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1

Introduction

In the last thirty years, quantum science and technology have witnessed a consistent
rise in interest and investment [1]. In addition, this interest is further supported by
massive public funds allocated to advance quantum research, with initiatives like the
European Commission’s launch of a flagship program worth €1 billion to develop a
commercial quantum computer [2]. Furthermore, these significant efforts have been
driven by the disruptive potential that promises to exceeds the capabilities of classical
computers. In fact, leveraging the principles of quantum mechanics, Quantum Com-
puting (QC) has paved the way for numerous innovative applications that are either
impossible or highly challenging to achieve using classical approaches. Specifically,
these applications ranges from the simulation of chemical reactions, financial model-
ing, and optimization within manufacturing and supply chain management. Recently,
the telecommunications industry stands out among the different sectors expected to
benefit from QC and quantum communications due to their potential in addressing
complex computational problems, such as network optimization and resource man-
agement [3], [4]. Especially in future mobile communication systems, i.e., 6-th Gen-
eration (6G) and Beyond 6-th Generation (B6G), even though significant progress has
been made in the fields of Artificial Intelligence (AI) and Machine Learning (ML),
the predicted exponential growth of data generated by the users highlights the critical
need for a significant boost in processing capability [5], [6].

To close this gap, the scientific community focuses its effort towards reformulat-
ing the information theory according to the quantum mechanics framework. This in-
creasing interest is well-founded due to the wide range of applications across different
fields, such as Quantum Machine Learning (QML), quantum optimization and quan-
tum communications. In particular, QML and quantum optimization, for instance, can
be exploited for boosting the training of ML model [7]–[10] or solving NP-hard opti-
mization problem [11]–[13]. Quantum communications, a relatively emerging field,
enables two parties to transmit quantum information by utilizing a pre-established
quantum entanglement, offering advantages like anonymous data transmission [14]
and the distribution of quantum computation [15].

Despite the advancement of quantum technologies offers immense potential bene-
fits, their integration into existing computing and communication architectures presents
several challenges, which are outlined below:



2 Introduction

• The integration of quantum computers in future wireless communication net-
works is still requiring the definition of novel architectures and design princi-
ples to embed the deployment of pervasive network intelligence via quantum
computing paradigm.

• The telecommunications industry faces a growing demand for solving complex
optimization problem. Traditional computing approaches have limitations in
handling these large-scale problems efficiently. Adiabatic quantum computing,
such as Quantum Annealing (QA), can exploit quantum phenomena to solve
real-world problem.

• To achieve a significant increase in computational capabilities, it is imperative
to interconnect different quantum devices through quantum communications
[16]. One of the primary bottlenecks in quantum communication is photon
loss, as entangled photons are transmitted over fiber-optic cables or free-space,
resulting in loss and error rates that worsen with increasing connection distance,
posing challenges for long-distance quantum communication.

This thesis tackles the aforementioned technological issues in four Chapters. In
particular, Chapter 1 presents the main difference between quantum systems and clas-
sical systems, deepen into the basic concepts of the quantum mechanics, the telepor-
tation protocol and the adiabatic quantum computing. Chapter 2 provides the design
principle and research challenge for integrating quantum computing capabilites into
the future wireless communication systems. Chapter 3 outlines the preliminary eval-
uation and presents the results obtained by solving a binary optimization problem
employing the QA technique. Chapter 4 presents a solution for the entanglement dis-
tribution problem by take into account the source position as well as any operation
that can affect the successful transmission of quantum information. Finally, the last
Chapter concludes the work and draws future research perspectives.
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Chapter 1

Quantum Information

1.1 Quantum Mechanics Postulates

The underline mechanism governing the physical world remain a mistery. The scien-
tific approach for explaining things around us is through modeling: a specific model
or theory becomes a valuable instrument when the difference between what the theory
predicts and the actual outcomes are constrained within a predetermined threshold.
However, models show different perspective about the nature, offering various expla-
nations on how the world works. Nevertheless, they are not able to explain why the
world works in that way [17].

Every theory is built on assumptions that cannot be proven just theoretically, so
they need experiments to show if these assumptions match how things really work in
the world. In case of quantum mechanics, there are four fundamental assumptions
known as postulates [18].

1.1.1 First Postulate

Every isolated physical system is associated with a complex vector space with inner
product, i.e., a Hilbert space, referred to as the state space of the system. The state
of the system is completely described by its state vector, which is a unit vector in the
system’s state space.

The simplest closed physical system is a two-dimensional Hilbert space. The
first postulate states that the state of the system can represented by means of a two-
dimensional vector as a linear combinantion of an orthonormal basis vectors of the
Hilbert space. The coordinates of a quantum state vector are often referred as proba-
bility amplitudes because they play the role of amplitudes in Schrödinger wave func-
tions describing the location of particles.
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1.1.2 Second Postulate

The evolution of any closed physical system in time is described by means of unitary
transformation, which depends only on the starting and finishing time of the evolution.
Hence, the state |ψ⟩ of the system at time t1 is related to the state |ψ′⟩ at time t2 by a
unitary operator U which depends on the time t1 and t2.

The second postulate describes the evolution of a closed system between discrete
time instants, which is more suitable in the context of QC. A more refined version
of this postulate describes the continuous-time evolution of a closed quantum system
through the Schrödinger equation, which is [19]:

iℏ
∂ |ψ⟩
∂t

= H |ψ⟩ , (1.1)

where ℏ denotes the Planck’s constant and H represents the so-called Hamilto-
nian, a Hermitian operator characterizing the evolution of the system. If the Hamilto-
nian of a system and the Planck’s constant are known, it becomes theoretically feasible
to completely understand the dynamics of the system [18].

1.1.3 Third Postulate

Any quantum measurement can be described by means of a collection of measurement
operators Mm. These operators act on the state space of the system involved in the
measurement and the index m refers to the possible results.

If the state of the quantum system is |ψ⟩ immediately before the measurement then
the probability that result m occurs is expressed as follows [18]:

p(m) = ⟨ψ|M †
mMm |ψ⟩ (1.2)

After the operation of measurement, the state of the system is:

Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
. (1.3)

Considering that classical probability theory requires that:

∑
m

p(m) =
∑
m

⟨ψ|M †
mMm |ψ⟩ = 1, (1.4)

the measurement operators have to satisfy the completeness relation:

∑
m

M †
mMm = I (1.5)
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Considering that measurements are not reversible, they represent the only excep-
tion under the unitarity constraint. This type of measurement is often known as com-
plete projective measurement because the observable m is determined by any set of
orthogonal projection operators Mm that fulfill the completeness relationship.

1.1.4 Fourth Postulate

The state space of a compound physical system is the product tensor of the state spaces
of the component physical systems. If the system is composed of n subsystems and the
i− th component is in the state |ψi⟩, then the state of the total system is |ψ1⟩⊗ |ψ2⟩⊗
· · · ⊗ |ψn⟩.

This postulate describes how to construct the state space of a quantum system
composed of two or more distinct physical systems from the state spaces of the com-
ponent systems.

1.2 Quantum bit

In classical computation and classical information, the fundamental unit of measure
is the bit, which is represented alternately by the digits 0 and 1. Conversely, in the
realm of QC, the basic unit of information is the quantum bit (qubit), i.e., a two-
dimensional quantum system. According to the first postulate, the state of a qubit
can be described using the Hilbert space, denoted as CN , which encapsulates all the
essential information needed to study its probabilistic characteristics. In this vector
space, two possible states for a qubit are represented as |0⟩ and |1⟩. These states form
an orthogonal basis, also kwnon as computational basis, and can be represented as a
column vector using the Dirac notation:

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
. (1.6)

The vectors |0⟩ and |1⟩ correspond to the two potential outcomes, 0 and 1, in which
the state may be found following a measurement. Physically, for instance, a qubit can
be described as the polarisation of a photon, where the two orthogonal basis states
are the horizontal and the vertical polarisation of the photon. Hence, a qubit can be
written as a linear combination of the computational basis states

|ψ⟩ = α |0⟩+ β |1⟩ = α

(
1

0

)
+ β

(
0

1

)
=

(
α

β

)
. (1.7)
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This formulation, called superposition, better highlights the difference between a clas-
sical bit and a quantum bit. In fact, as the former can be in only one state, i.e., 0 or 1,
the latter can be in both the states 0 and 1 simultaneously.

The values α and β, called amplitude probability, are complex numbers. The
result of the quantum measurement depends directly on these values, which are as-
sociated with each state and any further measurement will give the same result. In
fact, differently to the classical case, in quantum mechanics, direct observation of the
quantum state of a qubit is prohibited. To gain insights into the quantum state, instead,
it is allowed to observe the results of the measurements. Hence, when a qubit is mea-
sured, it can yield an outcome of 0 with a probability of |α|2 or an outcome of 1 with
a probability of |β|2. Importantly, these probabilities must satisfy the normalization
condition, ensuring that |α|2 + |β|2 = 1.

This normalization condition implies that the state of a qubit is a unit norm vector
within a two-dimensional complex vector space. Thus, the (1.7) can be rewritten as

Figure 1.1: Geometrical representation of a qubit.

|ψ⟩ = eiγ(cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩) = (1.8)

= eiγ(cos
θ

2
|0⟩+ (cosϕ+ i sinϕ) sin

θ

2
|1⟩),
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where γ is a real number and 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ 2π. The factor eiγ , known
as global phase, has no observable effects and this it can be ignored. Therefore, the
wave function in (1.8) can be expressed as follows

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (1.9)

and thus, |ψ⟩ can be geometrically represented on a unit sphere in R3, called Bloch
sphere, and is defined by the two angles θ and ϕ. This representation, shown in Fig.
1.1, holds for a single qubit. However, when dealing with more complex systems made
up of multiple qubits, the dimension of the space increases, making it challenging to
create a suitable visual representation.

When considering a quantum system composed of two qubits, the dimension of
the Hilbert space increases. Consequently, a new basis needs to be identified. To
achieve this, it is needed to introduce an important operator, which is used to combine
vector spaces together to form a larger vector spaces. So, the tensor product of the

two states |ψ⟩ =

(
ψ1

ψ2

)
and |ϕ⟩ =

(
ϕ1

ϕ2

)
is:

|ψ⟩ ⊗ |ϕ⟩ =


ψ1ϕ1

ψ1ϕ2

ψ2ϕ1

ψ2ϕ2

 ,

or more commonly the resulting state is denoted as |ψ⟩ ⊗ |ϕ⟩ = |ψϕ⟩. With this in
mind, the new computational basis are:

|00⟩ =


1

0

0

0

 , |01⟩ =


0

1

0

0

 , |10⟩ =


0

0

1

0

 , |11⟩ =


0

0

0

1

 .

Then, a general state of the two qubit system can be written as follows:

|ψ⟩ = α1 |00⟩+ α2 |01⟩+ α3 |10⟩+ α4 |11⟩ ,

whereα = (α1, α2, α3, α4) ∈ C4. Generalizing to N-dimensional quantum systems is
a straightforward extension of the principles discussed for one and two qubits. In this
context, the Hilbert space expands to CN , where N represents the dimensionality of
the quantum system. The basis for this space consists of orthonormal vectors denoted
as |ki⟩i=1,...,N , where each index, from k1 to kN , belongs to the complex space CN .
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In this framework, the state of the quantum system takes the form of a superposition,
represented as

∑N
i=1 αi |ki⟩, where αi ∈ C and i ranges from 1 to N. This expression

encapsulates the probabilistic amplitudes associated with each basis state, allowing
for a versatile representation of quantum states in higher-dimensional spaces. Hence,
according to the superposition principle, n qubits can encode all the 2n possible states
at once. As a consequence, the power of QC, as well as the information intrinsically
kept, grows exponentially with the number of involved qubits [18].

1.2.1 Operations on qubits

In addition to kets, another fundamental concept in quantum mechanics is the use of
bra. Mathematically, a bra is denoted as ⟨ψ| and is formed by taking the conjugate
transpose of the corresponding ket, represented as |ψ⟩†. This notation serves as a
valuable counterpart to kets and plays a crucial role in quantum mechanics enabling
efficient mathematical manipulation and interpretation within the quantum frame-
work. It is also useful to represent operations such as inner products, overlaps, and
outer products.

The inner product of two quantum states, |ψ1⟩ and |ψ2⟩, is expressed as

⟨ψ1|ψ2⟩ .

This operation quantifies the similarity or correlation between the two states and is
fundamental in quantum calculations, including measurements and probability cal-
culations.

Furthermore, the concept of overlap, represented as

| ⟨ψ1|ψ2⟩ |2

provides a measure of the probability that two quantum states will yield the same
measurement outcome. It plays a pivotal role in quantum interference phenomena
and the understanding of quantum systems’ behavior.

Lastly, the outer product, denoted as

|ψ1⟩ ⟨ψ2| ,

allows for the construction of quantum operators, which are essential for manipulating
and evolving quantum states, making them a cornerstone in quantum algorithms and
quantum information processing. The outer product also plays a pivotal role into the
definition of density matrices, which are an alternative depiction of quantum states.
Consider the state |ψ⟩ of a system, the density matrix for that particular system is
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formulated as follows
ρ = |ψ⟩ ⟨ψ| ,

where |ψ⟩ refers to a pure state. The derivation of this term stems from the concept
that only having the information of |ψ⟩ allows for the representation of a system in
which all its particles assume an identical physical configuration. For example, the
density matrix of a single-qubit pure state |ψ⟩ = α1 |0⟩+ α2 |1⟩ is given by

|ψ⟩ ⟨ψ| =

[
|α1|2 α1α

∗
2

α∗
1α2 |α2|2

]
.

If |α1|2 > 0 and |α2|2 > 0, while satisfying the condition |α1|2 + |α2|2 = 1, then
the system is in a superposition state of |0⟩ and |1⟩. Significant details are contained
within the complex coefficients α1 and α2, revealing both the phase and amplitudes of
the corresponding states |0⟩ and |1⟩. Conversely, mixed states only provide insights
into the probabilities of encountering the system in one state or the other. The den-
sity matrix of a mixed state is defined as the sum of density matrices of pure states,
weighted by probabilities:

ρmixed =

# pure states∑
i=1

pi |ψi⟩ ⟨ψi| .

This is the most general formula for a density matrix. It also allows to see that density
matrices have unit trace, are positive semi-definite and Hermitian. Specifically, the
eigenvalues are pi and the eigenvectors, also called eigenstates, are |ψi⟩ [18].

1.3 Quantum Gates

In order to control the state of a qubit, similar to classical computers, gates are essen-
tial. The operation that a gate performs on a qubit can be visualised as a rotation on the
Bloch sphere of a vector |ψ⟩ representing the qubit’s state. The quantum gates X, Y,
and Z are often denoted as σx, σy and σz and in their matrix representation are called
Pauli matrices. Each Pauli matrix specifies a π radians rotation around a particular
axis of the Bloch sphere up to a global phase [20], [21]. In the following equations
are reported the common quantum gates and their representation as matrices.



10 Chapter 1. Quantum Information

σI = I = |0⟩ ⟨0|+ |1⟩ ⟨1| =

[
1 0

0 1

]
(1.10)

σx = X = |0⟩ ⟨1|+ |1⟩ ⟨0| =

[
0 1

1 0

]
(1.11)

σy = Y = i(|1⟩ ⟨0| − |0⟩ ⟨1|) =

[
0 −i
i 0

]
(1.12)

σz = Z = |0⟩ ⟨0| − |1⟩ ⟨1| =

[
1 0

0 −1

]
(1.13)

H =
1√
2
[(|0⟩+ |1⟩) ⟨0|+ (|0⟩ − |1⟩) ⟨1|] = 1√

2

[
1 1

1 −1

]
(1.14)

From a mathematical perspective, gates are depicted as matrices that operate on quan-
tum states using vector notation. However, not all matrices can serve as gate repre-
sentations, they must be unitary. Given a complex-valued matrix U, it is unitary when
it satisfies the following condition

U †U = I. (1.15)

These matrices preserve the inherent reversibility of quantum mechanics, implying
that performing two gates on a quantum state will lead back to the initial state. In QC,
state manipulation involves applying a unitary operation since remains a reversible
process. One key characteristic of unitary matrices is their ability to preserve the
norm. In fact, since qubit states live within the Hilbert space CN , the inner product
correspond to the conventional euclidean norm. This can be exploited to demonstrate
that unitary operators maintain norm integrity:

∥U |ψ⟩∥2 = ⟨ψ|U †U |ψ⟩ = ⟨ψ|ψ⟩ = ∥⟨ψ|∥2 ,

where |ψ⟩ ∈ CN . As a consequence of this property, the application of gates to
qubits does not alter probability amplitudes. This is a fundamental aspect because
most quantum algorithms are constructed using sequences of gates. With this assur-
ance, it is possible to proceed with quantum computations without concern that the
application of gates will affect the probabilities of our desired outcomes.
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1.3.1 X Gate

The Pauli-X gate, known also as bit-flip gate, is the quantum equivalent of the NOT
gate for classical computers with respect to the standard basis |0⟩, |1⟩. In particular,
its action is the following

|0⟩ → |1⟩ , |1⟩ → |0⟩

X

Figure 1.2: Graphical representation of an X gate.

