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Closed loop control of dielectric elastomer
actuators based on self-sensing
displacement feedback

G Rizzello1,2,3, D Naso1, A York2 and S Seelecke2

Abstract
This paper describes a sensorless control algorithm for a positioning system based on a dielectric
elastomer actuator (DEA). The voltage applied to the membrane and the resulting current can be
measured during the actuation and used to estimate its displacement, i.e., to perform self-sensing.
The estimated displacement can be then used as a feedback signal for a position control
algorithm, which results in a compact device capable of operating in closed loop control without
the need for additional electromechanical or optical transducers. In this work, a circular DEA
preloaded with a bi-stable spring is used as a case of study to validate the proposed control
architecture. A comparison of the closed loop performance achieved using an accurate laser
displacement sensor for feedback is also provided to better assess the performance limitations of
the overall sensorless scheme.

Keywords: dielectric elastomer, dielectric elastomer actuator, DE, DEA, self-sensing, control,
sensorless control

(Some figures may appear in colour only in the online journal)

1. Introduction

Dielectric elastomers (DEs), or dielectric electro-active
polymers (DEAPs), represent a family of active materials
which exhibit significant change in their size or shape as a
consequence of the application of an external electric field. A
DE consists of a thin elastomeric film (e.g. silicone or VHB
acrylic) sandwiched between two compliant electrodes. When
an electric field is applied to the DE, via a voltage at the
electrode surface, the charges of opposite signs on the elec-
trodes are attracted by electrostatic forces, generating a
compression of the film and a consequent expansion of its
area. Such an electrically induced deformation can be effec-
tively used for actuation [1]. Large deformations, low power
consumption, fast response time, high flexibility and low cost
make DE actuators (DEA) a suitable alternative for the

development of a new generation of devices such as pumps
[2], valves [3], robots [4] and micropositioning stages [5]. On
the other hand, DEAs exhibit creep and strong nonlinearities
which tend to limit their dynamic performance when operat-
ing in open loop. The use of feedback control to compensate
these effects is a viable solution to overcome such limits,
enabling the use of DEA technology in a wider range of
applications.

The major restriction of typical feedback control is the
requirement of an external sensor for closing the loop.
However, DEAs dual actuation-sensing capability allows for
operation in closed loop without any external sensor, by
exploiting the intrinsic feature of the material known as
self-sensing [6]. When a DEA is actuated, its electrical
impedance changes according to its geometry. If electrical
measurements are performed while actuating, the materials
electrical parameters can be estimated and used to reconstruct
its deformation. Since electrical measurements, e.g. voltage3 Author to whom any correspondence should be addressed.
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and current, are typically integrated in the circuit which drives
the actuator, self-sensing can be potentially implemented
without requiring any additional sensor. The concept of self-
sensing, i.e. simultaneous sensing and actuation, represents a
common feature of many active materials [7]. If the self-
sensing signal is used as feedback for a position control
algorithm, it allows the realization of a compact device which
is able to actuate and sense at the same time, and operate in
closed loop without the need of additional electro-mechanical
transducers. This attractive concept is often referred to as
‘self-sensing’ control or ‘sensorless’ control.

The electrical dynamics of a DEA is characterized by
high-voltage and low-current signals. In addition, there exists
parasitic phenomena such as voltage drop on the electrodes
and leakage current, making the implementation of self-sen-
sing a nontrivial task. Several recent contributions report
experimental investigation of self-sensing capabilities of
DEA’s. In [8], Chuc et al propose a force self-sensing tech-
nique for DEA’s based on the electrical impedance mea-
surement. The paper presents the concept and some
preliminary experimental results. Jung et al describe in [9] a
self-sensing methodology based on reconstructing the DEA
capacitance from the output of a RC high-pass filter. The
paper presents results at several actuation frequencies, but the
proposed approach requires peak detectors which make the
overall implementation more complex, and it also does not
include the resistive effects of the electrodes. In [10], Matysek
et al propose an electronic circuit capable to drive and sense
up to eight DEA devices for a tactile display, in which the
DEA self-sensing is performed by measuring the charge. In
[11], Gisby et al propose a self-sensing algorithm which
enables capacitance estimation and compensation of parasitic
effects. The algorithm is based on a regression involving the
DEA charge, voltage and current. Hoffstadt et al [12] propose
an online identification algorithm based on a frequency
domain approach which can be used for self-sensing. The
algorithm requires voltage and current measurements only, as
well as amplitude and phase information. They also discuss
how the operating frequency affects the choice of the elec-
trical model used to describe the DEA impedance.

