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Abstract

The present PhD research explores the integration of vision devices and intelligent systems
to monitor and enhance human well-being in healthcare and manufacturing contexts, start-
ing from the standards proposed in Industry 4.0 and aiming to follow the principles of the
novel Industry 5.0. Depth sensors and deep learning technologies have been exploited to ad-
dress the critical aspects of humanmobility assessment and action segmentation in real, non-
simulated scenarios. The Microsoft Azure Kinect, a state-of-the-art depth sensor, has been
selected as a key instrument for data collection, and innovative camera calibration methods
have been developed to ensure the accuracy and reliability of the gathered data.

Within the realm of healthcare, the research activity addresses the substantial challenges
posed by neurodegenerative diseases in the well-being of older individuals. This part of the
study focuses onmonitoring and assessing themobility of elderly patients, aiming to support
remote diagnosis and improve their quality of life. Traditional mobility tests, administered
by healthcare professionals, are essential for evaluating movement skills. Nevertheless, such
techniques often suffer from human subjectivity, which could lead to errors in the assess-
ments. To address such issues, video-based systems have been studied, aiming to remotely
monitor and objectively evaluate mobility, reducing the burden on elderly patients.

In the context of manufacturing, human actions are pivotal in enhancing operational ef-
ficiency, productivity, and safety in manufacturing environments. Such challenges have led
to the increasing use of industrial robotic solutions, mainly including collaborative robots,
which can share a commonworkspacewith humans, carrying out their respective tasks simul-
taneously. This part of the research delves into the segmentation of human tasks for intel-
ligent manufacturing systems, exploring the integration of vision devices and deep learning
technologies to improve the efficiency and accuracy of manufacturing processes. In general,
the study of such systems is aimed at creating comfortable work environments, adaptable
to the needs and abilities of individual people, increasing the well-being of operators in a
human-centered factory concept.

The main goal of the present study is to evaluate the effectiveness of machine learning
and deep learning models for mobility assessment and action segmentation, to determine
their suitability for humanmonitoring. However, a notable gap in the literature is identified:
the absence of datasets representing human actions in realistic environments. To bridge this
gap, the research includes the creation and validation of datasets capturing human actions
in healthcare and manufacturing scenarios, emphasizing the importance of generalization
across different locations. By addressing the unique challenges in both healthcare and man-
ufacturing, this study contributes to the development of intelligent systems that promote
human well-being and enhance operational efficiency, aiming to align with the paradigms of
Industry 5.0.

v



Contents

1 Introduction 1
1.1 HumanMobility Assessment in Healthcare . . . . . . . . . . . . . . . . . 2
1.2 Human Action Segmentation inManufacturing . . . . . . . . . . . . . . 5
1.3 Experimental Approach and Objectives . . . . . . . . . . . . . . . . . . . 7

2 System analysis forHumanMonitoring 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Azure Kinect Body Tracking analysis . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Performance analysis results . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Microsoft Azure Kinect Calibration . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 CalibrationMethodology . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Calibration analysis . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Video Data Acquisition forHumanMonitoring 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Data Acquisition in elderly facilities: SPPB Dataset . . . . . . . . . . . . . 36

3.2.1 Tests Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Dataset Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Data acquisition in manufacturing: HA4MDataset . . . . . . . . . . . . 40
3.3.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Acquisition Setup . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



3.3.5 Technical Validation . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Machine Learning and Deep Learning methodologies for Human
Mobility Assessment in elderly facilities 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Case Study Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Deep Neural Network Architectures . . . . . . . . . . . . . . . . 60
4.3.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Data Acquisition and Processing . . . . . . . . . . . . . . . . . . 65
4.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.4 Conv-BiLSTMClassifier: in-depth analysis . . . . . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Deep Learning methodologies for Human Action Segmentation in
manufacturing scenarios 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Dataset Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 NewData Collection . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.4 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . 79
5.2.5 Deep Learning models Selection . . . . . . . . . . . . . . . . . . 79
5.2.6 EvaluationMetrics . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Cross-Subject Evaluation . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Cross-Location Evaluation . . . . . . . . . . . . . . . . . . . . . 85
5.3.3 NewData Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion 94

References 113

vii



1
Introduction

Human action recognition and segmentation are active topics of research in computer
vision [1, 2] and machine learning [3, 4], and vast research work has been carried out in the
last decade, as it canbe seen in the existing literature [5]. Suchfields aim tounderstandhuman
activities occurring in video sequences, offering valuable insights across various applications.
More specifically:

• Human action recognition refers to the process of identifying and classifying specific
actions or activities performed by individuals within a trimmed video sequence. The
main focus is to recognize the overall human actions, giving as output a classification
label for the entire action in the video.

• Human action segmentation refers to the task of dividing a continuous video sequence
into segments, which correspond to a distinct action or activity. The main scope is to
pinpoint the exact temporal boundaries for each action, returning temporal segments
that indicate frame-wise when each action or sub-action occurs.

In this context, the recent widespread of low-cost video camera systems, including depth-
cameras [6], has strengthened the development of observation systems in a variety of applica-
tion domains such as video-surveillance, safety, smart home security, ambient assisted living,
health-care and manufacturing. However, little work has been done in human action recog-
nition and segmentation for manufacturing assembly tasks and elderly human mobility as-
sessment [7, 8, 9], and the poor availability of public datasets limits the study, development,
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and comparison of new methods. This is mainly due to challenging issues such as between-
action similarity, complexity of actions, and availability of setups that guarantee real, non-
simulated data.

As technological innovations continue to reshape the boundaries of human capabilities
and potential, the integration of vision devices and intelligent systems has emerged as one of
themost advanced solutions, particularlywith the advent of Industry 5.0[10]. Such solutions
have found various applications across different domains, but they impact particularly on the
well-being of humans in healthcare andmanufacturing scenarios. Both domains rely heavily
on computer vision techniques, mostly regarding the extraction of video (i.e. RGB, Depth,
IR, and RGB-D data) and skeleton information, and employ deep learning methodologies
to unlock new dimensions in monitoring and improving human well-being.

In recent years, the need for trustworthyRGB-D sensors has increased importance inmany
fields [11, 12, 13]. Among RGB-D devices, the Microsoft Azure Kinect [14] (Redmond,
Washington, US), released in 2019, is a Time-of-Flight (ToF) sensor [15] that offers consid-
erably higher accuracy thanother commercially available devices [16] at lowcost. In addition,
the possibility of exploiting theAzure Kinect SoftwareDevelopment Kit (SDK), even for the
extraction of skeletal joints with the Azure Kinect Body Tracking SDK, represents a further
step beyond the previous Kinect versions [17]. Such perks make the Azure Kinect one of
the most reliable cameras used in many research fields [18, 19, 20], including healthcare and
manufacturing.

The following Sections 1.1 and 1.2 deepen two vital domains where vision devices and in-
telligent systems have the potential to revolutionize human well-being: healthcare and man-
ufacturing. First, the critical role of humanmovement analysis in healthcare is explored, with
a specific focus on the elderly population and the significance ofmonitoring theirmobility to
improve their quality of life. Subsequently, the importance of temporal action segmentation
and intelligent vision systems in manufacturing scenarios is unraveled, emphasizing how it
can optimize operational efficiency, foster human-robot collaboration, ensure worker well-
being, and boost productivity in manufacturing settings. Section 1.3 marks the concluding
segment of this Chapter, introducing the experimental approaches and the goals that the
present study aims to achieve.

1.1 HumanMobility Assessment in Healthcare

In the healthcare context, the analysis of human movements has allowed the realization of
various functions such as remote diagnosis, support in the surveillance of fragile patients,
recognition of anomalous events, etc. Many products and services have been developed for
Ambient Assisted Living to aid healthy, active, and happy aging. The world is experiencing
a rapid increase in the number of older people, which is expected to double over the next
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three decades [21]. Furthermore, there is an increasing spread of neurodegenerative diseases
that heavily affect thewell-being and healthy aging of the elderly population [22]. As a conse-
quence, elderlies need periodicmonitoring to assess theirmovement skills. However, they are
often unwilling to visit health clinics regularly, because of disabilities or logistical limitations,
such as living in remote areas, thus wasting time, effort, and travel costs.

In this scenario, the analysis and control of people’s motion and cognition abilities are
fundamental in improving their social and clinical living conditions. Several studies demon-
strate a strict link between cognitive impairment andmotion dysfunction, including deficits
in gait andbalance [23], [24]. So, the study of humanmovements by video analysis can signif-
icantly help assess people’s motion abilities, providing objective evaluations and supporting
remote diagnosis. Well-defined mobility tests exist in clinical contexts to assess people’s mo-
bility [25]. They consist of postural stability exercises, usually administrated and observed
by physicians or specialized physiotherapists to measure people’s functional mobility. Au-
tomatic video-based systems could greatly help to monitor these exercises in both home and
clinical environments, obtaining objective and quantitative evaluations to support both ex-
pert personnel and medical diagnosis.

In the existing literature, various instrumented systems have been proposed for real-time
assessment of older people’s mobility [23, 26, 27, 24].

Several works propose wearable sensors based on Inertial Measurement Units [28], or In-
ertial and Magnetic Measurement Systems for the evaluation of the physical functions of
individuals [29, 30]. These sensors include accelerometers, gyroscopes, and magnetometers
that measure the acceleration or angular velocity of the body segments to which they are
attached. Although wearable sensors return valid information related to the movement of
people, their output strictly depends on their position and orientation, and the activities to
be monitored. Furthermore, older people, especially those suffering from neurological dis-
orders, do not easily accept unfamiliar devices.

Contrary to wearable sensors, non-wearable ones are non-invasive for people, as they are
placed in the environment. Among themost commonly used for evaluatingmotion abilities,
there are vision-based systems characterized by cameras that acquire video information of the
humanbody and then, byusing imageprocessing techniques, extract relevantparameters use-
ful for the analysis of motion abilities [31]. Marker-basedMotion Capture Systems (MCSs),
consisting of several cameras and a set of retro-reflective markers attached to the body of the
monitored subjects, are an example of vision systems beneficial for capturing human move-
ments with reliable accuracy [32]. However, high installation costs, expertise to set up and
operate the system, and marker placement and calibration, limit their use in the home, and
clinical environments [33]. Furthermore, the need for markers placed on the body brings
out the same drawbacks of wearable systems. Typically, MCSs are used primarily in research
laboratories or controlled environments to validate other sensory systems, such as webcams
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or RGB-D cameras, due to their high accuracy [34].
The limitations ofmarker-based systems have led to the development ofmarkerless vision-

based systems for humanmotion analysis [35]. In the last few years, the progress in new and
low-cost optical technologies, together with the development of new and accurate pattern
recognition approaches, has led to an increase in vision-based research works in this context
[36, 37]. Monocular RGB cameras, stereo cameras, thermal cameras, and the recently devel-
oped RGB-D cameras, such as Microsoft Kinect or Intel RealSense [38], are the most com-
monly used systems to capture body movements and postural stability for assessing physical
dysfunctions [39, 40].

A Kinect camera is used in [41] to observe older people while performing the Sit-to-Stand
test to quantify the time taken to perform the test and to discriminate between elderly fallers
and non-fallers in both laboratory and home assessments. A Kinect-based system has also
been used to calculate the postural sway of older adults, estimating the variation of the center
of mass of the body to provide a risk assessment of falls [42] or discriminate postural abnor-
malities [43].

In general, gathering data by observing people is not enough to assess the postural stabil-
ity problem of human beings. Such information must be processed and elaborated through
proper advanced systems to extract as much information as possible regarding the health of
the elderly. In recent years, machine learning techniques for assessing movement skills are
gaining more and more interest in the healthcare field [44, 45]. In particular, deep learning
methodologies prove to be fundamental in health informatics. The development of auto-
maticmethods can lead to the generation, processing, and evaluation of complex data, which
is difficult to deal with without the aid of technological systems.

Several deep learning architectures havebeenused toprocess different types of data. Among
them, the Convolutional Neural Networks (CNNs) are usually of significant impact in pat-
tern recognition, from image to voice processing [46]. In [47], two types of CNN archi-
tecture, designed to analyze footprint pressure images from an instrumented walkway, have
been compared to classify Huntington’s disease severity. Similarly, a CNN was used in [48]
to classify three severity stages of Alzheimer’s disease using accelerometer data records. Con-
sidering the complexity of the classification problem and the presence of complex pattern
sequences of mixed length, CNN seems suitable for managing this type of data and obtain-
ing high accuracy rates for the three classes.

Alternatively, RecurrentNeuralNetworks (RNNs) arewidely used for the analysis of time
series in applications where the outputs depend on the previous computations, such as the
analysis of text, speech, andmovements. In [49], an RNNprocesses accelerometer signals to
detect falls and estimate corresponding risks in real time, reaching high efficiency and accu-
racy.

An evolution of theRNN is the Long Short-TermMemory (LSTM) network, which adds
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cell states to the network to expand the memory of the RNN [50]. In [51], the LSTM net-
work has been applied to sequences of spatiotemporal gait parameters to capture both tem-
poral variations and asymmetries in gait in patientswithParkinson’s disease. LSTMnetwork,
taking advantage of remembering long-term dependencies within the data, achieves high ac-
curacy rates [52].

In general, deep learning methods have several shortcomings. They typically have very
complex architectures and time-intensive training phases. Furthermore, they need a large
amount of data to reveal good performance. As a result, algebraic operations involving dense
matrices, matrix products, and convolutions require equally enormous resources. Therefore,
theymust be transferred to Graphic Processing Units (GPUs) to accelerate machine learning
processes [53]. However, compared to traditional methods, deep learning methods auto-
matically learn hierarchical feature representations that capture their spatial and temporal
correlations. In addition, such methods can approximate complex non-linear functions by
composing several transformations of feature representations among the network layers from
one level to more abstract levels.

1.2 Human Action Segmentation inManufacturing

The segmentation of human actions in the context of intelligent manufacturing is of great
importance for various purposes, such as improving operational efficiency[8, 54], promoting
human-robot cooperation [55], assisting operators [56], supporting employee training [57,
9], increasing productivity and safety [58], and promotingworkers’ goodmental health [59].

In this context, in Human-Robot Interaction (HRI) and Human-Robot Collaboration
(HRC), operator confidence plays a fundamental role in optimal interaction and collabora-
tion [60, 61]. Monitoring devices and systems can be integrated into the shared workspace,
aiming to lead the robot to fully adapt to the operator, guaranteeing the well-being of hu-
mans, thus reducing those factors that can be marked as risky or harmful to operators, both
physically and cognitively. The integration of vision devices can drastically improve the be-
havior and efficiency of both humans and robots [62].

In recent years, various robotic solutionsbasedoncomputer visionhavebeen implemented,
which significantly improve the efficiency and accuracy of manufacturing processes. Com-
puter vision is associated with deep learning methodologies, which enable proper processing
and elaboration of the gathered data [63]. In the context of industrial applications, com-
puter vision can be implemented for various tasks, such as object recognition and tracking
[64], robot navigation and localization [65], HRI and HRC [66, 67].

HRC and HRI can benefit from temporal action segmentation methodologies [68, 67],
which divide a continuous streamof human activity into distinct segments, each correspond-
ing to a semantically meaningful action. In manufacturing contexts, such algorithms allow
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robots to understand and respond to the actions of human operators. These systems are im-
plemented using techniques such as motion capture [69] or depth sensors [70], and can be
used to increase the efficiency and safety of the production processes.

The current literature outlines that state-of-the-art models for temporal action segmenta-
tion are not used for analyzing which information and technique represent the best solution
for the development of a system that segments the action of an operator performing a task in
manufacturing scenarios.

Action segmentation methodologies using video and skeletal data with different levels of
supervision have been widely addressed in the literature [71]. In temporal action segmen-
tation approaches based on video data, RGB and Depth information are often considered
for training deep learning models, since such data give additional information about envi-
ronments and objects [72], which can be helpful in action segmentation tasks. On the other
hand, skeletal data provide information about the pose andmovement of a human body over
time, which can be particularly useful for action segmentation algorithms addressing human
tasks [73].

Several deep learning algorithms canbeused for action segmentation, including approaches
such as Convolutional Neural Networks (CNNs) [74, 75, 76] and Recurrent Neural Net-
works (RNNs) [77] models. These algorithms are trained on datasets of labeled video se-
quences to learn how to identify and segment the actions or events in the video involving
various human actions. For instance, the work in [78] depicts a networkmodel created to be
built on top of existing action segmentation models, aiming to learn the relation of multi-
ple action segments. Such model has been validated on egocentric [79, 80] and third-person
[81, 82] datasets, all representing humans performing daily actions.

Another approach considered in the literature for action segmentation includes usingHid-
den Markov Models (HMMs) [83, 84], probabilistic models that can be used to represent
temporal sequences to identify patterns and transitions between different actions. As an ex-
ample, in [85], the authors present a weakly supervised action segmentation model using a
hybrid RNN-HNN system. Here, the RNN is used as basic recognition model, while the
HMM is used to model each action as a combination of subactions. The model has been
validated on a dataset representing people making breakfast [81], and on a dataset filled with
video sequences of Hollywood movies [86].

Looking closely at the literature, it is clear that there is a lack of workwhere action segmen-
tation algorithms are applied to and evaluated on manufacturing tasks. The state-of-the-art
models for action segmentation are used to assess datasets where humans perform various
actions [87, 88]. However, such datasets [89, 82, 81, 90, 86] do not cover human actions
in manufacturing environments, or while performing assembling tasks in production pro-
cesses. [91] presents Assembly101, a multi-view dataset composed of people assembling and
disassembling toy vehicles in a singular scenario, which has been validated on MS-TCN++
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[92] and C2F-TCN [93]. However, the Assembly101 dataset is not performed in a manu-
facturing environment, or with a manufacturing object. Furthermore, the dataset has been
captured at a single location and can thus not be used to measure the generalization capabil-
ities across different locations, which is very important for manufacturing. [94] evaluates a
customdeep learningmodel on an action segmentation dataset containing 24 atomic actions
from video data, in a realistic robotics assembly production line. The proposedmodel is also
compared with other models, such as MS-TCN [74]. It must be noticed, however, that the
dataset is not publicly available. Furthermore, the extraction process of the features used for
training follows a specific pipeline. Such features are focused only on the hand movements,
thus there is not any information about the complete body of the operators. Furthermore,
the structure of the featuresmakes themethodology complex to be generalized onother tasks.

1.3 Experimental Approach andObjectives

Theproposed thesis aims atmonitoring thewell-being of humans in the context of healthcare
and manufacturing. More specifically, the goal is to prove how vision devices and intelligent
systems, such as depth sensors combined with deep learning methodologies, can massively
help in gathering and elaborating information about human mobility in order to guarantee
thewell-being of humans. Such information is crucial in both healthcare andmanufacturing
domains, where the ability of a man/woman to move is strictly correlated to his/her physical
and cognitive conditions. The analysis and experiments defined andperformed in the present
work have been validated by several publications [95, 96, 97, 98, 99, 63].

The main contribution of this thesis is three-fold:

• It introduces and implements novel camera calibration methodologies based on RGB
and Infrared data, with or without the associated Depth information. TheMicrosoft
Azure Kinect has been chosen as the sensor used to carry out the experiments. The
results have been discussed considering a preliminary analysis of the skeletal joints data
obtained from the body tracking system.

• A video acquisition campaign has been carried out in rea-world settings, including
elderly care facilities andmanufacturing environments. This approach aims at captur-
ing data from real patients and operators in action, rather than relying on simulated
scenarios. Patients performing specific motion exercises and operators assembling in-
dustrial objects have been recorded using multi-camera systems involving both RGB
and RGB-D sensors.

• Machine Learning and Deep Learning methodologies are developed and applied for
the assessment and segmentation of humanmobility tasks in the aforementioned sce-
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narios. Information grabbed from real patients suffering from neurodegenerative dis-
eases and operators performing assembling tasks with collaborative robots have been
used to evaluate mobility performance while recognizing and segmenting different
types of actions.

