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Abstract. This work concerns the study of the effective balance equations governing linear elastic electrostrictive composites,
where mechanical strains can be observed due to the application of a given electric field in the so-called small strain and
moderate electric field regime. The formulation is developed in the framework of the active elastic composites. The latter
are defined as composite materials constitutively described by an additive decomposition of the stress tensor into a purely
linear elastic contribution and another component, which is assumed to be given and quadratic in the applied electric
field when further specialised to electrostrictive composites. We derive the new mathematical model by describing the
effective mechanical behaviour of the whole material by means of the asymptotic (periodic) homogenisation technique. We
assume that there exists a sharp separation between the micro-scale, where the distance among different sub-phases (i.e.
inclusions and/or fibres and/or strata) is resolved, and the macro-scale, which is related to the average size of the whole
system at hand. This way, we formally decompose spatial variations by assuming that every physical field and material
property are depending on both the macro-scale and the micro-scale. The effective governing equations encode the role of the
micro-structure, and the effective contributions to the global stress tensor are to be computed by solving appropriate linear-
elastic-type cell problems on the periodic cell. We also provide analytic formulae for the electrostrictive tensor when the
applied electric field is either microscopically uniform or given by a suitable multiplicative decomposition between purely
microscopically and macroscopically varying components. The obtained results are consistently compared with previous
works in the field, and can pave the way towards improvement of smart active materials currently utilised for engineering
(possibly bio-inspired) purposes.
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1. Introduction

Electroactive continua (see e.g. [31,55] and references therein for a sufficiently comprehensive general
theory of the continuum mechanics of electromagnetic solids) are deformable solids that respond by
changing shape and size when subjected to the application of an electric field. Materials characterised by
such properties have been increasingly investigated in the past decades due to their applicability to real-
world scenarios of interest. Relevant contexts mostly involving electroactive (dielectric) polymers include,
but are not limited to, bio-inspired, biomedical applications, such as artificial muscles [5], tunable optical
lenses [13], and sustainable battery materials [52], as well as actuator technology [56].

The appearance of strains caused by the application of an electric field can occur via several mecha-
nisms, which are different in nature. Mechanical strains linearly proportional to an applied electric field
can develop in an electric continuum medium as a consequence of the so called inverse piezoelectric effect,
whose direct counterpart, which is the celebrated direct piezoelectric effect, entails the generation of an
electric polarisation via mechanical strains. Piezoelectric materials are widely used when the conversion
of mechanical into electric energy, and vice versa, is desired, as for electromechanical transducers [1,65].

Electroactive materials can deform via a second-order mechanism, known as electrostriction, which, as
opposed to the inverse piezoelectricity, is quadratic in the electric field and therefore gives rise to strains
and stresses that do not change when the electric field is reversed.
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The latter phenomenon plays a major role in driving deformations in electromechanical continua for
sufficiently high electric fields, and when piezoelectric effects are not relevant, i.e. when the material
possesses a centre of symmetry. These materials do not change the state of polarisation when subjected
to purely mechanical loading, i.e. in this sense, pure converse electrostriction does not appear in this
case due to symmetry [31]. However, once an applied electric field has changed the polarisation state, the
mechanical strains that arise due to electrostriction are technically affecting in turn the polarisation, as
observed in [42], and exploited in [26] to measure the electrostrictive constants via an extremely sensitive
instrumentation. There also exist higher-order electro-elastic effects and ferroelectric materials, the latter
being characterised by a permanent change in their polarisation state even when the electric field is
removed [31].

In this work, we focus on purely electrostrictive elastic composites (see e.g. [32,49]), which are often
encountered in bio-inspired materials and electronic devices, thus neglecting both piezoelectric and fer-
roelectric effects, as well as converse electrostriction and higher-order electro-elastic phenomena.

We aim at describing the effective behaviour of electrostrictive composites in a linear elastic regime,
which can be relevant for applications, for example, related to enhancing the sensitivity of solid-state
capacitance sensors, see e.g. [71].

In general, investigation of elastic composites (see, for example, [16,39,41,51] among many others) and
their response based on the individual composites’ constituents, as well as their geometrical arrangement
and interactions, can be used both to optimise the performance of artificial media, and to achieve a
more thorough understanding of specific physical phenomena (see e.g. [63] in the context of aged bone
modelling).

As a matter of fact, it is often either non-trivial or virtually impossible to describe the behaviour of a
whole composite (i.e. on the scale characterising its size) by resolving every detail of the composite’s micro-
structure, so that the multi-scale, possibly hierarchical nature of these materials is typically addressed
by means of suitable homogenisation techniques.

The latter are normally designed to provide a macro-scale description of the physical system at hand,
which should (a) be conceived in the light of possible validation against experiments that take place on
the coarse scale characterising the whole composite; (b) encode information concerning the micro-scale
constituents in the composite and their mutual interplay; (c) be computationally feasible.

Although there exists a large variety of homogenisation approaches, these can be broadly summarised
in two groups, i.e. average field techniques (these include both RVE and Eshelby based techniques) and
the asymptotic homogenisation technique, see e.g. the review [38] and the work [61] for a theoretical and
a computational comparison between them, respectively.

The representative volume element (RVE) approach relies on considering a volume element which is
assumed to be (statistically and energetically) representative of the whole composite, and simultaneously
sufficiently small such that the effective material properties can be computed at a reduced computational
cost. A remarkable example of application of the latter technique to electro-sensitive elastomers can be
found in [14,43], where the authors apply the so called variational and computational homogenisation
techniques, respectively, to nonlinear electro-sensitive elastomers by considering the energy functionals
associated with a representative volume element.1

Widely exploited average field techniques also involve the results by Eshelby [25], where the RVE is
identified with an infinite medium characterised by uniform strain condition at infinity, and the individual
constituents are represented as ellipsoidal inclusions. Relevant examples of Eshelby-based techniques, such
as the Mori–Tanaka [53] and the self-consistent [36] schemes, applied to electrostrictive composites can
be found in [8,23,48], respectively.

1In [14], a periodic formulation is embraced and such a RVE is called cell, not to be confused with the periodic cell
which arises from application of the asymptotic homogenisation technique.
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The alternative Asymptotic Homogenisation technique (see e.g. [3,4,37,50,57,70]) can be used to
determine the effective balance equations for composites exploiting the sharp length scale separation
which exists in the system between the micro- and macro-scales.

Spatial variations are therefore decoupled, and a multiple scale expansion of the fields is performed to
obtain differential relationships which are enforced, possibly, but not necessarily, under the assumption
of micro-scale periodicity, to derive the effective balance equations for the medium.

The information concerning the fine scale properties and arrangement of the composite sub-phases
is then embedded in the homogenised coefficients, which are to be computed by means of closed-form
analytical formulae containing auxiliary quantities to be (often numerically) computed by solving elastic-
type partial differential equations (PDEs).

The latter operation typically happens in the context of local periodicity, such that fine-scale geometri-
cal and functional complexities are to be considered only on a periodic cell, thus enhancing computational
feasibility.

There exists a number of paradigmatic works dealing with homogenised modelling and computation
of the effective permittivity and piezoelectric coefficients via asymptotic homogenisation, see for example
[9,15] for laminated and fibre-reinforced piezoelectric composites, respectively.

Here we focus on establishing a homogenised modelling framework which is capable of providing the
effective governing equations (and related effective coefficients) for an electrostrictive composite subjected
to an applied given electric field. As we aim at retaining precise information concerning the composite
micro-structure, we then embrace the asymptotic homogenisation technique to achieve our goal.

In [47], the Authors apply the asymptotic homogenisation technique to electrostrictive non-
piezoelectric composites characterised by a regime similar to the one embraced in the current work,
namely, small deformations and moderate electric fields. However, the Authors in [47] adopt a differ-
ent standpoint as they consider a one-way coupled problem in which the electric potential is seen as a
(multiscale) variable solving a generalised Poisson’s problem driven by rapidly oscillating charges.

Here we follow a different approach via considering the electric field as given, and addressing the
asymptotic homogenisation of a linear elastic composite whose deformations are driven by the divergence
of a tensor, referred to as generalised Maxwell stress tensor and supplied from the outset. As such,
we provide a novel formulation in the context of asymptotic homogenisation by following an approach
consistent with [64], where the Authors deduce the effective balance equations for a material composite
subjected to a continuous volume force given by the Helmholtz decomposition. The two formulations
are both addressing homogenisation of a locally unbounded problem and, for completeness, are shown to
coincide under a consistent set of simplifying assumptions. In particular, the framework in [64] in absence
of a vector potential can be recovered if the electric force is identified with the gradient of the potential
introduced in [64] and if the electric properties are assumed to be continuous across the interface of the
composite’s sub-phases. The formulation reported in [47] can be likewise considered as a particular case
of our model for an appropriate specific choice of the imposed electric field and in absence of free charges.

The remainder of this work is organised as follows. In Sect. 2, we set the notation of the work and
we illustrate the multi-scale balance equations of an electrostrictive composite subjected to the action
of an imposed electric field. In Sect. 3, we introduce the hypothesis of sharp separation between the
macro- and micro-scale, and we show the main mathematical assumptions and tools of the asymptotic
homogenisation technique employed throughout the work. In Sect. 4, with reference to some specific
choices of the elementary cell’s configuration, we review some topological and geometrical properties of
the micro-structure of the considered composite. In Sect. 5, we derive the main result, i.e. the effective
equilibrium equations for the composite under study. In Sect. 6 we specialise our model by focusing on
two relevant particular cases. In Sect. 6.1, we investigate the case in which the imposed electric field
is assumed to be uniform at the micro-scale. In Sect. 6.2, we assume a multiplicative decomposition of
the electric field into components which are purely varying on the micro- and macro-scales. We further
highlight under which circumstances this assumption leads to a reduced computational complexity of
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the model whilst retaining spatial variations of the imposed electric field on both scales. In Sect. 7,
we compare our framework with other approaches to electrostriction available in the literature. Finally,
in Sect. 8, we highlight the main results of the work and we outline some future developments of the
modelling framework developed in this manuscript.

2. Kinematics and dynamics of electro-sensitive composites

Let us denote by C a material composite consisting of a host medium (or host phase), referred to as
the matrix, in which a family of disjoint (solid) sub-phases is embedded. In this work, we specialise our
research to investigate the mechanical behaviour of linear elastic electro-sensitive composites, for which
both the matrix and the sub-phases behave like linear elastic media, whose macroscopic stress response
is susceptible to the presence of an electric field [22,75] (see the discussion after Eq. (64) below). Note
that it is in the sense of this susceptibility of the stress that we speak of “electro-sensitive composites”.

Let C0 be the placement of the composite C in the physical space S , corresponding, in this work, to
the three dimensional Euclidean space. Furthermore, let us introduce two open subsets of C0, CM and CS,
representing the matrix and the sub-phases, respectively. In particular, CM and CS define a partition of
C0, such that C̄0 = C̄M∪C̄S, C̄M∩CS = ∅ and CM∩C̄S = ∅, with the bar over a set denoting its topological
closure. The (sharp) interface separating CM and CS is denoted by Γ0. Before going further, we mention
that, using the jargon introduced in previous works [67–69], we distinguish among three different types
of sub-phases, i.e. inclusions, fibres and strata, as will be clarified in Sect. 4. For future use, we introduce
the three-dimensional inner product space V, which represents the translational space associated with
S , and Lin(V), denoting the space of all linear endomorphisms from V into itself. In fact, the elements
of Lin(V) are second order tensor fields [54].

Finally, we define a system of Cartesian coordinates on C0, namely, we associate a triple of real numbers
x ≡ (x1, x2, x3) with each point x0 ∈ C0, thereby representing the coordinates of x0 with respect to a
Cartesian system of reference. We refer to x as spatial physical coordinates associated with the point x0

[3,60]. From now on, each quantity of interest defined in C0, and with values in a suitable functional
space, can be expressed as a function depending on the physical coordinates [24]. Hence, for the sake of
a lighter notation, throughout the work, we use the same symbol both for the functional expression of a
given quantity defined in C0 and for its counterpart rephrased in terms of the spatial physical coordinates
[24].

Remark 1. (Component-wise representation of vectors and tensors) In this remark, we fuss over some
notational conventions used to express vector and tensor quantities in components.

By adopting Cartesian coordinates and introducing the orthonormal vector basis {ia}3
a=1 ⊂ V, the

notation for the component-wise representation of vector and tensor quantities is as follows: for a vector
field v ∈ V and a second-order tensor field A ∈ Lin (V), we write

v = vaia, (1)

A = Aab ia ⊗ ib, (2)

where Einstein’s convention of summation over repeated indices is employed. Analogously, a third-order
tensor field β and a fourth-order tensor field D admit the following representations in components

β = βabc ia ⊗ ib ⊗ ic, (3)

D = Dabcd ia ⊗ ib ⊗ ic ⊗ id. (4)

Note that, throughout this work, third-order tensors will be viewed as linear maps transforming second-
order tensors into vectors, whereas fourth-order tensors will be defined as linear maps from Lin(V) into
itself. Accordingly, we write β : Lin(V) → V and D : Lin(V) → Lin(V). In particular, when needed,
we shall use the notation β ∈ Lin(Lin(V),V) for third-order tensors and the notation D ∈ Lin(Lin(V))
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for fourth-order tensors. Note that, to represent endomorphisms, we use here the notation Lin(V) and
Lin(Lin(V)) in lieu of the less compact one Lin(V,V) and Lin(Lin(V),Lin(V)). Moreover, given A ∈
Lin(V), β ∈ Lin(Lin(V),V) and A,D ∈ Lin(Lin(V)), for denoting double contractions, we write

[β : A]a = βabc Abc, (5a)

[D : A]ab = Dabcd Acd, (5b)

[D : A]abmn = Dabcd Acdmn. (5c)

We also define the transposed fourth-order tensor D
T through the relation A : D : B = B : DT : A, for

all A,B ∈ Lin(V). In index notation, we have [DT]abcd = Dcdab. Finally, when a tensor quantity, such as a
fourth-order tensor, is explicitly associated with the subset Cα of C0, with α = M,S, its component-wise
notation will be expressed as Dα = [Dα]abcd ia ⊗ ib ⊗ ic ⊗ id, i.e. by using square brackets for Dα. When
necessary, such notation will be adopted also for vectors and second- and third-order tensors.