The area of feedback control of DEA’s has also gained
increased attention in recent years. For instance, in [13]
Sarban and Jones implement an adaptive control on a DEA
based on a gray-box modeling approach. In [14], Wilson et al
propose a cerebellar-inspired controller in applications where
the DEA characteristics changes significantly. In [15],
Rizzello et al investigate the limitations of model based PID
control, and propose a modified controller consisting of a PID
cascaded with a square root which performs a compensation
of the main nonlinearity of the actuator. Despite its simple
structure, this control scheme is particularly effective in
dealing with DEA regulation, even when the actuator shows
strong nonlinearities, i.e. hyper-elasticity and bi-stability
[16, 17]. However, even though both self-sensing and feed-
back control have received considerable attention in recent
years, only few works investigate the performance of self-

sensing based closed loop control. A significant example is
the work of Rosset et al [18], where the authors use the self-
sensing approach in [11] within a closed loop PI control
scheme. The implementation in [18] still has a number of
unaddressed issues (e.g., no validation of the accuracy is
provided, the PI is tuned for a specific operating point, and the
closed loop bandwidth is relatively low), but the paper
undoubtedly represents the first successful attempt to validate
the sensor-free control loop scheme. Combining self-sensing
with feedback control is in general a nontrivial operation, as
the self-sensing tends to introduce delays in the feedback loop
which may eventually produce destabilizing effects. More-
over, self-sensing feedback may introduce some additional
undesirable effects such as amplification of measurement
noise. In general, it is expected that a self-sensing control
architecture leads to an overall decrease in performance with
respect to a standard, sensor-based scheme, even if a quan-
titative measure of this decrease in performance has not been
investigated yet, to the author’s best knowledge. This paper
moves in the same direction of the aforementioned work, by
performing an experimental validation of a sensorless control
scheme for a DEA, establishing both features and limitations
of the proposed technique. In order to achieve sensorless
control, we extend our previous work by combining the self-
sensing algorithm proposed in preliminary conference paper
[19] with the control approach described in [15]. The self-
sensing technique aims at reconstructing the DEA capacitance
and electrode resistance from voltage and current measure-
ments by means of online identification algorithms. The
methodology is based on a time-domain approach, and no
specific hardware (e.g. PWM) is required for its imple-
mentation. The algorithm does not need any information on
the DEA charge, and therefore it is not affected by drift due to
the leakage current. Moreover, the algorithm has a relatively
low computational complexity, as it consists of algebraic
operations only (i.e. no peak or phase detections), so it can be
operated in real time at fast rates (20 kHz in [19]). The
selected controller structure is a PID cascaded with a square
root, which was proven to be particularly effective for DEA
set-point regulation and compensation of both material creep
and nonlinearities [20]. A circular DEA membrane pre-loaded
with a combination of a linear and a bi-stable spring is chosen
as a case of study to validate the control architecture. The bi-
stable biasing element allows to significantly increase the
actuator stroke, at the cost of increasing the material non-
linearities. Several operative experiments are performed to
assess the closed loop response of the DEA when the dis-
placement feedback is provided by either an accurate laser
displacement sensor or by the self-sensing algorithm.