The remainder of this thesis is structured as follows. Chapter 2 presents the sensors used
for Human Monitoring, focusing on the analysis of the Azure Kinect camera, and on the
calibration techniques developed to properly perform 2D and 3D calibration. Chapter 3
defines the acquisition campaign carried out for the gathering of Datasets using RGB and
RGB-D camera systems, in healthcare and manufacturing domains. Chapter 4 focuses on
Machine Learning and Deep Learning methodologies for human mobility assessment in el-
derly facilities, while Chapter 5 deepens theDeep Learningmethodologies for human action
segmentation in manufacturing scenarios. Finally, Chapter 6 draws the conclusions.
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2
System analysis for HumanMonitoring

2.1 Introduction

Nowadays, the need for reliable and low-cost multi-camera systems is increasing for many
potential applications, such as localization and mapping, human activity recognition, hand
and gesture analysis, and object detection and localization [63]. The exact position of the hu-
mans can be easily inferred from RGB-D cameras, whose output can be processed by body
tracking modules to produce exact pose estimations in real-time. However, a precise camera
calibration approach is mandatory for enabling further applications that require high preci-
sion.

ThepresentChapter is divided into twomain Sections. Section 2.2 sheds light on the alter-
ation of measurement uncertainty in quasi-static acquisitions of human bodies. This work,
which has been published in [95], uses an experimental setup made of an Azure Kinect cam-
era to obtain data by changing intrinsic and extrinsic parameters. Section 2.3 presents differ-
ent calibrationmethodologies using 2D and 3D approaches, all exploiting the functionalities
within the Azure Kinect devices. Such work has been published in [96], and its goal is to
obtain a guideline for calibrating multiple Azure Kinect RGB-D sensors to achieve the best
alignment of point clouds in both color and infrared resolutions and skeletal joints returned
by the Microsoft Azure Body Tracking library.
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2.2 Azure Kinect Body Tracking analysis

This Section experimentally explores the performance of the affordable Microsoft Azure
Kinect RGB-D camera and its body-tracking library. A parametric analysis of the uncer-
tainty of the estimation of the skeleton joints is performedby changing the ambient light con-
ditions, the presence of occlusions, the infrared camera resolution, and the human-camera
distance. The acquired data are processed by the Azure Kinect Body Tracking SDK to high-
light the worst operating conditions that may significantly affect the reliability of the output
data.

The Section is structured as follows: in Section 2.2.1, the acquisition setup is presented
together with the design of experiments; corresponding results are then in Section 2.2.2; dis-
cussion and remarks are finally shown in Section 2.2.3.

2.2.1 Design of Experiments

In [15], a deep study on the performance of the Azure Kinect and its body tracking SDK for
gait analysis of several subjects is presented. The comparison of results with the Vicon mo-
tion capture system is performed displaying mean and standard deviations of the Euclidean
distances between 3D joints computed by the Kinect sensor and the Vicon system. On the
contrary, the proposed work only focuses on the standard deviation, directly linked to mea-
surement uncertainty, computed by changing:

• Intrinsic parameter: Depth resolution.

• Extrinsic parameters: Ambient light conditions, body occlusions, subject-camera dis-
tance.

The following subsections will present the proposed setup and the processing procedures
for the performance assessment of body tracking.

Setup Definition

The proposed investigation is performed using the experimental scheme of Fig. 2.1. Here,
an Azure Kinect sensor is placed at a distance d from the user, ranging from 1 to 3m by steps
of 1 m. At the same time a halogen light source, having a power of 300 W, illuminates the
scene, directly towards the user. Two different lighting conditions can be determined as the
light source is switched on or off. Specifically, when the lamp is on, the illuminance Ev at 1m
of distance from the source is equal to 1750 lux, whereas this value is down to about 10 lux
when the source is off. In both cases, camera exposure has been set to auto with framerate
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Figure 2.1: (a) Sketch of the experimental setup made of (b) a halogen light projector and (c) the Azure Kinect camera. d
is the distance between the camera and the user.

priority. As a consequence, the maximum exposition time can be equal to the inverse of the
camera framerate.

Fig. 2.2 shows the twodifferent lighting conditionsof the experiments. It isworthnoticing
that the low-light condition is not realistic in industrial environments. Anyway, it has been
considered to bring the operating condition of the Azure Kinect to the limit and to better
highlight its different behavior.

As statedpreviously, skeletons are computed either having the full user body insight (Occl =
w/o) orwith anopaqueobstacle that occludes the lowerpart of theuser body (Occl = w/), i.e.
from the legs down. Moreover, the Azure Kinect offers two depth modes, wide (Res = W)
and narrow (Res = N), which differ in the field of view (120◦ × 120◦ and 75◦ × 65◦, respec-
tively) and depth resolution (512× 512 and 640× 576 pixels, respectively). Both configura-
tions will be explored in the next experiments.

Bymixing all attributes, 24 videos have been acquired by the Azure Kinect sensor and pro-
cessed by theAzure BodyTracking SDK (v 1.0.1) to obtain 24 skeletons framing a single user,
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Figure 2.2: Comparison of lighting conditions: (a) Ev = 1750 lux; (b) Ev = 10 lux.

represented by 32 joints, whose index mapping is in [100]. All videos have a duration of 60
s and a framerate of 15 fps. In the next lines, skeletons will be named as Sk(Res,Occl,Ev, d).
For instance, Sk(N,w/o, 1750, 2), which refers to a narrow depth resolution (640×576 pix-
els), without occlusions, high illuminance Ev, and a user-camera distance of 2 m, is shown in
Fig. 2.3.

Processing Procedures

All the acquisitions produce skeletons Sk of 32 joints, whose 3D position is J[j, t] = (x1[j, t],
x2[j, t], x3[j, t]), where j = 0, . . . , 31 is the joint index, and t = 1, . . . ,T is the time-dependent
sample index. Here, the reference system (x1, x2, x3) is aligned to the camera coordinates
(x, y, z)[100], whereas T = 900 resulting from 60-s-long acquisition at 15 fps. As shown
in the previous sections, the proposed experiments aim at assessing the measurement uncer-
tainty. In all the acquired videos, the user stands still, spreading his arms and keeping his feet
together. He holds this pose while the camera is grabbing for 60s. As a result, joint posi-
tions are collected in 3D, leading to the scatter plot of Fig. 2.4, which shows all the joints,
accumulated over time, from Sk(N,w/o, 1750, 1).
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Figure 2.3: Result of body tracking: Sk(N,w/o, 1750, 2). The orange points represent the estimated positions of the
skeletal joints in the 2D image plane.

Figure 2.4: Skeletal joints in three dimensions from Sk(N,w/o, 1750, 1).

Despite the user’s effort to keep his pose, the body slightly fluctuates (quasi-static condi-
tions). This is much more evident for the most peripherical parts, i.e. the hands. Fig. 2.4
proves the fluctuation of the left hand and torso joints, whose 3D coordinates suffer from (i)
high-frequency oscillations, due to measurement noise and processing errors, and (ii) a low-
frequency bias due to unavoidable body fluctuations. This investigation targets the evalua-
tion of the high-frequency contribution, which produces the final uncertainty of the whole
body tracking module. Further bias contributions, i.e. at low frequency, must be neglected
through proper statistic evaluations.

Within these lines, quasi-static acquisitions are solved by computing the average value of
the Euclidean distances of each joint coordinate from a corresponding centroid. This cen-
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Figure 2.5: Comparison of input positions of the torso joint (dashed cyan line) and the corresponding centroid position
(solid blue line) over time. Data are from Sk(N,w/o, 1750, 1).

troid has a position C[j, t] = (xc,1[j, t], xc,2[j, t], xc,3[j, t]), where:

Xc,i[j, t] =
1

2N+ 1

t+N∑

p=t−N

xi[j, p], i = 1, 2, 3 (2.1)

At the steady-state, i.e. after N samples, this information is the result of an unweighted
moving average, computed over awindowof 2N+1 samples, centered around the t-th sample
of interest. It is worth noticing that themoving average is also computed at the boundaries of
the input vectors J[j, t], namely at t < N+ 1 and t > TN. In these cases, the window length
is limited accordingly with the existing entries of J[j, t]. The results of the moving average on
the coordinates of the cluster centroid of the torso (j = 1, SPINE_NAVAL[100]) and left-
hand (j = 8, HAND_LEFT[100]) joints are in Figs. 5 and 6. In all the experiments,N is set
to 15, which corresponds to a window length of about 2 s at 15 fps.

As expected, the inspection of Figs. 2.5 and 2.6 reveal that body fluctuations affect the
hands more than the torso joint, which remains static in its position. Anyway, this different
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Figure 2.6: Comparison of input positions of the left‐hand joint (dashed cyan line) and the corresponding centroid posi‐
tion (solid blue line) over time. Data are from Sk(N,w/o, 1750, 1).

contribution of body fluctuations due to quasi-static acquisition will be ignored by comput-
ing the squared error (SE[j, t]) as follows:

SE[j, t] =
3∑

i=1

(xi[j, t]− xc,i[j, t])2 (2.2)

Accordingly, the Euclidean distance can be finally computed from SE[j,t] and then aver-
aged over the time samples, returning the Mean Distance Error (MDE[j]) of the j-th joint:

MDE[j] = 1
T

T∑

t=1

√
SE[j, t] (2.3)

An example of MDE[j] from Sk(N,w/o, 1750, 1) is shown in Fig. 2.7. In this case, it is
possible to notice that the highest MDEs are those describing the hands, namely the hand
centers (j = 8, HAND_LEFT[100] and j = 15, HAND_RIGHT[100]), the hand thumbs
(j = 10, THUMB_LEFT[100] and j = 17, THUMB_RIGHT[100]), and the hand tips
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Figure 2.7: Mean Distance Error of the 32 joints[100] computed by the Azure Kinect and its body‐tracking library from
Sk(N,w/o, 1750, 1).

(j = 9, HANDTIP_LEFT[100] and j = 16, HANDTIP_RIGHT[100]). In these ex-
periments, the hand tips and thumbs are not of interest since their extraction is typically
needed for gesture recognition. The analysis of their reliability is out of the scope of this
work, which focuses on people segmentation for real-time and safe control of cobots. For
this reason, although the parametric analysis regards all the joints of the skeleton produced
by the Azure Kinect, the next section will focus only on the MDEs of four representative
joints: the head (j = 26, HEAD[100]), the pelvis (j = 0, PELVIS[100]), the left hand
(j = 8, HAND_LEFT[100]), and the right foot (j = 25, FOOT_RIGHT[100]). Without
any loss of generality, the results obtained for left or right joints will be replicable also for the
opposite body parts.

2.2.2 Performance analysis results

As stated previously, the acquired videos release information about the 3D position of the
joints of the skeleton at each frame while the participant stands for 60 s. The 24 acquisitions
have been analyzed considering the four significant joints: head, pelvis, hand left, and foot
right.

As a first step, 2.1 reports the values of theMDE of the four considered joints computed
without any occlusions, varying the depth resolution of the camera (Res), the ambient light,
defined through the Ev value, and the subject-camera distance d. As a first result of the anal-
ysis of 2.1, the MDE values grow as the distance increases. For better understanding, Fig.
8 shows the MDEs of the head, pelvis, left hand, and right foot versus d. This behavior is
expected since the longer the distance, the lower the resolution of the depth estimation.

As expected, 2.1 confirms that, among the four joints, the left hand is estimated with the
highest MDE in all cases, regardless of the operating conditions of the tests. This result is
quantitatively proven by the average values of the MDEs of the head, pelvis, hand left, and
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Table 2.1: MDE of the Head, Pelvis, Left hand, and Right foot by changing the input conditions. In all cases, experi‐
ments are run without occlusions. Entries are in millimeters.

Input Conditions Head Pelvis Hand left Foot right
Sk(N,w/o, 10, 1) 2.49 1.71 4.53 1.83
Sk(N,w/o, 10, 2) 2.35 1.70 6.66 1.54
Sk(N,w/o, 10, 3) 2.94 1.77 8.83 2.66
Sk(W,w/o, 10, 1) 2.67 2.04 10.46 1.15
Sk(W,w/o, 10, 2) 3.03 2.86 9.83 2.82
Sk(W,w/o, 10, 3) 6.92 3.90 20.97 7.73
Sk(N,w/o, 1750, 1) 2.63 1.51 4.27 1.71
Sk(N,w/o, 1750, 2) 2.66 1.51 8.82 1.82
Sk(N,w/o, 1750, 3) 4.74 2.42 17.63 3.57
Sk(W,w/o, 1750, 1) 3.21 2.73 12.99 6.67
Sk(W,w/o, 1750, 2) 7.70 4.84 21.51 10.65
Sk(W,w/o, 1750, 3) 16.63 7.08 35.84 9.38

foot right, which are equal to 4.83, 2.84, 13.53, and 4.29 mm, respectively. This result is
also highlighted in Fig. 2.8, where the left-hand joint displays the highestMDEs at any user-
camera distance.

Moreover, the analysis of 2.1 shows that setting the depth resolution of the camera towide
(Res = W) increases the uncertainty of the one achievable from the videos with Res = N.
On average, the MDEs of the head, pelvis, hand left, and foot right are 2.06, 2.17, 2.28, and
2.96 timeshigherwhenRes is set towide (W) insteadofnarrow (N). 2.1 alsoproves that using
a light source to increase the ambient illuminance globally increases the MDE. Although
MDE values obtained with different illuminations are comparable at short distances, this
behavior is enhanced as the user-camera distance increases. Quantitatively, theMDEs of the
head, pelvis, hand left, and foot right with Ev = 1750 lux are on average 1.66, 1.33, 1.57,
and 2.37 times higher than setting Ev = 10 lux, respectively. This is due to the kind of
illumination, which is directly pointed at the user. As a consequence of direct illumination,
the corresponding depth maps have more noise contributions, thus producing an increase
in theMDE values. In contrast, low but diffused light limits the input noise on the depth
maps, thus returning lower uncertainty in joint estimation.

The parametric analysis is also meant to give information about how partial occlusions of
the user can alter theMDE values. This aspect is very important as occlusions are typical of
industrial workspaces. Aworker doing somemanufacturing tasks, such as part assembly, can
be occluded to the camera by lots of volumes, such as a bulky instrument, a conveyor belt or
a desk, the manufactured good, or the cobot itself. 2.2 shows the MDE of three reference
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Figure 2.8: Mean Distance Error of the four joints of interest as a function of the user‐camera distance d. Data are from
Sk(N,w/o, 1750, d).

joints (head, pelvis, and hand left) grabbed from the skeleton acquired occluding the lower
body half. The joint of the right foot is not considered in this analysis, since it is occluded
during the acquisitions.

All the outcomes obtained from 2.1 are still valid in the case of occlusions depicted in 2.2.
In summary:

• TheMDEs increase as the user-camera distance grows. It is valid under all theworking
conditions of the proposed setup;

• Res = W increases theMDE of the three joints of interest, which is about tripled of
the case withRes = N;

• Ev = 1750 lux, obtained with direct illumination, in general downs the performance
of the body tracking, with an increase of the MDE which is on average 1.44 times
higher than the corresponding obtained for Ev = 10 lux. However, in the case of
Sk(N,w/,Ev, 1) and Sk(W,w/,Ev, 3), low-light (Ev = 10 lux)MDEs are comparable
(or even higher) to the corresponding under direct illumination (Ev = 1750 lux);

• The head and the pelvis outperform the left-hand joint, which shows theworstMDEs
under all the testing conditions.
The comparison of 2.1 and 2.2 points out that the joints show higher values of uncer-
tainty when the skeleton is partially occluded. From a quantitative point of view, it is
possible to estimate this increase of uncertainty by computing, for each joint, the aver-
age of theMDEs of all the acquisitionsmade with or without occlusion. The result of
this analysis demonstrates that occlusions increase theMDEs of the head, pelvis, and
left-hand joints by 75.37%, 49.66%, and 47.86%, respectively. TheMDE of the pelvis,
and thus its estimation uncertainty, has the highest increase. It is due to the greater
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Table 2.2: MDE of the Head, Pelvis, and Left hand by changing the input conditions. Foot estimation is not applicable
as the joint is occluded. In all cases, experiments are run with occlusions. Entries are in millimeters.

Input Conditions Head Pelvis Hand left
Sk(N,w/, 10, 1) 1.82 1.36 8.08
Sk(N,w/, 10, 2) 2.24 1.71 8.43
Sk(N,w/, 10, 3) 4.93 2.03 10.01
Sk(W,w/, 10, 1) 2.24 1.79 5.21
Sk(W,w/, 10, 2) 4.59 2.88 13.25
Sk(W,w/, 10, 3) 30.23 15.65 67.15
Sk(N,w/, 1750, 1) 2.20 1.30 4.83
Sk(N,w/, 1750, 2) 2.86 1.89 6.53
Sk(N,w/, 1750, 3) 6.77 4.20 19.96
Sk(W,w/, 1750, 1) 3.67 2.75 9.52
Sk(W,w/, 1750, 2) 11.07 6.82 33.22
Sk(W,w/, 1750, 3) 29.04 8.61 53.85

complexity of the body tracking module in making inferences on the data available
close to the pelvis joint, which are fewer due to the occlusion. Anyway, the head and
left-hand joint, which are far from the occlusion, show a significant increase in their
estimation uncertainty. This means that all joints are estimated with greater uncer-
tainty regardless of where the occlusion is. The position of the occlusion only affects
the entity of the increase of uncertainty. In any case, considering all the intrinsic and
extrinsic parameters considered, theMDE of the joints considered in this parametric
analysis oscillates from a minimum of about 1 mm to a maximum of about 53 mm,
with an average value of 8 mm, and a standard deviation of 6 mm.

2.2.3 Discussion

In Section 2.2, a parametric analysis of measurement uncertainty in body tracking has
been proposed. Specifically, the performance of the Microsoft Azure Kinect in ex-
tracting skeletal joints has been investigated by changing both intrinsic and extrinsic
conditions, namely the camera resolution, the ambient illumination, the user-camera
distance, and adding occlusions to the user sight. The results of the analysis prove that
(i) the estimation of the hand joints always suffers from the highest uncertainty, (ii)
the skeletons acquiredwithwide depth resolution always have higher uncertainty than
thosewith narrowdepth resolution, and (iii) this uncertainty grows as the user-camera
distance increases. Moreover, direct illumination degrades the depth maps and, thus,
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the accuracy of the skeletal joints. Finally, the presence of occlusions increases the un-
certainty of all the skeletons, also for joints far from the occlusion. The knowledge
of the uncertainty of skeleton extraction of body tracking as a function of the work-
ing conditions will be of fundamental importance to improve the safety of real-time
control of cobots cooperating with humans, as well as for a better understanding of
the movements of patients in elderly facilities, aiming to avoid the risk of falls. Future
works will focus on the analysis of further parameters, both intrinsic and extrinsic,
such as the brilliance of the image, the eventual presence of multiple users, and the
pose of the user’s coronal plane relative to the camera.

2.3 Microsoft Azure Kinect Calibration

This work compares different calibration methodologies and suggests a guideline of the best
methods toproperly calibratemultipleAzureKinect cameras, according to the data thatmust
be processed and the measures needed. The proposed methodologies all start by analyzing a
2D target, i.e. a chessboard. This target is detected andprocessed in bothRGBand IR images
to estimate its corners. In a 3D approach, these points are projected in the 3D space, taking
advantage of ToF principles. The chessboard becomes a ”2.5D pattern” [101], as its planar
features (corners) are directly computed from the depth map, using the intrinsic functional-
ities of the ToF RGB-D camera [102].

The main contributions of this work are:

• A two-camera system composed of Azure Kinects has been considered and the specific
physical characteristics of these sensors havebeen studied todevise different calibration
methodologies.

• Four different methodologies based on the data coming from color cameras and in-
frared cameras with or without the associated depth information have been compared
in two real scenarios (dense point clouds of real objects formeasures analysis, and peo-
ple skeletal joints extracted from SDK Body tracking algorithm).

• A careful analysis of results provides a guideline for the best calibration techniques
according to the element to be calibrated, i.e., point clouds with color or infrared res-
olutions and skeletal joints.

The Section is structured as follows. In Section 2.3.1, the proposed calibration method-
ologies are outlined. Section 2.3.2 defines the experimental setup in which the described
calibration techniques are used. Section 2.3.3 analyzes the reliability of the proposed calibra-
tion methodologies applied to point clouds and skeletal joints. Finally, Sections 2.3.4 draws
a final discussion.
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2.3.1 CalibrationMethodology

Figure 2.9: Representation of the internal Kinect sensors that produce: a) color images with a resolution of 3840x2160
and b) IR images with resolution 640x576. The origin of the coordinate systems is placed at the focal point of each
sensor [14]. The skeletal joints extracted by the Body Tracking SDK are superimposed on the images.

