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Abstract

This thesis reports the results of the three-years activities carried out during the

XXXVI cycle of the Ph.D. course in Industry 4.0 of Politecnico di Bari.

The main goal of this work regards the integration of electric vehicles into mi-

crogrids and distribution networks by means of technological solutions and oper-

ation programming methodologies covering different approaches of the involved

actors. Charging infrastructures in DC microgrid architectures that involve renew-

able energy resources, electrochemical storage systems are considered promising

for numerous fields of implementation. In addition, vehicle-to-grid technology al-

lows electric vehicles to be exploited as additional storage systems further to smart

charge regulation. The potential of these systems lies in the possibility of coordi-

nating all resources by means of optimization algorithms for operation planning,

in order to achieve economic and technical objectives, and to enable the microgrid

to perform various functions by means of its resources including electric vehicles,

such as reserve provision, supporting active power for electricity grids, controlling

peak shaving and load shifting, and regulating voltage and frequency.

The control of the microgrid is entrusted to the energy management system,

which is able to set the optimal level of power exchange between components,

depending on certain objectives by means of manifold procedures accounting for

specific issues related to electric vehicles and relevant charging stations, energy

storage and renewable sources. Analogously, the integration of electric vehicles in

wider frameworks such as energy communities and distribution networks requires
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proper energy management functions dealing with technical and economic chal-

lenges while interacting with microgrid-level energy management system or smart

charging stations. In particular, a first analysis deals with day-ahead planning proce-

dure for microgrids supplying electric vehicles, based on assumptions and forecasts,

with a focus on the possibility of internal reserve provision and the integration of

fast-charge stations. Monitoring and measurement systems play a central role in a

microgrid, as they provide data from the field to the management system. Within

this framework, another research topic focuses on the analysis of a monitoring ar-

chitecture for data acquisition and control command communication between the

energy management system and field devices. Furthermore, the possibility of ag-

gregating microgrids into energy communities is addressed through a day-ahead

scheduling strategy for managing the resources of DC microgrids within commu-

nity with the aim of respecting the power exchange in a first level procedure, while

ensuring internal reserve levels to cope with forecast errors in photovoltaic genera-

tion as well. In addition, the effects of integrating electric vehicles on distribution

networks is assessed by defining methodologies and simulation tools for managing

vehicle charging. In particular, the economic and environmental impact of operating

electric vehicles in parking lots, and the role of integrated stationary storage systems

in achieving economic and environmental benefits is evaluated through optimiza-

tion strategies with technical and economic objectives. Finally, the development

of multi-objective strategies, based on microgrid and distribution network planning

methodologies, allows to assess the effects of these systems on distribution network

operation, laying the basis for studying the role of energy communities integrated

into distribution networks.

The thesis work is framed in the activities developed by power system group

at Politecnico di Bari within EU H2020 projects (CONNECT and PROGRESSUS)

culminated with the realization of a DC microgrid for supplying electric vehicles as

project use case.
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Sommario

Questo lavoro di tesi riporta i risultati di tre anni di attività svolte durante il XXXVI

ciclo del corso di dottorato in Industria 4.0 del Politecnico di Bari.

L’obiettivo principale del lavoro è incentrato sull’integrazione dei veicoli elet-

trici nelle microreti e nelle reti di distribuzione mediante soluzioni tecnologiche e

metodologie di programmazione con diversi approcci dei soggetti coinvolti nella lo-

ro gestione. Le infrastrutture di ricarica in architetture di microreti in corrente con-

tinua che coinvolgono anche risorse energetiche rinnovabili, e sistemi di accumulo

elettrochimico sono tra le più promettenti per i numerosi campi di implementazione.

Inoltre, la tecnologia vehicle-to-grid permette di utilizzare i veicoli elettrici come

sistemi di accumulo aggiuntivi oltre a controllare i processi di carica. Il potenziale

di questi sistemi risiede nella possibilità di coordinare tutte le risorse mediante al-

goritmi di ottimizzazione, al fine di raggiungere obiettivi economici e tecnici, e di

abilitare la microrete a diverse funzioni, come la fornitura di riserve, il supporto di

potenza attiva per le reti elettriche, il controllo dei picchi di carico, la regolazione

della tensione e della frequenza.

Il controllo della microrete è affidato al sistema di gestione dell’energia, in gra-

do di impostare il livello ottimale di scambi di potenza tra i componenti, in fun-

zione di determinati obiettivi, attraverso molteplici procedure che portano in conto

di condizioni specifiche legate ai veicoli elettrici e alle relative stazioni di ricarica,

all’accumulo di energia e alle fonti rinnovabili. Analogamente, l’integrazione dei

veicoli elettrici in contesti più ampi, come le comunità energetiche e le reti di distri-
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buzione, richiede adeguate funzioni di gestione dell’energia che affrontino le sfide

tecniche ed economiche durante l’interazione con i sistemi di gestione dell’energia

a livello di microrete o con le stazioni di ricarica. In questo contesto, l’obiettivo del

presente lavoro è quello di sviluppare strategie di gestione dell’energia, basate su

procedure di ottimizzazione, per gestire le problematiche di integrazione dei veicoli

elettrici a diversi livelli. In particolare, una prima analisi riguarda la procedura di

pianificazione day-ahead per le microreti che integrano stazioni di ricarica per vei-

coli elettrici, basata su ipotesi e previsioni, con focus sulla possibilità di fornitura

di riserva interna e sull’integrazione delle stazioni di ricarica fast-charge. I sistemi

di monitoraggio e misurazione svolgono un ruolo centrale in una microrete, poiché

forniscono dati dal campo al sistema di gestione. In questo quadro, un altro tema

di ricerca è l’analisi di un’architettura di monitoraggio per l’acquisizione dei dati

e la comunicazione dei comandi di controllo tra il sistema di gestione dell’energia

e i dispositivi di campo. La possibilità di aggregazione di microreti in comunità

energetiche è affrontata attraverso una strategia di programmazione day-ahead per

la gestione delle risorse di una comunità energetica che comprende microreti in

corrente continua, al fine di garantire la coerenza degli scambi di potenza delle mi-

croreti rispetto a una pianificazione a più livelli, garantendo anche livelli di riserva

interna per tener conto di errori di previsione di produzione fotovoltaica.

Inoltre, gli effetti dell’integrazione delle stazioni di ricarica dei veicoli elettrici

sulle reti di distribuzione sono valutati definendo metodologie e strumenti di simu-

lazione per la gestione della ricarica dei veicoli elettrici. In particolare, l’impatto

economico e ambientale dell’operatività dei veicoli elettrici nelle stazioni di rica-

rica, anche installate in modalità aggregata sui singoli nodi, e il ruolo dell’integra-

zione dei sistemi di accumulo stazionario nel raggiungimento di benefici economici

ed ambientali è valutato attraverso strategie di ottimizzazione con obiettivi tecnici

ed economici. Infine, lo sviluppo di strategie multi-obiettivo, sulla base delle meto-

dologie di programmazione delle microreti e delle reti di distribuzione, permette di
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valutare gli effetti dell’integrazione di questi sistemi all’interno delle reti di distribu-

zione, ponendo le basi per lo studio del ruolo delle comunità energetiche all’interno

di esse.

Il lavoro di tesi è inquadrato nelle attività sviluppate dal gruppo di Sistemi

Elettrici del Politecnico di Bari nell’ambito dei progetti europei H2020 (CON-

NECT e PROGRESSUS) culminati con la realizzazione di una microrete in corrente

continua per l’alimentazione di veicoli elettrici come caso d’uso dei progetti.
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”To strive, to seek, to find, and not to yield.”

A. Tennyson, Ulysses
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Chapter 1

Electric Mobility: Diffusion and

Integration

1.1 Transport electrification

The transport sector is the fourth largest sector when accounting for CO2 emission, respon-

sible in 2022 for 8.1 Gte (corresponding to 14% of the total CO2 emissions), after the energy

supply sector with 20.9 Gte (36%), the industry with 14.4 Gte (25%) and agricultural one

(10.3 Gte, 18%), according to the Emission Gap Report 2023 data reported in Fig. 1.1 [1].

Figure 1.1: CO2 emissions split into the major economic sectors. Data source in [1].

Transport electrification represents a promising solution for CO2 reduction and many

1



1.2. EV DIFFUSION: EUROPEAN AND ITALIAN CONTEXT

countries are promoting supportive regulatory framework for the adoption of electric ve-

hicles (EVs). In particular, the Fit-for-55 package of the European Union focuses also on

transport sector initiatives. As part of Fit-for-55, Directive RED III of the European Com-

mission sets binding targets on shared renewable energy in final consumption and on the

reduction of greenhouse gas intensity by 2030 [2].

The European Commission actions to strengthen the emission limits for new passenger

cars and light commercial vehicles registered in the European Union are carried out by the

update of Regulation (EU) 2019/631 [3]. This regulation sets specific CO2 emission limits

that apply to the entire new vehicle fleet of each manufacturer registered in a given year in

Europe. The new objectives include:

• maintaining the existing 2025 targets for passenger cars and vans, which require a

15% reduction in specific CO2 emissions compared to 2021,

• increasing the required reductions from 2030 to 55% for passenger cars (previously

37.5%) and 50% for vans (previously 31%),

• introduction of a new 100% emission reduction requirement for both categories from

2035, implying zero emissions,

• removal of the Zero and Low Emission Vehicle (ZLEV) incentive scheme from 2030.

These measures put the basis for zero-emission transport by 2035, thus implying the

use of EVs, hydrogen-powered vehicles or, in the case of internal combustion engines or

plug-in hybrid vehicles (PHEVs), by using carbon neutral renewable fuels.

1.2 EV diffusion: European and Italian context

According to the Global EV Outlook 2023 [4], EV sales hit a new record year in 2022,

with 10 million EV sold worldwide (see Fig. 1.2). A total of 14% of all new cars sold were

electric in 2022, up from around 9% in 2021 and less than 5% in 2020. China still dominate

the global sale market, accounting for around 60% of global EV sales, allowing to exceed

its 2025 target for new energy vehicle sales. Europe is the second largest market, where EV
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sales increased by over 15% in 2022. EV sales in the United States, the third largest market,

increased 55% in 2022, reaching a sales share of 8%. Data reported for 2023 confirms the

increase of sales, and 14 million sales are expected by the end of 2023, representing a 35%

year-on-year increase.

Figure 1.2: Global EV stock, 2010-2022. Data source in [4].

Regarding the Italian EV diffusion, considerable divergences are detected in car reg-

istrations with respect to the other European countries [5]. In particular, in 2022 the per-

centage of EV of the total number of registrations was just under 9%, below the European

average. The maximum percentage has been reached by Norway with 90% of EVs on the

total new registration.

The diffusion of EV charging infrastructures is linked to the EV diffusion in order to

guarantee same levels of accessibility as for refuelling conventional vehicles. In particular,

more than 600000 public slow charging points (up to 22 kW) were installed in 2022, 360000

of them were in China. Europe total charging points are 460000 slow chargers in 2022,

with a 50% increase from the previous year. The Netherlands leads in Europe with 117000,

followed by around 74000 in France and 64000 in Germany.
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Public fast-charging stations increased reaching 330000 globally in 2022, half of slow

chargers, where almost 90% of the growth came from China. The deployment of fast charg-

ing is due to the lack of private chargers in densely populated cities and supports China’s

goals for rapid EV deployment. Europe reached 70000 fast chargers by the end of 2022,

55% more than 2021. Countries with the largest fast charger stock are Germany (over

12000), France (9700) and Norway (9000).

Fig. 1.3 shows the average public charging power capacity per EV, which is globally

around 2.4 kW per EV. In the European countries, the ratio is lower, with an average around

1.2 kW per EV. Korea has the highest ratio at 7 kW per EV, even with most public chargers

(90%) being slow chargers [4].

Figure 1.3: Number of electric EV per public charging point and power [kW] per EV,
2022 [4].
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As aforementioned, European Union aim is to further develop the public charging in-

frastructure, as indicated by the deployment of Alternative Fuels Infrastructure Regulation

(AFIR) [6], which set electric charging coverage requirements across the trans-European

network-transport (TEN-T). This regulation not only sets specific targets, but also com-

mon technical standards for information provided to users, infrastructure-related data, and

payment methods. In addition, it regulates the national strategic frameworks that Member

States are required to develop, which include the planning and implementation of alterna-

tive fuel infrastructures in areas where obligations have not been established at the European

level and require reporting on progress in the implementation of these infrastructures. In ad-

dition, the Regulation 2023/1804 [7] of European Parliament establishes a series of targets

to be achieved by European countries regarding EV charging stations across the TEN-T,

thus substituting Directive 2014/94/UE on Deployment of Alternative Fuel Infrastructure

(DAFI). In particular, the measure determines that Member States shall ensure along the

core and comprehensive TEN-T network, in each direction of travel, groups of publicly ac-

cessible charging stations for light electric vehicles at a maximum distance of 60 km from

each other. At least 400 kW of output power should be provided by each group of stations

(including also a charging point of at least 150 kW) by the end of 2025 and of at least 600

kW (with two 150 kW points) by the end of 2027, whereas along the TEN-T comprehen-

sive network, each group of EV stations will have to provide at least 300 kW and include

a 150 kW point by the end of 2030, rising to at least 600 kW with two 150 kW points in

each group by 2035. The regulation also sets the minimum number of charging stations for

heavy-duty vehicles.

The report [5] assesses that the Italian growth of public charging points is in line with

the European trend. It is also estimated that private access charging points have increased

even faster, mainly due to the Superbonus effect. In particular, by the end of 2022 almost

30000 public access charging points are installed in Italy. Approximately 80% of these are

slow charger while the remaining are fast ones [8]. By 2022, installations of private access

charging points in Italy increased 170% compared to 2021, bringing total installations total

installations to 370000 [5]. Figg. 1.4 and 1.5 report the total number of EV charging points
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and the number of AC and DC points considering all AFIR charging rate classification.

Figure 1.4: Total number of EV charging points, according to the AFIR classification [8].

(a)

(b)

Figure 1.5: Total number of publicly accessible AC (a) and DC (b) EV charging points,
according to AFIR categorization [8].
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1.3 Impact of EVs on the grid

The transport electrification contributes to energy demand increase, as reported in [9] and in

Fig. 1.6 for the Italian case. Energy demand grew up to 2008, with a contraction during the

economic crises of 2009 and 2012, and until they remained more or less constant from 2017

to the present, net of today, net of 2020 where measures to contain the Covid-19 pandemic

have resulted in reduced electricity demand. In the horizon years of the scenarios, the

electrification process leads to a substantial increase in the electricity demand. In the case

of the Distributed Energy (DE) scenario, that considers the highest penetration of the electric

carrier for the Italian scenarios, a value of 418 TWh is envisaged by 2040. Moreover, the

most electrified European scenario, the 2030 DE, has a higher electricity demand than the

Policy Fit-for-55 (FF55), that considers a penetration of 8 million EVs, implying a 12 TWh

demand increase. In 2040, on the other hand, both Italian scenarios, 2040 DE IT and 2040

GA IT (EV penetration respectively set to 14 and 12.5 million), have lower demand values

than those identified in Policy FF55.

Figure 1.6: Total Italian energy demand in all scenarios [9].

1.3.1 Technical impact on grid operation

The increasing number of integrated charging stations could affect the distribution grid oper-

ation, since connected EV charging demand modifies grid global load profiles, according to
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charging management procedure adopted. Although the procedure of uncontrolled charging

is considered the easiest way to integrate EVs, since they are charged at maximum power

until they are completely charged, it leads to several grid issues due to high load increase on

the grid (see Table 1.1 [10]) . Several studies focused on the effects of EV integration into

power grids, in terms of load profile, voltage profile and harmonic distortion [11]. Another

potential effect is registered in [12] on transformer performances, especially considering EV

uncoordinated charging, as well as issues concerning transformer performances with high

penetration levels that can lead to grid upgrades [13]. This demonstrates that EV charging

requirements can cause load and voltage unbalancing, leading to unsafe operation of the

grid [14].

Table 1.1: EV charging approaches [10].

Charging mode Load profile Advantages Disadvantages

Uncontrolled
charging

Easy for implemen-
ting and for
EV owners

Overloading in
transformers and

distribution feeders
Grid issues

Off-peak
charging

Flattening the
load profile

Integration of
renewables at
off-peak hours

Unbalance of
load demand

Voltage deviations

Valley filling
charging

Flattening the
load profile

Integration of
renewables

Ancillary service
provision

Complex implemen-
tation

Data exchange
infrastructure

Peak-shaving
charging

Integration of
renewables

Ancillary service
provision
Peak load
reduction

Complex implemen-
tation

Data exchange
infrastructure

Battery degrada-
tion for V2G

Several studies focus on the analysis of EV charging effects on the distribution and low

voltage (LV) grid, highlighting the possibility of grid congestions and over/under compen-

sations when uncoordinated charging occur [15]. A sensitivity study carried out in [16]
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shows that EV number, charger power rating [14] and modelling of driving pattern are the

factors that most influence transformer and line loading in LV distribution networks, con-

sidering urban context. Level of EV penetration also affects the safe operation of networks:

the assessment study in [13] on a radial residential LV grid reveals that for a 60% pene-

tration of EVs thermal and loading violations on distribution transformer and feeder occur.

For higher integration rates, voltage drops and loss increases are detected in [17] and a dis-

tribution feeder reconfiguration is studied to reduce negative impacts of EV uncontrolled

charging. In addition, suburban grids are found as the most vulnerable to massive EV in-

tegration, as higher congestion events arise [18]. In [19] the impact of EV integration on

a low voltage distribution network is evaluated considering different EV penetration levels

and showing that the uncoordinated charging implies the infrastructure upgrade, with re-

spect to the case of EV coordinated charging. The possibility to control EV charging, in

order to minimize total energy losses, has also effects on reducing negative impacts into

distribution networks [20]. Off-peak charging and valley filling charging are examples of

controlled procedures (Table 1.1). Furthermore, in [21] EV charging stations are integrated

into the optimization model of economic dispatch as flexible loads with price elasticity, con-

firming that the control of charging loads is able to avoid grid congestion, as in [22], where

EV charging is scheduled during off-peak demand times to sustain load balance, verifying

the possibility to fill the valley of the load profile [13], although this approach could still

lead to voltage instabilities and load imbalance. Moreover, controlled charging strategies,

based on limitation of power supply at primary distribution transformers and minimization

of EV aggregator costs, show positive effects on grid voltage profile, energy losses and

transformer loss of life [23] as compared to uncontrolled charging effects.

The possibility for EVs and charging stations to exploit vehicle-to grid (V2G) technol-

ogy [24] is advantageous for EV owners, since EV discharging could support distribution

network, providing ancillary services [25]. According to [26], V2G mode could support

voltage control regulating bidirectionally reactive power and providing spinning reserve in

the context of isolated networks. As a matter of fact, the study in [27] proposes a coordi-

nated EV management system for a LV residential network for grid support, encouraging
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V2G exploitation in order to reduce EV owner costs. In [28] the problem of EV charging

station allocation in distribution grid is investigated minimizing power losses. Moreover,

in [29] voltage analyses on MV /LV grid with integrated fast charging station enabling V2G

show that V2G can achieve a voltage improvement and a current reduction at the point of

charging.

In the presence of an EV fleet, the role of the aggregator is significant in managing all

the EVs towards the distributor system operator and the electricity market, for providing an

optimized power scheduling [30]. In general, two control schemes could be implemented,

centralized and decentralized ones. The first one has the advantage of better performances

on service provision and network capacity, whereas the second is more scalable and requires

less communication infrastructures [31]. The methodology proposed in [27] demonstrates

that instead of curtailing the charging demand of EVs responsible for grid constraints vio-

lations, the flexibility of neighborhood aggregated EVs is exploited to address these issues.

In the framework of optimal programming, EV user behaviour constitutes an aleatory vari-

able, as well as plug-in times and energy required for the charging [17], that are taken into

account by means of stochastic technique.

1.3.2 Environmental impact of EV integration

As discussed in Section 1.3.1, smart charging strategies along with V2G exploitation have

shown the possibility to shift clustered EV charging load to achieve economic and technical

targets.

However, the environmental impact of EVs is still under discussion, in terms of emis-

sions produced during EV charging. The study presented in [32] deals with the evalu-

ation of electricity generation emissions produced due to EV charging, highlighting that

smart charging technologies could unintentionally lead to an increase in emissions produc-

tion, as marginal emissions could have different patterns from average emission, as shown

also in [33]. In this context, the study in [34] investigates possible optimal EV charg-

ing/discharging strategies for minimizing carbon emissions, underlying the advantage of

V2G exploitation in CO2 reduction, not in all scenarios though, as energy efficiency rating
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can widely influence emission evaluations. The strategy proposed in [35] based on both

the time-of-use price and marginal emission factors reveals that the smart charging strategy

can reduce the cost and carbon emissions by up to 27% and 16% compared with uncon-

trolled charging, respectively. The study in [36] aims to address the trade-off between cost

and emission minimization of EV charging using multi-objective optimization framework.

Moreover, the assessment of cost and emission benefit from system perspective for grid

reinforcing is proposed. Costs and emissions of grid reinforcements outweigh the benefits

in costs and emissions in EV charging optimization resulting from increased grid capacity.

However, substantial reductions in EV charging costs and emissions can be achieved under

the current transformer capacity.

The inclusion of renewable energy sources, such as photovoltaic (PV ), in dedicated in-

frastructures for EV charging represents an important aspect of the safe integration of charg-

ing stations into the distribution networks, as reported in [37] where a technical-economic-

environmental assessment methodology is implemented for photovoltaic-powered charging

stations, which is demonstrated to produce less emissions with respect to power-connected

charging stations, and [38], where a bidding model of a power grid involving PV and EVs

is proposed in order to reach low-carbon grid operation. Moreover, battery energy storage

system (BESS) could be involved in optimal scheduling procedures, as in [39], allowing

the minimization of annual equivalent carbon emissions, especially considering second-life

batteries. Off-grid PV -BESS system for EV charging is shown to be a profitable project to

deal with carbon emissions reduction [40].

1.4 Microgrids and energy communities: new con-

cepts for EV integration

In order to promote the integration of charging station, renewable energy sources, such as

PV [41], and BESS could be installed, thus constituting a microgrid-based electric vehicle

supply infrastructure (EVSI). It should be pointed out that PV , BESS, and EVs are based

on DC technologies, therefore the integration in DC microgrids is advisable, considering
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that DC connection enables the V2G operation [42], [43]. In DC architectures there is not

the need of frequency synchronization in island-mode operation [44], and reactive power

control [45]. Furthermore, it should be remarked that PV , BESS and EVs are based on

DC technologies, therefore the integration in DC microgrids connected to the AC network

represents a field of expansion of DC distribution concept, considering that V2G is usually

enabled by DC connection [46–48]. In Fig. 1.7 an example of DC architecture is proposed.

Figure 1.7: DC architecture scheme.

The optimal power planning can achieve economic and technical targets [49], [50],

considering that the life cycle of storage components of the microgrid is affected by several

charging and discharging cycles [51].

The multi-objective optimization is often used for energy management of microgrids.

For instance, in [52], the optimization problem consists of the minimization of the daily

purchasing costs (economic goal) and the circulation energy of storage batteries (techni-

cal goal). In [53], the objective functions are the O&M costs and exchanging cost of AC

grid and loss of power supply probability of the system. The robust multi-objective op-

timization carried out in [54] aims to minimizing the cost function, including fuel cost,

maintenance cost, purchasing and selling electricity cost, battery depreciation cost, penalty

cost, and carbon emission. Three objective functions are formulated in [55]: life-cycle cost,

self-balancing rate, and converter power loss. In [56], a cost operation-based method with

considerations on power losses is investigated, for a DC microgrid. An example of opti-
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mization problem reaching exclusively a technical goal as the reduction of the peak demand

of the EV solar parking lot may be found in [57]. The economic and technical functions

may be also linearly combined into one objective function for the optimal dispatch of EV

charging stations, as investigated in [58].

Deterministic programming is based on the hypothesis of perfect determination of some

values. This makes programming results idealistic compared to the real values found in

systems. The intermittency of some renewable generation sources (such as PV ) further

emphasizes the limitations of this type of programming. Studies [59], [60] are now mov-

ing towards stochastic optimization since it considers the uncertainties and probabilities of

some variables or parameters as input, in order to assess their influence on the system out-

put data. In [61], several techniques for stochastic optimization are presented, e.g., recourse

method, chance-constrained optimization, risk averse optimization, and sample average ap-

proximation. Stochastic optimization offers a range of possible solutions that can approach

real-world situations providing benefit operators and/or consumers in assessing the risks

associated with the uncertainties of renewable energy generation sources.

1.4.1 European Legislative framework of energy communities

In the context of the spread renewable distributed generation and EVs, according to Euro-

pean targets to achieve net-zero greenhouse gas emissions by 2050, the transition of power

systems towards a decentralized framework involves a change in the role of consumers

and prosumers, which are called to actively participate both individually and collectively in

this transformation, investing in new technologies and new pathways for local generation

and consumption. The Local Energy Community (LEC) initiative allows different users to

jointly act in order to provide energy services to each other, whit the possibility of economic

savings.

As a matter of fact, in 2015 the European Commission launched the ”European En-

ergy Union Strategy” [62], with the aim of creating an Energy Union for market reforming

and renewable energy supporting, that could empower the role of customers. This strategy,

along with the commitments after the Paris Agreement, put the premises for the package
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of proposal called ”Clean Energy for all Europeans Package” or ”Clean Energy Package”

(CEP) [63] in 2016, in which eight legislative acts of 2018 and 2019 are collected in or-

der to promote a regulatory framework for the energy transition. The main directives and

regulations for LEC are here listed:

• Directive 2018/2001: The recast Renewable Energy Directive (REDII) [64],

• Directive 2019/944: Electricity Market Directive (IEMD) [65].

The CEP highlights the necessity of adopting sustainable energy sources, while giv-

ing the costumers an active role as individuals or collectively gathered. Directives REDII

and IEMD play a fundamental role in the formal recognition for the first time of LEC, in

particular defining Renewable Energy Community (REC) and Citizen Energy Community

(CEC).

The REC concept is firstly introduced in the Directive REDII, where it is defined in Art.

2 as a legal entity based on: i) open and voluntary participation of members, and controlled

by members located in the proximity of community project developed by the entity, ii)

participation open to natural people, small and medium enterprises, and local authorities

and iii) main purpose of providing environmental, social and economic benefits for the

whole community, without pursuing any financial profit. Moreover, RECs are enabled to

produce, sell, and consume energy from their plants, with the possibility also to share that

among members or to provide grid services in the electricity markets.

The Directive IEMD defines the CEC entity quite similarly to a REC, with the main

difference that large enterprises cannot take the control of the CEC. Moreover, it can be

aggregated to provide energy services to members or stakeholders, as energy efficiency or

EV charging. Furthermore, there is not a limitation in geographical area or in type of energy

source.

1.4.2 Italian Laws for energy communities

The Italian regulatory framework allowed self-consumption schemes as a primary legisla-

tive and technical form of LEC, which are the Closed Distribution Systems (CDS) and
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Simple Systems of Production and Consumption (SSPC) [66]. The first ones are private

geographically-limited systems, that generally do not supply household users, whereas the

second ones refers to systems involving generation plants and consumption connected to

the public grid but still ensuring a self-consumption scheme. These schemes require the

presence of one production site and one final costumer, differently from the multiple con-

figurations of LECs.

With the Law 8/2020 [67] a partial transposition of the REDII directive has started, in

order to promote the activation of the collective self-consumption schemes and RECs in the

Italian energy context. Some constraints and features are defined for these configurations:

• renewable energy plants owned by RECs or self-consumption schemes must have

started their operation after March 1st 2020,

• the capacity of each plant may not exceed 200 kW of installed power,

• plants and consumers (members, partners or participants in the scheme) must be

subject to the same MV /LV transformer substation for RECs and belong to the same

building in the case ofcollective self-consumption schemes.

Moreover, the Italian Regulatory Authority for Energy Networks and Environment (AR-

ERA) and Ministry for Economic Development have defined regulatory model and tariff

components to be applied to members of the RECs and participants in collective self-

consumption schemes, along with the incentives to be granted to the two schemes. Concern-

ing regulation model, ARERA Deliberation 318/2020 [68] grants RECs the refund of certain

grid components of electricity tariff amounting to approximately 8 C/MWh (10 C/MWh

for self-consumption schemes) in relation to the energy produced by the plant owned by

the RECs and consumed in the same time frame by its members. In addition, the incen-

tive (feed-in premium) identified by the Ministerial Decree of September 16th 2020 [69]

corresponds to 100 C/MWh for energy shared by participants in self-consumption schemes

collective, and 110 C/MWh for energy shared by members of RECs. Recently, on 24th

January 2024, the decree of Ministry for the Environment and Energy Security promoting

the development of REC and widespread self-consumption in Italy has been published and
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came into full effect, having been previously approved by the European Commission [70].

The text identifies two ways to promote the development of RECs in the country: a contribu-

tion of up to 40% of eligible costs, for communities whose plants are built in municipalities

with less than 5000 inhabitants, which will support the development of 2 GW in total, and

an incentive tariff on renewable energy produced and shared throughout the country. The

two incentives are cumulative. Through the measure, the development of a total of 5 GW

of renewable energy production plants is thus supported. Moreover, the decree determines

that the feed-in tariff to be applied to shared energy should not exceed:

• 120 C/MWh for plants with installed power lower than 200 kW,

• 110 C/MWh for plants with installed power within 200 kW and 600 kW,

• 100 C/MWh for plants with installed power greater than 600 kW.

1.4.3 Rules for optimal scheduling of communities

In this context of shared energy promotion, the optimal scheduling of the community energy

resources by a specifically developed EMS is important. Distributed approaches may be

preferred with respect to centralized ones, as they have less communication requirements

and better guarantee prosumers’ independence [71] [72].

The microgrid structure allows prosumers to coordinate their internal resources, as PV

and BESS units, to match local load demand and to reach reliability and economic goals.

Moreover, grid-connected microgrids can support the external grid by providing ancillary

services, such as frequency control, voltage control and load curtailment operation [73] [74].

In the procedures presented in the literature, multi-microgrid energy management strategies

are often based on hierarchical and distributed approaches [75] [76], which usually consist

of multiple optimization stages. Bi-level optimal procedures are proposed in e.g. [77] for

systems of microgrids integrated in the distribution network: in one level, daily costs [78]

or profits of distribution network company [79] are optimized, while the second level opti-

mizes the microgrid costs. A data-driven multi-agent deep reinforcement learning approach

is investigated in [80] to calculate the Stackelberg equilibrium for the bi-level optimization
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problem. The integration of EV charging stations in DC microgrids [81] can be addressed

by, e.g., hierarchical distributed procedures, where they are modeled as independent play-

ers [82], or by multi-agent deep reinforcement learning methods [83] with the aim of min-

imizing total costs. The presence of BESS and PV units in the microgrids leads to a better

performance in terms of cost reduction, particularly when V2G is exploited [84] [85].

The LEC framework that optimally exploits PV and BESS units, represents a promis-

ing solution for EV integration [86]. The integration of intermittent energy resources in

microgrids [87], as wind and PV generation, as well as the integration of EVs, implies

the need to address the management of the associated uncertainties. Therefore, in optimal

scheduling procedures, deterministic programming approaches, based on the assumption of

perfect forecasts, are replaced by stochastic programming techniques [61]. Monte Carlo

and stochastic scenario models are used in [88] to simulate RES generation, load and prices

variations, and in [89] to account for driving behavior of EVs. Chance-constrained pro-

gramming techniques, that imply a mathematical program model containing constraints to

be satisfied with a suitable probability level, are used to account for uncertainties in renew-

able generation in a community integrated system, as in [90], and levels of energy outputs

of a hybrid AC-DC microgrid [91]. Recurse optimization is adopted in [92] for a day-

ahead multistage stochastic scheduling of a LEC that provides a multi-stage decision tree

to a receding horizon intra-day optimization procedure. In [93] a scenario tree generation

and fast forward scenario reduction is adopted to account for RES generation uncertainties

in a 15-bus microgrid test system. Moreover, robust optimization is proposed in [94] for

the optimal charging and frequency reserve scheduling of EVs and in [95] for the micro-

grid reserve scheduling considering uncertainties associated to load, price, and renewable

production. Information gap decision theory is used for the representation of reserve prob-

abilities in [96] and [97] in the presence of fluctuations in RES generation and electricity

prices. For large-scale systems, distributionally robust optimization procedures are adopted

to represent fluctuations of load demand and renewable generation, as in [98] and [99].