The reminder of the paper is organized as follows.
Section 2 illustrates the operating principle of the bi-stable DEA
and discusses on modeling. Section 3 discusses the self-sensing
algorithm and the overall sensorless control architecture, while
section 4 summarizes the experimental validation campaign.
Finally, section 5 provides conclusive remarks.
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2. DEA description and modeling

2.1. Actuator description

The actuator investigated in this work is based on the circular
DE membrane shown in figure 1. The black ring represents
the DE silicone material with compliant carbon-based elec-
trodes screen-printed on the external surfaces. The inner circle
and the outer frame (in blue) represent a passive plastic frame.
When high voltage is applied to the electrodes, the resulting
electrostatic compression induces a membrane squeezing
which, due to the material incompressibility, produces the
out-of-plane actuation shown in figure 2. The relevant geo-
metrical parameters of the actuators in the undeformed state
are reported in table 1.

As discussed in [21] an effective tradeoff between stroke
and complexity can be obtained by a combination of a linear
and a nonlinear bi-stable spring spring, denoted as LBS and
NBS respectively. Despite the significant increase in stroke,
the dynamic response of the NBS+LBS DEA is typically
characterized by strong nonlinearities and hysteresis. How-
ever, such nonlinearities can be accurately modeled and
compensated by means of model-based feedback control,
allowing stable positioning in the entire actuation range [22].

2.2. DEA electric model

The self-sensing requires the use of electrical measurements
in order to reconstruct the DEA state of deformation. Several
variables can be used to describe the DEA electrical response,
e.g. voltage, current, charge. The charge measurement,
however, is challenging due to the unavoidable drift produced
by the leakage current. For this reason, in this work we use
only the voltage v and current i to reconstruct the membrane
geometry.

In order to describe the voltage–current response of the
DEA, we adopt the electrical circuit shown in figure 3 [18].
The electrical model consists of a capacitor C connected in
parallel with the leakage resistor Rl and in series with two
resistors Re taking into account the voltage drops on the
electrodes. All these electrical parameters are assumed to vary
according to the DEA deformation. We define the lumped
series resistance R as

R y R y2 , 1e( ) ( ) ( )�

where y is the out-of-plane stroke. If the following condition
holds

R y R y y2 , 2el ( ) ( ) ( )��

we expect that the effects of leakage can be neglected at
sufficiently high operating frequencies, without introducing a
significant modeling error [23]. Considering the typical order
of magnitude of the resistances, with Rl of the order of GΩ
and Re of the order of hundreds of kΩ [23], condition (2)
holds. Therefore, the effects of the leakage can be neglected
for self-sensing applications, in which we are mostly
interested in the high-frequency electrical response. The
resulting leakage-free model is the RC series circuit shown in
figure 4. Note that the v–i relationship represents a high-pass
filter. The model in figure 4 is described by the following

Figure 1. Circular DE Membrane.

Figure 2. Circular DEA, voltage off (a) and on (b).

Table 1. DEA geometry in undeformed state.

Parameter Value Unit

Inner radius 6.25 (mm)
Outer radius 11 (mm)
Thickness 40 (μm)

Figure 3. DEA equivalent electrical circuit.

Figure 4. Leakage-free DEA equivalent circuit.
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where the state variable q is the charge on the capacitor. The
proposed model was proven to be accurate in describing the
electrical response of the circular DEA, provided that an
analytical expression is found for C(y) and R(y) [23].

3. Self-sensing closed loop control

Voltage and current measurements can be used as inputs for
model (3) to estimate R and C, and then to reconstruct the
displacement y using the relationship between electrical
parameters and the geometry. The relationship between R and
y, however, is typically hysteretic and frequency-dependent,
while C is related to y in a monotonic way [19]. This is
confirmed from the capacitance–displacement measured
curve shown in figure 5, and performed with Hameg® LCR-
bridge model HM8118. After these considerations, we con-
clude that the reconstruction of the deformation from the
estimated capacitance is the most suitable for self-sensing in
our case of study.