The two-camera calibrationmethodologies discussed in thiswork considerMicrosoftAzure
Kinect. Such kind of device consists of an RGB camera and an infrared (IR) camera, with
the latter providing depth information implementingToF principles. Therefore, the Kinects
output RGB images, IR images, and depth maps. The Azure Kinect is equipped with two
software development kits for themanagement of all data that can be recorded by the internal
cameras: the general Azure Kinect SDK and the Azure Kinect Body Tracking SDK [103]. In
particular, the data provided by the Azure Kinect sensor can be represented in two different
geometries: the geometry of the color camera or the geometry of the infrared camera. The
term geometry, related to theRGBor IR sensors of theAzureKinect camera, refers to a set of
sensor properties, including the coordinate system, its resolution, and all intrinsic transfor-
mations. A set of routines in the general SDK allows the transformation of images or depth
maps from one geometry to another. The Body Tracking SDK implements Deep Learning
andConvolutionalNeuralNetworks algorithms [104] to extract all the possible information
for people segmentation, people tracking, and skeletal joint extraction. In Figure 2.9 the two
cameras that produce RGB and IR images are shown. In the example images, the skeletal
joints extracted by the body tracking SDK are superimposed.

Following the procedure in Figure 2.10, the depthmaps acquired by the IR camera can be
converted into point clouds by using the SDK functions [105]. Starting from the IR image,
depth data can be converted directly, in the geometry of the infrared camera obtaining the
Pinfrared point cloud. Otherwise, the point cloud can be represented in the geometry of the
color camera. In this case, the SDK provides a transformation Tintr, that uses also intrinsic

21



camera parameters, to convert the depth map into a point cloud with color geometry. The
result of this step is a Pcolor point cloud.

Figure 2.10: Schematic representation of the point cloud realization with color and infrared geometries, using the Azure
Kinect SDK.

The proposed techniques consider a two-camera setup made of a Reference and a Tem-
plate camera. Nevertheless, the system can be suited for multiple Azure Kinect calibrations.
Without any loss of generality, for multiple K cameras, the calibration has to be repeated
(K− 1) times to align the outputs of (K− 1)Template cameras onto the Reference one. All
calibration methodologies use a 2D target that will be captured simultaneously by the RGB
and IR sensors of each of the two cameras. This target is a 2D chessboardmade up ofm rows
and n columns of black andwhite squares with side lengths of S. The structured geometry of
the chessboard guarantees robustness and accuracy for the corner detection and processing
algorithms [106]. F frames of the chessboard are acquired by moving the target to different
positions and orientations in the FOVs of both cameras.

The transformation matrix that relates the two coordinate systems of the Reference and
Template Cameras is defined in the following Eq. 2.4.

T =

(
R t
0 1

)
(2.4)

where R ∈ R3×3 represents the rotation matrix and t ∈ R3×1 the translation vector.
ThewholeTmatrix is estimated by evaluating the correspondences among the corners of the
chessboard observed by the two cameras.

In Figure 2.11 the proposed calibrationmethodologies are graphically summarized. In this
figure, Tintr and Tintr,Ref correspond to the intrinsic transformations that convert the data
from the geometry of the infrared camera to the one of the color camera. On the other hand,
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Figure 2.11: Conceptual meaning of the application of the transformation matrices obtained from the proposed cali‐
bration techniques. The transformation process using matrices with color geometry is marked in yellow, whereas the
transformation process using matrices with infrared geometry is marked in purple.

four calibration matrices can be obtained comparing different camera sensors, namely RGB
or IR sensors, and calibration procedures, namely 2D and 3D calibrations. Specifically, when
chessboard corners are processed directly to estimate the transformation matrix, the calibra-
tion works with mere 2D image coordinates. Therefore, it ends with the following:

• T2Dcolor if the chessboard corners are extracted fromRGB images, i.e. with the geome-
try of the color cameras;

• T2Dinfrared if the chessboard corners are detected in the IR images, i.e. with the geome-
try of the infrared cameras.

However, since the Azure Kinect computes depth maps of the environment, the same chess-
board corners can be projected in 3D coordinates in the reference system of each camera. In
this case, two further procedures working with 3D points can be defined to produce:

• T3Dcolor if the chessboard corners are taken fromRGB images and then projected in the
3D space, using the geometry of the color camera;

• T3Dinfrared if the chessboard corners are extracted from the IR images and then pro-
jected in 3D, using the geometry of the infrared camera.

In the following subsections, the methodologies used to generate the 2D and 3D calibra-
tion matrices will be explained in detail.

2D calibration procedures

A schematic pipeline of the 2D calibration methodology is shown in Figure 2.12.
Let (IcolorRef , Icolor) and (IinfraredRef , Iinfrared) generically represent the images couples from the

color and infrared sensors grabbed by the Reference and Template Azure Kinect cameras, re-
spectively. The images are input to a corner detection algorithm [107] that estimates the
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Figure 2.12: 2D calibration flow chart for the creation of the transformation matrices T2Dcolor and T2Dinfreared. The
frames with color resolution are marked in yellow, while the frames with infrared resolution are marked in purple.

2D coordinates of the chessboard corners, namely ((ic, jc)colorRef ,(ic, jc)color) and ((ic, jc)infraredRef ,
(ic, jc)infrared), with c = {1, 2, . . . , (m − 1)(n − 1)}. The corners coordinates from each
of the F frames acquired during calibration, together with the square size S and the trial sets
of intrinsic parameters for both cameras (p0,Ref and p0), feed the calibration algorithm, which
finally estimates the intrinsic and extrinsic parameters of the camera [108]. The estimated in-
trinsic parameters include the focal length, the optical center, the skew, theRadial Distortion
and the Tangential Distortion. This outcome refines the initial set of intrinsic parameters of
both cameras. On the other hand, the extrinsic parameters define a rigid transformation to
roto-translate the reference system of the Template camera into the reference system of the
corresponding sensor of the Reference camera, as described in Eq. 2.4. As depicted in Fig-
ure 2.12, the outputs of this 2D calibration procedure are pRef, p, and the matrices T2Dcolor or
T2Dinfrared, depending on which sensor acquires the chessboard.

3D calibration procedures

A schematic pipeline of the 3D calibration procedures is shown in Figure 2.13. Even in this
case, the first step involves detecting the corner coordinates of the chessboard in the image
reference system. The same methodology explained for 2D calibration returns again, for
each frame acquired during calibration by the Reference and Template cameras, (ic, jc)colorRef
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Figure 2.13: 3D calibration flow chart for the creation of the transformation matrices T3Dcolor and T3Dinfrared. The
frames with color resolution are marked in yellow, while the frames with infrared resolution are marked in purple.

and (ic, jc)color, or (ic, jc)infraredRef and (ic, jc)infrared, depending on the considered sensor of the
Azure Kinect. The 3D projection procedure converts the generic pixel coordinates (i, j) in
world coordinates (x, y, z), defined in the corresponding reference system of the sensor. This
transformation is performed at SDK level knowing the intrinsic parameters of both cameras
p0,Ref and p0 (factory settings), and the corresponding depth maps. In particular, the latter
is the result of the ToF measurement, performed by the IR sensor in its own geometry. The
3D projection generates points in 3D coordinates, namely (xc, yc, zc)colorRef and (xc, yc, zc)color,
or (xc, yc, zc)infraredRef and (xc, yc, zc)infrared. These points are the 3D positions of the chessboard
corner, referred to in the geometries of the color and infrared cameras, respectively.

The 3D coordinates feed into the Maximum Likelihood Estimation Sample Consensus
(MLESAC) estimator [109], which is a generalization of the Random Sample Consensus
(RANSAC) algorithm [110]. RANSAC is an iterative method used for coordinate sets. In
the first iteration, the algorithm selects random samples from the initial correspondences and
finds the transformation matrix relative to the selected samples. This step is repeated itera-
tively, and the transformation returning the maximum number of matches, named inliers, is
considered the optimal transformation matrix. All the other non-matched correspondences
are considered outliers. One of the problems of the RANSAC algorithm is the setting of
the threshold for correct matches. The MLESAC algorithm combines RANSAC with the
MaximumLikelihood Estimation (MLE) method to find inliers. The goal ofMLE is to find
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the optimal way to fit a distribution to the data [111]. By applying the MLE to the initial
correspondences of each iteration, the noise dips are eliminated, thus excluding from the it-
erations those outliers that would be included if the samples were selected randomly. Hence,
the estimate of the matching points provided by the MLESAC algorithm can be more pre-
cise and closer to the true solution, even requiring a reduced number of iterations to reach
the optimal solution. In the specific case of interest, the MLESAC algorithm estimates the
3D transformation between the set of 3D points of the chessboard, collected from all the ac-
quired frames. As a result, the calibration procedure determines the final calibrationmatrices
T3Dcolor and T3Dinfrared, as in Eq. 2.4, depending on the sensor that acquires the chessboard
images.

Figure 2.14: Depiction of the experimental setup considering two Azure Kinects.

2.3.2 Experimental setup

The real-case scenario in which experiments have been performed is shown in Figure 2.14.
K = 2 Azure Kinect sensors have been placed to have an extended overlapping area and
the vision of the full body of people in the scene. The calibration methodologies have been
evaluated in two different cases: (i) to assess the ability to reconstruct a target object by the
combination of point clouds, and (ii) to estimate the robustness of the people skeleton align-
ment. Figure 2.15 shows the considered workspace grabbed by both Kinect sensors. The
images show that the RGB camera has a field of view wider than that of the IR camera. In
addition, the RGB camera has been set with a resolution of 3840x2160, while the IR camera
has been set with a resolution of 640x576, to produce depth maps with narrow FOV [14].

In particular, two experiments have been performed:
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Figure 2.15: Views of the two Azure Kinects used during the experimentation, where a) represents the Reference Cam‐
era, and b) represents the Template Camera. More specifically, the images on the left in both a) and b) show the frames
grabbed from the RGB sensors, while the images on the right show the frames grabbed from the IR sensors.

• To state the capability in aligning point clouds, two analyses have been proposed: in a
static scenario, a still object is placed in the two camera FOVs; in a dynamic scenario,
a moving target is framed simultaneously by the two cameras. After the calibration
phase, thepoint clouds inboth infrared and color geometries, grabbedby theTemplate
camera, are transferred into the coordinate system of the Reference.

• A subject stands still with open arms in front of the two cameras, and the correspond-
ing skeletal joints are extracted from the Azure Kinect Body Tracking library. The
skeleton from the Template camera is transferred into the coordinate system of the
Reference. In this case, ten consecutive frames have been collected to calculate the
average position of each joint to reduce intrinsic errors [14] and average involuntary
movements of the subject.

To have a clear visualization and avoid light reflections or color alterations of the chess-
board due to the natural light or backlight effects, the workspace has been artificially illumi-
nated using a light projector placed behind the Azure Kinects.

In the proposed configuration, the selected chessboard has m = 6 rows and n = 9
columns of black and white squares of side length S = 45mm. F = 200 frames of the
chessboard have been acquired. Figure 2.16 shows some examples of the RGB and IR im-
ages acquired during the experiments.
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Figure 2.16: a) RGB and b) IR image samples of the chessboard. Several positions and orientations have been considered
to optimize the results of the calibration.

2.3.3 Calibration analysis

The calibrationmethodologies have been evaluated considering theRootMean Square Error
(RMSE), defined as follows:

RMSE =

√√√√√√

J∑

j=1

(dj − d̂j)2

J (2.5)

where:

• dj, d̂j in the point cloud experiment are the 3D coordinates of points in correspon-
dence taken from the Reference point cloud and the Template one after the applica-
tion of estimated transformation. J is the total number of points in correspondence.

• dj, d̂j in the skeleton experiment are homologous 3D joint coordinates in the same
reference system. Here, J = 32 is the total number of the joints.

LowRMSE values indicate that points (or skeletal joints) are correctly transformed in the
same reference system. The value of the RMSE has been calculated for each pair of point
clouds and skeletons. Subsequently, the average of all RMSEs (RMSE) and their standard
deviation (σRMSE) were calculated to assess the proposed calibration techniques.
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Point cloud experiment

Table 2.3 shows the quantitative results of the proposed calibration methodologies in the
point cloud experiment considering a static target, i.e. a robot. Overall, 38 pairs of point
clouds have been considered. RMSE values are computed comparing pairs of point clouds
in the geometry of the color camera (Pcolor column) or in the geometry of the infrared cam-
era (Pinfrared column). Then, the mean of such values is computed, along with the standard
deviation.

Table 2.3: Mean and standard deviation of RMSEs calculated between aligned and reference point clouds with static
target, where calibration techniques have been applied [mm]. The best results ofRMSE are underlined.

Pcolor Pinfrared

RMSE σRMSE RMSE σRMSE

T2Dcolor 24.427 0.918 45.485 0.804
T2Dinfrared 37.283 0.955 20.162 0.592
T3Dcolor 21.426 0.608 36.833 0.735

T3Dinfrared 33.194 0.758 9.872 0.268

Themean of theRMSE values obtained in the alignment of the point cloudsPcolor demon-
strate that the best calibration matrix is T3Dcolor, which produces an RMSE value equal to
21.426mm. Theworst result is obtainedwith theT2Dinfraredmatrixwhichprovides anRMSE
value of 37.283mm. Even σRMSE values confirm this analysis, since the variability of theRM-
SEs does not exceed 1 mm in any case. In addition, the calibration matrices that produce the
lowestRMSEs, also produce the lowest σRMSE.

Figure 2.17 provides a qualitative evaluation of the reconstructed point clouds in color
geometry Pcolor obtained after the above calibrations. The images show the reconstruction
of a static target, at 3.13m from the Reference camera, resulting from the alignment of two
point clouds considering the transformationmatricesT3Dcolor andT2Dinfrared. In the first case,
the shape of the target is clearly visible, and its appearance is coherent and consistent with
its expected shape. In the latter case, which underperforms the other calibrations, the target
appears duplicated, and its 3D dense reconstruction fails.

In Table 2.3, the lowest value of RMSE calculated for the alignment of Pinfrared point
clouds in infrared geometry is 9.872mm, obtainedbyT3Dinfrared, while theworst is 45.485mm,
obtained by T2Dcolor. Figure 2.18 shows the results of the alignment of the same static target
of Figure 2.17, but modeled in the Pinfrared point clouds in infrared geometry. Alignments
are made by applying the best and worst calibrationmethodologies in Table 2.3. Specifically,
the T3Dinfrared calibration matrix produces a coherent reconstruction of the target, while the
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Figure 2.17: Visual representation of the a) best (T3Dcolor) and b) worst (T2Dinfrared) alignment of point cloud in color
geometry Pcolor. The input point clouds are captured at the same timestamp from both the Azure Kinect cameras.

Figure 2.18: Visual representation of the a) best (T3Dinfrared) and b) worst (T2Dcolor) alignment of Pinfrared point clouds.
he input point clouds are captured at the same timestamp from both the Azure Kinect cameras.

application of T2Dcolor returns an altered version of the target shape, which seems shrunk in
the front while its silhouette is not complete.

A careful analysis of the quantitative results of Table 2.3 highlights that the experiments
carried out considering the calibration matrices resulting from the 2D calibration method
give the worst results than the 3D calibration ones. The reason lies in the fact that T2Dcolor

and T2Dinfrared are generated from matches between 2D data, while 3D calibration T3Dcolor

and T3Dinfrared consider matches between sets of 3D coordinates that contain more infor-
mation with the introduction of depth data. This result is not straightforward, since the
computation of the depth maps, which is the basis of 3D calibration procedures, can suffer
from implicit errors. However, such negative contributions do not influence 3D approaches,
which always outperform 2D ones.

On the other side, it is possible to notice that the Pcolor presents the lowest RMSE values
when using theT3Dcolor calibrationmatrix, computed starting from the chessboard corners in
RGB images. At the same time, the alignment of Pinfrared point clouds in infrared geometry
has the lowestRMSEwith the calibrationmade bymatching corners from IR images. These
results can be explained considering the process that the Kinect sensor uses to produce the
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two point clouds in color or infrared geometries, as in Figure 2.10. The point clouds are al-
ways generated by the IR camera, but the transformation of the point cloud in the geometry
of color camera requires an interpolation process that uses the intrinsic camera parameters.
At the end of this process, the size of the point cloud greatly increases. In conclusion, the cal-
ibrations performed in the same space after the same transformations are those that perform
better.

To better evaluate the proposed methodologies, the same calibration matrices have been
applied to pairs of point clouds extracted from videos that frame a dynamic scene with a
moving target. For this evaluation, 128 pairs of point clouds have been considered.

Table 2.4: Average and standard deviation of the RMSEs calculated between aligned and reference point clouds with
dynamic target, where the calibration techniques have been applied [mm]. The best results ofRMSE are underlined.

Pcolor Pinfrared

RMSE σRMSE RMSE σRMSE
T2Dcolor 25.340 0.666 36.683 2.383

T2Dinfrared 39.446 2.299 13.046 0.765
T3Dcolor 20.868 1.233 33.122 2.198

T3Dinfrared 34.039 2.024 7.429 0.606

Table 2.4 shows the avarage and the standard deviation of the RMSEs obtained in com-
paring each couple of point clouds, in both color and infrared geometries. The results are
highly comparable with the one observed in Table 2.3. The standard deviations show slightly
higher values, as attributed to the presence of the moving target. Nevertheless, in all cases,
σRMSE values do not exceed 2.4 mm.

Skeleton experiment

TheRMSE values resulting from the comparison between the skeletal joints of the Template
camera, aligned in the reference system of the Reference one for all the proposed procedures
are reported inTable 2.5, togetherwith the corresponding σRMSE values. For such evaluation,
15 pairs of skeletal joints have been aligned. Each pair contains the average values of the skele-
tal joints grabbed from both Template camera and Reference camera, performed within 10
frames. Hence, 150 frames have been considered in total. Observing the table, it is clear that
the best result is obtained using the calibration matrix T3Dinfrared with the lowest RMSE of
35.410mm. The calibrationperformedusingT2Dcolor, instead, gives the highestRMSE value,
equal to 124.602mm. As expected, the results are in accordance with those obtained for the
point cloud in infrared geometry, shown in Table 2.3, since the skeletal joints are also gener-
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Figure 2.19: Graphic representation of the a) best (T3Dinfrared) and b) (T2Dcolor) worst skeleton alignments. In both
graphs, the aligned template skeleton is in green, while the reference skeleton is in blue.

ated in the IR environment, using the same IR camera of Pinfrared: the calibrations obtained
in the same geometry produce a better overlap of the two skeletons.

Table 2.5: Average and standard deviation of the RMSEs calculated between aligned and reference skeletal joints, where
calibration techniques have been applied [mm]. The best result ofRMSE is underlined.

Joints of the Skeleton
RMSE σRMSE

T2Dcolor 124.602 1.349
T2Dinfrared 44.256 4.640
T3Dcolor 111.247 1.889

T3Dinfrared 35.410 5.490

The graphs reported in Figure 2.19 allow a qualitative evaluation of the effects of the best
and worst calibration procedures on skeleton alignment. In Figure 2.19 a), the results after
the application of the T3Dinfrared matrix are shown, while in b) the skeletons are registered
using the T2Dcolor matrix. The graphs confirm the results of the RMSE values. In Figure
2.19 a) the two skeletons are very close, while in Figure 2.19 b) some joints of the skeletons,
especially those corresponding to the extreme joints of legs and arms, are very distant.

This result is very important if skeleton extraction is the target of a multi-camera setup.
This goal is of increasing interest, since capturing humans from different points of view can
lead to robust people tracking, even in case of camera occlusions and/or estimation errors.
Furthermore, σRMSE values confirm that the skeletal joints alignment is repeatable over the
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frames, as in all techniques they do not exceed 5.5 mm. Having a correct and continuous
knowledge of where somebody is within a volume of interest is of critical importance to
guarantee safety, for instance in human-robot collaboration, and even for action recognition
tasks. In these scenarios, misalignment of the skeletons once referred to as a common coor-
dinate system can lead to even huge and more dangerous errors. For this reason, performing
a reliable camera calibration becomes mandatory.

