonstrated in the evaluation campaigns reported
in the previous chapters. The tool is capable of evaluating various reasoning
metrics, including correctness, turnaround time, memory usage, and energy
footprint, a first in the OWL benchmarking landscape. evOWLuator’s
plug-in architecture expands its usefulness by supporting the integration
of additional target reasoners, platforms, and reasoning tasks. It can also
generate interactive visualizations of results with highly customizable plots,
making it a valuable tool for research activities. In order to promote its

97

adoption in both academic and industrial contexts, its source code1 is released
under a very permissive, commercially-friendly license.2

The remainder of the chapter is as follows: Section 4.1 discusses the state
of the art; Section 4.2 shows how evOWLuator can be used to carry out
experiments and visualize results; Section 4.3 describes the architecture of the
framework, with user-configurable interfaces detailed in Section 4.4; finally,
Section 4.5 reports the results of a small experimental campaign comparing
six OWL reasoners, demonstrating the effectiveness of the approach and tool.

4.1 Background

When looking for the best tool for a particular application, besides functional
requirements and platform compatibility, quantitative systematic analysis
of performance and scalability becomes crucial. The selection of software
components should rely as much as possible on rational processes based on
quantitative data, so as to prevent incorrect strategic decisions [139]. This is
particularly true when dealing with performance and resource consumption
evaluations, which may prevent running on a particular platform or imple-
menting certain desired functionalities and thus lead to reduced acceptability
and adoption of products and services.

In the field of Semantic Web technologies, this has motivated the creation
of several OWL reasoning benchmarks and automated evaluation frameworks.
Selecting an evaluation tool is by itself a non-trivial problem, depending on
features like the types of collected performance metrics, platform compatibility,
supported inference services, ease of reasoner integration, test automation
capabilities, and so on. Furthermore, in latest years, the rise to prominence
of mobile and pervasive computing has extended the field of application of
knowledge representation and reasoning to non-conventional contexts.
1evOWLuator source code: https://github.com/sisinflab-swot/evowluator
2Eclipse Public License 2.0: https://www.eclipse.org/legal/epl-2.0/

98

https://github.com/sisinflab-swot/evowluator
https://www.eclipse.org/legal/epl-2.0/

Until around 2010, reasoner evaluations primarily relied on benchmarks
with a limited number of ontologies and small, handcrafted query sets [51].
A key example is the Lehigh University Benchmark (LUBM) [44], notable
for its single ontology focused on the university domain, fourteen extensional
queries for various properties, and a data generator for scalable ABoxes.
LUBM, alongside three additional ontologies and query sets covering four
OWL fragments, was used in [19] to assess five reasoners, determining the
most suitable ones for each ontology class and inference task. Similarly, [29]
compared eight reasoners using three extensive ontologies from the OWL
2 EL profile, focusing on classification, consistency, concept satisfiability,
and subsumption checks. Additionally, [80] enhanced LUBM to support
SPARQL-based stream reasoning.

With the increased availability of knowledge bases and graphs, recent
years have seen the development of larger and more varied corpora for OWL
reasoner benchmarking to test systems in real-world scenarios. A 2012 study
[55] set a first record by measuring the classification time of four reasoners
on a dataset of over 300 real-world ontologies, also using ontology metrics as
machine learning features to predict processing time. The OWL Reasoner
Evaluation (ORE) workshop series, running annually from 2012 to 2016,
expanded the scope with more ontologies, reasoning tasks, and participants
[39, 84]. For each reasoner, a score was determined by the number of problems
solved out of the total in each competition track, and time was used to break
ties for the final standings. Unfortunately, other performance indexes like
memory or energy usage were not taken into account.

The growth of datasets and test cases underscored the need for automated
benchmarking tools, with the framework from [84] being a notable solution for
traditional computing platforms. Before starting the evOWLuator project,
adapting that tool to support additional metrics and platforms was considered,
but it was ultimately deemed too complex, as the framework was primarily
for live competitions and focused on inference correctness. Extending it
would have implied significant additions to an already large project (over 200
Java files with a total of 15000 lines of code, excluding the Web interface),

99

which was not designed for such expandability or for the inclusion of features
like memory and energy evaluation or mobile platform support. In contrast,
evOWLuator offers a more compact and flexible solution, with only about
4000 lines of code organized in about 40 Python files, supporting several types
of customizations through plug-ins without altering the existing codebase.

Specialized evaluation frameworks exist for testing non-standard inferences.
JustBench [7] focuses on assessing reasoner performance in verifying justifica-
tions, minimal subsets of an ontology required for an entailment. Performance
evaluations for Mini-ME in Java/Android [107] and its Swift reengineering
[98] for iOS focused on the matchmaking task. With the growing application
of semantic technologies in ubiquitous computing, there is an increased em-
phasis on benchmarking mobile-specific OWL profiles and emerging mobile
reasoners. A notable study [18] tested six reasoners with OWL API [49]
support on Android, using the ORE 2013 dataset [39], focusing on ontology
classification and consistency. To streamline the testing process, an Android
app was developed, enabling the selection of the reasoner, ontology set (based
on OWL profile sublanguages), and inference task, and storing results in an
embedded database.

Evaluation frameworks specialised for non-standard inference test cases
also exist. JustBench [7] analyses reasoner performance on testing the cor-
rectness of justifications, i.e., minimal ontology subsets for an entailment to
hold. Experiments concerning the Mini-ME (Mini Matchmaking Engine)
Java/Android reasoner [107] and its Swift reengineering for iOS [98] have
evaluated performance of the matchmaking task. More recently, the interest
in applying semantic technologies to ubiquitous computing has generated the
need for benchmarking mobile-oriented OWL profiles and emerging mobile
reasoners. The experimental campaign in [18] evaluated six reasoners with
OWL API [49] support on Android, using the ORE 2013 dataset [39], on
ontology classification and consistency tasks. In order to automate the large
number of tests, an Android application was developed, which allowed select-
ing the reasoner, the set of ontologies (based on an OWL profile sublanguage)
and the inference task, and then saved results in an embedded database.

100

Platform heterogeneity and strict energy usage control are among the
distinctive traits of mobile and ubiquitous computing, therefore cross-platform
and energy-aware benchmarking frameworks are currently at the edge of
research and development efforts. The framework in [129], aimed at evaluating
mobile semantic rule engines, has been developed in JavaScript exploiting
the PhoneGap3 Software Development Kit (SDK): this approach allowed
harnessing rule engines written either in JavaScript or natively for one of the
platforms supported by PhoneGap (Android, iOS, Windows 8.1). A recent
and enhanced version of the framework, named MobiBench [128], additionally
supports OWL 2 RL reasoning, benchmark automation, and Java reasoners
via the Nashorn JavaScript engine included in Java SE version 8 and later.
Energy usage profiling is planned for future work.

While there are some energy-aware mobile benchmarks, they usually serve
specific, one-time research efforts. The study in [86] assessed Android reasoners
by replacing the testbed device battery with a hardware power monitor for
precise data capture. Despite its accuracy, this method is complex due to
varying electrical parameters across mobile models; the current prevalence
of non-removable batteries in smartphone models further complicates this
approach. Alternatively, [61] used an ODROID XU3 single-board computer
with integrated power monitoring circuitry to evaluate six reasoners. This
method proved to be more practical than [86], but the chosen hardware does
not fully represent typical mobile and ubiquitous computing environments,
and the study limited its analysis to Java-based reasoners. A more software-
centric approach was adopted in [31], where a profiler correlated battery
charge and time metrics using Android APIs, achieving accuracy within 5%
of hardware monitors for apps with minimal network or sensor usage. This
method was also employed in [125] for benchmarking Android reasoners’
energy consumption. In [43], a similar tool was used to develop a model
predicting energy usage for mobile ontology reasoning. Key findings include:
(i) energy consumption is influenced by the battery’s charge state even for the
same device-reasoning task pair, and (ii) the correlation between task duration
3PhoneGap home: https://phonegap.com/. It is based on the open source Apache Cordova
engine: https://cordova.apache.org/

101

https://phonegap.com/
https://cordova.apache.org/

and power consumption is not always linear, meaning longer tasks are not
necessarily more energy-intensive. These results call for further investigation,
and underline the need for a scalable evaluation framework that efficiently
adapts to various mobile devices and platforms, offering broader insights into
energy usage in mobile reasoning tasks.

4.2 Using evOWLuator

This section details how evOWLuator can be configured and used to
run evaluations and visualize results. Installation instructions and further
technical details, including command-line options and flags, are provided in
the online documentation.4 Once the tool is installed and correctly configured,
it can be used by invoking the evowluate command line tool, followed by a
subcommand representing the specific task that should be carried out by the
framework, as pictured in Figure 4.1. Available subcommands are introduced
in what follows.

Reasoners

evowluate run <TASK>

Reasoner
Wrappers

Dataset API

Energy Probes

Evaluation
Module

Ontologies

Profilers and Sensors Results

evowluate visualize <RESULTS>

Visualization
Module

Outputs

Plotting
Library

Data Analysis
Library

Figure 4.1: evOWLuator high-level architecture and data flow.

4evOWLuator documentation: http://swot.sisinflab.poliba.it/evowluator

102

http://swot.sisinflab.poliba.it/evowluator

4.2.1 Setup

Once the framework has been installed, running an evaluation requires some
preliminary setup:

• Datasets: ontology corpuses must be placed in the data directory.5

Each dataset must have a root folder, whose name is used by evOWL-
uator as the dataset name, and a subfolder for each supported syntax,6

which in turn must contain ontologies serialized in the specified syntax.

• Reasoners, reasoning tasks, energy probes: must be configured by
placing Python modules implementing the Reasoner, ReasoningTask
and EnergyProbe interface into the evowluator/user/reasoners, ev-
owluator/user/tasks, and evowluator/user/probes directories, re-
spectively.

Missing dataset serializations can be automatically produced by evOWL-
uator through the convert subcommand, which allows translating datasets
into any of the formats supported by the framework. Further details about
the plugin mechanism for reasoners, tasks, and energy probes are provided in
Section 4.4.

4.2.2 Running evaluations

After setting up all necessary components, evaluations can be started through
the run subcommand, followed by the reasoning task to evaluate and other
mandatory arguments, such as the dataset to use for the evaluation. ev-
OWLuator provides built-in support for some standard (classification and
consistency) and non-standard (matchmaking) tasks. Custom reasoning tasks
5References to filesystem paths are relative to the evOWLuator root directory.
6Supported syntaxes: dl, functional, krss, krss2, manchester, obo, owlxml, rdfxml,
turtle.

103

can be easily added by implementing the ReasoningTask interface, detailed
in Section 4.4.2. Each inference task can be evaluated in two modes:

• Correctness: checks the validity of inference outcomes. It is possible to
use a single reasoner as a correctness oracle, or to evaluate correctness via
consensus through a randomized majority vote. A further correctness
strategy involves assuming all reasoners return correct results, and
only accounting for runtime errors or timeouts. In any case, under
this evaluation mode, reasoner outputs are collected rather than just
correctness results, therefore the desired correctness strategy can be
changed a posteriori when visualizing results. For reasoning tasks that
return sizable outputs, such as ontology classification, a hash of the
output is stored.

• Performance: collects inference performance statistics, in terms of
time and maximum memory usage, and optionally about energy usage,
provided that the user specifies one or more energy probes via command-
line flags. The framework is able to collect and visualize multiple time
measurements from each reasoner, which are interpreted as separate
reasoning phases (e.g., parsing, preprocessing, reasoning, etc.).

Test execution can be controlled through a number of flags, allowing the
user to control various aspects of the evaluation:

• By default, evaluations are run for all reasoners that support the specified
reasoning task, though they can be restricted to specific reasoners.

• It is possible to specify a timeout for inferences, after which the reasoner
process is killed.

• Performance tests can be run for multiple iterations, which are averaged
by the framework when producing visualizations.

• Correctness tests can be parallelized by specifying a certain number of
worker processes.

104

Evaluations can be stopped by sending the SIGINT POSIX signal to the
framework, e.g., by pressing CTRL+C in the shell. Interrupted or otherwise
incomplete evaluations can be resumed through the resume subcommand.
Once a test is completed, the framework outputs and stores the following
items in a new subdirectory within the results dir:

• a human-readable log of the assessment;

• a summary of the configuration used for the evaluation (selected rea-
soners, dataset, syntaxes, etc.);

• machine-processable test outcomes, whose content and structure vary
depending on the configuration.

4.2.3 Visualizing results

Other than producing raw evaluation results, evOWLuator can generate
aggregate reports and graphical plots. Available visualization types vary
depending on the test configuration:

• For correctness tests, the tool outputs statistics about the number of
correct and incorrect results, runtime errors and timeouts, and displays
a grouped bar plot depicting these metrics (e.g., Figure 4.6).

• For performance tests, the framework computes per-ontology and
dataset-wide times, as well as information about the minimum, maxi-
mum, and average detected memory peak, for each reasoner. If energy
probes are specified, then aggregate metrics are provided for energy con-
sumption as well. Produced plots are grouped bar charts for cumulative
results (e.g., Figure 4.7a, Figure 4.7c) and scatterplots of the evaluated
metric by ontology size (e.g., Figure 4.7b, Figure 4.7d).

Plots are displayed in an interactive window, which can be used for
navigation, zooming and cropping, though they can also be saved as vector or

105

raster graphics files. Multiple aspects of the plots can be configured through
dedicated command-line arguments, such as:

• plot size, titles, and labels;

• axis scale and limits;

• time and memory units;

• legend location and layout;

• types and colors for markers and bars;

• polyline fit for scatterplots, and degree of the fitted polynomial.

4.3 Architecture

evOWLuator’s design focuses on flexibility, especially in terms of its capa-
bility to test various reasoning engines and to run inference services on mobile
and embedded devices. To meet these objectives, evOWLuator employs
an object-oriented approach: users configure the framework by extending
Python’s abstract base classes with concrete subclasses, which implement the
interfaces of their parents. While this programmatic method might be more
verbose compared to a declarative approach, like using structured configura-
tion files, it offers greater expressiveness, as it allows users to leverage the full
capabilities of the Python programming language and its standard library.
This design choice significantly enhances the framework’s adaptability and
future-proofing, making it flexible enough to allow the integration of arbitrary
reasoner interfaces.

The key components of the framework are detailed below and illustrated
in the Unified Modeling Language (UML) component diagram in Figure 4.2.
The Data module provides the Dataset and Ontology classes, facilitating
access to datasets provided by the user and the ontologies they contain. The

106

Evaluation

«interface»
Reasoner

«abstract»
Evaluator

Benchmark

Concrete
Evaluators

«interface»
EnergyProbe Concrete Probes

TaskEnergyProfiler

Reasoner
Wrappers

Visualization

«abstract»
Visualizer

Concrete
Visualizers

pandas matplotlib

Data

Dataset Ontology

Plug-in interfaces User implementations Internal classes External librariesPackages

«abstract»
Plot

Concrete Plots

«interface»
ReasoningTask

Concrete
Reasoning Tasks

Figure 4.2: UML diagram of the main components of evOWLuator.

Evaluation engine interfaces with reasoners, ontologies, and energy profil-
ers through customizable software endpoints. Most of the functionality is
encapsulated within Evaluators, subclasses of the Evaluator abstract class
implementing core business logic for each type of evaluation, such as correct-
ness or performance. Inference task details are modeled by ReasoningTask

and implemented by concrete classes adhering to this interface. Task is the
core API for spawning processes and capturing their output: its subclasses
allow profiling energy consumption and benchmarking execution times and
memory usage.

