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Short-Term State Forecasting-Aided Method for
Detection of Smart Grid General False Data

Injection Attacks
Junbo Zhao, Student Member, IEEE, Gexiang Zhang, Member, IEEE, Massimo La Scala, Fellow, IEEE,

Zhao Yang Dong, Senior Member, IEEE, Chen Chen, Member, IEEE, Jianhui Wang, Senior Member, IEEE

Abstract—Successful detection of false data injection attacks
(FDIAs) is essential for ensuring secure power grids operation
and control. First, this paper extends the approximate DC model
to a more general linear model that can handle both SCADA
and PMU measurements. Then, a general FDIA based on this
model is derived and the error tolerance of such attacks is
discussed. To detect such attacks, a method based on short-
term state forecasting considering temporal correlation is pro-
posed. Furthermore, a statistics-based measurement consistency
test method is presented to check the consistency between
the forecasted measurements and the received measurements.
This measurement consistency test is further integrated with
∞-norm and L2-norm-based measurement residual analysis to
construct the proposed detection metric. The proposed detector
addresses the shortcoming of previous detectors in terms of
handling critical measurements. Besides, the problem of removal
of attacked measurements, which may cause the system to
become unobservable, is addressed effectively by the proposed
method through forecasted measurements. Numerical tests on
IEEE 14-bus and 118-bus test systems verify the effectiveness
and performance of the proposed method.

Index Terms—False data injection attack, state estimation,
cyber security, smart grid.

I. INTRODUCTION

STATE estimation (SE) is extremely important for ensuring
power system reliable operation and control. It provides

system accurate and continuously updated snapshots of the
real-time states, which enable energy management system to
perform various important control and planning tasks such as
optimal power flows, voltage stability study, and contingency
analysis [1]. However, with the development of smart grids,
the power systems are facing great challenges. One of them
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is the cyber attacks against SE, which can mislead the system
controls, possibly resulting in catastrophic large geographical
blackouts [2].

After the introduction of the false data injection attack
(FDIA) into power grids [2], it has been the object of new
interests and investigations among researchers and utilities
because of the potential hacker attack risks due to the in-
creasing number of links to public networks and the web-
based applications in the power industry, etc. The FDIA can
successfully bypass the conventional normalized measurement
residual-based bad data detection, thus causing serious threats
to system operation and control. To date, three kinds of FDIAs
have been proposed, i.e., state attack [2]–[4], topology attack
[5], and load redistribution attack [6]. In the state attack case,
the adversary can introduce arbitrary perturbations into the
system state estimation results by altering the measurement
values of a set of meters. In the topology attack, the adversary
aims to compromise a certain number of meters and break
circuit switches to mislead the operator with the incorrect
system topology without being detected. In the load redis-
tribution attack scenario, power injection measurements of the
load buses and line power flow measurements are attacked and
used to change the power flow distributions, i.e., to increase
loads at some buses and to reduce loads at other buses without
changing the total loads.

To detect and mitigate the FDIA, a number of methods
have been proposed [7]– [13]. Two security indices based on
the analysis of the sparsity of attack vector and attack vector
magnitude are proposed [7]. The least effort needed to launch
the FDIA while avoiding detections by the control center is
also discussed. In [8], a greedy algorithm-based secure PMU
placement method is proposed to defend against FDIA. In
[9], the FDIA is formulated as a matrix separation problem
while the nuclear norm minimization and low rank matrix
factorization methods are used as detection metrics. In [10],
known perturbations are applied to the system and then the
system is “probed” for any unexpected responses; however,
the random known perturbations, i.e., topology, transformer
taps, etc., cannot guarantee the fully elimination of the FDIA
possibility. For example, it is showed in [11] that the FDIA
is still successful if the attacker has imperfect but structured
topological information of the system. An alternative group
of the FDIA defense methods [12], [13] aims to add pro-
tections on many measurements so that the adversary could
not get enough measurements to launch attacks. For instance,
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in [12], a specific selected measurement-based strategy is
adopted against the attacks. The selected measurements are the
minimum number of measurements needed to ensure system
observability. However, it is economically unattractive to add
protection on a large number of measurements. On the other
hand, most papers assume hackers can acquire perfect system
configuration information, i.e., Jacobian matrix H without
biases in order to launch perfect FDIA, which is not practical
for real power systems. This is because that the attacker is
lack of real-time knowledge with respect to the status of
various grid elements such as the position of circuit breaker
switches and transformer tap changers, and also because he/she
is restricted to get access to many grid facilities (for example,
the hacker may not know the new installed PMU devices
while the control center can get access to them). Thus, it is
impossible for the hacker to get exactly the same Jacobian
matrix H as the control center. In other words, the H that the
hacker gets has bias, which would increase the risk of being
detected by the control center since the FDIA is not perfect
any more. Therefore, how to find the general FDIA model
(including perfect and imperfect FDIAs) while maintaining as
low probability to be detected by the control center as possible
should be investigated.