1.3.2 Y Gate

The Pauli-Y gate is a single-qubit rotation through π radians around the y-axis.

|0⟩ → i |1⟩ , |1⟩ → −i |0⟩

Y

Figure 1.3: Graphical representation of an Y gate.

1.3.3 Z Gate

The Pauli Z, sometimes called phase-flip, leaves the basis state |0⟩ unchanged and
maps |1⟩ to − |1⟩.

|0⟩ → |0⟩ , |1⟩ → − |1⟩

Z

Figure 1.4: Graphical representation of a Z gate.
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1.3.4 Hadamard Gate

The Hadamard gate performs a rotation of π about the axis (x̂+ẑ)√
2

at the Bloch sphere.

H

Figure 1.5: Graphical representation of an H gate.

It creates an equal superposition state if given a computational basis state:

|0⟩ → |0⟩+ |1⟩√
2

= |+⟩ , |1⟩ → |0⟩ − |1⟩√
2

= |−⟩ .

1.3.5 CNOT Gate

A multi-qubit quantum logic gate, known as the Controlled NOT (CNOT) gate, in-
volves two input qubits: the control qubit and the target qubit. The circuit is repre-
sented in Fig. 1.6, where the top line represents the control qubit, while the bottom
line represents the target qubit. The action of the gate can be described as: when the
control qubit is set to 0, the target qubit remains unchanged. However, if the control
qubit is set to 1, the target qubit undergoes a flip [22].

Figure 1.6: Graphical representation of a CNOT gate.

1.4 Entanglement

Quantum entanglement is a strange phenomena that does not have a counterpart in
classical world, in fact, it describes a multi-particle systems of two or more parti-
cles that can no longer be described as a combination of independent one-particle
states, but only as a common state, which in principle must be described within a
single wave function [23], [24]. This strange quantum correlations still remain valid
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also even if the particles are delivered onto two distant locations. In fact, even if the
entangled particles are separated by billions of miles, a variation in one particle in-
duces a change in the other. Actually, even though quantum entanglement appears to
transmit information instantaneously, it does not violate the classical speed of light
[17].

The Bell states, also defined as Bell pairs, Einstein-Podolsky-Rosen (EPR) states
or EPR pairs, are maximally entangled pure two-qubit states [25]. Maximal entangle-
ment means that Bell pairs have the strongest non-classical correlations of all possible
two qubit states.

|Φ+⟩ = |00⟩+ |11⟩√
2

(1.16)

|Φ−⟩ = |00⟩ − |11⟩√
2

(1.17)

|Ψ+⟩ = |01⟩+ |10⟩√
2

(1.18)

|Ψ−⟩ = |01⟩ − |10⟩√
2

(1.19)

These four pure states, which are maximally entangled, form an orthonormal basis of
the Hilbert space of the two qubits. The Bell pairs, thus quantum entanglement, are a
key resources to enable teleportation in quantum networks. Accordingly, two remote
quantum computers which want to communicate must share entangled particles. In
this context, three different methods can be employed to generate and distribute en-
tanglements [26].

The first method, referred to as Spontaneus Parametric Down-Conversion (SPDC)
[27], generates an entangled photon pair by manipulating their polarization. A non-
linear crystal is illuminated by a laser beam, creating two photons with vertical and
horizontal polarizations. These photons, known as flying qubits, traverse the quantum
channel to reach the designated nodes. Subsequently, at each node, the flying qubits
are converted into computational qubits using transducer devices to execute quantum
operations.

The second method employs optical fibers to link optical cavities between nodes
[28], [29]. Specifically, entanglement is initiated at the sender’s side by exciting an
atom with a laser beam, which causes the emission of a photon entangled with the
atom. This photon travels through the optical fiber to the receiving node and is ab-
sorbed by an optical cavity. This process effectively transfers the entanglement from
the atom-photon pair to an atom-atom entanglement.
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The third method also utilizes optical cavities and generates entanglement be-
tween remote quantum computers [30]. In this approach, both atoms are simultane-
ously excited to create entanglement. The emitted photons then interact with a spe-
cialized device capable of performing a Bell State Measurement (BSM). This mea-
surement converts the atom-photon entanglement on both sides into an atom-atom
entanglement, thus linking the remote quantum computers.

1.5 Quantum Teleportation

Quantum teleportation is a protocol that allows to send quantum information by link-
ing the quantum state of the sender to the receiver’s one [31]. It was theoretically
proposed in 1993 [32] and then it was experimentally realized in 1997 by two re-
search groups, led by Sandu Popescu and Anton Zeilinger, respectively [33], [34].
Subsequently, experiments validating quantum teleportation have encompassed di-
verse carriers of information, such as photons, atoms, electrons, and superconducting
circuits. These investigations have also explored teleportation over different distances.
Notably, a groundbreaking milestone was successfully achieved in 2017 over a dis-
tance of 1,400 km using the Micius satellite for space-based quantum teleportation
[35].

Since teleportation allow to send quantum information without the transmission
of physical particles that stores the quantum state, i.e., data qubits, which would be
irremediably lost due to attenuation or environment interaction. For this reason, in
order to perform teleportation, an entangled pair, i.e., flying qubit, needs to be dis-
tributed between the source and destination. As shown in Fig. 1.7, to teleport an
unknown quantum state |φ⟩ from a sender to a receiver, the former applies a set of
operations on the data qubit and the flying qubit |Φ+⟩. This sequence of steps, referred
to as BSM, involves specific operations. This entails initiating a CNOT gate between
the received flying qubit and the data qubit, followed by an H gate and two quantum
measurements. The CNOT gate triggers a flip in the target qubit |Φ+⟩ if the control
qubit, like |φ⟩, is in the state one; otherwise, the target qubit remains unaltered. Sub-
sequently, an H gate is employed on the initial qubit, inducing a superposition state.
Quantum measurements are then performed, yielding results denoted as c1 and c2,
which are conveyed to the receiver through a classical channel. To retrieve the origi-
nal state, the receiver applies X or Z gates (or both) based on the provided correction
bits. Notably, due to the nature of BSM, both the data qubit and the flying qubit held
by the sender are destroyed during teleportation. Furthermore, the recovered quantum
state must be transferred to a data qubit using the SWAP instruction [36] in order to
be used. Considering that the measurement at the source destroys the entangled pair,
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H

X Z

CNOT

Correction

Sender

Receiver

Bell State Measurement

Classical channel Quantum channel
Data qubit Flying qubit

Figure 1.7: Quantum teleportation circuit.

if another qubit needs to be teleported, it is necessary to distribute a new Bell pair
between the source and the destination. The following part analyses the phases of the
teleportation process in more detail considering the circuit depicted in Fig. 1.7.

Suppose there are two distant parties, Alice and Bob. Alice has a qubit |ψC⟩ =
α |0C⟩+β |1C⟩, whereα and β are unknown amplitudes, that she wants to send to Bob
via a classical channel. Without further resources this would be impossible, because
the amplitudes may require an infinite number of bits of precision to write them down
exactly [17]. Suppose Alice also shares with Bob an EPR-pair, i.e., Alice holds the
first qubit and Bob the second, their joint state is

|ψ0⟩ = |ψC⟩ |Ψ+
AB⟩ =

=
1√
2
[α |0C⟩ (|0A0B⟩+ |1A1B⟩) + β |1C⟩ (|0A0B⟩+ |1A1B⟩)] (1.20)

Henceforth, for notational simplicity, the subscripts on the ket will be suppressed.
This convention by keeping will consider the first two qubits belong to Alice, while
the third one to Bob. The desired state transfer is achieved through the following
steps.

1. Alice sends her qubits through the CNOT port obtaining

|ψ1⟩ =
1√
2
[α |0⟩ (|00⟩+ |11⟩) + β |1⟩ (|10⟩+ |01⟩)] (1.21)
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2. She then sends her first qubit through the Hadamard gate, which maps the basis
state |0⟩ to (|0⟩+ |1⟩)/2, and the state |1⟩ to (|0⟩ − |1⟩)/2 obtaining

|ψ2⟩ =
1

2
[α(|0⟩+ |1⟩)(|00⟩+ |11⟩) + +β(|0⟩ − |1⟩)(|10⟩+ |01⟩)] (1.22)

The equation can be rewritten as follows:

|ψ2⟩ =
1

2
[|00⟩ (α |0⟩+ β |1⟩) + |01⟩ (α |1⟩+ β |0⟩)+

+ |10⟩ (α |0⟩ − β |1⟩) + |11⟩ (α |1⟩ − β |0⟩)] (1.23)

3. Alice then measures her qubits relative to the computational basis to obtain a
2-bit string 00, 01, 10 or 11.

Note that the the unitary operations in (i) and (ii) simply serve to rotate the Bell basis
into the computational basis of the two qubits and Bob’s qubit now is disentagled from
the qubits of Alice, i.e., it is in a fixed transformation of |ψ⟩ [37]. In fact, depending
on the outcomes of the measurement and not on the α and β values, Bob’s qubit state
is in one of the following possible state:

|ψ3⟩ = α |0⟩+ β |1⟩ (1.24)

|ψ3⟩ = α |1⟩+ β |0⟩ (1.25)

|ψ3⟩ = α |0⟩ − β |1⟩ (1.26)

|ψ3⟩ = α |1⟩ − β |0⟩ (1.27)

The measurement outcomes, i.e., c1 and c2, are sent through the classical channel to
Bob, which applies the appropriate quantum gates on his qubit in order to recover the
state |ψ⟩, as shown in Table 1.1. Note that no remnant of any information about |ψ⟩
remains with Alice: after step (iii) she is left with only a 2-bit string, chosen uniformly
and randomly, while the original state is always totally destroyed. Consequently, the
teleportation process is fully consistent with the no-cloning theorem, as indeed it must
be. Furthermore, it is important to highlight that Bob’s ability to restore the original
state depends entirely on the classically shared bit pair from Alice. Thus, this method
does not enable faster-than-light communication, which is in full accordance with the
special relativity theory.
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Outcome Corrections
00 I
01 X
10 Z
11 XZ

Table 1.1: Correction gates to recover the original state.

1.6 Adiabatic Quantum Computing

In the realm of QC, there exist two distinct approaches for operating on qubits: univer-
sal gate-model and analog quantum computers. The former are the most common and
widely discussed quantum computers [38]. They operate using qubits and quantum
gates, similar to classical bits and logic gates in classical computers. The key ad-
vantage of universal gate-model quantum computers is their ability to implement any
unitary transformation on qubits through a sequence of quantum gates. This property
is known as quantum universality, and it means that such a quantum computer can
theoretically simulate any quantum system and execute any quantum algorithm given
enough qubits and resources [39]. The latter, instead, which includes adiabatic quan-
tum computers, takes a different approach. Instead of manipulating qubits through
quantum gates, these computers are designed to evolve a quantum system from an
initial state to a final state that encodes the solution to a problem. Adiabatic quan-
tum computing is based on the adiabatic theorem from quantum mechanics and it
involves setting up a Hamiltonian, which carries information about the energy of the
system, and gradually changing it over time to let the system evolve into its ground
state, which contains the solution to the problem [40].

Both approaches have their strengths and limitations, and the choice of which one
to use depends on the specific problem being solved and the technological advance-
ments in building and controlling qubits. Universal gate-model quantum computers
are more flexible and can potentially solve a wider range of problems, while analog
approaches like adiabatic quantum computing might outperform at certain optimiza-
tion and sampling problems [41].

The study of Hamiltonians and their associated eigenvalues and eigenvectors, of-
ten referred to as eigenstates, assumes a pivotal role. The smallest eigenvalue is called
ground state energy and the corresponding eigenstate is the state in which the system
reaches the lowest value of energy. Any other state for which the corresponding eigen-
value is greater is called excited state. In adiabatic quantum computing, the idea is to
transform the initial Hamiltonian into a final Hamiltonian that represents the solution
to a problem. If this transformation is carried out slowly enough, according to the adi-
abatic theorem, the system will remain in its ground state throughout the evolution,
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and measuring the qubits at the end of this process will provide the desired solution
[42].

Figure 1.8: Sketch of an energy landscape described by a Halmitonian. While optimizing
the cost function of a problem, classical simulated annealing try to escape local minima via
thermarl jump (red). Quantum annealing, instead, relies on quantum-mechanical fluctuations
to enable quantum tunneling through energy barriers (blue). When the energy barrier is high,
classical thermal jump becomes very difficult. However, if the barrier is narrow enough,
quantum tunneling can facilitate the traversal of barriers [41].

In order to use adiabatic quantum computers, also called quantum annealears, the
objective function of an optimization problem is indeed mapped to a Hamiltonian,
where the ground state, i.e., the lowest energy state, of the Hamiltonian corresponds to
the optimal solution of the problem. This mapping is crucial for solving optimization
problems on quantum annealers like those built by D-Wave Systems [43].

In Fig. 1.8 is shown a sketch of an energy landscape drawn as a function of the
configuration of the system. To minimizes the energy of the system, qubit undergo
a process called quantum annealing and it works in a very similar way to its classi-
cal counterpart, i.e., Simulated Annealing (SA). Specifically, qubits start in an initial
configuration, each associated with a specific energy value (related to the optimiza-
tion problem’s objective function). This initial configuration serves as a starting point
for the optimization process. Then, the quantum system evolves over time and it tends
to transition into lower-energy states, thereby working towards the objective of min-
imizing the system’s energy (and, by extension, optimizing the objective function).
This evolution occurs under the influence of a time-dependent Hamiltonian. Similar
to classical simulated annealing, where the search for a solution depends on a tem-
perature parameter, the goodness of the system’s configuration in quantum annealing
is determined by its energy. Lower energy configurations are preferred because they
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correspond to better solutions. As the annealing process continues, the quantum sys-
tem gradually reaches a state that minimizes its energy. This state may represent a
local minimum or even the global minimum of the energy landscape, depending on
the specific problem and annealing parameters.

The main difference between these two approaches lies in a unique property of
quantum systems known as quantum tunneling. Quantum system, in fact, can transi-
tion between different energy levels without the need to climb uphills in the Hamil-
tonian, as depicted by the blue line in Fig. 1.8. On the other hand, simulated an-
nealing is forced to occasionally accept solutions that are worse with respect to the
current one based on a probability that depends on temperature. This may lead to
suboptimal solution, but is necessary for simulated annealing to escape local minima
and is reffered to as a thermal jump, as illustrated by the red dotted line in Fig. 1.8.
In summary, quantum annealing and simulated annealing share the idea of gradu-
ally improving a system’s configuration to minimize energy or optimize an objective
function. However, quantum annealing leverages quantum effects, such as tunneling,
to explore energy landscapes more efficiently and potentially find solutions that are
challenging for classical methods to reach.

Since quantum annealing is a process that strongly relies on properties of physi-
cal systems that naturally try to reach the ground state configuration, leds to the con-
struction of quantum hardware with significantly more qubits compared to gate-based
quantum computers. However, this advantage comes with a trade-off: quantum an-
nealers are not universal computers, unlike gate-model quantum computers, which
means they have limitations in terms of the operations they can perform. In math-
ematical terms, this limitation means that quantum annealers are specialized for a
single type of Hamiltonian, specifically the Ising model. Let σi denote the spin of
i-th qubit in an n-qubit system, then the Ising Hamiltonian takes the form:

HIsing =
n∑

i=1

hiσi +
n∑

i=1

n∑
j=i+1

Ji,jσiσj, (1.28)

where σi ∈ {−1, 1} ∀i = 1, . . . , n and hi and Ji,j are coefficients called biases and
couplers.

The inherent limitations of state-of-the-art quantum annealers, such as their ability
to solve only a specific subset of optimization problems and the lack of constant con-
trol over qubit states, have strongly debates regarding whether they are advantageous
over classical computing [38]. Nevertheless, ongoing advancements in their devel-
opment have resulted in notable improvements in their performance. Consequently,
researchers and technology companies are increasingly utilizing quantum annealers
to explore their potential in addressing a wide range of large-scale tasks [44]–[46].
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Chapter 2

Boosting Network Intelligence
Through Quantum Computing

In this Chapter, two innovative architectures are introduced to integrate the usage of
quantum computers into the future wireless communication systems. This concept
is built upon a set of fundamental principles that pave the way for enhancing com-
putational capabilities addressing the increasingly stringent performance requirement
of emerging networks. The highlighted design principles and the corresponding re-
search challenges are crucial to revolution the nowadays computing capabilities, lead-
ing to a new research area.