The Evaluation Engine component invokes inference tasks implemented
by reasoners through user-provided subclasses of the Reasoner abstract class,
which supports running tests on the local machine as well as orchestrating
them on remote devices. The latter option is particularly aimed at mobile
and embedded devices, with out-of-the-box support included for both iOS
and Android platforms (refer to Section 4.4.1). For performance and energy
footprint evaluations, the engine can execute multiple test iterations as
specified by command line arguments. When more than one iteration is
executed, the framework averages the results to provide a consolidated output
for further processing. Additionally, users can set a timeout for each reasoning
task, after which the reasoner process is automatically terminated. ev-
OWLuator is equipped to detect runtime errors in two scenarios: the

107

reasoner exits with a non-zero code, or it fails to produce essential output,
like computation times for performance evaluations or inference results for
correctness checks. Upon completion of a test, the Evaluation Engine records
the outcomes, which can then be used for visualization. The Visualization
Engine is able to create tabular summaries and graphical representations,
providing human-understandable recaps of raw results. This component
comprises subclasses of the Visualizer abstract class, with charting and
plotting functionalities offered by subclasses of the Plot abstract class.

4.4 Available interfaces

4.4.1 Reasoners

To be integrated with evOWLuator for local invocation, reasoners need
a command line interface capable of executing reasoning tasks on specific
ontologies. At a minimum, they should accept inputs specifying the reasoning
task and the path to an ontology file. The details of the arguments vary for
each reasoner and are defined through the implementation of the Reasoner

interface. All subclasses of the Reasoner abstract class are dynamically
loaded by the framework. Each subclass must include metadata about the
encapsulated reasoner, such as its name, executable file path, supported OWL
syntaxes, and inference services. Additionally, the subclass is required to
define the command line argument array for each reasoning task it supports.
Regarding correctness results, command line tools should either conform to the
output format expected by evOWLuator or, alternatively, custom output
parsing logic can be implemented by creating a subclass of the ResultsParser
class. This flexibility ensures that the framework can accommodate a wide
range of reasoners and their respective output formats.

In addition to the Reasoner base class, the proposed framework provides
a few templates to simplify the integration of inference engines on notable
platforms, pictured in Figure 4.3 and described hereafter.

108

«interface»
Reasoner

JavaReasoner IOSReasonerAndroidReasoner . . .

Figure 4.3: Reasoner interface and template classes.

• Java SE: this template facilitates the integration of Java reasoning
engines compiled in jar files by abstracting away the instantiation of the
Java Virtual Machine (JVM). JVM configuration is controlled through
appropriate flags specified with dedicated methods.

• iOS: the template enables running and testing iOS-based reasoners.
In this case, inference engines have to be wrapped in Xcode projects,
and specifically as Xcode test cases, i.e., XCTestCase7 subclasses. Sup-
ported reasoning tasks are exposed by means of dedicated test case
methods to be deployed to the target device, together with datasets for
the evaluation. evOWLuator invokes test cases through xcodebuild,
Xcode’s command line interface, passing any required data via envi-
ronment variables. In this case, in the user-provided extension of the
template, methods just need to return project-related information, such
as the path to the Xcode project and the name of the test methods
implementing each of the supported reasoning tasks.

• Android: the template allows the framework to run and test rea-
soning tasks on Android devices. Similarly to iOS, user-implemented
methods just need to return Android-specific information, such as the
package identifier of the reasoner app. Users must install reasoners
as Android wrapper applications containing an EVOWLUATE intent filter.
evOWLuator automatically installs a launcher application used to
start reasoner apps by issuing appropriate EVOWLUATE intents,8 and
to close them once the reasoning task is over. The implementation

7XCTest: https://developer.apple.com/documentation/xctest
8Android intents: https://developer.android.com/reference/android/content/Intent

109

https://developer.apple.com/documentation/xctest
https://developer.android.com/reference/android/content/Intent

«interface»
ReasoningTask

ClassificationTask MatchmakingTaskConsistencyTask . . .

Figure 4.4: ReasoningTask interface and built-in tasks.

of this component exploits the Android Instrumentation class.9 All
communications between evOWLuator and the launcher application
are carried out through the Android Debug Bridge (adb), which must be
installed on the host machine. USB debugging must also be enabled via
the Settings app of the target mobile device, by accessing the hidden
developer menu.10

4.4.2 Reasoning tasks

Details that are specific for each reasoning task are modeled by the Reasoning-
Task interface, which allows the specification of expected inputs and outputs
for each inference service. As an example, while ontology classification
and consistency only require one input file (the ontology to process), other
inferences may require additional inputs (e.g., matchmaking also requires an
OWL ontology containing individuals acting as requests). Expected reasoner
outputs are also controlled by this interface, as in what follows.

• For correctness, results may be returned on the standard output, as
text files, or as ontology files. In the latter case, the output must be a
valid OWL ontology in any of the serializations supported by the OWL
API [49]. As an example, reasoners must return results on the standard
output for the consistency task, while they are expected to return the
inferred taxonomy as an OWL ontology when computing classification.

9Android Instrumentation: https://developer.android.com/reference/android/app/

Instrumentation
10Android developer menu: https://developer.android.com/studio/debug/dev-options

110

https://developer.android.com/reference/android/app/Instrumentation
https://developer.android.com/reference/android/app/Instrumentation
https://developer.android.com/studio/debug/dev-options

«interface»
EnergyProbe

PowermetricsProbePowertopProbe . . .

Figure 4.5: EnergyProbe interface and built-in probes.

• With respect to performance, the interface specifies which results the
reasoners are expected to return on the standard output, i.e., reasoning
phases with corresponding time measurements. It is also possible to
specify whether reasoners must provide a memory reading, which is
necessary for reasoning tasks deployed to remote devices. For local
reasoners, the framework defaults to computing the memory metric
as the maximum resident set size (MRSS) of the reasoner process,
measured by means of the cross-platform psutil11 Python library.
Remote reasoners must compute this metric themselves, usually in
platform-specific ways: as an example, iOS and Android reasoners can
do so through the getrusage12 POSIX call.

4.4.3 Energy footprint

Energy drain estimation is implemented by the EnergyProfiler class, which
runs the reasoner and polls a user-specified energy probe instance while the
related process is alive. Energy probes must implement the EnergyProbe

interface, as shown in Figure 4.5. The N collected samples are then used
to compute an energy footprint score, providing an estimation of the energy
employed by the engine during its execution:

score = sampling_interval ∗
N∑︂
i=1

samplei (4.1)

11Process and system utilities (psutil): https://psutil.readthedocs.io
12getrusage man page: https://linux.die.net/man/2/getrusage

111

https://psutil.readthedocs.io
https://linux.die.net/man/2/getrusage

The approach is designed for broad compatibility with both software-
and hardware-based energy metering solutions. EnergyProbe instances can
interface with built-in power management tools of the operating system,
utilize data from energy profilers (such as those outlined in Section 4.1), or
even integrate readings from external hardware devices, such as the Monsoon
High Voltage Power Monitor.13 evOWLuator natively supports the Power-
Metrics14 (developed by Apple Inc. for macOS) and PowerTOP15 (created
by Intel Corp. for GNU/Linux and also functional on Microsoft Windows
via WSL) software-based energy profilers. To incorporate additional energy
probes, users can create classes that implement the EnergyProbe interface,
which must compute and record power usage samples, reflecting the average
energy consumption over the interval between consecutive polls.

Energy consumption is returned as an absolute score without a specific
measurement unit, a necessary adaptation for compatibility with certain
energy profilers like PowerMetrics, which do not provide power usage in
standard physical units. Nonetheless, following Equation 4.1, when power
samples are measured in watts, the score can indeed be interpreted as en-
ergy consumption in joules. This interpretation is applicable to tools like
PowerTOP and potentially to hardware-based power meters.

When testing on battery-equipped devices, consistency in power source
(grid or battery) and charge level at the start of each test is crucial. Vari-
ations in these factors can affect energy readings, thereby impacting test
reproducibility. For cross-device or cross-operating-system energy compar-
isons, the framework should ideally be used in conjunction with an external
hardware power meter. This method provides the most accurate, device-
independent energy measurements; however, it is important to cautiously
analyze the results, considering potential biases or confounding factors due
to differences in the hardware and software of the devices under test.
13Monsoon HV Monitor: https://www.msoon.com/high-voltage-power-monitor
14PowerMetrics: https://developer.apple.com/library/archive/documentation/

Performance/Conceptual/power_efficiency_guidelines_osx
15PowerTOP: https://www.intel.com/content/www/us/en/developer/articles/tool/

powertop-primer.html

112

https://www.msoon.com/high-voltage-power-monitor
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx
https://www.intel.com/content/www/us/en/developer/articles/tool/powertop-primer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/powertop-primer.html

4.5 Case study: benchmarking classification
and consistency

To validate evOWLuator’s functionality and illustrate its application, a
demonstration experimental campaign has been conducted, focusing on the
correctness, performance, and energy footprints of ontology classification and
ontology consistency inference services offered by selected state-of-the-art
OWL reasoners, with tests performed on both desktop and mobile devices.
As the primary aim is to test the framework’s capabilities as a benchmarking
platform, the scope of this campaign has been intentionally limited, involving
a smaller subset of reasoners and datasets compared to larger-scale tests
referenced in Section 4.1. This approach allows for a focused assessment of
evOWLuator’s key features and effectiveness in a controlled setting.

4.5.1 Testbed, reasoners and datasets

Desktop tests have been performed on a Linux workstation16 and a Mac
Mini (2014),17 while mobile experiments have been carried out on an Apple
iPhone 7 18 and a HTC/Google Nexus 9 tablet.19 Tested desktop reasoners
include: Fact++ (version 1.6.5) [124], HermiT (1.3.8) [38], Konclude (0.6.2-
544) [115], Mini-ME (2.0) [107], Mini-ME Swift (1.0) [98] and TrOWL (1.5)
[123]. Mini-ME and Mini-ME Swift have also been used for tests on Android
and iOS, respectively. Additionally, the JFact (1.2.1), HermiT (1.3.8) and
Pellet (2.3.1) [113] Android ports from [18] have been evaluated. Tests have
been carried out on the following datasets:
16AMD Ryzen 5 3600 CPU at 3.6 GHz, 32 GB DDR4 RAM at 3000 MT/s, 1 TB SSD,

Ubuntu 18.04 LTS x64.
17Intel i7 4578u dual-core CPU at 3.0 GHz, 16 GB DDR3 RAM at 1600 MT/s, 1 TB HDD
+ 128 GB SSD (Fusion Drive), macOS Mojave 10.14.5.

18Apple A10 CPU (2 high-performance cores at 2.34 GHz and 2 low-energy cores), 2 GB
LPDDR4 RAM, 32 GB flash storage, iOS 10.1.1

19Nvidia Tegra K1 dual-core CPU at 2.3 GHz, 2 GB LPDDR3 RAM at 1600 MT/s, 32
GB flash memory, Android 7.1.1 Nougat, patch level 5 October 2017

113

• ORE 2014: 1398 ontologies selected from the 2014 OWL Reasoner
Evaluation Workshop competition dataset,20 considering only those hav-
ing at most ALN as reference expressiveness. This allows demonstrating
the evaluation of Mini-ME, which does not support more expressive
languages.

• ORE 2014 Energy: it consists of the 50 largest ontologies from the
ORE 2014 set (average size 1781.28 ± 14063.8 KiB, minimum 11.44

KiB, maximum 291.33 MiB in functional syntax), and it was specifically
used for conducting energy consumption tests on macOS. The focus
on large ontologies stems from the need for sufficiently long-running
processes to ensure accurate readings from software energy profilers like
PowerMetrics and PowerTOP. These tools often fail to generate data
for short-lived processes which start and end before any power sample is
taken, even if such processes are highly energy-intensive. This selective
approach addresses the limitations of the profilers, ensuring reliable
energy consumption data for longer-duration tasks.

• BioPortal: a dataset composed of 20 ontologies from BioPortal21 [135]
with no restrictions on DL expressiveness (average size 130.79± 104.57

MiB, minimum 27.92 MiB, maximum 450.71 MiB in functional syntax).
BioPortal has been chosen because life sciences ontologies are among
the largest as well as the best known by practitioners of Semantic
Web technologies. Ontologies have been selected by taking the 100
largest ones in BioPortal, classifying them via four high-expressiveness
reasoners (Konclude, Fact++, HermiT and TrOWL), and selecting only
those for which all reasoners returned correct and complete inferences
within 2 hours. This dataset has been used to demonstrate energy
profiling capabilities on both Linux and macOS.

20http://dl.kr.org/ore2014
21https://bioportal.bioontology.org

114

http://dl.kr.org/ore2014
https://bioportal.bioontology.org

4.5.2 Setup

Experiments setup has followed the procedure reported in detail in evOWL-
uator’s documentation.

Datasets

After installing evOWLuator on both desktop machines in an evowluator

base directory, the aforementioned datasets have been set up by moving
ontologies into appropriate subdirectories of the data directory in the install
path. Each dataset is expected to have a root directory, whose name is used
as identifier, and a subdirectory for each supported OWL syntax, which in
turn must contain ontology files. Missing ontology formats, as needed by
some of the reasoners, have been generated using the convert subcommand.22

Desktop reasoners

The next step has concerned the integration of reasoners, which (as recalled in
Section 4.4.1) must be configured by writing Python modules implementing
the Reasoner interface. For Java-based reasoners supporting the OWL API, a
wrapper has been created to expose the classification and consistency inference
tasks, ensuring all reasoners share the same command line interface. This
has covered Fact++, HermiT, TrOWL and Mini-ME. The Python side of
the integration has then been accomplished by writing a single Reasoner

template subclass for all OWL API reasoners, further subclassed to configure
individual reasoner metadata. Mini-ME Swift and Konclude come with a
built-in command line interface, instead, so providing befitting Reasoner

subclasses has been enough to integrate them.

iOS reasoners

After installing Xcode and its command line tools on the host machine,
supporting iOS reasoners like Mini-ME Swift has required creating a XCTest

22The ORE 2014 dataset is only available in functional OWL syntax, though Mini-ME
Swift requires ontologies in RDF/XML format.

115

correct incorrect timeout error
0

1

10

100

1000

10000

1393

1

4

1398
1168

222

8

1364

34

1396

1 1

Fact++
HermiT
Mini-ME
Mini-ME Swift
TrOWL

(a) Classification.
correct incorrect timeout error

0

1

10

100

1000

10000

1394

4

1398
1315

75

8

1387

11

1398
Fact++
HermiT
Mini-ME
Mini-ME Swift
TrOWL

(b) Consistency.

Figure 4.6: Correctness results of various OWL reasoners.

project and wrapping reasoning task invocation in separate methods of an
XCTestCase subclass. With respect to the Python side of the integration,
the IOSReasoner template class has been subclassed, specifying appropriate
metadata. Ontologies have been uploaded to the target device through the
copy bundle resources Xcode build phase.

Android reasoners

The adb tool is required on the host computer to enable communication
with the target Android device. Straightforward wrapper Android apps have
been implemented for Mini-ME, JFact, HermiT and Pellet, which respond to
specific intents and start the corresponding reasoning tasks. The Python side
of the configuration has involved subclassing the AndroidReasoner template
provided by evOWLuator. Ontologies have been uploaded to the storage
memory of the device prior to starting the tests.

4.5.3 Results

Correctness

Correctness has been checked on the whole ORE 2014 dataset using Konclude
as test oracle, since the latest OWL reasoner competition [84] reported it as
the most reliable with regard to ontology classification and consistency. The

116

Table 4.1: Summary of classification correctness tests.

Reasoner Correct Incorrect Timeout (s) Error Ratio

Fact++ 1393 1 0 4 1.00
HermiT 1398 0 0 0 1.00
Mini-ME 1168 222 8 0 0.84

Mini-ME Swift 1364 34 0 0 0.98
TrOWL 1396 1 1 0 1.00

Table 4.2: Summary of consistency correctness tests.

Reasoner Correct Incorrect Timeout (s) Error Ratio

Fact++ 1394 0 0 4 1.00
HermiT 1398 0 0 0 1.00
Mini-ME 1315 75 8 0 0.94

Mini-ME Swift 1387 11 0 0 0.99
TrOWL 1398 0 0 0 1.00

outcomes are illustrated in Figure 4.6, showing the number of correct and
incorrect results for each reasoner with respect to the test oracle (which does
not appear in the plot, of course). The plot also displays the number of times
reasoners have hit the imposed timeout, and the number of runtime errors.
The same data is also reported in Tables 4.1 and 4.2, which further include a
correctness ratio, computed as the number of correct results over the number
of ontologies in the dataset. It can be noted Mini-ME and Mini-ME Swift
exhibit lower ratios than the other reasoners: incorrect results for Mini-ME
and Mini-ME Swift are due to unsupported constructs in the ontologies; the
former has additional timeouts on the largest ontologies of the dataset.