As highlighted in section 2.2, DEA have a high-pass
voltage–current relationship. Therefore, the current result-
ing from a typical low-frequency actuation is not large
enough to be accurately measured. To increase the mea-
sured current without affecting the actuation performance,
we adopt the modulation approach proposed in [9]. An
example of input voltage for performing self-sensing in
DEA is shown in figure 6, and consists of a high-frequency,
low-amplitude sensing signal which is superimposed to a
low-frequency, high-amplitude actuation signal. The high-
frequency sensing signal is then used to overcome the
aforementioned limitation, as it provides a current response
which is sufficiently large to be accurately measured, but it

does not provide contribution to electromechanical actua-
tion if its frequency is beyond the actuator mechanical
bandwidth (typical values of mechanical bandwidth for the
considered actuator are around 100 Hz).

3.1. Self-sensing algorithm

The self-sensing algorithm is based on the work presented in
[19], and it is briefly summarized in this section. When the
signal in figure 5 is applied to the DEA, voltage and current
undergo fast changes due to the high-frequency input comp-
onent (the low-frequency component is filtered from the
electrical dynamics, and therefore its effects are not visible in
the current response), while the capacitance and resistance
undergo relatively slow changes at the same rate of the low-
frequency voltage component. Therefore, if we acquire
measurements with a sufficiently small sampling time Ts and
restrict our attention to a relatively small time interval, we can
assume that the time-varying behavior of C and R can be
neglected, while the changes in v and i are non-negligible. If
the derivative in (3) is approximated with forward Euler rule

t
q t

q k q k
T

d
d

1
, 4

s
( ) ( ) ( ) ( )x

� �

where the variable k represents the discrete sampling time, we
obtain the following difference equation

v k v k Ri k
T
C

R i k1 1 . 5s( ) ( ) ( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠� � � � � �

It can be noted that equation (5) has the following Linear-
In-Parameters structure

y k k , 6T( ) ( ) ( )K R�

Figure 5.DEA capacitance versus displacement, experimental curve.

Figure 6. Actuation signal (upper), sensing signal (central) and
complete self-sensing signal (lower).

4



with
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The mathematical structure of (5) is particularly con-
venient as it opens up the possibility of estimating the para-
meters θ, i.e. R and C, in real-time by means of standard linear
regression algorithms. As discussed in [19], a convenient
choice is the use of recursive least squares (RLS) algorithm
with exponential forgetting [24], given as follows
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The quantity kˆ ( )R represents the estimate of ,R i.e.
capacitance and resistance, at time k, while P(k) and K(k)
represent a covariance matrix and an observer gain matrix,
respectively. The algorithm (10) can be tuned by choosing an
appropriate forgetting factor μ in the range 0<μ�1. The
value μ=1 is used when θ is constant, while a μ<1 allows
the estimation of parameters which vary in time. The faster
the variations of θ over time, the smaller should be the value
of μ. However, lowering μ also reduces the filtering cap-
abilities of the algorithm with respect to measurement noise.
Therefore, the forgetting factor needs to be properly tuned to
achieve the best trade-off between estimation velocity and
noise propagation. This trade-off between velocity and noise
filtering becomes even more crucial when operating in
close loop.

Once a capacitance–deformation curve is initially cali-
brated, e.g. by means of polynomial interpolation, it can be
inverted online during self-sensing operations.

Experimental evidence shows that the estimated capaci-
tance is typically affected by high-frequency harmonic dis-
turbances at multiples of the sensing signal frequency. In
order to suppress these harmonics and improve significantly
the self-sensing accuracy, some filtering strategies are sug-
gested in [19]. The reader may refer to the aforementioned
paper for further details.

3.2. Closed loop control

The displacement estimation can be used as feedback signal
for a position control loop, which becomes in this case a
sensorless scheme. A block diagram of the sensorless control
architecture adopted in this work is shown in figure 7. The
self-sensing block contains the algorithm described in
section 3.1. Since we are mainly interested in comparing the
closed loop performance of the sensor-based and self-sensing

based schemes, the only difference between the control
architectures will be the source of the feedback signal (either
the measured stroke, indicated with ym, or the self-sensed
stroke y .ˆ ) This is represented by the switch in figure 7. We
define the tracking error as