2.1 Introduction

In the last decade, the demanding of new services with ultra-reliability, low latency,
high data rate, and increasing user density was met through the development of 5-th
Generation (5G) mobile communication networks. While further studies are done for
the realization of the 3GPP Release 16, concluding the 5G standardization, the sci-
entific community is already investigating the next frontier of mobile communication
networks, such as 6G and beyond, and Wireless Mesh Networks (WMNs) [47]–[49].
The growing stringent of Key Performance Indicators (KPIs) will be accomplished
by innovative enabling communication, network management, and computing tech-
nologies. From the communication perspective Terahertz (THz) band communica-
tions, Visible Light Communications (VLCs), Intelligent Reflective Surfaces (IRSs),
and cell-free massive Multiple-Input/Multiple-Output (MIMO) will be deployed for
achieving high communication data rates [50]. The network management, instead,
will still be supported by softwarization and virtualization techniques already used,
like Software-Defined Networking (SDN), Network Function Virtualization (NFV),
and network slicing.
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Furthermore, the pervasive adoption of ML algorithms as computing technology
will provide intelligence features, supporting the growing heterogeneity and com-
plexity [51]. Despite ML is gaining momentum in the scientific community, arising
as a key approach for several novel applications, the expected voluminous amount of
data to be processed in future wireless communication systems will require excessive
computing power and computational time [52].

In this direction, the emerging of QC could be a turning point, allowing to speed-
up the training phase and making ML techniques suitable also for computationally
complex and real-time applications. While most of the scientific contributions on
QML focus on the design and implementation of specific algorithms (see for example
[53]–[56]), very few works introduce QML as an essential building block for future
wireless communication systems [52], [57], [58]. Unfortunately, the integration of
quantum computers in 6G and B6G systems, as well as in WMNs, the investigation
of the resulting network architectures, and the analysis of design implications derived
from the deployment of pervasive network intelligence schemes still represent an un-
explored research topic.

To provide initial answers in this direction, this work presents design principles
for a QC-aided network intelligence and illustrates the related emerging research chal-
lenges. The study considers both centralized and distributed network architectures,
properly extending the architectures with specific nodes to support QC functionali-
ties. The former is supposed to sustain QML by means of quantum computers devel-
oped by Tech Giants in their clouds. Considering that IBM, Google, and Microsoft
already have quantum computers with up to a hundred qubits [59] (and further im-
provements are expected in the next years), the centralized architecture could be an
initial reasonable approach. At the same time, the growing scientific interest and the
technological advancements in quantum computing systems is expected to enable, in
a very far future, the interconnection among geographically distributed quantum de-
vices by means of quantum Internet (as explicitly stated in [60]). This approach may
lead towards the design of a distributed architecture where simpler quantum comput-
ers are deployed at the edge of the network. The pros and cons of both architectures
are deeply investigated by considering communication latency, network congestion,
load balancing, security, and implementation facets.
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2.2 6G and Beyond: KPIs and Communication Tech-
nologies

The challenging KPIs characterizing the emerging services and applications will re-
quire the strengthening of some methodologies already born with the 5G, as well as
the introduction of novel enabling technologies [47], [61], [62]. For instance, SDN
and NFV paradigms will still sustain network management tasks. The pervasive mon-
itoring of network equipment and users’ behaviour is fundamental for dynamically
configuring virtualized network functionalities and isolating resources and services
within specific portions of the network, namely network slices [47]. Differently, new
communication schemes, like THz, VLCs, IRSs and cell-free massive MIMO, are
gaining momentum for providing very high data rates in scenarios with reduced or
controllable noise and propagation phenomena [61], [62]. Nevertheless, excepting
these valuable network management and communication technologies, network in-
telligence will significantly boost the evolution of 6G and B6G.

2.2.1 Key Performance Indicators

The continuous evolution of the societal needs demands the enhancement of perfor-
mance requirements with respect to 5G [50]. The main differences, illustrated in Fig.
2.1, are [63]:

• Data rate. In 6G services, the peak and experienced data rate will reach at
least 1 Tbps and 1 Gbps, which are approximately 100 and 10 times that of 5G,
respectively.

• Latency. Given that most of 6G use cases are real-time, the expected latency is
lower than 1 ms and the required jitter will be 1 µs.

• Mobility. While 5G networks aim at providing high Quality of Service (QoS)
also in cases with 500 km/h mobility, 6G is expected to serve users in much
higher mobility scenarios (i.e., ≥ 1000 km/h).

• Connectivity density and traffic capacity. 6G networks will support 10 times
the connectivity density of 5G, reaching up to 107 devices/km2 and an area
traffic capacity up to 1 Gb/s/m2.

• Spectrum and energy efficiency. In 6G, the peak and experienced spectrum
efficiency will be 2-10 times those of 5G, respectively. The expected energy
efficiency, instead, is 10–100 times that of 5G networks.
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Figure 2.1: Comparison between 5G and 6G KPIs.

• Bandwidth and reliability. 6G use cases will demand also 100 times the band-
width of 5G and higher reliability (i.e., 99.9999999%).

To satisfy these KPI, it is required the development of new enabling technologies
for 6G and beyond [47]. Fig. 2.2 depicts the timeline of the main communication,
network management, and computing technologies from 5G to B6G.

2.2.2 Communication Technologies

The growing demand of higher data rate can be achieved with the adoption of THz
band communications and VLC, exploiting frequency bands never considered before.
Communications in the THz band (i.e., 0.1 - 10 THz) is enabled by the usage of novel
materials for transceiver and antenna design. This frequency band supports very high
data rate communications, paving the way to novel 6G applications, such as local
and personal area networks, data center networks, wireless network on chip, nano-
networks, and inter-satellite communications [47]. Nevertheless, the high adopted
frequencies lead to side effects (e.g., propagation loss, molecular absorption, and



2.2. 6G and Beyond: KPIs and Communication Technologies 25

Computing
technologies

mmWave

THz communications

VLC

IRS

Cell free massive MIMO

SDN

Network slicing

AI & ML

Quantum computing

QML

5G 6G B6G

Communication
technologies

NFV

Massive MIMO

Femto-cell

Network
management

Figure 2.2: Enabling technologies from 5G to B6G.

high penetration loss), drastically reducing the communication distance. On the other
hand, VLC exploits higher frequency (i.e., 400 - 800 THz), using a source of light
(e.g., light emitting diode) able to modulate signals with different light intensities. Its
introduction can extend the cellular coverage and guarantee high-speed data rate in in-
door and outdoor scenarios, such as vehicle-to-vehicle and vehicle-to-infrastructure.
However, VLC suffers from noise given by other source of light and has a limited
coverage range [62].

To provide higher communication distances and not only line-of-sight communi-
cations, the environment can be exploited as a controllable signal reflector introducing
new type of passive reflectarrays, called IRSs. Control algorithms and IRSs, deployed
on surfaces like building facades, ceilings, or walls, can be used to dynamically con-
trol the reflection angle of the impinging electromagnetic signals, thus allowing non
line-of-sight communications, enhancing the strength of the received signal, and re-
ducing interference given by multiple user in a restricted area [47]. Moreover, IRSs
enable the usage of emerging holographic radio, thus improving spectrum efficiency
and network capacity [61].
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The growing connectivity density and area traffic capacity will cause an increasing
of inter-cell interference due to users located at the cell boundaries. To avoid these
kinds of interference, 6G networks will be deployed as a cell-free architecture, where
each user is associated with all Base Station (BS), or with a subset of BS collaborating
with each other [47]. This architecture, called cell-free massive MIMO, will strongly
reduce the overhead due to handovers, also guaranteeing the expected QoS [62].

The usage of these technologies will be supported by ML techniques providing
intelligence to the whole network.

2.2.3 Use cases

The proposed network architectures aim at supporting the wide and heterogeneous
range of 6G use cases, depicted in Fig. 2.3. They can be grouped in the follow-
ing application areas: 1) Mobile Broadband Reliable Low Latency Communications
(MBRLLC) combining data rate, latency and reliability requirements; 2) massive
Ultra Reliable Low Latency Communications (mURLLC) including massive com-
munications with low latency and high reliability; 3) Human-Centric Services (HCS)
supporting novel applications in medical field [61].

Virtual and Augmented Reality

Augmented Reality (AR) and Virtual Reality (VR) allow users to add artificial 3D
models to the environment (e.g., text and/or multimedia information) and to dive in
a digitally reproduced reality, respectively. The human interaction with the virtual
environment must be real-time, leading to limited communication latency require-
ments. Moreover, the huge amount of data to be transmitted demands high data rate
and spectrum efficiency, thus requiring THz band communications, and large area
traffic capacity, enabled by cell-free architectures [63].

Unmanned Vehicles

Unmanned vehicles are mobile devices that can be remote controlled or can auto-
nomously move by sensing their environment, supporting many applications. For
instance, drones can be used for search and rescue operations, agriculture, and in-
frastructure inspection, while autonomous cars can be useful in transportation public
systems, offering safe travel and improving traffic management. Here, key issues are
the increasing number of equipped sensors and the need of high level of safety for
humans also in mobility scenarios, thus requiring growing data rate, high reliability,
and low latency. THz communications and VLC can be exploited to enable high data
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rates, IRS deployed on building facades can reduce the attenuation of THz spectrum
and cell-free massive MIMO can guarantee safety requirements in mobility cases [63].

E-Health Haptic and tele-surgery VR/AR Robotics and Industry 4.0

Unmanned vehiclesM-IoT

Figure 2.3: 6G application scenarios.

Massive Internet of Things

The main characteristic of 6G networks will be the interconnection of a massive num-
ber of Internet of Things (IoT) devices able to efficiently transmit small amount of
data. This kind of fully connected devices enables a wide area of indoor and out-
door applications, like smart factories or fully integrated smart cities. The expected
growing number of involved devices causes the increment of generated data and the
inter-cell interference, demanding for new enabling technologies, like THz commu-
nications, VLC, and cell-free massive MIMO [64].

Robotics and Industry 4.0

Robotics and Industry 4.0 is emerged as a new paradigm to revolutionize the manufac-
turing environment. In future 6G networks, robots will be equipped with ML capabil-
ities to improve their sensing ability and decision-making operations, thus supporting
real-time processes (i.e., low latency and jitter) and transmitting huge amount of data.
High data rates and spectrum efficiency requirements can be fulfilled by using THz
communications, where attenuation is reduced by IRS deployed of the walls inside
the factories [64].

E-Health

In healthcare domain, intelligent devices (e.g., e-Health sensors) can early detect med-
ical information and send them to a remote doctor, exploiting 6G communication
technologies [62]. In this context, Internet of Nano Things (IoNT) is emerging as a
new paradigm where nano-devices can be implanted, ingested, or worn by humans
to collect information directly from inside the body. The high number of involved
devices must communicate huge amount of data in real-time guaranteeing high QoS
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and energy efficiency, also in mobility scenarios. THz communications and VLC can
support the required data rate, while cell-free massive MIMO guarantees the QoS
avoiding handover issues.

Haptic and Tele-Surgery

Haptic communications allows the remote interaction between humans and robots,
thus enabling new applications especially in healthcare domain. For instance, a doc-
tor can perform a clinical examination or a surgery operation without the physical
presence of the patients, exploiting robots and receiving visual information feedback
through flat screens (i.e., display and tablet) or immersive 3D models (i.e., AR and
VR) [62]. In this context, the main requirements are: latency and reliability due to
the critical application scenarios; spectrum efficiency, area traffic capacity, and data
rate due to the complex and voluminous data to be exchanged. These KPIs can be ac-
complished with communication technologies like THz communications, VLC, and
cell-free massive MIMO.

2.3 Wireless Mesh Networks

The ever-increasing demand of data rate and node density, along with low latency
and reliability features, makes the introduction of WMNs a key solution for future
wireless communication networks [48], [49]. WMNs, in fact, are self-organised and
self-configured networks, where every node is able to autonomously establish and
manage its connection to the network in real-time. In detail, a WMN consists of
two different types of nodes, named Mesh Routers (MRs) and Mesh Clients (MCs).
MRs, as in traditional wireless communication systems, are usually equipped with
multiple interfaces to integrate the WMN with internet and various existing wireless
networks (e.g., wireless sensor networks, wireless-fidelity (Wi-Fi), and mobile net-
works). MCs, instead, correspond to typical wireless devices which, differently from
MRs, can be mobile and cannot be used as gateways (e.g., laptops, mobile phones,
and tablets) [65]. Based on node functionalities, WMNs can be deployed by following
three different network architectures. In backbone WMNs, only MRs build the mesh
network by creating an infrastructure for clients and providing access to the backbone
by leveraging existing wireless interfaces. In client WMNs, instead, also end-users
act as relay nodes forwarding incoming packets through the network. To reduce the
overall network cost and complexity of the previous architectures, the hybrid WMN
considers that each MC can directly communicate with neighbouring MCs or access
the mesh network exploiting MRs.
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Despite the manifold advantages introduced by the adoption of WMNs in terms of
reliability, network installation costs, long-range communications, and large-coverage
connectivity, several critical factors negatively affect WMN performance, including
network capacity and management issues, scalability, and mobility [65], [66]. Some
of these drawbacks can be partially solved through the introduction of novel enabling
technologies already investigated by the scientific community. For instance, the net-
work flexibility and capacity can be strongly enhanced by the introduction of single-
user or multi-user MIMO systems [67], [68]. Moreover, several works exploit unique
capabilities of SDN paradigm, such as global visibility, real-time programming, and
agility, to guarantee optimal network management and further improve the system
performance [69], [70]. The QoS of the communication system can be also enhanced
by the adoption of IRSs which improve the Signal to Noise Ratio (SNR) both in Line
of Sight (LoS) or Non-Line of Sight (NLoS) scenarios by exploiting the environment
as a controllable signal reflector [71]. A further improvement in terms of capacity
and QoS, while guaranteeing secure and fault-tolerant communications, is provided
by the application of ML algorithms to solve design and management tasks in WMNs
[72]. In the last years, in fact, the scientific community is promoting the adoption of
ML techniques to strongly enhance the network adaptability according to real-time
conditions also in highly variable scenarios.

2.4 Machine Learning Overview

ML algorithms are a subset of AI tecnhiniques that are used to learn the characteris-
tics of a system when specific conditions are met, including the absence of an exact
mathematical model and the availability of a huge volume of training data. These
models account for a wide range of tasks, such as classification, regression, and en-
abling intelligent agents to interact with their environments. A general overview of
some of ML methods is provided in the following.

Supervised Learning. It is a fundamental paradigm in machine learning. In this
approach, the model learns from a labeled training dataset, which consists of input-
output pairs. Hence, the training dataset is crucial, as it serves as the foundation for the
model to learn and generalize from. The goal is to develop a model that can predict the
correct output for new, unseen input data. To this end, supervided learning algorithms
aim to minimize a loss function, which quantifies the difference between the model’s
predictions and the actual target values in the training datasets. This is done in an
iterative manner by modifying the hyperparameters of the model, such as learning
rate and network architecture, in order to optimize the model performance on the
training data. Supervised learning is widely used in various applications, including
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image classification, speech recognition, natural language processing, and medical
diagnosis [73].

Unsupervised Learning. As opposed to supervised learning, it is a machine learn-
ing paradigm where the algorithm works with unlabeled data to discover patterns or
structures within it. In unsupervised learning, the model is not provided with ex-
plicit output labels. Instead, it must explore the data and find hidden relationships
or groupings. One common application is clustering, where the algorithm groups
similar data points together based on their intrinsic characteristics. It is also used for
dimensionality reduction or detecting data points that deviate significantly from the
norm [74].

Reinforcement Learning (RL). It operates by utilizing a feedback mechanism, of-
ten referred to as a reward, which is generated by the environment in response to
specific actions or decisions made by an agent. The objective is to iteratively refine
the agent’s behavior by maximizing the cumulative reward received. This learning
approach can be viewed as a middle ground between supervised and unsupervised
learning. In particular, it is commonly employed for solving problems related to con-
trol, decision-making, and classification.

Deep Learning (DL). It is a sub-field of ML which involves multiple layers for the
processing of input raw data in order to progressively extract higher-level features.
It commonly uses an artificial neural network composed of many perceptrons organ-
ised in multiple dense hidden layers. To properly train a model, it also needs an initial
step useful to tune the hyperparameters starting from a huge amount of data. Specifi-
cally, DL algorithms train the model by minimising the loss function over the training
dataset and extracting the weights of the final model [75].

Deep Reinforcement Learning (DRL). It combines two sub-fields of ML: RL and
DL. To efficiently use RL, in fact, agents must infer a good representation of the
environment, thus choosing the action which maximises the reward by following a
trial and error strategy. However, if the state spaces or action spaces are too large,
this decision can be a complex task that requires more computational time. In this
context, DL can help agents to make decisions by learning policies directly from high-
dimensional and unstructured input data [76].

Federated Learning (FL). This techniques, in the last years, is arising as a new dis-
tributed learning approach. Since traditional centralized ML algorithms require users
to transmit their collected data to a central server for training purpose, this can lead
to privacy issues. Furthermore, in some cases, may be impractical and uncovenient
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transmit local data for training a ML models. In this context, FL enables to collab-
oratively learn a shared ML model without the data transmission by sending to the
central server only the parameter of the model trained with local data. Then, the server
generate a global FL model and sent it back to the users.