In light of the infinitesimal theory of continuum mechanics [28,34], we describe the kinematics of the two
phases constituting C in terms of the displacement fields

uα := u|Ωα
: Ωα → V, α ∈ {M,S}, (6)

and the displacement gradient fields

∇uα : Ωα → Lin(V), α ∈ {M,S}. (7)

In (6), u : C0 → V is the displacement field of the composite material under study, so that uM and
uS are the restrictions of u to the matrix and to the family of sub-phases, respectively. Given uα, with
α ∈ {M,S}, we introduce the infinitesimal Green–Lagrange strain tensor

ξ (uα) =
∇uα + (∇uα)T

2
∈ Sym(V), α ∈ {M,S}, (8)

with Sym(V) being the subspace of Lin(V) consisting of all symmetric second order tensors. Note that
ξ ( · ) is a tensor-valued differential operator that associates the vector field u with the second-order tensor
given by the symmetrised gradient of u.

We consider the case in which the composite C is subjected to the action of an imposed electric field
E : C → V, and we focus on the ideal situation in which the effects of possible magnetic fields can be
disregarded. Within the picture described so far, and by neglecting inertial and mechanical body forces,
the equations describing the point-wise equilibrium for the material composite C read

∇ · σ
(t)
M = 0, in CM, (9a)

∇ · σ
(t)
S = 0, in CS, (9b)

σ
(t)
M n0 = σ

(t)
S n0, on Γ0, (9c)

uM = uS, on Γ0, (9d)

with n0 being the unit vector normal to the interface Γ0, and Eq. (9d) prescribing the continuity of the
displacements on Γ0. In addition, suitable boundary conditions have to be specified on the boundary ∂C0

of C0. In (9a)–(9c), and with α ∈ {M,S}, σ
(t)
α : C0 → Lin(V) is the total, generalised Cauchy stress tensor

of the phase Cα, defined as the work-conjugate of the displacement gradient ∇uα.
Within the present framework, σ

(t)
α is the sum of two terms [22], i.e.

σ(t)
α = σ(m)

α + σ(e)
α , α ∈ {M,S}. (10)

The first summand, σ
(m)
α , is the “classical” Cauchy stress tensor of linear elasticity, given by

σ(m)
α := Cα : ∇uα = Cα : ξ (uα) , α = {M,S}, (11)
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and endowed with the symmetry property σ
(m)
α = (σ(m)

α )T, and Cα ∈ Lin(Lin(V)) is the fourth-order
elasticity tensor of Cα, which enjoys the major and the minor symmetries,

[Cα]ijkl = [Cα]klij , [Cα]ijkl = [Cα]jikl , [Cα]ijkl = [Cα]ijlk , α ∈ {M,S}. (12)

The second term, σ
(e)
α , is a given tensor, here identified with the generalised Maxwell stress tensor, which,

in the absence of magnetic contributions, can be proven to take on the expression (see Appendix A)

σ(e)
α = − 1

2B
T
α : (E ⊗ E), (13)

where the fourth-order tensor Bα is referred to as electrostriction tensor and is required to enjoy the pair
(minor) symmetries [Bα]abcd = [Bα]bacd = [Bα]abdc. Such symmetry properties guarantee the symmetry
of the generalised Maxwell stress tensor, σ

(e)
α . The tensor Bα introduced here is rather general, but it can

be specialised to the case of interest according to the material symmetries of the αth phase. For instance,
if we assume the matrix and the sub-phases to be electrically isotropic, Eq. (13) can be recast as follows

σ(e)
α = (ε0 + ε0α − ε2α)E ⊗ E − 1

2 (ε0 + ε0α − ε1α − 3ε2α) ‖E‖2
I = Tα : (E ⊗ E), (14)

where I ∈ Lin(V) is the second-order identity tensor, ε0α, ε1α and ε2α are the electric permittivities of
Cα, ε0 is the permittivity of the vacuum and the fourth-order tensor Tα is defined in Appendix A. In
particular, Tα is a fully symmetric fourth-order tensor and the identification Bα = B

T
α = −2Tα holds

true. The Reader is referred to Appendix A also for a derivation of the balance equations (9) and of the
additive splitting of the total stress tensor (10). We remark that the superscripts “(m)” and “(e)”, given
to σ

(m)
α and σ

(e)
α , stand for “mechanical” and “electric” part of the total stress tensor, σ

(t)
α , respectively.

We highlight that the expression (14) of the generalised Maxwell stress tensor descends directly from
the coupling between the mechanical and the electrical behaviour of the composite. As explained in
Appendix A, this coupling has been established by means of a suitable Lagrangian density function,
obtained by taking inspiration from [22]. In particular, for addressing the problem at hand, we have
considered a linearised version of the constitutive framework outlined in [22]. In doing this, we have
linearised a Lagrangian density function featuring an isotropic fourth-order permittivity tensor, which
complies with the material symmetries of the composite studied in this work. Finally, we remark that
we have referred to σ(e) as “generalised Maxwell stress tensor” because the “true” Maxwell stress tensor
used in [22] features solely the dielectric constant of the vacuum, ε0.

With the introduction of σ
(m)
α and of σ

(e)
α , the system of equations (9) can be recast as follows

∇ ·
(
σ

(m)
M + σ

(e)
M

)
= 0, in CM, (15a)

∇ ·
(
σ

(m)
S + σ

(e)
S

)
= 0, in CS, (15b)

(
σ

(m)
M + σ

(e)
M

)
n0 =

(
σ

(m)
S + σ

(e)
S

)
n0, on Γ0, (15c)

uM = uS, on Γ0. (15d)

Remark 2. With reference to Eq. (14), we remark that the “classical” case of isotropic material charac-
terised by one electric permittivity only can be retrieved by setting ε1α and ε2α equal to zero. By doing
so, the permittivity tensor becomes proportional to the identity tensor, as expected for linear materials
or for non-linear models of “unconditionally isotropic” materials (to use the jargon of [2]). However, our
model is obtained by linearising a non-linear constitutive expression that relates, through the Represen-
tation Theorem of tensor-valued functions, the dielectric tensor of the material, denoted by ε̂(c)

α , with the
deformation (see Appendix A). Although such a constitutive description characterises an isotropic mate-
rial, it accounts for the “variability” of the material’s isotropy with the deformation and, consequently, it
requires the presence of suitable coefficients that multiply the left Cauchy–Green tensor, i.e., bα, and b2

α

in the tensor representation of ε̂(c)
α (see Appendix A). Such coefficients are, in fact, ε1α and ε2α and they
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themselves, or combinations of them, should be determined experimentally. In the linear case, however,
it can be inferred from Eq. (14) that it is possible to introduce the auxiliary coefficients ε̃1α = ε0α − ε2α

and ε̃2α = ε0α − ε1α − 3ε2α and write

σ(e)
α = (ε0 + ε̃1α)E ⊗ E − 1

2 (ε0 + ε̃2α)‖E‖2I

= (ε0 + ε̃1α)I : E ⊗ E − 3
2 (ε0 + ε̃2α)K : E ⊗ E

= [(ε0 + ε̃1α)I − 3
2 (ε0 + ε̃2α)K] : E ⊗ E, (16)

where the fourth-order tensors I and K are defined in Appendix A. This way, and by introducing the
fourth-order tensor M = I−K [73], which extracts the deviatoric part of a symmetric second-order tensor,
σ

(e)
α is related to E ⊗ E through the isotropic fourth-order tensor

Tα = (ε0 + ε̃1α)I − 3
2 (ε0 + ε̃2α)K

=
(− 1

2ε0 + ε̃1α − 3
2 ε̃2α

)
K + (ε0 + ε̃1α)M, (17)

which, in general, apart from the permittivity of the vacuum, ε0, requires the two independent coefficients
ε̃1α and ε̃2α to be represented. Of course, if we set again ε1α = 0 and ε2α = 0, the resulting expression
for Tα becomes

Tα = (ε0 + ε0α)I − 3
2 (ε0 + ε0α)K

=
(− 1

2ε0 − 1
2ε0α

)
K + (ε0 + ε0α)M, (18)

which amounts to “rescale” the vacuum by means of the material’s permittivity ε0α. Clearly, this is a
limit case, since an isotropic fourth-order tensor, like Tα, necessitates, in general, two coefficients to be
represented. We conclude this remark by mentioning that, following [73], the expressions of Tα featuring
in the far right-hand-side of (17) and (18) are introduced because they provide the representations of
isotropic fourth-order tensors in their natural tensor basis {K,M} consisting of K, which extracts the
spherical (or volumetric) part of a symmetric second-order tensor, and M, which extracts the isochoric
part of a symmetric second-order tensor (for details, the Reader is referred to [28–30,73]).

3. Multiscale modelling

In the following, the system of equations (15a)–(15d) is studied by means of a technique known as asymp-
totic homogenisation, which allows to obtain an effective description of the electro-mechanical properties
of the composite as a whole. This can be achieved by accounting for the distribution of the phases CM and
CS within the composite, specifying the elasticity and electric permittivity tensors of CM and CS, resolv-
ing the interactions exchanged by CM and CS across Γ0, and evaluating uM and uS in a scale-dependent
manner. The distribution of the phases in the composite constituents is strongly related to the geometric
configuration of the micro-structure. In this regard, we will sketch out the way in which the geometry
and the topology of the micro-structure comes into play in the following Sect. 4.

The employment of the asymptotic homogenisation technique requires a sharp separation of the length
scales that characterise the hierarchical levels with which the composite’s internal structure is organised.
For the problem at hand, we stipulate the existence of two relevant length scales. More specifically, we
denote by � the representative length of the internal structure of the composite C , which characterises,
for instance, the distance between two neighbouring sub-phases, and we let L describe the characteristic
size of the domain occupied by the composite as a whole. The condition for which the two considered
scales are well separated can be formalised by requiring that the ratio between the fine length scale, �,
and the coarse one, L, is much smaller than unity, i.e.

ε :=
�

L
� 1. (19)



166 Page 8 of 36 S. Di Stefano et al. ZAMP

The strictly positive, dimensionless quantity ε is called scaling parameter and is representative of the
two-scale heterogeneity of the composite. We recall that, as is customary in several works based on
the asymptotic homogenisation technique, the definition (19) of ε applies to the case in which L and �
can be regarded as constant parameters of the composite’s structural organisation. In a more general
setting, however, when mechanical processes other than those studied in this work are accounted for, it
could be necessary to specify ε as a function of the material points of the composite and, in principle,
also of time. As noticed in [66], this may occur, for instance, when the composite under study exhibits
large deformations or when it undergoes remodelling or growth. Nevertheless, if the scaling parameter
is bounded from above by a constant upper bound, and if such bound is much smaller than unity, the
asymptotic homogenisation technique can still be adopted.

For the class of problems addressed in this work, it is important to establish a direct relationship
between a given physical quantity F (x) and the composite’s characteristic length scales L and �. This
can be achieved by rewriting F (x) as F (x) = F̌ (x;L, �), with L and � regarded as parameters. In fact,
this way of writing is very general and applies also when the ratio �/L is not much smaller than unity.
However, as clearly shown in [60], a particularly relevant case occurs when the dependence of F̌ on L
and � is such that the quantity of interest is, in fact, a function of the ratios x/L and x/�, i.e. when it
holds true that F (x) = F̌ (x;L, �) = F̃ (x/L, x/�), thereby making it explicit that the considered physical
quantity depends on two different resolutions of the spatial variable x. To let ε feature explicitly, it suffices
to write

F (x) = F̌ (x;L, �) = F̃
( x

L
,
x

�

)
= F̃

(
x

L
,

x

L �
L

)
= F̃

(
x̃,

x̃

ε

)
, (20)

where x̃ = x/L is the spatial variable made dimensionless, and the inhomogeneities arising from the
micro-structure are kept track of through the “zoom lens” provided by ε. Finally, by introducing an
auxiliary function φε defined by

φε(x̃) = x̃/ε ≡ ỹ, (21)

Eq. (20) becomes

F (x) = F̃

(
x̃,

x̃

ε

)
= F̃ (x̃, φε(x̃)) = F̃ (x̃, ỹ), (22)

so that F is reformulated as a function F̃ of two variables, x̃ and ỹ, that are independent of each other.
In fact, the two arguments of F̃ are representative of two different length scales, and the advantage of
the formulation (22) is that it highlights the two-scale nature of the considered physical quantity. Indeed,
x̃ is referred to as macro-scale or slow variable, because it describes the variations of F̃ resolved at
the scale L, whereas ỹ is said to be the micro-scale or fast variable, as it captures the high-frequency
variations of F̃ , associated with �. The two-scale representation (20) should be performed under suitable
hypotheses of regularity of the function F̃ , such as local boundedness with respect to the second slot,
i.e. the one “occupied” by the micro-scale variable. This question and the role played by this kind of
regularity assumption are analysed, for example, in [60]. In spite of their importance, such mathematical
aspects are not discussed in this work. However, the Reader interested in these technical issues is referred
to the literature of asymptotic homogenisation [4,17,60].