Desktop performance

Performance evaluation metrics refer to the ontologies from the ORE 2014
dataset which all the above reasoners have classified correctly within the
timeout on the macOS testbed. Results for classification and consistency are
pictured in Figures 4.7 and 4.8, respectively, evidencing evOWLuator’s
capability to generate histograms and scatterplots. In detail:

• Figures 4.7a and 4.8a show histogram plots of dataset-wide cumulative
parsing and reasoning times in seconds;

117

Fact++ HermiT Mini-ME Konclude Mini-ME Swift TrOWL
10

100

1000

10000

1264

505 505

93
150

532
347

574

6163

68
36

399

Parsing
Reasoning

(a) Dataset-wide cumulative times (s).
0.01 0.1 1 10 100

10

100

1000

10000

100000

Fact++
HermiT
Mini-ME

Konclude
Mini-ME Swift
TrOWL

(b) Time (ms) by ontology size (KiB).

Min Avg Max
1

10

100

1000

10000

100000

94
133

1821

65

232

6065

62

239

11238

16
29

1560

8
15

1066

64
111

3868

Fact++
HermiT
Mini-ME
Konclude
Mini-ME Swift
TrOWL

(c) Dataset-wide memory peaks (MiB).
0.01 0.1 1 10 100

10

100

1000

10000 Fact++
HermiT
Mini-ME

Konclude
Mini-ME Swift
TrOWL

(d) Memory peak by ontology size (MiB).

Figure 4.7: Classification performance tests on desktop.

• Figures 4.7b and 4.8b depict time as a function of ontology size;

• Figures 4.7c and 4.8c illustrate dataset-wide minimum, average and
maximum memory peaks for each reasoner;

• Figures 4.7d and 4.8d plot memory peak as a function of ontology size.

Aggregated results output by the framework are summarized in Tables
4.3 and 4.4, showing total parsing and reasoning time, as well as dataset-wide
minimum, average and maximum memory peak for each reasoner.

Mobile performance

Similar plots are shown for mobile tests, sketching performance metrics of
Android reasoners (Figures 4.9 and 4.10) and Mini-ME Swift running on iOS

118

Fact++ HermiT Mini-ME Konclude Mini-ME Swift TrOWL
1

10

100

1000

10000

1230
492 493

89
144

521

109
258

5215

6

21

322

Parsing
Reasoning

(a) Dataset-wide cumulative times (s).
0.01 0.1 1 10 100

10

100

1000

10000

100000

Fact++
HermiT
Mini-ME

Konclude
Mini-ME Swift
TrOWL

(b) Time (ms) by ontology size (MiB).

Min Avg Max
1

10

100

1000

10000

100000

93 125

1773

65
92

2040

62

235

9860

15
24

1394

8
14

1087

64
102

3976

Fact++
HermiT
Mini-ME
Konclude
Mini-ME Swift
TrOWL

(c) Dataset-wide memory peaks (MiB).
0.01 0.1 1 10 100

10

100

1000

10000 Fact++
HermiT
Mini-ME

Konclude
Mini-ME Swift
TrOWL

(d) Memory peak by ontology size (MiB).

Figure 4.8: Consistency performance tests on desktop.

(Figures 4.11 and 4.12). Both desktop and mobile outcomes are in line with
previous experimental campaigns [98].

It can be noticed how evOWLuator uses Matplotlib to automatically
adapt and differentiate graph elements (size and color) of reports depending on
the number of tested reasoners. All figures in this section have been generated
in Portable Document Format (PDF) and integrated with no modification
in the LATEX project of this dissertation; likewise they can be formatted to
Scalable Vector Graphics (SVG) or Portable Network Graphics (PNG) for
Web publishing.

ORE 2014 Energy footprint

These tests measure the energy consumption of reasoning tasks on the ORE
2014 Energy dataset. All tests have been executed on the macOS testbed.

119

Table 4.3: Summary of classification performance tests on desktop.

Reasoner
Parsing
time (s)

Reasoning
time (s)

Total
time (s)

Min mem.
peak (MiB)

Avg mem.
peak (MiB)

Max mem.
peak (MiB)

Fact++ 1247.31 347.48 1594.79 93.57 131.00 1728.90
HermiT 491.35 573.57 1064.92 65.45 227.37 6064.55
Konclude 76.28 67.64 143.91 15.53 27.39 455.15
Mini-ME 491.44 6162.98 6654.41 62.49 233.34 11237.72

Mini-ME Swift 121.37 36.40 157.77 8.41 13.91 189.50
TrOWL 516.93 399.39 916.32 63.88 105.78 1353.89

Table 4.4: Summary of consistency performance tests on desktop.

Reasoner
Parsing
time (s)

Reasoning
time (s)

Total
time (s)

Min mem.
peak (MiB)

Avg mem.
peak (MiB)

Max mem.
peak (MiB)

Fact++ 1212.18 108.55 1320.73 92.98 122.94 1718.54
HermiT 477.92 258.24 736.16 64.95 89.34 649.09
Konclude 72.57 5.58 78.15 14.96 22.19 245.55
Mini-ME 479.05 5214.83 5693.88 62.38 229.72 9859.68

Mini-ME Swift 114.93 20.69 135.62 8.36 13.16 167.49
TrOWL 506.20 321.51 827.71 63.71 97.32 1278.56

Results are shown in Figure 4.13; it is important to recall they represent
energy usage, therefore lower scores are better. In particular:

• Figures 4.13a and 4.13c recall dataset-wide minimum, average and
maximum energy footprint for each reasoner;

• Figures 4.13b and 4.13d plot energy footprint as a function of the
ontology size;

• Tables 4.5 and 4.6 summarize energy evaluation results: they provide
the same information as Figures 4.13a and 4.13b, though in tabular
form.

It should be noticed how Fact++ and HermiT have a significantly smaller
energy footprint for consistency than classification, while for the other rea-
soners the two scores are closer.

The availability of results in CSV format facilitates further processing
through the pandas Python library. As an example, Table 4.7 has been created

120

HermiT JFact Mini-ME Pellet
100

1000

10000

100000

300 292 273 268

1195

15881

7647

1779

Parsing
Reasoning

(a) Dataset-wide cumulative times (s).
0.01 0.1 1 10

100

1000

10000

100000

1e+06

HermiT
JFact

Mini-ME
Pellet

(b) Time (ms) by ontology size (MiB).

Min Avg Max
0

50

100

150

200

250

300

45
66

265

43
56

255

42
55

256

45
63

250
HermiT
JFact
Mini-ME
Pellet

(c) Dataset-wide memory peaks (s).
0.01 0.1 1 10

50

100

150

200

250

300

350

400 HermiT
JFact

Mini-ME
Pellet

(d) Memory peak by ontology size (MiB).

Figure 4.9: Classification performance tests on Android.

by computing the time-energy, memory-energy and time-memory Pearson
correlation coefficients for each reasoner for the classification task, derived
on the ORE 2014 Energy dataset. They have been computed as follows:
average results output by performance and energy evaluations are loaded
and merged through the DataFrame.merge() method; pairwise correlation
between columns is then computed via the DataFrame.corr() method.23

Values indicate a strong linear correlation between energy footprint and time
for all reasoners, in accordance with [86] but partial disagreement with [43], as
discussed in Section 4.1. Linear correlation has also been found between energy
and memory usage in the majority of tested engines, with the exceptions of
Fact++ and Mini-ME, whose behavior calls for further investigation through
specific experiments.
23Pandas DataFrame documentation: https://pandas.pydata.org/pandas-docs/stable/

reference/api/pandas.DataFrame.html

121

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

HermiT JFact Mini-ME Pellet
100

1000

10000

100000

335 319 307 302
215

18699

8538

1146

Parsing
Reasoning

(a) Dataset-wide cumulative times (s).
0.01 0.1 1 10

100

1000

10000

100000

1e+06 HermiT
JFact

Mini-ME
Pellet

(b) Time (ms) by ontology size (MiB).

Min Avg Max
0

50

100

150

200

250

300

43 50

150

43 53

203

42 52

258

45 52

127

HermiT
JFact
Mini-ME
Pellet

(c) Dataset-wide memory peaks (s).
0.01 0.1 1 10

50

100

150

200

250

300

350
HermiT
JFact

Mini-ME
Pellet

(d) Memory peak by ontology size (MiB).

Figure 4.10: Consistency performance tests on Android.

BioPortal Energy Footprint

In order to assess evOWLuator features on multiple platforms and on very
large and expressive ontologies, an additional experimental session has been
carried out, measuring energy footprint on both Linux and macOS on the
BioPortal Energy dataset. Mini-ME Swift has been excluded from this test
as its supported expressiveness is limited to ALN . Results are summarized
as follows:

• Figure 4.14 reports on energy scores measured on Linux via powertop;

• Tables 4.8 and 4.9 refer to Linux tests in a tabular form;

• Figure 4.15 displays energy scores measured on macOS through power-

metrics;

122

Mini-ME Swift
200

250

300

350

400

450

500

451

345

Parsing
Reasoning

(a) Dataset-wide cumulative times (s).
0.1 1 10 100

10

100

1000

10000

100000
Mini-ME Swift

(b) Time (ms) by ontology size (MiB).

Min Avg Max
10

100

1000

25
37

1140Mini-ME Swift

(c) Dataset-wide memory peaks (s).
0.1 1 10 100

100

1000
Mini-ME Swift

(d) Memory peak by ontology size (MiB).

Figure 4.11: Classification performance tests on iOS.

• Tables 4.10 and 4.11 reports macOS tests results in a tabular form;

Fact++ and HermiT exhibit a significantly smaller energy footprint for
consistency than classification, while each of the other reasoners behave more
similarly across the two inferences, consistently with previous findings. Tables
4.12 and 4.13 are generated analogously to Table 4.7 from the previous test
case, reporting the time-energy, memory-energy and time-memory Pearson
correlation coefficients for each reasoner. They are quite consistent, even
though referring to different operating systems and energy profilers. In fact,
the correlation between powertop scores on Linux and powermetrics measure-
ments on macOS, reported in Table 4.14, is quite high. Comparing Table 4.7
with Tables 4.12 and 4.13, it appears that for larger ontologies HermiT
has correlation values more similar to those of Fact++. This may mean
lower energy-time and energy-memory correlations are a byproduct of lower

123

Mini-ME Swift
0

100

200

300

400

500

600
515

137

Parsing
Reasoning

(a) Dataset-wide cumulative times (s).
0.1 1 10 100

10

100

1000

10000

100000
Mini-ME Swift

(b) Time (ms) by ontology size (MiB).

Min Avg Max
10

100

1000

25
36

1093Mini-ME Swift

(c) Dataset-wide memory peaks (s).
0.1 1 10 100

100

1000
Mini-ME Swift

(d) Memory peak by ontology size (MiB).

Figure 4.12: Consistency performance tests on iOS.

time-memory correlation, which depends on the interplay between inference
algorithms and the ontology size and constructs. Further investigations are
left to more extensive experimental campaigns.

Based on this case study as well as on early experiences by thesis students
and interns of the research group laboratory, using evOWLuator to perform
tests on real-world reasoners appears to be generally straightforward, while
providing a good degree of flexibility. The integration of six desktop reasoners
and five additional configurations for mobile tests has required only about 250
lines of Python code. The visualization functionality has come in particularly
handy, as the summaries and plots it provides allow for a quick at-a-glance
performance comparison.

124

Table 4.5: ORE 2014 - Summary of classification energy footprint tests on macOS.

Reasoner Min energy Avg energy Max energy

Fact++ 475.44 1406.19 7533.51
HermiT 274.50 1273.30 3588.50
Konclude 47.48 149.18 408.60
Mini-ME 141.93 9547.86 55859.39

Mini-ME Swift 55.74 169.42 445.29
TrOWL 208.21 1174.35 3582.45

Table 4.6: ORE 2014 - Summary of consistency energy footprint tests on macOS.

Reasoner Min energy Avg energy Max energy

Fact++ 332.82 624.91 1241.54
HermiT 269.42 545.51 1115.08
Konclude 37.33 79.82 184.28
Mini-ME 143.05 7655.57 56533.58

Mini-ME Swift 55.75 137.92 373.81
TrOWL 228.31 987.98 2987.28

Table 4.7: ORE 2014 - Correlation between time, memory peak and energy foot-
print score on macOS.

Reasoner Energy-Time Energy-Memory Time-Memory

Fact++ 0.98 0.27 0.19
HermiT 0.99 0.96 0.97
Konclude 1.00 0.99 0.99
Mini-ME 1.00 0.28 0.24

Mini-ME Swift 1.00 0.93 0.93
TrOWL 0.99 0.97 0.98

Table 4.8: BioPortal - Summary of classification energy footprint tests on Linux.

Reasoner Min energy Avg energy Max energy

Fact++ 23.87 1606.24 6747.2
HermiT 32.65 236.07 1244.58
Konclude 3.61 21.78 56.34
TrOWL 30.7 80.47 171.51

Table 4.9: BioPortal - Summary of consistency energy footprint tests on Linux.

Reasoner Min energy Avg energy Max energy

Fact++ 21.77 45.8 94.99
HermiT 20.51 62.66 133.28
Konclude 2.76 16.75 51.4
TrOWL 26.5 79.65 162.73

125

Min Avg Max
10

100

1000

10000

100000

475

1406

7534

275

1273

3588

47

149

409

142

9548

55859

56

169

445

208

1174

3582

Fact++
HermiT
Konclude
Mini-ME
Mini-ME Swift
TrOWL

(a) Classification: score for each reasoner.
10 100

100

1000

10000

Fact++
HermiT
Konclude

Mini-ME
Mini-ME Swift
TrOWL

(b) Classification: score by ontology size (MiB).

Min Avg Max
10

100

1000

10000

100000

333

625

1242

269
546

1115

37

80

184143

7656

56534

56

138

374
228

988

2987

Fact++
HermiT
Konclude
Mini-ME
Mini-ME Swift
TrOWL

(c) Consistency: score for each reasoner.
10 100

100

1000

10000

Fact++
HermiT
Konclude

Mini-ME
Mini-ME Swift
TrOWL

(d) Consistency: score by ontology size (MiB).

Figure 4.13: ORE 2014 - Energy footprint tests on macOS.

Table 4.10: BioPortal dataset - Summary of classification energy footprint tests
on macOS.

Reasoner Min energy Avg energy Max energy

Fact++ 1472.49 131134.95 563359.07
HermiT 2524.55 17081.62 95200.06
Konclude 395.70 2031.57 5641.29
TrOWL 2442.32 6483.57 13857.09

Table 4.11: BioPortal dataset - Summary of consistency energy footprint tests on
macOS.

Reasoner Min energy Avg energy Max energy

Fact++ 1282.61 2949.97 6136.69
HermiT 1436.54 4305.14 9269.16
Konclude 243.23 1703.41 4976.11
TrOWL 1991.29 5736.65 12179.98

126

Min Avg Max
1

10

100

1000

10000

4

22
56

24

1606

6747

33

236

1245

31
80

172

Konclude
Fact++
HermiT
TrOWL

(a) Classification: score for each reasoner.
50 100 150 200 250 300 350 400 450

10

100

1000

Konclude
Fact++

HermiT
TrOWL

(b) Classification: score by ontology size (MiB).

Min Avg Max
1

10

100

1000

3

17

51

22

46

95

21

63

133

27

80

163

Konclude
Fact++
HermiT
TrOWL

(c) Consistency: score for each reasoner.
50 100 150 200 250 300 350 400 450

10

100

Konclude
Fact++

HermiT
TrOWL

(d) Consistency: score by ontology size (MiB).

Figure 4.14: BioPortal Energy footprint tests on Linux desktop.

Table 4.12: BioPortal - Correlation between time, memory peak and energy foot-
print score on Linux.