The measurements for a power system can be broadly clas-
sified as critical and non-critical [14]. Critical measurements
are measurements that, once removed, will make the system
unobservable and the state estimation unavailable. Existence
of critical measurements depends on the network topology,
as well as the number, type, and location of measurements,
instead of the measurement values themselves. The widely
used L2-norm measurements residual-based J(x) detector and
the largest normalized residue-based (LNR) detector cannot
detect bad critical measurements [14], not to mention the
intentional false data injection attacks on the critical mea-
surements. To the best of our knowledge, detection of such
attacks is not considered in the existing literature. Last but not
least, another purpose of detecting the FDIA is to remove the
attacked measurements and then re-run the SE to get the most
likely system operation states. But sometimes the removal of
attacked measurements may cause the system to be unob-
servable, especially for distribution or transmission systems
with low measurement redundancy, leading to SE unavailable.
However, this problem has not been completely considered
and addressed in the aforementioned FDIA methods.

This paper focuses on mitigating the issues discussed above
to a certain degree. The main contributions are:

• Most of the existing FDIAs assume an approximate DC
model associated to the SCADA measurements, which
is not accurate and comprehensive when the PMU mea-
surements are included. This paper extends the model to
a more general linear model which can effectively handle
both the SCADA and PMU measurements.

• A general FDIA based on the proposed linear measure-
ment model is derived and the error tolerance of such
attacks is analyzed.

• To detect the FDIAs, a short-term state forecasting-based
method considering nodal state temporal correlations is
proposed. This method exploits the measurement con-

sistency between the forecasted and the received mea-
surements. This measurement consistency test is then
integrated with ∞–norm and L2-norm-based measure-
ment residual analysis to construct the proposed detection
metric.

• The ability of the proposed detector for handling the
FDIA on critical measurements is discussed and analyzed.
Besides, the system observability issue caused by removal
of the attacked measurements is addressed.

• Numerical test results on IEEE 14-bus and 118-bus test
systems show that the proposed method outperforms
the two well-established detection schemes, i.e., J(x)
detector and the LNR detector.

The rest of this paper is organized as follows. In Section II,
the general linear measurement model and its corresponding
FDIA are presented. The proposed short-term forecasting-
based FDIA detection method is shown in Section III. The
effectiveness and performance of the proposed model and
detection method are evaluated in Section V. Finally, the paper
is concluded in Section VI.

II. PROBLEM FORMULATION

A. Generic Linear Measurement Derivation

In the literature, the approximate simplified and linearized
DC power flow model derived from the complex nonlinear
power flow equations is widely used for the FDIA construc-
tion. This pure DC model-based FDIA is neither accurate nor
general for the following reasons: from the perspective of the
operator, inclusion of more accurate PMU measurements into
SE will generate more accurate estimation results [15]. Then,
the pure SCADA measurement-based SE will be slightly mod-
ified because with the increasing installation of PMU devices,
part of the Jacobian matrix will be exactly linear for the PMU
observable area or even the whole Jacobian matrix will be
exactly linear if the number of PMUs is enough for ensuring
the entire system observable. In this situation, the linearization
errors are reduced. From the adversaries’ point, if the pure
approximate DC model is still used for the FDIA construction,
larger deviations will be produced, thus resulting in being
detected with higher probability by the control center since
the measurement model used by the control center has been
modified. In this section, a more general linear measurement
model that can handle both conventional SCADA and PMU
measurements is derived. Then, the general FDIA on this
model is presented and discussed.

For any linear measurement model, the relationship between
the measurement vector z and the state vector x is

z = Hx+ e, (1)

where H is a matrix that represents the linear relationship be-
tween the measurements and the states. For PMU full observ-
able systems, the elements of H are constituted by the system
conductance and susceptance without any linearization error,
while for PMU partial observable systems, H = [HT

c
HT

p
]T ,

where Hc is the approximate DC model related part for the
PMU unobservable area, and Hp is the accurate linear model
for the PMU observable area. If no PMUs are installed in the
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system, H = Hc. e is the random measurement error vector
and is assumed to be normally distributed, i.e., e ∼ N(0,R),
where R is the error covariance matrix. From (1), we can
obtain the estimated state variables x̂ by the weighted least
square method, i.e.,

x̂ = (HTR−1H)−1HTR−1z. (2)

B. Generic FDIA and Error Tolerance Analysis

The widely used bad data detection algorithm indicates the
existence of bad data as long as ∥z −Hx̂∥ > τ holds,
where τ is a pre-defined detection threshold. However, [2]
discovered that if the attacker vector is a = Hc, where c is
the nonzero column vector and has the same dimensions as
x, the injected false data cannot be detected by the bad data
detection algorithm, because

∥z + a−H (x̂ + c)∥ = ∥z −Hx̂ + (a−Hc)∥
= ∥z −Hx̂∥ ≤ τ .