Regarding the type of systems under study, chance-constrained programming is imple-

mented in small and medium systems, as microgrids or communities of microgrids, while
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robust and distributionally robust optimal programming is implemented in larger networks,

such as multiple-area grids. Most of procedures included in this comparative analysis do

not significantly consider the role of EVs (as in [93], [96], and [97]) or only their charging

processes are involved. Further exploitation of V2G functionalities is not investigated, with

the exception of [95].

1.5 Description of Ph.D. activity

The activities carried out during Ph.D. period focus primarily on the achievements of CON-

NECT and PROGRESSUS project objectives, regarding the energy management strategies

of EVSI in the framework of DC microgrid, starting from problem evaluation, leading to

development and test into simulative environment and then to preliminary implementation

into the physical system by means of interfaces with cloud-based software. Furthermore,

preliminary analyses concerning decentralized power regulation approach is presented for

converters operating in DC microgrids. The impact of V2G-enabled EVs integrated in dis-

tribution grids is also assessed by means of optimal procedures. In the same project context,

the collaboration with University of Bologna (Italian cluster partner of the projects) aims at

exploring the possibility of DC microgrids to cooperate in a LEC with the aim of achieving

economic benefits.

In addition, studies carried out during a six-month research period at the School of En-

gineering of Cardiff University (UK), under the supervision of Prof. Liana Cipcigan, regard

preliminary degradation of small-size battery tests under different temperature conditions,

and environmental and economic impacts of BESS for EV charging.

Further activities involve performance analysis of a set of network development projects,

including zonal market framework and load flow analysis, and a time-series hosting capacity

assessment of maximum distributed resources production. Moreover, an ongoing research

field is represented by the impact of fast-charge EV infrastructures in motorways on the

transmission network scenarios, in collaboration with Terna S.p.A. (Italian transmission

system operator).
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Research results have been disseminated by means of journal and conference papers

presented in Section 1.7, along with poster presentations at the attended Ph.D. Schools.

1.6 Contributions of the work and Thesis strucure

The thesis is focused at presenting the developed research activies concerning optimal pro-

gramming strategies for EV integration in DC microgrids, taking into account the possibil-

ity of providing internal reserve to cope with uncertainties related to intermittent renewable

generation and EV usage exploiting V2G features and BESS discharge, and to assess tech-

nical and economic benefits of aggregated DC microgrid systems in a LEC perspective by

means a two-stage optimal procedure.

Environmental, economic and technical impacts of EVs and EV clusters integration

into distribution networks are evaluated for different EV penetration levels on the grid and

V2G exploitation condition to ensure grid support. Furthermore, multi-objective optimal

procedure is exploited with the aim of studying EV-based DC microgrid integrated in MV

grids, and derived economic benefits from the aggregation of microgrids in LEC.

The thesis is organized as follows.

• Chapter 2 focuses on the optimal energy management strategies for a DC-based

EVSI, proposing deterministic and stochastic approaches with the aim of taking into

account uncertainties related to renewable generation and EV usage pattern through

the provision of proper reserve levels, while assessing the influence of economic and

technical targets on the microgrid operation. Moreover, the impact of an additional

fast-charging station on the systems is studied and the integration of procedure into

a cloud-based platform for smart grid energy management is then described.

• A two-stage optimal procedure applied to a LEC including DC microgrids is pro-

posed in Chapter 3, considering both deterministic and stochastic approaches for

internal reserve provision in order to inspect further different asset exploitation in a

coordinated community context. The study has been carried out within the collabo-

ration of University of Bologna, in the framework of the PROGRESSUS project,
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• Chapter 4 discusses about optimal procedures for EV charging infrastructure inte-

gration in distribution networks. In particular, environmental and economic impact

of interaction between BESS and EV station on EV parking lots operation are stud-

ied considering different charging rates. This activity has been carried out with the

cooperation of the School of Engineering of Cardiff University. Moreover, techni-

cal impacts of both EV stations and EV clusters integration in MV and LV grids at

different penetration levels on daily operation are assessed through techno-economic

optimization procedures from network operator viewpoint. Furthermore, the study

is then expanded proposing an optimal procedure for the EV-based DC microgrids

integration in the MV distribution network, investigating energy community perspec-

tives.

• The main conclusions and perspectives for future works are drawn in the final chap-

ter.
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Chapter 2

Energy management of DC-based

EVSI

The inclusion of EV stations in microgrids can allow to exploit source controllability to

obtain a safer network integration and hence sustain electric mobility diffusion. The inte-

gration of PV systems and electric storage in DC microgrid can easily enable V2G func-

tionality. This chapter describes the procedure adopted for the energy management of a

DC-based EV charging infrastructures that involves PV generation, stationary storage and

EV charging stations. The system is also the italian demonstrator for the European project

PROGRESSUS, whose framework is proposed in Section 2.1. Then, a deterministic ap-

proach for optimal day-ahead procedure is introduced with its formulation, implementation

to the system and result discussions in Section 2.2. In the same framework, a study fo-

cused on system price variation influence on V2G exploitation is presented and discussed

in Section 2.3. The chance-constrained programming technique is then implemented in the

optimal procedure in order to determine reserve levels provided by BESS to cope with un-

certainties related to renewable generation and EV usage pattern, by defining probabilistic

constraints and probability distribution functions. The effect of the inclusion of a fast charg-

ing station on the system operation is evaluated in Section 2.5 considering different scenario

of PV availability. Furthermore, the problem is linearized by means of Big-M method and

power loss evaluation is carried out in order to asses the influence of fast charging station
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within the system.

The last Section 2.6 focuses on the description of a cloud-based platform for energy man-

agement of the system, based on signal exchanges between optimal set points (output of the

procedures) and field devices. The Section provides also the discussion of tests of the real

demonstrator carried out on the field.

2.1 PROGRESSUS Project and DC microgrid

framework

The DC microgrid constitutes the Use Case of the projects CONNECT (from 2017 to 2020)

and PROGRESSUS (from 2020 to 2023). In particular, PROGRESSUS is a project funded

under the H2020-ECSEL-2019-2-RIA call, with 22 European partners from academia and

industry. PROGRESSUS contributes to the European Union’s 2030 climate targets by

proposing a next-generation smart grid, as demonstrated by the application example ”smart

charging infrastructure” which integrates seamlessly into pre-existing concepts of smart-

grid architectures while requiring minimal additional investment. Intelligent charge infras-

tructure design and establishment face unique issues due to the anticipated high power needs

of ultra rapid charging stations. The efficient utilization of charging infrastructure is still in

its infancy, much like the concepts of emission-free driving are still relatively new to the

economy. The objectives of the PROGRESSUS project cover three main themes [100]:

• power conversion, whose objectives concern power converter design and implemen-

tation for DCcharging stations and ultra-fast charging towards the modularization of

rapid chargers and various power converters;

• energy management in microgrids (charging infrastructure), to develop smart man-

agement algorithms that could lead to reduce the power losses, increase the effi-

ciency. In particular, design optimal energy management algorithms for DC mi-

crogrids and low voltage DSO networks, by also taking into account EVs and EV

charging stations;
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• measurement, monitoring and communication infrastructure for the development of

advanced current sensors, metrology and monitoring solutions as well as novel net-

work management approaches to support secure management of decentralized infras-

tructure and services and to enable smart and secure energy management.

Furthermore, four use cases (UC) are implemented and demonstrated in PROGRESSUS

project:

• UC 1 that combines solutions for highly efficient power conversion including stor-

age, hardware security supporting blockchain, decentralized data management, dis-

tributed energy management to maximize grid utilization and efficient power line

networks for high speed communication;

• UC 2 refers to the integration of various sub-systems, such as a protective interface

between local grid and connected power processing converters, a cloud based smart

charging framework, where different inputs can be used and where different algo-

rithms can easily be applied and configured.

• UC 3 aims at demonstrating the effectiveness of a cooperative energy management

scheme when applied to multiple self-organised microgrids, that allows to maximize

the utilization of the energy generated by renewable sources, while minimizing the

energy storage losses and the dependency on the main grid.

• UC 4 that focuses on the energy management strategies for a DC microgrid with the

objectives of proving specific local services to the grid and promoting new infrastruc-

tures supporting electromobility and modular fast charging enabling long-distance

drive with EVs.

The activities of the research group of the Politecnico di Bari, within the PROGRESSUS

project, focus on the development of methodologies and algorithms for energy management

in the DC microgrid (already being designed within the CONNECT project), for different

control time intervals. In addition, activities aim at defining the regulation services to be

provided to the electric distribution grid, in the presence of electric vehicle charging stations
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in fast and conventional modes. In collaboration with Enel X Way, project partner for UC 4

realization, a further contribution consists in the modification of the demonstrator (of previ-

ous CONNECT Project at the port of Bari, see Fig. 2.1b) to integrate fast charging stations

for electric vehicles into the DC microgrid, with related control and communication, and

operational tests are devoted to the implementation of the developed optimal management

strategies. The expected objectives aim at: i) 20% reduction in losses for internal power

distribution in DC systems, compared to AC systems; ii) 10% reduction in grid exchange

levels and voltage variations; iii) 10% increase in energy exchanges between DC micro-

grids, aiming at validating the applicability of the concept of energy communities based on

modular DC microgrids. Therefore UC 4 provides a testbed for:

• the development of technologies for the integration of fast charging stations on a

DC grid, in the presence of other components (photovoltaics, batteries, conventional

charging stations);

• the definition of regulatory services to be provided to the distribution network to

encourage active user participation in grid management;

• the synthesis of solutions for the implementation of energy communities based on

modular microgrids integrating renewable sources and electric mobility systems.

(a) (b)

Figure 2.1: Bari Port location (a) and DC microgrid of UC 4 (b).

The DC microgrid structure consists of a photovoltaic plant (PV), located on the parking

rooftop, a BESS, and a set of 5 charging stations that allow charging and V2G processes and

a fast charging station. In Fig. 2.2 the layout of the structure is represented. All components
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are connected to the DC bus through a DC/DC converter, in order to control the power

exchange levels. The DC microgrid is connected to the distribution network through a

bidirectional AC/DC converter, with an internal voltage control. The DC microgrid has

been already field for sizing, planning and reliability studies. The inclusion of a cloud-

based supervision system for energy management allows to control all the assets and to

manage anomalies through remote connection.

Figure 2.2: DC microgrid architecture.

2.2 Deterministic approach for day-ahead

optimal operation

This section focuses on the performances of day-ahead optimal planning algorithms, propos-

ing in order to manage the DC-based EVSI. The main contributions of this work are resumed

in the following:

• a methodology for energy management of the system is proposed, aiming at mini-

mizing total daily costs,

• additional optimization functions, targeting a technical goal, and successively a com-

bined techno-economic goal are proposed,

• simulations involve different scenarios, generated through EV usage historical data
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statistical analyses, which lay the basis for a stochastic approach to the day-ahead

procedure, presented in the next sections.

A detailed description of the mathemathical formulation of the proposed methodology

is reported in the following.

2.2.1 Mixed-integer linear programming for

daily cost minimization

In order to carry out optimal operation planning of the system in the day-ahead time window,

the set of EV should be defined along with relevant mobility usage pattern (represented

by departure time, arrival time, route length, energy consumption), and the PV availability

should be properly forecast. Therefore, a mixed integer linear programming problem should

be solved as reported in (2.1):

min
x

OF (x)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(2.1)

where the state variable vector x includes, for each time step t of the daily time window, the

following variables:

• Active power withdrawn from / delivered to the distribution network, named P in
g (t)

and P out
g (t) respectively;

• Charge power, discharge power and State of Charge (SOC) of the BESS, named

P c
B(t), P

d
B(t) and SB(t) respectively;

• Charge power, discharge power and SOC of the j–th EV, named P c
EV,j(t), P

d
EV,j(t)

and Sj(t) respectively;

• Integer variables for grid connection vg(t), for BESS vB(t), and for each j–th EV
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vj(t), equal to 1 if the power exchange is towards the DC common bus and 0 other-

wise.

In order to achieve optimized operation, a first formulation of the problem involves the

minimization of the total cost of system operation, hence the objective function OF1 has

the following form in (2.2):

OF1 =∆t ·
∑︂
t

{︄
cg(t) · P in

g (t)− rg(t) · P out
g (t) + wB · [P c

B(t) + P d
B(t)]+

+
∑︂
j

[wj + cEV (t)] · P c
EV,j(t) + [wj − rg(t)] · P d

EV,j(t)

}︄ (2.2)

In particular, the first two terms represent the cost for energy exchange at grid connec-

tion point, where a tariff cg(t) is applied at power purchase, and a unit revenue rg(t) is

linked to power delivery. The third term represents wearing cost of BESS, incurred during

charge and discharge, and the last two terms represent cost for EV charge and revenue for

EV discharge, considering the presence of an aggregator accounting for EV wearing cost

wj as well.

2.2.2 Problem constraints

The optimization problem is subject to a set of constraints (2.1) that account for component

technical limitations and power balance. the active power balance at common DC busbar at

timestep t is ensured by constraint (2.3),

αg · P in
g (t)− 1

αg
· P out

g (t) + αB · P c
B(t)−

1

αB
· P d

B(t)+

+
∑︂
j

[︄
αj · P c

EV,j(t)−
1

αj
· P d

EV,j(t)

]︄
+ αPV · PPV (t) = 0

(2.3)

where PPV (t) is PV production forecast and the coefficients αx account for converter effi-

ciencies and cable losses.

Moreover, SOC update for BESS and EVs (SB(t) and Sj(t)) is taken into account in
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(2.4) and (2.5),

SB(t) = SB(t− 1) + ∆t ·
[︃
ηcB · P c

B(t)−
(︃

1

ηdB

)︃
· P d

B(t)

]︃
− sdB (2.4)

Sj(t) = Sj(t− 1) + ∆t ·

[︄
ηcj · P c

EV,j(t)−

(︄
1

ηdj

)︄
· P d

EV,j(t)

]︄
− sdB −∆Etr

j (t) (2.5)

where ηcB and ηcj are charging efficiencies, while ηdB and ηdj are discharge at efficiencies.

Furthermore, sdB and sdj account for self-discharge rate, whereas ∆Etr
j (t) is the energy

amount required to cover the distance of envisaged trips, different from zero only in travel-

ing timesteps and estimated according to unit consumption depending on average speed. In

constraints (2.6a) and (2.6b) the initial and final SOC levels Sj(0) and Sj(NT ) are kept at

90% of nominal storage capacity, whereas in each time interval the state of charge should

be between 20% and 100% of capacity.

Sj(0) = 0.9 ·Hj ∀j ∈ [1, .., nEV ] (2.6a)

Sj(NT ) = 0.9 ·Hj ∀j ∈ [1, .., nEV ] (2.6b)

Inequality constraints (2.7) and (2.8) are set with the aim of avoiding contemporaneous

bidirectional power exchange at grid connection,

P in
g (t) ≤ vg(t) · P in

g,MAX (2.7)

P out
g (t) ≤

(︂
1− vg(t)

)︂
· P out

g,MAX (2.8)

where P in
g,MAX and P out

g,MAX represent maximum levels of power withdrawal/delivery, re-

spectively. Analogous relations can be written for BESS and EVs.

Furthermore, each state variable is limited by lower and upper bounds, as reported in

(2.9a)-(2.9i).

P in,min
g ≤ P in

g (t) ≤ P in,MAX
g ∀t ∈ [1, .., NT ] (2.9a)

P out,min
g ≤ P out

g (t) ≤ P out,MAX
g ∀t ∈ [1, .., NT ] (2.9b)
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P c,min
B ≤ P c

B(t) ≤ P c,MAX
B ∀t ∈ [1, .., NT ] (2.9c)

P d,min
B ≤ P d

B(t) ≤ P d,MAX
B ∀t ∈ [1, .., NT ] (2.9d)

Smin
B ≤ SB(t) ≤ SMAX

B ∀t ∈ [1, .., NT ] (2.9e)

P c,min
EV,j ≤ P c

EV,j(t) ≤ P c,MAX
EV,j ∀t ∈ [1, .., NT ], ∀j ∈ [1, .., nEV ] (2.9f)

P d,min
EV,j ≤ P d

EV,j(t) ≤ P d,MAX
EV,j ∀t ∈ [1, .., NT ],∀j ∈ [1, .., nEV ] (2.9g)

Smin
j ≤ Sj(t) ≤ SMAX

j ∀t ∈ [1, .., NT ], ∀j ∈ [1, .., nEV ] (2.9h)

0 ≤ vx(t) ≤ 1 ∀t ∈ [1, .., NT ],∀x ∈ [g,B, j] (2.9i)

2.2.3 Technical target

In order to reduce impacts on the connected distribution network, a second objective is

proposed to minimize power exchange levels at grid connection point. To this purpose, the

objective function OF2 is defined in (2.10):

OF2 = ∆t ·
∑︂
t

[P in
g (t) + P out

g (t)] (2.10)

Technical constraints (2.1) follow the aforementioned formulation. Furthermore, in order

to avoid unnecessary oscillations in EV state of charge and to prevent excessive wearing

when the objective is OF2, a proper limit on daily discharge should be considered in this

case. In particular, the daily horizon the total energy discharged from EV battery over the

daily horizon, including discharge when connected and the energy consumption for trips

∆Etr
j (t), should not exceed a cycle of charge/discharge (2.11). This is related to EV battery

energy capacity Hj by means of target depth-of-discharge dj . The BESS relation (2.12) is

formulated analogously, without energy consumption for travels. These relations are valid

for a daily planning interval, where it is assumed that the state of charge at the end of the
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horizon returns to defined target values.

∑︂
t

[︄
1

ηdj
·∆T · P d

EV,j(t) + ∆Etr
j (t)

]︄
≤ Hj · dj (2.11)

∑︂
t

[︃
1

ηdB
·∆T · P d

B(t)

]︃
≤ HB · dB (2.12)

2.2.4 Economic target neglecting storage wearing costs

The application of penalties to EV and BESS wearing could hinder their exploitation in

the procedure considering a plain economic target. Therefore, a third formulation of the

problem, named OF3, is here considered, where the minimization of the total daily sys-

tem operation cost does not take into account the wearing costs of the storage devices, as

expressed in (2.13). This formulation is intended to inspect maximum technical exploita-

tion of storage devices, removing the penalties in the economic optimization goal, giving

out a techno-economic trade-off. For instance, in a framework where the EV aggregator is

different from the EVSI owner, degradation costs of EVs could be neglected [101].

OF3 =∆t ·
∑︂
t

cg(t) · P in
g (t)− rg(t) · P out

g (t)+

+
∑︂
j

cEV (t) · P c
EV,j(t)− rEV (t) · P d

EV,j(t)

(2.13)

As already described in Section 2.2.3, constraints (2.11) and (2.12) are included in the

general formulation of the procedure in order to avoid unnecessary oscillations in storage

systems (BESS and EVs).

2.2.5 Probabilistic approach for EV usage pattern generation

Since input data of the optimization problem, the forecast PV production and EV usage

information (e.g., departure and arrival times, route length and energy consumption) are

affected by uncertainties, a probabilistic approach is exploited to address EV usage sce-

nario generation: starting from historical data about the number of daily routes and length

of routes for each EV over a year, probability distribution functions are estimated and vali-
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dated, in order to randomly generate samples of EV usage. Three distributions are consid-

ered, Normal, Poisson and Weibull, whose probability density functions are expressed in

(2.14)-(2.16):

fN (x) =
1

σ ·
√
2π

· e−
(x−µ)

2σ2 (2.14)

fP (x) =
λ

x!
· e−λ (2.15)

fW (x) =
k

c
·
(︂x
c

)︂k−1
· e−(

x
c )

k

(2.16)

The estimation of the parameters (µ, σ, λ, k and c) for each distribution is carried out

using the MATLAB Distribution Fitter tool, whose input and output are reported in the

flowchart of Fig. 2.3 along with statistical analysis steps. The validation is therefore carried

out through the χ2 goodness-of-fit test. For the test computation, data are divided into m

classes and χ2 is calculated as in (2.17), where Oi and Ei are respectively the observed and

expected frequency for each class. Given a significance level α, which defines a critical

value CV for χ2, the goodness of the theoretical probability function under test can be

assumed if the inequality in (2.18) is verified. If condition (2.18) is true, the proposed

distribution function (either fN , fP , or fW ) is acceptable, and it is defined as “not rejected”

(NR). Otherwise, the function is “rejected” (R) since it does not properly fit experimental

observations. The reader is referred to [102] for full description of the goodness-of-fit test.

χ2 =

m∑︂
i=1

(Oi − Ei)
2

Ei
(2.17)

χ2 < CV (α) (2.18)

2.2.6 Economic and technical indicators

A comparison among results, derived by applying separately each of the three objective

functions, is carried out by means of economic and technical indicators with the aim of

evaluating operation costs and technical performances of batteries. Concerning the eco-

nomic indicator, the total operation cost is evaluated using (2.2), since it takes into account
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Figure 2.3: Flowchart of the statistical procedure applied to EV usage datasets.

wearing costs of batteries. Technical indicators are power peak values at grid connection,

P in
g (t) and P out

g (t), easily evaluated finding the maximum value of the vectors, and the

number of the discharge cycles of EV and BESS over the daily horizon calculated as in

(2.19),

nd
x =

∑︂
j

Sj(td,i)− Sj(td,f )

ηdx ·Hx
(2.19)

where j is the generic interval when a discharge occurs, td,i and td,f are the initial and final

time-step of the discharge process, ηdx is the discharge efficiency of the storage system x,

while Hx is the capacity of the battery. This expression is used for both EVs and BESS

batteries.

2.2.7 Case study and EV usage pattern generation

The optimal procedures are implemented and tested in Matlab environment. Results are

evaluated by means of the economic and technical indicators, taking as reference the pres-
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ence of EV uncoordinated charge. The DC microgrid is expected to be realized for an EVSI

framework. The basic layout [103] involves a 12.96 kW PV system, a 30 kW / 65.2 kWh

BESS and five EV stations with maximum power exchange of 10 kW. The cost of electric-

ity withdrawal from the grid cg(t) varies for hours and scenarios, in the range 0.14÷0.19

C/kWh, whereas unit revenue for electric energy delivery rg(t) is in the range 0.025÷0.055

C/kWh, according to data from ARERA [104]. EV charging cost cEV (t) is modeled consid-

ering a surplus to be added to cg(t), as well as rEV (t) considering a surplus on the cEV (t).

Wearing costs associated to BESS and EV batteries are respectively fixed at 1.8 cC/kWh

and 6.7 cC/kWh.

The expected application is represented by Bari Port Authority, where EV mobility

data for service matters are assumed corresponding to current exploitation of 5 fuel-based

service cars, replaced by a suitable EV model. Identifying the five vehicles as EV1-EV5,

information is collected for a whole year of usage, then the probability distribution functions

are estimated, following the procedure in Section 2.2.5. It should be remarked that travels

mostly occur in between 07:00 and 20:00.

The following Figg. 2.4, 2.5 and 2.6 collect the inputs and outcomes of the Distribution

Fitter Tool. In each figure, bar plot represents historical data and curves represent fitted

distribution functions.

As represented in Fig. 2.4, EV1 and EV3 perform, on average, more than one travel per

day. EV2 and EV5 more frequently accomplish one travel per day, while EV4 does not usu-

ally travel. In Table 2.1 the estimated parameters for the Normal and Poisson distributions

are collected for each EV.

In Fig. 2.5 the distributions for the length of a single travel for each EV are reported in

kilometers. EV1, EV2 and EV3 generally have short travels, with respect to EV4 and EV5.

Merging the information of number of daily travels and length, it can be argued that EV1,

EV2 and EV3 take several short travels a day (on average 10 km). The opposite situation

regards EV4 and EV5, experiencing a lower number of travels with higher length (about

60-130 km) in comparison to the others. The estimated parameters for the variable related

to the length of a single travel for each EV are reported in Table 2.2.
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Figure 2.4: Probability distribution functions fitted from EVs number of routes data.

Table 2.1: Distribution fitting of the number of daily travels.

Normal Distribution Poisson Distribution

µ σ λ cov

EV1 1.83 1.62 1.83 0.005
EV2 1.07 1.12 1.07 0.054
EV3 2.15 1.95 2.15 0.0059
EV4 0.43 0.25 0.43 0.0012
EV5 0.59 0.53 0.59 0.0016

Table 2.2: Distribution fitting of the length of single travels.

D. Normal D. Poisson D. Weibull

µ σ λ cov k c

EV1 9.62 14.48 9.62 0.014 9.79 1.03
EV2 29.76 35.98 29.76 0.076 27.17 0.85
EV3 8.94 14.29 8.94 0.014 9.09 1.03
EV4 120.1 23.34 120.2 0.765 128.0 6.96
EV5 58.46 81.54 60.14 0.2877 59.68 1.041

As can be inferred from the Figures, not all the analyzed distributions are acceptable,

regards the goodness of fit. Concerning the length of single routes, it could be noted that
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Figure 2.5: Probability distribution functions fitted from EVs’ route length data.

the test also accepts Poisson distribution, but only for EV1, EV3 and EV5. The reason is

related to the fact that both EV2 and EV4 show different behaviors during the observation

period (one year): in the first half of the year, route length of both vehicles is quite short; on

the contrary, in the second half, the frequency of longer routes increases. Considering the

different behaviors, a distinction in categories could be carried out. Data of EV2 could be

divided into two categories: routes with length shorter than 70 km, and routes with length

longer than 70 km. For EV4, a division between routes longer/shorter than 110 km could

be done. Distribution fitted are presented in Fig. 2.6.

Figure 2.6: Probability distribution functions fitted from EV2 (a) and EV4 (b) route length
data.
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In MATLAB environment, the χ2-test described in Section 2.2.5 is carried out through

the chi2gof function, giving as an outcome indication of the distribution function condition,

that can be rejected (R) or not rejected (NR). For the statistical analysis of number of

routes, three significance levels α are set, in order to evaluate which distribution better fits

data. In Table 2.3 the results of the tests are shown. The Normal distribution is always

rejected, for all the EVs, while Poisson distribution is not rejected, only for the routes of

EV1 (when α is lower than 20%), EV3 (when α is 0.5%), EV4 (for all values of α) and

EV5 (when α is lower than 20%). Therefore, it can be affirmed that the best distribution

fitting is obtained with data from EV4, with a good fitting for EV1 and EV5 as well. The

variable related to EV2 cannot be fitted neither with a Normal nor a Poisson distribution.

As regards the route length, the results of the χ2-goodness of fit test are shown in Ta-

ble 2.4. The results refer to a value of α equal to 5%. As it can be observed, the Normal

and Weibull distributions do not fit data of all EVs, in contrast to the Poisson distribution,

that fits data from EV1, EV3 and EV5. Since EV2 and EV4 data never fit a distribution, the

test is carried out also for the divided data groups pointed out in Fig. 2.6. Table 2.5 gathers

the results. It can be seen that with this assumption the Poisson distribution fit is always

rejected, whereas a Weibull distribution fits data of EV2 route length shorter than 70 km,

and a Normal Distribution fit is good for EV4 route length longer than 110 km. According

to the statistical analysis outcome, the random generation of the routes of vehicles is carried

out in the following by considering for each EV the not rejected distribution and extending

the use of Poisson distribution where all the hypotheses are rejected.

Table 2.3: χ2-test results for number of routes.

α = 0.5% α = 5% α = 20%
Normal Poisson Normal Poisson Normal Poisson

routes EV1 R NR R NR R R
routes EV2 R R R R R R
routes EV3 R NR R R R R
routes EV4 R NR R NR R R
routes EV5 R NR R NR R R

Regarding input data of the problem, the daily horizon is split into 15 minutes intervals,

according to available data for PV production and in order to catch short travel time of EVs.
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Table 2.4: χ2-test results for length of routes (α = 5%).

Normal Poisson Weibull
length EV1 R NR R
length EV2 R R R
length EV3 R NR R
length EV4 R R R
length EV5 R NR R

Table 2.5: χ2-test results for length of routes EV2 and EV4 (α = 5%).

Normal Poisson Weibull
length EV2>70 R R R
length EV2<70 R R NR
length EV4>110 NR R R
length EV4<110 R R R

In Fig. 2.7, two scenarios for EV exploitation are shown, where plug-in times are reported.

For each vehicle, the number of routes and the route length are randomly chosen from

the probability distribution functions. In the first scenario, analogous to the one analyzed

in [105], all the vehicles except EV4 take at least one route, with maximum duration 30

minutes. In the second scenario, both EV4 and EV5 take longer routes (maximum duration

is 2 hours), while EV2 is not exploited for mobility. These scenarios are quite different one

from the other, in order to evaluate the influence of EV plug-in times on their exploitation

within the microgrid. An auxiliary routine is developed to determine the route lengths and

the relevant amount of energy needed for each travel for each EV, equipped with 30-kWh

capacity. Moreover, two different PV production curves are estimated, representing summer

and winter PV availability. For the purpose of the study, PV production and EV usage

scenarios are combined, simulating a total of 4 typical days. Two of the 5 Configurations

already introduced in [105] are studied for each day and for the 3 optimization problems.

In particular, the Configuration 1 represents the complete outline, while the Configuration

5 represent the EVs uncoordinated charge case.

2.2.8 Results of the deterministic procedure

In this section the simulation results are shown and divided into two main groups: the

results referring to the summer day and the ones relating to the winter day. The application
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(a) (b)

Figure 2.7: EV plug-in times in Scenario 1 (a) and Scenario 2 (b).

of OF3 to the DC microgrid (Configuration 1), considering a clear-sky summer day under

EV Scenario 1, leads to power exchanges during the daily horizon shown in Fig. 2.9a. With

respect to the application of OF1 in the same conditions reported in Fig. 2.8, the discharges

of EVs during the day are more frequent, due to the absence of wearing costs linked to EVs

and BESS. Moreover, from 00:00 to 02:00 power exchanges among the vehicles (V2V)

are present, while in the time interval between 08:30-08:45 EVs discharge, added to the

PV production, is delivered to the grid (V2G). Furthermore, PV availability is mostly used

to charge the vehicles. The BESS also exploits discharging (after 04:00 and 13:00) and

charging processes.
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Figure 2.8: Application of OF1 to Configuration 1 in a summer day, considering EV Sce-
nario 1.

The evolution of SOC for EVs and BESS is reported in Fig. 2.9b. The BESS is dis-
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charged down to 48% from 04:00 to 05:00 to charge mostly EV4. Moreover, both EV1 and

EV2 have SOC values often greater than 70%, due to frequent though short routes during

the day.

In case of considering the application of EV Scenario 2, with less intense use of EVs,

results of OF1 are reported in Fig. 2.10a, where a longer V2G session is pointed out from

08:15 to 08:45. Moreover, the availability of PV guarantees the charge of EVs and the

selling to the grid. No grid power purchase is observed, and the BESS is not called to

exchange power, due to the presence of wearing costs. Results of OF2 application are re-

ported in Fig. 2.10b. With respect to OF1, a more distributed exploitation of EVs and BESS

is observed. The absence of economic targets frees out the power exchanges, especially in

the interval 01:00-03:00, when some V2V and V2G exchanges are observed, in addition to

power exchanges among EVs and BESS. This behavior is frequent even during the daylight

hours when the PV is available. No grid purchases from the external grid are spotted.