Reasoner Energy-Time Energy-Memory Time-Memory

Fact++ 0.61 0.70 0.42
HermiT 0.69 0.53 0.36
Konclude 0.89 0.91 0.97
TrOWL 0.97 0.97 0.92

Table 4.13: BioPortal - Correlation between time, memory peak and energy foot-
print score on macOS.

Reasoner Energy-Time Energy-Memory Time-Memory

Fact++ 0.61 0.63 0.37
HermiT 0.70 0.63 0.69
Konclude 0.99 0.98 0.96
TrOWL 0.98 0.98 0.98

127

Min Avg Max
100

1000

10000

100000

1e+06

396

2032

5641

1472

131135

563359

2525

17082

95200

2442
6484

13857

Konclude
Fact++
HermiT
TrOWL

(a) Classification: score for each reasoner.
50 100 150 200 250 300 350 400 450

1000

10000

100000

Konclude
Fact++

HermiT
TrOWL

(b) Classification: score by ontology size (MiB).

Min Avg Max
100

1000

10000

243

1703

4976

1283

2950

6137

1437

4305

9269

1991

5737

12180Konclude
Fact++
HermiT
TrOWL

(c) Consistency: score for each reasoner.
50 100 150 200 250 300 350 400 450

1000

10000
Konclude
Fact++

HermiT
TrOWL

(d) Consistency: score by ontology size (MiB).

Figure 4.15: BioPortal Energy footprint tests on Mac Mini.

Table 4.14: BioPortal - Correlation between energy scores on Linux and macOS.

Reasoner Energy Correlation

Fact++ 0.97
HermiT 0.99

Konclude 0.90
TrOWL 0.97

128

Chapter 5

Application case studies

In order to validate the feasibility, versatility and robustness of the proposed
SWoE infrastructure across a spectrum of scenarios, a set of carefully selected
case studies has been developed, ranging from nano-scale devices in smart
cities to real-time embedded systems in unmanned aerial vehicles (UAVs) and
wearable devices, up to ubiquitous Web services. Each case study presented in
this chapter highlights different aspects of the overall proposal, demonstrating
its adaptability, scalability, and usefulness in diverse contexts.

The first case study focuses on a smart city scenario, where the SWoE,
through Cowl’s minimal memory footprint, enables nano-scale sensing devices
disseminated in urban environments to directly take part in a knowledge-
based infrastructure. This application enhances urban mobility and territory
management by facilitating the collection, processing, and sharing of semanti-
cally annotated data, thereby transforming city spaces into more efficient and
responsive environments. The second scenario shifts to the realm of unmanned
aerial vehicles, where Tiny-ME is used for on-board, real-time inferences. This
case highlights the role of the SWoE in enabling autonomous and explainable
decision-making in UAVs, crucial for time-sensitive and trustworthy mission
supervision. In the third case study, Tiny-ME is integrated into a smartwatch
to evaluate asthma symptom severity, leveraging on-board sensors to gather
health data. This application highlights how the SWoE can create, expand
and reason on personal health knowledge graphs [45], transforming wearables
into advanced, explainable health monitoring agents. The final study presents

129

a Web-based privacy-oriented local event finder, illustrating the suitability
of the stack for client-side retrieval and personalization functionalities in
Rich Internet Applications (RIA). This scenario demonstrates how the SWoE
enhances user experience by providing semantic capabilities and intelligent
information processing while preserving user privacy w.r.t. conventional Web
and social networking applications. Together, these case studies aim to un-
derscore the versatility of the SWoE, showing its effective application across
various domains, from nano-devices to the World Wide Web, highlighting
its broad potential and implications in the overall information technology
landscape.

5.1 Extending the Web of Things
to embedded sensor networks

Smart road management systems are revolutionizing the way traffic is moni-
tored and controlled on highways and urban streets [89, 88]. The proposed
case study highlights how Cowl can be used to manage and share data col-
lected from various smart devices in order to enhance road management,
improve traffic flow, and increase public safety. In the reference smart city
scenario, sketched in Figure 5.1, urban areas are equipped with smart devices
embedded in the road surface, consisting of one or more sensors (e.g., ac-
celerometer, temperature, pressure, and vibration sensors), in order to detect
traffic intensity [137] and environmental conditions. Road sensors are also
able to interact with further sensorized IoT devices, e.g., vehicles’ smart tires,
pedestrians’ smart shoes, smartphones and wearables, and Unmanned Aerial
Vehicles (UAVs, a.k.a. drones), in order to gather and share contextual data
in real-time through a common communication protocol. For the case study
the Constrained Application Protocol (CoAP) [21] has been selected, as it
represents an application-layer protocol expressly defined for networks of
objects with limited computational, memory and bandwidth resources. CoAP
is particularly useful in SWoT/SWoE scenarios, such as collaborative sensor
networks, where heterogeneous data must be gathered from scattered nodes

130

DRONE

SMART TIRES
SMART SHOES

SMART SENSOR

TRAFFIC
MANAGEMENT
SYSTEM

A

B

C

Figure 5.1: Reference scenario for smart road management.

to infer events [102, 99]. The three-step example in Figure 5.1 is described in
detail hereafter.

Step A: road surface interactions. As pedestrians and vehicles travel
on the equipped road, smart sensors continuously collect data from the road
surface. In particular, self-powered triboelectric pressure-velocity nanosensors
[133] as well as vibration sensors triggered by the moving vehicles can be
used to identify traffic type and intensity by means of Machine Learning
algorithms [82]. Detected events and contextual data are periodically updated
and annotated within each smart sensor through Cowl. In this way, a
multitude of dynamic ubiquitous, geo-referenced knowledge base fragments
are created, each containing a set of OWL axioms characterizing the local
state of individual road sections in a specific time window. An example of
data annotation is shown in Figure 5.2, describing a smart sensing node
equipped with a temperature sensor and an accelerometer. M3-lite [1] is used
as the upper ontology to model device categories, measurement parameters
and properties. The W3C Geospatial vocabulary [67] is used to specify the
geographic location of each node, whereas the Sensor, Observation, Sample,
and Actuator (SOSA) ontology [53] provides the reference specification for
modeling observations and detected events.

Event annotations can be further enriched with data collected by external
smart devices passing by a road node. In particular, several manufacturers are

131

:Node1 m3lite:Accelerometer

m3lite:RoadSurfaceThermometer_:loc1«41.13615»
xsd:double

«16.83855»
xsd:double geo:location

geo:lat

geo:long

sosa:hosts

_:obs2
sosa:madeBySensor

m3lite:TrafficIntensity m3lite:Temperature

sosa:observedProperty

sosa:observedProperty
_:obs1

:ModerateTraffic
sosa:hasResult

«2023-08-30T11:51:18Z»
xsd:dateTime

sosa:resultTime

_:res1
sosa:hasResult

unit:DEG_C
qudt:unit

«26.0»

xsd:double

qudt:numericValue

«2023-08-30T11:51:23Z»
xsd:dateTime

sosa:resultTime

Figure 5.2: Example of road context annotation.

_:loc1«41.13615»
xsd:double

«16.83855»
xsd:double

geo:location

geo:lat geo:long

_:obs1

tao:RoadCondition

sosa:observedProperty

:SlipperyRoad
sosa:hasResult

«2023-08-30T11:52:28Z»
xsd:dateTime

sosa:resultTime

:Sensor1

:SmartTire
rdf:type

sosa:madeBySensor
_:obs2

m3lite:WeatherPrecipitation

geo:location
sosa:observedProperty

m3lite:Rainfall
sosa:hasResult

Figure 5.3: Example of annotation received from a smart tire.

currently developing intelligent tires integrating communication functionality
for sharing sensor data with both roadside infrastructures and the Electronic
Control Unit (ECU) of the car. Smart tires are typically able to identify
useful road information (e.g., road surface status, weather conditions, risk of
aquaplaning) aiming to prevent critical driving situations. When a vehicle
equipped with smart tires approaches a road section with an embedded smart
node, the pressure sensor detects the presence of the vehicle and the road
node initiates a CoAP-based data exchange to retrieve information from the
tire. An example of OWL-based annotation received from a sensorized tire
is shown in Figure 5.3, also including concepts related to the transportation
domain modeled by the Transport Administration Ontology (TAO) [79]. This
annotation is sent by the tire upon receiving a CoAP GET request for a
dedicated sensor data resource, as showcased in Listing 2. The smart road

132

// 1. Request from the road node to the tire

CON [id=<0xbc90>, token=<0x71>]

GET /sensor_data

// 2. Response from the tire

ACK [id=<0xbc90>, token=<0x71>]

CODE 2.05 Content

PAYLOAD

...

ObjectPropertyAssertion(sosa:observedProperty _:obs2 m3lite:Rainfall)

ObjectPropertyAssertion(sosa:hasResult _:obs2 _:res1)

ObjectPropertyAssertion(qudt:unit _:res1 unit:MilliM−PER−DAY)

DataPropertyAssertion(sosa:resultTime _:obs2

"2023−08−30T11:51:23Z"^^xsd:dateTime)

DataPropertyAssertion(qudt:numericValue _:res2 "5.0"^^xsd:double)

...

Listing 2: CoAP-based interaction between a road node and a sensorized tire.

node collects data from multiple vehicles and other aforementioned IoT devices
as they pass by, then it parses and aggregates information using Cowl in order
to store a progressively richer characterization of surrounding traffic flow and
road conditions. This information is also fed back to pedestrians and vehicles
via CoAP, in order to enrich their own knowledge graphs and enable more
accurate real-time inferences for automatic decision.

Step B: road-drone interaction. As shown in Figure 5.1, smart nodes
embedded in roads can also interact with urban monitoring drones equipped
with high-resolution cameras, environmental sensors, and communication
systems. Each drone is dispatched from a designated launchpad and follows a
predefined flight path, guided by Global Navigation Satellite Systems (GNSS)
and remote control. As the drone hovers above individual road sensors, it
receives collected knowledge via CoAP, which includes real-time information
on road conditions. At the same time, UAV onboard sensors capture additional
contextual information –obtained by processing on-board camera images and
from equipped environmental sensors– which can be annotated and shared
with road sensors through CoAP messages. An example of this interaction is
displayed in Listing 3, where one of the smart road nodes has detected a rain
intensity of 5 mm per day. During its flyby, the UAV detects rain intensity of
10 mm per day, and sends a POST request to the road sensor, which updates

133

// 1. Original knowledge graph of the road sensor

...

ObjectPropertyAssertion(sosa:observedProperty _:obs2 m3lite:Rainfall)

ObjectPropertyAssertion(sosa:hasResult _:obs2 _:res1)

ObjectPropertyAssertion(qudt:unit _:res1 unit:MilliM−PER−DAY)

DataPropertyAssertion(sosa:resultTime _:obs2

"2023−08−30T11:51:23Z"^^xsd:dateTime)

DataPropertyAssertion(qudt:numericValue _:res2 "5.0"^^xsd:double)

...

// 2. Request from the UAV to the road sensor

CON [id=<0xbc91>, token=<0x72>]

POST /sensor_data

PAYLOAD

...

ObjectPropertyAssertion(sosa:observedProperty _:obs2 m3lite:Rainfall)

ObjectPropertyAssertion(sosa:hasResult _:obs2 _:res1)

ObjectPropertyAssertion(qudt:unit _:res1 unit:MilliM−PER−DAY)

DataPropertyAssertion(sosa:resultTime _:obs2

"2023−08−30T11:53:15Z"^^xsd:dateTime)

DataPropertyAssertion(qudt:numericValue _:res2 "10.0"^^xsd:double)

...

// 3. Response from the road sensor

ACK [id=<0xbc91>, token=<0x72>]

2.04 Changed

// 4. Updated knowledge graph of the road sensor

...

ObjectPropertyAssertion(sosa:observedProperty _:obs2 m3lite:Rainfall)

ObjectPropertyAssertion(sosa:hasResult _:obs2 _:res1)

ObjectPropertyAssertion(qudt:unit _:res1 unit:MilliM−PER−DAY)

DataPropertyAssertion(sosa:resultTime _:obs2

"2023−08−30T11:53:15Z"^^xsd:dateTime)

DataPropertyAssertion(qudt:numericValue _:res2 "7.5"^^xsd:double)

...

Listing 3: CoAP-based interaction between the UAV and a road node.

134

its own reading by aggregating the two values (in this example, by averaging
them).

Step C: drone-traffic management system interaction. Finally,
when the UAV enters the communication range of a road-side unit belonging
to the distributed urban traffic management system (TMS), it transmits
the gathered knowledge for real-time inference about urban conditions. An
example of this interaction is reported in Listing 4, where the drone issues
a CoAP PUT request to one of the TMS units, resulting in the creation of
new records in the system’s geographic database (e.g., a PostGIS1 instance),
exposed as a CoAP endpoint. The drone is able to retrieve the geographic
coordinates of the collected readings by using Cowl to query its internal
knowledge graph: all collected information –concerning e.g., traffic level and
type, road surface integrity and wetness, weather conditions– are extracted
and sent. Capable TMS devices can then execute more sophisticated (and
computationally expensive) inferences and analytics on the overall data, gen-
erating reports and alerts which are then shared with relevant city department
policy-makers, emergency responders, and connected vehicles. In this way,
the traffic flow can be optimized by acting on connected traffic lights and
signals, leading to reduced congestion and improved road safety, and public
authorities can dispatch emergency services immediately if needed.

// 1. Request from the UAV to the TMS

CON [id=<0xbc92>, token=<0x73>]

PUT /geo_data/41.13615/16.83855

PAYLOAD

...

ObjectPropertyAssertion(sosa:observedProperty _:obs1 m3lite:TrafficIntensity)

ObjectPropertyAssertion(sosa:hasResult _:obs1 :ModerateTraffic)

DataPropertyAssertion(sosa:resultTime _:obs1

"2023−08−30T11:51:18Z"^^xsd:dateTime)

...

// 2. Response from the TMS

ACK [id=<0xbc92>, token=<0x73>]

2.01 Created

Listing 4: CoAP-based interaction between the UAV and a TMS unit.

1PostGIS home: https://postgis.net

135

https://postgis.net

Information collected by road sensors and drones can be also exploited
in an Urban Digital Twin [134] control center for long-term analysis and
city planning, in order to extract useful insights for optimizing traffic flow
distribution and prioritizing preventive maintenance interventions on the road
network. These interactions between smart road infrastructures and drones
powered by Cowl show the usefulness of combining pervasive data collection
and annotation with distributed aerial surveillance to create a comprehensive
and flexible urban territorial monitoring system. Ultimately, this can reduce
road congestion as well as traffic-related time waste, atmospheric and acoustic
pollution, thus improving the overall safety and quality of life for residents.

5.2 Drone autopilot on-board reasoning

Unmanned Aerial Vehicles (UAVs), a.k.a. drones, are increasingly used in
diverse fields like search and rescue, precision farming, and logistics, driven by
advances in sensor miniaturization and computing technology [109]. Current
UAV-related AI applications rely either on ground stations for data analysis,
causing latency issues for real-time tasks, or on on-board ML models, adding
cost, weight, and energy demand. These methods also lack transparency,
affecting trust and accountability in critical scenarios [48]. KRR techniques
can offer a solution with their inherent interpretability and logic-based expla-
nations, enhancing UAV situational awareness, autonomous decision-making,
and adaptability [101]. The proposed approach involves monitoring UAV
internal states and environmental factors, allowing UAVs to adjust operations
by comparing current situations with reference states and adapting behavior
accordingly.

To validate the feasibility of this approach, sketched in Figure 5.4, a
prototypical implementation of devised SWoE tools has been attempted on a
popular embedded flight controller platform. Specifically, the Tiny-ME and
Cowl libraries have been ported to the 3DR IRIS+2 UAV, equipped with a
2IRIS+: https://3dr.com/support/articles/iris/

136

https://3dr.com/support/articles/iris/

Raw data

Semantic annotation

Correction

Ontology Reasoner

Figure 5.4: Embedded reasoning for autonomous UAV operations.