2.5 How to Achieve Network Intelligence

Thanks to their ability to extract fine-grained analytics from available data, ML and
QML are key instruments to achieve network intelligence.

2.5.1 The Role of ML in 6G and B6G systems

According to the scientific literature, in the context of 6G and B6G systems, ML algo-
rithms can be used at different network levels to retrieve technical details through data
mining, investigate and predict the system behaviour, and optimally configure com-
munication protocols, resources, and services, also at large scale [47]. Few valuable
examples are reported below.

• At the physical layer, deep and convolutional neural networks are used for
optimizing Orthogonal Frequency Division Multiple (OFDM) receivers, sig-
nal classification, channel decoding, and signal detection [77]. ML is also
employed for channel estimation to optimally choose the communication fre-
quency and control the IRSs reflection angle, thus reducing attenuation effects
of high-frequency communications [47].

• At the data-link layer, ML algorithms optimize the packet retransmissions pro-
cess and the dynamic allocation of network resources, while reducing network
overhead and latency also in heterogeneous scenarios [57].

• At the network layer, ML techniques predict data contents to be cached in spe-
cific places of the network, choose serving and target cells during handover, and
efficiently balance the network load with traffic classification [77]. The predic-
tion of users’ mobility sustains NFV/SDN paradigms to optimally configure the
network and allocate communication and computing resources.

• At the application layer, ML studies packet features (e.g., packet sizes and inter-
arrival times) and classifies the application type of data stream in order to op-
timize the resource allocation [77].



32 Chapter 2. Boosting Network Intelligence Through Quantum Computing

Pervasive network intelligence is a cornerstone enabling factor also for many 6G
and B6G use cases. Table 2.1 summarizes the main KPIs and the involved communi-
cation technologies for these use cases, and highlights the main role covered by ML
techniques.

Table 2.1: Communication features and network intelligence usage in main 6G and B6G use
cases.

Application
Area Use cases Main KPI Communication Technologies How is ML used?THz VLC IRS Cell-free

MBRLLC

VR/AR
Peak data rate: > 1 Tbps
Traffic capacity: 1 Gbps/m2

Spectrum efficiency: 2− 10x
Latency: < 1 ms

✓ ✓

- predict users’ mobility;
- estimate channel conditions;
- allocate network resources;
- reduce network traffic by reproducing

the interested image portion.

Unmanned
vehicles

Peak data rate: > 1 Tbps
Connectivity density: 107 d/km2

Mobility: 1000 km/h
Reliability: 99.9999999%
Latency: < 1 ms

✓ ✓ ✓ ✓

- optimize the vehicles path;
- predict vehicles mobility;
- recognize obstacles;
- optimize the resource allocation.

mURLLC

M-IoT Connectivity density: 107 d/km2

Energy efficiency: 10− 100x ✓ ✓ ✓

- identify patterns;
- classify the collected data;
- adapt communication features

based on environment conditions;
- predict users’ mobility.

Robotics and
Industry 4.0

Peak data rate: > 1 Tbps
Jitter: 1 µs
Spectrum efficiency: 2− 10x
Latency: < 1 ms

✓ ✓
- optimize data processing;
- robot localization;
- improve the human-robot interaction.

HCS

E-Health

Peak data rate: > 1 Tbps
Connectivity density: 107 d/km2

Energy efficiency: 10− 100x
Reliability: 99.9999999%
Mobility: 1000 km/h

✓ ✓ ✓

- detect medical diseases;
- drive real-time decisions of devices;
- support the doctor in treatments

prescription.

Haptic and
telesurgery

Peak data rate: > 1 Tbps
Traffic capacity: 1 Gbps/m2

Spectrum efficiency: 2− 10x
Reliability: 99.9999999%
Latency: < 1 ms

✓ ✓ ✓

- predict and reproduce doctor’s movements
in case of packets loss;

- network traffic reduction by reproducing
the interested image portion.

2.5.2 The Role of ML in WMNs

Unlike optimisation schemes, ML algorithms are strongly adaptable to environmental
conditions, resulting particularly suitable for time-variable use cases, such as WMN-
based applications. Given that, they can also be used in WMNs to solve different
design and management tasks [77]. Fig. 2.4 summarises the main ML algorithms
exploited in WMN scenarios, which are explained in details as follow:

• Supervised learning. In this context, the most commonly used algorithms
for WMNs are Decision Tree (DT), Support Vector Machines (SVMs), and
K-Nearest Neighbors (KNN), typically performing classification or regression
tasks. Specifically, DT algorithms exploit a tree-like structure to solve both
classification and regression problems. The attributes of the input data are
compared with features labelling internal nodes of the tree. Starting from the
root node and performing these comparisons, the algorithm traverses the tree
until it reaches the leaf nodes which represent the class or the relationship be-
tween dependent and independent variables. SVM, instead, is a ML technique
commonly used for classification tasks. In this case, the algorithm constructs
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Figure 2.4: Summary of ML techniques and corresponding role in WMNs.

hyperplanes aiming at maximising the width of the gap between points belong-
ing to different classes in order to increase the classification precision of suc-
cessive input data. SVM and DT algorithms are employed in WMNs to build
efficient cross-layer-based [78] and network-layer-based [79] intrusion detec-
tion systems. In this case, the model is trained starting from packet delivery
ratio, packet arrival interval, and end-to-end delay statistics in order to easily
detect anomalous behaviour and remove malicious nodes. These algorithms
are also integrated with a threshold that avoids false decisions. An easier al-
gorithm used to perform both classification and regression tasks is the KNN.
Here, the input data is classified by considering a similarity concept (i.e., ev-
ery data point falling near others belongs to the same class). Considering an
IoT network supported by a software-defined WMN, the presented supervised
learning approaches (i.e., DT, SVM, and KNN) are used for optimising the
management of the network and perform time granular analysis of the network
traffic. The comparison among these learning strategies demonstrated that the
KNN algorithm provide the best performance in terms of accuracy [69].

• Unsupervised learning. The main unsupervised algorithms used in WMNs are
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K-means and Principal Component Analysis (PCA). K-means is a clustering al-
gorithm that groups the input unlabelled data in k clusters with an iterative pro-
cedure. Specifically, at each iteration, the n observations are grouped in order
to minimise the variance intra-cluster and maximise the distance inter-cluster.
Here, the distance, usually measured through a Euclidean metric, is computed
considering the cluster centres, named centroids. The iterative procedure ends
when the algorithm converges. In WMNs, K-means can be used for the load
balancing of the network [80] or the channel allocation [72]. In detail, load
balancing is performed in order to optimise the resource allocation, increase
the overall load of the network, and reduce the congestion at the gateways [80].
Moreover, the K-means clustering can be used to group the MRs efficiently,
choosing the cluster head according to the computed centroid [72]. The PCA
algorithms, instead, aim at reducing the data dimensionality by describing each
data point only with several uncorrelated principal components, while main-
taining the highest training-data variance in the first component. Given that the
PCA algorithm allows handling high-dimensionality application scenarios, it is
particularly suitable for real-time fault detection in high-interference environ-
ments, such as WMNs [81].

• Reinforcement Learning. The most known RL algorithm is the Q-learning.
Its main feature is the capability to train a model without the knowledge of the
environment. Q-learning algorithms, in fact, are based on a Q-value that is
updated at each iteration: the optimal action corresponds to the largest cumu-
lative Q-value. In WMNs, RL strategies can be exploited for routing purposes
in order to decide the optimal route, among many possible paths, to take from
source to destination node. RL fits very well with this kind of problem: the
next MR could be chosen, at each iteration, from a set of possible actions in
that state. Moreover, Q-learning can be used to avoid critical problems, such
as the congestion at the gateway, by dynamically learning an optimal routing
scheme that considers several metrics (e.g., loss-ratio, interference, and load at
the gateways) [82]. Since classical routing protocols may suffer from excessive
energy consumption and do not consider past experience, Q-learning can also
optimally enhance the energy balance of the network [83].

• Deep Learning. The main DL architectures used for WMNs are Deep Con-
volutional Neural Network (DCNN) and Deep Belief Network (DBN). DCNN
is an example of DL architectures, mostly used in computer vision. In this
case, the classification task is performed by filtering the input data using con-
volution layers in order to extract low-level information. Then, the size of the
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extracted features is reduced by pooling layers, thus obtaining the output of the
fully connected layer (i.e., a vector which contains the result of the classification
process). In WMNs, gateways receive traffic information from both MRs and
MCs, leading to a higher probability that several nodes become congested. To
overcome this issue, DCNN can be used to periodically train a model in order
to make optimal routing decisions based on past events [84]. On the other hand,
DBN is a class of deep neural network defined as a stack of Restricted Boltz-
mann Machines (RBMs), which is a two-layer undirected graphical model.
Each RBM layer is connected with both the previous and next layers and the
nodes alongside any layer are not connected with each other. Since RBMs train-
ing process is unsupervised, a DBN ending with a Softmax layer can be used
both for classification and clustering of unlabelled data. This makes the DBNs
algorithms particularly suitable in WMNs to improve the network management
operations in terms of network traffic prediction [85].

• Deep Reinforcement Learning. The most promising example of DRL for
WMNs is the Deep Q-Learning Network (DQN). DQN combines deep neu-
ral networks and Q-learning in order to estimate and maximise theQ-values by
considering both states and rewards. It can be employed in WMNs to control
the data flow and enhance the throughput. In fact, classical control flow meth-
ods suffer from the continuous growth of the number of mesh nodes and the
complexity of data applications which make these kinds of scenarios strongly
dynamic. DQN, instead, intrinsically has the capability to manage and optimise
complex traffic communication flows [86]. DRL algorithms can also be used
for optimally planning the network in real-time, thus optimally deploying gate-
ways in the WMN and choosing the network topology [87]. Moreover, DRL
can manage the channel access in dynamic spectrum scenarios, where multiple
discrete channels are shared by different types of nodes without any a priori
knowledge [88].

2.5.3 Open Issues in the Application of ML

When considering the application of ML in the context of 6G/B6G and WMNs, sev-
eral unique challenges and open issues emerge. ML algorithms often demand exten-
sive computation times and high computing power.

Regarding the 6G/B6G applications where low-latency communication and real-
time analysis are essential. Meeting QoS constraints while handling resource-intensive
ML computations can pose a significant challenge. Moreover, as this system expand,
the number and types of devices involved grow exponentially. This results in larger
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and more heterogeneous datasets. Since the time to train traditional ML methods
is heavily influenced by the dimensionality for the data, this would lead to a longer
training times that can potentially causing delays incompatible with real-time require-
ments.

The aforementioned issues for 6G/B6G are still valid for WMNs. However, here,
another problem is related to the dynamic and ever-changing nature of this network
systems. For this reason, the ML models applied in WMNs need costant updates to
accurately reflect the network behavior. Thus, a periodical re-training of ML models
becomes necessary, introducing management overhead.

In summary, the application of ML in 6G/B6G and WMNs faces challenges re-
lated to computation efficiency, resource allocation, data management, and the dy-
namic nature of network environments. Addressing these issues will be crucial to
harness the full potential of ML in these advanced wireless communication systems.
To do this, the development of novel strategies to enable intelligent decision-making
without excessive delays are needed.

2.5.4 Quantum Machine Learning

Thanks to quantum mechanics principles (i.e., quantum superposition, quantum deco-
herence, no-cloning theorem, and quantum entanglement), QC is gaining momentum
as a new technology able to solve complex problems that would otherwise be impos-
sible with classical computers [60].

The combination of QC and ML is emerging as a new powerful technique to im-
prove learning algorithms [53]. Specifically, depending on whether the input data and
the information processing system are quantum or classical, there are four different
approaches to merge QC and ML [54], [89]:

• Classical-classical approach. It implements quantum-inspired classical algo-
rithms on classical computers. Here, classical data are processed by classical
computers, by employing traditional ML algorithms based on quantum princi-
ples theory.

• Quantum-classical approach. It consists in employing ML techniques in a QC
system. In particular, ML can help quantum computers to learn from data.
For instance, ML can be used to analyse measurement data, thus reducing the
number of measurements of a quantum state.

• Classical-quantum approach. It is commonly known as QML. This approach
aims at translating classical ML algorithms into a quantum-compliant language
to take advantage of quantum mechanics by running it on quantum computers.
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The adoption of this approach requires a pre-processing step to convert the clas-
sical input data into suitable data for quantum computers. Nowadays, the re-
search community proposes several encoding methods, such as basis encoding
and amplitude encoding [54], [56].

• Quantum-quantum approach. It aims to develop quantum algorithms to ma-
nipulate quantum data. In this approach, it is not required to encode data, as
the input is directly the quantum state of the system.

In particular, this work considers the third approach, as in the real world scenario
most of the input data are classical. Moreover, since quantum-inspired algorithms
are executed on classical computers, the achievable speed-up is not comparable with
running it on quantum computers [53].

In this context, due to the continuous growth of the number of devices involved,
consequently, the amount of exchanged information, QML can help to speed up al-
gorithms used in future wireless communication systems. In fact, it can improve the
computational time, thus getting results faster and also in real-time, as well as increas-
ing the learning capacity and efficiency by discovering more intricate patterns from
the input data [57], [90]. In detail, preliminary studies on the performance compari-
son between QML and ML algorithms demonstrated that the QML is convenient in
the case of high-dimensionality input data [91]. Hence, future wireless networks must
take into account the possibility to jointly use traditional ML and QML capabilities
by supporting the integration of quantum computers.

Nevertheless, QC and its application in QML have to face significant hardware
challenges. Quantum states, which form the basis of QC, are highly fragile, suscepti-
ble to the decoherence principle, and can be perturbed by gate operations, ultimately
restricting the capabilities of quantum computers. To mitigate these issues, the sci-
entific community has proposed two primary strategies. Firstly, the embedding of
quantum circuits into specialized large-scale infrastructures equipped with cooling
systems capable of maintaining temperatures near absolute zero is suggested [59].
Secondly, the preservation of qubit states can be achieved through the implementa-
tion of quantum error correction schemes, which distribute the information originally
associated with a single logical qubit across several physical qubits [92].

Expanding the number of operational qubits can enhance the computational power.
In fact, the search space of QC exponentially increases with the number of qubits. This
can be accomplished by distributing machine learning algorithms across multiple in-
terconnected quantum computers, with a centralized control system managing the
distributed computing resources [93]. However, unlike classical data, quantum infor-
mation cannot be copied due to the no-cloning theorem, which prohibits traditional
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error correction mechanisms and imposes limitations on communication distances.
Nonetheless, quantum states can be transferred using quantum communication meth-
ods like entanglement and teleportation. This capability opens the door to leveraging
quantum communication to improve QC capabilities, creating a network of intercon-
nected quantum computers that share a higher number of qubits, recently denoted as
the quantum Internet [60].

2.6 Design Principles for QC-aided Network Intelli-
gence

The application of QML methodologies in future wireless communication systems,
such those introduced before, can be achieved only with the definition of novel net-
work architectures. In fact, the integration of quantum and traditional computers per-
forming QML and ML algorithms, respectively, requires new logical entities embed-
ded with new functionalities. To this end, this Section presents design principles
for the realisation of two innovative network architectures, denoted by centralized
and distributed approaches, able to combine the benefits provided by traditional and
quantum computers deployed either in the cloud or at the edge of the network.

2.6.1 Centralized Architecture Overview

The integration of QML functionalities requires the introduction of quantum comput-
ers in their architectures. Nowadays, some Tech Giants, such as IBM, Google, and
Microsoft, have already developed quantum computers with up to a hundred qubits,
also envisioning strong improvements in this direction for the next years [59]. Ac-
cordingly, a first suitable approach for integrating quantum computers can be achie-
ved using the Tech Giants’ quantum computer by accessing their cloud to perform
QML algorithms.

Centralized Architecture for 6G and B6G

The centralized architecture for 6G and B6G systems, depicted in Fig. 2.5, is de-
scribed across four general tiers:

• The access network hosts heterogeneous network attachment points, which of-
fer mobile connectivity through different wireless communication technologies
(i.e., mmWaves, THz communications, VLC, IRS, and so on).
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Figure 2.5: 6G and B6G centralized deployment.

• The edge network provides a flexible interface between access and core net-
works, while managing virtualized network functionalities and implementing
advanced services and applications very close to the end-users.

• The core network forwards traffic flows across geographically distributed nodes.
Its features are dynamically monitored and configured by SDN controllers.

• The remote cloud provides network and service management functionalities
through the Network Function Virtualization Orchestrator (NFVO) and com-
puting resources to the entire network.

All the resources that an infrastructure provider deploys across the four tiers can
be exploited by various service providers for offering vertical services. Without loss
of generality, the discussion below assumes that a single service provider has data
available in its network. But, the whole protocol architecture can be easily extended
by considering the possibility to perform data mining and big data analytics on infor-
mation shared across organizations and boundaries.