For the problem under study, we assume that all the material properties considered in the following
can be expressed ab initio as functions on the rescaled spatial variable x̃ = x/L and, by virtue of Eq. (22),
we enforce the rewriting

Cα(x̃) = C̃α (x̃, ỹ) , α = {M,S}, (23a)

εα(x̃) = ε̃α (x̃, ỹ) , α = {M,S}, (23b)

E(x̃) = Ẽ (x̃, ỹ). (23c)
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The same representation is applied to the displacements of the two constituents of the composite. This
time, however, we write

uα(x̃) = L ũα (x̃, ỹ) , α = {M,S}, (24)

which amounts to imposing that uα scales with L, with ũα being a dimensionless displacement.
Moreover, upon using the identities f(x̃) = f̃(x̃, φε(x̃)) = f̃(x̃, ỹ), and applying the chain rule of

differentiation of composed maps, we can write the gradient of f as

∇x̃f = ∇x̃f̃ + ε−1∇ỹ f̃ , (25)

where ∇x̃ and ∇ỹ denote the gradients of f̃ in the slow variable, x̃, and in the fast variable, ỹ, respectively.
For instance, the infinitesimal Green–Lagrange strain tensor, defined in Eq. (8), reads

ξ (uα) = L−1ξx̃ (uα) = ξx̃ (ũα) + ε−1ξỹ (ũα) , α ∈ {M,S}, (26)

with

ξx̃(ũα) =
∇x̃ũα + (∇x̃ũα)T

2
, ξỹ(ũα) =

∇ỹũα + (∇ỹũα)T

2
, α ∈ {M,S}. (27)

Note that, whereas ξ(uα) is by definition dimensionless, ξx̃ (uα) has dimensions of length, while ξx̃ (ũα)
and ξỹ (ũα) are dimensionless by virtue of (24).

Remark 3. (The role of locally unbounded generalised forces)
We recall that a vector-valued function f(x) = f̃(x̃, x̃

ε ) = f̃(x̃, ỹ) is said to be locally bounded if, for every
x̃, its two-scale representation satisfies

lim
‖ỹ‖→+∞

∥∥∥f̃(x̃, ỹ)
∥∥∥ < +∞ (28)

(see also [64,70]). By noticing that the macro-scale variable x spans a bounded domain of R
3, that is

the representation of a bounded domain of the three-dimensional Euclidean space S , and by virtue of
Eq. (21), the definition of locally bounded functions given in (28) can be recast in the following equivalent
way

lim
ε→0

∥∥∥∥f̃

(
x̃,

x̃

ε

)∥∥∥∥ < +∞. (29)

Whenever the vector-valued function f does not comply with Eq. (28), or equivalently with Eq. (29), we
say that f is locally unbounded.

By focusing on the system of PDEs (9), together with the expression for the total stress tensor (10),
we can identify such a vector-valued function with the divergence of the given generalised Maxwell tensor
σ

(e)
α , i.e.

f̃α

(
x̃,

x̃

ε

)
:= ∇x̃ · σ(e)

α . (30)

For the case studied in [64] and in this work, Eq. (30) yields a locally unbounded force and the differential
problem given by (9–10) is to be considered as being driven by a locally unbounded generalised force

f̃α

(
x̃,

x̃

ε

)
2, which is not fulfilling condition (29). The systems of PDEs (15) is nonetheless shown to be

homogenisable [64] by embracing micro-scale periodicity, as done in the remainder of this work.

2We use the term generalised to further emphasise that this object need not be considered, in general, as a standard
body force, such as the force of gravity.
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In spite of the formalism adopted so far, following [3,60], from here on we simplify the notation by
dropping the tilde, thereby indicating x̃ and ỹ with x and y, respectively, ũα with uα, and C̃α, ε̃α and
Ẽα with Cα, εα and Eα, respectively. Furthermore, for the two-scale representation of the displacement
fields (24), we admit the existence of a formal (two-scale) expansion in power series of ε, namely,

uα(x, y) ≡ uε
α(x, y) =

+∞∑
n=0

u(n)
α (x, y) εn, α ∈ {M,S}. (31)

In this work, we do not fuss over the technicalities and the regularity hypothesis needed to justify in
a rigorous way the method of power series expansion (31). The Reader, however, can take a deeper look
into such issues by referring to the huge literature in the field (see, for example, [4,17] and references
therein).

4. Geometry and topology of the micro-structure

We assume that all the fields of interest, i.e. uα, with α ∈ {M,S}, and the material parameters character-
ising the matrix and the sub-phases of the composite are periodic with respect to the micro-scale variable
y. From a technical point of view, the micro-scale periodicity implies that y can be assumed to span an
open subset of R3, denoted with Ω and referred to as the elementary cell. Analogously to what we have
previously done, we let ΩM and ΩS be the portions of Ω occupied by the matrix and the sub-phases,
respectively. Here, both sets are taken to be open and, depending on the topology of the elementary cell,
there can be cases in which ΩM and ΩS are either both connected or both disconnected, cases in which
ΩM is disconnected and ΩS is connected, and cases in which ΩM is connected and ΩS is disconnected.
At any rate, the interface between ΩM and ΩS is the surface Γ identified with the intersections of the
boundaries of ΩM and ΩS, i.e. Γ = ∂ΩM ∩ ∂ΩS.

In the forthcoming sections, we shall concentrate exclusively on the three cell configurations described
in the sequel, which refer to the cases in which the sub-phases contained in the cell are either an inclusion
or a fibre or a stratum. In all these situations, our results apply because the elementary cell can be
decomposed in regular sub-domains with Lipschitz boundaries.

Inclusion-like sub-phases A sub-phase is said to be an inclusion when it is completely embedded in Ω.
More specifically, we assume that ΩM and ΩS are both connected and, in particular, that the inclusion
is contained in the elementary cell in a way such that the closure of ΩS is contained in Ω, i.e. Ω̄S ⊂ Ω.
Accordingly, the interface Γ between ΩM and ΩS consists of sole inner points of Ω. Moreover, the boundary
of ΩM is given by ∂ΩM = ∂oΩM ∪ ∂iΩM, where ∂oΩM and ∂iΩM are the outer and the inner boundaries
of ΩM, respectively, and are such that ∂oΩM ∩ ∂iΩM = ∅, ∂oΩM ≡ ∂Ω, and ∂iΩM = Γ. It follows from
this topological description of the elementary cell that the closure of Ω is given by Ω̄ = Ω̄M ∪ ΩS, with
Ω̄M ∩ ΩS = ∅ and ΩM ∩ Ω̄S = ∅, and that the interface reads Γ = ∂ΩM ∩ ∂ΩS = Ω̄M ∩ Ω̄S (see the left
panel of Fig. 1).

Fibre-like sub-phases A sub-phase is said to be a fibre when ΩS is contained in Ω (recall that ΩS is
an open set and it, thus, coincides with the set of its internal points) in such a way that ΩM remains
connected and the intersection Ω̄S ∩ ∂Ω is non-empty and respectful of the periodicity of the composite.
From a more geometric perspective, we can say that a sub-phase is a fibre if its boundary, ∂ΩS, features
two disjoint sets, denoted by (∂ΩS)en and (∂ΩS)ex, such that Ω̄S ∩ ∂Ω = (∂ΩS)en � (∂ΩS)ex (see the right
panel of Fig. 1 and the right panel of Fig. 2). Here, the subscripts “en” and “ex” indicate the portions of
the fibre’s boundary corresponding to the “entry side” and the “exit side” of the elementary cell.

Stratum-like sub-phases A sub-phase is said to be a stratum when ΩS is contained in Ω in such a way that
ΩM is a disconnected set and the periodicity of the composite is maintained. More precisely, we consider
an elementary cell in which the portion occupied by the matrix, ΩM, is the union of a (natural) number
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ΩM

ΩS

ΩM

ΩS

Fig. 1. Two examples of elementary cell, representative of the micro-structural topological configurations discussed in this
work. Left panel: Elementary cell containing an inclusion. Right panel: Elementary cell containing a fibre

ΩM

ΩS

ΩM

ΩS

Fig. 2. Two examples of elementary cell, representative of the micro-structural topological configurations discussed in this
work. Left panel: Elementary cell containing a stratum. Right panel: Elementary cell containing a fibre

P of sets, P ≥ 2, separated by ΩS. Thus, ΩM can be written as ΩM = ∪P
q=1ΩqM and its boundary, ∂ΩM,

is given by ∂ΩM = ∪P
q=1∂ΩqM, whereas the interface between the stratum and the matrix is identified

with Γ = ∂ΩM ∩ ∂ΩS. Note that, in the just depicted situation, it holds that Γ �= Ω̄M ∩ Ω̄S because
the set Ω̄M ∩ Ω̄S contains portions of the boundary of Ω that are not contained in the interface, these
portions being given by the inner points of ∂Ω∩∂ΩS (see the right panel of Fig. 1). We emphasise that the
distinction between a fibre and a stratum is characterised by the fact that a stratum makes the matrix
ΩM disconnected, whereas a fibre does not break the connectedness of ΩM. Therefore, what distinguishes
a fibre from a stratum is a topological, rather than geometrical, fact. Indeed, considering for instance a
sub-phase shaped as a thin parallelepiped, the sub-phase is a fibre even if the length of the long edges
of its transversal section is comparable with the length of the edges of its longitudinal section, because
such configuration makes the matrix connected (see Fig. 2).

To obtain a macro-scale description of the composite, it is useful to define the following averages for
a generic quantity of interest, F :

〈F 〉 (x) :=
1

|Ω|
∫

Ω

F (x, y) dy, 〈F 〉Ωα
(x) :=

1
|Ω|

∫

Ωα

F (x, y) dy, (32)

where |Ω| is the size of Ω. Note that 〈F 〉 is the average of F over the whole elementary cell, Ω, whereas
〈F 〉Ωα

is the average over the portion Ωα of Ω.
In light of the hypothesis of y-periodicity, a remark is in order. This hypothesis and, consequently,

the definitions (32) rely on the fact that the elementary cell is supposed to be representative of the local
structure of the composite. In other words, the topological and geometric information on the composite’s
micro-structure is kept track of, even though only a portion of it, i.e. the elementary cell, is observed. In
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general, the choice of the elementary cell may vary with respect to x, and hence, the integrals defined in
(32) may depend on the way in which the elementary cell is chosen, see e.g. [10,21,37,58,59].

In the following, for the sake of simplicity, we adopt a procedure followed also in other works (see, for
example, [64]), in which the asymptotic homogenisation technique is employed under the assumption of
macroscopic uniformity, which permits to select the elementary cell once for all, i.e. independently of x.
The main consequence of this assumption is that the “macro-scale divergence operator” and the average
operator over the elementary cell Ω, defined in (32), commute, i.e.

∇x · 〈v〉 = 〈∇x · v〉 , (33)

for every suitable vector field v ∈ V. Indeed, the macroscopic uniformity hypothesis permits to write
⎡
⎣∇x ·

∫

Ω

v(·, y) dy

⎤
⎦ (x) =

∫

Ω

(∇x · v) (x, y) dy. (34)

Hereafter, for the sake of a lighter notation, we will omit the explicit indication of the independent
variables and of the symbol of the differential in the writing of volume and surface integrals.

5. The macro-scale model

By making use of the asymptotic homogenisation technique introduced so far, and by enforcing the
technical assumptions discussed in Sects. 3 and 4, we rephrase the boundary value problem with interface
conditions (15c) in the following two-scale fashion,

(∇x + ε−1∇y

) ·
(
σ

(m)
M + σ

(e)
M

)
= 0, in ΩM, (35a)

(∇x + ε−1∇y

) ·
(
σ

(m)
S + σ

(e)
S

)
= 0, in ΩS, (35b)

(
σ

(m)
M + σ

(e)
M

)
n =

(
σ

(m)
S + σ

(e)
S

)
n, on Γ, (35c)

uε
M = uε

S, on Γ, (35d)

with n being the unit vector normal to the interface Γ. In particular, we assume that n points from the
matrix to the sub-phases. It is worth noticing that, with the procedure outlined in the previous sections,
we have transformed the problem (15) in such a way that the unknowns are not the two displacement
fields uM and uS, but the coefficients of the power series expansion (31), which are, in principle, infinite.
Moreover, we have highlighted how the fields of the theory depend on the micro-scale variable y. Although
such a formulation seems to complicate the solution of the problem, this is, in fact, not the case. Indeed,
since our purpose here is to derive an effective description of the composite under study, we will focus
only on the leading orders of the power series (31), u

(0)
α , with α ∈ {M,S}. To this end, we will derive a

boundary value problem for each order of the power series that is of interest for the present study. Such
a boundary value problem will encode all the pieces of information arising from the fine scale, expressed
in terms of heterogeneities, geometry and coupling between the mechanical behaviour of the two phases
of the composite C , with the latter manifesting themselves through suitable effective coefficients [4].

Now, let us proceed by substituting the definition (27) and the constitutive equation (11) into (35).
By multiplying the differential conditions (35a), and (35b) by ε2 and (35c) by ε, we obtain the following
system of partial differential equations for the linear elastic electro-active composite C

(
ε2∇x + ε∇y

) ·
(
CM : ξx (uε

M) + ε−1
CM : ξy (uε

M) + σ
(e)
M

)
= 0, in ΩM, (36a)

(
ε2∇x + ε∇y

) ·
(
CS : ξx (uε

S) + ε−1
CS : ξy (uε

S) + σ
(e)
S

)
= 0, in ΩS, (36b)
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{
CM :

[
ε ξx (uε

M) + ξy (uε
M)

]
+ εσ

(e)
M − CS :

[
ε ξx (uε

S) + ξy (uε
S)
] − εσ

(e)
S

}
n = 0, on Γ, (36c)

uε
M = uε

S, on Γ. (36d)

We now proceed by equating the coefficients of the same powers of ε. Hence, we obtain a set of differential
conditions at various orders of ε, holding in the periodic cell Ω, and parametrised by the macro-scale
variable x.

5.1. First cell problem

By equating the coefficients of ε0 in (36), it holds that

∇y ·
[
CM : ξy

(
u

(0)
M

)]
= 0, in ΩM, (37a)

∇y ·
[
CS : ξy

(
u

(0)
S

)]
= 0, in ΩS, (37b)

[
CM : ξy

(
u

(0)
M

)
− CS : ξy

(
u

(0)
S

)]
n = 0, on Γ, (37c)

u
(0)
M = u

(0)
S , on Γ. (37d)

This boundary value problem (37), defined in the periodic cell Ω, is a linear-elastic type problem with
zero source terms in (37a) and (37b). It is equipped with the stress jump condition (37c) and with the
continuity condition on the zero-order displacements (37d), both holding on Γ.