(3)
The estimated state vector is

x̂a = (HTR−1H)−1HTR−1(z + a)
=(HTR−1H)−1HTR−1(z + Hc)
=x̂+ c.

(4)

Actually it is impossible to acquire the exact information of H
in practical power systems, the assumptions a = Hc should
be relaxed to the general conditions.

Proposition 1. Suppose the original measurement z can
bypass the L2-norm measurement residual-based bad data
detection. The malicious measurement z + a can also pass
this detector as long as ε = ∥a−Hc∥ ≤ τ − ∥z −Hx̂∥
holds, where a is the sparse attack vector; c is the nonzero
column vector; ε is the error tolerance of the attack vector;
τ is the detection threshold.

Proof: since z can bypass the L2-norm measurement
residual-based bad data detection, ∥z −Hx̂∥ ≤ τ is sat-
isfied. The estimated state vector x̂bad using za = z + a is
represented by x̂+c. Then, the L2-norm of the measurement
residual is

∥za −Hx̂bad∥ = ∥z + a−H(x̂ + c)∥
≤ ∥z −Hx̂∥+ ∥a−Hc∥. (5)

Therefore, as long as ε ≤ τ − ∥z −Hx̂∥ holds, we can
obtain

∥za −Hx̂bad∥ ≤ τ , (6)

which means the L2-norm of the measurement residual with
attacks is less than the detection threshold, resulting in un-
detectable FDIA. It should be noticed that the widely used
perfect attack vector in the literature is just a special case of
this error tolerance, i.e., ε = 0.

1) Proposed Generic FDIA Method: As mentioned in the
introduction that due to the limited knowledge of the system
real-time operation states and the restricted physical access
to to most grid facilities, the hacker to cannot get exactly
the same Jacobian matrix H as the control center. In other

words, the H the hacker gets has bias, i.e., H ← H + δ,
where δ is the bias due to the imperfect knowledge of the
system information. Thus, the attack vector constructed by the
adversary in this scenario will be a = (H + δ)c = Hc+δc.
The estimated state vector under the attack is

x̂a = (HTR−1H)−1HTR−1(z + a)
=(HTR−1H)−1HTR−1(z + Hc + δc)
=x̂+ c+ (HTR−1H)−1HTR−1δc.

(7)

By comparing (4) and (7), it is observed that the intended
attack magnitude c on the state vector has changed to c = c+
(HTR−1H)−1HTR−1δc due to the imperfect knowledge
of system matrix H . This will cause the increased probability
of being detected. The residual can be obtained as:

ra = za −Hx̂a = z + a−H(x̂ + c)
=r + a−Hc
=r + δc+H(c− c)
=r + δc−H(HTR−1H)−1HTR−1δc
=r + (I −M)δc = r + Sδc,

(8)

where M = H(HTR−1H)−1HTR−1; S = I −M ; I
is the identity matrix.

By combining (5) and (8), we can conclude that if the
following condition is satisfied, the FDIA cannot be detected.

ε = ∥a−Hc̄∥ = ∥I −M∥∥δc∥ ≤ τ − ∥z −Hx̂∥ (9)

This upper bound of ∥δc∥ represents the tradeoff between
attack magnitude and degree of imperfect knowledge of the
system information.

2) Analysis of FDIA on Critical Measurements: According
to the definition of critical measurement [14], the zero diag-
onal(s) of S is (are) defined as critical measurement(s). It is
interesting to notice that as long as the attacks are imposed
on the critical measurements, ∥ε∥ = ∥I − S∥∥δc∥ =
0 ≤ τ − ∥z −Hx̂∥ always holds irrespective of the attack
magnitudes.

This paper aims to construct a practical FDIA based on
the general linear measurement model. Besides, the short-
term state forecasting-aided method is proposed to detect both
general FDIA and the FDIA on critical measurements in the
following section.