As for the current 5G deployments, a service provider can still use nodes at the
network edge with their local computing capabilities for executing very simple ML
tasks. At the same time, the centralized architecture takes advantage of quantum
computers in the cloud for carrying out QML techniques. In this context, service
providers can leverage the computing capabilities of third-party tech giants such as
IBM, Google, and Microsoft for QML tasks, subject to subscription fees. The allo-
cation of computing resources among ML and QML tasks is done by a centralized
Intelligence Orchestrator, deployed in the remote cloud.
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Centralized Architecture for WMNs

The proposed architecture for WMNs is composed of three main components:

• The access network includes all the application scenarios sustained by the WMN
(e.g., mobile networks, wireless sensor networks, and vehicular networks) and
the related network attachment points which provide the connection to the mesh
network (e.g., BS and sink node).

• The wireless mesh backbone hosts MRs (with or without gateway capabili-
ties), a Data Aggregator node which stores and transmits dataset for intelli-
gence operations, and traditional computers designed for solving simple and
low-dimensionality ML problems. Furthermore, given the heterogeneity and
complexity of the wireless mesh backbone, the traffic flow is managed by an
SDN controller, thus avoiding network congestion issues.

• The remote cloud provides orchestration and high-dimensionality computa-
tional capabilities to the overall network. In detail, the Intelligence Orches-
trator performs the allocation of computing resources among ML and QML
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tasks according to their data-dimensionality, while the NFVO provides service
management functionalities.

Both architectures emphasize the use of centralized intelligence for allocating
computing resources, with an Intelligence Orchestrator playing a key role. Quantum
computers in the cloud are leveraged for QML tasks, and SDN controllers manage
traffic flow for optimized network performance.

The Information Exchange in the Centralized Architecture

As illustrated in Fig. 2.7, the information exchange in the centralized architecture can
be summarised as in what follows.

• Phase 1: Dataset Creation. Each node belonging to the network generates
information data to be processed by traditional or quantum computers for the
purposes listed in Sections 2.5.1 and 2.5.2. The collected data strongly de-
pends on the considered node. While end-users (e.g., mobile phones, sensors,
and vehicles) acquire data from the surrounding environment, such as channel
quality indicators and performance levels of high-level applications, network
equipment (e.g., MRs, BSs, sink nodes, SDN controllers, and NFVO) provide
information related to the network functionalities, such as bandwidth and en-
ergy consumption. All the collected data are transmitted to Data Aggregators
by means of REST or RESTful communication protocols in order to increase
the performance, scalability, simplicity, and reliability of the network. Then,
Data Aggregators pre-process incoming data and compare them with existing
network information in order to create and/or update datasets useful for intelli-
gence operations.

• Phase 2: Tasks Assignment. The Intelligence Orchestrator must assign the
generated datasets to computing resources (e.g., traditional or quantum com-
puters). To this end, given the huge amount of data to be exchanged, the Data
Aggregators periodically create and transmit to the Intelligence Orchestrator a
data descriptor message containing high-level information about the available
datasets, such as data format, data size, and statistical variability with respect
to previous updates. Starting from this information and considering the status
of computing resources, the Intelligence Orchestrator performs the task alloca-
tion and sends a task assignment message to the Data Aggregators in order to
efficiently transmit the datasets to designed traditional or quantum computers.
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Figure 2.7: Message sequence diagram of the centralized architecture.

• Phase 3: Intelligence Operations. Quantum computers in the cloud offer a
suitable environment where implementing QML techniques. However, classi-
cal data cannot be directly used as input of quantum computers. Accordingly,
when QML capabilities are required, a Quantum Interface (QI) logical entity is
first used for converting classical data into quantum data, and vice-versa. With-
out loss of generality, this work considers that these logical entities are directly
equipped in the quantum computer. After the data pre-processing, ML and
QML operations are performed by traditional and quantum computers, respec-
tively, thus obtaining the corresponding outcomes (e.g., the hyperparameters
of the model in case of learning procedures; classification, prediction, or spe-
cific actions in other cases). These results are, finally, transmitted to different
network equipment for specific purposes, ranging from service management
to network optimisation. For instance, the NFVO can exploit these outcomes
for optimally managing upper layer services and allocating virtual resources
among active applications. SDN controllers, instead, dynamically configure
network functionalities (e.g., flow forwarding and load balancing) and solve
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complex routing problems based on users’ mobility and traffic dynamics. Fi-
nally, edge nodes and BSs use ML and QML outcomes to update ML models
or perform resource scheduling and allocation.

2.6.2 Distributed Architecture Overview

Today, the availability of quantum computers and qubits is severely restricted due to
physical and economic constraints. Consequently, the centralized approach appears
as the most practical strategy for implementing QC-aided network intelligence. Nev-
ertheless, in a long-term vision, the scientific community envisions a future where
geographically distributed quantum computers are interconnected through the quan-
tum Internet [60]. In such a scenario, a distributed architecture becomes feasible,
allowing for the direct execution of complex QML algorithms at the network’s edge.
In this distributed model, service providers could strategically deploy their quantum
computers, each equipped with a limited number of qubits, to manage deployment
costs effectively.

Distributed Architecture for 6G/B6G and WMNs

The distributed quantum computing architecture, depicted in Fig. 2.8 for 6G/B6G and
in Fig. 2.9 for WMNs, introduces a framework that can be applied to both scenarios
while addressing the constraints of limited quantum computing resources.
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In this context, this architecture requires the introduction of both novel logical
and physical nodes, in addition to those previously discussed for the centralized ar-
chitecture. These additions are essential to effectively support the deployment and
operation of distributed quantum computers. More specifically, these nodes are:

• Quantum Nodes: The distributed architecture leverages quantum nodes de-
ployed at the network edge for data mining tasks and big data analytics. Quan-
tum nodes are in charge of implementing complex Machine Learning (ML) and
Quantum Machine Learning (QML) algorithms.

• Quantum Clusters: To scale up computational capabilities and address complex
ML and QML tasks, the Intelligence Orchestrator creates networks of quantum
nodes, denoted as quantum clusters, based on the required computational com-
plexity.

• Entanglement Distribution: Quantum nodes within the same cluster share en-
tangled particles, which are crucial for transmitting quantum information. These
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entangled particles are distributed by a third node, defined as the Entanglement
Generator and Distributor (EGD) node.

• Quantum Repeater (QR): To overcome limitations related to the distance be-
tween quantum computers and since the no-cloning theorem does not allow to
simply read and copy qubits, quantum repeaters are introduced. They perform
entanglement swapping to establish longer-distance end-to-end entanglements
[94]. For example, as depicted in Fig. 2.10, considering two distant quan-
tum computers and a quantum repeater, the entanglement swapping procedure
mainly consists of four phases: (i) the EGD transmits a pair of entangled parti-
cles to the first quantum computer and the quantum repeater, (ii) the quantum
repeater performs a Bell-state measurement on entangled particles shared with
the two quantum computers causing the collapse of the corresponding parti-
cles, (iii) the obtained results are sent to quantum computers through classical
channels, and (iv) quantum computers execute local operations to retrieve the
entanglement state. Without loss of generality, this procedure can be extended
for multiple quantum repeaters scenarios.

The entangled particle distribution can be also supported by a satellite or a
drone network. Satellites and drones, in fact, can act as QRs for the entangle-
ment distribution of two distant quantum remote computers, completely sub-
stituting ground QRs or simply supporting them. On the one hand, the main
benefit of using satellite is that photons loss takes place at low levels of the
troposphere and the transmission path has no photon absorption [95]. On the
other hand, since low-orbital satellites serve specific ground quantum comput-
ers only for a limited time, drones can be used as QR, receiving a photon and
retransmitting it to the involved quantum remote computer, the next drones, or
the next ground QR [96].

By merging these elements, we establish a unified framework for distributed quan-
tum computing architecture applicable to both 6G/B6G and WMNs. It is important
to note that the EGD can be either a separated physical node of the network or simply
a logical entity equipped by involved QRs (e.g., ground QRs, satellites, or drones).

The Information Exchange in the Distributed Architecture

The distributed architecture, shown in Fig. 2.11, works as in what follows.

• Phase 1: Dataset Creation. As for the centralized architecture, in the first phase
of the information exchange procedure, end nodes belonging to different use
cases and network equipment deployed in the access network for 6G/B6G sys-
tems or in the wireless mesh backbone for WMNs and in the cloud generate a
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Figure 2.10: Representation of the entanglement swapping procedure.

huge amount of data. This information is, then, transmitted to the Data Aggre-
gator which creates new datasets or updates existing ones.

• Phase 2: Task Assignment. Also the second phase, aiming at allocating tasks
among computing resources (i.e., traditional and quantum computers), is equiv-
alent to the corresponding phase in the centralized architecture. Here, Data Ag-
gregators transmit metadata of the generated datasets (such as the format or size
of data) to the Intelligence Orchestrator, thus avoiding the exchange of an ex-
cessive amount of information and, in turn, the congestion of the network. The
Intelligence Orchestrator, starting from the aforementioned metadata and from
the status of the intelligence network, assigns specific tasks to computing re-
sources and sends a task assignment message to the Data Aggregator. Involved
datasets are, finally, delivered to traditional or quantum computers.

• Phase 3: Network Setup. Differently from the centralized architecture, in the
distributed approach quantum nodes are deployed at the network edge and dy-
namically grouped in clusters in order to scale up the number of qubits and
efficiently solve more complex QML problems. In this case, the Intelligence
Orchestrator creates quantum computer networks aiming at grouping comput-
ing resources based on the number of available qubits and the distance between
them in order to reduce attenuation effects. Since quantum computers belong-
ing to the same cluster share quantum states through the aforementioned tele-
portation protocol, the third phase of the information exchange envisages setting
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up the QML network by generating and transmitting entangled particles among
involved quantum nodes. They are, then, able to establish a long-distance end-
to-end entanglement through the entanglement swapping procedure.
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Figure 2.11: Message sequence diagram of the distributed architecture.

• Phase 4: Intelligence Operations. Again, when quantum computers are in-
volved in the computing operation, the received dataset is converted by the
Quantum Interface (QI) devices before executing QML algorithms. The out-
comes of ML and QML operations are, finally, transmitted to the nodes of the
network for different purposes (e.g., the SDN controllers for optimal routing
procedures, the NFVO for allocating virtual resources, BSs for optimal resource
scheduling).
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Chapter 3

Quantum Scheduling Optimization
for UAV-Enabled IoT Networks

This Chapter explores a scenario where a group of Unmanned Aerial Vehicles (UAVs)
serves a set of Sensor Nodes (SNs) using a Time Division Multiple Access (TDMA)
scheme. The goal is to achieve fair resource allocation and create an optimal schedul-
ing plan of network resources, which is formulated as a combinatorial problem with
binary constraints. QA is employed to solve this optimization problem, leverag-
ing its inherent capabilities. The problem is transformed into a Quadratic Uncon-
strained Binary Optimization (QUBO) form to be processed by a Quantum Process-
ing Unit (QPU). Due to the limited qubits and inter-qubit connectivity in state-of-
the-art quantum annealers, a hybrid quantum-classical approach is used to obtain the
scheduling plan. The study then compares the results obtained from this approach
with those from two classical solvers in terms of data, objective function values, and
execution time.

3.1 Introduction

Quantum computing has found a significant application in optimization problems,
where a huge number of heuristics and meta-heuristics algorithm exist. However,
as problem complexity grows, no single algorithm consistently outperforms the rest.
The choice of an optimization strategy heavily depends on the specific problem and
its associated parameters. In most cases, exact methods, capable of finding the global
optimum, are not feasible due to the computational demands. Instead, we often rely
on algorithms that provide suboptimal solutions. This trade-off arises because as
problems become larger and more complex, exploring the entire solution space or
running exact algorithms becomes impractical, leading to an excessive number of
operations.

Quantum computing, instead, offers an alternative heuristics that can sometimes
yield solutions of comparable sub-optimality as classical counterparts but with the
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promise of significantly faster computation. This advantage stems from the novel ap-
proaches enabled by quantum-mechanical properties, providing solutions to intricate
problems that would be challenging to implement efficiently on classical computers.
However, due to the decoherence principle, the number of qubits is limited. In fact,
maintaining the state of a qubit is very challenging, since it requires specialized in-
frastructure equipped with a cooling system able to maintain a near absolute zero
temperature.

Despite the challenges introduced by this powerful technology, it is employed in
several application domains [97] such as (i) chemistry, (ii) machine learning, (iii)
finance, and (iv) telecommunications [98]. Recently, the pros and cons brought by
quantum optimization have been investigated in the telecommunications field, mainly
focusing on scheduling in wireless networks.

In particular, [99] investigates a scenario in which a set of sensors are organized in
a tree network topology as a part of a wireless network. Several parent sink nodes are
in charge of collecting and aggregating sensing data generated by their child nodes.
With the aim of minimizing the overall collecting time, an optimization problem is
formulated to obtain the optimal scheduling plan, while considering constraints re-
lated to interference among nodes and TDMA adopted scheme. Quantum annealing
together with other methods are used to find the solution and obtained results are
compared in terms of quality and computational time. With the same aim, [100]
investigates a similar scenario in which a K-hop interference model is adopted. A
Weighted Maximum Independence Set (WMIS) problem is formulated based on a
conflict graph corresponding to possible collisions due to the activation of network
nodes. The scheduling solution obtained through QA is then compared with the SA’s
one, where the effect of extra penalty weight adjustment is discussed. Lately, the same
authors studied the same scenario in [101] but with particular focus on the adoption
of Dirichlet protocol in wireless networking, showing significant improvements in the
D-Wave 2X solution compared with that of its predecessor, the D-Wave II.

Although interesting, these works do not consider the channel model and the op-
timization of network resources. To fill the gap, in this Chapter are presented two
works aiming to (i) give a preliminary evaluation of QA algorithm applied to resource
scheduling, emphasizing its benefits and drawbacks and (ii) further investigate these
aspect in a UAV-enabled IoT networks.
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3.2 Motivations

Various techniques have been developed to leverage quantum computing for optimiza-
tion problems. Gate-based quantum computers typically require finding problem-
specific formulations. While they offer the advantage of universal computation, mean-
ing they can theoretically solve any type of task, they require complex investigations to
adapt them to specific problems. Additionally, they have a limited number of qubits,
making them unsuitable for solving large-scale problems.

Quantum annealers, on the other hand, offer a significantly higher number of
qubits compared to gate-based quantum computers. However, they lack the fine-
grained control of individual qubits. This limitation actually makes annealers par-
ticularly well-suited for optimization tasks. In the case of an optimization problem, it
needs to be formulated through a time-dependent Hamiltonian H(t) defined as

H(t) = s(t)H0 + (1− s(t))H1, (3.1)

where H0 is an initial Hamiltonian whose ground state, i.e., minimal energy config-
uration, is easy to find and prepare. H1 represents the given problem and, as a con-
sequence, its lowest energy level corresponds to the optimal solution. The adiabatic
theorem of quantum mechanics states that if s(t), which mathematically represents
the transition function, is decreased slowly enough from 1 to 0, the system converges
to a state close to the ground one of H1 [42]. Concretely, at the beginning of the pro-
cess H(0) = H0, while at the end of the computation, after τ seconds, H(τ) = H1.

3.3 Workflow of Solving Optimization Problems with
QPUs

The above process inspired the construction of D-wave’s QPUs and addressing an
optimization problem using this hardware requires following a specific workflow. It
is worth emphasizing that the procedure itself offers a limited flexibility and mak-
ing practical adjustments primarily entails fine-tuning the parameters that users can
access within this system. Hence, the QPU, which is a physical representation of
an undirected graph with a limited number of qubits and connections among them,
can be viewed as a specialized black-box optimization algorithm with highly defined
parameters and restrictions. The specific workflow is as follow [38]:

• Mapping the classical formulation into Binary Quadratic (BQ) form. Once
the problem has been classical formulated, since the standard input format for
quantum annealers is either the Ising or QUBO formulation, it needs to be
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mapped into the interest form. The former is commonly used in statistical me-
chanics and considers the solution variables as spins si ∈ {+1,−1}, which can
assume two states, i.e., spin up (↑) and spin down (↓). Relationships between
the spins, represented by couplings, are correlations or anti-correlations. The
objective function defined through the Ising Model is

N∑
i=1

hisi +
N∑
i=1

N∑
j=i+1

Ji,jsisj, (3.2)

whereN denotes the number of qubits, hi describes the linear coefficients, i.e.,
qubit biases, and Ji,j are the coupling strengths of the quadratic spin terms.