2.3.4 Discussion

The camera calibration problemhas been extensively addressed in the literature as the impor-
tance of having coherent data extracted from different sensors in a single reference system is
widely recognized. However, with the availability of multi-modal sensors that provide dif-
ferent types of data, it is necessary to study calibration methods that take into account the
specificity of the sensors and the type of data extracted. In this context, the presented work
has filled the gap about the need for calibration methods specific to the Microsoft Azure
Kinect cameras. Here, calibration methods have been developed starting from raw images
from both the color and the infrared sensors. This choice guarantees a higher reliability in
applying calibration to skeletons and point clouds, particularly with respect to [112]. Over-
all, the experiments have proven the efficiency of 3D-based techniques, which take advan-
tage of the specifics of the Azure Kinect cameras. It must be noticed that the techniques here
presented can be useful in calibrating a system composed of multiple Azure Kinects, as the
alignment can be performed to indefinite pairs of point clouds and/or skeletons.

The main points of the proposed calibration methodologies are the following:

• In general, 3D procedures outperform 2D ones as depth information is added to the
calibration. This is due to the effectiveness of depth estimation and intrinsic transfor-
mations used to project 2D image points in the 3D space.

• The alignment of point clouds in the geometry of the color camera has the lowest error
value when using a calibration procedure working in 3D starting from RGB images,
since both the point cloud in color geometry and the chessboard corner coordinates
enable the calibration to follow the same interpolation procedures carried out by the
general SDK functions.

• The alignment of the point clouds in the geometry of the infrared camera has the low-
est error when the calibration works starting from IR images. Even in this case, the
calibration performed in the same geometry of the point cloud produces the best re-
sult.
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• The alignment of skeletons shows the best result while calibration is performed in 3D
starting from IR images. It further confirms the previous statement.

• In all experiments, the standarddeviations of theRMSEvalues state that the variability
in error computations is always lower than the improvement in aligning both point
clouds and skeletal joints.

The results are significant in systems with two or more cameras, mainly when low-cost
sensors, such as Azure Kinects, can be efficiently used for several applications to have full 3D
representations of targets and environments. For example, 3D characterization is helpful in
many computer vision applications, such as 3D reconstruction, 3D localization, and 3Dpose
estimation. Building a proper 3D scene can allow a highly accurate assessment of a 3D map
for pursuing, for instance, the reconstruction of an industrial object. Furthermore, estimat-
ing human 3Dmovements is required in various scenarios, whichmay need to detect specific
activities performed by the framed subjects. To segment and recognize humanmovements, a
properly calibrated camera system can provide a complete reconstruction of human posture,
overcoming any occlusion that may limit the view of one of the cameras. Such calibration
processes can be useful in surveillance, where it is crucial to knowwhat a person is doing and
where he/she is going. Also, a calibrated system that provides a complete set of 3D skeletal
joints, or a dense point cloud, can easily represent a subject executing a specific task. Such
data may widely facilitate segmentation and, thus, recognition of the actions needed for any
assignment.
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3
Video Data Acquisition for Human

Monitoring

3.1 Introduction

As said in Chapter 1, the scientific community has found increasing interest in technolog-
ical systems for the evaluation of the mobility performance of the elderly population. The
reduced quantity of datasets for gait and balance analysis of elderly people is a serious issue in
studying the link between cognitive impairment andmotor dysfunction, particularly in peo-
ple suffering from neurodegenerative diseases. The need for real and comprehensive datasets
is also a very important topic in manufacturing domains, particularly regarding assembling
tasks in production processes.

In this context, the following Chapter presents two datasets acquired in elderly facilities
and manufacturing environments. More specifically, Section 3.2 defines the SPPB Dataset
provided in [97], which contains skeletal informationof people aged 60 years andolder, while
they perform well-established tests for stability assessment. Subjects have been observed and
evaluated by clinical therapists while executing three motion tests, namely balance, sit-to-
stand, and walking. The stability postural and gait control of each subject has been analyzed
using a video-based system, made of three low-cost cameras, without the need for wearable
and invasive sensors. On the other hand, Section 3.3 depicts theHA4MDataset, introduced
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Figure 3.1: SPPB tests: a) Balance test, which is composed of three exercises where the patient has to stand with the
feet in side‐by‐side, then in semi‐tandem and finally tandem positions; b) Sit‐To‐Stand test, which consists in sitting and
standing up 5 times while keeping the arms crossed on the chest; c) Walking test, which consists in the patient covering
a path of 4 meters.

in [98], which represents a collection of multi-modal data relative to actions performed by
different subjects building anEpicyclicGearTrain (EGT).Datawere collected in a laboratory
scenario using aMicrosoft®AzureKinectwhich integrates aDepth camera, anRGBcamera,
and InfraRed (IR) emitters. The information within both Datasets represents a good foun-
dation to develop and test advanced action recognition and segmentation systems in several
fields, including Computer Vision andMachine Learning.

3.2 Data Acquisition in elderly facilities: SPPB Dataset

It has been shown that there is a strict link between cognitive impairment and motor dys-
function such as deficits in gait and balance [113, 114]. Furthermore, functional assessment
measure protocols can help to qualify the gait and posture of the patients. In this scenario,
the Short Physical Performance Battery (SPPB) represents a well-established means to assess
physical performance status and evaluate functional capabilities [115], to monitor and pre-
vent the risk of falls. Such functional assessment measure is composed of three tests to assess
lower body function, namely Balance Test (BT), Sit-To-Stand Test (STST) andWalking Test
(WT), which instructions are represented in Fig. 3.1.

The risk of fall is qualitatively evaluated by expert clinical personnel with respect to the ex-
ecution of the SPPB tests, in agreement with the medical protocols. Despite the high profes-
sional competence of the operators, the need for developing innovative technological systems
is of great interest, since human-based assessment can be susceptible to drifts and biases. For
this purpose, the need for datasets containing physical performance status information is be-
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coming an issue of increasing interest, as the development of new technological systems that
can support clinical personnel strictly depends on both the quality and quantity of available
data.

In literature, various datasets related to the evaluation of themotion skills of elderly people
are presented [116, 117, 118], yet none of them gives skeletal information specifically to the
SPPB protocol. Most of the datasets outlined in literature provide information only regard-
ing the static analysis of the patient, without releasing information about the dynamic aspect,
which is fundamental in evaluating the risk of falls. Moreover, even when the patient’s skele-
ton is analyzed, the dataset often concerns only a singular type of exercise, thus producing a
non-heterogeneous amount of data.

This work provide a complete dataset of age, sex and skeletal information of people aged
60 years and older, while they perform all the three tests included in the SPPB protocol. A
complete vision-based system, made of three low-cost cameras, has been developed for accu-
rately measuring stability postural control, without the need for wearable and invasive sen-
sors. The exercise videos, grabbed from two nursing institutes, have been normalized and
synchronized to extract the most significant features from the skeletons, which carry infor-
mation about balance, gait, and strength, to properly evaluate the risk of falls. Such features,
along with sex, age, and the skeletal information of the patient itself, have been added to the
dataset. The reliability of the dataset has been tested using the features extracted in the BT
as input of a classifier [97]. Final results have proven a good estimation of the risk of fall of
people under analysis.

3.2.1 Tests Definition

The proposed work aims to establish the risk of fall of elderly people and patients affected
by neurodegenerative diseases, through the analysis of the tests included in the SPPB. Several
patients, housed at the two nursing institutes of the study, have been selected for the pos-
tural and stability analysis. Each patient has been instructed to perform first the BT, then
the STST, and finally the WT. For each test, a specialized therapist observes the patients and
measures their time execution using a stopwatch. Such tests are then evaluated following an
appropriate score system, shown in Table 3.1.

In the following, the SPPB tests are defined:
• Balance Test: The test of standing balance includes side-by-side, semi-tandem and
tandem positions. The patient is instructed to maintain each position for 10 seconds,
measured by a clinical therapist. If a patient fails to complete the test within ten sec-
onds, the elapsed time is measured anyway.

• Sit-To-Stand Test: The STS test consists of sitting and rising from a chair placed
against the wall for safety purposes. The patient is asked to fold her/his arms across
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Table 3.1: Classification method for each test. Each exercise is assessed based on its duration.

Test 0 1 2 3 4

Balance side-by-side 0− 9 s 0− 2 s 3− 9 s 10 s
semi-tandem tandem tandem tandem

Sit-To-Stand incapable > 7.5 s 7.4− 5.4 s 5.3− 4.1 s < 4.1 s

Walking incapable > 16.6 s 16.6− 13.7 s 13.6− 11.2 s < 11.2 s

her/his chest, and to stand up and sit down from the chair 5 times. A clinical ther-
apist times the exercise starting from the initial sitting position to the final standing
position.

• Walking Test: During the walking test, the patient is instructed to follow a path of 4
meters with no obstructions. A clinical therapist is in charge of timing the exercise.

3.2.2 Methodology

Camera setup and Video pre-processing

The whole setup consists of three low-cost cameras, namely the HIKVision [119], usually
used for video-surveillance. The three cameras have been installed in fixed position, along
the sides of a volume of interest. As stated previously, two setups have been designed and
installed in two nursing homes, under different condition of lighting, acquiring 720 × 480
resolution videos.

As theoutput videos arenot suitable for imageprocessing in their raw form, apre-processing
phase is mandatory to prepare the videos to the following feature extraction procedure. In
detail, the pre-processing stage is a sequence of selection and conversion algorithms, namely:

• Frame per second (FPS) conversion: As the videos from the three cameras have vari-
able framerates, the lowest framerate among the three videos has been selected, project-
ing the time axes on a common reference, sampled with a unique framerate to achieve
uniformity.

• Video shifting: A start signal, given the clinical therapists with a remote control, trig-
gers the three video acquisitions, which however start with non-negligible relative de-
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lays. To overcome such issue, the early-started videos are shifted of a number of frames
equal to the relative delays.

• Video trimming: Asmost of the videos are long streams, the input streams are trimmed
in exercise-related sub-videos.

• Video Calibration: As the videos suffer from image distortion, the extrinsic parame-
ters have been extracted from the cameras of both setups to properly calibrate them.

Features Extraction

The complete knowledge of the position in space, or equivalently in the image plane, of the
skeletal joints of the patients is enough to infer postural information. For this reason, the fea-
ture extraction process starts with the detection of the skeleton of the patients under analysis.

Skeleton detection is performed by means of the OpenPose library [120], which gives a
real-time multi-person 2D pose estimation, aiming to represent both position and orienta-
tion of human limbs. For this work, the COCO training model has been implemented. It
allows the identification of 18 skeletal joints from each person.

Different features have been chosen depending on the type of exercise, aiming to extract
the most relevant information according to the test under analysis. As a matter of fact, each
test provides different, yet relevant information regarding the posture and stability of the
patient. Therefore, it reveals to be fundamental to properly select the highly-discriminant
features with respect to each test, in order to suitably gather an amount of information about
the patient as heterogeneous as possible.

3.2.3 Dataset Evaluation

The proposedwork has been developed to provide sex, age, skeleton information and highly-
discriminant features of patients performing SPPB tests. 20 patients suffering from a neu-
rodegenerative disease and 27 healthy people perform the tests.

As a first step, all the acquired videos of the exercises performed by the patients have been
studied, to evaluate their validity. Then, the preprocessing phase has been carried out to pre-
pare the videos for the skeleton and features extraction, via the application of the OpenPose
library. Finally, the dataset is completed with a vector of evaluation scores given by clinical
therapists for each test.

Examples of patients performing BT, STST, and WT are shown in Fig. 3.2. To properly
evaluate the efficiency of the dataset*, the information grabbed frompatients performingBTs
are considered. Thehighly-discriminant features extracted from the skeletons are used to feed

*The dataset will be shortly uploaded on the website: http://cms.stiima.cnr.it/isp/.
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Figure 3.2: SPPB tests performed by different patients. Namely, a) Balance Test, b) Sit‐To‐Stand Test, and c) Walking
Test.

a decision tree classifier, which has been trained to label patients into 5 classes of increasing
risk of falls, shown inTable 3.1. The final score given by clinical therapists has been compared
to estimated one. The good accuracy of the system (equal to 79.1%) shows the effectiveness
of the provided dataset.

3.2.4 Discussion

In this Section, a complete dataset composed of sex, age, skeletal information and relevant
features of elderly people performing SPPB protocol has been presented. Subjects have been
grabbed by a system of three low-cost surveillance cameras. Then, proper video processing
techniques have been used to highlight the skeletal joints of the subjects and to extract highly-
discriminant features. It has been proved the high efficiency of the proposed dataset in the
assessment of the patient’s stability and posture skills, and their consequent risk of fall.

In the future, further semantic analysis of the videos will be investigated, to analyze more
relevant features to be extracted from the skeletons, and to assess the progress of the neurode-
generative disease of patients observed during long periods.

3.3 Data acquisition in manufacturing: HA4MDataset

In this Section, the Human Action Multi-Modal Monitoring in Manufacturing (HA4M)
dataset is presented, which is a multi-modal dataset acquired by an RGB-D camera during
the assembly of an Epicyclic Gear Train (EGT) (see Figure 3.3).

TheHA4Mdataset provides a good base for developing, validating and testing techniques
and methodologies to recognize assembly actions. Literature is rich in RGB-D datasets for
human action recognition [122, 123, 124] prevalently acquired in indoor/outdoor uncon-
strained settings. They are mostly related to daily actions (such as walking, jumping, waving,
bending, etc.), medical conditions (such as headache, back pain, staggering, etc.), two-person
interactions (such as hugging, taking a photo, finger-pointing, giving object, etc.), or gam-
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ing actions (such as forward punching, tennis serving, golf swinging, etc.). Table 3.2 reports
some of themost famous and commonly usedRGB-Ddatasets on human action recognition
describing their principal peculiarities.

To the best of the authors’ knowledge, few vision-based datasets exist in the context of ob-
ject assembly. Researchers usually build their own datasets on private video data [7, 136].
Table 3.3 compares the proposed HA4M dataset with existing datasets on assembly action
recognition. As shown in Table 3.3, the proposed HA4M features various main contribu-
tions:

• Data Variety: The HA4M dataset provides a considerable variety of multi-modal
data compared to existing datasets. Six types of simultaneous data are supplied: RGB
frames, Depth maps, IR frames, RGB-to-Depth-Aligned frames, Point Clouds and
Skeleton data. These data allow the scientific community to make consistent compar-
isons among processing approaches or machine learning approaches by using one or
more data modalities.

• Action Variety: The HA4M dataset presents a wide variety in the action execution
considering the high number of subjects (41) performing the task, the high number of
actions (12), the different order followed by the subjects to perform the actions, and
the interchangeably use of both hands.

• Fine-grained Actions: Actions present a high granularity as there is a subtle distinc-
tion between parts to be assembled and between actions that appear visually similar.

• Challenging Issues: The components to be assembled and the actions are very simi-
lar and symmetrical, implying a high level of context understanding and a significant

Figure 3.3: Components involved in the assembly of the Epicyclic Gear Train. The CAD model of the components is
publicly available at [121].
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Dataset Sensors Environment Data Modalities Actions
NTU RGB+D
120 [125, 126]

Microsoft Kinect
v2

Cluttered
Indoor

RGB Videos, Depth
Sequences, 3D Skeleton
Joints, IR Frames

Daily, Medical,
Two People In-
teraction

SYSU 3DHOI
[127]

Microsoft Kinect
v1

Cluttered
Indoor

RGB Videos, Depth
Sequences, 3D Skeleton
Joints

Daily

Drive&Act
[128]

Five NIR cam-
eras and One
Microsoft Kinect

Static Driving
Simulator

RGB, IR and Depth Data Driver Behav-
iors

UE-HRI [129] TwoRGBcameras
and one 3D sensor

Cluttered
Indoor

RGB and Depth Frames Human Robot
Interaction

MoCa [130] Three RGB cam-
eras and Vicon
Motion Capture
System

Laboratory RGB, 3D Skeleton Joints Cooking

Grasping
Dataset [131]

GoPro Hero 4
Camera, SoftKi-
netic Camera and
IMU sensors

Living Room
and Kitchen

RGB, Dept and IMU
Data

Cooking,
Housework

MSR-
Action3D
[132]

Microsoft Kinect
v1

Cluttered
Indoor

Depth Sequences, 3D
Skeleton Joints

Daily

MSR Daily AC-
tivity 3D [133]

Microsoft Kinect
v1

Cluttered
Indoor

RGB Videos, Depth
Sequences, 3D Skeleton
Joints

Daily

UT-Kinect
[134]

Microsoft Kinect
v1

Cluttered
Indoor

RGB Videos, Depth
Sequences, 3D Skeleton
Joints

Daily

RGBD-
HuDaAct
[135]

Microsoft Kinect
v1

Laboratory RGB Videos, Depth Se-
quences

Daily

Table 3.2: Some popular publicly available RGB‐D Datasets for 3D Action Recognition. They prevalently collect RGB,
Depth and 3D skeleton joints information relative to actions from daily activities conducted in indoor environments
such as office‐like, laboratory environments, or living rooms.

ability to track objects. Furthermore, unlike standard action recognition in uncon-
strained scenarios, the environment does not provide any information about the cur-
rent action. All data have been acquired in a laboratory setting that does not change
its background over time.
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Dataset Visual Sensors Environment Data Modalities Task
Assembly101
[137]

Eight RGB Cam-
eras mounted on
a scaffold around
a table and four
monochrome cam-
eras mounted on an
headset

Laboratory RGB frames, 3D hand
poses

Assembly and
Disassembly
of toy vehicles

Meccano
[138]

One Intel RealSense
SR300 camera
mounted on an
headset

Laboratory RGB videos Assembly of a
toymotorbike

IKEA-ASM
[139]

Three Microsoft
Kinect v2

Offices, Labs
and Family
Homes

RGB videos, Depth
videos, 3D Skeleton Joints

Furniture As-
sembly

HA4M Microsoft Azure
Kinect

Laboratory RGB frames, Depth
maps, IR frames, RGB-
Depth-Aligned frames,
Point Clouds, Skeleton
Data

Assembly of
an EGT

Table 3.3: Comparison between the proposed HA4M dataset and existing vision‐based datasets on assembly actions.
For each dataset, information about the cameras used for data acquisition, the type of environment where acquisitions
were made, the type of provided data and the assembly task are given.

3.3.1 Study Design

In the proposed dataset, a Microsoft Azure Kinect [140, 141] camera acquires videos dur-
ing the execution of the assembly task. The Azure Kinect camera offers improved accuracy
than other affordably RGB-D sensors implementing Time of Flight (ToF) principles [142],
making the Azure Kinect one of the best solutions for indoor human body tracking in man-
ufacturing scenarios.

With reference to Figure 3.3, the assembly of an EGT involves three phases: first, the as-
sembly of Block 1 and Block 2 separately and then the final building of both blocks. The
EGT is made up of a total of 12 components divided into two sets: the first eight compo-
nents to build Block 1 and the remaining four components to build Block 2. Finally, two
screws are fixed with an Allen key to assemble the two blocks, thus obtaining the EGT. Table
3.4 lists the individual components and the actions necessary for assembling Block 1, Block 2
and the whole EGT, respectively. The total number of actions is 12, divided as follows: four
actions for building Block 1; four actions for building Block 2; and four actions for assem-
bling the two blocks and completing the EGT. As can be seen in Table 3.4, some actions are
performed more times as there are more components of the same type to be assembled: ac-
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Components Actions
Quantity Description Action ID Action Description

Block 1

3 Planet Gear 1 Pick up/Place Carrier
3 PlanetGearBearing 2 Pick up/Place Gear Bearings (×3)
1 Carrier Shaft 3 Pick up/Place Planet Gears (×3)
1 Carrier 4 Pick up/Place Carrier Shaft

Block 2

1 Ring Bear 5 Pick up/Place Sun Shaft
1 Sun Gear Bearing 6 Pick up/Place Sun Gear
1 Sun Gear 7 Pick up/Place Sun Gear Bearing
1 Sun Shaft 8 Pick up/Place Ring Bear

EGT

1 Block 1 9 Pick up Block 2 and place it on Block 1
1 Block 2 10 Pick up/Place Cover
2 Screws 11 Pick up/Place Screw (×2)

12 Pick up Allen Key, Turn both screws, Re-
turn Allen Key and the EGT

Table 3.4: List of components and actions needed to build Block 1, Block 2 and EGT, respectively. First, the assembly of
Block 1 (action IDs 1 to 4), then Block 2 (action IDs 5 to 8) and finally the EGT (action IDs 9 to 12).

tions 2 and 3 are executed three times, while action 11 is repeated two times. Finally, a “don’t
care” action (ID=0) has been added to include transitions or unexpected events such as the
loss of a component during the assembly.