In Fig. 2.11 the power balance and SOC trends are reported, applying OF3 to Con-

figuration 1 and the EV usage Scenario 2. The reduced mobility of EVs does not affect

consistently the power exchanges profile (quite similar to the previous case), but a more

intense V2G exploitation is observed in the time interval 08:00-10:00. As a matter of fact,

at 08:00 all EVs discharge at maximum power (10 kW) to sell power to the grid and also

to charge the BESS. Furthermore, the intense use of EV4 and EV5, because of their long

routes, is marked by the SOC level under the 50%. For this reason, most of the PV power

production is dedicated to the charge of these two EVs, until they are fully charged (from

15:00 to 18:00). During a winter day, the reduced PV availability affects the operation

of the DC microgrid. The peak of PV production is nearly 6 kW, with 28.4 kWh daily

generation that cannot provide the EVs power requests, so it is necessary for the system to

purchase energy from the distribution grid, in order to charge the EVs before their depar-

tures (Fig. 2.12) and after their arrivals. Considering the application of the technical target

OF2, power purchases are distributed during the time interval 05:00-18:00 (Fig. 2.12b). The

general behavior does not change, with respect to the previous case. The application of OF3

(Fig. 2.12c) leads to a different conduct of the system, due to the presence of only techni-
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Figure 2.9: Application of OF3 to Configuration 1 in a summer day, considering EV Sce-
nario 1. Power exchanges (a) and trends of EVs and BESS state of charge (b).

cal constraints on BESS discharge. In particular, from 00:00 to 03:00 EVs exchange small

power quantities among them. In interval 05:00-06:00 the microgrid purchases energy from

the external grid and all the PV power is dedicated to charge EVs. Other V2V processes

can be noted before 20:00. In the winter day, no BESS exploitation is detected in Scenario

1. This is ascribable to the lack of excess PV power able to charge battery, and to higher

wearing costs of BESS with respect to EV ones. Furthermore, EVs never operate in V2G

mode, regardless of the considered target. Considering the EV Scenario 2, a quite similar

operation can be seen in OF1 and OF2. In Fig. 2.12d the application of OF3 is represented.

Differently from the Scenario 1, a small operation of BESS is detected in order to sustain

intense EV charge. Subsequently, after 19:00, BESS is recharged by EV2 and EV5.
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Figure 2.10: Application of OF1 (a) and OF2 (b) to Configuration 1 in a summer day,
considering EV Scenario 2. Power exchanges.

2.2.9 Indicator evaluations

Total daily costs for both summer and winter days are reported in Table 2.6. It can be ob-

served that the application of OF3 in summer day leads to lower economic efforts than OF2

and slightly higher than OF1. In the winter day the application of OF3 implies the high-

est costs, while the OF2 is the most convenient. The reason is that the application of OF3

leads to numerous power exchanges among EVs, affecting the total cost. The reduced EV

mobility considered in the Scenario 2 leads to lower daily costs, and to a bigger saving, in

comparison to the uncontrolled charging (Configuration 5): the registered saving is about

57% in summer day, and 38% during winter day.

The peak values of power exchange with the grid for both summer and winter days, referring
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Figure 2.11: Application of OF3 to Configuration 1 in a summer day, considering EV Sce-
nario 2. Power exchanges (a) and trends of EVs and BESS state of charge (b).

to the EV Scenario 1, are reported in Table 2.7. As expected, the lower peaks (10.57 kW

sold in summer and 11.94 kW purchased in winter) are registered when OF2 is simulated.

The peak power demand in Configuration 5 (uncontrollable EV charge) is lower than the

one from Configuration 1, in winter day. However, the total daily costs is higher, confirm-

ing that the Configuration 5 is not optimized. Furthermore, for each day and configuration,

it is observed that the targets of objective functions imply that grid power exchanges are

oriented in only one direction, as reported in previous figures. In the presence of excess

energy production, power exchange flows only from microgrid to the distribution grid (and

the power P out
g is always null, see in Table 2.7 summer day in Configuration 1), otherwise

power is only withdrawn from the external grid (while P in
g is always null).

In Table 2.8, the number of daily equivalent cycles for EVs and BESS in Configuration 1 is
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Figure 2.12: Application of OF1 (a), OF2 (b) to Configuration 1 in a winter day, considering
EV Scenario 1, and OF3 to Configuration 1 in a winter day, considering EV Scenario 1 (c)
and 2 (d). Power exchanges.

reported for the three objective functions in summer and winter days, for both EV Scenar-

ios. For what concerns the summer day of the Scenario 1 of EVs, discharge due to mobility

– a parameter for the optimization problem – is roughly 50% for EV2, and less for the other

vehicles. The results of OF2 and OF3 show that all EVs experience nearly 1 full equivalent

discharge cycle, considering the sum of mobility and additional discharging (EV4 with OF3

is exploited at 99% in Scenario 1). BESS experiences a full discharge cycle when OF2 is

simulated. A completely different situation (no exploitation) is revealed in winter day. From

the application of OF1 and OF2, EVs do not experience additional discharges, while BESS

never operates. The application of OF3 implies additional discharges for vehicles. As a

matter of fact, in Scenario 1, EV5 is exploited at 92% (the sum of 32% from mobility and

60% from additional discharging), while other EVs at nearly 80%. Regarding the EV Sce-

nario 2, the EV4 usage affects its exploitation in V2G mode: the vehicle amount of further

discharge is about 36% in summer, and 25% during the winter day (considering objective
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function OF3). Moreover, EV2 discharges reach the 99% of a full discharge equivalent cy-

cle (considering both OF2 and OF3 in summer), as well as BESS, that gets to the maximum

number of equivalent discharge cycles, only minimizing the technical objective function

(OF2). During winter, optimizing with OF3 leads to a reduced exploitation of BESS (3%

of equivalent discharge cycle), and to an intense use of EVs, except for EV4.

Table 2.6: Total daily cost [e].

EV Scenario 1 EV Scenario 2
OF1 OF2 OF3 OF1 OF2 OF3

Config. 1 8.65 12.07 10.70 5.41 8.89 7.49Summer
Config. 5 18.30 18.30 18.30 12.45 12.45 12.45
Config. 1 13.04 11.03 16.25 8.49 8.23 12.07Winter
Config. 5 17.81 17.81 17.81 13.22 13.22 13.22

Table 2.7: Grid power exchange peak value [kW] in Scenario 1.

OF1 OF2 OF3
P in
g P out

g P in
g P out

g P in
g P out

g

Summer Config. 1 0 12.14 0 10.57 0 42.87
Config. 5 20.00 0 20.00 0 20.00 0

Winter Config. 1 23.00 0 11.94 0 41.22 0
Config. 5 20.00 0 20.00 0 20.00 0

2.3 Influence of price variations on V2G exploitation

It could be pointed out that, although electricity pricing has been investigated in different

aspects of EV integration even including PV systems, the effect of different buying/selling

prices is seldom analyzed along with bidirectional energy exchange with EVs. In addition,

aspects concerning the interactions in microgrid energy management procedures between

energy pricing schemes and wearing costs of energy storage and EVs need to be investi-

gated in order to individuate the most suitable strategies.

In this section, the day-ahead energy management of the DC-based EVSI proposed in Sec-

tion 2.2.1 is carried out, considering different scenarios based on a set of structural, oper-

ating, and economic conditions. The layout of the DC-based EVSI differs only for BESS

size, considered in these analyses with 15 kW maximum charging/discharging power and
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Table 2.8: EV and BESS equivalent discharge cycles in Configuration 1, for both Summer
and WInter days, for all EV scenarios.

SUMMER
EV Scenario 1 EV Scenario 2

Mobility OF1 OF2 OF3 Mobility OF1 OF2 OF3
EV1 0.38 0.10 0.62 0.56 0.13 0.33 0.85 0.73
EV2 0.50 0 0.50 0.38 0 0 0.99 0.99
EV3 0.25 0 0.66 0.72 0.13 0.15 0.85 0.78
EV4 0 0 0.91 0.99 0.50 0 0.49 0.36
EV5 0.32 0 0.58 0.56 0.31 0 0.63 0.65

BESS — 0 1.00 0.80 — 0 1.0 0.82
WINTER

EV Scenario 1 EV Scenario 2
Mobility OF1 OF2 OF3 Mobility OF1 OF2 OF3

EV1 0.38 0 0 0.47 0.13 0 0 0.84
EV2 0.50 0 0 0.30 0 0 0 0.90
EV3 0.25 0 0 0.62 0.13 0 0 0.87
EV4 0 0 0 0.88 0.50 0 0 0.25
EV5 0.32 0 0 0.60 0.31 0 0 0.69

BESS — 0 0 0 — 0 0 0.03

30 kWh capacity. This approach aims at investigating how the system deals with differ-

ent scenarios, in terms of exchanged power within the microgrid and with the distribution

grid, in order to point out possible influences on microgrid day-ahead operation planning of

autonomous management strategies (e.g. devices under maintenance, availability of higher

energy levels). Moreover, the presence of different price schemes, related to actual energy

market and tariff behaviour, can reflect the possibility to promote energy service provision

by microgrid involving V2G technologies. The consideration of a real-sized installation

allows to inspect possible applications to single users in the framework of energy commu-

nities.

2.3.1 Definition of scenarios

The definition of scenarios involves the combination of structural and operating conditions,

defined in the following:

• Structural condition regards the inclusion or the exclusion of BESS with the aim of

investigating its influence within the microgrid, affecting the investment decision or
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the maintenance plans,

• operation conditions, regarding initial and final SOC (at 00:00 and 24:00) of BESS

- whenever present - that are set to 10 kWh, which means that BESS is discharged

at the beginning and at the end of the simulation time window (roughly 0.26 p.u.).

Differently, EV initial and final SOC are set to 27 kWh (at 0.9 p.u.) in order to be

ready for possible mobility needs.

As previously reported in Section 2.2.8, where BESS is charged to 0.9 p.u. at the beginning

of the simulation, its exploitation is not significant with respect to the other components (as

EV charging stations). Therefore, the analyses are aimed at fostering a different exploitation

of BESS.

Figure 2.13: Adopted price schemes.

The microgrid is simulated also considering different price schemes, where buying price

profile is the same for all schemes and selling price is properly modified. In Fig. 2.13 all

price schemes are reported. The blue line represents buying price profile. Price scheme 1

(PS1) includes and . In Price Scheme 2 (PS2) selling price profile is modified introducing

a spike variation during the interval 17:00-20:00, with a peak equal to the buying prices in

that time interval, while in Price Scheme 3 (PS3) the peak is increased to 0.30 C/kWh with

the aim of stressing the system to sell energy to the grid. Moreover, a fourth price scheme

scenario (Price Scheme 4 – PS4) is studied, adding a second spike variation of 0.30 C/kWh
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in selling price profile. The additional peak is set in the interval 07:00-10:00, with the same

duration of 3 hours of the second one. Furthermore, EV battery wearing costs is set to 0.033

C/kWh while 0.03 C/kWh for BESS, in line with moderate depth-of-discharge estimation

in [106], in order to catch technology evolution and to avoid the possible hindering of V2G

functionalities. EV usage pattern is the one shown in Fig. 2.7a.

Eight simulation scenarios are divided into two sets A and B. Scenarios A do not in-

volve BESS in the operation scheduling, while scenarios B include BESS optimal operation.

Table 2.9 synthetizes scenario characteristics. Relevant simulation outcomes are compared

with reference scenario (presence of BESS with high initial SOC and Price Scheme PS1)

in terms of total daily cost (i.e. the value of objective function (2.2)) and equivalent cycle

number, as defined in (2.19).

Table 2.9: Scenario definition

Scenario
Operating Conditions

BESS Price Scheme

A.1 NO PS1
A.2 NO PS2
A.3 NO PS3
A.4 NO PS4
B.1 YES PS1
B.2 YES PS2
B.3 YES PS3
B.4 YES PS4

2.3.2 Results and indicators

Fig. 2.14 shows power exchanges within the system and SOC levels of EV batteries in

Scenario A.1. Solar generation is used to charge EVs when they need, while the excess is

sold to the utility grid when selling price is convenient. No V2G exploitation is detected in

this scenario.

Introducing a spike price variation in Scenario A.2, power exchanges are reported in

Fig. 2.15a, while SOC levels in Fig. 2.15b. It can be seen that the system reacts with EV

discharge at maximum rate (10 kW) in order to take economic advantage by selling the
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maximum amount of power to the grid. Since the price variation occurs in the evening

when all EVs are connected to the microgrid, the required EV SOC level at the end of the

day – to cover the energy needs of next journeys – is reached because EVs are charged

during the day by PV. Same consideration could be made for Scenario A.3, whose results

are not showed for purpose of brevity. Results for Scenario A.4 are reported in Fig. 2.16.

The additional spike price during the morning hours implies an additional discharge of EVs

from 06:00 to 07:15. In order to deal with energy required by EVs for mobility, charging

processes occur from 02:00 to 03:30.
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Figure 2.14: Scenario A.1. Power exchanges (a) and EV SOC levels (b).
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Figure 2.15: Scenario A.2. Power exchanges (a) and EV SOC levels (b).

Considering the inclusion of BESS system in the optimal operation strategies, in Sce-

nario B.1 (i.e. with the same price scheme PS1), power exchanges and SOC levels are

similar to ones presented in Scenario A.1, since BESS wearing costs hinder its possible
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Figure 2.16: Scenario A.4. Power exchanges (a) and EV SOC levels (b).

exploitation. In Scenario B.2 BESS is called to participate in selling energy, discharging

together with EVs during the interval when the spike price occurs, as in Fig. 2.17a. Since

initial SOC level of BESS is 0.26 p.u., it is charged by PV production (from 06:00 and

15:00) before its discharge. In Scenario B.3, a more intense use of EVs is seen and BESS

discharging is anticipated with respect to Scenario B.2 (Fig. 2.17b). V2G exploitation for

EVs is consistent, while EV charge occurs at 02:00, purchasing energy from the distribution

grid because of its advantageous buying price. With the second price spike in Scenario B.4

(Fig. 2.17c) BESS and EVs take economic advantage in discharging in the morning and in

the evening, after an intense charging that takes place from 02:00 to nearly 03:30.

Fig. 2.18 collects BESS SOC levels in the Scenarios B. BESS exploitation in Scenarios

B.2 and B.3 is similar, in terms of energy, however charging and discharging in B.3 are

anticipated with respect to B.2 due to the further exploitation of EV discharge. Furthermore,

two events of almost full charging and discharging are detected for Scenario B.4.

Daily costs for all scenarios evaluated as in (2.2) are reported in Table 2.10. It can

be seen that Scenarios A.1 and B.1 leads to the same daily cost, as BESS operation is not

consistent. The assumptions of different price schemes imply lower daily costs, as expected

for cost minimization procedure. Scenario B.4 reaches a daily microgrid cost near to 0 C

exploiting the spike of selling price.

The number of equivalent discharge cycles for EVs and BESS is reported in Table 2.11.

For EVs, the evaluation of this indicator does not include the discharge related to mobility. It

52



2.3. INFLUENCE OF PRICE VARIATIONS ON V2G EXPLOITATION

2 4 6 8 10 12 14 16 18 20 22 24

Time [hh]

-60

-40

-20

0

20

40

60

P
o
w

er
 [

k
W

]

P
PV

P
g

P
B

1 P
ev

1

P
ev

2 P
ev

3

P
ev

4 P
ev

5

(a)

2 4 6 8 10 12 14 16 18 20 22 24

Time [hh]

-60

-40

-20

0

20

40

60

P
o
w

er
 [

k
W

]

P
PV

P
g

P
B

1 P
ev

1

P
ev

2 P
ev

3

P
ev

4 P
ev

5

(b)

2 4 6 8 10 12 14 16 18 20 22 24

Time [hh]

-60

-40

-20

0

20

40

60

P
o
w

er
 [

k
W

]

P
PV

P
g

P
B

1 P
ev

1

P
ev

2 P
ev

3

P
ev

4 P
ev

5

(c)

Figure 2.17: Power exchanges in Scenarios B2 (a), B3 (b), B4 (c).
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Figure 2.18: BESS SOC levels in Scenarios B.1-4.
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can be seen that adopting PS2 and PS3 the discharge of EVs reaches 0.2 cycle, with respect

to Scenario A.4 where discharge cycles of EV1, EV3 and EV5 are respectively 0.46, 0.56

and 0.34. In scenarios B.2, B.3 and B.4 BESS contribution in energy selling is significant,

as 0.67 discharge cycle is reached in B.2 and B.3, while more than 1 cycle (1.45) occurs in

B.4. Assuming low level of initial and final BESS SOC leads to a significant exploitation in

Scenarios B.2-4, whereas has not any influence in Scenario B.1.

The analysis of power trends and of indicators points out that the spikes in selling price,

if high enough to compensate wearing costs, represent a powerful mean to drive the be-

haviour of BESS and EV discharge. When BESS is available, the economic goal implies a

preference for BESS discharge with respect to EVs, therefore the need for specific advance-

ment of EV technology and information flow arises in order to push bidirectional energy

exchanges while providing energy for the mobility.

Table 2.10: Total daily cost.

Scenario Daily cost [e]

A.1 7.50
A.2 6.32
A.3 3.07
A.4 0.93
B.1 7.50
B.2 5.84
B.3 1.75
B.4 0.005

Table 2.11: Equivalent discharge cycle number.

Scenario BESS EV1 EV2 EV3 EV4 EV5

A.1 - 0 0 0 0 0
A.2 - 0.09 0.19 0.19 0.19 0.19
A.3 - 0.004 0.19 0.19 0.19 0.19
A.4 - 0.46 0.20 0.56 0.20 0.34
B.1 0 0 0 0 0 0
B.2 0.67 0.09 0 0.20 0 0.10
B.3 0.67 0.09 0.20 0.20 0.20 0.20
B.4 1.45 0.30 0.20 0.20 0.20 0.20

54



2.4. STOCHASTIC APPROACH FOR POWER AND RESERVE PROGRAMMING

2.4 Stochastic approach for power and reserve pro-

gramming

In this section, the day-ahead energy management procedure proposed in Section 2.2 is

enriched embedding the reserve provision by EVs and BESS to cope with uncertainties in

PV generation and EV mobility forecasts. The methodology is based on chance-constrained

mixed-integer linear programming (MILP) approach of Section 2.1 and integrating errors

on EV arrival state. The procedure is implemented in Matlab environment, to determine

exchanged power with the distribution grid and within the EVSI, and local up and down

reserve levels, minimizing the daily total costs of the microgrid.

The procedure includes: i) internal reserve provision scheduling by BESS and EVs to

deal with fluctuations in PV generation and EV mobility, ii) PV production and EV SOC

uncertainty, modelled through forecast error probability, and included in chance-constrained

MILP strategy, iii) different strategies for reserve provision in terms of target subdivision

among BESS and EVs and total economic effort.

2.4.1 Chance-constrained programming for BESS reserve pro-

vision

The proposed stochastic approach is aimed to ensure the balance of generation and demand

and proper usage of sources in the presence of uncertainties related to PV generation and

EV usage. The procedure is based on the definition of forecasting errors for the PV gener-

ation and the arrival SOC of a defined subset of EVs affected by uncertainty ΩEV,unc. The

actual values of PV production and arrival SOC depend on the forecast errors ϵPV (t) and

ϵS(t
arr
EV,j), as in (2.20) and (2.21).

P act
PV (t) = PPV (t) + ϵPV (t) ∀t ∈ [1, NT ] (2.20)

Sarr,act
EV,j (tarrEV,j) = Sarr

EV,j(t
arr
EV,j) + ϵS(t

arr
EV,j) (2.21)
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Negative values of ϵPV (t) and ϵS(t
arr
EV,j) imply that the system requires additional gener-

ation. On the contrary, positive values of errors report the case of the network requiring a

decrease in generation. Assuming that the forecasts are independent each other, the worst

case is present when the two errors have the same sign. Hence, maximum positive and

negative aggregated error are defined in (2.22a) and (2.22b).

ϵ−(t) = ϵPV (t) + ϵS(t) ∀t ∈ [1, NT ] (2.22a)

ϵ+(t) = −ϵPV (t)− ϵS(t) ∀t ∈ [1, nt] (2.22b)

The chance-constrained approach is adopted to define the level of positive (up) and

negative (down) reserves provided by BESS, R+
B(t) and R−

B(t), which represent additional

state variables of the procedures, needed to compensate the forecasting error of PV power

production and EV SoC with proper confidence levels α+
x (t) and α−

x (t) in each time step,

where subscript x represents the general uncertainty source. Therefore, the following con-

straints (2.23a) and (2.23b) are included in the optimal day-ahead programming problem:

P
(︁
ϵ−(t) ≤ R−

B(t)
)︁
≥ 1− α−

x (t) (2.23a)

P
(︁
ϵ+(t) ≤ R+

B(t)
)︁
≥ 1− α+

x (t) (2.23b)

With the assumption that errors ϵPV (t) and ϵS(t
arr
EV,j) can be described by distinct nor-

mal distributions, with respective mean values µϵ,PV (t) and µϵ,S,j(t
arr
EV,j) and standard devi-

ations σϵ,PV (t), σϵ,S,j(tarrEV,j), the stochastic relations (2.23a) and (2.23b) can be linearized

and included in the microgrid programming problem in order to ensure that positive and

negative reserve levels should be at least equal to the (1− α+
x )-th and (1− α−

x )-th quantile

of probability distributions associated to the x uncertain input:

R−
B(t) ≥ qPV,−

1−α−(t) +
∑︂

k∈ΩEV,unc

qS,k,−
1−α−(t)

nϵ,S,k ·∆t
(2.24a)

R+
B(t) ≥ qPV,+

1−α+(t) +
∑︂

k∈ΩEV,unc

qS,k,+
1−α+(t)

nϵ,S,k ·∆t
(2.24b)
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qPV,−
1−α−(t) = +µϵ,PV (t)− erf−1

(︁
α−
PV (t)− 1

)︁
· σϵ,PV (t) (2.25a)

qPV,+
1−α+(t) = −µϵ,PV (t) + erf−1

(︁
1− α+

PV (t)
)︁
· σϵ,PV (t) (2.25b)

qS,k,−
1−α−(t) = −erf−1

(︂
α−
S,k(t)− 1

)︂
· σϵ,S,k(tarrEV,k) + µϵ,S,k

(︁
tarrEV,k

)︁
(2.25c)

qS,k,+
1−α+(t) = erf−1

(︂
1− α+

S,k(t)
)︂
· σϵ,S,k

(︁
tarrEV,k

)︁
− µϵ,S,k

(︁
tarrEV,k

)︁
(2.25d)

As in (2.24a) and (2.24b), quantiles related to arrival SoC uncertainty are expressed

in kWh, while quantiles of PV production are in kW. Therefore, the energy quantities are

spread through nϵ,S,j time intervals after the forecast arrival time tarrEV,j . Moreover, quantiles

depend on the distribution parameters, as in (2.25a)-(2.25d), where erf−1 is the inverse error

function for a specific probability level.

The reserves that can be provided the BESS unit at time t are limited by the actual

available energy stored and the maximum charging/discharging power, assuming that fore-

cast error and subsequent reserve provision are not affected by previous conditions and

accounting for charge/discharge efficiencies (2.26a)-(2.26d):

R+
B(t) ≤

SB(t)− SMIN
B

ηdB ·∆t
(2.26a)

R+
B(t) ≤ P d,MAX

B − P d
B(t) (2.26b)

R−
B(t) ≤ ηcB ·

SMAX
B − SB(t)

∆t
(2.26c)

R−
B(t) ≤ P c,MAX

B − P c
B(t) (2.26d)

2.4.2 Reserve provision by BESS and a cluster of EVs

Assuming that one of the EVs is affected by uncertainty in SOC at arrival time, i.e. ΩEV,unc =

{1}, the reserve provision of nEV − 1 EVs, when connected to the charging stations, re-

quires the inclusion of positive and negative reserves in the state vector, adding R+
EV,j (t)

and R−
EV,j (t). For each EV j ∈ {2, . . . , nEV } enabled to provide reserve and for each time
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t, further relations analogous to (2.26a)-(2.26d) are considered as well.

nEV∑︂
k=2

R−
EV,k(t) +R−

B(t) ≥ qPV,−
1−α−(t) +

qS,k,−
1−α−(t)

nϵ,S,k ·∆t

⃓⃓⃓⃓
k=1

(2.27a)

nEV∑︂
k=2

R+
EV,k(t) +R+

B(t) ≥ qPV,+
1−α+(t) +

qS,k,+
1−α+(t)

nϵ,S,k ·∆t

⃓⃓⃓⃓
k=1

(2.27b)

In order to evaluate the distribution of BESS and EV power reserve during the day, op-

erational constraints are defined for BESS exploitation. In particular, (2.28a) and (2.28b)

impose that total negative and positive reserves by BESS cover at least the 25% of the total

required reserves, while (2.28c) refers to the BESS daily operation, forcing daily charging

energy to be at least the 50% of BESS capacity HB .

∑︂
t

R−
B(t) ≥ 0.25 ·

[︄
qPV,−
1−α−(t) +

qS,k,−
1−α−(t)

nϵ,S,k ·∆t

⃓⃓⃓⃓
k=1

]︄
(2.28a)

∑︂
t

R+
B(t) ≥ 0.25 ·

[︄
qPV,+
1−α+(t) +

qS,k,+
1−α+(t)

nϵ,S,k ·∆t

⃓⃓⃓⃓
k=1

]︄
(2.28b)

∆t ·
∑︂
t

P c
B(t) ≥ 0.5 ·HB (2.28c)

2.4.3 Case study and results

The proposed methodology requires the modelling of uncertainties by means of probabil-

ity distributions. Error of PV generation is modelled as Normal distribution with mean

µϵ,PV (t) = 0 and standard deviation σϵ,PV (t) corresponding to 10% of the forecasted

value of PPV (t) in each timestep (PV production curve considered is the one representing

a summer day in Section 2.2.7). Since EV1 is the vehicle with the highest number of jour-

neys during the day (see Scenario 1 in Fig. 2.7) – arriving at the DC microgrid at timesteps

36, 53 and 70 – the SoC uncertainty is associated to it, and the distribution is defined with

mean value µϵ,S,j

(︂
tarrEV,j

)︂
set to 0 and standard deviation σϵ,S,j

(︂
tarrEV,j

)︂
set to 20% of EV

capacity CEV,j , according to the studies in [egrid6] and [egrid8]. Constraint violation prob-

abilities α+
x (t) and α−

x (t) are both set equal to 0.5% for each time-step for PV uncertainty,

while they are set to 5% for EV SoC uncertainty, that is spread in terms of power over
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one hour, therefore in nϵ,S,j = 4 timesteps (keeping 15-min duration as in Section 2.2.1).

Probability distribution function parameters and relevant quantiles used in the procedure are

summarized in Table 2.12.

Table 2.12: Probability function parameters and quantiles.

Uncertainty µϵ σϵ α+
x α−

x

ϵPV (t) 0 0.1 · PPV (t) 0.005 0.005
ϵS(t

arr
EV,k) 0 0.2 · CEV,k 0.05 0.05

Simulations are carried out considering three cases:

• Case 1: reserve provided only by BESS,

• Case 2: reserve provided by BESS and EV batteries,

• Case 3: reserve provided by BESS and EV batteries including the constraints (2.28a)-

(2.28c).

Fig. 2.19a shows up and down reserve profiles for BESS in Case 1. As it can be seen

about 8 kWh reserve for arrival SoC variations is spread over 1 hour operation after each

arrival time of EV1. This amount of reserve is added to the bell-shaped one related to PV

fluctuations. However, the installed battery size is able to fully comply with the required in-

ternal reserve. In Fig. 2.19b daily optimal schedule of DC microgrid is reported, where PV

production is used for energy selling to the distribution grid and successively for EV charg-

ing. EV1 exploitation in V2G mode occurs at 08:15. It could be observed that the wearing

cost contribution implies that BESS remains unexploited for power balance, although useful

for reserve tasks.

When EV batteries are included in the reserve provision schedule in Case 2, most of

reserve is provided by EVs, as shown in Fig. 2.20a, where EV4 and EV5 cover most part of

reserve energy, since the first does not take any trip while the second takes only one travel

during the day. EVs provide most of reserve in the central hours of the day, with some

contributions by EV3 after 14:00. Between these intervals, when the reserve requirement

exceeds 10 kW, EV5 alone is not able to cover the reserve, therefore some help from other
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Figure 2.19: Reserve levels (a) and power exchanges (b) in Case 1.

EVs is present. The provision of reserve by BESS is concentrated at the beginning and

at the end of PV production interval, only to absorb negative errors. Power exchanges

within microgrid (Fig. 2.20b) occur during central hours of the day, since PV production

is delivered to the distribution network in the morning and then exploited for EV charging

in the afternoon, with little contribution by BESS due to higher wearing cost and lower

efficiency with respect to EVs. Moreover, EV5 has changed the charging plan, in order to

avoid high power exchange when providing reserve.
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Figure 2.20: Reserve levels (a) and power exchanges (b) in Case 2.

Different daily operation is depicted in Case 3. In Fig. 2.21a, the distribution of internal

reserve shows that EV3 partly replaces BESS reserve provision (between 09:00 and 10:00

and after 18:30). This reveals that the amount of power that BESS could provide is reduced,

since its operation is forced to comply a minimum level of energy. In fact, a more significant
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BESS exploitation for power provision can be noted in Fig. 2.21b, since a discharge at

maximum power occurs at 08:00, when also EV1 and EV2 operate in V2G mode to sell

energy to the grid, according to advantageous energy selling price. BESS is charged by PV

when EVs are absent, replacing grid connection exchanges, and again discharged in the last

intervals in order to charge EV1 and EV2.

A comparison of daily microgrid costs observed in the three Cases, corresponding to the

objective function (2.2) values, is carried out in Table 2.13. Slight cost differences can be

noted, since no revenues are associated to internal reserve energy provision. The increase of

costs when BESS is forced to operate is due to the presence of wearing cost in the objective

function of the optimization problem.

(a) (b)

Figure 2.21: Reserve levels (a) and power exchanges (b) in Case 3.

Table 2.13: Microgrid daily costs.

Case study Daily cost [e]

Case 1) reserve only by BESS 8.65
Case 2) reserve by BESS and EVs 8.72

Case 3) reserve by BESS and EVs with BESS use 9.60
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2.5 Fast charging station integration into DC-based

EVSI

In this section, the integration of fast charging station within the DC-based EVSI is fur-

ther investigated. Taking the cue from the methodology already presented in Section 2.2,

the problem is reformulated taking into account an additional fast charging station, with

particular focus on cable losses. In particular, same objective functions (2.2) and (2.10)

are separately considered, while the equality constraint (2.3) representing the active power

balance at DC common bus is modified as in (2.29)

ηininv · P in
g (t)− 1

ηoutinv

· P out
g (t) + ηdB · P d

B(t)−
1

ηcB
· P c

B(t)+

+
∑︂
j

[︄(︃
ηdEV,j · P d

EV,j(t)−
Rj

V 2
· P d

EV,j(t)
2

)︃
−(︄

1

ηcEV,j

· P c
EV,j(t)−

Rj

V 2
· P c

EV,j(t)
2

)︄]︄
= −ηPV · PPV (t)

(2.29)

where ηininv and ηoutinv are AC/DC converter efficiencies, while Rj is the cable resistance value

of the j-th charging station. Moreover, EV station cable losses are expressed in (2.30a) and

(2.30b) for charging and discharging processes. The value of cable resistance is calculated

as in (2.31),

P loss,c
EV,j (t) = Rj · IcEV,j(t)

2 = Rj ·
(︃
P c
EV,j(t)

V

)︃2

∀t ∈ [1, NT ], ∀j ∈ [1, nEV ] (2.30a)

P loss,d
EV,j (t) = Rj · IdEV,j(t)

2 = Rj ·

(︄
P d
EV,j(t)

V

)︄2

∀t ∈ [1, NT ], ∀j ∈ [1, nEV ] (2.30b)

Rj = ρj ·
lj
Sj

∀j ∈ [1, nEV ] (2.31)

where ρj , lj and Sj are respectively cable resistivity, length and section.
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2.5.1 Big-M method for problem linearization

Power balance constraint (2.29), as formulated, is not linear, hence it is not possible to

include it in the mixed-integer linear problem. Big-M method is therefore used to linearize

the constraint [107]. The aim of the linearization is to approximate quadratic functions

to linear ones: in the specific application, the auxiliary variables ycEV,j(t) and ydEV,j(t)

linearly approximate quadratic values of EV charging and discharging powers P c
EV,j(t) and

P d
EV,j(t), as in (2.32a) and (2.32b). Therefore, a set of constraints reported below ensure

the linearization of the problem by means of auxiliary continuous variables δc,mEV,j , δ
d,m
EV,j ,

and integer variables λc,m
EV,j ∈ [−1; 1] and λd,m

EV,j ∈ [−1; 1], both for charging (2.33a)-

(2.33d) and discharging power (2.34a)-(2.34d). Moreover, in the following equations, m is

the number of branches for linearization, while M is a big constant value.

ycEV,j(t) = P c
EV,j(t)

2 (2.32a)

ydEV,j(t) = P d
EV,j(t)

2 (2.32b)

P c,MIN
EV,j −∆P · (m− 1) ≥ λc,m

EV,j ·M (2.33a)

λc,m
EV,j + 1 ≥ δc,mEV,j ≥ λc,m

EV,j + 1 (2.33b)

ycEV,j(t) = P c
EV,j(t)

2 +
∑︂
m>1

δc,mEV,j ·
(︃(︂

Y c,m
EV,j

)︂2
−
(︂
Y c,m−1
EV,j

)︂2)︃
(2.33c)

P c
EV,j(t) = P c,MIN

EV,j +
∑︂
m>1

δc,mEV,j ·
(︂
Y c,m
EV,j − Y c,m−1

EV,j

)︂
(2.33d)

P d,MIN
EV,j −∆P · (m− 1) ≥ λd,m

EV,j ·M (2.34a)

λd,m
EV,j + 1 ≥ δd,mEV,j ≥ λd,m

EV,j + 1 (2.34b)

ydEV,j(t) = P d
EV,j(t)

2 +
∑︂
m>1

δd,mEV,j ·
(︃(︂

Y d,m
EV,j

)︂2
−
(︂
Y d,m−1
EV,j

)︂2)︃
(2.34c)

P d
EV,j(t) = P d,MIN

EV,j +
∑︂
m>1

δd,mEV,j ·
(︂
Y d,m
EV,j − Y d,m−1

EV,j

)︂
(2.34d)
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Then, (2.32a) and (2.32b) are substituted in (2.29), obtaining a linear equality constraint

for active power balance, as in the following (2.35):

ηininv · P in
g (t)− 1

ηoutinv

· P out
g (t) + ηdB · P d

B(t)−
1

ηcB
· P c

B(t)+

+
∑︂
j

[︄(︃
ηdEV,j · P d

EV,j(t)−
Rj

V 2
· ydEV,j(t)

)︃
+

−

(︄
1

ηcEV,j

· P c
EV,j(t)−

Rj

V 2
· ycEV,j(t)

)︄]︄
= −ηPV · PPV (t)

(2.35)

With respect to the formulation in Section 2.2.1, m · NT · nEV · 4 additional variables are

added, along with 2 · (2 · nEV ·m+ 2 · nEV ·NT ) further constraints.