Pixhawk 1 3 autopilot (i.e., flight controller). This unit has a STM32F427 4

system-on-chip, including a 180 MHz ARM Cortex M4 microcontroller and
256 KiB of SRAM. The autopilot runs the PX4 5 FMUv2 firmware, based
on the Apache NuttX 6 real-time operating system (RTOS), supporting the
development of user-defined applications and modules.7 The NuttX/Pixhawk
platform has been chosen because it exhibits the typical development chal-
lenges of embedded RTOSes, while also introducing very strict constraints on
computational resources.

In order to assess on-board reasoning feasibility and usefulness of available
inferences and language expressiveness in representative scenarios, two case
studies have been envisioned: the first one concerns UAV-based detection of
fire and explosion risk from gas or vapor [94], and the second one focuses on
on-board context management in a crowd detection and avoidance setting
[105]. For both case studies, the reasoner is invoked as part of a periodic
task that continuously monitors the environment, collecting internal and
external parameters via on-board sensors and OS primitives. The task then
constructs a concept expression R representing the current context, and
performs semantic matchmaking to compare it with critical scenarios stored
in the KB as individuals. For each individual, the UAV checks if it is consistent
3Pixhawk 1: https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk.html
4STM32F427: https://www.st.com/en/microcontrollers-microprocessors/

stm32f427-437.html
5PX4: https://px4.io
6Apache NuttX: https://nuttx.apache.org/
7PX4 developer documentation: https://dev.px4.io

137

https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f427-437.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f427-437.html
https://px4.io
https://nuttx.apache.org/
https://dev.px4.io

Figure 5.5: UAV testbed setup.

with R and, if the check succeeds, it invokes Concept Abduction to compute
the semantic distance d between R and the current individual. In what follows,
each individual is considered as a request in the matchmaking framework
described in Section 1.2.2, while R is treated as a resource. This entails that
the semantic distance d represents “how much” is missing from R to fully align
with the reference scenario. If d is below a certain threshold, the individual is
a match for the current context R and the behavior of the drone is adapted
accordingly.

Environmental hazard detection

According to the European Union (EU) Directive 2014/34/UE,8 fire and
explosion risk from gas or vapor exists if the following conditions are true:
(i) concentration is higher than the substance-specific Lower Explosion Limit
(LEL), defined as the lowest value able to produce fire in the presence of
an ignition source; (ii) for a gas, oxygen concentration is higher than the
Limiting Oxygen Concentration (LOC), defined as the value below which
8Directive 2014/34/UE: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=

celex:32014L0034

138

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014L0034
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014L0034

Figure 5.6: Excerpt of the hazard detection knowledge base.

combustion cannot occur; (iii) for a vapor, air temperature is higher than the
substance-specific flashpoint threshold.

Figure 5.6 shows the upper-level classes of the OWL ALN (D) KB (292
axioms, 73 classes, 8 object properties, 5 data properties, and 27 individuals)
modeled for the case study. Classes of explosive or flammable atmosphere
conditions for the considered substances are highlighted in blue, while envi-
ronmental features which influence risk levels are highlighted in green.

The UAV is endowed with a GNSS antenna as well as sensors for tem-
perature, atmospheric pressure, wind speed, oxygen concentration, and the
concentration of each substance to be monitored. As an example, let us
consider that on-board sensors detect a 6 g/m3 methane concentration, 1 m/s

wind speed, and 15% oxygen concentration, resulting in the following annota-
tion (reported in Manchester syntax [50]):

139

R: Methane and (hasConcentration only float[>=6.0,<=6.0]) and (withOxy-

genConcentration only (hasConcentration only float[>=15.0,<=15.0])) and

(withWindSpeed only (hasSpeed only float[>=1.0,<=1.0]))

The drone performs matchmaking of R with all KB individuals that
are instances of Explosive_Atmosphere and Flammable_Atmosphere, such as
Explosive_methane and Flammable_methane. For each substance of interest,
this stage allows inferring if conditions for fire or explosion are met, according
to environmental parameters monitored and modeled in R. Explosion risk
is tested for all substances before fire risk, as the former requires raising a
higher-severity alert. Following up the above example, the KB contains these
two risk profiles for methane:

Explosive_methane: HighConcentration_Methane and

HighOxygenConcentration_Methane and LowVentilation_Methane

Flammable_methane: LowVentilation_Methane and

MediumConcentration_Methane and HighOxygenConcentration_Methane

where classes reported in their expressions are defined as:

MediumConcentration_Methane ≡ Methane and

(hasConcentration only float[>=6.0,<12.0])

HighConcentration_Methane ≡ Methane and

(hasConcentration only float[>=12.0])

HighOxigenConcentration_Methane ≡ Methane and

(withOxygenConcentration min 1) and (withOxygenConcentration only

(hasConcentration only float[>=14.0]))

LowVentilation_Methane ≡ Methane and (withWindSpeed min 1) and

(withWindSpeed only (hasSpeed only float[<1.0]))

140

Figure 5.7: Excerpt of the context awareness knowledge base.

The compatibility check between R and Explosive_methane fails, as class
HighConcentration_Methane is defined as having a LEL of 12 g/m3, while R

has a value of 6 g/m3. This implies that explosion risk is absent. Conversely,
Flammable_methane ⊑ R and concept abduction detects a full match (d = 0),
therefore the semantic distance is below threshold. As a consequence, the
UAV raises a fire alert related to the methane substance.

Context awareness

In this second scenario, the UAV is used for crowd detection and avoidance via
frame-based image analysis using a nadiral camera payload. A prototypical
ontology (296 axioms, 54 classes, 11 data properties and 9 individuals) has been
modeled, comprising classes that describe UAV parameters, and individuals
characterizing critical scenarios that prevent getting reliable image frame
acquisition or timely processing. An excerpt of the ontology is shown in
Figure 5.7. To determine if the current conditions align with any of the
critical scenarios, the current state of the UAV, e.g.:

141

R: (hasRoll only float[>=1.5,<=1.5]) and (hasPitch only float[>=0.2,<=0.2])

and (hasHeading only float[>=0.1,<=0.1]) and (hasAcceleration only

float[>=0.5,<=0.5]) and (hasSpeed only float[>=5.0,<=5.0]) and

(hasBatteryLevel only float[>=70.0,<=70.0]) and (hasCPULoad only

float[>=98.0,<=98.0]) and (hasMemoryOccupied only float[>=80.0,<=80.0])

is compared with each critical scenario available in the KB via semantic
matchmaking, obtaining a ranking of scenario profiles based on semantic
similarity. Let us consider the following critical scenarios:

Critical_1: HighCL and HighMO

Critical_2: MediumCL and MediumMO and HighSF

Critical_3: VeryLowBL

with classes defined as follows:

HighCL ≡ CPULoad and hasCPULoad only float[>=80.0]

MediumCL ≡ CPULoad and hasCPULoad only float[>=30.0,<80.0]

HighMO ≡ MemoryOccupied and hasMemoryOccupied only float[>=80.0]

MediumMO ≡ MemoryOccupied and hasMemoryOccupied only float[>=30.0,<80.0]

HighSF ≡ SamplingFrequency and hasSamplingFrequency only float[>=10.0]

VeryLowBL ≡ BatteryLevel and hasBatteryLevel only float[<5.0]

In this particular case, the Critical_1 individual passes the semantic
similarity threshold, due to the currently high CPU load and memory occu-
pancy. To mitigate the impact of the identified critical scenario, a strategic
decision is made to skip the processing of the next frame, alleviating the
UAV’s processing load and enhancing its overall operational efficiency.

142

5.3 Explainable reasoning on wearables
for personal healthcare

In this case study, an Apple Watch9 application has been developed to
assist patients suffering from asthma by estimating the severity of symptoms
through on-board automated reasoning. Leveraging capabilities introduced
in watchOS10 version 6, the app has been designed to be independent from
external devices, only relying on builtin sensors and processing resources,
and to require minimal user intervention. Moreover, providing easy access to
logical explanations in such a dependable setting is deemed crucial to increase
confidence in inference outcomes. The prototype exploits an experimental
port of the Tiny-ME reasoner to the watchOS platform, obtained by cross-
compiling its existing Objective-C API (cfr. Section 3.4.1) for Watch devices.
The app was tested on an Apple Watch Series 6, the first model to support
blood oxygen saturation levels.

The World Health Organization defines11 chronic asthma as a lung dis-
ease affecting people of all ages, caused by inflammation of the airways and
contraction of surrounding muscles. Symptoms can vary in intensity and
frequency, including cough, wheezing, shortness of breath, and chest tightness.
Identifying a precise cause for the onset of the disease is often challenging,
though risk factors are well known, and include family history, exposure to
pollutants and passive tobacco smoke, prolonged contact with dust, chemi-
cals, and conditions of overweight and obesity. As asthma cannot be cured,
international guidelines for treatment focus on controlling the disease, mini-
mizing symptoms and bronchoconstriction. To this aim, the Asthma Control
Questionnaire (ACQ) [54] has been designed to evaluate the degree of control
an individual has over their asthma. It encompasses a series of questions that
assess various aspects of the disease, such as the frequency and severity of
symptoms, limitation of daily activities, and the patient’s use of short-acting
9https://www.apple.com/watch
10https://www.apple.com/watchos
11https://www.who.int/news-room/fact-sheets/detail/asthma

143

https://www.apple.com/watch
https://www.apple.com/watchos
https://www.who.int/news-room/fact-sheets/detail/asthma

(a) Home screen of the app. (b) Semantic-based score explanation.

Figure 5.8: WatchOS application prototype.

bronchodilators. Additionally, it incorporates clinical data through spirometry
test results. Each item in the questionnaire is scored on a scale from 0 to
6, where higher scores indicate more severe symptoms or a greater need for
medication.

An Apple Watch application prototype, depicted in Figure 5.8, has been
developed to estimate responses to the first five ACQ questions without any
user input, according to recognized health research correlations [37, 108, 111,
117] with data that can be autonomously collected by the watch through
on-board sensors. Health data and sensor readings accessible through the
HealthKit12 framework are used to construct an ontology-based annotation of
the patient’s health status. Subsequently, semantic matchmaking is employed
to estimate answers to the following ACQ questions:

1. “On average, during the past week, how often were you woken by your
asthma during the night? ” (nighttime awakenings): the score is
computed by counting the number of HealthKit sleepAnalysis samples
marked as awake that overlap with those marked as inBed, focusing
only on short awakenings followed by sleep.

12https://developer.apple.com/documentation/healthkit

144

https://developer.apple.com/documentation/healthkit

2. “On average, during the past week, how bad were your asthma symptoms
when you woke up in the morning? ” (morning symptoms severity):
estimated through the average heart rate and oxygen saturation recorded
by Apple Watch from one hour before to two hours after waking up.
These averages are categorized into severity ranges from normal to very
severe, and are known [111] to be positively correlated to the aggravation
of asthma symptoms.

3. “In general, during the past week, how limited were you in your activities
because of your asthma? ” (activity limitation): estimated by querying
the averages of activeEnergyBurned, stepCount, flightsClimbed (or
pushCount for wheelchair users), heartRateVariabilitySDNN, and total
sleep hours. SDNN stands for Standard Deviation Normal-to-Normal
and is a well-known method [108] to measure heart rate variability in
the time domain as the standard deviation of beat-to-beat intervals.
Gathered parameters are compared against a two-week historical average
stored by the app. A current week’s average that is at least 10% lower
than the historical average indicates activity limitation.

4. “In general, during the past week, how much shortness of breath did
you experience because of your asthma? ” (dyspnea severity): linked
to the average heartRateVariabilitySDNN over the last week. This
parameter is known [37] to be linked to dyspnea. A scale based on
health research [108] categorizes the average into healthy, compromised
health, and unhealthy ranges.

5. “In general, during the past week, how much of the time did you wheeze? ”
(wheezing): associated with the average weekly blood oxygen level.
The average of the past week’s oxygenSaturation samples is compared
against a scale to estimate the severity of wheezing, as low oxygen
saturation levels are known to be correlated to more severe asthma
symptoms [117], including wheezing.

The app displays an overall health score for the patient, computed as the
average of the scores of each ACQ question (Figure 5.8a). For each score, a

145

(a) Top-level taxonomy (b) Asthma parameter levels and criteria

Figure 5.9: Excerpt of the asthma knowledge base.

detailed semantic-based explanation can be displayed, showing the criteria
that led to its attribution. Figure 5.8b showcases a prototypical version of
the detail view, where explanations are provided in textual form. A more
user-friendly solution would summarize outcomes through pictorial elements,
such as icons and other graphical controls.

The user profile annotation is built by querying HealthKit for specific data
samples, aggregating them over a week’s period, and then mapping values to
appropriate OWL constructs. A specific ALN (D) ontology has been modeled,
describing the user’s body parameters such as heart rate, oxygen saturation,
number of steps, etc. as subclasses of the BodyParameter class, as shown in
Figure 5.9a. Responses to ACQ questions have been modeled as subclasses of
AsthmaParameter, with leaf concepts representing criteria for the attribution
of a specific score to each question (Figure 5.9b). Each leaf class is then
associated to a KB individual, used as a resource for matchmaking purposes.

As an example, consider the following user profile annotation:

146

User_Profile:

AverageActiveEnergyBurned and AverageFlightsClimbed and AverageStepCount

and (not Wheelchair) and (hasHeartRate only int[>=80,<=80]) and (has-

MorningOxygenSaturation only float[>=95.0,<=95.0]) and (hasOxygenSatura-

tion only float[>=90.0,<=90.0]) and (hasSDNN only int[>=105,<=105]) and

(hasSleepTime only float[>=42.0,<=42.0]) and (hasWakeUps only int[>=8,<=8])

A semantic matchmaking process is initiated for each ACQ question,
considering only the relevant subset of individuals representing match criteria
for each score level. The following individuals match the above user profile:

AsthmaWakeUps2_Criterion0:

(hasAsthmaParameterLevel only int[>=2,<=2]) and (hasWakeUps min 1) and

(hasWakeUps only int[>=6,<=10])

AsthmaBadnessMorning0_Criterion0:

(hasAsthmaParameterLevel only int[>=0,<=0]) and (hasHeartRate min 1) and

(hasHeartRate only float[<90.0]) and (hasMorningOxygenSaturation min 1)

and (hasMorningOxygenSaturation only float[>=93.0])

AsthmaActivityLimitation2_Criterion2:

(hasAsthmaParameterLevel only int[>=2,<=2]) and BelowAverageStepCount and

(not Wheelchair) and (hasSDNN min 1) and (hasSleepTime min 1) and (hasSDNN

only int[>=100]) and (hasSleepTime only int[>=42,<=48])

AsthmaShortnessOfBreath0_Criterion0:

(hasAsthmaParameterLevel only int[>=0,<=0]) and (hasSDNN min 1) and (has-

SDNN only int[>=100])

AsthmaWheezing2_Criterion0:

(hasAsthmaParameterLevel only int[>=0,<=0]) and (hasOxygenSaturation min

1) and (hasOxygenSaturation only float[>=89.0,<=91.0])

147

Note how each individual has a hasAsthmaParameterLevel datatype re-
striction, whose value represents the exact score for the corresponding ACQ
question. Due to the above matches, the reasoning process results in the
following scores:

• Night awakenings: 2;

• Morning symptoms: 0;

• Activity limitation: 2;

• Shortness of breath: 0;

• Wheezing: 2.

and an overall score of 1.2, indicating a low level of incidence of (i.e., a good
level of control on) the disease.

Although clinical validation has not been performed yet for the overall
proposed ACQ estimation methodology, from a SWoE perspective the case
study demonstrates that stand-alone apps on wearable devices are able to
collect, annotate and reason upon sensor data in order to provide health
recommendations associated with meaningful explanations [130]. Enabling
such capabilities, without resorting to more powerful companion devices for
semantic-enabled processing, preserves data privacy and discloses further
potential solutions based on a biofeedback loop for improving user’s health
and well-being through increased situation awareness in several scenarios.