The latter is traditionally employed in computer science, since it uses binary
variables, i.e., xi, which remind classical bits. The QUBO objective function
can be expressed as follows:

N∑
i

Qi,ixi +
N∑
i<j

Qi,jxixj, (3.3)

where Q ∈ RN×N is an upper triangular matrix, whose diagonal elements cor-
respond to linear coefficients while off-diagonal ones are the coupled coeffi-
cients. An equivalent concise matricial form is

xTQx. (3.4)

The above formulation, which is used in this work, does not inherently account
for the presence of constraints that have to be included by adopting specific
strategies, such as penalty methods. It is worth noting that (3.2) and (3.3) are
exchangeable by means of a linear transformation, i.e., xi = (si + 1)/2.

Then, depending on the chosen formulation, the problem statement is presented
as the search for the optimal assignment of either {-1, 1} or {0, 1}, respectively.

• Embedding procedure. Subsequently, it is necessary to translate it onto the
constrained topology of the QPU. This operation, known as embedding, is
practically done by selecting a set of physical qubits to represent optimization
variables, called logical variables, and identifying the couplings or connections
between the physical qubits in order to establish the appropriate interactions
among the logical variables. Furthermore, whereas the problem structure can
not be directly embedded into the QPU topology, e.g., due to the limited con-
nection between qubits, a logical variable is represented by a chain of physical
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qubits. Note that a solution is consistent if all qubits in a chain have the same
value. The embedding can be performed manually or by heuristic algorithms,
such as MinorMiner [102].

• Configuration. Configuring the quantum annealer involves the assignment of
parameters that characterize the embedded problem. This task includes estab-
lishing the weights for individual qubit biases, which control the magnetic field
influencing each qubit, as well as determining the strengths of the couplers,
which affect the interactions between qubits.

• Annealing process. This phase is the core of the workflow in which the em-
bedded problem is solved as the system progresses from the initial to the final
Hamiltonian using predefined annealing functions.

• Readout and resampling. At the end of the annealing process, each qubit is in
a classical state that represents the minimum energy state of the problem, or one
very close to it. So, the qubits are read-out and their configuration represents a
candidate solution of the problem. Furthemore, since the quantum annealing is
a heuristic and the annealing time is finite, there is a chance that the system ends
up in an excited state. This can be mitigated by repeating the anneal-readout
cycle for a specific problem in order to acquire multiple candidate solutions and
build a distribution of these possible solutions.

3.4 System Model

The mission duration T is discretized into k = 1, . . . , K intervals, each one lasting
δt seconds. A swarm of m = 1, . . . ,M drones, located at qm ∈ R3, hover over a
set of n = 1, . . . , N SNs, placed in un ∈ R3. Moreover, it is assumed that each
drone and each node are equipped with one wireless communication unit. To avoid
interference among UAVs and SNs, the communications towards different drones take
place on different sub-bands, by adopting the Orthogonal Frequency Division Mul-
tiple Access (OFDMA) scheme, and different timeslots, by employing the TDMA
scheme. Therefore, the scheduling plan is described by means of a 2D binary matrix
x ∈ {0, 1}M×N , containing column vectors denoted as xn[k] ∈ {0, 1}M×1 and its
components defined as xm,n[k]. Specifically, only when xm,n[k] = 1 the m-th UAV
serves the n-th SN. It is further assumed that all nodes are equipped with a wake-up
receiver which allows to (i) recover from a sleep state to save energy and (ii) identify
the associated UAV and its corresponding sub-band. Besides, the transmission power
of each SN is constant and hence it is defined as Pn∀n. The channel gain [103] be-
tween a UAVm and a node n, for each k, is equal to hm,n =

√
β0d−α

m,n, where β0 is the
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reference channel power gain, α is the pathloss coefficient, and dm,n = ∥qm − un∥
is the UAV-SN distance. Therefore, the channel capacity of a UAV-SN link can be
expressed as rm,n = B log2

(
1 + Pn|hm,n|2

σ2

)
, where σ2 denotes the noise power and

B is the bandwidth. Given the m-th UAV, rn = [r1,n, . . . , rm,n, . . . , rM,N ]
T is the

column vectors containing the achievable data rates of all SNs.

3.5 Problem Definition

To reduce the computational complexity, the proposed formulation accounts for a
fixed timeslot j, which corresponds to lower the dimensionality from K ×M ×N to
M ×N .

3.5.1 Classical Formulation

To derive the whole scheduling plan, it is necessary to solve the following problem
for each timeslot:

(P1) :min
x[j]

N∑
{n,n′}=0,

n̸=n′

(
j∑

k=1

xn[k]
Trn −

j∑
k=1

xn′ [k]Trn′

)2

s.t.

N∑
n=1

xm,n[j] = 1, ∀m : 1...M, (3.5)

M∑
m=1

xm,n[j] = 1, ∀n : 1...N, (3.6)

xm,n[j] ∈ {0, 1}, ∀m : 1...M, n : 1...N. (3.7)

Problem (P1) aims to optimally allocate timeslot j to SNs, thus fairly distributing
resources throughout the mission. This can be mathematically modeled as minimiz-
ing the difference between data rates for each sensor couple. It is worth noting that
the objective function takes into consideration the information exchanged in previous
instants. In fact, given {n, n′}

∆j,n,n′ ≜
j−1∑
k=1

xn[k]
Trn −

j−1∑
k=1

xn′ [k]Trn′ , (3.8)
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is a known quantity, derived from past iterations (when j = 1 also ∆j,n,n′ = 0).
Therefore, an equivalent formulation of (P1) is

(P2) :min
x[j]

N∑
{n,n′}=0,

n̸=n′

(
xn[j]

Trn − xn′ [j]Trn′ +∆j,n,n′
)2 s.t.

(3.5), (3.6), (3.7).

Constraint (3.5) imposes that, in timeslot j, no more than one sensor can commu-
nicate with the same UAV. Similarly, (3.6) states that a drone has to serve a single
SN, in instant j. The constraint (3.7) guarantees that the scheduling plan is composed
of binary values.

Algorithm 1 Proposed scheduling optimization algorithm
1: Initialize the sensors and drones position as qm and un, respectively;
2: Compute channel capacity rm,n for each drone-sensor couple;
3: Let ∆1,n,n′ = 0;
4: for k = 1 to K do
5: Solve (P3) to obtain the optimal solution {x[k]∗};
6: Compute ∆k+1,n,n′ as described in (3.8);
7: end for

3.5.2 QUBO Formulation

To solve the problem by employing a QPU, the original problem (P2) is mapped to
QUBO form [104]. Therefore, the final objective function is defined as the Hamilto-
nian H = HA +HB +HC where

HA =
N∑

{n,n′}=0,
n̸=n′

(
xn[j]

Trn − xn′ [j]Trn′ +∆j,n,n′
)2
,

HB = λ

(
1−

N∑
n=1

xm,n[j]

)2

,

HC = η

(
1−

M∑
m=1

xm,n[j]

)2

,

and {λ, η} > 0 as penalty factors. Note that the objective function of (P2) is already
in quadratic form and, hence, does not require any manipulation. On the contrary,
constraints (3.5) and (3.6) have been reformulated involving the quadratic penalty
method [104]. Besides, (3.7) is inherently addressed since quantum optimization is
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employed. The final unconstrained formulation of the QUBO problem is

(P3) : min
x[j]

N∑
{n,n′}=0,

n̸=n′

(
xn[j]

Trn − xn′ [j]Trn′ +∆j,n,n′
)2

+ λ

(
1−

N∑
n=1

xm,n[j]

)2

+ η

(
1−

M∑
m=1

xm,n[j]

)2

,

that can be implemented on a quantum system to be solved, as described in Algorithm
1.

3.6 Preliminary Evaluation

Section based on the article: "Quantum scheduling optimization for UAV-enabled
IoT networks"

Considering the promising potential of quantum computing, the following re-
search questions arise:

• What are the advantages of solving the reference NP-hard problem with quan-
tum computing?

• Are there major trade-offs that would hinder the applicability of this technology
to the aforementioned problem?

• What are the differences in terms of computational time and found solutions
over classical approaches?

To prove the advantages brought by quantum computing, a preliminary compari-
son with different classical algorithms, e.g., SA and Tabu Search (TS), has been car-
ried out considered a simplified version of the reference problem. All the algorithms
found a comparable solution in terms of throughput but, as depicted in Fig. 3.1, QA
outperforms the competitors in terms of computational time [105]. Nevertheless, cer-
tain aspects must be taken into account. In fact, to mitigate the communication and
queue delay, a possible solution in a long-term vision, is to place QPUs at the edge
of the network. Another issue is related to the embedding process that, in case of
large problems, can hinder the convergence in a proper time. The next steps consist
of solving the original problem by tuning hyperparameters and by investigating also
hybrid quantum-classical approaches.
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Figure 3.1: Preliminary comparison among different optimization algorithms.

3.7 Numerical Results and Discussion

In this Section, a simulation campaign has been conducted to evaluate the effective-
ness of the proposed formulation by employing the D-wave Leap Hybrid solver, which
uses a hybrid quantum-classical approach. This solver is suitable for problems with
a large number of variables that cannot be mapped directly into QPU’s topology. In
particular, a classical process divides the original problem into sub-problems that are
dispatched to the QPU and to the cloud’s classical computing capabilities. The ob-
tained results are compared with two classical optimization algorithms, i.e., SA and
TS, implemented in the D-Wave Python library, running on a computer with an Intel
i5 6200U @ 2.8 GHz and 4 GB of RAM.

For the D-wave Leap Hybrid solver, default parameters have been adopted, e.g.,
number of reads set to 100. Besides, the minimum penalty factors have been chosen
such that no improvement of the solution is obtained, i.e., λ = 1017, η = 102. The
mission time T has been split into K = 60 timeslot of δt = 1 second each. Further-
more, M = 4 drones are deployed in [15 15 80]T , [20 70 100]T , [75 20 110]T , and
[80 80 90]T , servingN = {25, 50, 75, 100} SNs uniformly distributed over a 100x100
m area. As for the transmission, B = 1 MHz, Pn = 10 mW ∀n, α = 2, σ2 = N0B,
and N0 = −174 dBm/Hz [106].

Given the scheduling plan x, obtained as the solution of problem (P3), it is pos-
sible to compute the sum-rates of each sensor at the end of the mission.

Thanks to the proposed formulation, as can be seen from mean and standard devi-
ation reported in Tab. 3.1, UAVs are able to fairly serve nodes regardless the number
of SNs and algorithm used, without showing any sensible difference. As a matter of
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Table 3.1: Sum-rate means and standard deviations of the algorithms.

Algorithms
H SA TS

Mean Std Mean Std Mean Std

SNs

25 263.09 12.074 264.41 12.783 262.55 11.697

50 132.38 10.556 132.53 10.748 132.31 10.417
75 87.72 13.084 87.86 10.769 87.23 10.41
100 65.69 13.084 65.88 13.129 65.45 12.961

fact, when the number of SNs approaches the number of drones, the amount of gath-
ered data increases since a drone serves less sensors during the whole mission, vice
versa when M ≪ N the sum-rate decreases. Indeed, in the first configuration, the
swarm is able to collect ∼ 260 Mbits, while in the last one just ∼ 65 Mbits.

To provide further insights, for each sensor, the sum-rates in case of N = 25 and
N = 50 are shown in Figs. 3.2 and 3.3, respectively. Although different amounts
for each SN are exhibited, the transmission fairness is clearly achieved, regardless the
employed algorithm.

Figure 3.2: Acquired data at the end of the mission, with N = 25.

A comparison among the different objective function curves for different algo-
rithms is presented in Fig. 3.4. When 25 SNs are considered, the classical SA al-
gorithm performs worse than the hybrid approach and TS algorithm, which instead
provide comparable results. As the number of SNs increases, i.e. M ≪ N , a differ-
ence is still present although irrelevant.

Finally, a thorough comparison of the algorithms’ execution time, to solve the
formulated optimization problem, is hereby analyzed. For what concerns the hybrid
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Figure 3.3: Acquired data at the end of the mission, with N = 50.

solver, the total time and the QPU access time are reported separately [107] [108].
The latter is a portion of overall hybrid solver time and consists of (i) a one-time setup
procedure to prepare the QPU and (ii) the sampling time. It should be noted that the
embedding procedure period, the network latency and the queuing time, which all
take approximately 4 seconds, are not included in this analysis [109].

As depicted in Fig. 3.5, regardless the number of SN, the hybrid solver takes
about 3 seconds to complete the process. Instead, for N = 25 and N = 50, classical
algorithms perform slightly better in terms of execution time, which confirms the
results obtained in [107], [108], and [109]. As the number of sensors increases, the
execution time of SA and TS increases as well. In particular, for N = 75, classical
algorithms and hybrid solver give comparable results. This trend remains for N =

100, except for SA which performs worse, i.e., ∼ 5 seconds.
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(b) N = 50
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(c) N = 75
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(d) N = 100

Figure 3.4: Comparison of objective function curves with different number of SNs
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Figure 3.5: Comparison of execution time for each solver.
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Chapter 4

A Probability-Based Optimization
Approach for Entanglement
Distribution and Source Position in
Quantum Networks

Quantum Internet is a network of interconnected quantum computers designed to ex-
change information using qubit. While, Quantum Internet offer significant advan-
tages, they can be susceptible to various factors that may disrupt communication. To
assess network performance, this study develops a comprehensive probability expres-
sion to estimate the successful reception of qubits by nodes. Building on this analysis,
in this Chapter is formulated a Mixed-Integer Non-Linear Programming (MINLP)
problem, which aims to optimize the fair exchange of qubits between pairs of nodes
while jointly optimizing the positioning of the quantum source and the distribution
of entanglement.

4.1 Introduction

Quantum Internet has been introduced [97], [110], [111] as a cutting-edge technol-
ogy and communication paradigm. Among the vast plethora of possible applications,
quantum networks can be employed to overcome the current computational power
limitations. For instance, the scientific community envisions the integration of quan-
tum computing devices at the edge of 6G networks as a mean to enhance service
provisioning [112]. Indeed, thanks to Quantum Internet, in the near future multiple
qubit-limited devices will be interconnected to share quantum states among each other
[16] through a quantum channel, i.e., fiber or free space optical links. However, even
if the state of a qubit can be directly encoded by using the polarization of a photon,
it may be lost due to attenuation or noise. In such cases, the quantum information



62
Chapter 4. A Probability-Based Optimization Approach for Entanglement

Distribution and Source Position in Quantum Networks

is irretrievably destroyed, and it cannot be recovered through measurement or copy-
ing, as stated by the postulate of quantum measurement and the no-cloning theorem.
Thus, a common employed approach is to generate and distribute a particular two-
qubit state to remote nodes, leveraging the entanglement phenomenon [24]. Indeed,
when two particles are entangled, the quantum state of one particle becomes corre-
lated with the state of the other, regardless of the distance between them. This unique
property, along with the transmission of classical information, is at the basis of the
quantum teleportation protocol [32]. Nevertheless, due to attenuation in the medium,
the entanglement distribution exponentially decreases over distance. Additionally, the
presence of noise during the generation process or entanglement decoherence can pro-
duce an imperfect entangled state or cause the transition to an undesired one, making
it unusable for a reliable teleportation operation [94].

For these reasons, the scientific community has investigated the maximization of
the entanglement distribution while considering different aspects. One of them is
the adoption of purification techniques [113]–[117], which enhance the goodness of
an entangled state and hence of the communication as a whole. Another important
considered facet is quantum memory [118]–[122], which represents one of the most
constrained resources and plays a crucial role in preserving and retrieving on-demand
entangled states to improve the robustness and reliability of entanglement distribution.
However, these works assume that a dedicated quantum source is placed in the middle
between each node. In practice, this assumption overlooks the fact that such hardware
is expensive and often limited, thus potentially constraining the number of nodes in
the network [123]. Moreover, the rate at which entangled particles can be generated
also impacts the number of entanglement links that can be established.

To the best of the authors’ knowledge, the existing scientific literature has not
investigated the optimization of the quantum source position by taking into account
the non-negligible failure probability associated with the photon transmission and
teleport operations. These facets are of pivotal importance to ultimately improve the
efficiency of the whole communication system. In this regard, this Chapter provides
several significant contributions, which are outlined below.

• A comprehensive probability expression is derived to determine how many
qubits are expected to successfully arrive at the receiver. The proposed model
takes into account the attenuation of the fiber, as well as the depolarazing and
dephasing noise introduced during the execution of the operations related to the
teleportation protocol.

• Based on the above derivation, a MINLP problem is formulated to fairly max-
imize the number of qubits exchanged among the nodes and jointly optimize
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(i) the position of the quantum source, assuming to have a priori knowledge of
the quantum node location, and (ii) the scheduling plan, describing how many
entangled pairs should be allocated at each node couple.

• To cope with the non-convexity of the original formulation, a dedicated op-
timization strategy is designed. First, the Block Coordinate Descent (BCD)
technique is employed to split the problem into two sub-problems. The first is
initially relaxed and then exactly solved leveraging the Karush-Kuhn-Tucker
(KKT) conditions. Capitalizing on the first solution, the second one is ad-
dressed by adopting the Successive Convex Approximation (SCA) method.