III. PROPOSED DETECTION METHOD

A. Motivation

As indicated in [16], “If a system is controlled by a human
being, watching, perhaps, a pen recorder, he will automatically
ignore a large random spike that is obviously incorrect.” In
other words, under system normal operation conditions, if
we can get the approximate prior system measurements, the
perturbation a on the original measurements introduced by
the adversary will make the attacked measurements deviate
far from the approximate prior measurements, thus making the
attack detectable. On the other hand, the loads vary according
to the weather and temperature, showing apparently time series
characteristics. It means that with the evolution of system
changes, temporal correlation exists among different nodal
states. If the FDIA occurs, the deviation c or c introduced
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by the adversary will break down the temporal correlation,
leading to the FDIA detectable.Besides, due to the imperfect
knowledge of the system information and the restricted access
to the system measurements, the replay attack [17] is impracti-
cal for realistic power systems. Thus, the historical state-based
system anomaly detection is feasible.

In this paper, a short-term state forecasting method con-
sidering the temporal correlation is proposed to calculate the
approximate prior system measurements. Then, a statistics-
based measurement consistency test method is proposed to
check the consistency between the forecasted measurements
and the current received measurements. This measurement
consistency test is then integrated with the ∞ and the L2-
norm-based measurement residual analysis to construct the
proposed detection metric.

B. Short-Term State Forecasting
In the existing forecasting-aided state estimation methods

[18], the system is assumed to operate under quasi-static
conditions and the state transition matrix Fk in (13) is diagonal
and constant. However, due to the continuous variation of
loads, a power system is not static, but changes with time.
Once the loads of a power system change, the generation
has to keep up with the changes and consequently the flows
and injections at all the buses will change, resulting in state
changes of every bus. On the other hand, due to the load
variations caused by the weather and temperature changes,
temporal correlation exists among the nodal states and should
be carefully considered for better forecasting. This paper takes
into account such correlation and uses the time-variant state
transition matrix updating method in our earlier work [19] to
improve the system state forecasting accuracy.

In this paper, since we are only interested in one-step
ahead (short-term) state prediction (using the state at previous
time sample, i.e., k-1, to forecast the state at time sample
k), the auto-regressive (AR) models, which have comparable
performance with auto-regressive moving average (ARMA),
are adopted [20]. The time series for system states xk at time
sample k, by the AR(p) model is expressed as,

xk =

p∑
i=1

φi · xk−i + νk, (10)

where φi are the coefficient parameters; νk is the noise,
which is usually assumed to have Gaussian distribution, i.e.,
N(0, Ck). If we define xj

k
the jth zone according to (10), i.e.,

xj
k
= [xj

k−1
, xj

k−2
, ..., xj

k−(p−1)
]T , the following equation can

be derived
xj
k

xj
k−1
...

xj
k−(p−1)

 =


φj
1 φj

2 · · · φj
p

1 0 · · · 0 0
. . . . . .

0 · · · 1 0




xj
k−1

xj
k−2
...

xj
k−p



+


νjk−1

0
...
0


(11)

Let M the total number of zones, the above equation can be
rewritten as: x1

k
...

xM
k

 =

 ϕ1
k · · · 0

0
. . .

...
0 · · · ϕM

k


 x1

k−1
...

xM
k−1

+

 ν1k
...

νMk


(12)

where ϕj
k
= [φj

k−1
φj

k−2
...φj

k−(p−1)
]T , j = (1, ...M). In this

paper, as most papers did ( [18], [19], [21] for example), we
assume the order of the AR model is p = 1. Thus, one can
obtain the following forecasting model:

x̃k = Fkxk−1 + νk, (13)

where x̃k is the forecasted state vector; the parameter matrix
Fk = diag(ϕj

k) can be estimated by our previous time-
variant state transition matrix updating technique [19]. The
main idea of this method is to update Fk using the estimated
state x̂k at time sample k and the historical xk−1 through
least squares estimation, resulting in more accurate parameters
estimation. This is because the new system measurements,
which can reflect realistic system operation conditions, bring
new information to the filtered state. Thus, using both filtered
and historical state information to adjust the parameters will
make the forecasting model more accurate, leading to more
accurate state forecasting results.

The forecasting error matrix can be calculated through
Σk = FkTkF

T
k

+ Ck, where Tk is the state forecasting
error matrix at time k-1 and usually assumed to have normal
distribution [18], [19], [21], i.e., Tk = E[(xk−1 − x̂k−1) ·
(xk−1 − x̂k−1)

T ], where x̂k−1 is the estimated state vector
at previous time sample k-1; Ck = E(νkν

T
k ), where E(·)

is the expectation operator. It is easy to prove that Σk

follows normal distribution since xk−1 and νk follows normal
distributions. A more detailed process of parameter estimation
and its associated covariance matrix can be found in [19].

Therefore, the prior system measurements including con-
ventional SCADA and PMU measurements at time sample k
can be calculated by the forecasted states as (the index k is
omitted for notational simplicity):

z̃ = Hx̃, (14)

and the forecasting error covariance matrix is

cov(Hx̃) = Hcov(x̃)HT = HΣHT . (15)

Thus, the residual between the original received measurement
vector z and the forecasted measurement vector is r̃ = z̃−z.