3.3.2 Acquisition Setup

The experiments took place in two laboratories (one in Italy and one in Spain). The acqui-
sition setup is pictured in Figure 3.4. A Microsoft Azure Kinect® was placed on a tripod in
front of the operator at an height h = 1.54m and a distance d = 1.78m. The camera is
tilted down to an angle α = 17°(see Figure 3.4(b)). As shown in Figure 3.4(a), the individ-
ual components to be assembled are spread on a table in front of the operator and are placed
according to the order of assembly. The operator can pick up one component at a time to
perform the assembly task.
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(a) (b)

Figure 3.4: Sketch of the acquisition setup: (a) a Microsoft® Azure Kinect is placed in front of the operator and the table
where the components are spread over; (b) setup specifications.

(a) (b)

Figure 3.5: Typical video frames acquired by the RGB‐D camera in the (a) “Vision and Imaging Laboratory” of STIIMA‐
CNR in Bari (Italy) and at the (b) “Department of Mathematics and Computer Science”, Universidad de La Rioja, Logroño
(Spain).

Two typical RGB frames captured by the camera in each laboratory are shown in Figure
3.5. The working table is covered by a uniform table cloth, while the components are ar-
ranged into boxes or spread over the table. In any case, two supports are fixed on the table to
facilitate the assembly of Block 1 and Block 2. Block components can be in white or black
color.
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3.3.3 Study Participants

The HA4M dataset contains 217 videos of the assembly task performed by 41 subjects (15
females and 26 males). Their ages ranged from 23 to 60 years. All the subjects participated
voluntarily and were provided with a written description of the experiment. The subjects
were first instructed about the sequence of actions to perform to build the EGT. However,
where possible, differences in assembly order were allowed. As an example, actions 2 and 3
can be performed three times in sequence (i.e. 2, 2, 2, 3, 3, 3) or alternatively (i.e. 2, 3, 2, 3, 2,
3). Furthermore, each subject was asked to execute the task several times and to perform the
actions as preferred (e.g. with both hands), independently of their dominant hand.

3.3.4 Data Annotation

Data annotation concerns the labeling of the different actions in video sequences. The anno-
tation of the actions has been manually done by observing the RGB videos frame by frame,
and cross-checked by two researchers having different backgrounds, engineering or computer
science. The start frame of each action is identified as the subject begins to move the arm to
the component to be grasped. The end frame, instead, is recorded when the subject releases
the component, so that the next frame becomes the start of the subsequent action. The total
number of actions annotated in this study is 4123 (see Table 3.4).

Figure 3.6: Check of annotation procedure. The plot reports the trajectories of the (x, y, z) coordinates of the right
wrist of a right‐handed subject in the first 1000 frames of an acquired video. The vertical lines identify the start frame
of the actions annotated manually. Some relative RGB frames are also displayed. Frames have been cropped for visual‐
ization purposes.
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Once the manual annotation was completed, the wrist joints of both hands were analyzed
to further check the manual labeling. Referring to Figure 3.6, which shows the movement
of the right wrist during the first 1000 frames of a sample video, local points of curvature
variation of the x and z coordinates of the wrist joints can be considered as the points of
action change. These points coincide with the start frame of each action (vertical lines in
Figure 3.6) obtained by manual video annotation. It is worth noticing that the y coordinate
does not give information for annotation check since it represent the joint height, typically
constant and close to the table height during all actions.

3.3.5 Technical Validation

This section provides a statistical evaluation of the acquired data and an insight into some
scientific issues that can be explored by using the HA4M dataset.

(a) (b)

Figure 3.7: (a) Mean number of frames and (b) relative standard deviation for each action, estimated on the entire
dataset.

Data Assessment

As a first characterization of the data, the variance of action durations is first assessed. Then,
a spatial analysis of the 3D position of the wrist joints is also explored to further characterize
the data. Notice that the “don’t care” action is not considered in this evaluation study as it
does not contribute to the assembly of the EGT.

Temporal Analysis
Figure 3.7(a) and3.7(b) show themeannumberof frameswith the relative standarddeviation
for each action over all the recorded videos. For completeness, Table 3.5 numerically lists
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the same time statistics with additional details. As can be seen, actions that require more
time have a high variance in execution times. These actions can be more complex such as
action 9 (assembly of Block 1 and 2), or can involve a longer activity such as action 12 (screw
tightening). Furthermore, the subjects perform the task at their comfortable self-selected
speed, so high time variance can be noticed among the different subjects. Figure 3.8 compares
the mean number of frames for each action evaluated in the videos of two different subjects
(number 2 and number 27) and the total dataset. As can be noticed, subject 2 executes the
actions at a lower speed than subject 27, which, on the contrary, is very fast in task execution,
even with respect to the total mean. This is mainly due to the different abilities of subjects in
assembling the EGT or by accidental events, such as the loss and recovery of a component.

Action ID Action Instances Min Length Max Length Mean Length Variance
1 217 8 263 100.23 42.99
2 651 22 207 66.29 26.01
3 651 25 210 70.27 23.71
4 217 63 632 148.57 62.92
5 217 48 264 113.88 42.52
6 217 37 384 98.47 42.32
7 217 38 254 93.67 35.10
8 217 54 415 161.23 63.05
9 217 114 4984 722.35 682.27
10 217 40 843 210.35 116.40
11 434 50 918 188.48 115.71
12 217 134 1488 443.70 197.60

Table 3.5: Some statistics about the actions: Action Identification Number (Column 1); Number of the manual annotated
instances (Column 2); Minimum Length (Column 3), Maximum Length(Column 4), Mean Length (Column 5) and Variance
(Column 6) of each action in terms of number of frames.

Spatial Analysis
The analysis of the spatial movement of both wrists of all subjects is useful for getting infor-
mation about themain direction and spatial displacement of each action. Figures 3.9 (a) and
(b) show the standard deviation of the coordinates (X,Y,Z) of the right wrist joint and the
left wrist joint of all subjects and for each action, respectively. As can be noticed, different
categories of actions can be identified according to the spatial properties: for instance, actions
from 1 to 7 mainly evolve along the Z direction, whereas action 8 and 10 along the X direc-
tion. Finally, actions 9, 11 and 12 present comparable movements along the three directions
as these actions require more spatial manipulations of the EGT. It is worth noticing that this
spatial analysis can be biased by the way the subjects performed the tasks, since no precise
rules were imposed to have the highest variability of the dataset. Accordingly, some subjects
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Figure 3.8: Comparative analysis of the performance of two subjects. Histograms show the mean number of frames for
each action executed by subject 2 and subject 27 compared with the mean number of frames evaluated over the total
dataset.

used their dominant hand while others used both hands interchangeably.

Scientific Issues

This section discusses some issues that can be explored using the proposedHA4Mdataset in
several application contexts.

Human centered approach in Industry 5.0
In the last years, the focus of smart manufacturing has been mainly on the transformation
of manufacturing systems into new models with improved operational properties and new
technologies. More recently, the focus has changed to a new perspective that puts workers at
the center of the digital transformation, where technologymust facilitate or improve human
physical or cognitive abilities instead of replacing them [143]. As a consequence, the scientific
community is very active in this domain by studying and developing intelligent systems to
monitorworkers to determine how theywork, their pain points, and the challenges they face.
So, observing the movements of human operators in the real scenario of an assembly task is
very important to recognize their capabilities/competencies, especially in collaborative tasks
with robots. Moreover, one of the main points of smart factory solutions is the inclusion of
impaired people or people with different manual skills in production processes. TheHA4M
dataset represents a testbed for analysing the operative conditions of different subjects having
varying skill levels. In the dataset, people with distinct ages and abilities execute complex
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(a) (b)

Figure 3.9: (a) Standard deviation of the coordinates (X,Y,Z) of (a) right wrist joint and (b) left wrist joint of all subjects
and for each action.

actions in very different ways. One challenging task is the development of time-invariant
action recognitionmethodologies capable of recognizing verydifferent executionsof the same
actions. The spatial and temporal analysis of the actions presented in the previous section
demonstrates the high variability of the execution of the actions, which is correlated not only
to the speed of execution but also to the subjects’ ability in handling the EGT parts.

Multi-modal data analysis
For years, humanaction recognition literaturehasbeendominatedbyvision-based approaches
using monocular RGB videos, making action representations difficult in 3D space. More-
over, challenging issues that commonly appear in the scene, such as illumination variations,
clutter, occlusions, background diversity, must be tackled to have robust recognitions. The
development of low-cost technologies has made available further sensory modalities to over-
come some of the challenges mentioned above [144]. The HA4M dataset provides several
types of data such as depth, infrared, or point cloud extracted using the Azure Kinect sensor.
Therefore, the dataset allows the research in multi-modal data integration to take advantage
of the peculiarity of each sensor (RGB and IR) and overcome their intrinsic limitations.

Temporal action segmentation
Literature is rich of works on action recognitionmethodologies successfully applied to short
videos analysis. In recent years, the focus has been on temporal segmentation of actions in
long untrimmed videos [145]. In Industry 4.0 domain, where collaborative tasks are per-
formed by humans and robots in highly varying conditions, it is imperative to recognize the
exact beginning and ending of an action. TheHA4Mdataset contains long videos withmul-
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tiple instances of actions performed in different ways and in different orders. Therefore, the
analysis of these videos requires the recognition of action sequences. Here, the problem of
the temporal segmentation of the action aims to capture and classify each action segment
into an action category.

Human-object interaction
The analysis of videos of human-object interactions involves understanding human move-
ments, recognizing and locating objects, and observing the effects of human movements on
those objects [146]. Traditional approaches to object classification and understanding of ac-
tions relied on shape features and movement analysis. In the context of assembly tasks, the
relationships betweenmovements and handled objects can help with action recognition. Se-
quences of actions that manipulate similar objects (such as inserting the planet gear onto the
planet gear bearing) can be aggregated to create a higher level of semantic actions. The pres-
ence of RGB images and point clouds in the HA4M dataset could allow the recognition of
tools and parts with pattern recognition approaches and their relative manipulation to im-
prove the target of action classification.
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4
Machine Learning and Deep Learning
methodologies for HumanMobility

Assessment in elderly facilities

4.1 Introduction

ThisChapter presents thework published in [99], which proposes a vision-based system that
observes elderly people while performing three well-definedmobility tests and automatically
categorizes their mobility performance. In particular, the main contributions of this work
are the following:

• The proposed system emulates the complex decision process of the expert physiother-
apists in the evaluation of the mobility tests.

• The systemprocesses real data acquired using low-cost commercial RGB cameras, typ-
ically implemented for video surveillance applications. The cameras were installed in
two nursing homes that house older people who are healthy and affected by neurode-
generative diseases. The video data have been augmented and then processed to select
the most informative features to provide a better-generalized model and enhance the
decision process.
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• Four classifiers with deep neural network architectures, based on Long-Short Term
Memories (LSTMs) and Bidirectional Long-Short Term Memories (BiLSTMs), are
proposed to classify the acquired data. The presented deep neural network architec-
tures have also been rearranged to develop also regression models to further compare
results with those from the classification task. Besides, comparisons with various tra-
ditional machine learning methodologies have also been conducted.

TheChapter is structured as follows. Section 4.2 gives details about the case study. Section
4.3 defines the different steps of the appliedmethodology; experimental results are in Section
4.4, while final remarks are in Section 4.5.

4.2 Case Study Description

Figure 4.1: The camera setup used for video acquisition during the execution of the motion protocol.

The system setup used for data acquisition wasmade up of two low-cost RGBmonocular
cameras installed in two nursing institutes. One frontal camera and one side camera were
placed in the gym of the institutes, where people usually execute mobility tests as shown in
Figure 4.1.
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Figure 4.2: Representation of the three SPPB tests: a) Balance test: the patient stands with the feet side‐by‐side, then
in semi‐tandem and tandem positions; b) Sit‐To‐Stand Test: the patient sits down and stands up five times with the arms
crossed on the chest; c) Walking Test: the patient walks for four meters.

The motion protocol, defined by medical staff and used in this work, consists of three
mobility tests included in the so-called Short Physical Performance Battery (SPPB) [147]: the
BalanceTest (BT), theWalkingTest (WT) and the Sit to StandTest (STST). Figure 4.2, shows
a representative scheme of these tests. Specifically, in the Balance Test, the person stands with
the feet side-by-side, then in a semi-tandem position and then in a tandem position, trying to
stay in each of the listed positions for ten seconds (Figure 4.2 a)). In the Sit-To-Stand test, the
person sits down and stands up five times with the arms crossed on the chest (Figure 4.2 b)).
In the Walking Test, the person walks a four-meter linear path, free of obstacles, and returns
to the starting point (Figure 4.2 c)).

The SPPB is usually administered to people by a physiotherapist to evaluate their mobility
level as it releases information regarding body posture, balance, strength, and stability. The
physiotherapist evaluates the execution of each test, giving a score value between 0 and 3,
representing themobility class. The classes range from thebadone (0 value), when theperson
cannot execute the test, to the best one (3 value) when, instead, the person succeeded.

All the older people, and their families, where needed, gave their written informed consent
to participate in this study. There were 20 people affected by neurodegenerative diseases in
the early stages and 27 healthy people, all in the range of age of 60 to 95 years. The subjects
were recorded while performing the tests included in the SPPB in two separate acquisition
campaigns threemonths apart. Several difficulties emerged during the data acquisition phase
as the sample of people who participated in the first acquisition campaign was reduced in the
follow-up as some were no longer able to perform the SPPB tests independently.
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Table 4.1: Statistical analysis of the videos of each test BT, WT, and STST, respectively.

Test Total nr. of videos Total nr. of Frames Mean nr. of Frames Standard Deviation
BT 74 19416 262.37 32.03
WT 76 10515 138.35 75.01
STST 96 39509 411.55 143.56

Figure 4.3: Pipeline of the proposed approach for classifying people’s mobility level.

Once the video sequences of RBG images were acquired, they were appropriately pro-
cessed to extract bidimensional skeletal data that have beenmade publicly available [97, 148].
Table 4.1 gives some information about the acquired videos. In particular, 74, 76, and 96
videos have been captured for the BT, WT, and STST, respectively. As proved by the stan-
dard deviation values, the number of frames varies considerably among the three tests. For
this reason, the duration of tests is not enough discriminant to achieve mobility assessment:
a qualitative evaluation of test execution is mandatory to classify people’s mobility.

4.3 Methodology

The proposed system assesses people’s mobility in the same classes defined by physiothera-
pists, but in a completely automatic and objective way, without human bias. The main steps
involved in the proposed methodology are reported in Figure 4.3:

1. Commercial low-cost RGB cameras for video surveillance capture videos of test exe-
cution;
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2. A preliminary processing extracts skeletal joints to evaluate complex details related to
body postures, inclinations, and orientations of body parts;

3. A data augmentation technique enlarges the dataset made of the temporal evolution
of joints in the image plane;

4. Significant features are extracted to construct input vectors to feed neural networks.

As primary output, thiswork proposes deepneural network architectures for classification
based on Long-Short Term Memory (LSTM) and Bidirectional Long-Short Term Memory
(BiLSTM). Following an ablation study, preliminary convolutional blocks are added for fea-
ture mixing to improve classification results. Further comparison with standard classifiers
from shallow learning (DecisionTree,NaiveBayes, SVM,KNN) anddeepneural network ar-
chitectures for regression, i.e. labeling people’s mobility with continuous scores, are also pre-
sented. The next subsections will better detail the feature extraction process (Section 4.3.1),
the network architectures used for classification (Section 4.3.2), and the data augmentation
technique (Section 4.3.3).

4.3.1 Feature Extraction

In thiswork, thewell-knownOpenPose library [149] is used to extract human skeletons from
RGB frames. OpenPose efficiently detects the 2D pose of multiple people in an image, rep-
resenting both the position and orientation of human limbs. The implemented model iden-
tifies 18 skeletal joints and 17 links between joints, as shown in Figure 4.4. Joint positions are
not directly used to model people’s mobility. Instead, a set of features is designed in agree-
mentwith clinicians to characterize anomalies during the SPPB tests. These features are based
on 2D pairwise joint distances, normalized to body height, and geometrical angles between
consecutive body segments (i.e. bones) to highlight posture variations andwalking or balance
problems. Features are evaluated at each frame and then put together in time series.

Figure 4.4 and Table 4.2 show the features of each SPPB test, providing detailed descrip-
tions and indicating the camera used for their extraction. In the following, each SPPB test is
analyzed together with the related features.

• Balance/Walking Test:
Both balance and walking tests are administered to people to assess their static and
dynamic skills. In the two cases, the following features have been considered:

– Distance between feet ((i) in Figure 4.4). This distance can help evaluate the
patient’s confidence in following the predefined path of the WT.
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Figure 4.4: Features defined for the Walking and Balance Test (WT/BT) and Sit to Stand Test (STST), respectively.

– Distance between the right (or left) hand and the right (or left) hip from the
frontal camera ((ii) or (iii) in Figure 4.4). This feature is fundamental for evalu-
ating an eventual loss of balance and, in this case, for restoring balance with the
help of the arms.

– Body posture, i.e. the columnprojection of the distance vector that connects the
neck and the middle pointM between the hips ((iv) in Figure 4.4). It provides
information on people’s torso inclination, indicating whether they keep their
back straight.

It is worth noticing that, in the case of BT, the side-by-side, semi-tandem, and tandem
tests are captured in three different videos. Homologous features are thus concate-
nated in vectors of increased lengths.

• Sit-To-Stand Test:
The STST is slightly different from the previous two tests, as it provides a method
to quantify the functional strength of the lower limbs and/or to identify how a per-
son completes transitional movements between sitting and standing. In this case, the
features are:

– The angle between the legs and the torso ((j) in Figure 4.4) and the knee angle
((jj) in Figure 4.4). Both angles describe the action of sitting as captured by the
side camera.

– The angle at the right (or left) elbow from the frontal camera ((jjj) or (jv) in
Figure 4.4). These features characterize people’s confidence while performing
the STST.
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Table 4.2: Description of the features for each test (BT, WT, and STST), with specified the camera used for their extrac‐
tion. The joint numbers in the table are shown in Figure 4.4.

Test Feature Description Side Camera Frontal Camera

BT

Feet distance Distance between joints 10 and 13 ! !
Right hand-
hip distance

Distance between joints 11 and 7 !
Left hand-hip
distance

Distance between joints 4 and 8 !

Body posture
Distance between the projection of the
joint 1 and the midpoint of the segment
connecting joints 8 and 11

!

WT

Feet distance Distance between joints 10 and 13 ! !
Right hand-
hip distance Distance between joints 11 and 7 !
Left hand-hip
distance Distance between joints 4 and 8 !

Body posture
Distance between the projection of the
joint 1 and the midpoint of the segment
connecting joints 8 and 11

!

STST

Legs/Torso
Angle

Angle between the legs and the torso !
Knee Angle Angle at knee !
Right Elbow
Angle Angle at the right elbow !
Left Elbow
Angle Angle at the left elbow !

To highlight how the defined features represent the different situations that occur when
the SPPB tests are performed, Figures 4.5, 4.6 and 4.7 show features plots for each SPPB
test and in both cases of one person who performed the test correctly and one who failed.
In Figure 4.5a), for example, the graphs of the hand-hip distances show the poor postural
stability of the subject. Significant fluctuations in the graphs represent the subject’s attempts
to maintain balance. In contrast, Figure 4.5b) shows minor fluctuations in the graph, as the
subject maintains balance while performing the test.

In the case ofWT, inFigure 4.6a) the featureplots clearly describe apersonwhoneedsmore
time towalk the path, as shownby the sequence of small steps in thewalkingwidth graph. On
the other hand, the subject in Figure 4.6b) performs theWTwithmore confidence, without
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Figure 4.5: Plots of features extracted from the skeletons of two people performing the Tandem position of the BT: a)
people of class 0 (unable to maintain balance); b) people of class 3 (correct body posture). The red circle on the feature
plot of the Right Hand‐Hip Distance indicates the subject’s attempt to maintain balance by moving the right arm.