e t y t y t , 11( ) ( ) ( ) ( )*� �

where y can be either ym or ŷ depending on the experiment.
The chosen control law has the form of a PID followed by a
square root block as shown in figure 7 [15]. In particular, the
PID output is defined as follows

u t k t k k
t

te e d
d
d

e , 12p i

t

d
0

( ) ( ) ( ) ( ) ( )¨ U U� � �

while the voltage v applied on the DEA is calculated from
u as

v t u t . 13( ) ( ) ( )�

The square root term was initially proposed in [15] to
compensate the quadratic nonlinearity resulting from the
electro-mechanical coupling equation. All the remaining
material creep and nonlinearities, mainly due to the hyper-
elasticity and bi-stability, can be effectively compensated
with PID laws designed according to modern robust control
tools, see e.g. [20, 22]. However, in this work we will con-
centrate the attention on hand-tuned PID laws to better focus
on the possible loss of performance caused by the inaccura-
cies of sensorless feedback.

4. Experimental results

4.1. Experimental setup

The experimental setup used to validate the proposed self-
sensing method consists of the DEA circular actuator with the
NBS+LBS loading shown in figure 2 (max. applicable
voltage 2.5 kV, max. out-of-plane displacement 5 mm). A
Zaber T-NA08A25 linear actuator and a Zaber T-LA28A
linear actuator used to modify the relative position of the two
loading springs with respect to the DEA, allowing to tune the
actuator performance. A Trek model 610E voltage amplifier
(max. voltage 10 kV, bandwidth 1 kHz) is used to apply
voltage to the DEA. As the bandwidth of the current monitor
of the amplifier is not sufficiently large for our application, a

Figure 7. Closed loop control with displacement sensor/self-sensing
switch block diagram.
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sensing circuit was designed on purpose for measuring the
current absorbed by the DEA (range±500 μA). A Key-
ence™ LK-G37 laser displacement sensor is also used to
obtain accurate displacement measurements (accuracy
±150 nm), in order to validate the accuracy of the self-sen-
sing estimation in both open- and closed-loop. A picture of
the setup is shown in figure 8(a), with expanded views of the
DEA (b) and the biasing springs (c).

The data acquisition, the control and the self-sensing
algorithms are implemented in real-time in LabVIEW with an
FPGA data acquisition system communicating with a host
computer. All the measured variables (voltage, current, dis-
placement) are acquired at a constant rate of 20 kHz. A
sampling rate of 20 kHz is also selected for the self-sensing
loop, while the position control algorithm updates the voltage
signal at a rate of 5 kHz, as it is desirable that the sensing/
self-sensing loops are operated at a non-slower rate than the
control loop. Both algorithms are implemented on the FPGA
by using a fixed-point representation with resolution of
24 bits. Since the input voltage v is constrained in the range

[0, 2.5] kV to avoid electrical breakdown, the control law is
implemented in an anti-windup configuration, with u limited
within [0, 6.25] kV2. Moreover, the analog PID defined by
(12) to (13) is implemented in discrete time by adopting
trapezoidal rule for the integral and finite differences for the
derivative. A block diagram representation of the complete
experimental setup is shown in figure 9.

4.2. Open loop self-sensing tests

The first set of experiments aims at preliminary testing the
proposed self-sensing methodology in open loop. In each test,
the self-sensing algorithm is hand-tuned with a forgetting
factor μ=0.95 and a high-frequency sensing signal consists
of a 1 kHz, 75 V sinewave. A first calibration experiment is
performed by applying a 0.1 Hz sinewave actuation voltage.
The actuator displacement and the estimated capacitance are
recorded with the laser displacement sensor and used to
construct the displacement–capacitance curve with a third
order interpolating polynomial. Subsequently, the calibrated
curve is used to estimate the displacement during the actua-
tion for three different actuation signals: an amplitude
modulated square wave filtered with a first order low-pass
filter (cut-off frequency of 3 Hz) and denoted as AMSQW, a
1 Hz sinewave and a sinesweep from 0 to 10 Hz.