Proposition 2. Ideally, the residual r̃ = z̃ − z should be
normally distributed with zero mean and covariance N =
R+HΣHT .

Proof: The forecasted measurement vector z̃ is dependent
on the historical measurements, which is independent from the
present measurement z. Therefore, errors present in each of
these measurement sets will be considered uncorrelated. Thus,
the error covariance matrix of the residual can be calculated
as

N = cov (z̃ − z) = cov (z̃) + cov (z) = R+HΣHT

(16)
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On the other hand, the noise matrix C, gross error of SCADA
and PMU measurements are usually assumed to be normally
distributed with zero mean. So, we can easily derive: ℑ[z̃ −
z] = 0, where ℑ is the expectation operator.

Remark 1: In this paper, the historical state information
come from the previous state estimation results and the en-
hanced bad data processing methods in the literature, such
as that in [22], [23], are assumed to be used to clear the
contaminated data. If such enhanced bad data processing
methods are not adopted for the previous state estimation,
the robust estimation methods in time series analysis can be
used for ensuring the accuracy of the forecasting results even
contaminated data occur in the historical data. For example,
the Median-of-Ratios Estimator (MRE) and the Phase-Phase
Correlator (PPC) [24], which have high breakdown points, can
be adopted to perform the robust state forecasting. On the
other hand, we assume that the hacker do not have the ability
to compromise both the real-time data and the historical data
. The investigation of detecting FDIA when both real-time
and the historical data are compromised by the hacker will be
handled in the forthcoming paper.

C. Proposed Detection Metric

The L2-norm-based measurement residual analysis method
has been used in the control center for many years and it
has been verified to have good performance in dealing with
bad data except for the FDIA. In this paper, we keep this
function unchanged and add another back-up high efficient
FDIA detection scheme to improve the bad data processing
ability including malicious injected data. To be specific, the
∞-norm or L2-norm-based measurement residual analysis
method is integrated into the proposed detector:

D1 (z) =

{
1 if∥z −Hx̂∥2 ≥ τ1 or ∥(z̃ − z)/σN∥∞ ≥ τ2
0 otherwise

(17)
where σN = diag(N). Value 1 of D1(z) indicates the
existence of bad data or FDIA, whereas, value 0 means no
bad data or FDIA. Note that, there are two thresholds in
the detector, τ1 and τ2, which mark the significance levels
of the hypothesis test. In the existing integrated detector-
based methods in [4], [25], and [26], the traditional residual-
based bad data detection (the detection threshold is τ1) stays
unchanged and τ1 is fixed to obtain the desired false alarm
probability, then, the detection threshold τ2 for alternative
proposed method is varied to test the performance of the
detector. In this paper, the performance of the proposed method
is tested using the same approach as [4], [25], and [26], i.e.,
we fix τ1 to a desired false alarm probability, then vary τ2 to
test our detector.

Remark 2: Two commonly used classical detection schemes:
the J(x) detector (marked as D2(z)) and LNR detector
(marked as D3(z)) can be expressed as

D2(z) =

{
1 if J (x̂) = (z−Hx̂)

T
R−1 (z−Hx̂) ≥ λ1

0 otherwise
(18)

D3 (z) =

{
1 if ∥(z −Hx̂)/σW ∥∞ > λ2

0 otherwise
(19)

where σW = diag(W ) and W is the error covariance matrix
of the measurement residue r̂ = z − Hx̂ and W = R −
H(HTR−1H)−1HT . The probability Pr(J(x̂) > λ1) and
Pr(∥(z−Hx̂)/σW ∥∞ > λ2) are directly evaluated by the
techniques in [27].

It is clear that if the attacks are imposed on the system’s
critical measurements, both J(x) and LNR detectors will
fail for the detection. However, this does not happen in the
proposed detector. The reason is that the residue for the critical
measurements will always be zeros regardless of attacks. In
other words, for those attacked critical measurements, their
associated measurement residue vector r̂ = z − Hx̂ = 0,
resulting no violations of the detection threshold. However, for
the proposed detector, once attacks are imposed on the critical
measurements, the forecasted measurements will deviate from
the received measurements, i.e., r̃ = z̃ − z ̸= 0. This is
because under system normal operation conditions, the tem-
poral correlation indicates that the measurement differences
between forecasted measurements and received measurements
should be consistent. Once the measurements are imposed
additional false injected data, the consistency will be broken
down, making the attacks detectable.