It has been proven that, for differential problems of the kind (37a)–(37d), the only periodic solutions
are constant functions with respect to the macro-scale variable y (see [4,17,62]). Consequently, the leading
order terms of the asymptotic expansions (31), u

(0)
M and u

(0)
S , depend solely on the macro-scale variable

x, thereby leading to the following writing

u
(0)
M (x, y) = u0M(x), u

(0)
S (x, y) = u0S(x). (38)

In addition, the functions u0M and u0S satisfy identically (37c) and, by virtue of (37d), they coincide
with each other, i.e.

u0M(x) = u0S(x) := u0(x) . (39)

5.2. Second cell problem

Let us equate the coefficients of ε1 in (36) and, by making use of (39), we are able to write the second
cell problem in the form

∇y ·
[
CM : ξy

(
u

(1)
M

)
+ CM : ξx (u0) + σ

(e)
M

]
= 0, in ΩM, (40a)

∇y ·
[
CS : ξy

(
u

(1)
S

)
+ CS : ξx (u0) + σ

(e)
S

]
= 0, in ΩS, (40b)

[
CM : ξy

(
u

(1)
M

)
− CS : ξy

(
u

(1)
S

)
+ (CM − CS) : ξx (u0) +

(
σ

(e)
M − σ

(e)
S

)]
n = 0, on Γ, (40c)

u
(1)
M = u

(1)
S , on Γ. (40d)

In spite of the presence of the generalised Maxwell stress tensors σ
(e)
M and σ

(e)
S , which constitute the main

novelty of this work, the cell-problem (40a)–(40d) naturally yields the integral identity∫

∂ΩM

ΥM n +
∫

∂ΩS

ΥS n =
∫

Γ

[ΥM − ΥS] n = 0, (41)
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where ΥM and ΥS are abbreviations for the sums in the square brackets of Eqs. (40a) and (40b), respec-
tively, and the difference ΥM − ΥS is thus the combination of the terms within the square brackets of
(40c). The identity (41) is obtained by integrating Eqs. (40a) and (40b) over ΩM and ΩS, respectively,
applying Gauss’ Theorem and invoking the y-periodicity of the involved quantities. Clearly, the integrand
[ΥM − ΥS] n coincides with the left-hand-side of (40c). Moreover, the fact that the sum of the surface
integrals on the left-hand-side of (41) is null is consistent with the absence of external body forces of
order ε1 acting on the composite.

Before moving on with the solution to the problem (40), we need to ensure its well-posedness. As is
customary in classical asymptotic homogenisation, this requires a compatibility, or solvability, condition
for the specific differential problem under study (see [4,64]). We will discuss about this aspect in the
following Remark 4.

Remark 4. (An a priori given compatibility condition) If external forces appear on the right-hand sides of
(40a) and (40b), the theory of asymptotic homogenisation requires the determination of a compatibility,
or solvability, condition, for such forces [4]. In fact, their cell average must be null [4]. Hence, by indicating
with fy the term of order ε1 with which such forces feature in the cell problem, the condition

∫
Ω

fy = 0

has to be met [4]. Penta et al. [64] obtained this condition for the case of external forces of electric type
and, more specifically, upon setting fy = ∇yφ + ∇y × A, where φ and A represent a scalar field and a
vector field, which remind of the scalar potential and of the vector potential used in Electromagnetism,
respectively. In the present study, however, the situation is substantially different. Indeed, although Eqs.
(40a) and (40b) present the divergences of the electric part of the Cauchy stresses, i.e. ∇y · σ

(e)
M and

∇y ·σ(e)
S , as inputs for the displacements u

(1)
M and u

(1)
S , these divergences are not external forces. Rather,

they stem from the electromechanical coupling discussed in the model, which results in the additive split
of the overall stresses σ

(t)
α = σ

(m)
α + σ

(e)
α (see Appendix A). Moreover, although in this work the electric

field is prescribed from the outset, the electric-type forces that it generates rely totally on the constitutive
framework outlined in Sect. 2 and Appendix A. For this reason, and since Eqs. (40a) and (40b) express the
static equilibrium of the composite at the order ε1, we collected them on the left-hand side of (40a) and
(40b). Consistently, the cell problem (40) turns out to be an elastic-type problem in the unknowns u

(1)
α ,

α ∈ {M,S}, with vanishing source terms, and equipped with a continuity condition for the displacement
and a vanishing jump condition for the quantity [ΥM − ΥS]n on the interface Γ. Hence, by employing
some classical results of asymptotic homogenisation, the existence of a unique solution is ensured and
no further compatibility condition in required. Indeed, by applying Gauss’ Theorem and invoking the
y-periodicity of the quantities involved in the expressions of order ε1 of the overall Cauchy stresses,
Eq. (41) is obtained naturally, i.e. without the need of looking for further compatibility conditions. In
this perspective, we speak of Eq. (41) in terms of “an a priori given compatibility condition”.

According to the compatibility condition discussed in Remark 4, classical results of asymptotic
homogenisation ensure that the boundary value problem (40) admits a unique solution, defined up to
a function depending solely on x [4,17]. Moreover, by virtue of linearity, a standard procedure (see for
example [60,62,64]) allows to express u

(1)
α , with α ∈ {M,S}, through the ansatz

u(1)
α = χα : ξx (u0) + ωα, α ∈ {M,S}, (42a)

[u(1)
α ]a = [χα]abc[ξx (u0)]bc + [ωα]a, α ∈ {M,S}, (42b)

where χα ∈ Lin(Lin(V),V) and ωα ∈ V are a third-order tensor field and a vector field, respectively, that,
in general, depend both on the macro-scale variable, x, and on the micro-scale variable, y. In addition,
for consistency with the hypothesis of y-periodicity of u

(1)
α , also χα and ωα must be y-periodic. Note

that, in general, the tensor field χα possesses 27 independent components. However, since in (42) χα

is double-contracted with ξx(u0), which is a symmetric second-order tensor field, only 18 independent
components of χα are needed and these are given by [χα]a[bc] = 1

2 ([χα]abc + [χα]acb).
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By substituting (42) into (40), two auxiliary differential problems are formulated, one for χα and
one for ωα. To make the notation as compact as possible, we introduce the auxiliary fourth-order tensor
Xy(χα), whose components are defined as

[Xy(χα)]abcd :=
1
2

(
∂ [χα]acd

∂yb
+

∂ [χα]bcd

∂ya

)
, α ∈ {M,S}, (43)

with the first two indices, a and b, being determined by the first index of χα and the direction along
which the partial derivatives are computed, respectively. By construction, Xy(χα) is symmetric in its
first pair of indices, so that the equality [Xy(χα)]abcd = [Xy(χα)]bacd holds true. We notice that Eq. (43)
defines Xy(χα) as the result of the action of the operator Xy( · ) onto χα, thereby extending the definition
of ξ( · ), given in (8), to tensor fields of the third order.

Finally, by using (43), the boundary-value problem for χα reads

∂
(
[CM : Xy(χM)]abcd + [CM]abcd

)
∂yb

= 0, in ΩM, (44a)

∂
(
[CS : Xy(χS)]abcd + [CS]abcd

)
∂yb

= 0, in ΩS, (44b)

[CM : Xy(χM) − CS : Xy(χS) + CM − CS]abcd nb = 0, on Γ, (44c)

[χM]acd = [χS]acd , on Γ, (44d)

where each equation has to hold for all the values taken by the indices a, c and d. Analogously, the
boundary value problem for ωα is given by

∂
(
[CM : ξy (ωM)]ab + [σ(e)

M ]ab

)

∂yb
= 0, in ΩM, (45a)

∂
(
[CS : ξy (ωS)]ab + [σ(e)

S ]ab

)

∂yb
= 0, in ΩS, (45b)

[
CM : ξy (ωM) − CS : ξy (ωS) + σ

(e)
M − σ

(e)
S

]
ab

nb = 0, on Γ, (45c)

[ωM]a = [ωS]a , on Γ, (45d)

for all values taken by the index a. The problems (44) and (45) are completed with periodic boundary
conditions on ∂Ω and, for both of them, it is guaranteed the existence of a unique solution, defined up
to a y-constant function [4,17].

Remark 5. (Role of material properties in the computation of χα and ωα) Let us consider the weak form
associated with the boundary value problem (44), i.e.∫

ΩM

{
[CM : Xy(χM) + CM]abcd [Xy(ηM)]abcd

}
+

∫

ΩS

{
[CS : Xy(χS) + CS]abcd [Xy(ηS)]abcd

}

=
∫

ΩM

[CM : Xy(χM)]abcd [Xy(ηM)]abcd +
∫

ΩS

[CS : Xy(χS)]abcd [Xy(ηS)]abcd

+
∫

ΩM

[CM]abcd [Xy(ηM)]abcd +
∫

ΩS

[CS]abcd [Xy(ηS)]abcd = 0, (46)

obtained by introducing suitable tensor-valued test functions ηM and ηS, each of which representing
a third-order, y-periodic tensor field. We notice that, in general, CM and CS, besides depending on the
material to which they refer, can vary within the matrix and the sub-phases, respectively. Such variability,
as shown by (46), modulates the dependence of χM and χS on the fine-scale variable y. To provide a
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deeper insight in the way in which the elastic coefficients contribute to determine χM and χS, let us
assume the matrix and the sub-phases to be homogeneous, so that their elastic coefficients are phase-wise
constant, and Eq. (46) rewrites as∫

ΩM

[CM : Xy(χM)]abcd [Xy(ηM)]abcd +
∫

ΩS

[CS : Xy(χS)]abcd [Xy(ηS)]abcd

+
∫

Γ

([CM − CS]abcd nb) ηacd = 0, (47)

where η is defined as the common restriction of ηM and ηS to the interface Γ, since ηM and ηS coincide
on Γ by virtue of (44d). By looking at (47), we note that, if CM were equal to CS, the integral over
Γ would vanish identically, and the solutions to (47) and (44d) would be all those functions, and only
those functions, χ0 that are y-independent and satisfy the equalities χ0(x) = χM(x) = χS(x). However,
since the inequality CM �= CS holds true throughout this work, the jump of the coefficients CM and CS

across the interface Γ gives rise to a “surface generalised force”, with components [CM − CS]abcd nb, which
expends work on η and generates non-trivial solutions for χM and χS.

Analogously to (46), the weak form of the boundary value problem (45) reads∫

ΩM

[
CM : ξy (ωM) + σ

(e)
M

]
ab

[
ξy (ϑM)

]
ab

+
∫

ΩS

[
CS : ξy (ωS) + σ

(e)
S

]
ab

[
ξy (ϑS)

]
ab

=
∫

ΩM

[
CM : ξy (ωM)

]
ab

[
ξy (ϑM)

]
ab

+
∫

ΩS

[
CS : ξy (ωS)

]
ab

[
ξy (ϑS)

]
ab

+
∫

ΩM

[
σ

(e)
M

]
ab

[
ξy (ϑM)

]
ab

+
∫

ΩS

[
σ

(e)
S

]
ab

[
ξy (ϑS)

]
ab

= 0, (48)

with ϑM and ϑS being suitable vector-valued y-periodic test functions associated with ωM and ωS,
respectively, and complying with the restriction ϑM = ϑS = ϑ on Γ. In this case, the fields ωM and ωS

are modulated by the variability of both the elasticity tensor and the generalised Maxwell stress tensor
in each phase. As above, however, an insightful simplification occurs when σ

(e)
M and σ

(e)
S are phase-wise

constant, which allows to rewrite Eq. (48) as∫

ΩM

[
CM : ξy (ωM)

]
ab

[
ξy (ϑM)

]
ab

+
∫

ΩS

[
CS : ξy (ωS)

]
ab

[
ξy (ϑS)

]
ab

+
∫

Γ

(
[σ(e)

M − σ
(e)
S ]abnb

)
ϑa = 0. (49)

Hence, although the matrix and the sub-phases are electrically homogeneous (i.e. their electric permit-
tivities and, thus, the corresponding generalised Maxwell stress tensors are constant in ΩM and ΩS), the
heterogeneity condition σ

(e)
M �= σ

(e)
S results into the contact force [σ(e)

M − σ
(e)
S ]n, which performs virtual

work on ϑ and yields non-trivial solutions for ωM and ωS. We further emphasise that, for the problem
at hand, the contact force [σ(e)

M − σ
(e)
S ]n originates from the jump of the permittivities at the interface

Γ. Indeed, as anticipated in Eq. (14), the relation σ
(e)
α = Tα : (E ⊗ E) applies (see also Appendix A), so

that the contact force reads

[σ(e)
M − σ

(e)
S ]n = {[TM − TS] : (E ⊗ E)}n ⇒ [σ(e)

M − σ
(e)
S ]abnb = {[TM − TS]abcdEcEd}nb. (50)

The terms [Cα]abcd[Xy(ηα)]abcd and [σ(e)
α ]ab[ξy(ϑα)]ab featuring in the weak forms (46) and (48) play a

specific role in the determination of χα and ωα. This role becomes evident when these weak forms are
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discretised according to a suitable numerical scheme, like the finite element method. Indeed, when this
is done, two linear systems are obtained, in which the unknowns are the values taken by χα and ωα

on a discrete set of nodes, while the source terms are given by the discretisation of [Cα]abcd[Xy(ηα)]abcd

and
[
σ

(e)
α

]
ab

[
ξy(ϑα)

]
ab

. In this sense, the variability of the material coefficients gives rise to generalised
internal “forces”, which result into the source terms for the discretised versions of the two boundary value
problems for χα and ωα, respectively.