• A simulation campaign is carried out to assess the effectiveness of this work.
In particular, the derived probability expression and the proposed optimiza-
tion algorithm are evaluated under different parameters, such as node topol-
ogy, depolarizing and dephasing rate, fiber attenuation, and generation chance.
Moreover, the algorithm is compared with a baseline approach which adopts
the centroid of the nodes as the source location, while exploiting the already
derived optimal scheduling plan.

The theoretical findings indicate that in case of quantum networks deployed in rela-
tively small areas, i.e., a few square kilometers, the proposal and the baseline approach
have similar performance. However, when wider areas are considered, the derived
optimal solution provides a significant advantage in terms of number of qubits suc-
cessfully received by the nodes. This demonstrates that the proposed algorithm is
able to capture the non-linearity of the derived probability and can be employed as
tool for optimal design and assessment of large-scale quantum networks.

Notation: Boldface lower case letters refer to vectors; xT is the transpose of a
generic vector x; |x⟩ is the column vector of a generic quantum state x; O (x) de-
notes the time-complexity of an algorithm of input size x, i.e, big O notation; U(·, ·),
Beta(·, ·), and T (·, ·, ·) define the uniform, beta, and triangular distributions. The
main adopted symbols of this paper are summarized in Table 4.1.

4.2 Related Works

In the literature there is a growing interest regarding several aspects of quantum com-
munications, with the goal of maximizing the entanglement photon distribution, and
hence the throughput, by considering factors such as fidelity and quantum memory.

In particular, fidelity represents the probability that a pair of entangled qubits are
in the desired state, i.e., maximally entangled, which in turn affects the communica-
tion efficiency. In this context, authors in [113] investigate entanglement link fidelity
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by shortening the amount of time links are maintained, before swapping operations
are performed. In [114], to maximize the rates in a quantum network while ensuring
a minimum end-to-end fidelity requirement, the entanglement distribution problem
is presented as a linear programming problem. An upper bound on the path’s length
is imposed to fulfill the fidelity, which lowers with each entanglement swapping op-
eration along the path. Purification methods can be considered in cases where an en-
tanglement link is characterized by low fidelity. Specifically, purification techniques
consist in entangling multiple pairs of qubits with low fidelity and then merging them
into a single one with high fidelity [124]. In this regard, [115] proposes an adaptive
routing scheme to manage multiple communication requests. The approach involves
a preliminary step of purifying the links, so that only the links whose fidelity is above
a given threshold are used in the routing process. Similarly, authors in [116] design
an algorithm to select a path which satisfies a end-to-end fidelity constraint. [117]
presents an algorithm to maximize network throughput by preparing multiple can-
didate entanglement paths and determining optimal purification schemes. Then, the
final set of entanglement paths that maximize network throughput under the given
quantum resource constraints are selected.

The other major aspect considered in the literature is quantum memory, which
can store the quantum state of a photon to be used when needed. Quantum mem-
ory is a key component of quantum routers, also known as quantum repeaters, that
are essential for the distribution of entangled states over long distances in large-scale
quantum networks. However, the performance of quantum repeaters is far from ideal,
owing to the limited quantum memory in quantum repeaters, which impairs the rate
and efficiency of entanglement distribution. To overcome this challenge, in [118] it
is proposed a quantum queuing model, based on dynamic programming, in order to
track the delay. In particular, a policy is developed to exponentially reduce the average
queuing delay with respect to memory size. The same authors, in [119], present a first
entanglement distribution protocol that can achieve a high distribution rate by consid-
ering imperfect entanglement swapping operations at quantum repeaters. However,
it is assumed that the quantum repeater node has unbounded memory, and the stored
qubit are not affected by the decoherence phenomena, resulting in ideal fidelity. In
[120], an entanglement rate optimization problem is investigated considering a sys-
tem able to process a set of requests at the same time. In particular, the quantum
routing problem is decoupled in i) scheduling, in which an end-to-end entanglement
path is assigned to a pair of quantum nodes, and ii) path selection, where the best
path is found. A novel approach for maximizing entanglement distribution rate while
considering quantum repeaters with a limited memory is proposed in [121], which is
subsequently decomposed into entanglement generation and swapping sub-problems.
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Symbol Description
N Number of quantum nodes.
M Number of quantum node pairs.
q Location of the quantum source.
un Location of the quantum node n.
γ Photon distribution plan.
γ Maximum photon pairs generated by the source.
c Propagation speed in the fiber.
dS
n Distance between a node n and the quantum source.
dN
m Distance between the nodes of couple m.
PQL
n Probability of successfully receiving a photon.
PG Probability of losing a photon after generation.
P CL
m Probability of successfully sending classical information.
PDL Probability that qubit depolarization does not occur.
P̂DH, P̌DH

m Probability that qubit dephasing does not occur at TX/RX.
P∆
m Dephasing contribution due to different distances from the source.
Pm Overall probability of successfully receive a qubit.
RDL Depolarizing rate.
RDH Dephasing rate.
η Attenuation factor of the fiber.
τ Operation time per quantum instruction.
ρ Number of qubits successfully received by the node pairs.
ℓ Sides’ length of the square-shaped reference area.
tQn Propagation delay of the quantum channel.
tCm Propagation delay of the classical channel.
∆Q

m Propagation delay of the classical channel.

Table 4.1: Main notation adopted in this work.

A greedy algorithm for short-distance entanglement generation is proposed, such that
the quantum memories can be employed in an efficient manner. The swapping sub-
problem, modelled through an entanglement graph, is solved with a heuristic tech-
nique which divides the original problem into several sub-problems, each of which
can be solved in polynomial time using dynamic programming. Instead, [122] in-
troduces a framework for optimizing the entanglement generation and distribution
among quantum users having different resources and application requirements. This
approach aims to optimally distribute entangled pairs among quantum users while
satisfying a minimum entanglement rate requirement for each user.

Although interesting, these works consider the quantum source placed in a fixed
position, e.g., the middle point among quantum nodes. Moreover, most of them,
neglect the limited rate at which Bell pairs can be generated. Further, no investigations
have taken into account the failure probability associated with photon transmission
and teleport operations.
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4.3 System Model

This work envisions a quantum network composed of a quantum source, located
at q ∈ R2, and a group of N quantum nodes, each one placed in un ∈ R2 with
n = 1, . . . , N . All nodes are connected, via optical fiber, to the quantum source and
among themselves [125]. For the sake of notation, each couple of nodes (n, n′), with
n ̸= n′, is denoted by m = 1, . . . ,M , where M = N(N−1)

2
. Each node is equipped

with the necessary devices to perform quantum measurements, thus allowing the ex-
change of quantum states by means of teleportation protocol, whose sequence dia-
gram is depicted in Fig. 4.1. In this work, it is assumed that the quantum memory is
large enough to store the received qubits, for all nodes, and (ii) the quantum source
runs for a fixed time window large enough to successfully generate a maximum num-
ber of entangled pairs γ. For the sake of generality, γ is left as a free parameter which
however must take into account the success probability related to the generation pro-
cess, which in turn depends on the specific hardware implementation. Moreover, for
each couple of nodes m, the quantum source allocates γm ∈ N entangled photon
pairs, with γ = {γm}. Due to hardware limitations, the total number of entangled
photon pairs cannot exceed the upper bound γ.

4.3.1 Overall teleportation probability

A wide range of factors may affect the probability of successfully retrieving the quan-
tum state of a transmitted qubit when the teleportation protocol is adopted.

In particular, the distance between the source and the receiver introduces a prop-
agation delay tQn = dS

n

c
, where dS

n = ∥q− un∥ is the length of the source-node link
and c is the propagation speed in optical fiber.

In addition to the delay, the fiber introduces also attenuation, which can cause the
loss of the travelling photon along each path. As a result, the probability of success-
fully receiving it [120], for each node n, is:

PQL
n = (1− PG)10−

ηdS
n

10 , (4.1)

wherePG is the probability of losing the flying qubit immediately after generation due
to hardware imperfections, and η is the attenuation factor. Similarly, on the sender
side, once the BSM is performed, the information employed for reconstruction is
delivered through the classical channel, which introduces a propagation delay tCm =
dN
m

c
, where dN

m = ∥un − un′∥ is the distance associated to node pairm. The probability
of successfully sending classical information [126], for each couples of nodesm, can
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Figure 4.1: Sequence diagram of quantum teleportation.

be modelled as:
P CL
m = 10−

ηdN
m

10 . (4.2)

Qubits stored in quantum memory are subject to different sources of noise, each
one depending on different aspects, such as hardware imperfections and the system-
environment interaction. Specifically, errors in the gate operations can lead to bit-flip,
phase-flip, or both errors with equal probabilities. All of these have the same proba-
bility to occur and can be simulated by the Pauli X, Z, or Y operation, respectively.
As a result, gate infidelities can be modelled according to the depolarizing noise and,
thus, the probability that qubit depolarization does not occur can be written as follow
[120]:

PDL = e−τRDL
, (4.3)

where τ is the time spent for the execution of a single operation and RDL is the depo-
larizing rate.
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Another type of noise is the dephasing one, which arises from the interaction
between qubits and their environment, leading to qubit decoherence. The probability
of dephasing depends on the amount of time that the qubit stays in memory and can
be simulated by stochastically applying the Pauli Z gate. Assuming that the data qubit
is generated at the same time as both entangled photons arrive, the probability that
data or flying qubit dephasing does not occur [120] is given by:

P̂DH = e−t̂DHRDH
, (4.4)

where RDH is the dephasing rate and t̂DH depends only on the amount of time that
the sender requires to perform the Bell state measurement, i.e. t̂DH = 4τ . From a
receiver side, instead, the probability can be written as:

P̌DH
m = e−ťDH

m RDH
, (4.5)

where ťDH
m denotes the amount of time needed to receive the measurement outcome

and perform the correction operations, i.e. ťDH
m = tCm + 6τ . Besides, since the two

communicating nodes can be located at different distances from the source, it is neces-
sary to consider a further time contribution related to the qubit dephasing probability:

P∆
m = e−∆Q

mRDH
, (4.6)

where ∆Q
m = |tQn − t

Q
n′ |. Note that the above term affects only the node closer to the

source. Indeed, when the source is equidistant from both nodes, (4.6) is zero.
It is important to specify that the time spent for execution of local operations at the

sender and the receiver might affect gate infidelity due to depolarizing noise, resulting
in higher infidelities. It is also worth mentioning that the depolarizing and dephasing
rates can vary depending on the specific quantum hardware used for quantum nodes.
Nonetheless, the above modeling can account for these phenomena by considering a
larger operation time per instruction τ .

Finally, considering (4.1)-(4.5), the overall probability of correctly receiving a
qubit in the worst case scenario, i.e., in which both X and Z gates are applied at the
receiver, is:

Pm = PQL
n PQL

n′

(
P̂DH

)2
P̌DH
m

(
PDL)5 P CL

m

(
PDL)2 P∆

m , (4.7)

where
(
P̂DH

)2
is the dephasing probability of the data qubit and the correspond-

ing absorbed photon at the sender,
(
PDL

)5 and
(
PDL

)2 are the probabilities that the
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depolarization does not occur at both sender and receiver∗. The exponents of these
probabilities correspond to the number of operations performed, as discussed in Sec-
tion 3.2.

Therefore, after some algebric manipulation, Eq. (4.7) can be written as:

Pm = a10−
η
10

(dS
n+dS

n′+dN
m)e−(15τ+tCm+∆Q

m)RDH−6τRDL
. (4.8)

where a = (1 − PG)2. The above expression, which accounts for all the discussed
phenomena, can be used to design and assess a quantum network architecture.

4.4 Problem Formulation

To enable fair teleportation among quantum nodes, a dedicated strategy for the distri-
bution of entanglement has to be employed. To this aim, it is necessary to optimally
derive (i) a photon distribution plan γ and (ii) the position of the quantum source q,
defined at the beginning of Section 4.3. Therefore, to derive the optimal entanglement
distribution, the following optimization problem is formulated:

max
ρ,γ,q

ρ s.t. (4.9)

ρ ≤ Pmγm, ∀m = 1, . . . ,M, (4.10)
M∑

m=1

γm ≤ γ, (4.11)

γ ∈ NM (4.12)

Problem (4.9) aims to fairly maximize the minimum number of qubits ρ success-
fully received by each couple of quantum nodes m through the joint optimization of
the scheduling distribution plan γ and the position of the source q. In particular,
constraint (4.10) states that ρ cannot be higher than the average number of photons
received by each couple. Equivalently, ρ guarantees to have minimum common num-
ber of successfully teleported qubits in the quantum network. Moreover, constraint
(4.11) limits the number of entangled photon pairs generated by a maximum value
γ. Finally, (4.12) imposes that the number of assigned photon couples is always a
positive integer.

∗In this work, it is assumed the probability of depolarization for one qubit does not depend on the
state of others [18]. Therefore, the depolarization related to the CNOT gate must be counted twice, as
it affects both control and target qubit.
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4.5 Proposed Solution

As immediate results from its formulation, (4.9) is a non-convex programming prob-
lem, which is challenging to solve. Specifically, constraint (4.10) couples the schedul-
ing plan γ with the source position q, which is encompassed in the distance dS

n

within probability Pm. To cope with these issues, problem (4.9) is split into two
sub-problems which are separately solved to derive an optimal solution.

4.5.1 Sub-problem 1: Photon pair distribution

Given the optimal quantum source location, ρ is employed to fairly maximize the pho-
ton distribution with respect to the scheduling plan. Therefore, the first sub-problem
reads

max
ρ,γ

ρ s.t. (4.10), (4.11), (4.12). (4.13)

which is non-convex, due to constraint (4.12). Nonetheless, (4.13) can be relaxed by
neglecting such a constraint, thus becoming a convex optimization problem whose
solution can be then rounded with a floor operation. Hence, a generic solver can
be employed at the cost of computational complexity in the order of O ((M + 1)3.5)

[127]. To reduce such complexity, the KKT conditions can be applied to derive a
closed-form solution [128].

Theorem 1. The optimal photon distribution plan, for each couple of nodes m, and
the maximum number of qubits per node are

γm = γ

(
Pm

M∑
m′=1

1

Pm′

)−1

, ρ = γ

(
M∑

m=1

1

Pm

)−1

, (4.14)

which only depend on the position of the quantum source embedded in the probabili-
ties Pm.

Proof. The Langrangian function corresponding to the relaxed problem (4.13) is

L = ρ−
M∑

m=1

λm (ρ− Pmγm)− µ

(
M∑

m=1

γm − γ

)
,
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where λm ≥ 0 and µ ≥ 0 are the multipliers related to the constraints (4.10) and
(4.11), respectively. Therefore, the KKT conditions read

∂L
∂ρ

= 1−
M∑

m=1

λm = 0, (4.15)

∂L
∂γm

= λmPm − µ = 0, ∀m, (4.16)

λm(ρ− Pmγm) = 0, ∀m, (4.17)

µ

(
M∑

m=1

γm − γ

)
= 0. (4.18)

The first two equations are sufficient to demonstrate that the multipliers are strictly
positive:

µ

Pm

=λm⇒µ
M∑

m=1

1

Pm

=
M∑

m=1

λm⇒µ=

(
M∑

m=1

1

Pm

)−1

,

where the third equality is due to (4.15). Therefore, the last two conditions leads to

γ =
M∑

m=1

γm, (4.19)

ρ− Pmγm = 0⇒ ρ
M∑

m=1

1

Pm

=
M∑

m=1

γm = γ ⇒

ρ = γ

(
M∑

m=1

1

Pm

)−1

⇒ γm =
ρ

Pm

. (4.20)

■

Corollary 1. The entanglement distribution plan becomes uniform, denoted by γm =

2γ/ (N(N − 1)) ∀m, when the probabilities Pm → P ∈ [0, 1] ∀m, leading to the
maximum number of qubits per link ρ = γP . This phenomenon takes place when the
impact of the distances among the nodes is negligible. It occurs in two cases: (i) the
inter-node distances are similar, which is topologically challenging with a significant
number of quantum nodes, and (ii) the area in which the nodes are deployed is small
enough, i.e., in the order of a few kilometers.

Corollary 2. As a result of the above theorem, ρ can now be defined as the average
number of qubits successfully received by each couple of nodes m.

The computational complexity of the procedure to calculate the optimal solution
is O (2M + 1) = O (M), since the single complexities to compute ρ and γ are both



72
Chapter 4. A Probability-Based Optimization Approach for Entanglement

Distribution and Source Position in Quantum Networks

linear with respect to the number of node pairs.