2.5.2 Indicators

As for studies in Section 2.2, a comparison of results is carried out by means of techni-

cal and economic indicators, such as daily cost evaluated as in (2.2) and maximum values

of imported and exported power at AC/DC converter, namely Ein,tot
g and Eout,tot

g . Fur-

thermore, converter losses Ltot
conv and cable losses Ljoule,tot

EV,j are evaluated respectively in

(2.36a) and (2.36b), whereas energy stored in BESS EB and EVs EEV,j (when plugged-in)

are evaluated in (2.37a) and (2.37b).

Ltot
conv =

∑︂
t

[︄(︂
1− ηininv

)︂
· P in

g (t) +
(︂
1− 1

ηoutinv

)︂
· P out

g (t) +
(︂
1− ηdB

)︂
· P d

B(t)+

+
(︂
1− 1

ηcB

)︂
· P c

B(t) +
∑︂
j

(︂
1− ηdEV,j

)︂
· P d

EV,j(t) +
(︂
1− 1

ηcEV,j

)︂
· P c

EV,j(t)

+
(︂
1− ηPV

)︂
· PPV (t)

]︄
(2.36a)

Ljoule,tot
EV,j =

∑︂
t

[︄
Rj

V 2
· ydEV,j(t) +

Rj

V 2
· ycEV,j(t)

]︄
(2.36b)

EB = ∆t ·
∑︂
t

[︂
P c
B(t)− P d

B(t)
]︂
· 1

HB
(2.37a)
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EEV,j = ∆t ·
∑︂
t

[︂
P c
EV,j(t)− P d

EV,j(t)
]︂
· 1

HEV,j
(2.37b)

2.5.3 Case study

The DC microgrid layout has been already introduced in the previous Section 2.2.7, with

component features as well. Some variations are here introduced, in order to approach

the implementation of the day-ahead programming procedure in the energy management

system of an EVSI (see Section 2.6 for completion). In particular, the Sodium-Nickel BESS

is characterized by nominal capacity of 90 kWh and 25 kW charging/dischargin power,

whereas PV has 20 kW installed power and bidirectional EV charging stations have 15 kW

nominal power.

The input data concerning solar irradiance for PV production is taken from Solcast

[108], considering two different scenarios: typical summer days with high PV production

(characterized by peak power of 16.83 kW and 207 kWh generated) and low PV production

(characterized by peak power of 11.26 kW with 100 kWh daily production). Moreover,

buying and selling prices are taken respectively from ARERA authority [109] and National

Single Prices [110]. For the standard charging stations the EV usage pattern is not modi-

fied, while the EV connected to the additional fast charging station has the characteristics

reported in Table 2.14 and a usage configuration reported in Fig. 2.22. EV6 shorter plug-in

times (comparing to the other 5 EV times) are chosen in order to push the fast charging

station to operate at maximum of its potentiality. Moreover, the fast charging station does

not allow EV discharge.

00:00
03:00
06:00
09:00
12:00
15:00
18:00
21:00
00:00

EV1 EV2 EV3 EV4 EV5 EV6

Figure 2.22: EV plug-in times including EV6 at the fast charging station.
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Table 2.14: EV6 station features.

EV6

Autonomy [km] 250
ηcEV 0.95
ηdEV 0.95
P c,MIN
EV [kW] 0

P c,MAX
EV [kW] 75

P d,MIN
EV [kW] 0

P d,MAX
EV [kW] 0

Cap [kWh] 76.6
SMIN
EV [kWh] 15

2.5.4 Results with high PV production

Fig. 2.23a shows the exchanged powers within microgrid assets. It can be noted that EV6,

which is enabled only for charging and not for V2G mode, is charged from 06:45 to 07:15

with a 75 kW peak around 07:00, according to the routes shown in Fig. 2.22. As a matter

of fact, due to long routes and short plug-in times (30 minutes), EV6 exploits the fast sta-

tion up to its maximum power of 75 kW, requesting power from other connected EVs and

either from the grid or the ESS, since maximum power of AC/DC converter at the point

of connection is lower than the power requested by the fast charging station. One more

charging process occurs from 14:45 to 15:30, with a peak power of 64.79 kW at 15 p.m.,

taking advantage of the stored energy from the other EVs, and another one with a peak

power of 36.72 kW at about 19:15, due to power contribution of EV4 and EV5. It can be

observed from Fig. 2.23a, that in the case of cost minimization, EV1-5, while performing

some discharges to support EV6, do not have an incentive to perform many operations, as

battery degradation costs hinder their exploitation.

EV SOC levels are shown in Fig. 2.23b. It can be seen that EV6 charge is more intense

than other EVs in p.u. value of its capacity as well, according to its energy need and usage.

EV6 SOC goes from 58% to 100% during the first charge from 06:45 to 07:15, from 53%

to 89% during the second charge from 15:00 to 15:30, and from 69% to 96% during the

third charging process. Thus, EV6 SOC variation is contained within 45%. In contrast,

SOC variation of EVs 1,2,3,5 is contained within 30%-35%, the SOC variation of EV4 is
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larger within 40-45%, since its longer plug-in time allows it to contribute more for balancing

power flows.

Implementing the power exchange minimization problem (see Fig. 2.24), a different

EV exploitation is depicted, as EVs actively participate in power exchange with the DC

bus. They are encouraged to exchange more power due to the absence of degradation costs,

compared to the case of cost minimization. Moreover, several V2G and V2V processes take

place, even in the early hours of the day when there is no PV production. EV6, connected to

the fast charging station, is charged similarly to the cost minimization scenario (except for

last two charging processes in the early evening), with contribution of other EV discharges.
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Figure 2.23: Cost minimization with high PV production. Power exchanges (a) and EV
SOC levels (b).
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Figure 2.24: Exchange minimization with high PV production. Power exchanges (a) and
EV SOC levels (b).
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2.5.5 Results with low PV production

Power exchanges within the microgrid considering low PV production and cost minimiza-

tion procedure are shown in Fig. 2.25a. At 03:45 BESS discharges providing energy to EV5.

Subsequently, at 05:00 it discharges again to provide power to EV4. Moreover, at 07:00,

EV6 charges by taking advantage of PV availability, purchased power from the grid and

discharge of BESS and other EVs previously charged. In case of low PV production, it is

necessary to buy energy from the grid because PV production is not sufficient to guarantee

energy required by EV6. At 15:00 power from the grid, with a peak of 45 kW, is requested

to recharge EV6, since EV1-4 discharging powers are not sufficient, and it is not econom-

ically convenient to discharge the BESS again. It can be observed from Figure 2.25b that

EV6 SOC variation range is 58%-100% of capacity during the first charge from 06:45 to

07:15, from 53% to 87% during the second charge from 15:00 to 15:30, and from 68% to

96% during the third charge from 18:45 onwards. In contrast, the SOC variation for EV1-5

is contained within 25-30% of their capacity.

Considering power exchange minimization strategy, same considerations of cost min-

imization scenario could be done, as more V2V processes are detected by EVs to charge

EV6, and more energy from the grid is required due to low PV availability.
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Figure 2.25: Cost minimization with low PV production. Power exchanges (a) and EV SOC
levels (b).
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2.5.6 Indicator evaluation

Losses within the system are evaluated in order to depict any differences for each of the

case. Data related to the basic layout of the DC microgrid (Base MG) are evaluated simu-

lated considering the procedure with Big-M method and the updated characteristics of the

devices. Table 2.15 collects the results for EV5 and EV6 charging stations. It can be pointed

out that with technical objective OF2 EVs are more actively involved in power exchanges,

and this leads to a reduction of energy losses in the presence of economic goals OF1 by 20-

40%, whereas the use of fast charging station involves remarkable losses slightly different

among scenarios since the charging needs are concentrated in the same short intervals and

are covered by analogous power levels. The PV production level has low influence in base

microgrid (less than 10% variation of losses among cases) whereas with fast charging the

high PV production implies higher exchanges.

Table 2.15: Losses evaluation [kWh] in all scenarios at EV charging stations.

OF1 OF2

LEV,5 LEV,6 LEV,5 LEV,6

High PV prod. 0.204 - 0.285 -Base MG
Low PV prod. 0.221 - 0.278 -

High PV prod. 1.491 1.092 2.077 1.092MG with fast charging
Low PV prod. 0.041 1.011 0.059 0.982

Table 2.16 collects technical and economic indicators used to assess the impact of fast

charge integration within the DC microgrid. Higher costs are depicted when PV production

is low applying cost minimization procedure, due to additional energy purchasing for the

utility grid. The application of economic goal OF1 involves a reduction of daily procure-

ment cost between 20% and 30%, or an increase of energy exchange revenue when present,

with the exception of low PV production periods in the presence of EV fast charge posing

challenging targets of internal production exploitation. Moreover, total energy exchanged

with the grid in OF2 is always lower than in OF1, where the energy import is nullified or

reduced by 10%, and with a reduction of energy export ranging from 15% to 70% in the

presence of high PV production. Moreover, with low PV production and fast charge, the
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energy needs imply the absence of excess power delivery to the external grid.

Table 2.16: Daily indicators of the microgrid in all scenario.

OF1 OF2

Costs
[e]

Ein,tot
g

[kWh]
Eout,tot

g

[kWh]
Costs
[e]

Ein,tot
g

[kWh]
Eout,tot

g

[kWh]

Base
MG

High PV -23.46 6.23 132.00 -15.00 0.00 114.38
Low PV 9.74 8.53 46.19 15.36 0.00 28.08

MG with
fast charge

High PV 69.45 14.50 53.11 88.45 23.43 6.54
Low PV 88.68 48.86 0.00 88.80 44.10 0.00

2.6 Implementation of developed procedure

in energy management platform

In order to implement optimal strategies proposed in the previous sections within the DC

microgrid EVSI, it is necessary to have a robust data exchange infrastructure that can ensure

the information flow to and from the field and visualization of measured data from the field

devices. For the PROGRESSUS Use Case realization, DEOP, a cloud platform provided

by Siemens, was identified for supplying energy management of the DC microgrid demon-

strator. DEOP is a cloud-based software that provides a complete and comprehensive view

of all the plants, allowing the operator to benchmark and govern all assets thanks to the

support of the data generated almost in real time, through the setting of optimal planning

algorithms. Data amount generated in a microgrid is large and varied: energy and resource

monitoring, information on failures or malfunctions, and historical databse of energy gen-

eration or consumption, and forecasts as well. The reading and interpretation of these data

is often carried out by different parties, depending on relation to their task in microgrid

management and control operations. DEOP allows all data to be available in a cloud envi-

ronment. This means that measurements from sensors deployed in the plant, as well as data

imported via APIs (Application Programming Interface) and other systems, are available in

a single ”source” for all users. The main uses of DEOP are [111]: i) monitoring and trans-
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parency: the software collects real-time data from all the sensors connected to devices in the

field and displays it in an intuitive interface. It allows the creation of reports in standard or

custom formats depending on the intended use of the same, ii) operation planning: DEOP

makes it possible to visualize in a defined way the consumption levels in each controlled

area at any time of the day. An identification of trends in the pattern of flows of energy in a

given area is possible, developing strategies for maximizing efficiency, e.g., by maximizing

self-consumption.

In the following sections a description of the data exchange framework and preliminary

on-field test results are presented and discussed.

2.6.1 Development of interfaces

The definition of a suitable interface on the cloud-based platform of the energy management

system is developed to manage all the assets of the use case during operation. In particular,

the following activities have been carried out:

• Asset modelling and property definition,

• Report section creation,

• Event alert definition.

The assets modelled for the use case are: i) point of common coupling (PCC), ii) Energy

storage systems, iii) PV shelter, iv) EV charging station (one asset for each of five EV

stations - it should be noted that the EV fast charge inclusion in the interface is under

realization -). Each asset collects feeds (power and energy set points, status info, etc.)

optimized by the procedure, presented in the previous sections - details are provided in

Section 2.6.2, and to be sent to the physical assets of the use case (see Fig. 2.26). A reporting

section is also configured in order to create a control panel for graphic visualization of the

most representative variables of the system (see Fig. 2.27), such as:

• EV state of charge comparison,

• EV power exchange comparison,
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Figure 2.26: Properties and feeds associated to BESS asset.

• Energy storage system power,

• Energy storage system state of charge,

• PV power production,

• PCC power exchanges.

In DEOP, data are collected and shown as average values over 5-minute period, and instant

maximum and minimum values.

Figure 2.27: Visualized reports.

Furthermore, the possibility of configuring specific events related to anomalies that may
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occur in the various components of the microgrid is evaluated. This configuration allows

timely alarm notifications to be received and prompt action to be taken if necessary.

The configuration of events associated with faults is an important measure to ensure the

proper functioning of the microgrid. Events can be set to monitor a wide range of parameters

and conditions, e.g. component disconnections. Alarm notifications allow the responsible

personnel to be promptly informed of the presence of anomalies, enabling them to take the

necessary actions to resolve the problem. The first implemented alert is a reminder that

sends appropriate notifications at the beginning of each trimester in order to keep energy

prices updated. Thus, the implementation of four “Properties” associated events is consid-

ered:

• First trimester

• Second trimester

• Third trimester

• Fourth trimester

Trigger values are then chosen for the assets for practice purposes to test other anomaly

events. As expected, all the assets for which a trigger is set have generated the config-

ured event, reported in Fig. 2.28. Fig. 2.29 reports the interface created to have a general

overview of the microgrid operation through the report sections and to notify possible event

occurring, as in Fig. 2.30.

2.6.2 Data acquisition from developed optimal procedure and

external sources

The preliminary implementation of Matlab algorithm in DEOP environment is carried out

by automatically exporting output files for each optimized variable of the problem and im-

porting them from DEOP as the set point for field assets, as shown in Fig. 2.31.

The implementation is tested exchanging data from the cost optimization of the DC

microgrid, confirming its validity, since data shown in DEOP are corrispondent to MATLAB
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Figure 2.28: Configuration of alert event.

Figure 2.29: Creation of the dashboard for data visualization.

Figure 2.30: Creation of the dashboard for alert visualization.
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Figure 2.31: Data acquisition procedure.

ones. Fig. 2.32 shows EV SOC optimized levels considering high PV production and cost

minimization problem of Section 2.5, exchanged between Matlab and DEOP environment

and visualised in DEOP dashboard.

Figure 2.32: Visualization of scheduled EV SOC in DEOP dashboard.

The cloud based control system is interfaced with the field by means of a gateway-

switch combination where a set of PLCs are connected, with the taks of managing the

different protocols used by the devices (Profinet for battery energy storage BMS and for

photovoltaic converter, Modbus for EV charging stations), according to the scheme re-

ported in the Fig.2.33. Therefore, proper interface pages have been designed by system

integrator (Politecnico di Bari subcontractor in CONNECT Project with further activity in

PROGRESSUS Project), with focus on the network configuration, alarms, and specific con-

verters for BESS and PV systems, as reported in Fig. 2.34. Moreover, the DC microgrid is

equipped with an industrial wireless router, in order to make internet connection available

in the demonstrator area, enabling data exchange with the cloud-based energy management

system (DEOP) and with the Enel group EV backend system (EVOS), called to supervise

EV charging processes, and to be implemented for API exchange.
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Figure 2.33: Schematization of the communication devices in the DC microgrid testbed.

2.6.3 Preliminary functionality test of DC microgrid devices

The devices integrated in the microgrid (converters for PV and batteries, DC common bus,

grid connection converter) have been assembled by system integrator at its premises be-

fore final installation on field. In this stage, preliminary functionality of the DC microgrid

connection (without connecting any load or generator) has been performed. As reported in

Fig. 2.35, where the HMI interface page is shown, it can be seen that the AC/DC converter

connecting the DC microgrid to the distribution network is able to light up the DC bus and to

take it within the required operation level, that ranges between 550 V and 600 V according

to the operation range required for the devices to be connected on field. This commitment

test has been repeated on field, proving the grid to be put on in operation.

Additional tests on site concern the operation of components. In particular, the function

test of a single V2G charging station is carried out, thanks to the availability of a suitable

EV by Politecnico di Bari fleet. Due to the limitation of the passive temporary connection,

and to the absence of further EVs as loads, the test is carried out only in charging mode,

providing a proper local modulation of the charging power up to 15 kW, as can be seen in

real time in the local interface in Fig. 2.36 and registered in the developed energy manage-

ment interface for field data acquisition reported in Fig. 2.37 (it should be remarked that

the energy management system acquires positive power for loads and negative for genera-

tors, on the contrary of the operation programming strategy output). Moreover, an islanding

test is performed, connecting the sole photovoltaic system and the battery energy storage
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(a) (b)

(c) (d)

(e)

Figure 2.34: HMI pages for the local communication system of the DC microgrid testbed:
grid layout (a), alarms (b), battery converter (c), photovoltaic converter (d), BESS manage-
ment system (e).

in the early pre-heating stage, deactivating the AC/DC grid connection converter, for a 15-

min test. The registered trends in the energy management system interface are reported in

Fig. 2.38, where it can be seen that the photovoltaic converter can modulate the active power

generation (below the MPPT forecast production level) to cover an uncontrollable load as

the battery pre-heating.
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Figure 2.35: DC microgrid interface for preliminary functionality test of DC bus and con-
nections.

Figure 2.36: DC microgrid interface during charging test of EV1 at a V2G charging point.

2.6.4 Preliminary tests of the fast-charging station

The 75 kW EV fast charging station – defined HPC, has been installed within the DC mi-

crogrid demonstrator area, occupying the last parking slot below the photovoltaic canopy,

as shown in Fig. 2.39. It is provisionally connected at the AC level of the demonstrator area,

prior to the DC microgrid interfacing AC/DC converter, in order to prove the effectiveness

of the connection with Enel group backend EVOS and the modulation of charging process

via the power setpoints provided by Politecnico di Bari procedures and with the realization
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Figure 2.37: DC microgrid energy management system interface during charging test of
EV1 at a V2G charging point (red: photovoltaic, orange: V2G station, green: total power at
DC side including auxiliaries, purple: total power at AC converter side).

Figure 2.38: DC microgrid energy management system interface during island tests (solid:
average values every 5 minutes, dashed/dotted: maximum values every 5 minutes; red:
photovoltaic, green: total power at DC side including auxiliaries, purple: battery storage).

of a “load control area” in EVOS backend in order to directly control the charging process

of the HPC station and of the V2G stations.

As a preliminary test, a session for the power modulation is accomplished using chargers

in Enel laboratories, connected to EVOS platform, and to Energy Services Platform for

the setpoint during charging and so the power modulation. The communication between

EVOS and Energy Services platform is not based on same APIs shared with Politecnico di

Bari, but is an internal communication. Third party backend platforms usually gather the

properly details and information from EVOS database by means of interoperability services

using specific APIs. On the other hand, this kind of test is useful to make sure all setpoints

scenario, shared by Politecnico di Bari, can be reached by the chargers involved. In this re-
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gard, extensive testing is performed with unidirectional HPC 75 kW, such as remote starting

and charging stations power output modulation following the setpoints scenario scheduled.

Tests are performed using either EV Volkswagen ID.3 or a battery simulator. In Table 2.17

setpoints for preliminary tests of fast-charging station are reported. The test duration is 22

minute, and power setpoints are sent with at least 1-minute time-step.

(a) (b)

Figure 2.39: HPC fast charging station ready to operate (a) and operation panel of the station
(b).

Table 2.17: Setpoints for the preliminary test of fast charging station

Time Output power [kW]
11:13 7.3706
11:15 58.157
11:19 9.7053
11:24 0
11:25 25
11:30 58.157
11:31 75
11:32 0
11:33 62.083
11:34 54.75
11:35 0
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(a)

(b)

Figure 2.40: Comparison of power setpoint (a) and power output (b) by HPC fast charging
station in the test.

From the test, it results that the HPC follows the setpoint got from Enel X Way platform,

and the modulation works properly (see Fig. 2.40). In general, smart charging is more

visible for low level of SOC where the EV can also charge at maximum power, otherwise

due to the intrinsic nature of the battery, the power during charging decreases accordingly

to the increasing of the SOC.
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Chapter 3

Energy management strategies for a

LEC of DC microgrids

The inclusion of EVSI in a energy community can be of particular interest expecially when

bidirectional units are present. To this purpose, the combination of microgrids differently

equipped with RES, BESS and EV charging stations, even in a DC configuration is ad-

dressed in this chapter. A two-stage approach to deal with the day-ahead scheduling prob-

lem associated with the operation of an energy community with the presence of clusters

of EV charging stations is proposed in Section 3.1. In Section 3.1.1 the first stage, an

ADMM-based procedure that minimizes the total energy procurement cost of the commu-

nity is presented. In this stage, all the EV batteries connected to the same microgrid are

represented by an aggregate storage unit with variable capacity and SOC, depending on EV

arrivals and departures. In the second stage introduced in Section 3.1.2, local optimization

algorithms provide the detailed scheduling for each component and charging station inside

each microgrid. The second-stage optimization has been conceived to preserve the energy

transactions with other participants and the external utility grid according to the first-stage

solution.

Section 3.2 aims at extending the deterministic two-stage optimal procedure introducing the

possibility for BESS and EV batteries to provide the reserve needed to cope with the uncer-

tainties due to the fluctuations of solar generation. The main contributions of the procedure
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are listed and discussed below:

• chance-constrained programming technique is implemented to EV-based DC micro-

grids in a LEC to model BESS and EV reserves by means of a set of probabilistic

constraints in order to counterbalance the uncertainty associated with PV production

within the microgrid (as proposed in Section 2.4). The application of the chance

constrained approach is focused on the internal source of uncertainty. The effective-

ness of chance-constrained method is further assessed through a comparison with

simulation results of Monte-Carlo stochastic scenarios;

• the flexibility of EV charging stations and BESS to provide both up and down reserve

is used to compensate the PV forecast uncertainties, accounting for specific technical

constraints.

3.1 Deterministic two-stage approach for

LEC operation planning

The day-ahead scheduling of an energy community of microgrids with the presence of EV

charging stations is addressed by the two-stage scheduling approach illustrated in Fig. 3.1.

In the first stage, an ADMM-based optimization approach is employed to define the schedul-

ing of the resources for all the hours of the next day, following the procedure proposed

in [112]. The community includes microgrids equipped with clusters of bidirectional EV

charging stations and other prosumers (in the figure indicated as conventional) equipped

with PV systems, storage units, and local loads. According to the ADMM procedure, the

solution of the global optimization problem is distributed among the prosumers and mi-

crogrids that iteratively solve a local problem. The local optimization of each microgrid

equipped with a cluster of bidirectional charging stations employs an aggregate represen-

tation of the connected EVs’ batteries, like the one presented in [85]. The iterations are

stopped when the equilibrium of the energy sold and bought between each couple of com-

munity participants is reached. The energy transactions between the prosumers and with
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the external utility grid calculated by the first stage are provided to the second-stage local

optimizations. For each EV-based microgrid, the second-stage optimization defines the in-

dividual scheduling of each charging stations whilst keeping the feasibility of the global

solution of the energy community. The second-stage optimization can fully exploit V2G

services provided by each connected EV.

Figure 3.1: Scheme of the two-stage scheduling approach.

3.1.1 First Stage: scheduling of the transactions among the mi-

crogrid

The objective of the community EMS is the minimization of the total energy procurement

cost during the next day. In the ADMM-based approach, the optimization is iteratively

carried out by each participant. For each member i belonging to set Ω of the community

participants, the local objective function is given by (3.1)

OFi =
∑︂
t∈T

[︂
πbuy(t) · Pbuy,i(t) ·∆t− πsell(t) · Psell,i(t) ·∆t+

+
∑︂

j∈Ω,j ̸=i

λj(t) · Pbuyi,j(t) ·∆t−
∑︂

j∈Ω,j ̸=i

λi(t) · Pselli,j(t) ·∆t+

+li(t) + CS(t) + wBES · (P c
BES,i(t) + P d

BES,i(t))
]︂

(3.1)
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li(t) =m · ρ ·

⎡⎣ ∑︂
j∈Ω,j ̸=i

(︂
P̂ buy,ji(t)− Psell,ji(t)

)︂2
+

+
∑︂

j∈Ω,j ̸=i

(︂
Pbuy,ij(t)− P̂ sell,ji(t)

)︂2⎤⎦ (3.2)

CS(t) ≥

⎧⎪⎨⎪⎩ wEV · PclustEV (t) ·∆t if PclustEV (t) ≥ 0

−wEV · PclustEV (t) ·∆t if PclustEV (t) < 0
(3.3)

where Pbuy,i(t) and Psell,i(t) are the power exchanged with the external utility grid (con-

sidered as the energy provider for all the community participants) at each period t (when

buying and selling, respectively). Prices πbuy(t) and πsell(t) are the tariffs when buying and

selling energy from and to the utility grid, respectively. ∆t is the duration of each period

t. Pbuy,ij(t) and Psell,ij(t) correspond to the power bought and sold by i-th LEC member

from/to j-th member at time t. Lagrangian multipliers λi(t) and λj(t) are associated to the

equilibrium between energy sold and bought in each power exchange inside the community.

Term li(t) uses scale factor m and parameter ρ to penalize the imbalances in the exchanges

between i and every other participant at each time t, as in (3.2). Parameters P̂ buy,ji(t) and

P̂ sell,ji(t) correspond to the most updated available optimization results of participant j.

Both cost CS(t), associated with the operation of the charging stations, and wearing cost

wBES , associated with the charging and discharging processes of the BESS unit, are consid-

ered in (3.1). P c
BES,i(t) and P d

BES,i(t) are the charging and discharging power of the BESS

unit, respectively. In (3.3), PclustEV (t) is the power output of the cluster of EVs’ stations,

assumed negative when charging and positive when exporting energy (i.e., providing V2G

services). Cost wEV corresponds to the average value of the wearing costs associated with

charging and discharging processes of the EV batteries.

A forecast of the EV trips provides the time of departure and arrival for each EV together

with the corresponding decrease in the energy stored in the EV’s battery during each trip.

Based on this information and the setting of the desired SOC at the departure of each EV,

the proposed procedure calculates the total new available stored energy in the microgrid due
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to EV arrivals at time t (ES+) and the total stored energy subtracted to the microgrid due

to EVs’ departures at time t (ES−), which are inputs of the optimization model. The total

energy stored in the EVs’ batteries at the end of period t (ES) is given by (3.4)

ES(t) = ES(t− 1) + ES+(t)− ES−(t)− δ · ERatedEV (t) (3.4)

where parameter δ is the self-discharge rate and ERatedEV (t) is the rated total capacity of

the EVsconnected at the charging stations at each time t. Additional local constraints, i.e.,

the ones described in [112] for conventional prosumers, and in [85] for microgrids with the

presence of charging stations, are included in the optimization model. The representation

of the batteries considers efficiencies in charging and discharging processes of the BESS

units, respectively. Analogously, average efficiencies are adopted in the model of EV clus-

ters. Typical constraints are included to bound the operational values within maximum and

minimum values. Moreover, constraints to avoid that the same participant simultaneously

acts as producer and consumer are posed in the LEC model.

Once the ADMM procedure reaches the convergence, each LEC participant identifies

the optimal scheduling of energy transactions with the external energy provider, energy

transactions with other participants inside the LEC, the operation of the own BESS unit

and, in the case of microgrids equipped with cluster of EV charging stations, the total power

outputs of the EV cluster. The price for each energy transaction inside the community is

also obtained.

3.1.2 Second Stage: Scheduling of EV-based microgrids

The layout of each parking lot includes a PV plant, a BESS and a set of bidirectional EV

stations, enabled to exploit charging and V2G functionality, as described in Chapter 2. All

internal sources are connected to the DC bus by mean of DC/DC bidirectional converters,

except for the PV plant, whose converter is unidirectional. The EV-based microgrid is

connected to the distribution grid through an AC/DC converter. The sold and bought power

profiles for each EV-based microgrid (EVSI) are provided by the first stage optimization.
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On this basis, the power allocation among the internal resources is scheduled to provide the

same sold and bought power, the optimization problem for each microgrid with EVsaims to

minimize an objective function that includes both the sum of quadratic deviations of bought

and sold power in each time-step and the operating costs of the parking lot:

OFEV SI =
∑︂
t∈NT

{︂
∆t ·

(︁
P in
LEC(t)− P in

g (t)
)︁2

+
(︁
P out
LEC(t)− P out

g (t)
)︁2

+

+ γ ·∆t ·
[︂
wBES · (P c

BES(t) + P d
BES(t))+

+

nEV∑︂
k

(cEV,k + wEV,k) · P c
EV,k(t) + (−rEV,k + wEV,k) · P d

EV,k(t)
]︂}︂ (3.5)

where P in
g (t), P out

g (t), P c
BES(t), P

d
BES(t), P

c
EV,k(t) and P d

EV,k(t) are the injected and

withdrawn power, charging and discharging power of the BESS, and charging and discharg-

ing power of the k–th EV, respectively; γ is a penalty constant; wBES and wEV,k are BESS

and EV battery wearing costs, respectively; cEV,k and rEV,k represent the cost for the EV

charge and the revenue for EV energy discharge. P in
LEC(t) and P out

LEC(t) are the injected

and withdrawn power profiles evaluated as the sum of power purchased from the utility grid

and from the other prosumers of the LEC as provided by the first stage optimization. The

relations are reported in (3.6a)-(3.6b).

P in
LEC(t) = Pbuy,i(t) +

∑︂
j∈Ω,j ̸=i

Pbuy,ij(t) (3.6a)

P out
LEC(t) = Psell,i(t) +

∑︂
j∈Ω,j ̸=i

Psell,ij(t) (3.6b)

Since the objective function is quadratic, a piecewise linearization of the quadratic terms is

carried out, in order to reformulate the model as a mixed-integer linear problem (MILP). In

this study, two affine functions are evaluated for each quadratic term. Following the proce-

dure in [113] and [114], the MILP reformulation is achieved introducing binary variables

δy,q, and auxiliary variables zy,q and z̃q, as in (3.7a)-(3.7c).