The results are shown in figures 10–12. The displacement
is measured by considering the completely undeformed DE
membrane as zero reference level. Therefore, in each test the
position starts from a non-zero value corresponding to the
initial DEA deformation due to the biasing springs pre-com-
pression. For all the experiments, the estimation error is never
larger than the 4%. The error tends also to become smaller
when the deformation is larger and occurs at a slower rate.
This is an expected result, as the self-sensing algorithm is
based on the assumption of constant resistance and capaci-
tance, therefore the slower their variation the higher the
estimation accuracy. Moreover, as the capacitance–displace-
ment curve showed in figure 5 exhibits a parabolic trend,
higher sensitivity can be obtained at larger deformations. The

Figure 8. Full experimental setup (a), zoom on DEA (b) and zoom
on biasing springs (c).

Figure 9. Block diagram representation of experimental setup used to test the sensorless control.
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experimental results clearly show the effects of the material
creep, which leads to a slow drift of the position resulting
from the application of a steady voltage. As the creep appears
in both measured and self-sensed displacements, we can
conclude that the capacitive based self-sensing is robust with
respect to the material creep or, in other words, that the
capacitance is instantaneously influenced by the material
deformation and not on its mechanical stress.

Figure 13 shows the displacement–capacitance and the
displacement–resistance curves estimated in each of the three
experiments. The curves show that the displacement–capaci-
tance relationship tends to remain consistent with the cali-
bration curve, obtained with the 0.1 Hz sinusoidal signal. In
case of sinesweep test (red curve), the estimated capacitance

shows a larger deviation from the calibration curve, as the
increase in mechanical frequency makes the estimation delay
less negligible. The figure shows also that the resistance
estimations are hysteretic and more affected by noise than
capacitance. Nevertheless, the resistance data estimated for
different tests are consistent with each other.

4.3. Sensorless closed loop control

The aim of the next set of experiments is to assess the
effectiveness of the self-sensing based position control. By
using again a 1 kHz, 75 V sensing sinewave, and choosing the
forgetting factor equals to μ=0.97 (slightly higher than

Figure 12. Self-sensing, 0–10 Hz sinesweep input, μ=0.95.

Figure 13. Estimated capacitance and resistance versus displacement
for different tests, μ=0.95.

Figure 10. Self-sensing, AMSQW input, μ=0.95.

Figure 11. Self-sensing, 0.1 Hz sinewave input, μ=0.95.

7
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before in order to enhance the robustness with respect to
noise), the PID gains are selected according to the tuning
denoted as controller 2 in table 2. The results are shown in
figure 14 for an AMSQW filtered with a first order low-pass
filter with cut-off frequency of 3 Hz, in figure 15 for a 1 Hz
sinewave and in figure 16 for a sinesweep from 0 to 5 Hz.
Each figure shows both the measured and estimated dis-
placement, the tracking error, the self-sensing estimation error
and the input voltage. The closed loop behavior is satisfactory
in each case, as the measured and self-sensed displacements
are in good agreement with each other’s.

In order to better quantify the degradation introduced by
the self-sensing estimation in closed loop schemes, in the
experiments shown hereafter the first half of each test imple-
ments the control law by using the laser displacement sensor
feedback, and at t=5 s the displacement feedback is switched
to the self-sensing signal. The results are shown from
figures 17 to 24. In particular, figures 17 to 19 show the per-
formance for a step reference filtered with a first order low-pass
filter with cut-off frequency of 3 Hz, with a fixed μ=0.97 and
three different controller tunings, reported in table 2. Figure 20
shows the performance for Controller 1 and the same reference,
but a different forgetting factor of μ=0.99 is used.
Figures 21–24, instead, show the performance of similar
experiments for a 0.2 Hz sinewave reference.

Finally, table 3 compares the performance of the
experiments shown in figures 17–24 in terms of root mean
square (rms) tracking error and peak (PK) tracking error
calculated for both laser-based and self-sensing feedback, and
rms and peak displacement estimation error. In each case, the
rms and PK tracking errors are computed by considering the

Table 2. PID controller gains.