Remark 3: In this paper, τ1, λ1 and λ2 are designed
according to the detection theory in [28]; the corresponding
detectors are evaluated by the receive operating characteristic
curves (ROC) [4], [28] that characterize the trade-off between
the probability of attack detection and the probability of false
alarm.

D. FDIA Processing

In the proposed framework, when the historical system
state information is available, the short-term state forecasting
is performed using the equation (13). The proposed FDIA
detection metric is then used to detect whether FDIA exists
or not. If no FDIA exists, the state estimation results are
reliable and can be used to perform advanced controls and
optimizations. Otherwise, the FDIA is detected and the at-
tacked measurements needed to be processed so that the state
estimation could be run again to get the accurate estimation
results.

In this paper, the normalized residuals, which are larger than
the detection thresholds will be remarked as the attacked mea-
surements. One way to process these attacked measurements
is to remove them from the measurement set so that they will
not affect the final state estimation results. However, removal
of the attacked measurements may cause the system to become
unobservable, especially for the transmission system with
low measurement redundancy, leading to the SE unavailable.
In order to handle this problem, instead of removing these
attacked measurements, we propose to replace them by the
forecasted measurements. To be specific, the corresponding
forecasted measurements are used to replace the attacked
measurements, then the mixed measurements (original and
replaced)-based linear SE is performed again to get the new
accurate system operation states. On the other hand, the
forecasted measurements can be further regarded as pseudo
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measurements to increase the system observability, which is
helpful for other measurements-based functions in the control
center.

IV. NUMERICAL RESULTS

In this paper, the proposed method is tested on IEEE 14-
bus and 118-bus test systems [2]. The PMU installed at a
bus can measure the nodal voltage phasors as well as all the
current phasors of transmission lines that are connected to
this bus. In the simulation, since the PMU measurements are
more accurate than the SCADA measurements, their noises are
smaller compared with the SCADA measurement noise. Be-
sides, the PMU standard C37.118-2011 [29] specifies that the
measurement error requirement in terms of total vector error
(TVE) as 0.1%. In this paper, the noise for PMU measurements
is assumed to be normally distributed with zero mean and
variance, 0.1%, which is widely used in the existing literature
[22], [30], [31], while the noise for traditional SCADA mea-
surements is assumed to be normally distributed with zero
mean and variance 1%; the power systems are assumed to
operate under normal conditions, the scaled aggregated 5-min
load data from BPA [32] is used and is linearly filled with 20
data points; then, a normal random variable (noise) with zero
mean and standard deviation 1% is added to the load curve
and the percent of change in load from one step to another is
assumed to be 2%; the fast decoupled power flow program is
used to obtain the system states; the total number of zones
is set to M=20; the minimum energy attack residue-based
attack [4] is used to construct the attack vector. The probability
Pr(J(x̂) > λ1) and Pr(∥(z−Hx̂)/σW ∥∞ > λ2) are
directly evaluated by the techniques in [27]. However, for the
proposed detector D1, we fix τ1 to gain the desired probability
of false alarm and vary τ2 to test its performance. All the tests
are performed in MATLAB environment using Intel Core i5
2.5Hz CPU with 8 GB memory computer.

A. Model Validation

To verify the effectiveness of the proposed general linear
measurement model and its associated generic FDIAs, the
following two cases are considered,

Case 1: The control center is assumed to use the proposed
model for SE and bad data detection (LNR detector is used),
while the hacker uses a pure DC model to launch FDIA.

Case 2: The strategy for the control center is same as Case
1, but the hacker uses the proposed general model to launch
FDIA.

Different numbers of PMUs are installed in the IEEE 14-
bus system, i.e., no PMUs installed, one PMU installed at
bus 2, two PMUs installed at buses 2 and 4, three PMUs
installed at buses 2, 6 and 7, four PMUs installed at buses
2, 6, 7 and 9, and five PMUs installed at buses 2, 6, 7, 9
and 10. Note that the deployment of four PMUs can ensure
the system observable. Two false alarm probabilities, 0.05 and
0.1, are considered; several cases of sparsity of the attack,i.e.,
1 sparsity case (1-sparse attack), 2 sparsity case (2-sparse
attack) and 3 sparsity case (3-sparse attack), defined in [4],
are simulated. Simulation results are shown in Fig.1 and
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Fig. 1. The detection probability versus different numbers of PMUs under
different linear models, where the false alarm probability is 0.05.