We conclude this section by proving that, in addition to the left minor symmetry discussed above, the
fourth-order tensor Xy(χα) is also symmetric with respect its second pair of indices, i.e. [Xy(χα)]abcd =
[Xy(χα)]abdc. To deduce this property, let us rewrite the differential problem (44) in the following way,

∂

∂yb

(
[CM]abmn

∂ [χM]mcd

∂yn
+ [CM]abcd

)
= 0, in ΩM, (51a)

∂

∂yb

(
[CS]abmn

∂ [χS]mcd

∂yn
+ [CS]abcd

)
= 0, in ΩS, (51b)

(
[CM]abmn

∂ [χM]mcd

∂yn
− [CS]abmn

∂ [χS]mcd

∂yn

)
nb + [CM − CS]abcd nb = 0, on Γ, (51c)

[χM]abc = [χS]abc , on Γ, (51d)

where we have taken advantage of the right minor symmetry of the fourth-order elasticity tensor Cα.
We note that, because of the right minor symmetry of Cα, the components [χα]mcd and [χα]mdc solve
the same differential problem. This fact, together with the hypothesis of existence and uniqueness of the
solution to the problem (44), implies the equality [χα]acd = [χα]adc. Hence, the third-order tensor χα is
symmetric in its last two indices, i.e. [χα]acd = [χα]a[cd], which yields the left minor symmetry of Xy(χα),
i.e.

[Xy(χα)]abcd =
1
2

(
∂ [χα]acd

∂yb
+

∂ [χα]bcd

∂ya

)
=

1
2

(
∂ [χα]adc

∂yb
+

∂ [χα]bdc

∂ya

)
= [Xy(χα)]abdc , (52)

for α ∈ {M,S}. In general, nothing can be foreseen about the major symmetry of Xy(χα).
By summarising the previous discussion, the differential problem (44) corresponds to a collection of

three linear elastic problems, each of which individuated by the index a. Once a is fixed, by virtue of the
symmetry properties of Cα, we obtain six independent scalar differential problems. Hence, we have a total
number of eighteen scalar differential problems corresponding to the eighteen independent components of
χα. Also the boundary value problem (45) is formally of elastic-type, and it corresponds to three scalar
independent differential equations for the three components of the vector field ωα. For future use we
highlight that the following identity holds true

ξy(u(1)
α ) = Xy(χα) : ξx (u0) + ξy (ωα) , α ∈ {M,S}. (53)

5.3. Homogenised problem

In this section, we show how it is possible to achieve two equivalent, yet conceptually different, effective
formulations of the electro-mechanical model of the linear active composite under study. For this purpose,
we start from the conditions

∇x ·
{
CM :

[
ξx (u0)+ξy

(
u

(1)
M

)]
+σ

(e)
M

}
+∇y ·

{
CM :

[
ξx

(
u

(1)
M

)
+ξy

(
u

(2)
M

)]}
= 0, in ΩM, (54a)

∇x ·
{
CS :

[
ξx (u0)+ξy

(
u

(1)
S

)]
+σ

(e)
S

}
+∇y ·

{
CS :

[
ξx

(
u

(1)
S

)
+ξy

(
u

(2)
S

)]}
= 0, in ΩS, (54b)

{
CM :

[
ξx

(
u

(1)
M

)
+ ξy

(
u

(2)
M

)]
− CS :

[
ξx

(
u

(1)
S

)
+ ξy

(
u

(2)
S

)]}
n = 0, on Γ, (54c)

u
(2)
M = u

(2)
S , on Γ, (54d)
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which we obtain by matching the terms multiplied by ε2 in Eq. (36) and employing the result u
(0)
M (x) =

u
(0)
S (x) = u0(x).

Secondly, by averaging Eqs. (54a) and (54b) by means of the operator 〈 · 〉Ωα
, α ∈ {M,S}, defined in

the second expression of (32), we write〈
∇x ·

{
Cα :

[
ξx (u0)+ξy

(
u(1)

α

)]
+σ(e)

α

}〉
Ωα

+
〈
∇y ·

{
Cα :

[
ξx

(
u(1)

α

)
+ξy

(
u(2)

α

)]}〉
Ωα

= 0. (55)

Furthermore, we recast the arguments of the first angular brackets of Eq. (55) in the form

〈∇x · [Cα : ξx (u0)]〉Ωα
= ∇x · [〈Cα〉Ωα

: ξx (u0)
]
, (56a)〈

∇x ·
[
Cα : ξy

(
u(1)

α

)]〉
Ωα

= ∇x ·
[
〈Cα : Xy (χα)〉Ωα

: ξx (u0)
]

+ ∇x ·
[〈
Cα : ξy (ωα)

〉
Ωα

]
, (56b)

〈
∇x · σ(e)

α

〉
Ωα

= ∇x · 〈σ(e)
α 〉Ωα

, (56c)

where we used the hypothesis of macroscopic uniformity reported in Eqs. (33) and (34), the expression of
the symmetrised y-gradient of u

(1)
α in Eq. (53), and the fact that u0 depends on x only. Now, looking at

the arguments of the second angular brackets of Eq. (55), we notice that the topological and geometrical
properties of the periodic cell (see Sect. 4) and the y-periodicity of u

(1)
α , u

(2)
α and Cα imply

〈
∇y ·

[
Cα : ξx(u(1)

α )
]〉

Ωα

=
1

|Ω|
∫

Ωα

∇y ·
[
Cα : ξx(u(1)

α )
]

=
1

|Ω|
∫

∂Ωα

[
Cα : ξx(u(1)

α )
]
nα dS =

1
|Ω|

∫

Γ

[
Cα : ξx(u(1)

α )
]
nα dS, (57a)

〈
∇y ·

[
Cα : ξy(u(2)

α )
]〉

Ωα

=
1

|Ω|
∫

Ωα

∇y ·
[
Cα : ξy(u(2)

α )
]

=
1

|Ω|
∫

∂Ωα

[
Cα : ξy(u(2)

α )
]
nα dS =

1
|Ω|

∫

Γ

[
Cα : ξy(u(2)

α )
]
nα dS, (57b)

where nα = n for α = M and nα = −n for α = S. In particular, for Ωα = ΩS the surface integrals
over ∂ΩS reduce to surface integrals over Γ because Γ coincides with ∂ΩS in the case of inclusions and
because of the y-periodicity of the integrands on ∂ΩS ∩ ∂Ω in any other case considered in this work. For
Ωα = ΩM, an analogous result applies, with the integrands being this time y-periodic on ∂ΩM ∩∂Ω. Note
that this analogy holds true for the class of cells chosen in this work, although the sets ∂ΩS ∩ ∂Ω and
∂ΩM ∩ ∂Ω can be topologically different from each other (in particular, ∂ΩS ∩ ∂Ω is the empty set in the
case of inclusions).

Finally, by substituting (56) and (57) in (55), we rewrite Eq. (55) as

∇x · [Cα,eff : ξx (u0) + τα] +
1

|Ω|
∫

Γ

Cα :
[
ξx(u(1)

α ) + ξy(u(2)
α )

]
nα dS = 0, (58)

where we introduced the auxiliary notation

Cα,eff := 〈Cα + Cα : Xy(χα)〉Ωα
, τα := 〈σ(e)

α + Cα : ξy(ωα)〉Ωα
, α ∈ {M,S}. (59)

At this stage, the surface integrals over Γ can be eliminated by summing up Eq. (58) over α and invoking
(54c). This, in fact, yields the homogenised problem for the leading order term u0, i.e.

∇x · [Ceff : ξx (u0) + τ ] = 0, (60)

where we have set

Ceff := CM,eff + CS,eff = 〈CM + CM : Xy(χM)〉ΩM + 〈CS + CS : Xy(χS)〉ΩS , (61a)
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τ := τM + τ S = 〈CM : ξy(ωM) + σ
(e)
M 〉ΩM + 〈CS : ξy(ωS) + σ

(e)
S 〉ΩS . (61b)

The effective elasticity tensor Ceff is the sum of the two effective elasticity tensors CM,eff and CS,eff ,
and is determined by “mixing” the intrinsic elastic properties of each phase with the pieces of micro-
structural information enclosed in Xy(χM) and Xy(χS). In addition, τ plays the role of an “extra” stress
tensor, which adds itself to the homogenised version of the elastic Cauchy stress tensor Ceff : ξx(u0).
More specifically, τ describes the electro-mechanical coupling that originates, through the auxiliary fields
ωM and ωS, from the multi-scale nature of the composite under study.

We conclude this section noticing that it is also possible to provide an alternative formulation of the
problem at hand. Indeed, by suitably rearranging the terms under divergence in Eq. (60), it can be shown
that Eq. (60) becomes

∇x ·
[
σ

(m)
eff + σ

(e)
eff

]
= 0, (62)

where we defined the effective mechanical stress tensor

σ
(m)
eff := Ceff : ξx(u0) + 〈CM : ξy(ωM)〉ΩM + 〈CS : ξy(ωS)〉ΩS , (63)

and the effective generalised Maxwell stress tensor

σ
(e)
eff := 〈σ(e)

M 〉ΩM + 〈σ(e)
S 〉ΩS . (64)

Clearly, either Eq. (60) or Eq. (62) has to be completed by boundary conditions to be specified for the
only remaining unknown, i.e. u0, on the boundary of the composite medium as a whole. Indeed, we recall
that, within the present framework, the electric field is given from the outset, thereby completely defining
σ

(e)
eff , the fields ωM and ωS are computed separately by solving the auxiliary problems (45a)–(45d), and

Ceff is determined by calculating χM and χS.
It should be emphasised that the effective equation (62) has the same structure as (15a) or (15b),

which represent the micro-scale force balances in CM and CS, respectively. In spite of this “invariance”, the
micro-scale formulation and the effective one feature an essential difference that manifests itself through
the constitutive expression of σ

(m)
eff . The constitutive representation of this tensor, indeed, does not reduce

to the double contraction of the effective elasticity tensor, Ceff , with ξx(u0). Rather, σ
(m)
eff requires the

contributions 〈CM : ξy(ωM)〉ΩM and 〈CS : ξy(ωS)〉ΩS , which upscale the micro-scale heterogeneities
related to the geometry and to the material coefficients of the composite, and “measure” the susceptibility
of the stress response to the imposed electric field. Indeed, we recall that ωM and ωS are modulated by
the electric field through σ

(e)
M and σ

(e)
S , as prescribed by the problem (45).

A last comment pertains to the role played by 〈CM : ξy(ωM)〉ΩM and 〈CS : ξy(ωS)〉ΩS in the
homogenised problem, which we formulate here with reference to a homogenised version of the orig-
inal composite [60,62,64,66], hereafter denoted by CH. For this purpose, we assign the homogenised
boundary value problem in the following form

∇x · [σ(m)
eff + σ

(e)
eff ] = 0, inCH, (65a)

u0(x) = up(x), on ∂DCH, (65b)

[σ(m)
eff + σ

(e)
eff ]n = σ

(e)
extn, on ∂NCH, (65c)

where n is the field of unit vectors normal to ∂CH, σ
(e)
ext denotes here the generalised Maxwell stress tensor

generated by the external electric field applied to CH, and up(x) is the displacement prescribed on the
Dirichlet boundary of CH. Note that, while Eq. (65a) is the same as (62), the boundary conditions (65b)
and (65c) prescribe a displacement on the Dirichlet boundary of CH, i.e. ∂DCH, and a balance of contact
forces on the Neumann boundary of CH, i.e. ∂NCH. We remark that the homogenised composite, CH, is
an approximation of the original one and differs from this one in that its elastic properties are represented
by the effective elasticity tensor, Ceff , and its electric response is described by the effective generalised
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Maxwell stress tensor σ
(e)
eff . In addition to this consideration, for the purposes of this work it is important

to look at Eq. (65c), which considers the very instructive case in which, even in the absence of contact
forces of mechanical type imposed on ∂NCH, the non-trivial traction σ

(e)
extn exists on this boundary [72].

Such traction, in fact, is the “contact force” resulting from the exposure of the composite to the electric
field.

In our opinion, a deeper understanding of the problem (65) can be achieved by employing its weak
formulation, which, upon introducing suitable test functions v0, reads∫

CH

ξx(v0) : Ceff : ξx(u0) = −
∫

CH

∇xv0 :
[〈CM : ξy(ωM)〉ΩM + 〈CS : ξy(ωS)〉ΩS

]

−
∫

CH

∇xv0 : σ
(e)
eff +

∫

∂NCH

(σ(e)
extn) · v0. (66)

The terms on the right-hand-side of Eq. (66) can be interpreted as the virtual work done by generalised
forces “external” to the macro-scale mechanical system described by u0. More specifically, the first integral
on the right-hand-side of (66) stems from the micro-structural descriptors ωM and ωS through the stress-
like quantities 〈CM : ξy(ωM)〉ΩM and 〈CS : ξy(ωS)〉ΩS , which are completely determined by the micro-
scale problems (45), and are, in this regard, external to u0. The last two integrals of (66), instead,
are consequences of the electric field through the effective generalised Maxwell stress tensor, σ

(e)
eff , and

the electric-type tractions σ
(e)
extn. In particular, the structure of these last integrals permits to rephrase

Eq. (66) in the suggestive form
∫

CH

ξx(v0) : Ceff : ξx(u0) = −
∫

CH

∇xv0 :
[〈CM : ξy(ωM)〉ΩM + 〈CS : ξy(ωS)〉ΩS

]

+
∫

CH

(∇x · σ
(e)
eff ) · v0 +

∫

∂NCH

�σ
(e)
ext − σ

(e)
eff �n · v0, (67)

where it is possible to identify the bulk force ∇x · σ
(e)
eff and the surface force �σ

(e)
ext − σ

(e)
eff �n triggered by

the jump between the external and the effective generalised Maxwell stress tensors.

6. Particular cases

In this section we focus on relevant particular cases by assuming specific functional forms for the imposed
electric field. In fact, we present how the model specialises when assuming that the electric field is
either uniform on the micro-scale or multiplicatively decomposed into purely micro- and macro-scale
components. The former case is frequently encountered in the context of experimental measurements and
represents the simplest possible case also from a computational standpoint. The latter one is indeed a more
general case, where we show how to reduce the computational complexity of the model by nonetheless
retaining both micro- and macro-spatial variations of the electric field.