δy,q =

⎧⎪⎨⎪⎩0 if x ≤ uy,q

1 if x ≥ uy,q

(3.7a)
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zy,q =

⎧⎪⎨⎪⎩ay+1,q · xq + by+1,q if δy,q = 1

ay,q · xq + by,q if δy,q = 0
(3.7b)

z̃q =

Y−1∑︂
y

zy,q (3.7c)

The indices y and q respectively represent the number of the strokes and the total num-

ber of quadratic linearized functions. Suitable inequality constraints are set in order to en-

sure proper relation among original and new variables, in a number of (nT · 2 · 8), with NT

number of time-steps, Y equal to 2 and q equal to 8. The MILP formulation of the problem

is obtained by the linearizing the objective function in (3.5) - see (3.8), and the constraints

regarding the operation of components of the microgrids (described in Section 2.2.1) and

linearization variables, described in [114] and reported in (3.7a)-(3.7c). In order to evaluate

if costs influence storage exploitation, a second objective function (3.9) is considered, that

only involves BESS and EV wearing costs (i.e., cEV,k and rEV,k are null):

OF lin
EV SI =

∑︂
q∈Q

z̃q + γ ·∆t ·
NT∑︂
t

{︂
wBES ·

[︂
P c
BES(t) + P d

BES(t)
]︂
+

+

nEV∑︂
k

(cEV,k + wEV,k) · P c
EV,k(t)+

+ (−rEV,k + wEV,k) · P d
EV,k(t)

]︂}︂
(3.8)

OF lin,wear
EV SI =

∑︂
q∈Q

z̃q + γ ·∆t ·
∑︂
t∈T

{︂
wBES ·

[︂
P c
BES(t) + P d

BES(t)
]︂
+

+

nEV∑︂
k

wEV,k

[︂
P c
EV,k(t) + P d

EV,k(t)
]︂}︂ (3.9)

where Q is the set of quadratic terms, subject to the constraints described in [114] and in

Section 2.2.1.

3.1.3 Description of the test case

The considered LEC corresponds to a set of five participants organized in one feeder and

connected to the same low voltage network. Three of them (prosumer 1, 3 and 5) correspond
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to prosumers equipped with a generating unit (e.g., PV unit), a BESS unit and local loads.

The rest of participants (prosumer 2, indicated as EV-based microgrid 1, and prosumer 4,

indicated as EV-based microgrid 2) correspond to two microgrids, each equipped with a

cluster of bidirectional charging stations for EVs, a PV generating unit and a BESS. The

optimization horizon corresponds to one day divided into 96 periods (∆t equal to 0.25 h).

The price profile of buying (πbuy(t)) and selling (πsell(t)) energy from and to the grid, and

the profile of the PV power generation per installed area of PV unit are reported in Fig. 3.2.

Fig. 3.3 shows the load profile of each prosumer in the community, adapted from [112].

Figure 3.2: Price profile of the grid (buying and selling) and profile PV power generation
per m2 of panel surface.

Figure 3.3: Load profile of each prosumer.

Each one of the prosumers is equipped with a PV -BESS system with the following char-

acteristics: i) prosumer 1 with a 4-kW PV unit and a 5-kWh/5-kW BESS unit; ii) prosumer
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2 with a 2.6-kW PV unit and a 4-kWh/4-kW BESS unit; iii) prosumer 3 with a 3.5-kW

PV unit and a 3-kWh/3-kW BESS unit. For the prosumer BESS units, the minimum and

maximum SOC are equal to 10% and 100% of the maximum capacity, respectively. The

prosumers batteries have been assumed fully charged at the beginning and at the end of the

day. Efficiencies ηcBES,i and ηdBES,i are equal to 0.96.

Each one of the microgrids is equipped with a 12.96-kW PV unit, a 50-kWh/30-kW

BESS unit and 5 bidirectional charging stations. Efficiencies ηcBES and ηdBES are equal

to 0.95. In this case, the minimum and maximum SOC are equal to 23% and 93% of the

maximum capacity, respectively. The wearing costs are equal to 0.02 C/kWh. The EVs’

capacity ERatedEV is equal to 30 kWh with a rated power equal to 10 kW. The wearing

cots of EV is equal to 0.06 C/kWh. Average efficiencies ηcEV,k and ηdEV,k are equal to 0.95.

Unit costs and EV discharge revenues are assumed as in Section 2.2.7. Revenue prices are

chosen higher than charging costs, in order to promote V2G exploitation. The scheduling

of arrivals and departures for the EVsin the microgrids are the same shown in Fig. 2.7a

for microgrid 1 and Fig. 2.7b for microgrid 2. In microgrid 1 EV travels are frequent and

short, while in microgrid 2 EVstake at least one long travel (especially EV4 and EV5). Full

occupancy of the charging stations is assumed at the beginning and at the end of the day.

The total energy stored in EVsat the beginning and at the end of the day is equal to 90% of

the EV rated capacity (ERatedEV ). The EV SOC at every departure is assumed equal to 80%

of ERatedEV . The energy reduction in the EV battery during each ∆t due to a scheduled

trip is, on average, equal to 1.5 kWh [103]. In this study, γ is equal to 10 kWh2/C.

3.1.4 Results: Day-ahead community scheduling

The first-stage optimization procedure has been implemented in AIMMS Developer and

tested by using the Cplex V20.10 MILQP solver on 2-GHz processors with 8 GB of RAM,

running 64-bit Windows. The ADMM convergence tolerance ϵ has been set equal to 25 W

for the case study. The time employed to solve the day-ahead scheduling problem of five

participants is around 300 s. Fig. 3.4 shows the obtained profile of the power exchanged
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between the community and the external energy provider (positive if imported by the com-

munity and negative if exported by the community). Fig. 3.5 shows the power exchanged

by each participant inside the community (positive if absorbed and negative if injected). It

can be noted that EVSI mostly export energy to the other prosumers of the LEC. In par-

ticular, in the morning (from 00:00 to 10:45) EVSI microgrid 1 and 2 provide energy for

prosumers 2 and 3, while only at 18:00 EVSI microgrid 1 buys energy from EVSI microgrid

2. Moreover, from 09:00 to 12:00 all LEC members sell energy to the distribution network.

Table 3.1 shows the energy procurement cost for each community participant (negative val-

ues indicate revenues). The total cost calculation considers the energy transactions between

each participant and the external energy provider and every other participant with the cor-

responding prices. Table 3.1 also shows the energy procurement cost obtained when energy

transactions among community members are not allowed (i.e., without community). The

distributed approach employed by the first stage of the approach allows an economic benefit

for each participant with respect to the results without community.

Figure 3.4: Total power exchanged by the community with the external energy provider.

3.1.5 Results: Day-ahead EV-based microgrid scheduling

The second stage optimization procedure is implemented in MATLAB environment, using

intlinprog function. In Fig. 3.6, power exchanges in parking lot 1 are shown. It can be

noted that EV1 operates in V2G mode from 00:15 to 03:15 to sell energy to the other
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Figure 3.5: Power exchanged by each participant inside the community (positive if absorbed
and negative if injected).

Table 3.1: Stage 1: Energy procurement cost in C for each community participant.

Participant Community Without community

prosumer 1 9.81 11.18
prosumer 2 6.92 11.11
prosumer 3 2.36 3.34
EV-based microgrid 1 -2.62 -1.39
EV-based microgrid 2 -3.53 -2.30

prosumers of the community. From 03:30 to 05:15 BESS discharging occurs to provide

energy to the community. PV plant production is mostly sold to the LEC and distribution

grid from 08:00 to 12:00. In the second part of the day EV charging is provided always

by PV plant. Only at the end of day energy from the distribution grid is bought to charge

EV1. Similar considerations could be made for power exchanges in microgrid 2 (Fig. 3.7).

In the early hours of the day all the discharging power from EVsand BESS is sold to the

community. During the central hours the availability of PV plant is partly used to charge

EVs(particularly for EV4 that comes back from a 2-hours travel) and to exchange energy

with community prosumers and distribution grid (Fig. 3.5). In these two systems, BESS

exploitation is limited with respect to EVs. The reason is that revenues associated to the EV

discharge encourage V2G exploitation. As a matter of fact, considering only wearing costs
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of batteries, as in objective function (3.9), the different optimal solution for both microgrids

of Fig. 3.8 shows a more intense BESS use. Similar behavior is found in the results relevant

to microgrid 2.

Fig. 3.9 and Fig. 3.10 compare the parking lot aggregated power and the locally optimized

power of the charging stations, showing the difference of EV exploitation depending on the

presence or absence of revenues for V2G. It can be seen that more V2G exploitations occur

in both EV-based microgrids when revenues are included in the objective functions, with

respect to the only wearing cost inclusion. Local cost for EV-based microgrid 1 and 2 is

calculated according to objective function (3.5). Local daily cost of microgrid 2 (7.93 C)

is lower than microgrid 1 (10.71 C), because the amount of energy sold to distribution grid

and prosumers is higher. Therefore, bigger revenue due to a more intense discharge of EV

influences the final cost of the microgrid.
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Figure 3.6: Power exchanges in EV-based microgrid 1.
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Figure 3.7: Power exchanges in EV-based microgrid 2.
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Figure 3.8: Power exchanges in EV-based microgrid 1, considering only wearing costs of
batteries.
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Figure 3.9: EV-based microgrid 1 aggregated power and the locally optimized power of the
charging stations.
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Figure 3.10: EV-based microgrid 2 aggregated power and the locally optimized power of
the charging stations.

3.2 Stochastic approach for two-stage strategy for

reserve provision within LEC

By extending the deterministic two-stage optimal procedure proposed in Section 3.1 for the

day-ahead energy management of a LEC of DC microgrids with bidirectional EV charging

95



3.2. STOCHASTIC APPROACH FOR TWO-STAGE STRATEGY FOR
RESERVE PROVISION WITHIN LEC

stations, this Section presents a procedure that calculates the optimal scheduling of the

community considering also the possibility for BESS and EV batteries to provide the reserve

needed to cope with the uncertainties due to the fluctuations in solar generation forecast.

The procedure is applied in order to evaluate reserve provision from only BESS and then

from BESS and EV batteries.

3.2.1 Chance-constrained methodology

The chance-constrained approach already presented in Section 2.4 is implemented in the

second stage of the procedure introduced in Section 3.1.2, assuming uncertainties in solar

production and neglecting EV SOC at plug-in time uncertainty. Therefore, ϵS(tarrEV,k) in

(2.21) is considered null in this case, implying that total positive and negative errors only

depend on error in solar forecast. Moreover, quantiles of PV error distribution qPV,+
1−α+ and

qPV,−
1−α− are calculated as in (2.25a) and (2.25b), whereas qS,k,+

1−α+ and qS,k,−
1−α− are considered

null.

The objective function of the second stage is the one linearized in (3.8), considering all

operating costs. Moreover, technical constraints for microgrid components as presented

in Section 2.2.1 are added in the formulation, whereas for positive and negative reserve

when provided only by BESS are the ones in (2.26a)-(2.26d), while constraints (2.27a) and

(2.27b) are considered when reserve is both provided by BESS and EVs. Constraints related

to auxiliary variables for the linearization of the quadratic terms (3.7a)-(3.7c) are included

as well.

3.2.2 Case study and results

The case study considered is the one already presented in Section 3.1.3, while the error of

solar forecast considered is reported in Table 2.12 for both PV systems (that follow the same

configuration of the one in Section 2.4) in microgrid 1 and 2. Constraint violation probabil-

ities α+ and α− are both set equal to 5% for each time-step. Fig. 3.11 shows the probability

distribution functions of the error at specific times (namely, 9:00, 12:00 and 16:00) and the

related positive quantile values. As expected, probability distribution at 12:00 is less steep
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than others at 9:00 and 16:00 characterized by lower σϵ values. Similar observations hold

for negative error probability distribution functions. In Fig. 3.12 optimal power exchanges
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Figure 3.11: Error probability distributions and positive quantile values relevant to the PV
generation forecast at 9:00 (top), 12:00 (middle) and 16:00 (bottom).

in microgrid 1 are shown, considering the reserve provided by the BESS unit. Comparing

to the results in Fig. 3.6 without reserve provision, all units in the microgrid follow a sim-

ilar behavior. Reserve guaranteed with a probability of 90% by the BESS unit (being α+

and α− equal to 5%, as mentioned) is shown in Fig. 3.13. The maximum value of reserve

(both positive and negative) to be provided is 1.7 kW at 12:30. The value of reserve would

increase considering lower values of α+ and α−. On the contrary, higher values of admitted

violation probability would imply lower values of reserve to be guaranteed. EV-based mi-

crogrid 2 power exchanges shown in Fig. 3.14 are slightly different from Fig. 3.7 in terms
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of EV exchange powers. Reserve provided is the same to microgrid 1 since the same error

probability distribution is assumed on the same PV production curve.

The inclusion of EV batteries in the reserve provision procedure affects the power ex-

Figure 3.12: Power exchanges in microgrid 1, considering the reserve provided by the BESS
unit.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [hh]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

B
E

S
S

 R
e
se

rv
e
 w

it
h
 

- =
 

+
 =

5
%

 [
k
W

]

R
b

+

R
b

-

Figure 3.13: Positive and negative reserve in microgrid 1 provided by the BESS unit.
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Figure 3.14: Power exchanges in microgrid 2, considering the reserve provided by the BESS
unit.

changes within microgrids. In Fig. 3.15 the reserve levels and power exchanges in mi-

crogrid 1 are shown. From 00:00 to 06:00 BESS discharging occurs to provide energy

externally with a grid exchange profile close to the previous case given by slight EV dis-

charge (see Fig. 3.6 and Fig. 3.12), then EVs and BESS exchange energy among each other

(see Fig. 3.15b). BESS charge is seen at 10:00-11:00, replacing EV charge of previous case

and avoiding delivering powerr to the grid. Intense EV charge is detected in the afternoon,

reached by means of BESS discharge without requiring power from the grid. Fig. 3.15a

shows the total positive and negative reserve dispatched among storage devices. Most re-

serve energy is provided by BESS, since EV batteries cannot be available when EVs are not

connected to the charging stations. Positive reserve corresponds to a discharging event, i.e.,

additional generation, while negative reserve represents a charging event of the storage, i.e.,

additional load.

Fig. 3.16 compares the SOC level profiles of the BESS unit and EV batteries of micro-

grid 1 for three cases: without reserve provision, when the reserve is provided only by the

BESS unit, and when the reserve is provided by both the BESS unit and the EV batteries.

No significant differences from the first case (no reserve provision operation) are shown in

99



3.2. STOCHASTIC APPROACH FOR TWO-STAGE STRATEGY FOR
RESERVE PROVISION WITHIN LEC

the profiles when the reserve is provided by the BESS unit only. Different profiles are in

general obtained, even for the SOC levels of the BESS unit, when the reserve is provided

also by the EVs connected to the charging stations. In the considered scenario, the BESS

unit experiences significant discharges during the first hours of the day, replacing the use of

EV1 in order to provide upward reserve during first hours of PV production, and between

13:00 and 14:00, EV1 discharges at 20:00, EV3 discharges at 08:00. The different power

exchanges in microgrid 2 and the corresponding reserve provisions are shown in Fig. 3.17.

Negative reserve is mostly provided by EV batteries, as in Fig. 3.17a. Like microgrid 1, the

BESS unit guarantees most of the positive reserve, especially in the first half of the daily

PV production.
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Figure 3.15: Reserve levels (a) and power exchanges (b) in EV-based microgrid 1, when
both BESS and EVs provide reserve.

Figure 3.16: SOC levels of BESS unit and EV batteries in EV-based microgrid 1 considering
no reserve provision (left), only reserve provided by BESS (middle) and reserve provided
by BESS unit and EV batteries (right).
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Figure 3.17: Reserve levels (a) and power exchanges (b) in EV-based microgrid 2, when
both BESS and EVs provide reserve.

In Table 3.2 a comparison of the operating costs of each microgrid with EV charging

stations in the two cases is carried out: when the reserve is provided only by the BESS

unit and when the reserve is provided by both the BESS units and the EV batteries. The

costs are evaluated considering the forecasted PV profile and the economic part of objective

function in (3.5), without additional costs or revenues related to reserve provision. The

daily costs of both EV-based microgrid are lower in the case the reserve is provided by both

BESS units and EV batteries. The benefit is expected to be lower when there is a significant

uncertainty associated with the presence and state of charge of the EVs connected to the

charging stations during the day. It should be remarked that for both the microgrids the daily

operating cost of BESS reserve case is very close to the values obtained in the deterministic

procedure provided in Section 3.1.5. From the analyses of the results, it is possible to assess

that the optimal procedure guarantees the LEC operation plan of power exchange optimized

in the first-stage, while providing internal reserve in the presence of forecasting errors.

Table 3.2: Daily operating costs of EV-based microgrids of the LEC

BESS reserve BESS and EV batteries reserve
EV-based microgrid 1 10.70 C 7.05 C
EV-based microgrid 2 7.92 C 5.17 C
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3.2.3 Validation of the chance constrained procedure

In order to assess the advantages of the proposed chance constrained programming proce-

dure, a comparison with the results of Monte-Carlo simulations is carried out. In particular,

for microgrid 1, a set of 30 scenarios is considered, in which the PV production level at

each daylight timestep is varied by a stochastic quantity deriving from the error probability

distribution functions defined in Section 3.1.2, supposed independent from each other. The

variations of PV production are depicted in Fig. 3.18, and compared with the total reserve

levels, defined by (2.27a) and (2.27b) and illustrated in Fig. 3.13 and Fig. 3.15a. Roughly

10% of samples lay beyond the reserve amount, in agreement with the considered α+ and

α− values. Each scenario is analyzed by means of the deterministic technique described in

Section 3.1, with the same objective function involving operation costs and variations from

community-level power exchanges at grid connection point. In this way, for each scenario,

a different scheduling of the microgrid devices (EVs, BESS, grid connection) is obtained,

representing the effective exploitation of the chance-constrained reserve amounts in each

particular situation.

Figure 3.18: Distribution of samples for PV production Monte-Carlo scenarios and com-
parison with reserve levels according to quantiles for microgrid 1.
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The obtained results are summarized in Fig. 3.19, that shows the variation of grid ex-

changes and costs with respect to chance-constrained procedure outcomes. It can be ob-

served that Monte-Carlo stochastic scenarios do not reach solutions characterized by lower

values of the objective function components than the corresponding ones in the chance-

constrained formulation. In half of Monte-Carlo scenarios, grid power exchange levels are

respected, whereas in other scenarios are slightly varied – by less than 1.1 kWh at most –

increasing the total bought energy. The operating costs in all scenarios show a slight in-

crease. The proposed comparative analysis shows that the chance-constrained procedure is

able to find a feasible and more efficient solution representing the boundary of Monte-Carlo

scenarios solutions, therefore it is able to schedule the internal reserve to cope with PV fore-

casting error within the defined quantile thresholds, while enabling community-level plan

compliance and reasonably attaining lowest operation costs.

Figure 3.19: Cumulative distribution of variation of grid energy bought in the Monte-Carlo
scenarios (blue – left axis) and of daily operation costs (green – right axis) with respect to
chance-constrained solution of microgrid 1.
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Chapter 4

EV charging infrastructure

integration in distribution networks

In this chapter, the impact of EV charging infrastructure integration on the distribution net-

work operation is assessed by firstly studying the environmental and economic system im-

pact of the BESS and EV interaction in EV parking lot, implementing an optimal procedure

to different scenarios. This activity is carried out with the collaboration of the School of

Engineering of Cardiff University, and it is described in Section 4.1.

The EV integration is then evaluated by a technical grid point of view by reducing the

detail of charging infrastructures within the distribution grid model. Section 4.2 provides

an otimization procedure for the operation of the grid involving EVs, and the subsequent

implementation in a MV grid is presented in Sections 4.3 and 4.4.

EV clusters integration into MV grid is also studied in Section 4.5, and in Section 4.6

for LV semi-urban grid. This activity put the basis for the techno-economic impact of

DC microgrid integration into distribution grid, whose procedure and implementation are

described in Section 4.7. Finally, an economic analysis concerning the perspective of ag-

gregating microgrids into energy communities is carried out in the Section 4.8.
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4.1 Carbon emission evaluation of assistant BESS in

EV parking lots

The study presented in this section focuses on examining how the integration of stationary

BESS into EVSI can contribute to the reduction of carbon emissions and enhance the overall

sustainability of the energy system by exploring the potential synergies between BESS, type

of EV charging and carbon intensity. For this aim, an optimal operation programming pro-

cedure is carried out on weekly time horizon, accounting for costs and emission objectives

and considering technical operation features. The main contributions can be summarized as

follows:

• the impact of BESS is assessed by means of optimal weekly scheduling procedure

considering economic (cost minimization) and environmental (indirect carbon emis-

sion minimization) targets,

• different BESS sizes are examined for evaluating possible better exploitations, and

different weeks of operation as well,

• slow and fast EV charging rates are considered, in order to assess the impact of dumb

and smart fast charging stations on the operation of the system and on total carbon

emissions.

Technical and economic indicators are defined and evaluated on weekly time frame in order

to estimate them over a yearly time horizon.

4.1.1 Problem formulation considering uncoordinated EV charge

The proposed methodology employs a linear mixed-integer optimization problem to pro-

gram the BESS discharging to provide energy for EV charging, while minimising the total

daily CO2 emissions. The assumptions underlying the procedure are described in the fol-

lowing:

• arrival times, charging durations and energy needs for each EV are determined gen-

erating samples from probability distributions,
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• BESS optimal planning over the entire time horizon is carried out only for EV charg-

ing energy provision, not considering any further strategic behavior with respect to

the external network.

The optimal procedure employs a MILP problem (see the structure in (2.1)) aiming at co-

ordinating the exploitation of the BESS with EV uncontrolled (or dumb) charging, in order

to obtain a power exchange with the external electric grid P in
g (t), for each time step t in

the considered time horizon (with NT timesteps), able to reach defined objective f subject

to proper linear constraints. Two different objective functions are inspected, represented

by total CO2 emissions fCO2 and total operation cost fCost, as defined in (4.1) and (4.2)

respectively:

fCO2 = ∆T ·
NT∑︂
t

CI(t) · P in
g (t) (4.1)

fCost = ∆T ·
NT∑︂
t

Pbuy(t) · P in
g (t) (4.2)

where ∆T is the time-step duration in hours, CI(t) is the carbon intensity expressed in

gCO2/kWh in the t-th time-step, Pbuy(t) is the purchase energy price from the grid in t-th

time-step.

The problem is enriched with constraints related to the determination of power exchange

with the grid, as in (4.3), where BESS active charging power (P c
BESS(t)) and discharging

power (P d
BESS(t)) for each time step t represent further state variables, while P dumb

EV s (t)

is the input referring to the total charging demand of EVs in the t-th time-step. In the

procedure, the constraints are mainly related to technical limits of the BESS. In particular,

constraints in (4.4) and (4.5) take into account technical limits of charge/discharge power of

the BESS for each time-step. In order to make BESS discharge contribution available only

for the charging of vehicles, P d
BESS(t) should have values lower or equal to EV demand

at each time step, as in (4.6). Moreover, binary state variables vcBESS(t) and vcBESS(t)

account for unidirectionality of BESS power exchanges, assuming value of 1 if the BESS is

charging (or discharging), and 0 if not, as in (4.7). Constraints (4.8) and (4.9) limit charg-
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ing/discharging power to the maximum values when binary variables are active. Equality

constraint in (4.10) represents the evolution of BESS SOC SBESS(t) for each time-step,

accounting for charge/discharge efficiencies (ηcBESS(t) and ηdBESS(t)) as well, whereas

(4.11) and (4.12) fix the initial and final SOC over the considered time horizon. Finally, in

(4.13) proper limits on SOC evolution within feasible range for the considered BESS.

P in
g (t) = PEV s(t)− P d

BESS(t) + P c
BESS(t) ∀t ∈ [1, ..., NT ] (4.3)

P c,min
BESS ≤ P c

BESS(t) ≤ P c,MAX
BESS ∀t ∈ [1, ..., NT ] (4.4)

P d,min
BESS ≤ P d

BESS(t) ≤ P d,MAX
BESS ∀t ∈ [1, ..., NT ] (4.5)

P d
BESS(t) ≤ PEV s(t) ∀t ∈ [1, ..., NT ] (4.6)

vcBESS(t) + vdBESS(t) ≤ 1 ∀t ∈ [1, ..., NT ] (4.7)

P c
BESS(t) ≤ P c,MAX

BESS · vcBESS(t) ∀t ∈ [1, ..., NT ] (4.8)

P d
BESS(t) ≤ P d,MAX

BESS · vdBESS(t) ∀t ∈ [1, ..., NT ] (4.9)

SBESS(t) =SBESS(t− 1) + ∆T · ηcBESS(t) · P c
BESS(t)+

−∆T · 1

ηdBESS(t)
· P d

BESS(t) ∀t ∈ [2, ..., NT − 1]
(4.10)

SBESS(1) = Si
BESS

(4.11)

SBESS(NT ) = Sf
BESS

(4.12)

Smin
BESS ≤ SBESS(t) ≤ SMAX

BESS ∀t ∈ [1, ..., NT ] (4.13)

The total number of state variables for the formulated problem with EV uncontrolled charg-

ing is 5 × NT , the number of inequality constraints – including (4.4)-(4.5) and (4.7)-(4.9)

– is 10 ·NT and the number of equality constraints – including (4.3) and (4.10)-(4.12) – is

2 × NT + 2. In particular, the quantity P dumb
EV s (t) represents the total charging demand in
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t-th time step of a total number of nEV , and under the assumption of uncontrolled charging,

based on proper forecasts on EV maximum power rate PMAX
EV s and arrival/departure time

tυin, tυout and SOC, it is determined as follows:

P dumb
EV s (t) =

nEV∑︂
υ

Pυ(t) ∀t ∈ [1, ..., NT ] (4.14)

Pυ(t) =

⎧⎪⎨⎪⎩ 0 if t /∈ [tυin; t
υ
out]

min(Pυ,M ;PMAX
EV s ) if t ∈ [tυin; t

υ
out]

(4.15)

Sυ(t) = Sυ(t− 1) + ∆T · ηcυ(t) · P c
υ(t) ∀t ∈ [1, ..., NT ] (4.16)

Pυ,M (t) =
SMAX
υ − Sυ(t)

∆T · ηcυ(t)
∀t ∈ [1, ..., NT ] (4.17)

Etarget
EV s = ∆T ·

Ntd∑︂
t

P dumb
EV s (t) (4.18)

where Pυ(t) is the power required by the single EV in time-step t, which corresponds

to the minimum between the maximum charging power and the modulated power Pυ,M

for reaching maximum SOC (4.17). SOC levels Sυ(t) evaluation is reported in (4.16).

Furthermore, the total daily energy required by EVs is calculated as in (4.18), where Ntd

represents the number of time-step in each day.

4.1.2 Problem formulation considering EV smart charge

In order to investigate the effects of EV smart charging on CO2 emissions and costs, the

problem described in the Section 4.1.1 is slightly modified, considering as additional state

variable PEV s(t), representing the aggregated power requested by EVs for each time step.

This aggregated power is limited to a maximum value that depends both on the number of

plugged-in EV for each time-step NEV s(t) and maximum power of the EV charging point

PMAX
EV s as reported in (4.19). Furthermore, the same daily charging energy (as in dumb-

charging problem) is guaranteed by constraints in (4.20) for each day of the week.
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0 ≤ PEV s(t) ≤ NEV s(t) · PMAX
EV s ∀t ∈ [1, ..., NT ] (4.19)

Ntd∑︂
t

∆T · PEV s(t) = Etarget
EV s (4.20)

The aforementioned constraints are still included in the problem formulation. In particular,

with EV smart charging PEV s(t) is considered as a state variable in (4.3) and (4.6) instead

of the known value obtained for dumb charging as described before. Furthermore, some

limitation are set to P in
g (t) in order to not exceed power peaks requested by EVs, compared

to the case of uncontrolled charging.

The total number of state variables for the formulated problem with EV smart charging

is 6 × NT , the number of inequality constraints – including (4.4)-(4.5), (4.7)-(4.9) and

(4.19) – is 12×NT and the number of equality constraints – including (4.3), (4.10)-(4.12)

and (4.20) – is 2×NT + 7.

4.1.3 Definition of indicators

The definition of proper economic and technical indicators is useful for comparing results,

in order to assess which strategy achieves better performances as compared to the respec-

tive base case, represented by the EV dumb charging without the stationary BESS, e.g.

considering P d
BESS(t) = P c

BESS(t) = 0, at the same EV charging rate of the optimised

cases. Thus, for each weekly time horizon of the simulation the CO2 emission variation of

the optimized value reported in (4.1) with respect to the base case represents the technical

indicator, and it is evaluated as in (4.21). Moreover, variation of costs for energy purchas-

ing evaluated in (4.2) with respect to the base case represents the economic indicator, as

reported in (4.22). The analysis is carried out on time horizons representing different weeks

of the year, therefore the annual values of the indicators are derived as well in (4.23) and

(4.24), being k the general period and Wk the number of weeks of the represented time

horizon in each period. Furthermore, the usage of BESS is assessed by means of the equiv-
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alent discharging cycle number ndisch
BESS , evaluated as in (4.25), where ηdBESS is the BESS

discharge efficiency, while HBESS is the BESS capacity. Yearly evaluation of the indicator

is reported in (4.26) as well.

∆CO2 =COBESS
2 − COnoBESS

2 =

=∆T ·

(︄
NT∑︂
t

CI(t) · P in
g (t)−

NT∑︂
t

CI(t) · PEV s(t)

)︄ (4.21)

∆cost =CostBESS − CostnoBESS =

=∆T ·

(︄
NT∑︂
t

Pbuy(t) · P in
g (t)−

NT∑︂
t

Pbuy(t) · PEV s(t)

)︄ (4.22)

Y∆CO2 =
∑︂
k

Wk ·∆CO2,k (4.23)

Y∆cost =
∑︂
k

Wk ·∆costk (4.24)

ndisch
BESS =

NT∑︂
t

∆T · P d
BESS(t)

ηdBESS ·HBESS

(4.25)

Y ndisch
BESS =

∑︂
k

Wk · ndisch
BESS,k (4.26)

4.1.4 Case study description

The analyses are carried out considering a time horizon that spans 1 week, which is further

divided into NT =336 time steps with 30-minute duration (∆T=0.5 h). The carbon inten-

sity data utilized in the evaluation is sourced from [115] and pertains to the year 2022 for

UK system. Fig. 4.1 shows the average CI evaluated monthly from 2018 to 2022. It can be

seen that the overall trend is decreasing through years, with a minimum annual average in

2020 (due to the pandemic). In 2022 the average value is 27% lower than one in 2018 and

15% lower than one in 2019. Fig. 4.2 shows CI trends for each season used for the weekly

analyses of the parking lot.

Regarding energy prices, Fig. 4.3 reports energy costs that are determined by elaborat-

ing 2022 UK price system analysis report data [116]. In particular, energy prices are eval-
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uated considering average system price distinguished in values for short and long system,

along with percentage of system length, reported by day of the season and by settlement

period (30-minute period) over the season.

Figure 4.1: Monthly average CI from 2018 to 2022. Source [115].
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Figure 4.2: CI index over a week for each season over 2022. Source [115].

The inclusion of a LiFePO4 stationary BESS in the system is evaluated through the sim-

ulation of two configurations, assuming charge/discharge efficiency of 0.95 initial and final

SOC (Si
BESS and Sf

BESS) at 90% of maximum capacity HBESS and minimum/maximum

SOC levels (Smin
BESS and SMAX

BESS) of 20% and 90% of the capacity, respectively. The two

configuration are reported in the following:
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Figure 4.3: Energy prices over a week for each season over 2022. Source [116].

• BS 1: Capacity HBESS of 1 MWh, with maximum charging/discharging power

(P c,MAX
BESS and P d,MAX

BESS ) of 300 kW,

• BS 2: Capacity HBESS of 4 MWh, with maximum charging and discharging power

of namely 500 kW and 1.2 MW.