5.4 Privacy-conscious (mobile) Web

In order to demonstrate the practicality and benefits of the proposed SWoE
technological stack in Web contexts, a case study has been developed on
the retrieval and preference-based ranking of local events. In modern Web
platforms, users often need to disclose their profile information to receive

148

WEB SERVICE MOBILE
BROWSER

1. Search by city/date

2. Annotate events and user profile

3. Rank by user
preferences

4. Show suggested events

Tiny-ME WASM

Web-based communication Local Reasoning

Figure 5.10: Architecture and workflow of the proposed Web application.

personalized recommendations for events, products, and other services. The
proposed workflow, illustrated in Figure 5.10, leverages the WebAssembly
port of the Tiny-ME reasoner –described in Section 3.4.3– to provide an
alternative general-purpose approach, based on four main steps:

1. a mobile Web application gathers non-personalized available information
from the Web;

2. this information is then annotated in accordance with an OWL domain
ontology;

3. the annotated data is used to pinpoint resources that align closely with
the user’s profile and preferences;

4. the results are subsequently displayed in the user interface, allowing for
user selection and/or query refinement.

A key aspect of the approach is that only the first step involves querying
a remote server, while all subsequent processing is performed locally on the
user’s mobile device. This approach not only ensures privacy-preserving
information management, but also eliminates the delays typically associated
with interactions with a remote reasoning engine.

Let us consider the following example: Martina, while on vacation in San
Francisco, is interested in purchasing a ticket for a musical event, spending

149

no more than $80.00. She is a fan of alternative rock bands and would like to
attend a tour date rather than a one-time concert.

The framework, as detailed in Figure 5.10, allows users to access informa-
tion about local events through a Web application on their mobile browser.
The data for this case study is sourced from Ticketmaster 13 via their public
RESTful API.14 Initially, as shown in Figure 5.11a, users retrieve a list of
nearby events based on basic parameters like city and date range. This data
is generic and not tailored to individual preferences. To personalize this
information, users can select various features and preferences to create their
private personal profile (Figure 5.11b) on-device, which is then translated
into an ontology-based semantic annotation. Figure 5.12 illustrates the TBox
concepts, which correspond to the categories provided by the service API.
The specific details of the selected preferences are displayed below:

User_Profile: Event and (hasAudience only EveryOne) and (hasPrice only

float[<=80.0]) and (hasStyle only Tour) and (hasCategory only Alterna-

tive_Rock) and (hasType only Group) and (hasCategory min 1) and (hasStyle

min 1) and (hasAudience min 1)

After a pre-filtering step based on a maximum distance of 5 km from
the mobile device location and considering only events occurring in the
current week, the user profile is compared via semantic matchmaking with
the following semantically annotated event descriptions:

Crocodiles: Event and (hasAudience only EveryOne) and (hasPrice only

float[>=163.0,<=180.0]) and (hasStyle only Tour) and (hasType only Band)

and (hasCategory only Indie_Rock)

Iggy_Pop_and_The_Losers: Event and (hasAudience only EveryOne) and (hasPrice

only float[>=50.0,<=100.0]) and (hasStyle only Tour) and (hasType only

Band) and (hasCategory only Alternative_Rock)

13https://www.ticketmaster.com
14https://developer.ticketmaster.com/products-and-docs/apis/getting-started/

150

https://www.ticketmaster.com
https://developer.ticketmaster.com/products-and-docs/apis/getting-started/

(a) Available events. (b) User profile. (c) Suggested events.

Figure 5.11: Screenshots of the Web application.

KANKAN-The_RR_Tour: Event and (hasAudience only EveryOne) and (hasPrice

only float[>=25.0,<=105.0]) and (hasStyle only Concert) and (hasType only

Performer) and (hasCategory only Hip_Hop_Rap)

Ripe-Bright_Blues_Tour: Event and (hasAudience only EveryOne) and (hasPrice

only float[>=27.0,<=27.0]) and (hasStyle only Tour) and (hasType only

Band) and (hasCategory only Pop_Rock)

The_Nude_Party: Event and (hasAudience only EveryOne) and (hasPrice only

float[>=20.0,<=20.0]) and (hasStyle only Concert) and (hasType only Band)

and (hasCategory only Alternative_Rock)

151

Figure 5.12: Reference ontology for the event finder application.

The returned list of events, shown in Figure 5.11c, is ranked according to
the following utility function:

u(R,C) = 100[1− s_penalty(R,C)

s_penalty(R,⊤)
(1 + distance(R,C)

max_distance
)]

where s_penalty(R,C) is the result of the semantic matchmaking task and it
represents the semantic distance between user profile R and event annotation
C, normalized by s_penalty(R,⊤); the latter is the semantic distance between
R and top, and it depends only on the ontology structure. The distance(R,C)

context parameter is included to exploit the event geographical distance as
weighting factor. The utility function also converts the semantic distance
value into a more intuitive percentage score, as shown in Table 5.1. It can be
observed that if s_penalty(R,C) = 0 then the final score is 100%, regardless
of the geographic distance. Based on user preferences and event descriptions,
the most suitable event, as listed in Figure 5.11c, is the individual Iggy_-
Pop_and_The_Losers, even if its physical distance is greater than the other
available resources.

Table 5.1: Musical events ranked by the utility function.
Musical events s_penalty(R,C) distance(R,C) u(R,C)
Iggy Pop & The Losers 0.20 2.60 km 97.97 %
The Nude Party 1.00 0.85 km 93.22 %
Crocodiles 1.51 0.60 km 89.81 %
Ripe Bright Blues Tour 4.00 1.40 km 72.59 %
KANKAN - The RR Tour 6.24 0.87 km 57.68 %

152

Conclusion and perspectives

The Semantic Web of Everything naturally embodies the ongoing progression
of the Internet of Things towards the Internet of Everything, and enables
meaningful logic-based interactions among its actors. Its materialization
requires novel Semantic Web architectures and tools, able to permeate all
scales of computing, from capable cloud infrastructures to severely resource-
constrained micro- and nano-devices.

This dissertation has addressed the design and implementation of a practi-
cal architecture that meets the peculiar requirements of the SWoE vision. The
proposed technology stack, comprising Cowl for access and manipulation of
knowledge, Tiny-ME for pervasive reasoning, and evOWLuator for systematic
assessments, demonstrates a comprehensive approach towards realizing the
Semantic Web of Everything, with each component playing a key role in
bridging the gap between its theoretical aspects and practical application in
diverse computing environments.

Cowl showcases it is possible to leverage semantic technologies in severely
restricted settings by means of novel techniques and targeted architectural
choices and optimizations, while remaining versatile enough for high perfor-
mance access to knowledge graphs on more capable platforms. Tiny-ME offers
a robust reasoning framework on a moderately expressive fragment of OWL 2,
operating effectively across a spectrum of platforms, from containerized cloud
(micro)services to smaller edge devices and embedded boards. This flexibility
ensures that Tiny-ME can provide the necessary reasoning capabilities for the
SWoE, at each scale of device computational resources. Finally, evOWLuator
complements the stack by providing a systematic framework for evaluating
the performance and efficiency of Semantic Web technologies. Its focus on
aspects like energy consumption and remote inference capability is crucial

153

for assessing the suitability of these technologies in a SWoE context, where
resource efficiency is paramount. This infrastructure lays the groundwork for
future advancements in the field and further refinement of the developed tech-
nologies, paving the way for more intelligent, interconnected, and autonomous
systems within the realm of the Internet of Everything.

For Cowl, future work involves broadening its capabilities to include
support for parsing and serializing RDF-based OWL syntaxes, such as RD-
F/XML and Turtle. This expansion aims to enhance interoperability with
a wider range of existing Semantic Web tools and datasets. Additionally,
the integration of inference capabilities through interfaces compatible with
established OWL reasoners is planned. Finally, Cowl’s low memory footprint
and its unique ability to process ontologies as streams of axioms enables
the development of a large-scale cross-platform distributed knowledge graph
framework. Such a framework could enable nodes with minimal processing
power to participate in creating and using semantically annotated information,
fostering truly collaborative, pervasive, knowledge-aware applications.

In the ongoing development of Tiny-ME, the focus will be on enhancing
language expressiveness and extending its reasoning capabilities. The primary
goal is to support reasoning in OWL 2 EL, EL+, and EL++, which neces-
sitates not only the expansion of data structures but also the development
of new reasoning algorithms in its C core. Thanks to its novel architectural
approach, these advancements in inference capabilities will require a one-time
implementation effort, with all associated APIs transparently benefiting from
them. Additionally, Tiny-ME’s plug-in datatype architecture will be exploited
to introduce non-standard datatypes, thereby broadening its applicability to
a wider range of practical domains. This addition will enhance the versatility
and adaptability of the system, making it able to meet the diverse and evolving
needs within the Semantic Web of Everything. A further research direction
involves integrating the proposed KRR infrastructure with Large Language
Models, in an effort to improve their logic-based inference capabilities.

Lastly, future improvements are planned for evOWLuator to substan-
tially augment its functionality and user experience. First of all, a systematic

154

survey of actively developed reasoning engines for desktop and mobile systems
is planned, focusing on energy footprint evaluation. Furthermore, evOWL-
uator’s visualization capabilities will be extended, introducing a wider array
of visualization types and options, significantly increasing its usefulness in
academic research and data analytics contexts. By offering more sophis-
ticated and diverse data representation tools, the framework will provide
deeper insights and more intuitive analysis of the performance of semantic web
tools. Additionally, the development of a Web-based front-end will streamline
the process of running evaluations. This user-friendly interface will make
evOWLuator more accessible and convenient, facilitating its use across various
platforms and significantly enhancing its appeal to a broader user base.

In advancing the SWoE vision, the transition from academic contributions
to applied technologies ready for production use is of utmost importance. This
evolution requires not only rigorous validation and refinement of the proposed
frameworks within real-world scenarios, but also fruitful engagements with
both the research and industry communities. The journey toward realizing
the SWoE vision involves perfecting the proposed case studies, demonstrating
their relevance and applicability in industrially relevant environments, and
fostering partnerships that facilitate technology transfer and collaborative
innovation.

A critical aspect of this progression is the improvement of the Technology
Readiness Level (TRL) of the proposed solutions, which is essential for
ensuring their practicality and effectiveness in real-world settings. This effort
necessitates collaboration initiatives with partners in industry and academia
to align the technologies with market and research needs, integrate them into
existing ecosystems, and address the challenges faced by different vertical
sectors and research fields. Such collaborations are invaluable for accelerating
the adoption of the novel technologies and paradigms, and for their integration
into the broader IoT/IoE landscape.

For this reason, the success of the SWoE hinges on robust community
outreach. The initiatives undertaken thus far, including the public release
of tools and their source code under permissive licenses, along with curated

155

documentation, have initiated promising dialogues with scientists and practi-
tioners from both academic and industrial backgrounds. Moving forward, it
is crucial to intensify these efforts, engaging more deeply with the community
to solicit feedback, foster collaboration, and facilitate the exchange of ideas.
This will not only result in refinements and enhancements to the existing
methods and solutions, but may also inspire the development of new tools,
frameworks, and applications that build upon the groundwork laid out in this
dissertation. Hopefully, this might pave the way for a future where seman-
tic technologies can transform the fabric of the IoT into a more pervasive,
intelligent, interconnected, and accessible domain.

156

Bibliography

[1] Rachit Agarwal, David Gomez Fernandez, Tarek Elsaleh, Amelie Gy-
rard, Jorge Lanza, Luis Sanchez, Nikolaos Georgantas, and Valerie
Issarny. Unified IoT ontology to enable interoperability and federation
of testbeds. In 2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT), pages 70–75, 2016.

[2] Safdar Ali and Stephan Kiefer. µOR–A micro OWL DL reasoner for
ambient intelligent devices. In 4th International Conference on Advances
in Grid and Pervasive Computing, pages 305–316. Springer, 2009.

[3] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In International Joint Conference on Artificial Intelligence,
volume 5, pages 364–369, 2005.

[4] Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi,
and Peter Patel-Schneider. The Description Logic Handbook. Cambridge
University Press, 2002. 2nd Ed.

[5] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Prof-
itlich, and Enrico Franconi. An empirical analysis of optimization
techniques for terminological representation systems. Applied Intelli-
gence, 4(2):109–132, 1994.

[6] Samantha Bail, Birte Glimm, Ernesto Jimenez-Ruiz, Nicolas Matent-
zoglu, Bijan Parsia, and Andreas Steigmiller. ORE 2014 OWL Reasoner
Evaluation Live Competition. http://dl.kr.org/ore2014. Accessed:
2023-03-20.

157

http://dl.kr.org/ore2014

[7] Samantha Bail, Bijan Parsia, and Ulrike Sattler. JustBench: a frame-
work for OWL benchmarking. In International Semantic Web Confer-
ence, pages 32–47. Springer, 2010.

[8] Christian Becker and Christian Bizer. Exploring the Geospatial Seman-
tic Web with DBpedia mobile. Journal of Web Semantics, 7(4):278–286,
2009.

[9] David Beckett. The design and implementation of the Redland RDF
application framework. Computer Networks, 39(5):577–588, 2002.

[10] Charles Bell. MicroPython for the Internet of Things. Springer, 2017.

[11] Alexandre Bento, Lionel Médini, Kamal Singh, and Frédérique Laforest.
Do Arduinos Dream of Efficient Reasoners? In Paul Groth, Maria-
Esther Vidal, Fabian Suchanek, Pedro Szekley, Pavan Kapanipathi,
Catia Pesquita, Hala Skaf-Molli, and Minna Tamper, editors, The
Semantic Web, pages 289–304, Cham, 2022. Springer International
Publishing.

[12] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource
Identifiers. RFC 3986, Internet Engineering Task Force, January 2005.
https://rfc-editor.org/rfc/rfc3986.txt.

[13] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 284(5):28–37, 2001.

[14] Ivano Bilenchi, Floriano Scioscia, and Michele Ruta. Cowl: A
Lightweight OWL Library for the Semantic Web of Everything. In
Agapito et al., editor, Current Trends in Web Engineering. ICWE 2022.,
pages 100–112, Cham, 2023. Springer.

[15] Ivano Bilenchi, Arnaldo Tomasino, Filippo Gramegna, Saverio Ieva,
Agnese Pinto, Giuseppe Loseto, Floriano Scioscia, and Michele Ruta.
Knowledge Representation and Reasoning for Unmanned Aerial Vehicle
Intelligence. In 7th Italian Workshop on Embedded Systems (IWES
2022), 2022.

158

https://rfc-editor.org/rfc/rfc3986.txt

[16] Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang,
and Laurent Réveillère. Popularity, interoperability, and impact of
programming languages in 100,000 open source projects. In 2013 IEEE
37th Annual Computer Software and Applications Conference, pages
303–312, 2013.

[17] Bluetooth Special Interest Group. Bluetooth. Specification, Bluetooth
Special Interest Group, 1998. https://bluetooth.com.

[18] Carlos Bobed, Roberto Yus, Fernando Bobillo, and Eduardo Mena.
Semantic reasoning on mobile devices: Do Androids dream of efficient
reasoners? Journal of Web Semantics, 35:167–183, 2015.

[19] Jürgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking
OWL Reasoners. In ARea2008 – Workshop on Advancing Reasoning
on the Web: Scalability and Commonsense, 2008.

[20] Alexander Borgida. Description logics in data management. IEEE
Transactions on Knowledge and Data Engineering, 7(5):671–682, 1995.

[21] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap: An ap-
plication protocol for billions of tiny internet nodes. Internet Computing,
IEEE, 16(2):62–67, 2012.

[22] Carsten Bormann, Mehmet Ersue, and Ari Keranen. Terminology for
Constrained-Node Networks. RFC 7228, Internet Engineering Task
Force, May 2014.

[23] Tim Bray, Dave Hollander, Andrew Layman, Richard Tobin, and
Henry S. Thompson. Namespaces in XML 1.0. Recommendation,
W3C, December 2009. http://www.w3.org/TR/xml-names/.

[24] Dan Brickley and Ramanathan V. Guha. RDF Schema 1.1. Recommen-
dation, W3C, February 2014. https://www.w3.org/TR/rdf-schema/.

[25] Luca Buoncompagni, Syed Yusha Kareem, and Fulvio Mastrogiovanni.
Owloop: A modular api to describe owl axioms in oop objects hierarchies.
SoftwareX, 17:100952, 2022.