6.1. An imposed electric field which is uniform on the micro-scale

We now specialise the framework outlined in the previous sections to the case in which the applied electric
field is independent on the micro-scale variable, y. In other words, we assume that the variability of the
imposed electric field manifests itself solely at the scale of the composite as a whole, rather than at the
micro-scale.
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To the best of our knowledge, several experimental protocols are used to test the electro-mechanical
response of active composites employed in different industrial contexts, and such procedures are often
based on the use of electric fields depending on the macro-scale variable only.

By neglecting the micro-scale variation of the electric field, we limit ourselves to the case in which the
imposed electric field varies inside the composite, but remains constant within the periodic cell. In light
of this assumption, and looking at Eq. (14), we prescribe the generalised Maxwell stress tensor to depend
on x and y in the following way:

σ(e)
α (x, y) = Tα(x, y) : (E(x) ⊗ E(x)), α ∈ {M,S}, (68)

where, as specified in Sect. 2, Tα is a y-periodic symmetric fourth-order tensor whose components are
functions of the electric permittivity of the α-phase, α ∈ {M,S} (see also Appendix A).

By taking inspiration from the procedure followed in the previous sections, we propose the following
ansatz for the vector field ωα:

ωα(x, y) = βα(x, y) : (E(x) ⊗ E(x)), α ∈ {M,S}, (69a)

[ωα(x, y)]a = [βα(x, y)]abc Eb(x)Ec(x), α ∈ {M,S}, (69b)

where βα(x, · ) is a y-periodic third-order tensor field. Moreover, analogously to (43) and (53), we intro-
duce the fourth-order tensor field Xy(βα), whose component expression is formally identical to the one
defining Xy(χα) in Eq. (43), i.e.

[Xy(βα)]abcd :=
1
2

(
∂ [βα]acd

∂yb
+

∂ [βα]bcd

∂ya

)
, α ∈ {M,S}. (70)

By employing Eq. (70), we can prove that the symmetrised micro-scale gradient of ω, ξy(ωα), is given by

ξy(ωα) = Xy(βα) : (E ⊗ E), (71a)

[ξy(ωα)]mn = [Xy(βα)]mncdEcEd, (71b)

where we have used the fact that the vector field E is independent on the micro-scale variable y. By
substituting Eqs. (71) in (45), we obtain the following differential conditions for βα:

∂ ([CM : Xy (βM)]abcd + [TM]abcd)
∂yb

= 0, in ΩM, (72a)

∂ ([CS : Xy (βS)]abcd + [TS]abcd)
∂yb

= 0, in ΩS, (72b)

[CM : Xy (βM) − CS : Xy (βS) + TM − TS]abcd nb = 0, on Γ, (72c)

[βM]acd = [βS]acd , on Γ. (72d)

We remark that the boundary value problem (72) is formally identical to (44). In particular, it consists
of eighteen scalar partial differential equations for the eighteen independent components of βα. Indeed,
by using the same arguments outlined in the previous section to prove the symmetry properties of χα,
and by virtue of the right minor symmetry of Tα, it is possible to prove that βα has to be symmetric
with respect to the last two indices.

Finally, by inserting (71) in (61b), we obtain that the average electro-mechanical contribution to the
elastic stress tensor in (60) results to be

τ = Teff : (E ⊗ E), (73)

where the fourth-order tensor Teff is given by

Teff := 〈TM + CM : Xy(βM)〉ΩM
+ 〈TS + CS : Xy(βS)〉ΩS

(74)
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and contains both the micro-scale electric permittivities of the phases and the elastic contributions asso-
ciated with CM and CS. Finally it holds true that

σ
(m)
eff = Ceff : ξx (u0) + [〈CM : Xy(βM)〉ΩM + 〈CS : Xy(βS)〉ΩS ] : (E ⊗ E), (75a)

σ
(e)
eff =

(〈TM〉ΩM
+ 〈TS〉ΩS

)
: (E ⊗ E). (75b)

6.2. Multiplicative decomposition of the electric field

The effective fourth-order elasticity tensor Ceff in Eq. (61a), and the effective stress-like tensor τ in
Eq. (61b), which arise in the homogenised problem (60), are to be computed by solving the two cell
problems (44) and (45). These two local problems are defined on the periodic cell Ω and are parametrised
by the macro-scale variable x. Such a dependence on the coarse scale, beyond the assumption of macro-
scopic uniformity, is retained in the elasticity tensors CM and CS and in the vector fields ωM and ωS. In
principle, this implies that (44) and (45) should be solved for each point x of the homogenised domain
CH and, in general, this could require significant computational resources, in terms of calculation time
and of memory storage.

In order to reduce the computational complexity of the two cell problems at hand, we make some
simplifying hypotheses. By taking inspiration from [64], we assume that the fourth-order elasticity tensors,
CM and CS, and the fourth-order tensors accounting for the electric properties of the composite, TM and
TS, are x-constant, i.e. Cα(x, y) = Cα(y) and Tα(x, y) = Tα(y), for α ∈ {M,S}. Moreover, we propose
that the components of the electric field E can be multiplicatively decomposed into a locally varying, x-
constant factor, and a macro-scale, y-constant, contribution. Hence, we prescribe that there exist functions

E(a) : CH → R, e(a) : Ω → R, a = 1, 2, 3, (76)

such that Ea(x, y) = E(a)(x)e(a)(y) and

E(x, y) = E(a)(x)e(a)(y) ia = E(1)(x)e(1)(y) i1 + E(2)(x)e(2)(y) i2 + E(3)(x)e(3)(y) i3, (77)

where the summation over the index a is omitted but understood. Enforcing (77), we can write the
generalised Maxwell stress tensor as

σ(e)
α (x, y) = E(a)(x)E(b)(x)e(a)(y)e(b)(y)Tα(x, y) : ( ia ⊗ ib), (78)

where we sum up over the indices a and b. With Eqs. (77) and (78) in mind, we introduce the following
ansatz to the problem (45):

ξy(ωα) = E(a)E(b) Xy(βab
α ) : (ia ⊗ ib). (79)

By substituting this ansatz, along with (78), into (45), we obtain six cell problems that do not retain any
macro-scale dependency. In particular, by fixing the indices m,n = 1, 2, 3, the six cell problems are given
by (no summation on the pair of indices m and n)

∂
(
[CM : Xy (βmn

M )]abmn + [e(m)e(n)TM]abmn

)
∂yb

= 0, in ΩM, (80a)

∂
(
[CS : Xy (βmn

S )]abmn + [e(m)e(n)TS]abmn

)
∂yb

= 0, in ΩS, (80b)

[CM : Xy (βmn
M ) − CS : Xy (βmn

S )]abmn nb =
[
e(m)e(n)(TS − TM)

]
abmn

nb, on Γ, (80c)

[βmn
M ]acd = [βmn

S ]acd , on Γ. (80d)

We finally substitute (79) and (78) into (61b) to obtain the average electro-mechanical contribution to
the elastic stress tensor in the homogenised problem (60). That is,

τ =E(a)E(b)

{
〈CM : Xy(βab

M) + e(a)e(b)TM〉ΩM + 〈CS : Xy(βab
S ) + e(a)e(b)TS〉ΩS

}
: (ia ⊗ ib). (81)
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Also considering the alternative formulation for the homogenised problem, given by (62), we can write
the effective mechanical stress tensor using the decomposition. That is,

σ
(m)
eff = Ceff : ξx(u0) + E(a)E(b)

{
〈CM : Xy(βab

M)〉ΩM + 〈CS : Xy(βab
S )〉ΩS

}
: (ia ⊗ ib). (82)

We can also write the effective generalised Maxwell stress tensor using the decomposition as

σ
(e)
eff = E(a)E(b)

{〈e(a)e(b) TM〉ΩM + 〈e(a)e(b) TS〉ΩS

}
: ( ia ⊗ ib). (83)

Despite the introduction of a more complicated mathematical framework, the resulting decomposed model
can be solved at a reduced computational cost when compared with the general model. The multiplicative
decomposition of the electric field leads to the decoupling of the macro-scale and micro-scale problems.
If we assume the elasticity tensors to be macroscopically uniform, then it is sufficient to solve the six
elastic-type problems (44) and the six decomposed cell problems (80a)–(80d). The results from solving
these problems can then be used to completely specify the homogenised problem (60).

We conclude this section by noticing that one crucial advantage of our formulation is the flexibility
in the choice of the prescribed electric field. For instance, it is worth remarking that, in absence of free
charges, the model proposed in [47] can be obtained as a particular case of our formulation (up to notation
and rearranging terms) by assuming a functional form of the electric field as the leading (zeroth)-order
electric field given in the latter work. In fact, in [47] the electric field is expressed in terms of the gradient of
a scalar potential, which is in turn considered as a multiscale variable, which however (as in our case) does
not depend on the elastic deformations. Although we could potentially prescribe an electric field which
accounts a priori for the presence of a specific electric charge distribution, our modeling framework is
designed for given, imposed electric fields. As such, whenever spatial variations of the latter are supposed
to be influenced by the specific composite and/or its physical properties (as in the case of free charges
or converse electrostriction), it could be more appropriate to proceed via considering the electric field
as a multiscale variable, as done in [47]. In the next section we compare our formulation with different
approaches to electrostriction by indeed assuming the absence of free charges.

7. Comparison with previous approaches to electrostriction

It is worth mentioning that, by employing the results summarised in the Appendix A, and specialising
them for simplicity to the case of electrically isotropic materials, the total stress can be written as (cf.
Eq. (132))

σ(t)
α = Cα : ∇uα + Tα : (E ⊗ E). (84)

Upon writing the fourth-order tensor Tα in explicit form, i.e. as Tα = Eα + E0 (cf. Eq. (129)), the total
stress can be rearranged as

σ(t)
α = Cα : ∇uα+Eα : (E ⊗ E)︸ ︷︷ ︸

:=σ
(me)
α

+E0 : (E ⊗ E)︸ ︷︷ ︸
:=σ (Max)

. (85)

Note that we have denoted the sum of the first two stress contributions by σ
(me)
α , where the superscript

“(me)” stands for mechano-electric stress tensor, because σ
(me)
α features both the purely mechanical term,

Cα : ∇uα, and the purely electric one, Eα : (E ⊗ E). Moreover, we have identified the last summand of
Eq. (85) with the “true” Maxwell stress tensor, here denoted by σ(Max).
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7.1. Comparison with the Dorfmann & Ogden model [22]

To check for consistency with [22], we now subtract and add the tensor E ⊗ P α on the right-hand-side
of Eq. (85), where P α is given in Eq. (135b) of the Appendix A (for the sake of conciseness, we write P α

as P α = Dα − ε0E only in the term that is added). This yields

σ(t)
α =σ(me)

α − E ⊗ P α + E ⊗ {Dα − ε0E} + E0 : (E ⊗ E), (86)

and, by means of a direct calculation, involving the definition of E0 (cf. Eq. (125b)), we find

σ(t)
α = σ(me)

α − E ⊗ P α + E ⊗ Dα − E ⊗ ε0E + ε0E ⊗ E − 1
2ε0‖E‖2I

=
(
σ(me)

α − E ⊗ P α

)
+

(
E ⊗ Dα − 1

2ε0‖E‖2I
)
. (87)

Next, for comparison with Dorfmann & Ogden [22], and slightly adapting their notation to our framework,
we set

σα := σ(me)
α − E ⊗ P α, (88a)

τ (e)
α := E ⊗ Dα − 1

2ε0‖E‖2I. (88b)

Then, by exploiting Maxwell’s equation ∇ · Dα = 0, for α ∈ {M,S}, and the relation Dα = P α + ε0E,
we notice that the divergence of τ

(e)
α reads

∇ · τ (e)
α = (∇E)Dα + E ∇ · Dα − ε0(∇E)TE

= (∇E)P α + (∇E)ε0E − ε0(∇E)TE, (89)

and, since the last two terms have to cancel each other because of the constraint ∇ × E = 0 (we recall
that magnetic effects are neglected throughout this work), we find

∇ · τ (e)
α = (∇E)P α, (90)

which suggests to identify ∇ · τ
(e)
α with the electric body force f (e)

α := ∇ · τ
(e)
α = (∇E)P α. Accordingly,

the equilibrium equation ∇ · σ
(t)
α = 0 rewrites

∇ · σα + f (e)
α = 0. (91)

7.2. Comparison with the model by Penta et al. [64]

Another comparison should be done with the results presented in [64], which are based on another
definition of the electric body force f (e)

α . In [64], the overall approach is rather different from the one
presented here, and the Authors define f (e)

α as

f (e)
α := ∇

(
1
2κα ‖E‖2

)
= ∇ ·

(
1
2κα ‖E‖2

I
)

= κα(∇E)TE = κα(∇E)E, (92)

where we have slightly adapted the notation to our framework, we have assumed κα to be constant and
have used (∇E)T = ∇E.

In the limit of a very weak coupling between the mechanical displacement and the electric field, it is
plausible to regard the electric displacement as independent of the displacement gradient, so that one may
write Dα = (ε0 + εα)E, which defines the polarisation vector as P α = εαE. Hence, by setting κα = εα,
Eq. (92) becomes

f (e)
α = ∇ ·

(
1
2εα ‖E‖2

I
)

= εα(∇E)E = (∇E)P α, (93)

and represents the body force known as electrostriction force. It is interesting to notice that, in the absence
of free electric charges, it must hold true that ∇ · Dα = 0 and, if ε0 and εα are constant, then ∇ · E = 0
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applies too. By assuming that these two conditions are fulfilled, and recalling Eq. (88b), f (e)
α admits the

equivalent expression

f (e)
α = ∇ ·

(
1
2εα ‖E‖2

I
)

= (∇E)P α = ∇ ·
(
E ⊗ Dα − 1

2ε0 ‖E‖2
I
)

≡ ∇ · τ (e)
α , (94)

which implies that the difference between τ
(e)
α and 1

2εα ‖E‖2
I is a divergence-free second-order (stress)

tensor, i.e.