The case study refers to a parking lot of 83 EV charging stations. In order to construct

an insightful case study reflecting practical scenarios, a survey of three distinct parking

locations is conducted by physically observing and recording vehicle activities within the

Cardiff area multiple times daily over a two-week period in two separate months. Among

these sites, two were linked to workplaces, while the third served as a general-use parking

facility primarily catering to individuals visiting the city center or engaging in shopping

activities. Notably, the workplace parking areas exhibited substantial variability, attributed

largely to the presence of contractors and visiting vehicles. According to the obtained data,

the EV usage is modelled through a probabilistic approach that involves Normal distribution

probabilities of plug-in start time and plug-in duration, whose parameters are reported in

Table 4.1. Moreover, EVs are assumed to be charged considering separately a slow fixed

rate of 7.4 kW, an accelerated 24 kW (over all the parking time), fast 50 kW and ultra-fast

150 kW (attaining a total energy amount of the charge Etarget
EV s equal to a medium-speed
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charge at 24 kW throughout the parking time interval).

System operation over a year is evaluated, in uncontrolled and smart charging, by the

combination among one week per season (considering 4 seasons with average week num-

ber Wk=13.04), two BESS sizes, and four EV charging rates, and are simulated considering

economic and technical targets. Therefore, the optimization problems described in Sec-

tion 4.1.1 and 4.1.2 are run in 64 different combinations, respectively.

Table 4.1: Distribution probability parameters for EV usage.

Plug-in times Mean Standard Deviation
Start time [hh:mm] 12:15 02:45

Duration [h] 2.13 0.38

4.1.5 Results with EV uncoordinated charge

Concerning the operation with slow 7.4 kW charging rate, the power exchanges during

winter week with technical objective (4.1) are shown in Fig. 4.4a-c, where it can be seen that

BESS contribute to charge EVs when CO2 minimization strategy is implemented, especially

considering a 4 MWh capacity in BS 2 (Fig. 4.4c) where the BESS is able to cover most

of EV charging energy requirements during the week, deferring power absorption from the

external electric grid in most suitable time intervals. Lowest peak (485 kW, almost 79% of

the EV installed power) is detected for 7.4 kW during winter week, as expected since it is

the lowest charging rate considered. With the objective of energy cost minimization (4.2)

the observed results are different: most of energy required for EV charging is purchased by

the external grid in both BS 1 and BS 2 cases (see Fig. 4.4b-d). However, highest purchased

power peaks are detected for CO2 minimization in all scenarios, but especially for 24 kW

charging rate and BS 2 configuration (nearly 1.4 MW peak due to BESS and EV charge,

see Fig. 4.5, corresponding to 70% of total installed power), since energy from utility grid

(requested when CI is low) is used for charging both EVs and BESS. The fast-charging rate

of 150 kW leads to higher EV power peaks, in particular 1.7 MW peak (nearly 13.7% of total

EV installed power) in BS 2 configuration in spring and summer weeks considering fCost,

and winter weeks considering fCost is the results of required power by BESS and EVs.
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Moreover higher energy requirements for EV charge cannot be fully provided by BESS,

even considering BS 2 configuration, as reported in Fig. 4.6. With technical objective,

charging events of BESS occur during night hours in winter season, according to low CI

(Fig. 4.6a-c), while in summer the BESS is charged during the central hours of the day

exploiting higher renewable contribution reducing carbon intensity. Considering economic

target (Fig. 4.6b-d), BESS charging is always located in night hours, due to lower energy

purchase costs. However, independently on configurations, BESS is not fully exploited

when economic target is optimized, since the problem solution tends to reduce energy costs

related to BESS recharge.

Figure 4.4: Power exchanges during winter for EV dumb charge at 7.4 kW charging rate,
considering technical target with BS 1 (a) and BS 2 (c) configuration, and economic target
with BS 1 (b) and BS 2 (d).

4.1.6 Results with EV smart charge

Results related to EV Smart Charging (SC) procedure considering economic and environ-

mental targets are reported for BS 1 and BS 2 in Fig. 4.7, referring to winter week. It can

be noted that EV smart charging profiles are different with respect to the dumb-charging

cases. With BS 1, when optimizing fCO2 , charging processes of EVs are concentrated dur-

ing periods of low carbon intensity, around 12:00, as in Fig. 4.7a, while minimizing fCost

it is concentrated in the early afternoon when energy costs are low as well, see Fig.4.7c.

Configuration BS 2 shows significant exploitation for energy provision to the parking lot,
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Figure 4.5: Power exchanges during winter for EV dumb charge at 24 kW charging rate,
considering technical target with BS 1 (a) and BS 2 (c) configuration, and economic target
with BS 1 (b) and BS 2 (d).

Figure 4.6: Power exchanges during winter for EV dumb charge at 150 kW charging rate,
considering technical target with BS 1 (a) and BS 2 (c) configuration, and economic target
with BS 1 (b) and BS 2 (d).

especially with fCO2 minimization (Fig. 4.7b). BESS charging processes occur during

night hour of the day, for both technical and economic targets. Power peaks registered do

not exceed the value of 1.8 MW in all scenarios, nearly the 14.4% of the installed power

considering the higher charging rate of 150 kW, similarly to the peaks depicted in the case

of uncontrolled charging, thus avoiding line overloading conditions with higher peak val-

ues. However, the peak is reached for only EV charging in economic optimization, while

by BESS and EV in the technical optimization, as in Fig. 4.7.
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Figure 4.7: Power exchanges during winter for EV smart charge at 150 kW charging rate,
considering technical target with BS 1 (a) and BS 2 (c) configuration, and economic target
with BS 1 (b) and BS 2 (d).

4.1.7 Evaluation of indicators

The evaluation of indicators formulated in Section 4.1.3 is carried out and reported in Figg.

4.8-4.9 for a single example season and in Tables 4.2-4.3 for the yearly time frame.

Remarkable CO2 reductions with respect to the base case are achieved with the environ-

mental target and considering BS 2 configuration for all charging rates (Fig 4.8c), since the

presence of stationary storage can provide energy to EVs when CI is high, whereas charg-

ing BESS during low levels of CI . However, the attainment of environmental target implies

an increase of operation costs, that is more evident with fast charging rates (Fig. 4.8a). As

regards smart charging the advantage is more evident with 150 kW size, whereas 50 kW

smart charging does not perform well in the BS 2 configuration. When considering eco-

nomic target, lower costs are obtained in all scenarios considering BS 2 with respect to BS

1 for each charging rate. The adoption of charging rates higher than 24 kW with dumb

charging implies little improvement of the cost indicator. Moreover, the highest cost re-

ductions with economic target are depicted considering EV smart charging with 150 kW

rate (Fig. 4.8b), while CO2 increase is detected especially for BS 2 and fast charging rate

scenarios, except for winter season where CO2 reduction is still detected for both sizes of

storage and all charging rates (Fig. 4.8d), pointing out a combined optimal solution for both

indicators.

As regards yearly evaluation, Table 4.2 illustrates the values of indicators for environmental
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Figure 4.8: Winter week. Total daily cost variation (a)-(b) and CO2 variations (c)-(d) for
both BS configurations and optimal strategies.

target in all scenarios. It can be seen that BS 2 guarantees both cost and CO2 reductions

over the year, except for the case of 50 kW EV SC, whereas for BS 1 configuration and

high charging rates (from 50 kW to 150 kW smart charging), an increase in operation costs

is detected. It could be pointed out that EV smart charging procedure achieves higher CO2

reduction already in BS 1 configuration (with respect to the uncontrolled charging), avoid-

ing also the usage of bigger storage systems: as a matter of fact 26 958 kg CO2 reduction

with 150 kW SC rate with BS 1 are quite close to 31 438 kg CO2 reduction with 150 kW

uncontrolled-charging with BS 2 configuration. However, environmental target leads to

higher number of equivalent discharging cycles, especially with 50 kW SC rate (483.4 cy-

cles, more than one full cycle per day), whereas BS 2 configuration leads to lower discharge

cycles over one year operation (44% average reduction).

Results of economic target are reported in Table 4.3, where it seems that significant cost

reduction is achieved when stationary storage supports EV charge, especially considering

BS 2 configuration. As for environmental target, EV smart charging procedure achieves

higher cost reduction already in BS 1 configuration, avoiding also the usage of bigger stor-

age systems: for instance, 32 302 £ reduction considering 150 kW SC rate and BS 1 is quite

near to the 36 511 £ reduction with BS 2 and EV uncontrolled charging. Generally, CO2

increase is depicted in the economic optimal procedure. However, smart charging mode
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allows to achieve lower CO2 increases with the respect to the uncontrolled charge in BS

2 configuration (for 50 kW and 150 kW). Furthermore, discharge cycle number are lower

than in the case of environmental target, and smart charging mode for 50 kW and 150 kW

leads to lower discharge cycles than uncontrolled charging at the same EV charging rate.

Analogously to environmental target, BS 2 configuration allows even low discharging cy-

cles (less than one cycle per day), avoiding excessive BESS wearing and life reduction.

Fig. 4.9 shows the number of BESS equivalent discharging cycles over a weekly operation

for all the seasons and charging rates. It can be noted that, with CO2 minimization target,

higher cycles are reached in winter week, while in spring and autumn weeks higher cycles

occur with economic target. Considering BS 1 configuration, cost minimization employs

lower BESS discharge cycles with respect to the economic target, since lower exploitation

is detected. Moreover, with cost minimization and BS 1, EV smart charging allows better

exploitation of storage, with respect to the uncontrolled charging, with cycle numbers sim-

ilar to the BS 2 ones. With cost minimization, BS 2 implies higher advantage on cycles in

autumn and in summer.

Table 4.2: Indicator evaluation over a year - CO2 minimization.

CO2 MINIMIZATION

7.4 kW 24 kW 50 kW
50 kW
SC

150 kW
150 kW
SC

∆cost [£]
BS 1 -132 -1 932 +906 + 1 174 +1 128 + 1 474
BS 2 -3 790 -1 770 -1 228 + 4 363 -641 -779

∆CO2 [kg]
BS 1 -9 317 -10 428 -9 928 -16 951 -9 628 -26 958
BS 2 -25 186 -35 059 -30 849 -22 846 -31 438 -40 985

BS cycles
BS 1 344.3 476.5 337.9 483.4 450.0 384.1
BS 2 127.4 262.4 223.0 305.3 241.7 225.6

4.2 Optimal EV operation for grid technical targets

In this section, a description of the methodology for EV integration in distribution grids is

proposed, with the aim of investigating the impact of V2G technology on the grid operation.

The adopted methodology employs load-flow analyses to assess the impact of uncon-

trolled EV charging where the charge power is set at maximum level – according to EV bat-

118



4.2. OPTIMAL EV OPERATION FOR GRID TECHNICAL TARGETS

Table 4.3: Indicator evaluation over a year - Cost minimization.

COST MINIMIZATION

7.4 kW 24 kW 50 kW
50 kW
SC

150 kW
150 kW
SC

∆cost [£]
BS 1 -12 082 -17 007 -14 558 -24 872 -14 414 -32 302
BS 2 -22 494 -39 695 -33 783 -38 257 -36 511 -44 878

∆CO2 [kg]
BS 1 +2 608 +2 452 +2 999 + 2 439 +2 809 + 4 537
BS 2 -718 +5 652 +7 446 + 1 873 +8 135 + 5 280

BS cycles
BS 1 241.6 351.7 283.2 202.8 285.9 173.5
BS 2 107.9 190.3 177.8 133.1 184.1 126.4

Figure 4.9: BESS equivalent discharging cycles, evaluated in all scenarios.

tery and station features – until the required energy amount of the EV is reached. Whereas,

a MILP approach, whose structured is reported in (2.1), is adopted for investigating the

grid behavior in both the controlled EV charging and V2G cases, considering a linearized

load-flow model, as a constraint of the optimization, whose goal is to evaluate the charg-

ing/discharging powers of the considered EVs that minimize the system daily energy losses.

Preliminary load-flow analyses (implemented, by means of the Matpower tool, in Matlab

environment) are carried out to assess the most burdensome load profile in the absence of

EVs. In this regard, different scenarios are investigated, sorted according to the type of

loads (residential, industrial, etc.), day of the week (working day, weekend day), and season

of the year. Once the number of stations (and EVs) is determined, MILP optimization is

carried out (in Matlab environment) to evaluate the effects of controlled EV charging and

V2G strategies. In this regard, a random EV users’ behavior (i.e., departure and arrival

stations, plug-in time intervals, energy consumption during trips, etc.) is assumed.
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4.2.1 MILP problem for optimal day operation of the grid in-

volving EVs

The optimal daily operation of the network integrating V2G features represents a complex

problem that considers system non-linearities and discontinuities. In order to reduce the

complexity of the problem and to facilitate the evaluation of the optimal solution for the

network, taking into account the behavior of electric vehicles, a MILP technique is used

for the system model linearization. The assumptions underlying the procedure are: i) EVs

connected to the grid do not provide reactive power regulation, ii) radial configuration of the

grid, considering one generation node and n − 1 load nodes, iii) for all EVs, with aleatory

behaviors, two charging events and one route between them are considered.

The state vector x includes for each time-step t of the daily horizon, the nodal voltage

phases (in radians) and amplitudes (p.u.) - θi and Vi -,generated and withdrawn powers

(PG,i and PD,i), power levels of the installed EV stations (PCS,i) at the i-th node of the

grid; active and reactive power flows of the h-th network line (Pflow,h and Qflow,h), charge

and discharge powers (P c
EV,k and P d

EV,k), and SOC levels (SEV,k) of the k-th EV.

The objective function represents the grid total energy losses, as expressed in (4.27),

where PL(t) represents the grid active power losses in the generic time-step t, evaluated as

the total difference between generated and withdrawn power at the n nodes of the network,

whereas ∆T is the time interval between two consecutive steps expressed in hours.

f loss =

NT∑︂
t

∆T · PL(t) =

NT∑︂
t

∆T ·
n∑︂
i

[PG,i(t)− PD,i(t)] (4.27)

The problem involves constraints that take into account linearized load-flow equations

(by means of sensitivity coefficients), reported in (4.28)-(4.32). In particular, θ̂
0

i (t) and

V̂
0
i (t) represent voltage phase and magnitude for each node i and time-step t during grid

operation without EVs, whereas P̂
0
flow,h(t) and Q̂

0
flow,h(t) represent active and reactive

power flows for each line h of the grid without EVs. Moreover, P̂
0
G,1(t) is the value of

the assumed generated power at the slack node 1, in the absence of EVs, whereas σ̂θji(t),

σ̂vji(t), σ̂pjh(t), σ̂qjh(t) and σ̂pjG1(t) represent the sensitivity coefficients of the network
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variables for small variations of active power applied to each load node k, determined by

repeated load flow simulations around working point in the absence of EVs.

θi(t) = θ̂
0

i (t) +
n∑︂

k=2

σ̂θki(t) · PCS,k ∀i ∈ [1;n], ∀t ∈ [1;NT ] (4.28)

Vi(t) = V̂
0
i (t) +

n∑︂
k=2

σ̂vki(t) · PCS,k ∀i ∈ [1;n], ∀t ∈ [1;NT ] (4.29)

Pflow,h(t) = P̂
0
flow,h(t) +

n∑︂
k=2

σ̂pki(t) · PCS,k ∀h ∈ [1;NL], ∀t ∈ [1;NT ] (4.30)

Qflow,h(t) = Q̂
0
flow,h(t) +

n∑︂
k=2

σ̂qki(t) · PCS,k ∀h ∈ [1;NL], ∀t ∈ [1;NT ] (4.31)

PG1(t) = P̂
0
G1(t) +

n∑︂
k=2

σ̂pkG1(t) · PCS,k ∀t ∈ [1;NT ] (4.32)

For each j-th EV, the evaluation of SOC SEV,j is included in (4.33), where Ŝ
in,1
EV,j is the

state of charge at the beginning of the first charging event, ∆Strip
EV,j(t) is the SOC reduction

during the trip between the two charging events, and ηcEV,j and ηdEV,j are charging and

discharging efficiencies.

Moreover, the grid model includes constraints that avoid that the same charging station

in acting simultaneously in charging and discharging modes. A binary parameter βi,j(t)

assigns at each time step t the j-th EV to the EV station installed at i-th node, therefore

PCS,i is determined as in (4.34).

SEV,j(t) = Ŝ
in,1
EV,j +∆T · ηcEV,j · P c

EV,j(t)−∆T · 1

ηdEV,j

· P d
EV,j(t)

∀j ∈ [1;nEV ], ∀t ∈ [1;NT ]

(4.33)

PCS,i(t) =

nEV∑︂
j

βi,j(t) ·
[︂
P c
EV,j(t)− P d

EV,j(t)
]︂
∀i ∈ [1;n], ∀t ∈ [1;NT ] (4.34)

Finally, upper and lower bounds to the state variables are considered in order to obtain
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feasible solutions, as reported in (4.35a)-(4.35j).

θmin
i ≤ θi(t) ≤ θMAX

i ∀i ∈ [1;n], ∀t ∈ [1;NT ] (4.35a)

V min
i ≤ Vi(t) ≤ V MAX

i ∀i ∈ [1;n], ∀t ∈ [1;NT ] (4.35b)

Pmin
flow,h ≤ Pflow,h(t) ≤ PMAX

flow,h ∀h ∈ [1;NL], ∀t ∈ [1;NT ] (4.35c)

Qmin
flow,h ≤ Qflow,h(t) ≤ QMAX

flow,h ∀h ∈ [1;NL], ∀t ∈ [1;NT ] (4.35d)

Pmin
G,i ≤ PG,i(t) ≤ PMAX

G,i ∀i ∈ [1], ∀t ∈ [1;NT ] (4.35e)

Pmin
D,i ≤ PD,i(t) ≤ PMAX

D,i ∀i ∈ [2;n], ∀t ∈ [1;NT ] (4.35f)

Pmin
CS,i ≤ PCS,i(t) ≤ PMAX

CS,i ∀i ∈ [2;n], ∀t ∈ [1;NT ] (4.35g)

P c,min
EV,j ≤ P c

EV,j(t) ≤ P c,MAX
EV,j ∀j ∈ [1;nEV ], ∀t ∈ [1;NT ] (4.35h)

P d,min
EV,j ≤ P d

EV,j(t) ≤ P d,MAX
EV,j ∀j ∈ [1;nEV ], ∀t ∈ [1;NT ] (4.35i)

Smin
EV,j ≤ SEV,j(t) ≤ SMAX

EV,j ∀j ∈ [1;nEV ], ∀t ∈ [1;NT ] (4.35j)

In order to consider the case of EV station integration with controlled charging mode,

the optimization model is modified by removing state variables representing EV discharging

in order to disable V2G functionality.

Nevertheless, a disadvantage of the model linearization consists of obtaining an approx-

imated solution. Therefore, post-optimization analyses are proposed, whose purpose is to

measure the effectiveness of the linear model, in terms of deviations from the real nonlinear

network model.

4.2.2 Performance indicators and linear model accuracy test

The comparison among operational scenarios for a determined load condition is carried out

by means of indicators, i.e., total daily energy losses, evaluated as in (4.27), active power

losses for each time-step t and Load Voltage Deviation (LV D) value. In particular, the
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LV D is a per unit indicator that measures deviations of the nodal voltages from the nominal

voltage value, during grid operation. The indicator is evaluated as in (4.36), where Vnom,i

is the nominal voltage of the i-th node (set to 1 p.u.).

LV D(t) =
n∑︂
i

(︃
Vi(t)− Vnom,i

Vnom,i

)︃2

∀t ∈ [1;NT ] (4.36)

In particular, the variation of LV D factor (∆LV D(t)) is evaluated as in (4.37), where

LV Dbc(t) represents the LV D factor of the grid in the base case (bc) in the t-th time-step,

whereas LV Dnc(t) is the one in the new case under evaluation in the t-th time-step.

∆LV D(t) =
LV Dnc(t)− LV Dbc(t)

LV Dnc(t)
∀t ∈ [1;NT ] (4.37)

Furthermore, the active power loss variation is evaluated as well in (4.38), following the

same way of ∆LV D(t).

∆PL(t) =
Pnc
L (t)− P bc

L (t)

Pnc
L (t)

∀t ∈ [1;NT ] (4.38)

Moreover, a test is carried out in order to assess whether the linearized grid model ac-

curately approximates the nonlinear one. The relative percentage error ey,z is calculated in

(4.39) for each model variable yz in the Z set, considering values obtained by nonlinear load

flow analysis ynonlinz (t) and obtained as results of MILP optimization yoptz (t). If the error is

lower than a determined level of tolerance γ then the linear model correctly approximates

the nonlinear one. Otherwise, it is opportune to perform another sensitivity analysis and

repeat the procedure until the condition for all the errors is verified.

e%y,z(t) =
|ynonlinz (t)− yoptz (t)|

ynonlinz (t)
· 100 ∀z ∈ Z, ∀t ∈ [1;NT ] (4.39)
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4.3 EV station integration in IEEE-33 radial distri-

bution grid

4.3.1 Grid characteristics and scenario definition

The integration study proposed in Section 4.2 is tested on the “IEEE-33 Radial Distribution

System” radial test network [117], represented in Fig. 4.10. The operating voltage is as-

sumed to be 15 kV. The tolerance on the grid voltage has been set to ± 10% of the nominal

value. Therefore, a variation between 13.5 kV (0.9 p.u.) and 16.5 kV (1.1 p.u.) is allowed.

In correspondence of node 1 the HV /MV substation is connected and the quantity of en-

ergy necessary to supply the loads present along the 5 branches of the network is withdrawn

during the day. The whole system consists of 33 nodes and 32 three-phase lines.

Figure 4.10: Integration of EV charging stations into the “IEEE-33 Radial Distribution
System” radial test network.

Preliminary assumptions are made in order to carry out load flow analyses: i) the effect

of load-side converters and transformers is neglected, ii) lines are represented using only the

longitudinal impedance, neglecting shunt parameters, iii) node 1 is considered as the slack

node in power flow analysis and iv) all the remaining nodes are considered as PQ load nodes

(without any distributed generation units). Moreover, within the network a classification of

the utilities has been performed: nodes from 2 to 6 and from 23 to 25 have been classified

as industrial utilities, from 7 to 18 as residential ones and the remaining as commercial util-
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ities.

In order to determine the daily load profile, 3 classes representing the utility categories

(residential, industrial and commercial) are chosen and adapted from data collected by UK-

ERC [118]. Residential utilities are characterized by peak power demands at 12:00 and

during evening hours, whereas industrial and commercial utilities have power demand peak

during the central hours of the day (except for a quasi-flat profile on Sundays). For all the

32 utilities load active power profiles have been calculated considering 5 periods of the year

(Winter, Spring, Summer, High Summer and Autumn) and 3 categories of day (Weekdays,

Saturday and Sunday). Reactive power profiles are evaluated considering a power factor

equal to 0.9. The total load profile of the grid is shown in Fig. 4.11. It is noticeable that the

highest load demand occurs during winter working days, between 17:00 and 18:00, laying

between 4.8 MW and 4.9 MW. The lowest load demand occurs during summer Sundays,

between 05:30 and 06:00 and it is roughly 1.65 MW.
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Figure 4.11: Network load demand on Weekdays (a), Saturday (b) and Sunday (c) in 5
different periods of the year.

In order to exploit integration studies on the test grid, 10 kW DC bi-directional charging

stations are chosen. The use of identical recharging infrastructures simplifies the optimiza-
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tion problem, since the conversion efficiency and the maximum power levels are identical

for each position and for each time of day. Each CS is equipped with: static converter with

a power factor close to 1 and nominal power 10 kW in AC/DC or DC/AC mode; a charging

interface compatible with CHAdeMO and CCS COMBO standards; a three-phase AC input

with active power factor correction; a Can-bus control/communication interface with the

Battery Management System of the connected EV. The technical data are listed in [119].

Moreover, the maximum number of uncontrolled CSs that can be safely integrated in the

distribution grid is determined by means of a stress-operation analysis. That is, load-flow

analyses have been carried out by progressively increasing the number of considered uncon-

trolled CSs, with the aim of monitoring the closeness of the system to a critical operating

condition. Therefore, a total of 60 stations have been integrated, 30 in correspondence of

industrial (IND) and commercial (COMM) nodes and 30 in residential (RES) ones. The

total installed power is 600 kW. Table 4.5 collects the number of CSs for each bus of the

network.

For the purpose of the analyses, 30 EVs with 30 kWh nominal capacity and a 0.165

kWh/km average consumption factor are considered. Furthermore, a random EV users’

behavior is assumed in order to generate 30 scenarios for each day category, supposing

two daily charging events and one route between them. In particular, private EVs are con-

sidered, therefore a daylight charge is supposed at workplaces, in industrial/commercial

district whereas a night-time charge occurs at residential premises. Table 4.4 collects posi-

tion, initial SOC and energy required by all EVs integrated in the grid during their first and

second discharging event. The integration study of EVs enabling controlled charging and

V2G mode has been exploited solving the optimization problem formulated in Section 4.2

using the MATLAB function intlinprog. For the evaluation of indicators of Section 4.2.2,

the base case is represented by the grid evaluated in the absence of integrated EV.

4.3.2 Results of EV station integration in uncontrolled charging

In order to simulate EV uncontrolled charging, load flow analysis is carried out using Mat-

power tool, increasing the daily load profiles by the power amount required to charge the
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Table 4.4: EV usage configuration.

I Charging event II Charging event

EV#
Grid
Bus

Initial
SOC

[kWh]

Plug-in
time [h]

Energy
[kWh]

Grid
Bus

Initial
SOC

[kWh]

Plug-in
time [h]

Energy
[kWh]

1 Bus 2 4.9 3.5 16.5 Bus 7 12.8 4.5 11.4
2 Bus 2 5.5 8.0 15.6 Bus 7 9.7 4.5 12.9
3 Bus 3 4.5 5.5 15.1 Bus 8 9.9 3.0 16.9
4 Bus 3 8.0 9.5 13.7 Bus 8 14.6 4.5 10.9
5 Bus 4 8.4 4.5 12.7 Bus 8 16.0 7.0 7.5
6 Bus 4 7.1 9.5 15.8 Bus 9 15.4 4.0 9.5
7 Bus 5 8.3 9.5 12.0 Bus 9 15.6 3.5 8.3
8 Bus 5 9.0 7.5 13.8 Bus 9 15.8 2.0 7.9
9 Bus 6 3.8 8.5 17.9 Bus 10 13.6 3.0 9.4
10 Bus 6 8.5 6.0 9.9 Bus 10 12.2 5.0 10.0
11 Bus 7 10.1 6.5 13.5 Bus 23 13.9 7.0 11.1
12 Bus 16 6.1 5.0 18.5 Bus 23 15.5 7.0 5.5
13 Bus 17 6.4 4.5 14.8 Bus 24 11.1 7.5 11.4
14 Bus 18 5.8 4.0 12.5 Bus 25 14.4 6.5 11.3
15 Bus 19 10.9 6.5 9.8 Bus 10 13.2 2.5 10.5
16 Bus 19 7.2 9.5 15.9 Bus 11 12.3 2.5 9.7
17 Bus 20 4.2 6.5 13.0 Bus 11 11.8 3.0 9.4
18 Bus 20 12.5 7.0 4.3 Bus 11 8.3 6.0 14.5
19 Bus 21 6.5 2.5 11.4 Bus 12 13.7 8.5 13.1
20 Bus 21 5.8 2.5 9.4 Bus 12 12.1 4.5 10.3
21 Bus 22 3.5 7.5 16.1 Bus 12 13.5 6.0 11.1
22 Bus 22 3.9 3.5 17.8 Bus 13 14.8 6.0 11.5
23 Bus 26 3.5 3.0 11.5 Bus 13 11.0 3.5 15.6
24 Bus 27 8.1 3.0 15.5 Bus 13 16.0 1.5 7.0
25 Bus 28 5.5 4.0 14.9 Bus 14 12.4 4.5 7.4
26 Bus 29 3.6 6.5 18.8 Bus 14 13.2 2.5 10.4
27 Bus 30 4.8 3.5 16.4 Bus 14 13.1 5.0 8.9
28 Bus 31 3.4 4.0 17.1 Bus 15 14.3 8.0 9.8
29 Bus 32 4.1 3.5 16.3 Bus 15 11.8 4.5 14.5
30 Bus 33 3.1 7.0 16.1 Bus 15 14.0 4.0 7.3

EVs in each time-step. In all the analyses a day as time horizon and 30 minutes time-step

(a total of 48 time-steps) is considered. Table 4.6 shows the maximum percentage increases

of load power and daily energy due to the integration of EVs and stations. The maximum

increases are registered at 13:00 during Saturdays and weekdays. In particular, Summer and

High Summer seasons register higher values of load active power increases (3.50% increase

on High Summer Saturday). Furthermore, the highest value of daily load energy increase

(1.22%) is recorded on a Summer Sunday.
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Table 4.5: Charging station integration into the distribution grid.

Bus Utility n. EV
stations Bus Utility n. EV

stations Bus Utility n. EV
stations

1 - 0 12 RES 3 23 IND 2
2 IND 2 13 RES 3 24 IND 1
3 IND 2 14 RES 3 25 IND 1
4 IND 2 15 RES 3 26 COMM 1
5 IND 2 16 RES 1 27 COMM 1
6 IND 2 17 RES 1 28 COMM 1
7 RES 3 18 RES 1 29 COMM 1
8 RES 3 19 COMM 2 30 COMM 1
9 RES 3 20 COMM 2 31 COMM 1
10 RES 3 21 COMM 2 32 COMM 1
11 RES 3 22 COMM 2 33 COMM 1

Fig. 4.12 reports the total amount of daily energy losses increase for all the 15 scenarios

considered. The maximum increase occurs on weekdays in winter, where it reaches a value

close to 70 kWh, while the minimum value is observed on days in high summer (about

46 kWh). From a technical point of view, this type of integration would therefore not be

appropriate during high load demand periods, because it would not benefit the operation of

the network.

Table 4.6: Maximum percentage increases of load instant power and energy due to EV CSs
integration.

Day category Season Instant load power
max increase (%)

Daily load energy
increase (%)

Weekdays

Winter 2.46 0.93
Spring 2.95 1.08

Summer 3.14 1.13
High Summer 3.17 1.12

Autumn 2.95 1.08

Saturday

Winter 2.99 0.95
Spring 3.22 1.06

Summer 3.42 1.11
High Summer 3.50 1.11

Autumn 3.43 1.08

Sunday

Winter 2.24 1.04
Spring 2.47 1.17

Summer 2.62 1.22
High Summer 2.60 1.20

Autumn 2.56 1.19

In Fig. 4.13 the LV D values are reported and compared to the case of the grid without
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Figure 4.12: Daily energy losses increase of the grid with CSs in uncontrolled charging.
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Figure 4.13: Daily LV D values of the grid considering EV uncontrolled charging and the
same grid without EVs.

EVs. It can be seen that the uncontrolled charging leads to a reduction in voltage quality

in the grid and an increase in losses. These effects are significant in the moments of the

day when there is a greater load demand for EVs. Due to the uncontrolled load in the peak
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Figure 4.14: Daily LV D maximum increase considering EV uncontrolled charging (with
respect to the same grid without EVs).

hour of winter weekdays, the LV D reaches a maximum value of 0.104, further lowering

the voltage quality. Furthermore, percentage maximum increase of LV D for each scenario

is reported in Fig. 4.14. The maximum increases are always registered during High Summer

for each day category.

4.3.3 Results of EV station integration in controlled charging,

and in V2G mode

The variation of power losses and LV D are respectively reported in Fig. 4.15 and Fig. 4.16,

considering weekdays for all seasons comparing uncontrolled charging, controlled charging

and V2G. It is possible to notice that EV exploitation in V2G mode allows to inject energy

to the network when the load demand is high. Therefore, it is possible to minimize not only

the losses (Fig. 4.15) in the instants of peak load demand, but also to improve the network

voltage quality. It should be noted that the effect of V2G is most noticeable during winter

when the load demand is the highest, and several EV discharges occur (Fig. 4.15a).

Furthermore, EV discharging events exploit peak shaving feature, thus reducing losses

compared to the scenario without vehicles. The integration of the vehicles in controlled

charge produces similar effects to the integration in V2G mode, in terms of temporal distri-

bution (due to the control of charging processes) although with smaller amplitudes. In this

case the index variations never assume negative values since EV discharge is not allowed.
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Figure 4.15: Active power losses absolute variation (∆PL) considering EVs enabling V2G.