159

https://bluetooth.com
http://www.w3.org/TR/xml-names/
https://www.w3.org/TR/rdf-schema/

[26] James Chamberlain, Corinne Blanchard, Sam Burlingame, Sarika Chan-
dramohan, Eric Forestier, Gary Griffith, Mary Lou Mazzara, Subu
Musti, Sung-Ik Son, Glenn Stump, and Christoph Weiss. IBM Web-
Sphere RFID Handbook: A Solution Guide. IBM International Technical
Support Organization, May 2006.

[27] Connectivity Standards Alliance. ZigBee. Specification, Connectivity
Standards Alliance, 2003. https://csa-iot.org.

[28] Daniele Dell’Aglio, Emanuele Della Valle, Frank van Harmelen, and
Abraham Bernstein. Stream reasoning: A survey and outlook. Data
Science, 1(1-2):59–83, 2017.

[29] Kathrin Dentler, Ronald Cornet, Annette Ten Teije, and Nicolette
De Keizer. Comparison of reasoners for large ontologies in the OWL 2
EL profile. Semantic Web, 2(2):71–87, 2011.

[30] Tommaso Di Noia, Eugenio Di Sciascio, and Francesco M. Donini.
Semantic matchmaking as non-monotonic reasoning: A description
logic approach. Journal of Artificial Intelligence Research (JAIR),
29:269–307, 2007.

[31] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella,
Andy Zaidman, and Andrea De Lucia. Software-based energy profiling
of android apps: Simple, efficient and reliable? In 2017 IEEE 24th in-
ternational conference on software analysis, evolution and reengineering
(SANER), pages 103–114. IEEE, 2017.

[32] Ergin Dinc, Murat Kuscu, Bilgesu Arif Bilgin, and Ozgur Baris Akan.
Internet of Everything: A Unifying Framework Beyond Internet of
Things. In Harnessing the Internet of Everything (IoE) for Accelerated
Innovation Opportunities, pages 1–30. IGI Global, 2019.

[33] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics. Principles of Knowledge
representation, 1:191–236, 1996.

160

https://csa-iot.org

[34] Martin Duerst and Michel Suignard. Internationalized Resource Iden-
tifiers. RFC 3987, Internet Engineering Task Force, January 2005.
https://rfc-editor.org/rfc/rfc3987.txt.

[35] Timofey Ermilov, Norman Heino, and Sören Auer. Ontowiki mobile:
knowledge management in your pocket. In Proceedings of the 20th
International Conference Companion on World Wide Web, pages 33–34,
2011.

[36] César Estébanez, Yago Saez, Gustavo Recio, and Pedro Isasi. Perfor-
mance of the most common non-cryptographic hash functions. Software:
Practice and Experience, 44(6):681–698, 2014.

[37] Nicholas D. Giardino, Leighton Chan, and Soo Borson. Combined heart
rate variability and pulse oximetry biofeedback for chronic obstructive
pulmonary disease: preliminary findings. Applied psychophysiology and
biofeedback, 29:121–133, 2004.

[38] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe
Wang. HermiT: an OWL 2 reasoner. Journal of Automated Reasoning,
53(3):245–269, 2014.

[39] Rafael Gonçalves, Samantha Bail, Ernesto Jiménez-Ruiz, Nicolas Ma-
tentzoglu, Bijan Parsia, Birte Glimm, and Yevgeny Kazakov. OWL
reasoner evaluation (ORE) workshop 2013 results. In ORE, pages 1–18,
2013.

[40] Filippo Gramegna, Arnaldo Tomasino, Saverio Ieva, Ivano Bilenchi,
Agnese Pinto, Giuseppe Loseto, Floriano Scioscia, and Michele Ruta.
RideMATCHain: a Semantic-enhanced Blockchain Marketplace for
Ridesharing. In 8th Italian Conference on ICT for Smart Cities And
Communities (I-CiTies 2022), 2022.

[41] Stephan Grimm, Michael Watzke, Thomas Hubauer, and Falco Cescolini.
Embedded EL + Reasoning on Programmable Logic Controllers. In
International Semantic Web Conference, pages 66–81. Springer, 2012.

161

https://rfc-editor.org/rfc/rfc3987.txt

[42] Thomas R Gruber. A translation approach to portable ontology specifi-
cations. Knowledge acquisition, 5(2):199–220, 1993.

[43] Isa Guclu, Yuan-Fang Li, Jeff Z Pan, and Martin J Kollingbaum.
Predicting energy consumption of ontology reasoning over mobile devices.
In International Semantic Web Conference, pages 289–304. Springer,
2016.

[44] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark
for OWL knowledge base systems. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2-3):158–182, 2005.

[45] Amelie Gyrard, Manas Gaur, Saeedeh Shekarpour, Krishnaprasad
Thirunarayan, and Amit Sheth. Personalized health knowledge graph.
In CEUR workshop proceedings, volume 2317. NIH Public Access, 2018.

[46] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes.
Operating systems for low-end devices in the Internet of Things: a
survey. IEEE Internet of Things Journal, 3(5):720–734, 2015.

[47] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
global data space. Springer Nature, 2022.

[48] High-Level Expert Group on AI. Ethics guidelines for trustworthy AI.
Technical report, European Commission, Brussels, April 2019.

[49] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API
for OWL Ontologies. Semantic Web, 2(1):11–21, 2011.

[50] Matthew Horridge and Peter Patel-Schneider. OWL 2 Web Ontology
Language Manchester Syntax (Second Edition). W3C note, W3C,
December 2012. http://www.w3.org/TR/owl2-manchester-syntax.

[51] Martha Imprialou, Giorgos Stoilos, and Bernardo Cuenca Grau. Bench-
marking ontology-based query rewriting systems. In Twenty-Sixth AAAI
Conference on Artificial Intelligence, pages 779–785, 2012.

[52] International Organization for Standardization. C11 Standard, ISO/IEC
9899:2011. Draft, ISO, 2011.

162

http://www.w3.org/TR/owl2-manchester-syntax

[53] Krzysztof Janowicz, Armin Haller, Simon JD Cox, Danh Le Phuoc,
and Maxime Lefrançois. SOSA: A lightweight ontology for sensors,
observations, samples, and actuators. Journal of Web Semantics, 56:1–
10, 2019.

[54] EF Juniper, PM O’byrne, GH Guyatt, PJ Ferrie, and DR King. Devel-
opment and validation of a questionnaire to measure asthma control.
European respiratory journal, 14(4):902–907, 1999.

[55] Yong-Bin Kang, Yuan-Fang Li, and Shonali Krishnaswamy. A Rigorous
Characterization of Classification Performance – A Tale of Four Rea-
soners. In Ian Horrocks, Mikalai Yatskevich, and Ernesto Jimenez-Ruiz,
editors, OWL Reasoner Evaluation Workshop (ORE 2012), volume 858
of CEUR Workshop Proceedings, pages 88–99. CEUR-WS, 2012.

[56] Yevgeny Kazakov and Pavel Klinov. Experimenting with ELK Rea-
soner on Android. In 2nd International Workshop on OWL Reasoner
Evaluation (ORE-2013), pages 68–74, 2013.

[57] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. The
incredible ELK. Journal of automated reasoning, 53(1):1–61, 2014.

[58] Taehun Kim, Insuk Park, Soon J Hyun, and Dongman Lee. MiRE4OWL:
Mobile Rule Engine for OWL. In 2010 IEEE 34th Annual Computer
Software and Applications Conference Workshops, pages 317–322. IEEE,
2010.

[59] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and
Mark Alan Musen. The Protégé OWL plugin: An open development
environment for Semantic Web applications. In International Semantic
Web Conference, pages 229–243. Springer, 2004.

[60] KNX association. KNX. Open standard, KNX association, 2002.
https://knx.org.

[61] Patrick Koopmann, Marcus Hähnel, and Anni-Yasmin Turhan. Energy-
Efficiency of OWL Reasoners – Frequency Matters. In Joint Interna-
tional Semantic Technology Conference, pages 86–101. Springer, 2017.

163

https://knx.org

[62] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in
Python with automatic classification and high level constructs for
biomedical ontologies. Artificial intelligence in medicine, 80:11–28,
2017.

[63] Peter John Landin. The Mechanical Evaluation of Expressions. The
Computer Journal, 6(4):308–320, January 1964.

[64] Laozi, Gia-Fu Feng, and Jane English. Tao Te Ching. Random House -
Vintage Books, August 1972.

[65] Mikhail K. Levin and Lindsay G. Cowell. owlcpp: a C++ library
for working with OWL ontologies. Journal of Biomedical Semantics,
6(1):35, Sep 2015.

[66] Lei Li and Ian Horrocks. A Software Framework for Matchmaking
Based on Semantic Web Technology. International Journal of Electronic
Commerce, 8(4), 2004.

[67] Joshua Lieberman, Raj Singh, and Chris Goad. W3C Geospatial
Vocabulary. W3C Incubator Group Report, W3C Geospatial Incubator
Group (GeoXG), Oct 2007.

[68] Thorsten Liebig, Marko Luther, and Olaf Noppens. OWLlink: Struc-
tural Specification. Member Submission, W3C, July 2010. https:

//www.w3.org/submissions/owllink-structural-specification.

[69] Thorsten Liebig, Marko Luther, Olaf Noppens, and Michael Wessel.
Owllink. Semantic Web, 2(1):23–32, January 2011.

[70] Phillip Lord and Jennifer D. Warrender. Horned-owl: Building ontolo-
gies at big data scale. In Proceedings of the International Conference on
Biomedical Ontologies 2021 (ICBO 2021), Bozen-Bolzano, Italy, 16-18
September, 2021, volume 3073 of CEUR Workshop Proceedings, pages
134–136. CEUR-WS.org, 2021.

[71] Giuseppe Loseto, Ivano Bilenchi, Filippo Gramegna, Davide Loconte,
Floriano Scioscia, and Michele Ruta. Tiny-ME Wasm: Description

164

https://www.w3.org/submissions/owllink-structural-specification
https://www.w3.org/submissions/owllink-structural-specification

Logics Reasoning in Your Browser. In Casteleyn et al., editor, Current
Trends in Web Engineering, pages 114–126, Cham, 2024. Springer Nature
Switzerland.

[72] Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Filippo Gramegna,
and Ivano Bilenchi. Semantic-based adaptation of quality of experience
in web multimedia streams. In 38th ACM/SIGAPP Symposium On
Applied Computing (SAC 2023), pages 1821–1830. ACM, ACM Press,
March 2023.

[73] Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Filippo Gramegna,
Saverio Ieva, Corrado Fasciano, Ivano Bilenchi, and Davide Loconte.
Osmotic Cloud-Edge Intelligence for IoT-based Cyber-Physical Systems.
Sensors, 22(6):2166, 2022.

[74] Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Filippo Gramegna,
Saverio Ieva, Corrado Fasciano, Ivano Bilenchi, Davide Loconte, and
Eugenio Di Sciascio. A Cloud-Edge Artificial Intelligence Framework
for Sensor Networks. In 9th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI 2023), pages 149–154, 2023.

[75] Brian McBride. Jena: A Semantic Web toolkit. IEEE Internet comput-
ing, 6(6):55–59, 2002.

[76] Martín O. Moguillansky, Renata Wassermann, and Marcelo A. Falappa.
An argumentation machinery to reason over inconsistent ontologies. In
Guillermo R Simari Angel Kuri-Morales, editor, Advances in Artificial
Intelligence–IBERAMIA 2010, pages 100–109, Berlin, Germany, 2010.
Springer.

[77] Boris Motik, Bijan Parsia, and Peter Patel-Schneider. OWL 2
Web Ontology Language XML Serialization (Second Edition). Rec-
ommendation, W3C, December 2012. https://www.w3.org/TR/

owl2-xml-serialization.

[78] Mark Alan Musen. The Protégé project: a look back and a look forward.
AI matters, 1(4):4–12, 2015.

165

https://www.w3.org/TR/owl2-xml-serialization
https://www.w3.org/TR/owl2-xml-serialization

[79] Bojan Najdenov, Goran Petkovski, Milos Jovanovik, Riste Stojanov,
and Dimitar Trajanov. Automated linked data generation from the
transport administration domain. In 2015 23rd Telecommunications
Forum Telfor (TELFOR), pages 827–830, 2015.

[80] Tu Ngoc Nguyen and Wolf Siberski. SLUBM: An Extended LUBM
Benchmark for Stream Reasoning. In 2nd International Workshop
on Ordering and Reasoning, in the 12th International Semantic Web
Conference (ISWC 2013), volume 1059 of CEUR Workshop Proceedings,
pages 43–54, 2013.

[81] Olaf Noppens, Marko Luther, and Thorsten Liebig. The OWLlink API:
Teaching OWL Components a Common Protocol. In Proceedings of
the 7th International Workshop on OWL: Experiences and Directions
(OWLED 2010), pages 13.1–13.4, 2010.

[82] Tomoki Okuro, Yumiko Nakayama, Yoshitada Takeshima, Yusuke
Kondo, Nobuya Tachimori, Makoto Yoshida, Hiromu Yoshihara, Hiro-
hiko Suwa, and Keiichi Yasumoto. Vehicle Detection and Classification
using Vibration Sensor and Machine Learning. In 2022 18th Interna-
tional Conference on Intelligent Environments (IE), pages 1–8, 2022.

[83] Massimo Paolucci, Takahiro Kawamura, Terry R Payne, and Katia
Sycara. Semantic Matching of Web Services Capabilities. In Interna-
tional Semantic Web Conference, pages 333–347. Springer, 2002.

[84] Bijan Parsia, Nicolas Matentzoglu, Rafael Gonçalves, Birte Glimm,
and Andreas Steigmiller. The OWL reasoner evaluation (ORE) 2015
competition report. Journal of Automated Reasoning, 59(4):455–482,
2017.

[85] Bijan Parsia, Boris Motik, and Peter Patel-Schneider. OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syntax
(Second Edition). Recommendation, W3C, December 2012. http:

//www.w3.org/TR/owl2-syntax/.

166

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/

[86] Evan W. Patton and Deborah L. McGuinness. A power consumption
benchmark for reasoners on mobile devices. In International Semantic
Web Conference, pages 409–424. Springer, 2014.

[87] Charith Perera, Arkady Zaslavsky, Chi Harold Liu, Michael Compton,
Peter Christen, and Dimitrios Georgakopoulos. Sensor Search Tech-
niques for Sensing as a Service Architecture for the Internet of Things.
Sensors Journal, IEEE, 14(2):406–420, 2014.

[88] Andrea Pompigna and Raffaele Mauro. Smart roads: A state of the
art of highways innovations in the smart age. Engineering Science and
Technology, an International Journal, 25:100986, 2022.

[89] Filippo Giammaria Praticò, Gaetano Bosurgi, Dario Bruneo, Salva-
tore Cafiso, Fabrizio De Vita, Alessandro Di Graziano, Rosario Fedele,
Orazio Pellegrino, and Giuseppe Sollazzo. Innovative smart road man-
agement systems in the urban context: Integrating smart sensors and
miniaturized sensing systems. Structural Control and Health Monitoring,
29(10):e3044, 2022.

[90] Eric Prud’hommeaux and Gavin Carothers. RDF 1.1 Turtle. Recom-
mendation, W3C, February 2014. https://www.w3.org/TR/turtle/.

[91] Andreas Rossberg. WebAssembly Specification Release 2.0 (Draft
2023-04-08). https://webassembly.github.io/spec/core/. Accessed:
2023-04-14.

[92] Michele Ruta, Tommaso Di Noia, Eugenio Di Sciascio, Giacomo
Piscitelli, and Floriano Scioscia. Semantic-based mobile registry for dy-
namic RFID-based logistics support. In 10th International Conference
on Electronic Commerce, ICEC 08, pages 1–9. ACM Press, 2008.

[93] Michele Ruta, Eugenio Di Sciascio, and Floriano Scioscia. Concept
Abduction and Contraction in Semantic-based P2P Environments. Web
Intelligence and Agent Systems, 9(3):179–207, 2011.