∇ ·
[
τ (e)

α − 1
2εα ‖E‖2

I
]

≡ ∇ ·
[(

1 +
εα

ε0

)
σ(Max)

]
=

(
1 +

εα

ε0

)
∇ · σ(Max) = 0. (95)

To us, the physical meaning of this result is that, in the “gauge” ∇ · σ(Max) = 0, the tensor 1
2εα ‖E‖2

I

is the “effective” part of τ
(e)
α , since both tensors have the same divergence and, thus, they both produce

the same electrostriction force f (e)
α .

Variational deduction of the model by Penta et al. [64] Apparently, if Cauchy stress tensor is assumed
to consist of the purely mechanical part only, i.e. σα = Cα : ∇uα, and if the electric field is regarded as
given from the outset, provided it is both irrotational and solenoidal, then the force f (e)

α can be viewed
as an external force for the problem [64]

∇ · (Cα : ∇uα) + f (e)
α = 0, (96)

in the unknown displacement field uα. Still, according to Eqs. (92)–(95), the force balance (96) can be
rephrased as

∇ · (Cα : ∇uα) + f (e)
α = ∇ ·

(
Cα : ∇uα + 1

2εα ‖E‖2
I
)

= 0, (97)

and can be obtained by differentiating a suitable Lagrangian density function with respect to ∇uα.
Indeed, a direct inspection shows that such a Lagrangian can be written as

Ûα(∇uα) = − 1
2∇uα : Cα : ∇uα − 1

2εα ‖E‖2
I : ∇uα + hα, (98)

where hα is an arbitrary function independent of ∇uα, and that Eq. (97) becomes

−∇ ·
(

∂Ûα

∂∇uα
(∇uα)

)
= ∇ ·

(
Cα : ∇uα + 1

2εα ‖E‖2
I
)

= 0. (99)

Finally, we remark that, looking at Eq. (95), it holds true that ∇· τ (e)
α = ∇·

(
1
2εα ‖E‖2

I
)

and, thus, the

Euler–Lagrange equation (99) remains invariant if the Lagrangian Ûα(∇uα) is replaced with

Û (new)
α (∇uα) = − 1

2∇uα : Cα : ∇uα − τ (e)
α : ∇uα + hα. (100)

Indeed, employing Û (new)
α (∇uα) in (99) and using the “gauge” condition (95) lead to

−∇ ·
(

∂Û (new)
α

∂∇uα
(∇uα)

)
= ∇ ·

(
Cα : ∇uα + τ (e)

α

)

= ∇ ·
(
Cα : ∇uα + τ (e)

α − 1
2εα ‖E‖2

I + 1
2εα ‖E‖2

I
)

= ∇ ·
(
Cα : ∇uα + 1

2εα ‖E‖2
I
)

+ ∇ ·
(
τ (e)

α − 1
2εα ‖E‖2

I
)

︸ ︷︷ ︸
=0

= ∇ ·
(
Cα : ∇uα + 1

2εα ‖E‖2
I
)

= 0. (101)
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This result, in fact, is consistent with a property of Lagrangian density functions (see e.g. [35]), according
to which Ûα(∇uα) and Û (new)

α (∇uα) lead to the same Euler–Lagrange equations, since they differ by the
divergence of a vector-valued function depending only on uα (and on the electric field, through σ(Max)).
Indeed, by exploiting this property in Eq. (100), one obtains

Û (new)
α (∇uα) = Ûα(∇uα) − ∇ ·

[(
1 +

εα

ε0

)
σ(Max)Tuα

]
, (102)

where we emphasise that the term between brackets on the right-hand-side of Eq. (102) has the structure
of the Noether current generated by the Maxwell stress tensor (in fact, an energy-momentum tensor) [46].

The electrostriction force viewed as a “polygenic” force A completely different picture can be conceived
if the electric field is understood as a variable of the problem, like the displacement, in spite of the fact
that, under the hypotheses done in this section (i.e. ∇ · Dα = 0 and constant ε0 and εα), it is a priori
known to be solenoidal. Indeed, by looking at the force balance (96), with f (e)

α regarded as an external
force, no matter whether or not it is obtainable from a potential, and studying it in conjunction with
Maxwell’s equation ∇ · Dα = 0, with Dα = (ε0 + εα)E, we end up with the system of (decoupled)
“equations of motion”

∇ · (Cα : ∇uα) = −f (e)
α , (103a)

∇ · [(ε0 + εα)E] = 0. (103b)

In fact, by invoking the Lagrangian density function

Ŵα(∇uα,E) = − 1
2∇uα : Cα : ∇uα + 1

2 (ε0 + εα) ‖E‖2
, (104)

Eqs. (103a) and (103b) become

−∇ ·
(

∂Ŵα

∂∇uα
(∇uα,E)

)
= −f (e)

α , (105a)

∇ ·
(

∂Ŵα

∂E
(∇uα,E)

)
= 0, (105b)

provided we renounce to find a unique Lagrangian density function that is simultaneously compatible
with the “equations of motion” and capable of returning f (e)

α . In other words, there exists no single scalar
function from which the system of equations (103a) and (103b) descends. For this reason, by adopting
the jargon of Lanczos [44], we refer to f (e)

α as “polygenic force”.

8. Concluding remarks

In this work, we have studied the mechanical response of linear elastic active composites, i.e. compos-
ite materials characterised by a constitutive relationship in which the total stress can be decomposed
into a purely linear elastic contribution and another component, which is assumed to be given. As our
chief motivation has been the study of electrostrictive composites, we have specialised our formulation
accordingly.

This class of active materials includes, among others, composites whose matrix is made of a polymer
that encloses several dielectric sub-phases. Such materials have been investigated both from the theoretical
and the experimental point of view [6,7], and are largely employed in the field of biomechanics, as is the
case of artificial muscles [49].

Within the framework sketched above, we have specialised our study to the case of electro-sensitive,
linear elastic composites subjected to an imposed electric field. This setting, in fact, reflects various
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experimental procedures used to test, for instance, the electro-mechanical properties of materials in
several industrial contexts.

Therefore, we have determined the effective electro-mechanical properties by having recourse to the
theory of asymptotic homogenisation.

The starting point of our work is the system of equations (15). These equations have been obtained by
assigning a Lagrangian density function and applying Hamilton’s variational procedure (see Appendix A),
which yields a Cauchy stress consisting of a purely mechanical term, i.e. the classical Cauchy stress, and an
electric one, identified with a generalised Maxwell stress tensor. The latter, in particular, is characterised
by a constitutive expression that is strongly related to the way in which the mechanical and the electric
descriptors (i.e. the displacement and the electric field, respectively) are coupled through the prescribed
Lagrangian density function.

To study the effective behaviour of the composite under study, we have employed the asymptotic
homogenisation technique, under the enforcement of a sharp separation between the length scales of the
micro-structure and that of the composite as a whole. Under the hypothesis of micro-scale periodicity,
we have obtained the boundary value problems (37) and (40), the auxiliary cell problems (44) and (45),
each of which is defined on the elementary periodic cell, and the homogenised problem (65). Moreover,
all the information concerning the micro-structure, i.e. the material coefficients of the two phases, the
geometry of the periodic cell and the interaction of the two phases at the interface, is encapsulated in
(62) through the effective stress tensors defined in (63) and (64).

One of the main results of our work, reported in Remark 4, is due to the fact that the formulation of
the local equilibrium problem (15) does not call for the solvability condition that the theory of asymptotic
homogenisation would invoke for equilibrium equations of the type ∇ · σ + f = 0. Indeed, in such cases,
f must fulfil the restriction

∫
Ω

fy = 0. However, since Eq. (15) features no external force of the same type

as f , it is not necessary to look for any type of solvability. Rather, in the present framework, the only
compatibility condition that has to be met is naturally supplied by Eq. (41). This is a direct consequence
of the constitutive laws, of the fact that Eqs. (15a) and (15b) predict the vanishing of the divergence
of the total stress tensor σ

(t)
α , and that the equilibrium condition at the interface (15c) involves σ

(t)
α

as a whole, rather than its mechanical part only, as in [64]. As such, our framework fully captures the
role of the jumps of both the electric properties across the interfaces between different subphases in the
composite, which could not be considered when specialising the work [64] to electrostriction.

Another result worth mentioning is that, with the introduction of an ansatz for the vector fields ωM

and ωS, we have converted the auxiliary cell problem (45) into a boundary value problem for the third-
order tensor fields βM and βS. Such differential problem, in fact, has the same structure as the auxiliary
cell problem (44), with βα sharing the same symmetry properties as χα, with α ∈ {M,S}.

An advancement of our understanding of the theory of asymptotic homogenisation has been given by
the introduction, for each boundary-value problem (see Eq. (45)), of its corresponding weak form. This has
permitted to highlight the role of the elasticity tensors CM and CS in the determination of the auxiliary
fields χM and χS (see Eqs. (46) and (47)), and the role of the contact force [σ(e)

M − σ
(e)
S ]n on ωM and

ωS (see Eqs. (48), (49) and (50)). Moreover, the use of the weak forms has improved our comprehension
of the homogenised problem (65), especially for what concerns the nature of the “external forces” (see
(66)).

The modelling hypotheses done in our work present some limitations. This fact makes this contribution
open to generalisations from different points of view. Indeed, throughout this work, we have developed
our model in the regime of small displacements and moderate electric fields. This choice permits to use,
for the purposes of this work, a constitutive representation of the electric displacement that is linear in
the electric field and independent of ∇uα. In other words, even though the “true” constitutive expression
of Dα would couple Dα with ∇uα (see e.g. Eq. (135a) in Appendix A), within our approximation we are
allowed to use Dα = E(0)

α E, with E(0)
α independent of ∇uα. Clearly, this approximation is an a priori
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estimate that should be confirmed a posteriori. Furthermore, in order to be compatible with Maxwell’s
equations, the electric field has to be irrotational and solenoidal. In the same regime, if the electric
field is not known from the outset, one has to solve the balance of linear momentum together with
Maxwell’s equations. Within our approximation, the latter are completely decoupled from the former,
and the electric field, computed by solving a Laplace equation for the scalar potential, plays the role of
“an input” for the equations determining the mechanical displacement.

In a more general regime, it may be impossible to justify the approximation discussed so far, and the
balance of linear momentum (i.e. the equation for uα) should be solved together with Maxwell’s equation
∇ · Dα = 0.

In general, other modelling extensions of this work are possible. For example, one step ahead may
consist in the possibility to admit also the existence of an imposed magnetic field, H, acting on the
composite of interest. Such a situation would imply, on the one hand, the revision of the constitutive
framework adopted so far and, on the other hand, the study of new cell problems to investigate the role
played by each field in the determination of the effective quantities of the composite. Indeed, by activating
the magnetic field H, these quantities would require to resolve the interactions among the three fields u,
E and H, thereby giving rise to a “game among three players”, in the jargon of [19] (see also [33]).

A step further in the research line of this work could be to assume the existence of a third scale,
well separated from the other ones, and to switch to a three-scale-analysis of electro-sensitive composite
materials [67–69]. In addition, another possible research direction could be to relax the hypothesis that
the electric field is imposed from the outset, and to solve Maxwell’s equations in conjunction with the
equilibrium problem (15). Doing this could pave the way towards the modelling of more realistic physical
scenarios of biological and/or industrial interest. Finally, it is part of our research plans to formulate the
presented framework in the context of finite deformations (see e.g. [12] and [11]) by following, for exam-
ple, recent advances on homogenisation for nonlinear media, see also [18,66]. Finally, the general results
obtained in this work could be also exploited in contexts which are not necessarily related to electrostric-
tive composites but more generally to active composites, provided that suitable physical applications
represented by the a priori given stress tensor are identified.
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Appendix A

In this Appendix, we employ Hamilton’s variational method [44] to obtain the problem (15), which
represents a set of equilibrium conditions. For this purpose, we assign a Lagrangian density function,
which fully describes the composite under study, thereby characterising its constitutive behaviour through
its Cauchy stress tensor and its generalised Maxwell stress tensor, see (11) and (14), respectively. Note
that we speak of “generalised Maxwell stress tensor” in order to distinguish it from the one that involves
only the contribution due to the vacuum and is referred to as Maxwell stress tensor (see e.g. [22,45]) or
“true” Maxwell stress tensor in this work (see Sects. 2 and 7). Moreover, for conciseness, we shall refer to
a Lagrangian density function simply as “Lagrangian” from here on.

We assume each phase of the composite to behave as a linear elastic electro-active material and,
following [45], we account for the coupling between its mechanical and electric responses by prescribing
the Lagrangian (no piezoelectric effect is studied in this work)

L̂α(∇uα,E) = L̂(m)
α (∇uα) + 1

2D̂α(∇uα,E) · E

= − 1
2 ∇uα : Cα : ∇uα + 1

2 Êα(∇uα) : E ⊗ E, (106)

where E is the electric field and, with reference to the αth phase of the composite, uα is the mechanical
displacement, Cα is the fourth-order elasticity tensor, D̂α(∇uα,E) = Êα(∇uα)E is the constitutive
expression of the electric displacement Dα, Êα(∇uα) is the constitutive representation of the second-
order electric permittivity tensor in the linear elastic regime, and the first summand on the far right-hand
side of (106) defines the purely mechanical part of the Lagrangian, i.e.