Fig. 4.17 shows the percentage increases in total daily energy losses for all vehicle oper-

ating scenarios in Weekdays compared to the case without EVs. In each case energy losses

increase, due to the increase of energy demand. The lowest increase occurs using V2G mode

during winter weekdays, and it is equal to 1.81%. Despite the studied day, bi-directional

charging still implies the best possible minimization of total daily energy losses, with re-

spect to controlled and uncontrolled charging, although in High Summer weekdays quite

similar percentage increases are registered both in V2G and controlled charging modes. On

Saturday and Sunday analogous trends are observed for LV D and losses, although shifted

in time according to load peak demand, and daily loss increase range between 2.2-3.2% on

Saturday and 2.5-3.5% on Sunday, with higher values in Summer.
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Figure 4.16: LV D values considering EV enabling V2G integrated into the network.

4.3.4 Accuracy test for grid model linearization

The accuracy of the linearized network model used in MILP optimization is tested perform-

ing daily load flow routines, using modified power demand data obtained in optimization

problem solution. Successively, the percentage errors of hourly LV D, hourly active power

losses, and total energy losses of linearized network model are compared to the full load

flow algorithm for the 15 considered operating scenarios. Table 4.7 shows average and

maximum values assumed by the hourly LV D and hourly active power losses, considering

all simulated scenarios. Table 4.8 shows the percentage errors on the total daily energy

losses. From collected data it is possible to demonstrate that the linear network model used

in the MILP optimization is quite accurate, as the average percentage errors are always kept
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Figure 4.17: Percentage increases in total daily energy losses for all vehicle operating sce-
narios.

below 0.5% for LV D and daily losses and below 3% for losses in each timestep, which is

lower than the tolerance limit equal to 5%. Therefore, optimization results represent with

good approximation the real network operation in the presence of V2G.

Table 4.7: Percentage errors of hourly LV D and active power losses (PL).

Range of average values Range of maximum values
eLV D

[%]
ePL

[%]
eLV D

[%]
ePL

[%]
Weekdays 0.016 - 0.032 0.156 - 0.253 0.159 - 0.260 1.566 - 2.489
Saturday 0.038 - 0.022 0.202 - 0.297 0.191 - 0.246 1.693 - 2.005
Sunday 0.032 - 0.061 0.378 - 0.594 0.212 - 0.378 3.365 - 4.666
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Table 4.8: Percentage errors of daily energy losses.

Weekdays Saturday Sunday
Winter 0.077% 0.220% 0.365%
Spring 0.029% 0.110% 0.203%

Summer 0.069% 0.174% 0.271%
High Summer 0.047% 0.214% 0.026%

Autumn 0.020% 0.208% 0.365%

4.4 The influence of EV position on technical opera-

tion of the IEEE-33 radial distribution grid

In this section, the influence of V2G-enabled EV plug-in positions on the MV grid operation

on daily horizon is assessed by means of the optimal operation presented in Section 4.2. In

particular, in order to establish which EVs should have their positions changed within the

network, the evaluation of their daily discharge energy Ed
EV,j is required, evaluated as in

(4.40). In fact, the mobility needs require EV charge when connected, therefore the use of

EV discharge highlights the need of reducing power flows to reach the goal of minimum

losses in objective function (4.27). EVs that mostly discharge during the day are chosen to

be positioned in a new configuration, keeping the parking times and the durations of the two

charging events fixed.

Ed
EV,j =

NT∑︂
t

∆T · 1

ηdEV,j

· P d
EV,j(t) ∀j ∈ [1;nEV ] (4.40)

4.4.1 Case study definition and EV usage configurations

The study is carried out considering the grid already described in Section 4.3.1, with the

same integrated EVs, while Winter Weekday load demand scenario is chosen. Starting from

results considering the plug-in configuration (see Table 4.4), the discharge energy for each

EV is evaluated as in (4.40) and the highest values of daily discharge energy are reached by

EV4, EV12, EV19 and EV22, as reported below:

• EV4 with Ed
EV,4 of 11.25 kWh,
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• EV12 with Ed
EV,12 of 12.08 kWh,

• EV19 with Ed
EV,19 of 23.02 kWh,

• EV22 with Ed
EV,22 of 11.40 kWh,

Therefore, EV4, EV12, EV19 and EV22 get their plug-in position changed, in both

charging events. EV4 and EV22 first recharge at residential buses (12 and 16), differently

from the first case (industrial and commercial buses). On the contrary, EV12 and EV19

change respectively to industrial (bus 3) and residential (bus 16). Residential and com-

mercial buses are chosen for EV second charging event. Table 4.9 reports the updated

configuration of the four EVs.

Table 4.9: EV new plug-in positions.

I Charging event II Charging event
New position
(Old position)

New position
(Old position)

EV4 Bus 12 (Bus 3) Bus 26 (Bus 8)
EV12 Bus 22 (Bus 16) Bus 13 (Bus 23)
EV19 Bus 3 (Bus 21) Bus 18 (Bus 12)
EV22 Bus 16 (Bus 22) Bus 30 (Bus 13)

For the evaluation of indicators of Section 4.2.2, LV Dbc and P bc
L are respectively the

LV D factor and active power losses of the grid evaluated in the presence of integrated EV

in the first plug-in configuration analyzed in Section 4.3.

4.4.2 Results and discussion

Fig. 4.18 and Fig. 4.19 show power exchanges of the four EVs in the base case and in the

“new position” case respectively. It can be seen that EV4 and EV12 trends show some

difference, as with new positions EV4 provides a further discharge during the first charging

event (red negative bar in Fig. 4.19) and EV12 experiences a more intense discharging

during the second plug-in event (blue negative bars). Whereas, EV19 and EV22 show

similar exploitation in the base case and in the new position case.

The evolution of the EV SOC SEV,k in both cases is reported in Fig. 4.20. As aforemen-

tioned, EV4 and EV12 V2G exploitation is more frequent with the respect to the first case.
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Figure 4.18: EV4, EV12, EV19 and EV22 power exchanges (base case).

0 6 12 18 24 30 36 42 48

(a)

-12

-8

-4

0

4

8

12

P
E

V
,4

c
-P

E
V

,4

d
 [

k
W

]

I Ch. Event II Ch. Event

0 6 12 18 24 30 36 42 48

(b)

-12

-8

-4

0

4

8

12

P
E

V
,1

2

c
-P

E
V

,1
2

d
 [

k
W

]

0 6 12 18 24 30 36 42 48

Half hour n°

(c)

-12

-8

-4

0

4

8

12

P
E

V
,1

9

c
-P

E
V

,1
9

d
 [

k
W

]

0 6 12 18 24 30 36 42 48

Half hour n°

(d)

-12

-8

-4

0

4

8

12

P
E

V
,2

2

c
-P

E
V

,2
2

d
 [

k
W

]

Figure 4.19: EV4, EV12, EV19 and EV22 power exchanges (new position case).

As a matter of fact, EV4 discharges at maximum power for one time-step, when connected

at bus 12, with a SOC reduction of nearly 16%. A similar behavior is shown for EV12,
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when connected at bus 13. During the second plug-in event, a 30 minute-charging event

at maximum power occurs (at around 16:00), registering a SOC increase of 16%. Then at

17:00 3 kW discharging event leads to a EV12 battery SOC reduction of 8.3%. The position

change of EV19 and EV22 changed positions does not remarkably affect their exploitation,

as it can been seen from their SOC evolution during the day.
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Figure 4.20: EV4, EV12, EV19 and EV22 state of charge (base case and new position case).

As it is depicted in Fig. 4.21, the new plug-in configuration does not affect the LV D

during morning hours (until 11:00), while it leads to positive and negative variation during

the following hours (Fig. 4.21a). The maximum increase is 2.39% at 14:30 (time-step 29),

while the maximum reduction -1.28% is registered at 16:30 (time-step 33). This negative
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value implies that the LVD evaluated considering the new EV positions is less than the one

evaluated in the base case. Therefore, changes of EV position could have positive impact on

the grid voltage quality. The evolution of active power losses follows the same behavior of

the LVD, as in Fig 4.21b: negative LVD variations correspond to negative variation of power

losses. A maximum increase of losses by 1.21% is observed at the same time-step of the

maximum LVD variation. Analogously, the maximum losses reduction (-0.98%) is recorded

in correspondence to the minimum LVD variation. Therefore, it can be affirmed that EV

position change slightly affects power quality during optimal grid operation, implying lower

voltage deviations and active power losses.
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Figure 4.21: LVD and active power loss percentage variation for each time-step.

Figg. 4.22 and 4.23 show the grid nodal voltages expressed in p.u. considering respec-

tively time-steps 29 and 33, that are the intervals when the maximum and minimum values

of LVD and power loss variation occur, as just reported. In correspondence of a positive

LVD variation, nodal voltages in base case are higher than the ones in the new position case

(see nodes 12-18 in Fig. 4.22). The lowest values of voltages are reached for both cases at

node 18 (with 0.94 p.u. in base case and 0.938 p.u. in new position case). At the time step

33 nodal voltages reach lower values in base case operation than in new position one, thus

implying a negative variation of LVD factor. The lowest value (about 0.929 p.u.) is reached

at bus 18 during base case operation, as in Fig. 4.23. All the analyzed conditions are well

within the imposed voltage limits (0.9-1.1 p.u. of nominal voltage).

The loading percentage of representative grid branches is reported in Fig. 4.24 for time-

steps 29 and 33. In both time-steps any significant difference between cases cannot be

detected, except for a slight increase at Branch 1 and a decrease at Branch 18 during time-
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Figure 4.22: Nodal voltage at t =29 for old and new position cases.

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3

Node n°

0.94

0.96

0.98

1

V
o

lt
ag

e 
at

 t
=

3
3

 (
p

.u
.)

16 17 18 19
0.925

0.93

0.935

Base case

New position case

Figure 4.23: Nodal voltage at t =33 for old and new position cases.

step 29 (Fig 4.24a). Generally, Branch 1 is the most loaded one (at 80%), while Branch 18

is the less loaded (slightly less than 20%).

Finally, the daily energy losses are evaluated as in (4.27), obtaining 3126.146 kWh in

the base case scenario, and 3126.084 in the new one. It can be seen that a slight reduction

of energy losses is detected considering EV new positions. Compared to the grid without

EVs (3070.4 kWh losses), an increase of energy losses of respectively 1.82% and 1.81% is

detected.
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Figure 4.24: Loading percentage of the main grid branches at t =29 (a) and t =33 (b).

4.5 Integration of clusters of EV station in the IEEE-

33 radial distribution grid

Taking the cue from the study presented in Section 4.3, the study proposed in this section

focuses on the integration of clusters of EVs into the IEEE-33 radial distribution grid, which

are here considered concentrated in few nodes of the grid. The analysis points out the in-

teractions of electric vehicle smart charging and V2G processes on the network and among

electric vehicles as well, individuating the possible interactions among clusters while deal-

ing with distribution network operation and for further stressful conditions and relevant

possible solutions for EV integration.

4.5.1 Modified MILP problem for daily optimal operation

Starting from the MILP problem of Section 4.2, some modifications are made in terms of

state variables, objective function and constraints. In particular, the state variable vector x

includes, for each time-step t of the daily horizon, the nodal voltage amplitudes (p.u.) -

Vi -, generated powers (PG,i), power levels of the installed EV stations (PCS,i) of the i-th

node of the grid; active power flows of the h-th network line (Pflow,h), charge and discharge

powers (P c
EV,j and P d

EV,j), and SOC levels (SEV,j) of the j-th EV.
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Then the objective function of grid energy losses in (4.27) is modified as in the following

(4.41), accounting only losses for EV load and not considering energy losses due to grid load

without EVs.

f ′
loss =

NT∑︂
t

∆T · PL(t) =

NT∑︂
t

∆T ·
n∑︂
i

[PG,i(t)− PCS,i(t)] (4.41)

Constraints (4.29), (4.30) and (4.32) are involved for grid linearization, while (4.33) and

(4.34) take into account EV SOC evolution and EV station exchanged power. The total daily

energy stored in EVs is also limited to a fixed maximum amount SMAX
EV,j (4.42), whereas the

total EV charging energy in (4.43) should cover at least energy consumption due to the trip

(Sdep
EV,j-S

arr
EV,j).

Sarr
EV,j +∆T ·

NT∑︂
t

ηcEV,j · P c
EV,j(t) ≤ SMAX

EV,j ∀j ∈ [1;nEV ] (4.42)

∆T ·
NT∑︂
t

ηcEV,j · P c
EV,j(t) ≥ Sdep

EV,j − Sarr
EV,j ∀j ∈ [1;nEV ] (4.43)

Furthermore, upper and lower bounds (4.35b), (4.35c), (4.35e), (4.35g), (4.35i) and

(4.35j) are included in the problem as well.

Indicators used in this study are the variation of grid active power losses with respect

to the case of the grid without EVs (base case), that take into account also the existing load

Pload,i(t) for each i-th node of the grid, expressed in MWh in (4.38), the energy exchanged

at EV charging stations calculated in (4.44) and line loading rate Fh(t) defined for each h-th

branch of the network as in (4.45).

ECS,i(t) = ∆T ·
t∑︂
tt

PCS,i(tt) ∀i ∈ [2;n], ∀t ∈ [1;NT ] (4.44)

Fh(t) =
Pflow,h(t)

PMAX
flow,h

∀h ∈ [1;nL], ∀t ∈ [1;NT ] (4.45)
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4.5.2 EV cluster features and scenario description

The methodology is applied to the IEEE-33 radial distribution test grid, with the same fea-

tures described in Section 4.3.1. Two grid load profiles are chosen representing a typical

Summer Sunday and Autumn Weekday (see Fig. 4.11a and 4.11c), with 30-min time-step.

Additional grid parameters are here provided:

• PMAX
G1 is set to 5.9 MW,

• PMAX
flow,h is set to 6.11 MVA for lines 1-2, 4.97 MVA for lines 3-5 and 2.76 MVA for

all the others,

• V MAX
i and V min

i are respectively set to 1.1 and 0.9 p.u.

The EV model used in the study is BMW iX xdrive50, whose features are the following:

i) capacity of 105.2 kWh, ii) minimum capacity of 31.56 kWh (assumed equal to 30% of

capacity), iii) consumption rate of 20 km/kWh (taken from Worldwide Harmonized Light

Vehicles Test Procedure [120]), and iv) maximum charging/discharging power of 11 kW.

As aforementioned, EV usage is affected by uncertainties, that are taken into account

using a stochastic approach by generating samples from probability distributions as models

of problem inputs like EV SOC at departure time Sdep
EV,j , arrival and departure times (tarrEV,j

and tdepEV,j), and travel distance dEV,j .

The normal distribution is used for the first three inputs. In particular, departure and

arrival times data are collected from a parking lot during opening hours (07:00-22:00) [121],

while departure SOC Sdep
EV,j is supposed to have mean of 90% of capacity HEV,j and 10%

of capacity as 99.3% probability coverage. Travel distance is modelled using a Lognormal

probability distribution, as [122]. Fig. 4.25 shows the probability functions and samples

for all the stochastic inputs. Plug-in intervals are then determined and showed in Fig. 4.26,

according to scenarios defined. Nodes 18, 22, 25 and 33 are chosen for placing EV charging

stations with 9 EVs each, as they are the farthest node of the grid from the generation node,

as reported in Fig. 4.27. Moreover, additional charging station is placed at node 7 when

simulating higher EV integration, as better explained in the following.
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Figure 4.25: Probability function of EV departure energy (a), arrival times (b), departure
times (c) and distance of routes (d).
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Figure 4.26: Plug-in intervals for scenarios 1-2 (a), scenarios 3-4 (b), scenarios 5-6 (c) and
scenarios 7-9 (d).
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Furthermore, arrival EV SOC Sarr
EV,j is calculated as in (4.46), where crEV,j is the EV

consumption rate.

Sarr
EV,j = Sdep

EV,j − dEV,j · crEV,j ∀j ∈ [1;nEV ] (4.46)

Figure 4.27: IEEE-33 Radial Distribution network topology integrating EV charging sta-
tions according to defined scenarios.

Simulations are carried out for several scenarios, that are obtained from the combina-

tions, synthesized in Table 4.10, of the following factors:

• days (Summer Sunday – S – and Autumn Weekday – A), whose load profiles are

already depicted in Fig. 4.11,

• number of integrated EVs (9 EVs for each of nodes 18, 22, 25, 33 in scenarios 1-6,

and 20 for each of nodes 7, 18, 22, 25, 33 in Scenarios 7-9),

• the possibility to exploit V2G functionalities,

• the further limitation on nodal voltages,

• the plug-in time shifting during morning or night hours (see Fig. 4.26).

Moreover, for all scenario the value of PMAX
CS,i - see constratint (4.35g) - considered is

equal to 0.1 MW, except for the cases of S8 and A8, where it is set to 0.2 MW.
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Table 4.10: Simulated scenarios.

Scenario EV number V2G Stringent
voltage limit

EV park
- night

EV park
- morning

S1, A1 36 x x x x
S2, A2 36 ✓ x x x
S3, A3 36 ✓ ✓ x x
S4, A4 36 ✓ x x ✓
S5, A5 36 ✓ x ✓ x
S6, A6 36 ✓ ✓ ✓ x
S7, A7 100 ✓ x x x
S8, A8 100 ✓* x x x
S9, A9 100 ✓ ✓ x x

*In this case the maximum power exchanged by all charging
stations in each node is increased to 0.2 MW, while in the other
scenarios is considered equal to 0.1 MW.

4.5.3 Results for the integration of 36 EVs

Results regarding 36 EVs integrated in the grid (Scenarios 1-6) are shown in Figg. 4.28, 4.29

and 4.30 for cumulated energy exchange at charging stations in Summer and in Autumn,

and for loss variations, respectively - as evaluated with (4.44) and (4.38). When EVs are

not enabled to exploit V2G functionality (in S1 and A1), grid losses increase due to load

increase by EV charging, as shown in Fig. 4.30a, where the maximum increase of 99 kWh is

reached at 16:00 for both summer and autumn scenarios (corresponding to 12.4% increase

as compared to the network without EVs). Optimized charging energies in S1 and A1 do

not occur in the same periods because of different grid operating conditions, as depicted in

Fig. 4.28a for S1 and Fig. 4.29a for A1.

When V2G functionality is enabled, grid technical limits and EV energy requirements

can hinder the possibility to discharge EVs, as in S2 in Fig. 4.28b, where only charging

processes occur during the day, due to low differences of sensitivity coefficients during

plug-in times that do not encourage EV discharging. However, higher grid load demand

in autumn weekday in Fig. 4.29b could lead to V2G exploitation in node 22, that slightly

contribute to EV charging in node 18. For both S2 and A2 scenarios, grid loss increases are

depicted in Fig. 4.30b.

When stringent voltage limitations are imposed in S3 and A3, V2G exploitation is re-

quired by the network perspective from the EVs in order to avoid grid voltage to exceed
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limits. In S3, EV discharging at nodes 18 and 33 occur, leading to peak shaving with a

0.63% total grid load reduction (Fig. 4.28c), while in A3 V2G functionality is not deeply

exploited as in S3, due to grid demand (Fig. 4.29c). As a matter of fact, total load variation

is 0.45%. This affects grid losses variations as well, that are negative for most of the day, as

in Fig. 4.30c.

Anticipating plug-in intervals (S4, A4) leads to an increase of grid losses during early

morning hours (Fig 4.30d), due to EV charging, while V2G operation is depicted in Fig

4.28d from 06:00 to 07:00 in nodes 18 and 33 in S4 and in Fig. 4.29d in node 22 in A4,

because of significant variations of sensitivity coefficients in the times when EVs are avail-

able.

When plug-in times are shifted 3.5 h forward to cover evening-night period, the effect

is the absence of V2G in S5 – Fig. 4.28e – since sensitivity variations are not enough sig-

nificant to promote discharging events, while a significant discharge occurs at node 22 in

A5 (Fig. 4.29e). Same considerations can be done on the loss variations during the day in

Fig. 4.30e, that register an increase during evening and night hours, in correspondence of

EV charging.

Introducing further voltage limitations in S6 leads to EV discharging during 11:30-

12:30 for nodes 18, 22 and 33, and in the same period grid loss reduction is registered,

as shown in positive variation in Fig. 4.30f. In addition, for the A6 it can be noted that

in the period 12:30-16:00 EV discharging in node 22 support EV charging in node 18,

thus realizing a principle of energy community among charging stations even considering

a network objective without economic incentive of community configuration. Moreover,

EV discharge occurs from 18:30 to 21:30 at node 18 for voltage supporting. EV power

exchanges in this scenario are reported in Fig. 4.31.

It can be seen that in all scenarios, the upper limit PMAX
CS,i set to 0.1 allows EV simulta-

neous charging at maximum power.
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Figure 4.28: Charging station energy in S1 (a), S2 (b), S3 (c) S4 (d), S5 (e) and S6 (f).
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Figure 4.29: Charging station energy in A1 (a), A2 (b), A3 (c) A4 (d), A5 (e) and A6 (f).

4.5.4 Results for the integration of 100 EVs

The integration of 100 EVs grouped in 20 EVs at nodes 18, 22, 25, 33 and 7, leads to

higher energy demand for charging and further concentration in critical nodes, along with

an increase of grid losses with respect to the case where EVs are not integrated. In S7 not

all EVs can not charge at the same time at maximum power, because the total maximum
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Figure 4.30: Delta energy losses considering 36 integrated EVs in scenarios S1 and A1 (a),
S2 and A2 (b), S3 and A3 (c), S4 and A4 (d), S5 and A5 (e) and S6 and A6 (f).
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Figure 4.31: Power exchanged by 36 integrated EVs in scenario A6 grouped for node 18
(a), node 22 (b), node 25 (c) and node 33 (d).
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charging power is set to 0.1 MW. Therefore, power modulation is necessary and no V2G

is depicted, as well as in S8, where total charging power is increased to 0.2 MW and EVs

can simultaneously charge (Fig. 4.32a-b). Consequently, grid loss variations reach higher

negative peaks during charging events, as in Fig. 4.34b. Whereas, in S9 a reduction in grid

losses is reached thanks to the discharge at nodes 18, 33 and 7 around 12:00. In autumn

scenarios, more V2G events occur due to higher load demand that requires voltage support

by the EVs. Deeper discharge occurs at node 22 in A8 around 10:30 for grid supporting.

Same consideration could be done for scenario A9. Moreover, no power exchanges among

EV clusters in different nodes occur, since grid operation is more stressed compared to the

case of low EV penetration, thus prevailing on other actions not involved in the main target.

All energy exchanged are reported in Fig. 4.33.
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Figure 4.32: Charging station energy in S7 (a), S8 (b) and S9 (c).

Table 4.11 collects the daily energy losses for all simulated scenarios. Generally, the EV

integration in the network leads to an increase of grid losses, especially when the number

of EVs is high. However, exploiting V2G features could avoid high peaks of losses and

load. The inclusion of EVs do not affect particularly the line loading, representing a slight

increase (less than 5%) of total grid load requests, nor power flow inversion are observed

during V2G exploitation. The activation of stringent nodal voltages in scenarios S3 (A3), S6
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Figure 4.33: Charging station energy in A7 (a), A8 (b) and A9 (c).
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Figure 4.34: Delta energy losses considering 100 integrated EVs in scenarios S7 and A7
(a), S8 and A8 (b), and S9 and A9 (c).

(A6) and S9 (A9) forces the operation of V2G in order to limit voltage drops in the farthest

node, such as node 18, where voltage reaches the minimum value imposed by constraints

(see Fig. 4.35). Moreover, due to the presence of high load in autumn scenarios, minimum

voltage limits are lower than the ones imposed in summer scenarios.
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Table 4.11: Total daily losses [MWh] with and without EVs for all scenarios.

S without EVs S1 S2 S3 S4 S5 S6 S7 S8 S9
1.31 1.34 1.34 1.35 1.33 1.34 1.34 1.39 1.39 1.40

A without EVs A1 A2 A3 A4 A5 A6 A7 A8 A9
2.08 2.12 2.12 2.12 2.11 2.11 2.11 2.18 2.18 2.18

S1/A1 S2/A2 S3/A3 S4/A4 S5/A5 S6/A6 S7/A7 S8/A8 S9/A9
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Figure 4.35: Minimum voltage registered at node 18 in all scenarios.

4.6 EV cluster integration into a semi-urban

low voltage grid

The methodology presented in Section 4.5.1 is also applied to a semi-urban LV network,

in order to inspect the impact of clusters EVs at different penetration level on grids with

different features.

LV semi-urban network used is the one modelled by Distribution System Operator Ob-

servatory (DSOO) [123], whose scheme with EV station placed is reported in Fig. 4.36a.

The grid consists of one MV /LV transformer at node one, 115 nodes and 114 branches

organized in several radial feeders. The grid is characterized by total active load of 220 kW,

maximum nodal power of 4 kW and load power factor of cosϕ =0.957 [12]. Preliminary

load flow analyses are carried out in Matlab (using Matpower tool) in order to inspect the

safe operation of the grid under a possible uniform load variation. Two residential utility

151



4.6. EV CLUSTER INTEGRATION INTO A SEMI-URBAN
LOW VOLTAGE GRID

load profiles are considered and adapted in the study, a typical autumn weekday and a typ-

ical summer Sunday, with 30-min timestep [118]. As shown in Fig. 4.36b, minimum load

demand is reached during night hours, whereas peak loads are reached at around 12:00 in

summer Sunday and in the interval 18:00 – 22:00 in autumn weekdays.

Additional grid parameters are set:

• PMAX
G1 is set to 0.4 MW,

• PMAX
flow,h is set to 0.29 MVA,

• V MAX
i and V min

i are respectively set to 1.06 and 0.95 p.u.

According to preliminary analysis on the grid, EV charging stations are placed at nodes

16, 66, 92 and 114, which are, respectively, the closest to the three network bifurcations and

the farthest one from the transformer, as depicted in Fig. 4.36a. Each EV station includes

two charging points. The number of EV stations is chosen in order to satisfy line maxi-

mum capacities. EV features are the same reported in Section 4.5.2, as well as distribution

functions of stochastic inputs. Table 4.12 collects data generated for EV usage within the

grid. Since the timestep granularity is 30 minutes, the samples for arrival/departure times

are approximated accordingly.

Table 4.12: EV usage pattern.

node EV tarrEV,j [h] tdepEV,j [h] Sarr
EV,j [kWh] Sdep

EV,j [kWh]

114
1 10:00 19:00 77.9 97.4
2 10:00 19:30 73.2 98.9

66
3 08:00 15:00 85.6 89.9
4 10:00 19:30 72.7 99.1

16
5 09:30 18:00 82.3 95.3
6 08:00 15:00 85.5 89.3

92
7 08:30 16:00 85.4 91.9
8 09:00 17:30 83.4 94.5

Several scenarios are simulated and compared by means of indicators defined in Sec-

tion 4.2.2, combining operation modes of EVs (only coordinated charge or charge and

V2G), technical limitation of nodal voltages, shift of arrival and departure times, and in-

crease of the number of integrated EVs. A synthetic collection of scenarios is reported in
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Figure 4.36: LV semi-urban network schematic integrating EVs [123] (a) and load data
profiles in Autumn Weekday and Summer Sunday (b).

Table 4.13. Scenarios S1-4 are tested for summer Sunday, while Scenarios A1 and A2 are

tested for autumn weekday.

Moreover, as can be inferred from Fig. 4.36b, maximum load in autumn is close to line

loadability, therefore the presence of further EV charging with the arrival/departure time as

in Table 4.12 is proved to imply line loading exceed the limits, hindering simulation con-

vergence. Therefore, both autumn scenarios and S4 in summer include V2G functionality

for EVs and shifted arrival and departure times during night hours for EV1-4: for EV1

plug-in interval is 17:30-05:00, for EV2 17:30-05:30, for EV3 17:00-06:00, and for EV4

17:00-08:00 – while keeping arrival/departure energies as in Table 4.12.
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Table 4.13: Simulation scenarios.

Scenario V2G Stringent nodal
voltage limit

EV park
at night

S1 x x x
S2 ✓ x x
S3 ✓ ✓ x
S4 ✓ x ✓
A1 ✓ x ✓
A2 ✓ ✓ ✓

4.6.1 Results in Summer scenarios

In scenario S1 EVs are considered as controllable loads. Energy losses are 0.186 MWh,

nearly 6.89% higher than total energy losses in the absence of EVs. Fig. 4.37a reports

the trends of ∆PL calculated as in (4.38) during the day: it can be pointed out that losses

increase when energy is requested by EVs (as in Fig. 4.37c), and especially in the interval

14:00-17:30 high values of losses are registered, with a maximum of 13.2 kWh (correspond-

ing to 0.4 p.u. variation). EV charging events are optimally chosen during morning hours

and afternoon, in order to avoid line overloading during the hours when grid load is high.

In scenario S2, daily energy losses are the same as S1, with a higher peak of 15.6 kWh at

15:00 (corresponding to nearly 0.5 variation, see Fig. 4.38a). The V2G functionality leads

to peak shaving event, since EVs discharge when grid load reaches high values, around

12:00-13:00, as reported in Fig. 4.38c, where negative values represent discharging events.

Since the considered network is mainly passive, the voltage reduction is more challeng-

ing than voltage increase, therefore in S3 the value of V min
i is increased up to the limit

of procedure convergence. For a value of 0.986 p.u., a negative value of variation in the

time 11:00-14:00 with respect to the case without EVs is observed, due to V2G exploita-

tion (Fig. 4.39a-c) to cope with voltage constraint at the farthest node. The peak of losses

is 12.1 kWh, lower than the ones in previous scenarios. From exchanged powers by EVs

in Fig. 4.39c it can be seen that, during their plug-in time, EVs are first charged and then

discharged to support the grid, and after that another charge is observed (as EV1 at node

114, see Fig. 4.39b).
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Figure 4.37: Variation of power losses ∆PL (a), energy exchanged by CSs ECS,i (b), and
exchanged powers by EVs (c) in Scenario S1.

Shifted plug-in times in S4 lead to an increase in energy losses during night hours

(Fig. 4.40), due to EV charge, while during morning hours losses decrease due to EV5-8

discharge aiming to contribute to voltage support (Fig. 4.40c). Total losses are 0.176 MWh,

5.37% lower than ones in S2.

In Fig. 4.41 nodal voltage profiles are shown for all summer scenarios: as supposed,

node 114 has the lowest voltage profile, reaching the minimum of 0.97 p.u. in S2 at 15:00.

In S3 node 114 and the close ones reach the imposed minimum technical value. Line loading

levels Fh are reported in Fig. 4.42. In S1 the maximum rate is 0.91 p.u. for line 1 at 12:30.

However, line loading is affected by EV charging events during afternoon, while in S2 V2G

functionality leads to flow inversion especially in line 63, as in Fig. 4.42b, as well as the

flow inversion in the same line in S4 at 18:00, followed at 19:00 by line 112, and at 21:30

by line 108 and 112.
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Figure 4.38: Variation of power losses ∆PL (a), energy exchanged by CSs ECS,i (b), and
exchanged powers by EVs (c) in Scenario S2.

4.6.2 Results in Autumn scenarios

In scenario A1 energy losses are 0.186 MWh, nearly 2.10% lower than the corresponding

without EVs. As it can be seen in Fig. 4.43a, a decrease in losses is achieved during evening

hours, when EVs can discharge. However, EV charging causes an increase in losses with a

maximum of 8 kWh at 15:00, still lower than the ones in S2. In this scenario, EVs connected

to nodes 114 and 66 discharge more frequently than ones in nodes 16 and 92 (Fig. 4.43c),

due to variability of sensitivity coefficients during the evening that encourage discharging of

EV1-4 to support grid voltage when load is higher. In A1, the minimum registered voltage

value is 0.972 p.u. as shown in Fig. 4.45a.