[94] Michele Ruta, Floriano Scioscia, Ivano Bilenchi, Filippo Gramegna,
Giuseppe Loseto, Saverio Ieva, and Agnese Pinto. A multiplatform

167

https://www.w3.org/TR/turtle/
https://webassembly.github.io/spec/core/

reasoning engine for the Semantic Web of Everything. Journal of Web
Semantics, 73:100709, 2022.

[95] Michele Ruta, Floriano Scioscia, and Eugenio Di Sciascio. Enabling the
Semantic Web of Things: framework and architecture. In Sixth IEEE
International Conference on Semantic Computing (ICSC 2012), pages
345–347, 2012.

[96] Michele Ruta, Floriano Scioscia, Eugenio Di Sciascio, and Ivano Bilenchi.
OWL API for iOS: early implementation and results. In 13th OWL:
Experiences and Directions Workshop and 5th OWL reasoner evaluation
workshop (OWLED - ORE 2016), volume 10161 of Lecture Notes in
Computer Science, pages 141–152. W3C, Springer, Nov 2016.

[97] Michele Ruta, Floriano Scioscia, Eugenio Di Sciascio, and Domenico
Rotondi. Ubiquitous Knowledge Bases for the Semantic Web of Things.
In First Internet of Things International Forum, November 2011.

[98] Michele Ruta, Floriano Scioscia, Filippo Gramegna, Ivano Bilenchi, and
Eugenio Di Sciascio. Mini-ME Swift: the first OWL reasoner for iOS. In
16th Extended Semantic Web Conference (ESWC 2019), pages 298–313.
Springer, 2019.

[99] Michele Ruta, Floriano Scioscia, Giuseppe Loseto, Filippo Gramegna,
Saverio Ieva, Agnese Pinto, and Eugenio Di Sciascio. Social Internet of
Things for Domotics: a Knowledge-based Approach over LDP-CoAP.
Semantic Web Journal, 9(6):781–802, 2018.

[100] Michele Ruta, Floriano Scioscia, Giuseppe Loseto, Agnese Pinto, and
Eugenio Di Sciascio. Machine learning in the Internet of Things: A
semantic-enhanced approach. Semantic Web, 10(1):183–204, 2019.

[101] Michele Ruta, Floriano Scioscia, Giuseppe Loseto, Agnese Pinto, and
Eugenio Di Sciascio. Machine learning in the Internet of Things: A
semantic-enhanced approach. Semantic Web, 10(1):183–204, 2019.

[102] Michele Ruta, Floriano Scioscia, Agnese Pinto, Filippo Gramegna,
Saverio Ieva, Giuseppe Loseto, and Eugenio Di Sciascio. CoAP-based

168

collaborative sensor networks in the Semantic Web of Things. Journal
of Ambient Intelligence and Humanized Computing, 10(7):2545–2562,
jul 2019.

[103] Guus Schreiber and Fabien Gandon. RDF 1.1 XML syntax.
Recommendation, W3C, February 2014. http://www.w3.org/TR/

rdf-syntax-grammar/.

[104] Floriano Scioscia, Ivano Bilenchi, Michele Ruta, Filippo Gramegna,
and Davide Loconte. A multiplatform energy-aware OWL reasoner
benchmarking framework. Journal of Web Semantics, 72:100694, 2022.

[105] Floriano Scioscia, Giuseppe Loseto, Arnaldo Tomasino, Ivano Bilenchi,
Filippo Gramegna, Saverio Ieva, Agnese Pinto, Eugenio Di Sciascio,
and Michele Ruta. Embedded reasoning for uav operations: towards
real-time efficiency and trustworthy autonomy. In 9th Italian Conference
on ICT for Smart Cities And Communities (I-CiTies 2023), sep 2023.

[106] Floriano Scioscia and Michele Ruta. Building a Semantic Web of Things:
issues and perspectives in information compression. In Proceedings of
the 3rd IEEE International Conference on Semantic Computing, pages
589–594. IEEE Computer Society, 2009.

[107] Floriano Scioscia, Michele Ruta, Giuseppe Loseto, Filippo Gramegna,
Saverio Ieva, Agnese Pinto, and Eugenio Di Sciascio. Mini-ME match-
maker and reasoner for the Semantic Web of Things. In Innovations,
Developments, and Applications of Semantic Web and Information
Systems, pages 262–294. IGI Global, 2018.

[108] Fred Shaffer and Jay P. Ginsberg. An overview of heart rate variability
metrics and norms. Frontiers in public health, page 258, 2017.

[109] Hazim Shakhatreh, Ahmad H. Sawalmeh, Ala Al-Fuqaha, Zuochao
Dou, Eyad Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah
Khreishah, and Mohsen Guizani. Unmanned Aerial Vehicles (UAVs):
A Survey on Civil Applications and Key Research Challenges. IEEE
Access, 7:48572–48634, 2019.

169

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

[110] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal,
3:637–646, 2016.

[111] Tasnuba Siddiqui and Bashir I. Morshed. Severity classification of
chronic obstructive pulmonary disease and asthma with heart rate and
SpO2 sensors. In 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pages
2929–2932. IEEE, 2018.

[112] Alex Sinner and Thomas Kleemann. Krhyper–in your pocket. In Inter-
national Conference on Automated Deduction, pages 452–457. Springer,
2005.

[113] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semantics:
science, services and agents on the World Wide Web, 5(2):51–53, 2007.

[114] Steffen Staab and Rudi Studer. Handbook on ontologies. Springer
Science & Business Media, 2010.

[115] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude:
system description. Journal of Web Semantics, 27:78–85, 2014.

[116] Vitalijs Stepanovs. BrandT: Browser Hosted OWL Reasoner. Technical
report, University of Mancherster, May 2011.

[117] Fredrik Sundbom, Christer Janson, Mirjam Ljunggren, and Eva Lind-
berg. Asthma and asthma-related comorbidity: effects on nocturnal
oxygen saturation. Journal of Clinical Sleep Medicine, 18(11):2635–2641,
2022.

[118] Wei Tai, John Keeney, and Declan O’Sullivan. Resource-constrained
reasoning using a reasoner composition approach. Semantic Web, 6(1):35–
59, 2015.

[119] Antero Taivalsaari and Tommi Mikkonen. The Web as a Software
Platform: Ten Years Later. In 13th International Conference on Web
Systems and Technologies (WEBIST’17), pages 41–50, 2017.

170

[120] Gunnar Teege. Making the Difference: A Subtraction Operation for De-
scription Logics. In Proceedings of the Fourth International Conference
on the Principles of Knowledge Representation and Reasoning (KR’94),
pages 540–550. ACM, 1994.

[121] Mehdi Terdjimi, Lionel Médini, and Michael Mrissa. HyLAR+ im-
proving hybrid location-agnostic reasoning with incremental rule-based
update. In Proceedings of the 25th International Conference Companion
on World Wide Web, pages 259–262, 2016.

[122] The W3C SPARQL Working Group. SPARQL 1.1 Overview.
Recommendation, W3C, March 2013. https://www.w3.org/TR/

sparql11-overview/.

[123] Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL
2 reasoning infrastructure. In Extended Semantic Web Conference
(ESWC), pages 431–435, Berlin, Germany, 2010. Springer.

[124] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner:
System description. In International Joint Conference on Automated
Reasoning (IJCAR), pages 292–297, Berlin, Germany, 2006. Springer.

[125] Edgaras Valincius, Hai H Nguyen, and Jeff Z Pan. A Power Consumption
Benchmark Framework for Ontology Reasoning on Android Devices. In
OWL Reasoner Evaluation (ORE) Workshop, pages 80–86, 2015.

[126] William Van Woensel and Syed Sibte Raza Abidi. Optimizing Semantic
Reasoning on Memory-Constrained Platforms Using the RETE Algo-
rithm. In Extended Semantic Web Conference (ESWC), pages 682–696.
Springer, 2018.

[127] William Van Woensel and Syed Sibte Raza Abidi. Benchmarking
semantic reasoning on mobile platforms: Towards optimization using
OWL2 RL. Semantic Web, 10(4):637–663, 2019.

[128] William Van Woensel and Syed Sibte Raza Abidi. Benchmarking
semantic reasoning on mobile platforms: Towards optimization using
OWL2 RL. Semantic Web, 10(4):637–663, 2019.

171

https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/

[129] William Van Woensel, Newres Al Haider, Ahmad Ahmad, and Syed SR
Abidi. A cross-platform benchmark framework for mobile Semantic
Web reasoning engines. In International Semantic Web Conference,
pages 389–408. Springer, 2014.

[130] William Van Woensel, Floriano Scioscia, Giuseppe Loseto, Oshani
Seneviratne, Evan Patton, Samina Abidi, and Lalana Kagal. Explain-
able clinical decision support: towards patient-facing explanations for
education and long-term behavior change. In International Conference
on Artificial Intelligence in Medicine, pages 57–62. Springer, 2022.

[131] Ruben Verborgh and Jos De Roo. Drawing conclusions from Linked
Data on the Web: the EYE reasoner. IEEE Software, 32(3):23–27,
2015.

[132] Silviu Vert, Bogdan Dragulescu, and Radu Vasiu. LOD4AR: Exploring
Linked Open Data with a Mobile Augmented Reality Web Application.
In ISWC (Posters & Demos), pages 185–188, 2014.

[133] Zekun Wang, Juan Cui, Tingshan Liu, Shanming Bai, Congcong Hao,
Yongqiu Zheng, and Chenyang Xue. Composited pressure-velocity
sensor based on sandwich-like triboelectric nanogenerator for smart
traffic monitoring. IEEE Sensors Journal, 2023.

[134] Charlotte Weil, Simon Elias Bibri, Régis Longchamp, François Golay,
and Alexandre Alahi. A Systemic Review of Urban Digital Twin
Challenges, and Perspectives for Sustainable Smart Cities. Sustainable
Cities and Society, page 104862, 2023.

[135] Patricia Whetzel, Natasha Noy, Nigam Shah, Paul Alexander, Csongor
Nyulas, Tania Tudorache, and Mark Musen. Bioportal: Enhanced func-
tionality via new web services from the national center for biomedical
ontology to access and use ontologies in software applications. Nucleic
acids research, 39:W541–5, 06 2011.

[136] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
SWI-Prolog. Theory and Practice of Logic Programming, 12(1-2):67–96,
2012.

172

[137] Zhoujing Ye, Guannan Yan, Ya Wei, Bin Zhou, Ning Li, Shihui Shen,
and Linbing Wang. Real-Time and Efficient Traffic Information Acqui-
sition via Pavement Vibration IoT Monitoring System. Sensors, 21(8),
2021.

[138] Roberto Yus and Primal Pappachan. Are Apps Going Semantic? A
Systematic Review of Semantic Mobile Applications. In 1st International
Workshop on Mobile Deployment of Semantic Technologies, volume 1506
of CEUR Workshop Proceedings, pages 2–13, 2015.

[139] A. A. Zaidan, B. B. Zaidan, Muzammil Hussain, Ahmed Haiqi,
M. L. Mat Kiah, and Mohamed Abdulnabi. Multi-criteria analysis
for OS-EMR software selection problem: A comparative study. Deci-
sion Support Systems, 78:15–27, 2015.

173

List of publications

Journal articles

1. Floriano Scioscia, Ivano Bilenchi, Michele Ruta, Filippo Gramegna,
and Davide Loconte. A multiplatform energy-aware OWL reasoner
benchmarking framework. Journal of Web Semantics, 72:100694, 2022

2. Michele Ruta, Floriano Scioscia, Ivano Bilenchi, Filippo Gramegna,
Giuseppe Loseto, Saverio Ieva, and Agnese Pinto. A multiplatform
reasoning engine for the Semantic Web of Everything. Journal of Web
Semantics, 73:100709, 2022

3. Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Filippo Gramegna,
Saverio Ieva, Corrado Fasciano, Ivano Bilenchi, and Davide Loconte.
Osmotic Cloud-Edge Intelligence for IoT-based Cyber-Physical Systems.
Sensors, 22(6):2166, 2022

Peer-reviewed conference papers

1. Giuseppe Loseto, Ivano Bilenchi, Filippo Gramegna, Davide Loconte,
Floriano Scioscia, and Michele Ruta. Tiny-ME Wasm: Description
Logics Reasoning in Your Browser. In Casteleyn et al., editor, Current
Trends in Web Engineering, pages 114–126, Cham, 2024. Springer Nature
Switzerland

2. Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Filippo Gramegna,
Saverio Ieva, Corrado Fasciano, Ivano Bilenchi, Davide Loconte, and
Eugenio Di Sciascio. A Cloud-Edge Artificial Intelligence Framework

174

for Sensor Networks. In 9th IEEE International Workshop on Advances
in Sensors and Interfaces (IWASI 2023), pages 149–154, 2023

3. Giuseppe Loseto, Floriano Scioscia, Michele Ruta, Filippo Gramegna,
and Ivano Bilenchi. Semantic-based adaptation of quality of experience
in web multimedia streams. In 38th ACM/SIGAPP Symposium On
Applied Computing (SAC 2023), pages 1821–1830. ACM, ACM Press,
March 2023

4. Floriano Scioscia, Giuseppe Loseto, Arnaldo Tomasino, Ivano Bilenchi,
Filippo Gramegna, Saverio Ieva, Agnese Pinto, Eugenio Di Sciascio,
and Michele Ruta. Embedded reasoning for uav operations: towards
real-time efficiency and trustworthy autonomy. In 9th Italian Conference
on ICT for Smart Cities And Communities (I-CiTies 2023), sep 2023

5. Ivano Bilenchi, Floriano Scioscia, and Michele Ruta. Cowl: A Lightweight
OWL Library for the Semantic Web of Everything. In Agapito et al.,
editor, Current Trends in Web Engineering. ICWE 2022., pages 100–112,
Cham, 2023. Springer

6. Ivano Bilenchi, Arnaldo Tomasino, Filippo Gramegna, Saverio Ieva,
Agnese Pinto, Giuseppe Loseto, Floriano Scioscia, and Michele Ruta.
Knowledge Representation and Reasoning for Unmanned Aerial Vehicle
Intelligence. In 7th Italian Workshop on Embedded Systems (IWES
2022), 2022

7. Filippo Gramegna, Arnaldo Tomasino, Saverio Ieva, Ivano Bilenchi, Ag-
nese Pinto, Giuseppe Loseto, Floriano Scioscia, and Michele Ruta. Ride-
MATCHain: a Semantic-enhanced Blockchain Marketplace for Rideshar-
ing. In 8th Italian Conference on ICT for Smart Cities And Communities
(I-CiTies 2022), 2022

175

	Introduction
	From the Semantic Web to the Semantic Web of Everything
	The Semantic Web
	Knowledge representation in the Semantic Web
	Automated reasoning in the Semantic Web

	The Semantic Web of Things
	Ubiquitous knowledge bases
	Micro-reasoners and non-standard inferences
	Open issues

	Cowl: knowledge representation from nano to Web scale
	Background
	Capabililties
	Architecture
	Axiom streams
	Optimizations for embedded platforms
	Evaluation
	Laptop tests
	Embedded board tests

	Tiny-ME: a reasoning engine for the Semantic Web of Everything
	Background
	Inference services
	Architecture
	High-level interaction
	Platform-specific APIs
	Server-side OWLlink API
	Client-side Web API

	Evolution
	Support for the ALN(D) DL
	Improved penalty computation
	Updated architecture

	Evaluation
	Workstation and mobile
	Client-side WebAssembly
	Evolution

	evOWLuator: multiplatform benchmarking for OWL toolkits
	Background
	Using evOWLuator
	Setup
	Running evaluations
	Visualizing results

	Architecture
	Available interfaces
	Reasoners
	Reasoning tasks
	Energy footprint

	Case study: benchmarking classification and consistency
	Testbed, reasoners and datasets
	Setup
	Results

	Application case studies
	Extending the Web of Things to embedded sensor networks
	Drone autopilot on-board reasoning
	Explainable reasoning on wearables for personal healthcare
	Privacy-conscious (mobile) Web

	Conclusion and perspectives
	Bibliography
	List of publications