Fig.2. As it is expected that with the increase number of
the deployed PMUs, the detection probability increases. On
the other hand, the growth in the number of the attacked
measurements will cause the rise of detection probability.
This is because that if more measurements are attacked, the
state inconsistences between the forecasted values and the
estimated values increase, resulting in higher probability to
be detected by the control center. It is interesting to find that
thanks to the installation of PMUs, the proposed model-based
FDIA has lower probability to be detected by the control
center compared with the commonly used pure DC model-
based FDIA. Another observation is that when the number of
the installed PMUs is able to make the system observable,
the attacks are more vulnerable to be detected, e.g., for 3-
sparse attack in Fig.1(a), when the deployed number of the
PMUs is four, the detection probability is 99.6%, whereas,
the value in Fig.1(b) is 87.6%. This indicates that when the
PMU measurements are available, the operator can use the
slightly modified linear measurement model-based detection
method to detect FDIA with higher probability. For the hacker,
he should try his best to acquire system PMU configuration
information to perform more efficient FDIA. Finally, by the
comparisons between Fig.1 and Fig.2, one can find that with
the increased false alarm probability, the detection probability
rises to a much higher level.
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Fig. 2. The detection probability versus different numbers of PMUs under
different linear models, where the false alarm probability is 0.1.
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Fig. 3. Scenario 1: ROC performance comparisons results for the three
different detectors in IEEE 14-bus system with 2-sparse attack
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Fig. 4. Scenario 1: ROC performance comparisons results for the three
different detectors in IEEE 118-bus system with 10-sparse attack
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Fig. 5. Scenario 2: ROC performance comparisons results for the three
different detectors in IEEE 14-bus system with 2-sparse attack
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Fig. 6. Scenario 2: ROC performance comparisons results for the three
different detectors in IEEE 118-bus system with 10-sparse attack

B. Performance of Proposed Detector

2-sparse attack is simulated on IEEE 14-bus test system,
whereas, 10-sparse attack is applied to 118-bus test system,
where perturbation 20% is added to the attacked state vari-
ables. Both the control center and hacker use the proposed
general linear measurement model. The following two scenar-
ios are considered, i.e.,

Scenario 1: two PMUs are installed at buses 2 and 6 for
IEEE 14-bus system, while 19 PMUs are installed for IEEE
118-bus system, allowing system partially observable. The
detailed measurements placement and topology can be found
in [31].

Scenario 2: four PMUs are installed at buses 2, 6, 7 and
9 for ensuring IEEE 14-bus system observability, while 28
PMUs are installed for IEEE 118-bus system, allowing system
to be observable [33].

Figures 3–6 show the receive operator characteristic curves
(ROC) [4] that characterize the trade-off between the proba-
bility of attack detection and the probability of false alarm for
the three detectors in IEEE 14-bus and 118-bus test systems,
respectively. It can be clearly seen from Figures 3–6 that the
proposed detector outperforms the other two classical ones
for a wide range of probabilities of false alarm since the
prior forecasted measurements and the combined detector can
greatly contribute to the FDIAs detection. On the other hand,
even under relative small false alarm probability conditions,
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the proposed method can effectively detect the attacks with
relatively high probability. Comparisons between scenario 1
and scenario 2 indicate that it is very hard for the hacker to
launch successful FDIAs when system is observable through
PMUs because the measurement model deviations between the
hacker and the operator become large. In other words, the
operator can get a more accurate linear measurement model
through secure PMU measurements whereas the hacker is only
able to get limited PMU information (his attack model is
the combination of approximate DC model and linear PMU
measurement model for PMU observable area), which makes
the attacks be detected with higher probability. One more
interesting observation here is that the placement of PMUs
is helpful for detecting FDIA. But, how many PMUs are
needed to maximize the detection probability for a given power
network? This is an optimization problem and will be further
investigated in the forthcoming paper.

C. Detection of False Critical Measurements Injection Attacks
For the IEEE 14-bus test system, 20 SCADA measurements

are used, including 15 power flows, 4 power injections, and
1 bus voltage magnitude at bus 1, whose detailed measure-
ment configuration and topology can be found in [34]. P1−2,
P7−8 and P3 are critical measurements through the critical
measurements detection method. Two cases are considered:

Case 3: No PMU is installed and three critical measure-
ments are compromised;

Case 4: One PMU is installed at bus 1 (the attacker may
not realize this situation) and the three critical measurements
are compromised.