Controller kp ki kd

Controller 1 3 50 0
Controller 2 5 150 0
Controller 3 6 300 0

Figure 14. AMSQW reference, self-sensing feedback, controller
2, μ=0.97.

Figure 15. 1 Hz sinewave reference, self-sensing feedback, controller
2, μ=0.97.

Figure 16. 0–5 Hz sinesweep reference, self-sensing feedback,
controller 2, μ=0.97.
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laser displacement sensor reading. For the step tests only, the
peak errors at steady state (PK, SS) are also reported.

4.4. Discussion and performance analysis

The results obtained by using self-sensing based control in
figures 14–16 show overall good performances.

The effects of the high-frequency signal injected for self-
sensing are not visible in the output displacement, thus it does
not affect significantly the closed loop behavior. Despite the
strong nonlinearities of the actuator system, the proposed
quasi-linear control architecture allows achieving a satisfac-
tory closed loop response. By comparing voltage and dis-
placement signals in figure 14, it can be noted that the system

Figure 17. Step reference, disp. sensor feedback versus self-sensing
feedback, controller 1, μ=0.97.

Figure 19. Step reference, disp. sensor feedback versus self-sensing
feedback, controller 3, μ=0.97.

Figure 20. Step reference, disp. sensor feedback versus self-sensing
feedback, controller 1, μ=0.99.

Figure 18. Step reference, disp. sensor feedback versus and self-
sensing feedback, controller 2, μ=0.97.
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response is delayed with respect to the voltage, presumably
due to the material viscoelastic behavior. The effects of the
viscoelasticity can be also clearly observed by inspecting the
voltage imposed by the controller when the material is
regulated at SS. In fact, in order to counteract the material
creep observed in figure 10 and maintain a steady displace-
ment, the controller needs to continuously decrease the
actuation voltage. As no drift is observed in the self-sensing

error, namely the error between measured and estimated
displacement, we can conclude that the proposed sensorless
control algorithm appears as an effective and robust strategy
to compensate the material creep. Moreover, it can be
observed that the self-sensing error tends to become relatively
small at SS (less than 0.5%), thus ensuring accurate steady
positioning. Overall, the peak values of the self-sensing error
over the entire experiments are about 5% for the AMSQW,

Figure 21. Sinewave reference, disp. sensor feedback versus self-
sensing feedback, controller 1, μ=0.97.

Figure 23. Sinewave reference, disp. sensor feedback versus self-
sensing feedback, controller 3, μ=0.97.

Figure 22. Sinewave reference, disp. sensor feedback versus self-
sensing feedback, controller 2, μ=0.97.

Figure 24. Sinewave reference, disp. sensor feedback versus self-
sensing feedback, controller 1, μ=0.99.
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4% for the sinesweep and 2% for the sinewave. By inspecting
figures 14 and 16, it can be noted that the self-sensing error is
strongly related to the velocity and size of the signal, and
becomes very close to zero when the deformation is slow-
varying and large. This is in agreement with the considera-
tions provided in section 4.2. The tracking error performance
are satisfactory in each case, and show remarkable agreement
between laser and self-sensing measurements. The tracking
error is reasonably small for the AMSQW and the 1 Hz
sinewave, but tends to increase with the input frequency in the
case of sine sweep reference (figure 16). This is observed in
the case of laser-based control as well [22], and it is due to the
fact that the PID is not suitable for tracking fast-varying
signals. In such case, more advanced control solutions are
required in order to increase the tracking accuracy, but the
investigation of these approaches goes beyond the scopes of
this paper.