L̂(m)
α (∇uα) = − 1

2 ∇uα : Cα : ∇uα. (107)

By requiring Êα(∇uα) to be symmetric and positive definite, and admitting it to be affine in ∇uα,
one can express it through the general formula

Êα(∇uα) = E(0)
α + Bα : ∇uα, (108)

where E(0)
α is a symmetric, positive definite second-order tensor, while Bα, referred to as electrostriction

tensor in the literature [26,31], is a fourth-order tensor, assumed to be endowed with the pair (minor)
symmetries. Both E(0)

α and Bα are independent of ∇uα and E, and may either be phase-wise constant or
depend on material points, in which case this dependence is inherited by the Lagrangian, even though this
is not explicitly showed for the sake of a lighter notation. Note that Eq. (108) guarantees the bi-linearity
of the coupling between the displacement gradient, ∇uα, and the electric field, E, thereby allowing to
rewrite Eq. (106) as

L̂α(∇uα,E) = − 1
2 ∇uα : Cα : ∇uα + 1

2∇uα : BT
α : (E ⊗ E) + 1

2E(0)
α : (E ⊗ E), (109)

where the transpose of the electrostriction tensor Bα is component-wise defined as [BT
α ]abcd = [Bα]cdab.

Before going further, it is worth mentioning that the Lagrangian (109) yields the stress tensor

σ(t)
α := − ∂L̂α

∂∇uα
(∇uα,E) = Cα : ∇uα − 1

2B
T
α : (E ⊗ E), (110)

and it trivially returns the electric displacement

Dα = D̂α(∇uα,E) :=
∂L̂α

∂E
(∇uα,E) =

(
Bα : ∇uα + E(0)

α

)
E. (111)

The Euler–Lagrange equations produced by L̂α are

−∇ ·
(

∂L̂α

∂∇uα

)
= ∇ · σ(t)

α ≡ ∇ · [Cα : ∇uα − 1
2B

T
α : (E ⊗ E)

]
= 0, (112a)
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∇ ·
(

∂L̂α

∂E

)
= ∇ · Dα ≡ ∇ ·

[(
Bα : ∇uα + E(0)

α

)
E
]

= 0. (112b)

It can be proven that the Lagrangian defined in Eq. (106) comes from the linearisation of a Lagrangian
of the type

Λ̂α(Fα,E) = Λ̂(m)
α (Fα) + 1

2 Ξ̂α(Fα) : E ⊗ E, (113)

where Fα is the deformation gradient tensor of the αth phase of the composite, Λ̂(m)
α (Fα) is the purely

mechanical contribution to the overall Lagrangian, whose linearisation yields L̂(m)
α (∇uα), and Ξ̂α(Fα) is

the non-linear constitutive expression of the electric permittivity tensor. Clearly, in (113), the dependence
on F α is through a suitable measure of deformation, in order to guarantee frame indifference. In particular,
Eq. (108) is retrieved, within the small displacement regime, by means of the identifications

E(0)
α := Ξ̂α(I), (114a)

Bα =
∂Ξ̂α

∂Fα
(I), (114b)

where I ∈ Lin(V) is the second-order identity tensor. Note that a more rigorous calculation would require
the notion of shifter in Eqs. (114).

We recall that the fourth-order elasticity tensor Cα is (fully) symmetric in the sense that it is assumed
to enjoy both the minor and the major symmetries (cf. Sect. 2 and Eqs. (106) and (107) of this Appendix).
For the time being, we do not invoke any other restrictions on Cα, so that the forthcoming theory holds
true independently on whether the considered materials are elastically isotropic or anisotropic. We also
remark that no material symmetries have been invoked so far with respect to the electric response of the
materials and, thus, no further a priori restrictions are in order for the tensors E(0)

α and Bα. However,
several specialisations are possible, depending on the given material symmetry.

To visualise how E(0)
α and Bα may look like, we consider the simple case of an electrically isotropic

material, for which the Lagrangian (106) can be written as

L̂α(∇uα,E) = L̂(m)
α (∇uα) + L̂(c)

α (∇uα,E) + L̂(v)
α (∇uα,E), α ∈ {M,S}, (115)

where L̂(m)
α (∇uα) is specified in (107), and the remaining summands are given by

L̂(c)
α (∇uα,E) = − (ε0α − ε2α)∇uα : (E ⊗ E) + 1

2 (ε0α − ε1α − 3ε2α) (∇ · uα) ‖E‖2

+ 1
2 (ε0α + ε1α + ε2α) ‖E‖2

, (116a)

L̂(v)
α (∇uα,E) = − ε0∇uα : (E ⊗ E) + 1

2ε0 (∇ · uα) ‖E‖2 + 1
2ε0 ‖E‖2

, (116b)

and the superscripts “(c)” and “(v)” indicate that they refer to the “coupling” and “vacuum” contribution
to the overall Lagrangian, respectively. In (116a) and (116b), ε0α, ε1α and ε2α are the (scalar) electric
permittivities of the αth phase of the composite, and ε0 denotes the permittivity of vacuum. More
specifically:

• The term L̂(v)
α (∇uα,E) is the linearisation of the Lagrangian of the vacuum, which is purely electric

and reads [22]

Λ̂(v)
α (Fα,E) =1

2Jαε0 C−1
α : E ⊗ E = 1

2 Ξ̂0(Fα) : E ⊗ E, (117)

where Cα = F T
α .Fα is the right Cauchy–Green deformation tensor and Jα = det Fα > 0 is the

volumetric ratio. The tensor Ξ̂0(Fα) = Jαε0C
−1
α may be referred to as material electric permittivity

tensor of vacuum. Note that the functional form of Λ̂(v)
α (Fα,E) is a direct consequence of the fact

that the vacuum is trivially isotropic.
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• The term L̂(c)
α (∇uα,E) is obtained by linearising a Lagrangian that describes the coupling between

the electric properties of the αth phase and the deformation. A relatively simple choice for such a
Lagrangian, here denoted by Λ̂(c)

α , is given by

Λ̂(c)
α (Fα,E) =1

2 Ξ̂
(c)

α (Fα) : E ⊗ E, (118)

where Ξ̂
(c)

α (Fα) is the pull-back of the electric permittivity tensor of the αth phase, ε̂(c)
α (Fα), which

can be taken as

ε̂(c)
α (Fα) = ε0αI + ε1α

1
J2
α

bα + ε2α
1
J4
α

b2
α, (119)

where bα = Fα.F T
α is the left Cauchy–Green deformation tensor. Thus, Ξ̂

(c)

α (Fα) becomes

Ξ̂
(c)

α (Fα) = JαF −1
α ε̂(c)

α (Fα)F −T
α

= Jαε0αC−1
α + ε1α

1
Jα

I + ε2α
1
J3

α

Cα. (120)

Note that, even in the simplified case in which ε0α, ε1α, and ε2α are constant, the use of Cayley-
Hamilton Theorem shows that the constitutive choice (120) allows to rephrase Λ̂(c)

α (Fα,E) as a
function of the six invariants I1α = trCα, I2α = 1

2 [I2
1α − trC2

α ], I3α = detCα = J2
α, I4α = ‖E‖2,

I5α = C−1
α : E ⊗ E, and I6α = C−2

α : E ⊗ E, where the notation of [22] has been adopted. Hence,
Λ̂(c)

α (Fα,E) reads

Λ̂(c)
α (Fα,E) = Λ̌(c)

α (I1α, . . . , I6α) = 1
2ε0αI

1/2
3α I5α + 1

2ε1αI
−1/2
3α I4α

+ 1
2ε2αI

−3/2
3α [I1αI4α − I2αI5α + I3αI6α]. (121)

We remark that Eq. (119) can be viewed as an adaptation of a constitutive law supplied in [2]
for expressing the (spatial) permeability tensor of an isotropic porous medium as a function of
deformation.

• The sum L̂(m)
α (∇uα) + L̂(c)

α (∇uα,E) represents, up to the sign, the result of the linearisation of a
Helmholtz free energy density describing a deformable dielectric material (specialised to the case of
electrically isotropic material in the derivation above). By adapting our context to that presented in
[22], such Helmholtz free energy density corresponds to the one denoted by ρ0Φ in [22]. By including
the contribution of the vacuum, i.e. L̂(v)

α (∇uα,E), one obtains the Lagrangian L̂α(∇uα,E) of
Eq. (115), thereby recovering—again, up to the sign—what is referred to as “augmented free energy
function” in [22].

A relevant property of L̂α(∇uα,E) is that the symmetry properties of Cα and E ⊗ E filter the skew-
symmetric part of ∇uα, so that L̂α depends on ∇uα exclusively through the symmetric part of ∇uα, i.e.
through sym(∇uα) = 1

2 [∇uα +(∇uα)T] =: ξ(uα). Furthermore, even in the absence of the displacement
field uα, or when such field represents a rigid motion, the Lagrangian in (115) is not zero, as it reduces
to

L̂(0)
α (E) := 1

2 (ε0α + ε1α + ε2α) ‖E‖2 + 1
2 ε0 ‖E‖2 = 1

2εα‖E‖2, α ∈ {M,S}, (122)

where εα := ε0 + ε0α + ε1α + ε2α is the electric permittivity of the αth phase, i.e. the sum of the electric
permittivity of the vacuum and the overall permittivity of the material,

∑2
i=0 εiα. On the other hand, in

the absence of the electric field, the Lagrangian in (115) becomes

L̂α(∇uα,0) = − 1
2 ∇uα : Cα : ∇uα ≡ L̂(m)

α (∇uα), α ∈ {M,S}, (123)

i.e. the negative of the purely mechanical strain energy density of the linear elastic material constituting
the αth phase.
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It is worth noticing that L̂(c)
α (∇uα,E) and L̂(v)

α (∇uα,E) admit the compact expressions

L̂(c)
α (∇uα,E) = − ∇uα : Eα : (E ⊗ E) + 1

2 (ε0α + ε1α + ε2α) ‖E‖2
, (124a)

L̂(v)
α (∇uα,E) = − ∇uα : E0 : (E ⊗ E) + 1

2 ε0 ‖E‖2
, (124b)

where we have introduced the fourth-order electrostriction tensors associated with the αth phase and
with the vacuum, respectively

Eα := (ε0α − ε2α)I − (ε0α − ε1α − 3ε2α) 3
2K, (125a)

E0 := ε0[I − 3
2K]. (125b)

In (125a) and (125b), the fourth-order tensors I and K are both elements of Lin (Lin (V)) defined by
[20,27,40]

I := I ⊗ I = 1
2 (I⊗I + I⊗I) , K := 1

3I ⊗ I, (126)

where, in components, we have

[I⊗I]abcd = Iac Ibd, [I⊗I]abcd = Iad Ibc, Iabcd = [I ⊗ I]abcd = 1
2 (Iac Ibd + Iad Ibc) . (127)

In fact, I and K extract the symmetric and the spherical part of a second-order tensor, i.e.

I : A = 1
2

(
A + AT

)
=: sym (A) , K : A = 1

3 tr (A) I =: sph (A) , (128)

with I : A = A, if A ∈ Sym (V) [29,30,73,74]. Finally, by introducing the total fourth-order electrostric-
tion tensor in the case of electrically isotropic composites, i.e.

Tα := Eα + E0, (129)

which encodes all the electric properties of the composite under study, including the permittivity of the
vacuum, the Lagrangian L̂α(∇uα,E) in (115) becomes

L̂α(∇uα,E) = − 1
2 ∇uα : Cα : ∇uα − ∇uα : Tα : (E ⊗ E) + 1

2 (ε0 + ε0α + ε1α + ε2α) ‖E‖2
. (130)

The Euler–Lagrange equations for the problem at hand read

−∇ ·
(

∂L̂α

∂ (∇uα)

)
= 0, in Cα, (131a)

− ∂L̂M

∂ (∇uM)
n0 = − ∂L̂S

∂ (∇uS)
n0, on Γ0, (131b)

uM = uS, on Γ0, (131c)

where we have employed the notation introduced in Sect. 2. Starting from Eqs. (131), we introduce the
total stress σ

(t)
α ∈ Lin(V), i.e. the generalised stress that is work conjugate to the displacement gradient

∇uα,

σ(t)
α := − ∂L̂α

∂ (∇uα)
= Cα : ∇uα + Tα : E ⊗ E, α ∈ {M,S}. (132)

The total stress in (132) is symmetric, and can be split into two parts, i.e. σ
(t)
α = σ

(m)
α + σ

(e)
α . The first

contribution, σ
(m)
α , is the standard symmetric Cauchy stress tensor

σ(m)
α = Cα : ∇uα, α = {M,S}, (133)
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while the second one, σ
(e)
α , also referred to as “generalised Maxwell stress tensor” in this work, is given

by (cf. [45])

σ(e)
α = Tα : (E ⊗ E)

= (ε0α − ε2α)E ⊗ E − 1
2 (ε0α − ε1α − 3ε2α) ‖E‖2

I + ε0 E ⊗ E − 1
2ε0||E||2I

= (ε0 + ε0α − ε2α)E ⊗ E − 1
2 (ε0 + ε0α − ε1α − 3ε2α) ‖E‖2

I. (134)

The electric displacement, Dα, and of the polarisation vector, P α, are

Dα = D̂α(∇uα,E) =
∂L̂α

∂E
(∇uα,E) = −2 [Tα : ∇uα] E + (ε0 + ε0α + ε1α + ε2α)E, (135a)

P α = P̂ α(∇uα,E) = Dα − ε0E = −2 [Tα : ∇uα] E + (ε0α + ε1α + ε2α)E. (135b)

Finally, by introducing the second-order permittivity tensor

Eα = Êα(∇uα) = −2 [Tα : ∇uα] + (ε0 + ε0α + ε1α + ε2α)I, (136)

we obtain

Dα = D̂α(∇uα,E) = Êα(∇uα)E, (137a)

P α = P̂ α(∇uα,E) = (Êα(∇uα) − ε0I)E, (137b)

and we notice that the mathematical expression of the electric displacement (135a) is coherent with the
one available in [45]. To conclude, we notice that, as anticipated above, in the case of electrically isotropic
materials, the tensors E0

α and Bα are determined by the expressions

E(0)
α = (ε0 + ε0α + ε1α + ε2α)I, (138a)

Bα = B
T
α = −2Tα. (138b)
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