In both cases, the FDIA and detection are based on the
proposed model. Fig.7 shows the detection probability versus
false alarm probability for cases 3 and 4. In case 3, both J(x)
and LNR detectors fail, as remarked and analyzed in Section
III-C. However, the proposed detector is able to handle such
attacks with a reasonable detection probability. This is because
the injected false data break down the consistency between
the forecasted measurements and the received measurements
under system normal operation condition, making the attacks
detectable. On the other hand, it is worth noting that the
detection probability increases when PMUs are installed close
to critical measurements buses (i.e. at the same bus or at a bus
directly connected to the critical one). To be specific, in case 4,
when one PMU is installed at bus 1, critical measurement P1−2

becomes noncritical since redundant measurements from PMU
are introduced. Thus, the attacks on the critical measurements
will be detected with higher probability (the attacker may not
know that the control center has installed new PMU devices.
Therefore, he may still launch the attacks on critical measure-
ments according to the previous measurement configuration).
This motivates the control center to deploy the optimal number
of secure PMUs to maximize the FDIA detection probability
with some extra investments. In addition, one can observe that
under both cases, the detection performance of the proposed
detection method is slightly affected. This means that the
control center is able to obtain satisfactory FDIA detection
probability using the proposed detector without additional
PMUs investments.
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Fig. 7. The detection probability versus false alarm for cases 3 and 4
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Fig. 8. Sensitivity assessment of proposed method for scenario 1 with 10-
sparse attack

D. Sensitivity Assessment

In order to investigate the effects of state forecasting error
on detection performance under system normal operation con-
ditions, the sensitivity study is conducted. Instead of adding
Gaussian noise with zero mean and 1% standard deviation
to the load curve, we vary the standard deviation for the
Gaussian noise imposed on the load curve from 1%-5% to
test the sensitivity of proposed method. The scenario 1 for
IEEE 118-bus test system in Section IV-B is taken as an
example. Figure. 8 presents the sensitivity study of proposed
method for scenario 1 with 10-sparse attack. It can be observed
from this figure that with the increased load variation mag-
nitudes, the FDIA detection probability varies slightly since
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TABLE I
COMPUTATION EFFICIENCY FOR PROPOSED METHOD UNDER DIFFERENT

SCENARIOS

Scenario IEEE 14-bus IEEE 118-bus
Scenario 1 0.095s 0.754s
Scenario 2 0.109s 0.783s

the state forecasting errors change a little bit in different load
conditions, resulting in affecting the detection performance.
However, the detection performance is excellent and similar
to the case where Gaussian noise with zero mean and 1%
standard deviation is added for load curve. This confirms
that when the system operates under normal conditions, the
proposed method can be a good back-up scheme for aiding
the conventional residual- based bad data analysis method to
detect and process FDIA.

E. Assessment of Computational Efficiency

In this subsection, the computational efficiency of the pro-
posed method in multiple cases are presented. In the proposed
method, once the historical system state information from
the previous state estimation is available, the short-term state
forecasting is performed. The proposed FDIA detection metric
is then used to detect whether FDIA exists or not. If no
FDIA is detected, the estimation is reliable and used for EMS
applications. Otherwise, the FDIA exists and the attacked
measurements are replaced by the forecasted measurements,
followed by the re-execution of state estimation to get the
accurate estimation results. Table I presents the computing
times for the scenarios 1 and 2 in Section IV-B including
the computing times for state forecasting, FDIA detection and
processing, and the final SE execution. As observed from this
table, we can find that when the system is PMU observable,
the computing time is a little bit larger than the PMU partial
observable system since the introduction of additional PMU
would increase the dimension of the measurement matrix, thus
requires additional computing time. On the other hand, it is
obvious that the computing time for the proposed method is
considerably acceptable and can be compatible with real-time
application.

V. CONCLUSION AND FUTURE WORK

A general linear measurement model is derived to handle
both SCADA and PMU measurements. The generic FDIA
based on this model is derived and the error tolerance of
such attacks is analyzed. Then, the short-term state forecasting
method considering temporal correlation is used to exploit
the measurement consistency between the forecasted mea-
surements and the received measurements. This measurement
consistency test is further integrated with the ∞–norm and
the L2-norm-based measurement residual analysis to construct
the proposed detection metric. The shortcoming of previous
detectors in terms of handling critical measurements is ef-
fectively solved by the proposed detector. In addition, the
system observability issue caused by removal of the attacked

measurements is addressed. Numerical test results on IEEE 14-
bus and 118-bus test systems show that the proposed method
outperforms the two well established detection schemes, the
J(x) detector and LNR detector.

As verified in many papers ( [15], [18], [19] for example)
that the forecasted information can be used to effectively
detect the topology error, it is thus expecting that the proposed
method is able to handle the topology attack. Besides, the
load redistribution attack changes the power flow distribution
while maintaining the whole power flow balanced. However,
changing of the specific power flow may also violate the con-
sistency between the forecasted power flow and the measured
power flow, resulting in detection of the attack. To investigate
the ability and performance of handling these two kinds of
attacks will be part of our future work. Besides, as indicated
in [35] that the statistic-based anomaly detection may fail in
few cases, it is thus important to investigate how to enhance the
FDIA detection ability using statistic-based detection method
in these cases.
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