Figure 4.6: Plots of features extracted from the skeletons of two people performing the WT: a) people of class 1 (long
execution time); b) people of class 3 (high walking confidence). The graphs of the hand‐hip distances and walking widths
show the different behavior of the two people in performing the test.
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Figure 4.7: Plots of features extracted from the skeletons of two people performing the STST: a) people of class 0 (un‐
able to perform the STST); b) people of class 3 (stands up and sits down 5 times). The left graphs of Leg/Torso and Knee
Angles demonstrate that the subject succeeds only two times in standing up. The elbow angles further show the inabil‐
ity to keep the arms crossed on the chest.

balancing with the arms.
Finally, in the case of STST, it is evident by the feature plots shown in Figure 4.7a) how

the subject succeeds only two times in standing up. Furthermore, the subject does not keep
his arms crossed on the chest, thus failing the test. On the contrary, Figure 4.7b) shows the
case of correct execution of the STST.

4.3.2 Deep Neural Network Architectures

In this work, the four deep neural networks in Figures 4.8 and 4.9 are compared to evalu-
ate the best configuration. The input layer builds the feature vectors by concatenating the
features (f1, f2, ..., fk) from all the frames contained in the video of the SPPB test, where k
depends on the test under examination (see Table 4.2). Taking into account both side and
frontal views, in the case of WT k = 5, for STST k = 4, while for BT k = 15, since BT
involves three tests (side-by-side, semi-tandem, and tandem).

The deep network architectures are based on LSTM and BiLSTM models. An LSTM
neural network is an extension of a recurring neural network (RNN), suitable for processing
time series [150]. Its core is the LSTMblock, shown in Figure 4.8a), which captures essential
input features and preserves them over a long period, learning which information is worth
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a)

b)

Figure 4.8: Architecture of a) the LSTM network and b) the BiLSTM network.

storing or erasing through a gating mechanism that controls the memorizing process. In the
Bidirectional LSTM (BiLSTM) neural network of Figure 4.8b), a Backward LSTM and a
Forward LSTMcooperate to capture past and future information by letting the data flowing
forward and backward [151]. BiLSTM is well-known to achieve better performance than
LSTMbymodeling the sequences along both directions. In the proposed experiments, both
blocks have 100 hidden units.

In the proposed work, deep neural networks are designed for two purposes: classification
and regression.

• Classification: the input features are processed to select a discrete class C among four
classes of interest (C ∈ 0, ..., 3). The result is the same as for the physiotherapists,
who assignC = 3 to successful tests andC = 0 to indicate complete inability. The ar-
chitecture is then completed by a Fully Connected layer, whichmixes the information
returning a normalized vector, and a Classification layer, which converts the output
of the Fully Connected layer into probabilities through a Softmax function and com-
pares them to minimize the cross-entropy.
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• Regression: the networks process the input features to produce a continuous scoreR.
This output is strictly dependent on the target class, but, for its nature, can estimate
intermediate mobility levels. In this case, the networks are still completed by a Fully
Connected layer, whose output is directly interpretable as the final regression resultR.
During training, the networks try to minimize the half mean-squared error loss, based
on the same example of the classification task, i.e. using discrete targets to generalize
then and predict continuous scores.

a)

b)

Figure 4.9: Architecture of a) the Conv‐LSTM network and b) the Conv‐BiLSTM network.

Toenhance the correlations among features at each time step, aConvolutionalBlock (Conv-
Block) is introduced, as shown in Figure 4.9, obtaining the so-calledConv-LSTMandConv-
BiLSTM networks. The Conv-block consists of a Convolution Layer, a Batch Normaliza-
tion Layer, and a ReLU Layer, as shown in the yellow box in Figure 4.9. The Convolution
Layer applies several convolutions having k × 1 kernels to the sets of input features at each
time step. The Batch Normalization Layer then normalizes the output vectors and is finally
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rectified using the ReLU function. This block generates a new representation of the input
time series to feed the recurrent networks LSTM and BiLSTM of Fig. 4.8.

4.3.3 Data Augmentation

One of the most frequent problems in machine learning, especially in deep learning, is the
lack of a sufficient amount of training data or uneven class balance within the datasets. This
problem is even more stringent in this work, where the amount of real data is limited for
several reasons (see Section 4.2).

Data augmentation encompasses a suite of techniques that enhance the size and quality
of training datasets to build better deep-learning models. In the context of image data, data
augmentation includes classical image transformations such as rotation, cropping, zooming,
histogram-basedmethods, color space augmentations, imagemixing, and so on [152]. How-
ever, these image-based transformations, performed before the skeleton extraction, can in-
duce artifacts in 2D body reconstruction. For this reason, the proposed procedure directly
augments the dataset by working on the position of the joints. With reference to Figure 4.10,
data augmentation ismade by a set ofA rigid geometric transformations of human skeletons,
which create different views of the same people, maintaining the relationships between the
joints. It is worth noticing that data augmentation is performed after splitting the data into
the training and testing sets, to avoid having the augmented features of the same subject in
different sets.

Figure 4.10: Skeleton augmentation process: 2D projective transformations are applied to the original skeletons, obtain‐
ing new sequences of augmented skeletons.

63



Let indicate the joint points in 2D coordinates as Jp = [xp, yp]T ∈ R2 in the camera
coordinate system, with p = 0, · · · , 17. In general, a point P = [x, y]T ∈ R2 in the 2D
Euclidean plane can be described in homogeneous coordinatesH as follows [153]:

H =

⎡

⎣
w x
w y
w

⎤

⎦ ∈ P2 w ∈ R− {0} (4.1)

where P2 is the 2D projective space defined as P2 = R3 − [0, 0, 0]T. For the sake of sim-
plicity,w is typically equal to 1 to have direct transformations between 2DEuclidean and 3D
homogeneous coordinates (P = [x, y]T ↔ H = [x, y, 1]T).

LetTi (i = 1, · · · ,A), the non-singular 3×3matrix designed to produce the 2Dprojective
transformation:

Ti =

⎡

⎣
1 0 Ei
0 1 Fi
0 0 1

⎤

⎦ i = 1, · · · ,A (4.2)

where Ei and Fi are discrete values representing the influence of the vanishing point to the
final projection. Large values of Ei and Fi induce close-to-the-origin vanishing points, i.e.
parallel lines converging faster. For this reason, these couples of values have been kept small
(between 0.001 and 0.01), in the experimental phase, to guarantee reasonable augmentations.
Therefore, the new homogeneous 2D coordinates J′p,i of the p-th joint are:

J′p,i =

⎡

⎣
x′p,i
y′p,i
1

⎤

⎦ = Ti

⎡

⎣
xp
yp
1

⎤

⎦ i = 1, · · · ,A (4.3)

Since each transformation applies equivalently to all the skeletons, i.e. to all the frames
of each video, the size of the resulting dataset after augmentation is A times higher than the
initial one in terms of the number of frames. TheA parameter has been fixed heuristically by
evaluating the performance of the classifiers varying it.

Figure 4.11 reports the plots of one feature, the knee angle, extracted from the acquired
video of a subject performing the STST (Fig. 4.11a)) and that of four skeletons (Fig 4.11b))
obtained by applying four different 2D projective transformations. From a first qualitative
analysis, the features extracted from the transformed skeletons are still coherent inmagnitude
and time with the original ones. This aspect is of enormous importance since the features
extracted frombothoriginal and transformed skeletons differnumerically, ensuring sufficient
dataset variability. Still, they refer to the same target class that resembles the same high-level
behavior. In the experimental section, the classification accuracy is reported, demonstrating
the quantitative evidence of the proposed data augmentation procedure.
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Figure 4.11: a) Plot of a sample feature (knee angle) extracted from the skeleton in an acquired video of STST. b) Dif‐
ferent plots of the same feature extracted from the transformed skeletons by applying four different 2D projective
transformations.

4.4 Experiments

This section describes the experimental results and details the different data processing steps:
data acquisition and classification. All computations have been performed on a 64-bit HP
Z840Workstation, with Intel® Xeon® E5-2699v3CPU@2.30GHzprocessor and 256GBof
RAM. To accelerate the training process, all operations have been transferred to a NVIDIA®

Quadro® K5200 GPU.

4.4.1 Data Acquisition and Processing

The cameras used for data acquisition are low-cost 4k cameras by HIKVision with 3849 ×
2160 resolution at 20 fps, usually used in video surveillance applications. Due to the dimen-
sions of the gym of the nursing institutes, where videos were acquired, the frontal camera
had a focal length of 2.8mm, whereas the side camera had a focal length of 4mm. The videos
are 246 in total, 74 videos relative to BT, 76 to WT and 96 to STST (see Table 4.1). Video
durations can vary, depending on the test and the participant.

Due to the low-level setup of the cameras, the acquired videos presented some limitations,
such as a lack of camera synchronization, slightly different camera frame rates, and misalign-
ment of video frames. Therefore, the videos acquired by the side and frontal cameras were
first projected on the same timeline, based on the lowest recorded frame rate to improve video
uniformity. Then, the couples of videos weremanually shifted by asmany frames as the delay
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between the two cameras to achieve synchronization. A signal given by the physiotherapist
at the start of each SPPB test was used for this aim. Furthermore, the videos were trimmed
to extract only the clips containing the execution of the tests. Finally, a camera calibration
procedure was applied to remove image distortion. The OpenPose library is then applied
to extract the skeletons. A skeleton tracking procedure has also been developed to detect
only the skeleton of the person performing the test, discarding the skeletons of other sub-
jects present in the scene, such as physiotherapists. The first frame of each video is manually
labeled by the user to identify who is running the test. Then, for every frame, a Region of
Interest (ROI) of 30× 30 pixels is selected around each joint of all the subjects in the scene.
With an automatedprocess, each joint-related-ROI is comparedwith the corresponding ones
of the subject of interest at the previous frame. Following a voting mechanism, the skeletons
of other people in the scenes are discarded, while one of the subjects performing the test is
retained.

Then, the obtained dataset of skeletons has been augmented by applying the data augmen-
tation procedure described in Section 4.3.3.

4.4.2 Classification

Figure 4.12: Percentages of weighted mean Accuracy of the deep neural network architectures (LSTM, BiLSTM, Conv‐
LSTM and Conv‐BiLSTM) for each SPPB test (BT, WT, and STST).

This section presents the classification results obtained by applying the deep neural net-
work architectures (LSTM, BiLSTM, Conv-LSTM, and Conv-BiLSTM) described in sec-
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Figure 4.13: Weighted mean values of Precision vs Recall of the deep neural network architectures (LSTM, BiLSTM,
Conv‐LSTM, and Conv‐BiLSTM). The three markers for each classifier refer to the three SPPB tests.

tion 4.3.2. In the following, classifiers will be compared in terms of Accuracy, Precision,
and Recall, whose definitions are in Table 4.3. These metrics are computed by reducing the
multi-class problem to multiple binary problems in aOneVsAll strategy. Each metric is thus
computed four times to assess the classification of each class against the others. The final
evaluationmetrics are then computed as the arithmeticmean of the four results, weighted by
the population of the corresponding class (weighted average).

Table 4.3: Accuracy, Precision, and Recall. These quantities are evaluated starting from the computation of True Posi‐
tives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN).

Accuracy Precision Recall

TP+ TN
TP+ FP+ TN+ FN

TP
TP+ FP

TP
TP+ FN

In the learning phase, the dataset of the extracted features has been divided into training,
validation, and test sets. The samples included in the training and validation sets have been
exclusively used for the learning phase. The validation set has been used to assess the model’s
convergence and stop training when accuracy does not increase for eight consecutive epochs.
The test set has been used to evaluate the network’s performance in labeling unknown input
data. The learning phase results from optimizing a cross-entropy loss function, performed
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Figure 4.14: Percentages of weighted mean Accuracy of the proposed classifiers varying theA parameter, for BT, WT,
and STST respectively.

using the Adam optimizer. A 5-fold cross-validation technique has been applied to verify the
generalization ability of the networks. For each SPPB test, after cross-validation, only the
models with the highest accuracy have been selected to classify elderly people into the four
classes (0, 1, 2, 3) defined in Section 4.3.2.

Figure 4.12 shows the percentages of weighted mean accuracy of the deep neural network
architectures (LSTM, BiLSTM, Conv-LSTM, and Conv-BiLSTM), for the three tests BT,
WT e STST, respectively. Among the proposed deep architectures, those implementing BiL-
STM produce better results than those using LSTM. For example, BiLSTM increases accu-
racy by an average improvement of 2.31%, considering all three tests of the SPPB. Similarly,
the Conv-BiLSTM classifier outperforms the Conv-LSTM one with an average improve-
ment of 14.23%. These results confirm that taking input in forward and backward direc-
tions increase the amount of available information, capturing the complex variability of the
features. At the same time, introducing theConvolutional Blockbefore theLSTM/BiLSTM
networks produces amore significant enhancement of the classification accuracy. In particu-
lar, the Conv-LSTMnetwork increases performance in dynamic tests (WT and STST) com-
pared to the results of the LSTM one, as well as the Conv-BiLSTM over the BiLSTM with
an average improvement of 19.91%. Indeed, applying convolutional kernels to the input fea-
ture vectors transforms the data into new vectors that better characterize the features’ spatial
correlation, improving the final classification ability. In Figure 4.13, the weighted averages
of Precision vs Recall are reported for each deep neural network architecture and each SPPB
test. Precision/Recallmetrics also confirm thatConv-BiLSTMarchitecture outperforms the
others.

Additional experiments have been conducted to evaluate how data augmentation affects
the classifiers’ performance. Figure 4.14 shows the resulting weighted mean accuracy of the
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deep classifiers for each SPPB test whenA ranges between 0 and 100. At first glance, increas-
ing the dataset size by data augmentation results in an improvement in the average accuracy
for any network and any mobility test. However, adding more data leads to longer training
time. Consequently, A = 50 produces the best trade-off between accuracy and dataset size.
It should be noted that Conv-BiLSTM always performs better regardless of the size of the
dataset defined by the parameter A.

Figure 4.15: Percentages of weighted mean Accuracy of the traditional Machine Learning classifiers compared with the
Classification Conv‐BiLSTM network for each SPPB test (BT, WT, and STST).

For the sake of completeness, several machine learning classifiers have been also consid-
ered, namely Decision Tree, Naive Bayes, SVM, and KNN classifiers [154]. Also in this case,
a 5-fold cross-validation technique has been applied during the learning phase, while the con-
figuration with the maximum accuracy has been selected for the test phase.

Figure 4.15 shows that the considered traditional machine learning approaches perform
worse than theConv-BiLSTMapproach, thus proving the need for a deepmodel. OnlyDeci-
sionTree has good accuracy performance for what concerns the BT. In this case, theDecision
Tree sets its first levels to find the end of the test, setting close-to-zero thresholds at specific
samples of the input feature vectors. Accordingly, the tree classifies the input focusing only
on the duration of the test, i.e. how long the subject stands in the same position. The per-
formance of the Decision Tree emphasizes how the duration of the exercise is also an implicit
feature that this specific model uses. This quantitative analysis allows for a good accuracy
value compared to the other standard models. However, this is still below the best accuracy
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Figure 4.16: Weighted mean values of Precision vs Recall of the traditional neural network architectures (Dec. Tree,
Naive Bayes, SVM, KNN) compared with those of the classification model Conv‐BiLSTM. The three markers for each
classifier refer to the three SPPB tests.

achievable by deepmodels, which even consider the quality of execution. This point is much
more significant for theWT and the STST, whose classification is muchmore dependent on
the quality of the execution. For this reason, the classification accuracies of WT and STST
of the Decision Tree are 28.64% and 19.49% lower than the corresponding values, out of the
Conv-BiLSTMmodel. In Figure 4.16, the plot of the weighted averages of Precision vs Re-
call leads to the same conclusion as for the accuracy plot: the Conv-BiLSTM keeps the best
performances for the three tests. The Decision Tree classifier has a comparable value only for
the BT.

4.4.3 Regression

As presented in Section 4.3.2, the four deep neural networks have been designed also for
regression tasks. To have a proper comparison between Classification and Regression net-
works, the Root Mean Square Error (RMSE) has been calculated. In classification output,
these metrics are computed between discrete integers (expected classes and predicted ones).
In contrast, for regression models, they are computed between discrete expected classes and
predicted regression valuesR. RMSEs are summarized in Figure 4.17.

As first remark, the best result of the regression, i.e. the lowest RMSEs, is achieved with
the Conv-BiLSTM architecture. This result is in agreement with what has been found for
classification, since the use of the preliminary convolutional block can help the BiLSTMnet-
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Figure 4.17: Graphs representing the RMSEs values from the Regression Models (orange) vs the Classification Models
(blue). Each plot is relative to the exercises within the SPPB test, i.e. BT, WT, and STST.

work by aggregating features at each frame. At the same time, regression networks always
perform worse than their classification counterparts. In principle, this result can be unex-
pected, as treating themobility assessment to produce continuous scores rather than discrete
ones should prevent heavy misclassifications, e.g. from class 3 to 0, and give results of higher
quality. All these considerations would be verified if the training set was actually designed
with examples from a regression scenario. However, the initial labeling of the dataset, made
by physiotherapists in discrete classes, reduces the ability of regressive networks to create suc-
cessful models.

4.4.4 Conv-BiLSTMClassifier: in-depth analysis

This subsection presents a detailed analysis of the performance of the Conv-BiLSTM net-
work architecture for each class of SPPB tests. These experiments help understand the prac-
tical ability of the proposed deep architecture to recognize the classes of people that need
particular attention.

Tables 4.4, 4.5 and 4.6 list the Accuracy, Precision, Recall and the resulting weighted av-
erages for each SPPB test and for each class. These results demonstrate that the proposed
Conv-BiLSTM, in most cases, can predict the correct class of mobility level for each SPPB
test (BT, WT, and STST). With more detail, the weighted mean accuracy is 90% in the case
of BT, while it is 88.51% and 88.12% for WT and STST, respectively.

71



Table 4.4: Accuracy, Precision, and Recall of the Conv‐BiLSTM classifier for each output class in the case of Balance Test.

BT Accuracy Precision Recall
Class 0 96.92% 87.18% 66.67%
Class 1 90.48% 85.42% 80.39%
Class 2 90.76% 62.68% 87.25%
Class 3 88.52% 90.32% 86.27%

Weighted Mean 90.00% 84.75% 83.33%

Table 4.5: Accuracy, Precision, and Recall of the Conv‐BiLSTM classifier for each output class in the case of Walking
Test.

WT Accuracy Precision Recall
Class 0 85.78% 73.51% 97.06%
Class 1 87.38% 93.56% 71.24%
Class 2 94.49% 89.04% 63.73%
Class 3 94.12% 75.47% 78.43%

Weighted Mean 88.51% 83.22% 80.88%

Table 4.6: Accuracy, Precision, and Recall of the Conv‐BiLSTM classifier for each output class in the case of Sit To Stand
Test.

STST Accuracy Precision Recall
Class 0 94.53% 73.74% 73.00%
Class 1 88.44% 89.84% 81.95%
Class 2 85.04% 80.38% 69.61%
Class 3 89.27% 60.61% 91.50%

Weighted Mean 88.12% 80.57% 78.64%

Precision, also called positive predictive value, measures how many predictions of a class
are true. In our context, it proves the ability of the system to assign the correct mobility level
to the person. The weighted averages of Precision are 84.75%, 83.22%, and 80.57%, for the
BT, WT, and STST, respectively.

Recall, also known as sensitivity, measures the ability to recognize samples of a specific
class. This aspect is fundamental in our experimental context, as it is necessary to be confi-
dent of which people need more attention than others. The Recall values in Tables 4.4, 4.5
and 4.6 outline the good performance of the proposed classification model. More precisely,
the weighted averages of Recall reach 83.33%, 80.88%, and 78.64% for BT, WT, and STST,
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respectively.
It is essential to highlight that the obtained results are satisfactory in the particular health-

care context addressed in this work. A system that makes decisions emulating the decision-
making ability of human experts for assessing people’s mobility has been developed. It is
crucial to notice that only specialized physiotherapists with specific competencies can make
these evaluations. So developing such an automatic system is of great help for supporting
clinicians to identify people with mobility limitations objectively.

Finally, concerning the computational costs, it is straightforward to acknowledge that a
longer mobility test leads to longer videos, which require more time for training the corre-
sponding network. In this case, the training time of the architectures for modeling the WT
and the STST is higher than that for modeling the BT, although the numbers of training
epochs are comparable (26, 28, and 30 for BT, WT, and STST, respectively). The same con-
sideration is still valid for the test phase. The average times for a single video classification
are 28ms for the BT, 37ms for the WT, and 49ms for the STST. These last durations are
computed on the setup described previously, exploiting the huge capabilities of a GPU im-
plementing Nvidia CUDA drivers. However, the same classifications have been repeated on
the single CPU of the same processing unit, leading to average times of 290ms for the BT,
344ms for the WT, and 416ms for the STST. Although CPU processing takes more time
than GPU processing, classification times are always much shorter than required for per-
forming every mobility test. This paves the way for future implementations of the trained
model on low-resource platforms, such as apps for mobile phones or tablets, towards a fully-
integrated telehealthcare system.