In scenario A2 the minimum voltage limit is increased up to 0.979 p.u., representing

the limit value for procedure convergence. Comparing losses in Fig. 4.44a it can be pointed

out that same reduction in losses of A1 is reached during evening hours, as well as the loss

peak at 15:00 due to EV charging. However, a lower peak of around 14 kWh at 18:30 is

reached, which is 13% lower than the corresponding value in A1. Furthermore, the same
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Figure 4.39: Variation of power losses ∆PL (a), energy exchanged by CSs ECS,i (b), and
exchanged powers by EVs (c) in Scenario S3.

amount of daily losses is registered. In order to satisfy the updated minimum voltage limit

in A2 scenario, EV discharge occur to prevent limit violation at node 114 (as reported in

Fig. 4.45b). Same considerations about EVs at nodes 114 and 66 that discharge at maximum

power are still valid in scenario A2.

Table 4.14 collects the daily energy losses for all scenarios. It can be seen that the use of

EV stations generally implies an increase of daily energy losses, except for the night-long

parking scenarios, where the difference of sensitivity factors between night and other hours

implies the possibility to reduce losses exploiting V2G. Line flow rates for both scenarios

are shown in Fig. 4.46. Flow inversion due to V2G exploitation occurs in line 63 in both A1

and A2, in order to support nodal voltage.
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Figure 4.40: Delta energy losses ∆PL (a), energy exchanged by CSs ECS,i (b), and ex-
changed powers by EVs (c) in Scenario S4.
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Figure 4.41: Voltage profile in nodes 16, 66, 92 and 114 in scenarios S1 (a), S2 (b), S3 (c)
and S4 (d).
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Figure 4.42: Loading profiles in lines 16, 66, 92 and 114 in scenarios S1 (a), S2 (b), S3 (c)
and S4 (d).

Table 4.14: Daily energy losses in all scenarios.

Scenario w/o EVs [MWh] With EVs [MWh]
S1 0.174 0.186
S2 0.174 0.186
S3 0.174 0.187
S4 0.174 0.176
A1 0.190 0.186
A2 0.190 0.186

4.7 DC microgrid EVSI integration in MV distribu-

tion grid

In this section a multi-objective optimization is proposed for optimal programming of DC

microgrids for EV supply integrated into MV distribution grid, with the aim of minimizing

both utility grid and single microgrid targets. Starting from the methodologies described

separately in Sections 2.2 and 4.5.1, a multi-objective problem is defined and tested on the

realistic radial distribution grid integrating a set of 4 DC microgrids.
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Figure 4.43: Delta energy losses ∆PL (a), energy exchanged by CSs ECS,i (b), and ex-
changed powers by EVs (c) in Scenario A1.

4.7.1 Multi-objective MILP problem

The proposed procedure employs a MILP optimization problem for the integration of nMG

DC microgrids in a MV passive distribution grid consisting of n buses (1 generation node

and n−1 load) and NL lines. To this purpose, the grid state vector combines grid variables,

such as the nodal voltage amplitudes (p.u.) - Vi -, generated powers (PG,i), exchanged

power of the integarted DC microgrid (PMG,i), active power flows of the h-th network

line (Pflow,h), and variables of each b-th DC microgrid, that are active power withdrawn

from / delivered to the distribution network (P in
g,b(t) and P out

g,b (t)), charge power, discharge

power and SOC of the BESS (P c
B,b(t), P

d
B,b(t) and SB,b(t)), charge power, discharge power

and SOC of each b–th EV microgrid - P c
EV,b(t), P

d
EV,b(t) and Sb(t) -, integer variables

for grid connection vg,b(t), for BESS vB,b(t), and for each EV vb(t), equal to 1 if the

power exchange is towards the DC common bus and 0 otherwise, for each time-step t (see

Section 2.2).
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Figure 4.44: Delta energy losses ∆PL (a), energy exchanged by CSs ECS,i (b), and ex-
changed powers by EVs (c) in Scenario A2.
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Figure 4.45: Voltage profiles in nodes 16, 66, 92 and 114 in scenarios A1 (a) and A2 (b).

Therefore, the state vector has dimensions [(1+n+NL +nMG)×NT +(3+ 5+5×

nEV )× nMG ×NT ]× 1.

The considered objective function aims at minimizing a technical target, represented by
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Figure 4.46: Power flow rate in lines 1, 63, 108, 112 and 114 in scenarios A1 (a) and A2
(b).

the total losses, and an economic one, given by the costs afforded by DC microgrids (4.47).

f comb =

NT∑︂
t

{︄[︄
PG1(t)

Pref
−

nMG∑︂
b

PMG,b(t)

Pref

]︄
+

nMG∑︂
b

CostMG,b(t)

Costref

}︄
(4.47)

Daily costs for DC microgrid take into account costs for energy purchase, EV charging and

for wearing of BESS and EVs, and revenues for power selling and EV V2G operation. The

expression is the one defined in (2.2), adapted for each microgrid, and reported in (4.48).

CostMG,b(t) =∆T ·

{︄
cg(t) · P in

g,b(t)− rg(t) · P out
g,b (t) + wB · [P c

B,b(t) + P d
B,b(t)]+

+[wb + cEV (t)] · P c
EV,b(t) + [wb − rg(t)] · P d

EV,b(t)

}︄
∀b ∈ [1;nMG]

(4.48)

Equality constraints include grid load flow equations, linearized as in (4.29), (4.30) and

(4.32), where PMG,i(t) is substituted to PCS,i(t). Moreover, the two levels are coupled by

means of equality constraint (4.34) assigning microgrids to network node, which is modified

as formulated in (4.49), considering active withdrawn power P in
g,b(t) and power delivered to

the grid P out
g,b (t), where βb,i is a binary coefficient equal to 1 if the correspondence between

b-th DC microgrid and the i-th load node is verified, 0 otherwise.
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PMG,i(t) =

nMG∑︂
b=1

βb,i ·
[︁
P in
g,b(t)− P out

g,b (t)
]︁

∀i ∈ [2;n], ∀t ∈ [1;NT ] (4.49)

DC microgrid equality constraints regarding power balance at the DC bus (2.3), SOC

evolution for BESS and EV batteries (2.4) and (2.5), and for setting initial and final SOC

of BESS and EVs - (2.6a) and (2.6b) - are still included in the formulation. Inequality

constraints for the grid regard the maximum and the minimum energy EMAX
MG,b and Emin

MG,b

that each microgrid could exchange in all daily horizon, as in (4.50a) and (4.50b).

NT∑︂
t

PMG,b(t) ·∆T ≤ EMAX
MG,b ∀b ∈ [1;nMG] (4.50a)

NT∑︂
t

PMG,b(t) ·∆T ≥ Emin
MG,b ∀b ∈ [1;nMG] (4.50b)

For each DC microgrid inequality constraints (2.7) and (2.8) (also for BESS and EV

powers), along with discharge limitations in (2.11) and (2.12) are still valid in this formu-

lation. Finally, upper and lower bounds for each state variable are set in order to respect

technical limits of the components - see (4.35a)-(4.35j) for the grid model and (2.9a)-(2.9i)

for DC microgrid model.

4.7.2 Techno-economic indicators

Technical and economic indicators are defined in order to evaluated obtained results. In

particular, active power loss variation with respect to the case of the grid without EVs (base

case), that take into account also the existing load Pload,i(t) for each i-th node of the grid,

expressed in MWh in (4.38), the energy exchanged at DC microgrids calculated in (4.44)

replacing PCS,i with PMG,i, and line loading rate Fh(t) defined for each h-th branch of the

network as in (4.45). Moreover, the total cost evaluated in (4.48) is the economic indicator.
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4.7.3 Grid features and DC microgrid architectures

The IEEE-33 radial distribution grid described in Section 4.3.1 with its characteristics is

used for the implementation of the multi-objective procedure for the optimal daily pro-

gramming of the grid integrating 4 DC microgrids (nMG =4) at nodes 18, 22, 25 and 33,

as in Fig. 4.47. Grid load profile is the one referring to a typical Summer Sunday, as shown

in Fig. 4.11c.

Figure 4.47: IEEE-33 grid topology with the integration of 4 DC microgrids.

Figure 4.48: Layout of each DC microgrid integrated.

Each DC microgrid consists of a 20 kW PV generator, a 25 kW/ 90 kWh BESS and

one 15 kW EV bidirectional charging station. Features of the BESS and EV station, along

with BESS and EV initial SOC, are respectively collected in Table 4.15 and Table 4.16. The

layout of the DC microgrid is shown in Fig. 4.48.
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Table 4.15: BESS features.

BESS

ηcB 0.95
ηdB 0.95
P c,MIN
B [kW] 0

P c,MAX
B [kW] 25

P d,MIN
B [kW] 0

P d,MAX
B [kW] 25

HB [kWh] 90
SMIN
B [kWh] 18

SB(t = 1) [%] 60

Table 4.16: EV station features.

EV station

ηcEV,b 0.95
ηdEV,b 0.95
P c,MIN
EV,b [kW] 0

P c,MAX
EV,b [kW] 15

P d,MIN
EV,b [kW] 0

P d,MAX
EV,b [kW] 15

Cap [kWh] 60
SMIN
b [kWh] 6

Sb(t = 1) [%] 30

EV usage in each microgrid is generated according to the probabilistic approach re-

ported in Section 2.2.5. Plug-in times are shown in Fig. 4.49, where it can be seen that the

EV considered for microgrid 1 travels from 09:30 to 10:30 and from 12:00 to 13:30, the one

of microgrid 2 from 08:00 to 10:00, the one connected to microgrid 3 from 10:30 to 12:00

and from 18:30 to 19:30, and the one connected to microgrid 4 from 13:30 to 15:30.

The energy buying and selling prices considered in (4.48) refer to a summer sunday

in 2021, the year before the events of 2022 that brought a sharp increase in energy costs.

Buying prices cg are modeled by adding to the National Single Price values (taken in [110]

from GME), the transportation costs and the system charges in the case of non-domestic

loads, obtained from [109]. EV charging costs cj are modeled by adding a surplus of 0.05

C/kWh to the energy buying prices, taking into account charging infrastructure charges,

while revenues for V2G discharge rj are assumed to be equal to costs of vehicle charging
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Figure 4.49: Plug-in times of EV1 in each microgrid integrated in the distribution network.

with a surplus of 0.16 C/kWh, corresponding to the remuneration to the vehicle owner for

the service offered. Electric vehicle battery degradation cost and BESS degradation cost

were assumed to be 2 C and 0.9 C per full discharge cycle, respectively. They represent

plausible values for the two different battery technologies considered. Fig. 4.50 shows

the trends over time of the unit costs used in the simulations. It can be seen that all the

costs considered present the maximum value at 22:00. The minimum selling price is 0.072

C/kWh and it occurs from 11:00 to 12:00, while the minimum buying, charging, and dis-

charging prices are respectively 0.11 C/kWh, 0.16 C/kWh, and 0.32 C/kWh, occurring at

07:00. In addition, the degradation costs of BESS (wB) and EVs (wj) are 0.01 C/kWh and

0.033 C/kWh.

Pref considered in (4.47) is set to 0.1 MW, which corresponds to the power generated

peak in the absence of microgrids, whereas Cref is the reference cost for DC microgrids,

evaluated as the sum of single cost for energy purchaising for EV charging assuming un-

controlled charge estimated at 17.53 C.

4.7.4 Results and indicator evaluation

In the scenario under investigation, total daily energy losses from the grid are 1.3002 MWh,

0.95 % lower than the 1.3126 MWh in the base case, in the absence of DC microgrids.

Fig. 4.51 shows, all over the daily horizon, the power production by the generating node
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Figure 4.50: Unit costs used for economic evaluation.

PG1, grid losses, power flow rates along the lines, nodal voltages, and power drawn totally

from the microgrids. As shown in 4.51a, the generated power peak of 3.24 MW occurs at

13:00 (as in the case of no microgrids). Moreover, PG1 is decidedly reduced from 20:30 to

22:00, during the evening peak. A 1.7% increase of PG1 is detected at around 04:30, due to

EV charging in each microgrid (see Fig. 4.52).

Losses and power flow rate show a decrease from 20:30 to 22:00 in Fig. 4.51b-c. Specif-

ically, around 22:00, inversion of power flow occurs in load line 21 and 32 (terminal lines

of the network), thus providing respectively 9.4 kW and 18.5 kW excess power to the grid

over their maximum of 2.76 MW.

The nodal voltage amplitudes (Fig. 4.51d), especially the ones of farthest node from the

generation, show a slight decrease around 04:30, in accordance to the increase of losses and

power generation.

Referring to Fig. 4.51e, all microgrids absorb energy during the night, in order to pro-

vide it during the day. This is particularly intense for microgrid 1, up to 21.5 kWh at 06:30,

due to its EV energy requirements for numerous trips. On the contrary, microgrid 3 has

lower absorption, i.e. 6.10 kWh at 04:30, which is more similar to that obtained in micro-
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Figure 4.51: Power generated by the generating node PG1 (a), grid losses (b), power flow
rates along the lines (c), nodal voltages (d), and power drawn totally from the microgrids
(e).

grids 2 and 4 (that absorb 9.4 kWh at 05:00 and 5.1 kWh at 04:30, respectively). This is due

to EV mobility of microgrid 3, where EV travels are long but spread out over time (with

respect to EV in microgrid 1). Consequently, in microgrid 3, PV generator provides energy

to the EV during the day (see Fig. 4.52c).

Furthermore, energy provided by microgrid 3 is lower than one by microgrid 1, because

of the gap between the sensitivity coefficients of the power generated at the slack node be-

tween night and daytime hours is much greater for the node where microgrid 1 is connected
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(node 18) than for the node to which microgrid 3 is connected (node 22). Moreover, the

absorption occurs for all microgrids at night, as both cost of purchasing energy and sensi-

tivity coefficients of power generation at the slack bus are lower during the night hours, thus

implying lower increase of both the objective function terms.
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Figure 4.52: Power balance at the DC bus in microgrid 1 (a), 2 (b), 3 (c), and 4 (d).

Power exchanges inside each DC microgrid are reported in Fig. 4.52. Regarding powers

in microgrid 1, it can be seen that 16.6 kWh energy import from the grid from 04:30 to 05:00

occurs, in order to charge EV at maximum power. Power generated by PV is delivered then

to the distribution grid until 10:30 and then again from 15:30 to 18:00. EV and BESS are

charged from 10:30 to 15:00. This allows V2G operation from 20:00 to 22:00 when P out
g,1

reaches its peak of 36.1 kW. Microgrids 2 and 4 perform analogously to microgrid 1, except

for the lower power consumption during the night. In microgrid 3, on the other hand, EV

charge is supplied by PV after the first route, and it is extended for a longer duration in order

to limit the energy absorbed from the grid.

Pursuing the economic target, microgrids are pushed to inject power into the grid by per-

forming V2G, predominantly in the evening hours when revenues for discharge are higher.

With this aim, PV production is mostly dedicated to charging the EV more than the BESS.
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This target still ensures a reduction in losses, especially due to contribution of DC microgrid

power exports to the grid.
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Figure 4.53: EV and BESS SOC levels in microgrid 1 (a), 2 (b), 3 (c), and 4 (d).

SOC levels of EV and BESS for each microgrid are shown in Fig. 4.53. In all mi-

crogrids, BESS have a limited operating range between 60.98% and 76.68%, whereas the

capacity range of EVs is almost entirely exploited. In addition, BESS is not used to charge

EV, as this process would imply higher costs due to wearing, and also because it is more

convenient for EV to be charged first by PV and then by the grid; in particular, the EV in mi-

crogrid 1 reaches its maximum charge value of 75.25% at 15:00 as a result of being charged

by PV after the end of its second travel. EV in microgrid 2 reaches the minimum permitted

charge value of 10% at 10:00, while it reaches the maximum value of 83.59% at 14:00 after

being charged by PV . In microgrid 3, the vehicle also reaches the minimum SOC value,

while PV-supplied charge allows it to reach a maximum SOC of 91.9% at 16:00. Finally, in

microgrid 4 EV fully charges as its journey starts later than the EVs in the other microgrids.

Costs related to bought and sold energy, along with BESS and EV wearing costs, EV

charging costs, V2G revenues and net costs for all microgrids are all collected in Table 4.17.

Generally, the presence of economic target for microgrid leads to higher remuneration for
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selling energy to the grid exploiting V2G features. This results in a negative daily net

cost for all microgrids. It can be seen that microgrid 1 incurs the highest cost for energy

purchasing (3.19 C), as well as the highest revenue for energy selling (-10.28 C). The

highest remuneration for V2G services are obtained by microgrids 2 and 4 (-11.57 C), as

well as the total costs. BESS and EV wearing costs are almost the same for all microgrids,

along with costs for EV charging.

Table 4.17: Daily cost components of DC microgrids.

MG 1 MG 2 MG 3 MG 4
Purchased Energy [C] 3.19 1.40 0.90 0.76

Sold Energy [C] -10.28 -9.44 -7.95 -8.94
BESS wearing [C] 0.30 0.30 0.30 0.30

EV wearing [C] 2.82 2.98 2.66 2.98
EV charge [C] 11.30 11.30 11.30 11.30

V2G revenue [C] -9.87 -11.57 -8.17 -11.57
CostMG,b [C] -2.54 -5.02 -0.95 -5.16

4.8 LEC approach for DC microgrids integrated in

MV grids: cost benefit analyses

With the aim of studying the behaviour that the aggregation of microgrids would have in

pursuing a community target, assuming that a grid load is involved into the community and

that the supply of it is marked by an incentive, it is possible to calculate the total daily

community costs for different types of load. In these considerations, the amount of power

flows on the distribution network is not considered, given that no constraints (e.g. on cable

ampacity) is violated. In particular, assuming that the DC microgrids are interfacing with

the grid as a single entity, the total power exchange of this entity with the external system is

the sum of the power exchanged by each of the microgrids, PMGS(t) (positive if absorbed

by the community, negative if delivered to the grid or null, if there is no exchange with

the grid). As in (4.51), PMGS(t) is the algebraic sum of absorbed power P in
MGS(t) and

delivered power P out
MGS(t), that are expressed as in (4.52a) and (4.52b). Furthermore, the

quantity P exch
MGS(t) is defined as the amount of power exchanged at time t among microgrids,

171



4.8. LEC APPROACH FOR DC MICROGRIDS INTEGRATED IN MV GRIDS: COST
BENEFIT ANALYSES

equal to the minimum between P in
MGS(t) and P out

MGS(t) (4.53).

PMGS(t) = P in
MGS(t)− P out

MGS(t) ∀t ∈ [1;NT ] (4.51)

P in
MGS(t) =

nMG∑︂
b

P in
g,b(t) ∀t ∈ [1;NT ] (4.52a)

P out
MGS(t) =

nMG∑︂
b

P out
g,b (t) ∀t ∈ [1;NT ] (4.52b)

P exch
MGS(t) = min

[︁
P in
MGS(t);P

out
MGS(t)

]︁
∀t ∈ [1;NT ] (4.53)

Furthermore, the relation among community load Pload,LEC(t), power exchanged by

microgrids PMGS(t), power absorbed (sold) by the energy community P in
LEC(t) (P out

LEC(t))

and exchanged P exch
LEC(t) is expressed in (4.54).

PMGS(t) + Pload,LEC(t) = P exch
LEC(t) + P in

LEC(t)− P out
LEC(t) ∀t ∈ [1;NT ] (4.54)

Depending on PMGS(t) sign, three cases are modelled. In the first one, if PMGS(t) > 0

it means that power from the whole entity of microgrids is required from the grid; therefore,

there is no power exchanged inside the community to feed the load and no power sold to the

grid. If PMGS(t) < 0 and also |PMGS(t)| > Pload,LEC(t), then the group of microgrids

can provide power to the load within the community and sell the excess to the external

grid, without any power purchase. In the third case PMGS(t) < 0 and also |PMGS(t)| <

Pload,LEC(t) occur, thus part of the load required power is provided by microgrids, while

the residual part is covered by power purchase from the energy provider. The three cases

are reported in (4.55)-(4.57).

if PMGS(t) > 0 ⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P exch
LEC(t) = 0

P out
LEC(t) = 0

P in
LEC(t) = PMGS(t) + Pload,LEC(t)

(4.55)
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if PMGS(t) < 0, |PMGS(t)| > Pload,LEC(t) ⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P exch
LEC(t) = Pload,i(t)

P out
LEC(t) = |PMGS(t)| − Pload,LEC(t)

P in
LEC(t) = 0

(4.56)

if PMGS(t) < 0, |PMGS(t)| < Pload,LEC(t) ⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P exch
LEC(t) = |PMGS(t)|

P out
LEC(t) = 0

P in
LEC(t) = Pload,LEC(t)− |PMGS(t)|

(4.57)

A schematic representation of power exchanges can be found in Figg. 4.54-4.56.

Figure 4.54: Power exchanges between energy community and distribution grid in case
(4.55).

Figure 4.55: Power exchanges between energy community and distribution grid in case
(4.56).
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Figure 4.56: Power exchanges between energy community and distribution grid in case
(4.57).

4.8.1 Evaluation of LEC costs

With the purpose of evaluating benefits deriving from the formation of the energy com-

munity, a comparison between daily costs in the absence and presence (thus considering

incentive for the load supply) of the community is carried out.

In the absence of the community, both the power required by the microgrids and the

power required by the load are purchased from the grid at the predetermined purchase price.

Therefore, assuming that the power selling and buying prices routg (t) and cing (t) are the same

for each b-th microgrid as reported in Fig. 4.50, without community formation, the total

daily cost Cw/oLEC is expressed by the following relation (4.58).

Cw/oLEC =∆T ·
NT∑︂
t

{︂
cing (t) · P in

MGS(t)− ring (t) · P out
MGS(t)+

+cing (t) · Pload,LEC(t)
}︂ (4.58)

Considering the aggregation of microgrids in the energy community, total cost accounts

also for incentive (ξ expressed in C/MWh) for internal power exchanges inside the com-

munity, given by exchange among microgrids P exch
MGS(t), and community power supply

P exch
LEC(t) to the load. The expression for evaluating cost CLEC is reported in (4.59).
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CLEC =∆T ·
NT∑︂
t

{︂
cing (t) · P in

LEC(t)− ring (t) · P out
LEC(t)+

−ξ ·
[︂
P exch
LEC(t) + P exch

MGS(t)
]︂}︂ (4.59)

4.8.2 Analysis of results

The economic benefit deriving from LEC aggregation is evaluated for 3 load profiles, specif-

ically the ones connected at nodes 26, 31 and 15, in order to establish which typology of

load is more economically convenient for being integrated within the LEC. Load at node 26

refers to a commercial utility, and has a 22.48 kW peak at 12:00, and a daily energy request

of 412.88 kWh. Load at node 31 refers to a commercial utility too, but with higher demand

peak (57.11 kW at 10:30 and 11:30) and daily energy (1032.2 kWh). Load at node 15 refers

to a residential utility with a peak of 59.67 kW at 12:30 and requires daily 949.9 kWh (the

relevant profiles are reported in Fig. 4.57).

The incentive assumed is referred to the draft of the Ministry of the Environment and

Energy Security made public after 199/2021 Legislative Decree. This incentive, as in [124],

is valid on the energy shared within energy communities integrating renewable energy

sources that start operating after December 16th 2021, with installed power not exceed-

ing 1 MW and that share energy with users connected to the same MV distribution network

(deriving from a single HV /MV transformer station). Therefore, the incentive ξ is the

sum of the fix tariff of 120 C/MWh (as in [70]) and the avoided grid costs for transport

(corresponding to 8.48 C/MWh, according to [125]), for a total of 128.48 C/MWh.

In the case under study, the power exported by the whole entity of microgrids depicted

as well in Fig. 4.57, is concentrated in the evening hours, while between 04:00 and 05:30

they constitute an additional load for the grid. In particular, at 20:30 and 22:00, it exceeds all

loads demand, thus the excess is necessarily fed into the grid without incentive. Considering

the integration of load at node 26, in the case of the creation of an energy community, the

total cost is -0.017 C, so a remuneration is obtained, while in the case where it is not created,

a cost of 21.79 C has to be sustained. Aggregating user 31, the costs amount to 71.96 C in
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Figure 4.57: Power exchanges of all microgrids and load profiles considered.

the case of community and 105.26 C otherwise, while considering load 15 they amount to

62.82 C in the case of community and 97.44 C in the case of non-creation. Therefore, the

community presents a higher saving (of 34.84%) by integrating residential load 15 rather

than load 31 (31.18%). The results are collected in Table 4.18. Daily values of PMGS and

P exch
LEC evaluated for each load are reported in Table 4.19: the total daily PMGS is negative,

meaning that the group of microgrids complexly export energy to the grid. As the power

required by load increases (e.g. node 15 load) P exch
LEC also increases, since energy is covered

by microgrids inside the LEC.

Table 4.18: Cost comparison in the absence and in the presence of LEC of DC microgrids.

Load at node 26 Load at node 31 Load at node 15
Cw/oLEC CLEC Cw/oLEC CLEC Cw/oLEC CLEC

21.79 C -0.017 C 105.26 C 71.96 C 97.44 C 62.82 C

Table 4.19: Daily values of PMGS and P exch
LEC for each load considered.

Load at node 26 Load at node 31 Load at node 15
PMGS P exch

LEC PMGS P exch
LEC PMGS P exch

LEC

-487.5 kW 283.1 kW -487.5 kW 446.3 kW -487.5 kW 466.5 kW

176



Chapter 5

Conclusions and future work

In this thesis the integration of EVs into DC microgrid and distribution grids, with possible

aggregated frameworks such as LECs by means of optimal procedures for energy manage-

ment, has been investigated. The work has been framed into the activities of CONNECT

and PROGRESSUS EU H2020 projects.

A performance analysis of the optimal procedures has been carried out firstly consider-

ing DC-based EVSI involving PV and BESS, taking into account technical and economic

targets, and considering different EV usage patterns and PV availability levels. The influ-

ence of incentives and prices for V2G exploitation has been investigated, as well as the

impact of fast-charging station integration into the microgrid. Furthermore, the possibility

of internal reserve provision for coping with PV generation and EVs uncertainties has been

studied. These procedures have been implemented into cloud-based platform for energy

management of the DC microgrid Use Case of the PROGRESSUS project, along with pre-

liminary tests on system assets. Simulations have shown that a more intense use of V2G

operation has been observed when the objective does not involve wearing costs of EVs bat-

teries. Moreover, the presence of a consistent PV availability has led to lower operation

costs, while EV usage has affected possible exploitation in V2G mode. The comparison

of occurring conditions deriving from the definition of proper technical and economic indi-

cators able to provide synthetic information, could allow the EVSI EMS to adopt the best

strategy. Considering different scenarios based on a set of structural, operating, and eco-
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nomic conditions, the system without BESS show that V2G exploitation for power selling

to the distribution grid is encouraged by more attractive selling prices more than by re-

newable energy availability. Moreover, the system involving BESS efficiently responds to

price variations as well, giving a significant contribution to energy selling during the inter-

val when the spike price occurs, and yielding lower daily economic effort. The integrated

architecture for DC microgrid has proved to effectively achieve the controllability of EVs

and the bidirectional power exchanges. The proposed stochastic energy management pro-

cedure has shown that up and down reserve levels are guaranteed during daily microgrid

operation with a fair confidence level, proving that BESS and EV operations, when suitably

managed, could be useful to compensate uncertainties, although implying higher operation

costs. The influence of storage efficiency and wearing costs has implied a preference for

EVs to support this function. A feasible integration of the EV fast-charging station into

the DC microgrid has been demonstrated, although this implies an increase of cable and

converter losses with respect to the case without the fast-charging, along with operational

costs and energy exchanges with the utility grid. Considering a technical target implies that

EVs are more actively involved, with consequently reduction of losses with the respect of

the economic target. Furthermore, the implementation of optimal procedures into the en-

ergy management platform has shown a correct data exchange and visualization on platform

dashboards.

The aggregation of DC microgrids into a LEC framework has shown that EV-based

microgrids take advantage with respect to the other prosumers of the community from PV

availability, BESS and EVs, and sell energy to the distribution grid and to the other pro-

sumers, according to higher selling prices. Furthermore, the presence of revenues for EV

discharging encourages V2G exploitation, with respect to the use of dedicated BESS.

The stochastic approach implemented in this framework of a two-stage scheduling pro-

cedure revealed that positive and negative reserve levels are guaranteed considering both

provision only by BESS and by BESS and EVs. When the reserve is provided only by

the BESS units, no significant modification of the scheduled power exchange within the
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microgrid has been observed with respect to the case without reserve service. Whereas,

when both BESS units and EV batteries provided reserve, a variation of schedules and daily

cost reduction have been observed for EV-based microgrids, even in the absence of reserve

revenues/costs. The proposed chance-constrained approach has resulted to provide more

efficient solution with respect to stochastic scenario evaluation, showing that the reserve

schedule has implied the attainment of better performances in terms of technical and eco-

nomic objectives with reasonable computational effort.

The environmental and economic impact of EV parking lot operation in the presence

and absence of a BESS has been discussed considering uncontrolled and smart charging

techniques. Results have shown that BESS operation has been useful to reduce EV carbon

intensity and charging costs. In particular, while considering environmental target, carbon

emission reduction has been achieved, especially for high BESS capacity levels and in sce-

narios of EV fast charging rates, and operational costs are higher in fast charging scenarios

than in low charge ones, independently from BESS size and the season. Some significant

cost reductions have been observed considering economic target and high-capacity BESS,

along with carbon emission reduction in the sole winter season. The exploitation of EV

smart charging has allowed a less intense exploitation of BESS, ensuring its longer life, and

the attainment of objective values similar to higher BESS sizes with uncontrolled charging.

The investigation on EV integration on distribution grids at different penetration levels

has shown that the strategy based on V2G implies lower total energy and power losses,

with respect to controlled and uncontrolled charging. Furthermore, the exploitation of V2G

functionality has led to peak shaving, thus reducing losses and increasing the grid power

quality, in terms of voltage deviations. Simulation results have shown that EV plug-in

position within the grid (in particular at residential buses) could enhance V2G exploitation.

When integrating clusters of EV stations in MV and LV grids, grid loss and total load

increases have occurred, although technical limitations on voltages and flow rates are satis-

fied, therefore correct and safe EV integration has proved feasible even with high penetra-

tion levels. Moreover, simulation results have pointed out how V2G functionality has been
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5.1. FUTURE DEVELOPMENTS

affected by grid conditions. In fact, when stringent voltage limitations were imposed, EVs

have been pushed to support the grid during demand peaks. Furthermore, since V2V behav-

ior has been observed among different nodes in the grid, potentials for energy community

realizations has been envisaged.

Finally, a multi-objective methodology for DC-based EVSI integrated into MV grids

has been adopted for investigating possible aggregation in energy communities. Results

have shown that technical and economic targets for the whole distribution grid and for

each DC microgrid can be achieved, as reduced energy losses are detected with respect

to the case without DC microgrid. Moreover, resources inside each microgrid are optimally

programmed and V2G functionality has been exploited to inject power into the grid pre-

dominantly in the evening hours when revenues for discharge are higher. Simulations have

allowed to assess the economic benefits from the aggregation of microgrids with grid loads

in a LEC configuration. In particular, the aggregation of microgrids into LEC is more con-

venient when incentivising the feeding of a residential rather than a commercial user.

The studies carried out in this thesis, employing real device data of the use case demon-

strator has led to individuate the operating strategies for the efficient deployment of EVs

in DC microgrid as well as in LECs and distribution network ensuring proper technical,

economic and environmental performances.

5.1 Future developments

The studies presented in this thesis have laid the groundwork for further developments. The

potential directions for future research are listed as follows:

• tests on DC microgrid demonstrator in order to establish a proper communication

between field assets and energy management system, in order to send correctly the

optimized set-points to physical devices by the energy management platform, since

the permanent connection procedure to the distribution grid is still ongoing,

• the increase of daily cost due to BESS employment for reserve provision could be
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5.1. FUTURE DEVELOPMENTS

mitigated by considering the avoided cost of power purchase at grid connection point,

making BESS usage convenient,

• the inclusion of revenues for reserve provision service exploited by EVs and BESS,

along with the consideration of not only reserve levels within the DC microgrid, but

also an aggregated reserve of the LEC,

• the analysis of optimal strategies for ancillary service provision in the energy market

and regulation market by microgrids and systems of microgrids in order to reach

economic targets,

• the development of control strategies analyzing interactions between community and

microgrid operation both on day-ahead and real-time scale, with the aim of imple-

menting them into the energy management system of the real installation,

• the evaluation of the impacts of higher EV penetration levels on the transmission

network.
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