4.5.2 Sub-problem 2: Quantum source position

The second sub-problem aims to derive the optimal source location q, given a fixed
scheduling plan γ and the definition of ρ obtained in (4.20). Hence, (4.9) can be
written as:

max
q
ρ s.t. (4.10). (4.21)

However, problem (4.21) is non-convex due to the presence of q in the exponent of
Pm. To tackle this issue, let equivalently rearrange (4.8) as

Pm = αm10
− η

10
(dS

n+dS
n′ )−β|dS

n−dS
n′ |, (4.22)

with

αm = a10−
η
10

dN
me−(15τ+tCm)RDH−6τRDL (4.23)

and β = RDH

ln(10)c
. Then, recalling the definition of ρ and γ derived from Theorem 1,

substituting (4.14) in (4.21) leads to

max
q

(
M∑

m=1

1

Pm

)−1

= min
q

M∑
m=1

α−1
m 10

η
10

(dS
n+dS

n′ )+β|dS
n−dS

n′ |, (4.24)

which is still intractable due to the presence of the module term that depends on q
through the difference of the nodes’ distances. To cope with the non-convexity of the
above, a vector composed by M slack variables r = [r1, . . . , rM ]T is introduced as
well as the following constraints

∣∣ ∥q− un∥ − ∥q− un′∥
∣∣ ≤ rm, ∀m = 1, . . . ,M, (4.25)

which can be squared on both sides and manipulated as

∥q− un∥2 + ∥q− un′∥2 − 2 ∥q− un∥ ∥q− un′∥

= 2
(
∥q− un∥2 + ∥q− un′∥2

)
− (∥q− un∥+ ∥q− un′∥)2 ≤ r2m. (4.26)
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Then, the SCA technique [129] is applied. Indeed, reminding that the first-order Tay-
lor expansion is a global underestimator for convex functions, (4.26) can be approxi-
mated as

2
(
∥q− un∥2+∥q− un′∥2

)
−(∥q− un∥+∥q− un′∥)2

− 2

(
q− un

∥q− un∥
+

q− un′

∥q− un′∥

)T
(∥q− un∥+ ∥q− un′∥)

× (q− q) ≤ r2m + 2rm(rm − rm) (4.27)

where q and r = [r1, . . . , rM ]T are the local point of the expansion. Finally, given the
above convex set of constraints, problem (4.24) can be reformulated as

min
q,r

ξ ≜
M∑

m=1

α−1
m 10

η
10

(dS
n+dS

n′ )+βrm s.t. (4.27), (4.28)

which can be iteratively solved until convergence to a prescribed tolerance ϵ is achieved
[129], since its convexity is proved in the following Theorem.

Theorem 2. Problem (4.28) is convex and can be solved with a generic optimization
tool, such as CVX.

Proof. The convexity of the objective function is guaranteed as (i) the euclidean norm
is convex, (ii) the sum of convex functions is convex, and (iii) the composition g(f(x))
of a convex non-decreasing function g(y) and a convex function f(x) is convex as
well. Moreover, constraints (4.27) are quadratic in the source position and linear in
the slack variables, and hence convex by definition. ■

Remark 1. It is worth noting that, even if the source position has a non-linear effect
over the objective function in (4.28), the optimal solution is intuitively the centroid
computed over the quantum nodes’ positions, when these are uniformly deployed over
the area. Indeed, it minimizes all dS

n at the same time.

The computational complexity of the optimization procedure, due to the summa-
tion of the inverse probabilities in (4.28), is O (K(M + (M + 2)3.5) = O (KM3.5)

with K being the number of iterations of the SCA procedure.

4.5.3 Overall algorithm and complexity

The overall optimization procedure, summarized in Algorithm 2, derives the optimal
location of the quantum source by leveraging the optimal closed-form expression of
the maximum number of qubits per node. The total computational complexity, ob-
tained as the sum of the single complexities, is O (KM3.5) +O (M) = O (KM3.5).
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Algorithm 2 Proposed algorithm
1: Initialize the quantum node positions un;
2: Compute the probabilities Pm derived in (4.8);
3: Randomly initialize local points q and r;
4: repeat
5: Solve (4.28) to obtain the optimal q and r;
6: q← q;
7: r← r;
8: until convergence is achieved
9: According to Theorem 1, compute the photon distribution plan γ and the maxi-

mum number of qubits per quantum node ρ;

4.6 Performance Evaluation and Results

A simulation campaign is carried out to analyze and validate the findings of this work.
The first part investigates the impact of different parameter settings, such as (i)

dephasing rate RDH, (ii) initial probability of losing a photon once it enters a chan-
nel PG, (iii) the attenuation factor η, and (iv) inter-node distance dN

m, on the overall
probability derived in (4.8).

In the second part, the results obtained from the proposed optimization algorithm
are discussed and compared with a baseline approach. The latter exploits the optimal
solution derived in sub-problem 1 for what concerns the scheduling plan, while for
the position of the quantum source it adopts the centroid computed over the quantum
nodes’ locations. The analysis focuses on the impact that system conditions, which
are made varying, have on the network performance.

According to [120] and [122], the considered configuration parameters in all sim-
ulations, unless otherwise specified, are PG = 0.1, η = 0.1 dB/km, RDH = 0.1 MHz,
RDL = 10 kHz, ϵ = 10−6, τ = 10 ns, γ = 1.2·109, and c = 2·105 km/s. The quantum
nodes are deployed in square-shaped areas with all sides having a length of ℓ. In all the
simulation two different methodologies are employed to generate the nodes’ coordi-
nates: the first consists in sampling the positions of all nodes from circumference, i.e.,
U1 ∼ C(0, ℓ); the second one generates the locations according to a uniform distribu-
tionU2 ∼ U(0, ℓ); the third samples from a beta distributionU3 ∼ Beta(0.5, 0.5); the
fourth generates the positions following a triangular distribution U4 ∼ T (0, 0.5, 1);
the fifth U5 distributes half of the nodes from U2 and the second one from a scaled
version of it, i.e., U(0, ℓ/3).
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Figure 4.2: Overall probability of correctly receiving a qubit.

4.6.1 Analysis on the overall teleportation probability

In the first scenario, a quantum network composed of N = 2 quantum nodes, i.e,
M = 1, is considered. Specifically, the nodes are aligned along an axes and the
quantum source is placed exactly in the middle. Thus, the inter-node distance dN

1 is
varied from 0 km to 2 km. This initial analysis highlights the significant challenges
in transmitting quantum information over long distances due to the loss and noise in
the transmission channel.

The results, as shown in Fig. 4.2, confirm that the probability of correctly re-
ceiving a qubit exponentially decreases as the inter-node distance grow. This effect
is highly influenced by the dephasing rate, which affects the decoherence probability
of qubits, especially at the receiver node. Notably, when the dephasing rate is set
to 1 MHz, the probability drops close to zero once the inter-node distance reaches 1
km. For RDH = 0.1 MHz, instead, it almost zeros out around 10 km. Another pa-
rameter that significantly affects the overall probability is PG, which, regardless of
other parameters, causes the curves in Fig. 4.2 to start at a higher value and decline
more gradually to zero. Therefore, the dephasing rate and the generation probability,
which are associated with the technology on which the system is based on, represent
fundamental aspects to potentially expand the network area and hence to assess the
feasibility of quantum teleportation.
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Figure 4.3: Optimal and Baseline quantum source position with N = 10 nodes in different
topologies.
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Figure 4.4: Convergence curves of the proposed algorithm.

4.6.2 Impact of the topology

In this simulation, a quantum network consisting of N = 10 nodes, distributed in an
area characterized by ℓ = 5 km, is considered. Four different topologies, generated
according to U1, U2, U3, and U4, are examined.

Fig. 4.3 illustrates the comparison between the baseline and the proposed ap-
proach for the optimal positioning of the quantum source. In the first considered
topology, all nodes are equidistant from the same point, i.e, the center of the circum-
ference, which is the optimal position to deploy the quantum source, thus proving
Remark 1. Indeed, both algorithms achieve the same solution in terms of source
location (as can be seen in the left graph of the figure) and minimum number of suc-
cessfully received qubits ρ = 3.8 · 105. However, in the case of random distribution,
the optimal position of the source is not the centroid (as depicted in the right graph of
Fig. 4.3). As a matter of fact, the optimal source location cannot be simply derived by
averaging the nodes positions, which would lead to worse performance. Indeed, con-
sidering the last three topologies, the baseline approach achieves a minimum number
of transmitted qubit ρ of 2.6 · 106, 1.6 · 106, and 2.7 · 106, respectively, whereas the
proposed approach reaches a remarkable 3.3 · 106, 2 · 106, and 3.7 · 106, which cor-
responds to a minimum increase of 25%. Finally, Fig. 4.4 shows the convergence of
the proposed algorithm in all topologies in terms of the objective function ξ defined
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Figure 4.5: Comparison between optimal and baseline approaches with fixed topology of
N = 20 nodes deployed within areas of different scale.
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Figure 4.6: Number of correctly received qubits ρ as a function of ℓ for different system
parameters.

in Eq. (4.28), which represents a local approximation of ρ in the iterative optimiza-
tion process. Clearly, the number of iterations required to converge in the first case
is smaller, with respect to the other configurations, due to the regular shape of the
network graph.

4.6.3 Impact of the system parameters

To assess the impact of the inter-node distance on the entanglement distribution,
N = 20 quantum nodes are sampled from U5 and deployed within various areas
characterized by ℓ ∈ [0, 20] km.

In particular, Fig. 4.5 shows the quantum source location for both the considered
algorithm, when ℓ = {1, 5, 10, 20}. As can be seen, the source position provided
by the baseline approach remains the same, i.e., the centroid, except for the scale.
On the contrary, the proposed solution changes with ℓ, thus demonstrating to be able
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Figure 4.7: Comparison between proposed (Opt) and baseline (Bsl) approaches with respect
to ρ as a function of quantum nodes N with U2. The black stars represent the mean value.

to capture the non-linearity of the probability expression derived in Section 4.3. It
is worth noting that, in case of ℓ = 1 km, the area is small enough to adopt the
baseline as quasi-optimal solution. Indeed, the impact of the inter-node distances is
negligible in small areas, as predicted by Corollary 1. To further corroborate the above
findings and to give more insights about the performance gain provided by the optimal
algorithm, Fig. 4.6 depicts the trend of ρ as a function of ℓ ∈ [0, 20]. As a matter
of fact, for a limited area the solutions are comparable but as ℓ increases, a major
gap in terms of successfully received qubits arises. This demonstrates the crucial
importance of the proposed optimal design in case of quantum networks deployed,
especially, in wide areas. Specifically for RDH = 0.1 MHz and ℓ = 20 km, the
optimal algorithm allows the transmission of 124 qubits for η = 0.1 and 52 qubits
for η = 0.2, while the baseline approach just 6 and 2 qubits. As a consequence, the
proposed algorithm provides, in terms of received qubits, ∼20 and ∼25 times better
solutions, respectively. In case of higher dephasing rate RDH = 1 MHz, the resulting
loss constrains the maximum possible area, thus producing no difference between the
two algorithms, which again confirms Corollary 1.

4.6.4 Analysis on network scalability

In this last analysis, the impact of the number of nodes in a quantum network having
ℓ = 10 km is investigated. In this regard, a Monte Carlo simulation is carried out
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Figure 4.8: Comparison between proposed (Opt) and baseline (Bsl) approaches with respect
to ρ as a function of quantum nodes N with U5. The black stars represent the mean value.

by generating the nodes’ positions according to both U2 and U5, for a total of 103

samples. This procedure is iterated by making the number of nodes vary, i.e., N =

{10, 20, 30, 40, 50}.
Figure 4.7 and Figure 4.8 illustrate the relationship between ρ and the number of

nodes for U2 and U5, respectively. As expected, in both cases, the proposed and the
baseline approaches exhibit a decreasing trend as the number of nodes increases. This
is due to the reduction in the number of entangled pairs available for each pair of nodes
as the network size grows. Notably, the proposed algorithm performs better than the
baseline approach, in terms of number of transmitted qubits with a much smaller
variance, in both cases. Nonetheless, this difference becomes more evident when the
nodes are generated according to U5. Vice versa, as already stated in Remark 1 and
proved in Section 4.6.2, when U2 is chosen, i.e., the uniform distribution, the optimal
source position becomes the centroid of the network. Therefore, the proposed and
baseline approaches perform similarly, even if the former still provides better results.
Specifically, when considering U2 with N = 50, the proposed algorithm and the
baseline approach achieve a mean value of ρ = 8 · 103 and ρ = 7 · 103, whereas for
U5, they attain a ρ = 9 · 103 and ρ = 3 · 103, respectively.
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QC and quantum communication are opening up a fascinating new frontier of re-
search, driven by the principles of quantum mechanics. This groundbreaking field
promises to have a direct impact on the telecommunications industry, offering novel
strategies to tackle classical complex problems, such as network optimization, data
analysis and resource management. This thesis has been dedicated to exploring dif-
ferent strategies to integrate this disruptive paradigms into future wireless communi-
cation systems.

In particular, as discussed in Chapters 2, existing architectures currently lack the
computational capabilities necessary to handle the expected growing in data volumes
within the realms of 6G and B6G use cases, and WMNs. Consequently, design princi-
ples for centralized and distributed architecture were presented for enhancing network
intelligence through QML, alongside the description of logical nodes, interactions,
and offered functionalities.

Given the limited availability of quantum computers and qubits, due to physi-
cal and economic factors, the centralized approach presents the most practical so-
lution. It offers ease of management and control, as the few quantum computers in
the cloud can be efficiently overseen. However, since any issue affecting the central
nodes in the cloud inevitably causes impairment throughout the network, this ap-
proach is vulnerable. Additionally, when QML operations are required, transmitting
substantial amounts of data from the Data Aggregators to the remote cloud leads to
high bandwidth and energy consumption, along with potential congestion episodes.
Furthermore, the centralized approach introduces significant communication latency,
impairing the benefits provided by the introduction of quantum computers.

The limitations associated with the centralized architecture can be effectively ad-
dressed through the proposed distributed architecture. In fact, the deployment of mul-
tiple quantum computers closer to the end user mitigates possible network congestion
episodes, improves scalability, and reduces communication latency. Nevertheless,
since quantum Internet is in its fancy, the entanglement distribution and heterogene-
ity of qubits may represent a first hindrance for the physical implementation of the
distributed architecture. As per the long-term vision of the scientific community, this
proposed architecture will become viable when considering the hardware diversity
of various quantum computers and distributing entangled particles between distant
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quantum nodes. Another concern lies in the simplicity of the quantum computers in-
volved, particularly in terms of the number qubits. In this case, complex QML tasks
will demand larger clusters, leading to increased quantum state transfers, delays, and
error rates due to the quantum teleportation process.

To prove the advantages brought by QC, in Chapter 3 is formulated a scheduling
optimization problem to fairly allocate channel resources of a UAVs-enabled IoT net-
work. A combinatorial problem stem from the proposed formulation, which is first
encoded into QUBO form and then solved by (i) hybrid quantum-classical approach,
(ii) SA, and (iii) TS. The results highlight the need for additional research and ad-
vancements in quantum annealers hardware, as no substantial improvements in solu-
tion quality has been found. Regarding the execution time, classical algorithms take
less or comparable time with respect to the hybrid solver, with the only exception of
SA in case of large number of sensors.

Lastly, Chapter 4 addresses the entanglement distribution problem, which can hin-
der the quantum communication efficiency whithin a network composed of quantum
nodes, especially in the proposed distributed architecture. In particular, this work fo-
cusing on the achievable performance of a quantum network through mathematical
modeling of the probability of a qubit successfully reaching the receiver node. Unlike
other contributions, the derived expression considers multiple sources of impairment
affecting the teleportation protocol. Building upon this model, a MINLP problem
was formulated with the objective of maximizing the number of qubits received by
nodes in a fair manner. Therefore, the optimal entanglement distribution and quan-
tum source positions are compared with a baseline approach. The results underscore
a significant performance gap between the two algorithms in terms of the number
of qubits exchanged per node pair. In conclusion, this comprehensive study high-
lights the considerable challenges associated with transmitting quantum information
over long distances due to losses and noise in the transmission channel. Simultane-
ously, the theoretical insights generated are invaluable for the design and optimization
of quantum communication networks, which hold immense potential to reshape the
landscape of communication and computation in the future.

Although a remarkable number of challenges brought by the QC and quantum
communication remain disregarded, the achieved results prompt the scientific com-
munity to conduct more studies in this field. In the future, research will focus on the
following aspects.

• With the involvement of numerous quantum computers, a critical task lies in
the efficient distribution of quantum algorithms. This involves the simultaneous
minimization of cluster size and user-quantum computer distance, necessitating
investigation.
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• Another critical research challenge involves developing effective strategies for
the allocation of quantum computational resources, especially in situations where
there is a significant need for computational power.

• The limitations encountered when applying quantum computing to optimiza-
tion problems need for further investigation. Future research will also delve
into the holistic optimization of transmission scheduling plans, multiple drones’
trajectories, and their corresponding energy consumption, seeking innovative
solutions.

• Fidelity, a key resource in quantum communication that assesses the closeness
of two quantum states, can affect the quantum communication efficiency. Be-
yond optimizing entanglement distribution plans and source positions, future
research will aim at meeting specific fidelity requirements.
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