4.5 Discussion

In recent years, the increase in the elderly population and the need to support diagnostic is-
sues in retirement residences have brought considerable interest in developing telehealthcare
systems. This work deals with the complex problem of themotion ability evaluation of older
people. In literature, several automatic systems, both invasive (based on wearable sensors)
and noninvasive, have been proposed to measure specific parameters related to gait or pos-
ture. On the contrary, few works explore only partially the analysis of people’s movement.
Currently, the evaluation of motion abilities is carried out by experienced medical personnel
who observe people performing somemobility tests through a defined protocol and evaluate
their mobility level according to defined rank. Despite the high professionalism of physio-
therapists, this evaluation can be affected by their subjectivity, confidence, and experience.
Therefore, the development of automatic systems can significantly help medical personnel
improve diagnostic accuracy and the elderly themselves by limiting the number of visits to
health clinics.
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The main contributions of this work have been:

• The feasibility of developing an automated system to assess the motion skills of older
people while performing a specificmobility test protocol has been demonstrated. The
proposed system is noninvasive for people. It consists of low-cost visual cameras that
record videos of people performing the tests and a complete processing framework that
extracts significant features and builds models that classify the test executions emulat-
ing the complex decision process of physiotherapists.

• The proposed system has been validated using real video data acquired in two nursing
institutes hosting elderly people, both healthy and affected by neurodegenerative dis-
eases. Significant features have been extracted from the skeletal representations of the
subjects observed. To increase the dataset dimensionality, a data augmentation tech-
nique has been applied to the extracted skeletons. Finally, the proposed deep neural
network, based on BiLSTM, has been used to classify the observed people’s mobility
levels. Numerical experiments have been analyzed quantitatively in terms of Accu-
racy, Precision, and Recall metrics, demonstrating the improvement of results due to
preliminary processing made by a convolutional block.

• Several machine learning methods for automatically classifying the motion function-
alities of older adults have been compared. Once again, the deep neural network clas-
sifier with convolutional filters and a BiLSTM model provides the best performance
among all the implemented techniques.

• The proposed deep neural network architectures have also been tuned to perform re-
gression. The results show an improvement in RMSE due to convolutional blocks.
However, the input labels (discrete classes) do not constitute a significant dataset for
training regression models, which perform worse than the Conv-BiLSTM designed
for the classification of patients performing the SPPB test.

The proposed system reveals the mobility levels of people, supporting clinicians to timely
detect mobility anomalies, and preventing dangerous conditions such as falls or worsening
health conditions. Furthermore, the development of mobile apps that collect video of peo-
ple performingmobility tests, extract data, and transmit them tomedical staff, could provide
good support to increase telehealthcare functionalities. Telehealthcare systems will be a valid
instrument for remote monitoring of older adults often unwilling to visit health clinics peri-
odically, reducing time, costs, and efforts.
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5
Deep Learning methodologies for Human

Action Segmentation in manufacturing
scenarios

5.1 Introduction

In this Chapter, the state-of-the-art models for temporal action segmentation on the novel
Human Action Multi-Modal Monitoring in Manufacturing (HA4M) dataset [98] are eval-
uated, analyzing which features are more suitable for realizing a system that recognizes the
actions of an operator.

More specifically, five state-of-the-art architectures, namely MS-TCN [74], MS-TCN++
[92], BCN [75], C2F-TCN [93], andASFormer [155], are trained on different inputmodal-
ities including skeletal data and video features extracted by the Inflated 3D ConvNet model
(I3D) [156] from RGB and/or Depth data. As HA4M includes videos of operators per-
forming an industrial task in different manufacturing scenarios, the dataset has been split
first considering a Cross-Subject approach, then a Cross-Location approach. Furthermore,
the model trained on the Cross-Subject splitting has also been tested on a new set of data,
which considers different locations where new subjects perform the same task as in HA4M.
Furthermore, a semi-supervised learning setting is proposed.
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The main contribution of this work is threefold:

• Is is shown that the I3D model is very effective in extracting features not only from
RGB data, but also from Depth data, and from the frames where the RGB data have
been aligned to the Depth data;

• The effectiveness of the features extracted from the novel HA4M dataset for address-
ing temporal action segmentation inmanufacturing scenarios is evaluated, considering
multiple deep-learning models at the state-of-the-art. Different splittings for training
and testing sets have been selected, to assess the generalization of bothmodels anddata;

• A new set of videos to test the trainedmodels is considered, which is recordedwith the
same standards of the HA4M dataset, in different simulated industrial locations and
with different subjects. The new set has also been assessed by performing the training
of the models with a semi-supervised learning approach, first considering 60%, and
then 30% of the initial training set as labeled.

The results demonstrate the validity ofHA4M, as themodels selectedmanage to properly
segment the actions of the assembly task. Such outcome can lead to a new perspective in
developing systems for HRI and HRC, as observing the movements of human operators
while performing an assembly task is fundamental to detect their capabilities, particularly in
collaborative tasks with robots.

TheChapter is structured as follows. Section5.2 describes the evaluationprotocol, includ-
ing adescriptionof thenewly collecteddata, the feature extraction, and theCross-Subject and
Cross-Location splittings. In Section 5.3, the outcomes of all the experiments are presented
and discussed. Finally, Section 5.4 draws the discussion.

5.2 Methodological Approach

In the HA4M dataset [98], 41 subjects are recorded using an Azure Kinect [95] while they
assemble an EGT in two realistic manufacturing scenarios. For sake of clarity, the term Loc1
refers to the first location where 22 subjects perform the assembly task of a white EGT over
a black tablecloth. The term Loc2 refers to the second location where the remainder 19 sub-
jects perform the assembly task of black andwhite EGTs over white and black tablecloths, re-
spectively. To assemble the industrial object, the subjects conduct 12 actions, some of them
more than once. Frames that do not show any of the 12 assembly-related actions are labeled
by the class “0”.

The present work follows the pipeline depicted in Figure 5.1. RGB, RGBA, Depth and
Skeletal information have been gathered from the HA4M dataset, as it will be described in
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Figure 5.1: Pipeline of the proposed analysis. Cross‐Subject refers to the train‐test splitting obtained considering differ‐
ent subjects from the train and test sets. In C‐Sub, the test set is within HA4M, while in C‐SubNew, the test set is from a
new set of data collected. Cross‐Location refers to the train‐test splitting obtained considering Loc1 for the train set and
Loc2 for the test set (C‐Loc12), and vice versa (C‐Loc21).

Section 5.2.1. Such features have then been split following a Cross-Subject (C-Sub) and
Cross-Location sorting (C-Loc12 and C-Loc21), which will be described in Section 5.2.2.
State-of-the-art deep learning models for temporal action segmentation have been trained
using a supervised learning approach. The best ones have been tested considering a Cross-
Subject splitting with new data gathered from new videos (C-SubNew). This splitting is also
used to evaluate a semi-supervised learning procedure, which will be described in Section
5.2.3.

5.2.1 Feature Extraction

The I3Dmodel [156] has beenused to extract features fromRGB,RGBAandDepth frames.
Intending to allow the data to be as much heterogeneous as possible, RGB, RGBA, and
Depth sets of features have been mixed up, creating 4 additional sets of features, i.e. [RGB +
RGBA], [RGB + Depth], [RGBA + Depth], [RGB + RGBA + Depth]. As for the skeletal
data, two sets of features have been taken into account, as depicted in Figure 5.2. The first
set of features has been labeled as ArmSkel, which contains the 3D coordinates of the joints

77



Figure 5.2: Representation of the skeletal joints extracted from the Azure Kinect. The blue box and the orange box
represent the joints considered for the features UpSkel and ArmSkel, respectively.

composing the arms of each skeleton. The second set of features has been labeled UpSkel,
and considers all the 3D coordinates of the upper-body joints of each subject.

The extracted sets of features can be represented as follows, where FI3Di corresponds to the
sets of features extracted using the I3D model, while FSki corresponds to the sets of features
extracted from the skeletal data:

FI3Di =

⎡

⎢⎢⎣

f1,1 f2,1 . . . fNi,1
f1,2 f2,2 . . . fNi,2
. . . . . . . . . . . .
f1,D f2,D . . . fNi,D

⎤

⎥⎥⎦ , FSki =

⎡

⎢⎢⎣

fx11,1 fx12,1 . . . fx1Ni,1
fy11,1 fy12,2 . . . fy1Ni,1
. . . . . . . . . . . .
fzD1,D fzD2,D . . . fzDNi,D

⎤

⎥⎥⎦ (5.1)

with i = {1, 2, . . . , I}. I represents the number of videos, whileNi represents the number
of frames of the i-th video. D represents the number of features extracted from each video.
Such value differs depending on which type of data is considered.

5.2.2 Dataset Splittings

The I videos have been split considering a Cross-Subject and a Cross-Location approach. In
the C-Sub splitting, the training set IC-Subtrain with videos and the testing set IC-Subtest with videos
have been separated by subjects. This protocol allows to evaluate the generalization perfor-
mance of a model across subjects but not across locations.

Cross-Location uses the splitting based on the two different locations Loc1 and Loc2. As
a result, two Cross-Location splittings have been obtained, namely C-Loc12 and C-Loc21.
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Figure 5.3: Images representing the locations considered, namely Loc1 and Loc2, which are included in the HA4M
dataset, and LocNew, which represents the new locations for the extended data gathered.

The training set of C-Loc12 is represented as IC-Loc1, while the training set of C-Loc21 is rep-
resented as IC-Loc2, and vice versa. Splitting the dataset according to different locations, in
addition to different subjects, allows further analysis in assessing the generalization perfor-
mance of a model across locations. Since each location differs in lighting conditions, back-
ground clutter, and other factors, the Cross-Location protocols are very challenging.

5.2.3 NewData Collection

While the HA4M dataset consists of videos of 41 different subjects, the dataset has been ex-
tended by collecting additional test videos of subjects, which form the new testing set ILocNew

test .
The videos were collected using anAzure Kinect following the same standard asHA4M. Fig-
ure 5.3 shows the different locations considered for the analyzed data. For evaluation on the
new dataset, themodels are trainedwith the IC-Subtrain training set. The additional Cross-Subject
protocol has been denoted by C-SubNew.

5.2.4 Semi-supervised Learning

Besides evaluating the approaches using fully-supervised learning, a semi-supervised protocol
was also proposed. In this setting, the training data has been further divided into two subsets.
The first subset contains the labeled training videos and the second subset contains training
videos without any annotations. Two cases have been considered. In the first case, 60% of the
training videos are labeled, while in the second case, only 30%are labeled. For semi-supervised
learning, the models are first trained on the labeled videos and then predict the labels on the
unlabeled training videos. Subsequently, the newly-labeled data are added to the already-
labeled data to train the model.

5.2.5 Deep Learning models Selection

Themodels considered for the evaluation of theHA4Mdataset represent the state-of-the-art
in the assessment of temporal action segmentation tasks [74, 92, 75, 93, 155]. TemporalCon-
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Table 5.1: Definition of the models from the literature considered for the analysis.

Approach Definition of the Architecture
MS-TCN[74] Multi-Stage hierarchical temporal convolutional network.

Each stage is composed of multiple temporal convolutional
layers with 1D dilated convolutions.

MS-TCN++[92] Improvement of the MS-TCN model. A Dual Dilated layer
is introduced, which combines convolutions with small and
large dilation factors.

BCN[75] Improves the performance ofMulti-Stage segmentationmod-
els by using a cascading paradigm to enable the model to have
adaptive receptive fields and more confident predictions for
ambiguous frames.

C2F-TCN[93] Temporal encoder-decodermodelwith a coarse-to-fine ensem-
ble of decoding layers, which aims at resolving the problem of
sequence fragmentation.

ASFormer[155] Transformer-based model with an encoder and several de-
coders, which combine temporal convolutions and local atten-
tion blocks.

volutionalNetworks (TCNs) capture long range dependencies using temporal convolutional
filters. In particular, Encoder-DecoderTCNs, such asC2F-TCN[93], are intended to shrink
and expand the temporal resolution with layer-wise pooling and upsampling, while Multi-
Stage architectures (MS-TCNs), such as [74, 92], expand the temporal receptive field with
constant temporal resolution using progressively larger dilated convolutions. Multi-Stage
segmentation algorithms have also been used with a Barrier Generation module [75], which
enables the later stages to focus on ambiguous frames by introducing a pooling operator to
smooth noisy boundary predictions. Finally, temporal modeling has been recently addressed
using Transformer architectures [157]. The ASFormer model [155] combines dilated tem-
poral convolutions with local transformer blocks. The used approaches for temporal action
segmentation are summarized in Table 5.1. While these models have been previously applied
to pre-computedRGB features like I3D, also other features have been investigated, including
depth and skeletal data, as described in Section 5.2.1.
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5.2.6 EvaluationMetrics

The most common evaluation metrics for temporal action segmentation are frame-wise Ac-
curacy, Segmentation Edit Score, and F1-Score. The Accuracy is defined as follows:

Accuracy = N̂correct

N (5.2)

where N represents the number of frames of all considered videos, while N̂correct represents
the number of all correctly predicted frames. Accuracy is widely used for the evaluation of
temporal action segmentation approaches. However, it is not reliable when the action frame
distribution is not well-balanced, which happens in most datasets, and it does not penalize
over-fragmentation. It is thus not suitable formanufacturing tasks, but it is still reported due
to consistency with previous works.

The Segmentation Edit Score, also known as Edit Score, is computed starting from the
Levenshtein distance [158], and it quantifies how similar two sequences are to each other.
Such metric is obtained starting from the accumulative distance value, defined as follows:

lev(̂s, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ŝ = s = 0
ŝ if s = 0 and ŝ > 0
s if ŝ = 0 and s > 0

min

⎧
⎪⎨

⎪⎩

lev(̂s− 1, s) + 1
lev(̂s, s− 1) + 1
lev(̂s− 1, s− 1) + 1(Ŝ[̂s] ̸= S[s])

otherwise

(5.3)

Ŝ and S denote the ordered list of predicted and ground truth action segments, respectively,
while ŝ and s represent their indices. The indicator function 1 denotes the cost for a substi-
tution. To obtain the Edit Score, the maximum length of the ground truth and the corre-
sponding predicted sequences are normalized and computed as:

Edit = 1− lev(|Ŝ|, |S|)
max(|Ŝ|, |S|)

· 100 (5.4)

The Edit Score is frequently used for assessing temporal action segmentation approaches, as
it measures how well the model predicts the ordering of an action sequence, but it does not
measure the duration and timing of the predicted actions.

The F1-score is obtained by comparing the Intersection over Union (IoU) of each pre-
dicted segment with respect to the corresponding ground truth segment. A segment is cor-
rectly predicted, denoted as True Positive (TP), if IoU is above a specified threshold. Predic-
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Table 5.2: Number of videos considered for each splitting.

Type of Splitting Name Train Set Test Set

Cross-Subject C-Sub 152 53
C-SubNew 152 10

Cross-Location C-Loc12 109 96
C-Loc21 96 109

tions that do not match any ground truth segment are False Positives (FP) andmissed action
segments are False Negatives (FN). The F1-score is then computed by

F1 = TP
TP+ 1

2(FP+ FN)
(5.5)

5.3 Experiments

For evaluation, all 205 videos within the HA4M dataset [98] are used. In the Cross-Subject
(C-Sub) splitting, the IC-Subtrain set includes 152 videos, while the IC-Subtest set includes 53 videos. As
for the Cross-Location splitting, the IC-Loc1 set is composed of 96 videos, while the IC-Loc2 set
includes 109 videos. Themodels trainedusing theC-Sub training set have alsobeen evaluated
on a newly collected testing set ILocNew

test composed of 10 videos, considering fully-supervised
and semi-supervised learning approaches. All the splittings are summarized in Table 5.2. 9
sets of features have been evaluated, which have been extracted from each video and are sum-
marized in Table 5.3.

Themodels were trained using amachine equippedwith anNVIDIAGeForceGTX1080
Ti. The analysis of training execution times reveals that, on average, the training durations
were 3 hours for MS-TCN, 4 hours for MS-TCN++, 6 hours for BCN, 8 hours for C2F-
TCN, and 13 hours for ASFormer.

The inference analysis has been focusedmainly on the F1-score value at the highest thresh-
old, which is considered the most complete metric for assessing models for temporal action
segmentation. As discussed in Section 5.2.6, the F1-score takes into account Precision and
Recall, which are both highly important in evaluating action segmentationmodels. Further-
more, the use of overlapping thresholds allows for a more nuanced evaluation of the per-
formance of the models. Such assessment can be of critical importance in models for ac-
tion segmentation, as the boundaries of action segments may not be precisely defined, and
different levels of overlapping actions may be acceptable. The thresholds have been set to
τ = {60, 70, 80} for Cross-Subject evaluation and to τ = {10, 25, 50} for Cross-Subject
evaluation since this task is much more challenging.
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Table 5.3: Definition of the sets of features used for the evaluation.

Set of Features Definition

RGB
RGBA
Depth

Sets of features extracted using the I3D model, re-
sulting inNi features of dimension 1024.

RGB + RGBA
RGB +Depth
RGBA +Depth

Sets of features extracted using the I3D model, re-
sulting inNi features of dimension 2048.

RGB + RGBA +Depth
Set of features extracted using the I3D model, re-
sulting inNi features of dimension 3072.

UpSkel
3D coordinates of 23 skeletal joints representing arms, hands,
chest and head, resulting inNi features of dimension 69.

ArmSkel 3D coordinates of 14 skeletal joints representing arms and
hands, resulting inNi features of dimension 42.

In the following subsections, the outcomes of the performed analysis are presented and
discussed.

5.3.1 Cross-Subject Evaluation

In Figure 5.4, the F1-score results for each model trained with I3D and Skeletal features are
presented in bar plots. Overall, the model that performs best is ASFormer trained on the
I3D features, specifically [RGB +RGBA +Depth]. For this particular model, the Accuracy
reached 95.77%, the Edit Score reached 97.69%, and the F1@{60, 70, 80} reached 94.72%,
93.14%, and 89.24%, respectively. Surprisingly, ASFormer performs worst for the skeletal
data and the best performance has been obtained by MS-TCN++ trained on UpSkel. This
model reached an Accuracy value of 94.92%, an Edit Score of 94.28%, and a F1@{60, 70,
80} at 92.57%, 88.57%, and 81.85%, respectively. This indicates that the transformer-based
ASFormer tends to overfit on the low-dimensional Skeletal features, while themethods based
on temporal convolutional networks are less prone to overfitting. However, the results for
different thresholds 60, 70, and 80 are compared, it has been observed that ASFormermainly
struggles to infer accurate action segment boundaries in case of Skeletal features since the gap
to the othermethods increases as the threshold increases. This shows that there is not a single
approach that performs best for all input modalities.
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Figure 5.4: F1@τ = {60, 70, 80} results obtained by the analyzed models trained with skeletal and I3D features,
considering C‐Sub splitting.

The results clearly show that, overall, the I3D features give the highest performances when
all the sets are considered, particularly the ones includingRGB information. As for the skele-
ton data, themodels trainedwithUpSkel seem to bemore effective in segmenting the actions.
Furthermore, aside from the ASFormer architecture, there is not a considerable gap between
the outcomes of I3D and Skeletal features, even though the firsts slightly outperform the
seconds. Among the features, the Depth features alone perform worst for all methods ex-
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cept ASFormer, which performs worst for the UpSkel features. While the results show that
RGB information is very useful, Skeletal features preserve privacy and the results show that
MS-TCN++ in combinationwithUpSkel features provides a privacy-friendly approach that
achieves only a slightly lower accuracy than ASFormer with RGB features.

5.3.2 Cross-Location Evaluation

The Cross-Location splitting is much more challenging than the Cross-Subject splitting.
This setting is also very interesting since other datasets, such as Assembly101 [91], have been
recorded at a single location and do not allow to evaluate how the features andmethods gen-
eralize to other locations. The F1-score values for all models trained with I3D and Skeletal
features are presented in Figures 5.5 and 5.5. More precisely, Figure 5.5 shows three bar plots
representingF1@{10, 25, 50} results for eachmodel trainedwith each set of features consider-
ing the C-Loc12 splitting. Figure 5.5 presents the same outcomes for themodels considering
the C-Loc21 splitting.

Observing all the outcomes, it is clear that Depth and Skeletal features generalize best
across locations. This outcome is expected since, due to the Cross-Location splitting, the
RGB features result in an overfitting on the environment where the assembly task occurred.
In case of Depth and Skeletal features, the environment information is weak or even missing
and the learning process thus focuses on the task itself.

Having a closer look at Figure 5.5, it is possible to notice that ASFormer performs best,
considering both I3D and Skeletal features. The ASFormer model trained using Upkel as
input reached an Accuracy of 61.29%, an Edit Score of 74.13%, and an F1@{10, 25, 50}
at 69.32%, 60.46%, and 41.33%, respectively. While ASFormer also performs much worse
when I3D features instead of Skeletal features are used, it still achieves the best results among
the methods, particularly when considering Depth features. In this case, the Accuracy score
reached 48.40%, the Edit score reached 60.38%, and the F1@{10, 25, 50} reached 52.55%,
45.49%, and 26.09%, respectively.

Figure 5.6 reports the results for the C-Loc21 splitting. It shows that the ASFormer archi-
tecture fed with UpSkel features as inputs outperforms all others methods. With this config-
uration, themodel reached anAccuracy of 84.38%, an Edit Score of 77.39%, and an F1@{10,
25, 50} of 83.71%, 82.45%, and 72.56%, respectively. The results show that the C-Loc12
splitting containsmore difficult videos in the test set than theC-Loc21 splitting. Also among
the I3D features, the ASFormer model trained using [RGBA + Depth] features performed
best. It gave an Accuracy of 50.82%, an Edit Score of 57.86%, and an F1@{10, 25, 50} of
43.91%, 38.10%, and 26.55%, respectively.
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Figure 5.5: F1@τ = {10, 25, 50} results obtained by the analyzed models trained with skeletal and I3D features,
considering C‐Loc12 splitting.

5.3.3 NewData Evaluation

The Cross-Subject analysis showed the efficiency of MS-TCN++ and ASFormer architec-
tures in properly evaluating the assembly task performed inHA4Mwhen trainedusing Skele-
tal or I3D features, respectively. To further assess the mentioned models, in the new acqui-
sition campaign the assembling task has been recorded in 2 new simulated manufacturing
locations, collecting a total of Inewtest = 8 videos performed by 3 new subjects.
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Figure 5.6: F1@τ = {10, 25, 50} results obtained by the analyzed models trained with skeletal and I3D features,
considering C‐Loc21 splitting.

The new set of data has been evaluated first considering a fully-supervised learning ap-
proach, thus testing the set on the models trained in the Cross-Subject splitting analysis.
Then, the data has been assessed considering a semi-supervised learning approach, as depicted
in Figure 5.7. To this end, the IC-Subtrain set has been divided first into 60/40%, then into 30/70%,
where 60% (30%) of the videos are annotated and the remaining 40% (70%) are unlabeled. For
semi-supervised learning, the models are first trained on the labeled videos and then used to
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Figure 5.7: Representative scheme of the semi‐supervised learning approach. The C‐Sub training set has been split first
into 60/40%, then into 30/70%. For both types of splitting, the green part in the scheme has been considered labeled
and used as training set. Then, the trained model predicts the labels on the blue part of the original training set, which
has been considered unlabeled. The estimated labels are then used as ground‐truth labels. With this new labeling, both
green and blue sets have been used as unique training sets. The newly trained model has then been evaluated on the
testing set, i.e., ILocNew

test .

infer the temporal segmentation on the unlabeled training videos. The models have then
been retrained, adding the newly-labeled videos. Finally, the trained models are evaluated on
the new data ILocNew

test .

Fully-supervised learning approach

Figure 5.8 shows the results of theMS-TCN++andASFormermodels trainedwith IC-Subtrain and
tested on ILocNew

test . As expected, the MS-TCN++ architecture performed best when trained
withSkeletal features, i.e.,UpSkel. Moreprecisely, thismodel reached anAccuracyof 87.48%,
an Edit Score of 94.57%, and an F1@{10, 25, 50} of 92.09%, 91.16%, and 83.72%, respec-
tively. The model trained with I3D features gave poor results, and the best performing has
been trained considering the [RGBA + Depth] set of features. Here, the Accuracy reached
62.27%, the Edit Score reached 62.96%, and the F1@{10, 25, 50} reached 63.70%, 58.87%,
and 44.35%, respectively.

Similarly, the ASFormer architecture gave the best outcomes when trained with Skeletal
features, although the RGBA set of features returned satisfying results. In this case, the Ac-
curacy reached 75.44%, the Edit Score reached 82.99%, and the F1 @ {10, 25, 50} reached
82.72%, 79.09, and 60.90%, respectively. On the other hand, the model trained using the
UpSkel features achieved an Accuracy of 88.85%, an Edit Score of 85.49%, and an F1@{10,
25, 50} of 88.78%, 87.85%, and 80.37%, respectively. In contrast to IC-Subtest , the best perfor-
mances are obtainedby Skeletal features. While IC-Subtest is very similar to IC-Subtrain since the data has
been recorded at the same location and time, the new dataset ILocNew

test presents a more realistic
scenario since the recording differs more from the training set.
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Figure 5.8: F1@τ = {10, 25, 50}) results obtained by the MS‐TCN++ and the ASFormer models trained on IC‐Subtrain with
Skeletal and I3D features, and tested using the ILocNew

test set.

Semi-supervised learning approach

Table 5.4 presents the results of the best models trained with Skeletal or I3D features, com-
paring semi-supervised learning with fully-supervised learning. More precisely, the first part
of the table shows the results of the models trained using 60% of the IC-Subtrain set as labeled.
Contrariwise to the I3D features, UpSkel gave particularly good results, reaching for theMS-
TCN++ architecture an Accuracy of 87.00%, an Edit Score of 89.74%, and an F1 @{10, 25,
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Table 5.4: Comparison of the fully‐supervised approach (100%) and different levels of semi‐supervised learning, i.e., 30%
and 60% of labeled videos. The table shows the best results (according to F1@τ = 50) obtained by the MS‐TCN++ and
the ASFormer models trained with Skeleton or I3D features from IC‐Subtrain , and tested using the ILocNew

test set.

Models Features Acc Edit F1 @ {10, 25, 50}
100%

MS-TCN++

RGBA 53.90 58.25 60.00 55.45 39.09
RGBA+Depth 62.27 62.96 63.70 58.87 44.35

UpSkel 87.48 94.57 92.09 91.16 83.72
ArmSkel 86.02 94.13 91.16 89.30 80.93

ASFormer

RGBA 75.44 82.99 82.72 79.09 60.90
RGBA+Depth 73.58 83.27 77.39 74.78 60.86

UpSkel 88.85 85.49 88.78 87.85 80.37
ArmSkel 80.97 91.96 90.09 88.11 73.26

60%

MS-TCN++

RGBA 62.55 69.91 62.65 55.42 39.35
RGBA+Depth 59.01 66.01 66.66 57.14 30.31

UpSkel 87.00 89.74 89.77 89.70 83.55
ArmSkel 83.85 92.31 88.78 87.85 76.63

ASFormer

RGBA 74.83 79.76 78.81 76.27 64.40
RGBA+Depth 68.32 79.51 72.24 66.96 50.22

UpSkel 84.00 84.97 87.47 84.65 74.41
ArmSkel 77.99 91.96 93.06 86.13 70.29

30%

MS-TCN++

RGBA 51.58 56.14 53.81 47.53 33.18
RGBA+Depth 46.74 45.18 47.96 33.48 20.81

UpSkel 80.55 82.71 85.71 83.92 75.89
ArmSkel 78.32 90.40 86.79 83.01 69.81

ASFormer

RGBA 69.57 69.10 70.07 65.35 48.81
RGBA+Depth 71.05 80.82 78.11 72.10 53.21

UpSkel 76.18 91.96 89.10 88.11 66.33
ArmSkel 69.57 91.96 87.12 81.18 57.42

50} of 89.77%, 89.70%, and 83.55%, respectively. The same Skeleton features used in the
ASFormer architecture performed similarly, giving an Accuracy 84.00%, an Edit Score of
84.97%, and an F1 @{10, 25, 50} of 87.47%, 84.65%, and 74.41%, respectively.

The results of the second semi-supervised learning analysis, where the IC-Subtrain set has been
divided considering 30% as labeled, are also shown inTable 5.4. The outcomes follow a trend
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Figure 5.9: F1@τ = {10, 25, 50} results obtained by MS‐TCN++ (solid line) and ASFormer (dashed line) trained with
UpSkel (in red) and RGBA (in blue), considering the train set IC‐Subtrain with 30%, 60% and 100% of labeled videos.

similar to the ones from the first semi-supervised learning analysis. In fact, the best models
are the ones trained using Skeletal features, namely UpSkel. In particular, the MS-TCN++
architecture reached an Accuracy of 80.55%, and Edit Score of 82.71% and an F1@{10, 25,
50} of 85.71%, 83.92%, and 75.89%, respectively. The model built on the ASFormer archi-
tecture performed similarly, giving 76.18% as Accuracy, 91.96% as Edit Score, and 89.10%,
88.11%, and 66.33% as F1@{10, 25, 50}, respectively.

For better clarity, Figure 5.9 shows a line graph that represents the best Skeletal and I3D
features used for trainingMS-TCN++ andASFormermodels, for each percentage of labeled
videos. The graph clearly proves the superiority of the Skeletal features in training bothmod-
els. Overall, the MS-TCN++ architecture proved to return the best model in successfully
segmenting human actions when addressing both semi-supervised learning approaches. It is
clear, though, that ASFormer performed best when themodels are trainedwith I3D features.
Such outcome is expected since the ASFormer architecture gave far the best performance in
Cross-Subject analysis when trained with I3D features.

To further support the obtained outcomes, Figure 5.10 reports the qualitative results of
a sample video within the ILocNew

test set. It is clear that the MS-TCN++ model trained with
I3D features, more specifically with RGBA, gave poor results in all the levels of supervision.
On the contrary, the same feature used to train ASFormer returned proper segmentation.
Nevertheless, the Skeletal features proved to be the best data for feeding the models, as both
MS-TCN++ and ASFormer achieve high segmentation results when trained using UpSkel.

5.4 Discussion

In this work, five state-of-the-art models for temporal action segmentation have been ana-
lyzed in combination with nine different feature sets based on Skeletal features, Depth fea-
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Figure 5.10: Qualitative results for the temporal action segmentation task. The graph depicts the segmentation re‐
sults of a sample video within the ILocNew

test set, compared with the ground truth (GT). Such results are obtained from the
ASFormer models (in yellow) and the MS‐TCN++ models (in orange), both trained with RGBA and UpSkel features at
different levels of supervision, i.e. 30% 60% and 100%.

tures and RGB features, starting from the HA4M dataset. The aim of the study was to an-
alyze which features are more suitable for realizing a system that segments the actions of an
operator performing a task in manufacturing scenarios.

The data has been extended from theHA4Mdataset by newly captured sequences, and de-
fined new evaluation protocols, considering Cross-Subject and Cross-Location splittings. In
theCross-Subject analysis, all themodels performed verywell,managing to correctly segment
the actions of the operators performing the assembly task. TheMS-TCN++ architecture dis-
tinguished among the others for performing best when privacy-preserving Skeletal features
are used. Such data are also faster to gather, as the Azure Kinect Body Tracking DK allows a
real-time and automatic extraction of the skeletal joints. Nevertheless, the ASFormer archi-
tecture outperformed the other models when trained with I3D features. It also performed
best in the Cross-Location analysis, where two splittings for training and testing sets have
been considered. In this part of the study, the best models proved to be the ones trained
with Skeletal features. Among the models trained with I3D features, the Depth proved to
be the best set of features. While it is expected that Skeletal and Depth features show bet-
ter generalization to different environments where the task is performed, it also shows that
Cross-Location evaluation is very important, which is currently missing in assembly datasets
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like Assembly101.
Further analyses were addressed considering a new set of videos gathered following the

same standards as HA4M, extracting the same sets of features. The evaluation has been fo-
cused on the two best-performing approaches, namely MS-TCN++ and ASFormer. The
models trained in theCross-Subject analysis have been tested on the new dataset, considering
also semi-supervised learning approaches. The results show the superiority of MS-TCN++
in segmenting the actions of the operators by using Skeletal features whereas ASFormer gave
the best performance when trained with I3D features.
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6
Conclusion

With the spreading of Industry 5.0, human action recognition and segmentation inhealth-
care and manufacturing have emerged as pivotal applications of computer vision and deep
learning technologies. The goal of this thesis was to explore these domains, addressing the
challenges of human monitoring assessment and human action segmentation. State-of-the-
art vision devices such as the Microsoft Azure Kinect depth camera were deepened, using
such sensors to gather data. Advanced machine learning and deep learning methodologies
were developed and applied to the acquired dataset, involving real case studies.

The key contributions of the presented thesis are the following:

• Ameticulous examination of camera calibrationmethodologies forRGB and Infrared
data was provided, with or without associated depth information. Results proved the
effectiveness of the proposed calibration techniques, mainly regarding the 3D proce-
dures which outperform 2D ones.

• A comprehensive video acquisition campaign was conducted in healthcare and man-
ufacturing environments, aiming to gather real, non-simulated data. Elderly patients
undergoing specific motion exercises and operators engaged in manufacturing assem-
bly tasks were recorded usingmulti-camera systems, considering bothRGB andRGB-
D sensors. Such datawas gathered into two datasets, namely SPPB andHA4M,which
represented the bedrock for the subsequent experiments and methodologies.
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• Themain contribution of the presented thesis lies in the development and application
of machine learning and deep learningmethodologies for humanmobility assessment
and human action segmentation, which perfectly adhere to the principles of the novel
Industry 5.0.

– In thehealthcare domain, advanced algorithmswere developed and applied to as-
sess human mobility exercises, particularly among patients grappling with neu-
rodegenerative diseases. This work illuminated the potential of technology to
objectively evaluate the mobility of individuals, supporting medical diagnosis
and ultimately advancing their well-being.

– In the context of manufacturing, deep learning methodologies were applied to
segment human actions in real-world manufacturing scenarios. These cutting-
edge approacheswere fedwith variousdiscriminant features extracted fromvideo
data, aiming tounderstand and respond to the actionsofhumanoperators,while
emphasizing the importanceofhuman-robot interaction andcollaboration. These
contributions enlightened the key role of vision devices and intelligent systems
in boosting the well-being of both operators and the broader manufacturing
ecosystem.

With an aging global population, it is fundamental to increase the demand to support
diagnostic issues in retirement residences and beyond. The experiments conducted in this
thesis involved the complicated topic ofmotion ability assessment for elderly individuals, en-
lightening a path toward telehealthcare systems. In healthcare, several systems, both invasive
and non-invasive, have previously been considered to measure specific parameters related to
gait and posture. However, such systems often only address partially themobility assessment
issue. Currently, the evaluation of motion abilities primarily relies on experienced medical
personnel, who meticulously observe individuals while performing mobility exercises.

The first system proposed in this research performs mobility assessment avoiding any hu-
man subjectivity, lack of experience, or confidence, by offering a comprehensive, data-driven
approach. By exploiting the power of deep learning methodologies, the proposed system en-
hances the diagnostic accuracy of healthcare professionals while protecting the elderly from
the risk of physical injuries due to falls. The poor quantity of data available was overcome by
creating a real dataset acquired in elderly facilities, where the patientswere recordedwhile per-
forming specific exercises, using a calibrated system composed of three cameras. The dataset
included the skeletal data of the patient’s movements, and it was further enlarged by using a
data augmentation technique. Such augmentation involved applying rototranslation matri-
ces to create new skeletal data, for a complete and comprehensive training process. The study
also included an in-depth analysis of the most relevant features to extract from the skeleton
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data, which led to the obtained results. The machine learning and deep learning models per-
formed successfully, particularly the ones including the LSTMnetwork architecture. Hence,
the method has been validated to be effective in correctly predicting the motion assessment
of elderly patients affected by neurodegenerative diseases. Such system is intended to reduce
frequent clinic visits, providing a convenient and effective alternative for health assessment,
which can be performed also remotely. As we progress into an era where telehealthcare sys-
tems become more and more crucial, the presented research lays the foundation for a future
where healthcare is proactive, individualized, and embraces the well-being of elderly patients
as its primary focus.

On the other hand, the advent of Industry 5.0 and the increasing complexity of manu-
facturing processes have underlined the importance of building a safe, efficient, and well-
functioning manufacturing environment. The experiments conducted in this thesis have
deepened into the heart of the manufacturing domain, where human operators play a piv-
otal role. The integration of vision depth devices and deep learning technologies has un-
locked new dimensions in monitoring and enhancing the well-being of individuals working
in manufacturing settings. It is clear that current manufacturing demands precision and ef-
ficiency, but it is also driven by a commitment to defending the mental and physical health
of operators. In this context, the presented experiments set the baseline for a new way of
perceiving manufacturing tasks, addressing the complex challenge of action segmentation in
industrial assembling lines. Furthermore, performing such segmentation on a real dataset,
including color, depth, and skeletal information, increased the relevance of the analysis. All
the state-of-the-art deep learning models successfully segmented the actions for completing
the assembly task. In particular, the Transformer architecture was themost suited to process-
ing video data, while the Multi-Stage architecture gave the best results when processed with
skeletal information. These outcomes imply that data generalization is mandatory in obtain-
ing efficient results with heterogeneous models. Such statement is further validated by the
cross-subject and cross-location analysis performed, particularly regarding the new set of data
collected in new manufacturing scenarios. The models segmented correctly and efficiently
the actions required for completing the task in both fully and semi-supervised learning cir-
cumstances, meaning that the dataset is successful in correctly generalizing the assembling in
any scenario.

By using deep learningmethodologies to predict and segment human actions in real-world
manufacturing environments, the second system proposed in this research aims to enhance
the objectivity and accuracy of production performance, avoiding cognitive and physical im-
pairment of the operators. The development of automatic systems presents a new disrup-
tive potential for setting the operator at the core of manufacturing environments, enabling
robotic systems to fully adapt to humans, and not the other way around.

The presented research paves the path to new challenges and topics, which can be investi-
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gated in the future. Some of such issues are presented as follows.

• The acquisition of more consistent datasets regarding the number of observed sub-
jects, setups, and environments will allow a deeper validation of the proposed auto-
matic systems. For both healthcare and manufacturing fields, the need for new re-
alistic sets of data is neverending, and the more real data is gathered, the more deep
learning technologies can be trained and improved at their best, guaranteeing proper
generalization.

• As for the system developed for the assessment of elderly motion functions, future
improvements may involve the use of user-friendly sensors such as phone cameras or
smart devices. With these tools, the evaluation of fall risk and balance can be seam-
lessly extended to home environments, allowing users to proactively monitor their
well-being and health with complete autonomy. With this approach, patients can in-
dependently record themselves while performing the planned exercises, while the sys-
tem can autonomously and easily evaluate their motion capabilities. Such user-centric
setup promotes a sense of control and convenience in health monitoring, potentially
reducing the need for frequent clinical visits.

• In the context of human action segmentation for manufacturing tasks, the ability to
observe the movements of human operators during an assembly assignment is of crit-
ical importance for understanding their capabilities in collaborative tasks with robots.
The outcomes provided by this work can lead to new studies integrating action seg-
mentationmodels into robotic scenarios, aiming to develop real-time systems for Hu-
man - Robot interaction and collaboration. Such systems can detect the actions of
human operators performing a specific task, and allow the robot to respond accord-
ingly in real-time. The camera setupmaybe improvedby adding a seconddepth sensor
and acquiring new data in a calibrated environment. The effectiveness of the analyzed
models can be further tested in industrial environments where collaborative robots
share the workspace with operators, aiming to assess their robustness and generaliza-
tion. Enhancing collaborative robots with such deep learning algorithms guarantees
high efficiency and precision while placing an invisible protective shield around the
operators, promoting their safety.

This research echoes a vision where technology, guided by empathy, serves as a guardian
of human well-being, following the tenets of Industry 5.0. It offers a glimpse into a future
where human-machine collaboration is enhanced by intelligent systems, fostering a nurtur-
ing environment in which the well-being of humans is paramount.
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