By comparing the left and right sides in figures 17–20 it
can be observed that the closed loop performance and the
estimation accuracy for the step reference are not significantly
altered whether the feedback signal comes from the self-
sensing rather than the laser displacement sensor. The figures
show also the effects of the tuning parameters, namely the
forgetting factor μ and the PID gains, on the closed loop
system. No investigation of the effects of different sensing
frequencies is performed in this paper, as this aspect was
already analyzed in [19]. It can be observed that the perfor-
mance of the sensorless scheme starts to slightly degrade as
the gains are increased, as shown in figures 18–19, but still
this change is relatively small and it does not affect the closed
loop behavior significantly. This decrease of performance for
increasing gains may be due to the overall delay introduced
by the self-sensing in the feedback loop, caused by the

combination of filters and RLS regression integrated in the
self-sensing algorithm. The destabilizing effect of this delay
becomes less negligible as the closed loop bandwidth is
increased (and thus the resulting phase margin is decreased).
Therefore, there are dynamic limitations on the achievable
closed loop bandwidth in case the self-sensing algorithm is
not fast enough. The comparison between figures 17 and 20,
moreover, shows that the closed loop response is not sig-
nificantly influenced by higher values of forgetting factor.
Conversely, it is experimentally observed that the closed loop
system becomes unstable if the forgetting factor is decreased
(even if no results are shown in this paper). This may be due
to several reasons, e.g. the increase of noise propagation or
numerical instability due to the fixed-point implementation of
the self-sensing algorithm, and certainly requires a more in-
deep investigation. Figure 25 shows a zoom of the results in
figure 19 on the time interval in which the displacement
feedback is switched from the laser to the self-sensing. It can
be observed that the control voltage generated in case of self-
sensing feedback is slightly more nervous, as the self-sensing
introduces additional noise which is inevitably propagated
through the control loop. Consequently, a smaller oscillation
can be observed in the SS displacement as well.

Similar results are also showed in figures 21–24, for a 0.2
sinewave reference. An oscillating, yet stable behavior can be
observed in figure 23, confirming how the self-sensing
scheme tends to affect the closed loop stability as the gains
are increased. This oscillation is due to the fact that the
controller is operating in a region where the DEA is open-
loop unstable (because of the NBS), and the large controller
gains in conjunction with the system local instability and the
delay introduced by the self-sensing result in a closed-loop
local instability. This instability appears systematically when
the actuator position is about 2 mm, and only in case of self-
sensing based control. Therefore, the closed loop bandwidth
that can be achieved with self-sensing is further penalized in
case the dynamics of the DEA presents strong nonlinearities
such as bi-stability. Nevertheless, if the gains are tuned to
more reasonable values, good performance and stable posi-
tioning can be still achieved even in case of bi-stable DEA, as
confirmed by other reported plots. In general, this problem
can be potentially addressed by taking into account of the
dynamics of the self-sensing during the controller design,
even if no methodologies to address this problem have been
presented so far in case of DEA systems.

Finally, the inspection of table 3 confirms the results
previously discussed. The SS accuracy achieved with self-
sensing in case of step signals is always below 10.5 μm, while
in case of sensor-based feedback is below 5.5 μm, for a stroke
of 1.7 mm, and the SS self-sensing error is always not larger
than 0.4%. The tracking performance in the case of sinewaves
tends to degrade when the gains are increased, as the peak
error of self-sensing based control shows comparable values
for smaller gains, and tends to diverge in case of the faster
controller. Nevertheless, the estimation accuracy is still rela-
tively high (less than 1.5% in most of the cases). Comparing
the performance in terms of rms error rather than peak error
provides little if no degradation in performance in most of the

Figure 25. Zoom on step reference, disp. sensor feedback versus
self-sensing feedback, controller 3, μ=0.97.
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cases, for both steps and sinewave references, and for both
tracking and self-sensing errors. Therefore, we can conclude
that the overall behavior of the self-sensing based control is
satisfactory.

5. Conclusions

In this work, it was experimentally proven that the proposed
self-sensing methodology can be successfully used in closed
loop operation. The degradation of performance caused by the
sensorless feedback was deeply investigated by means of
numerous experiments. It was observed that the decrease in
performance introduced by the self-sensing is almost negli-
gible for slower closed loop bandwidths, and tends to increase
for higher controller gains. The SS performance in case of
slow-varying signals is generally high, showing a peak
tracking error always smaller than 10.5 μm, against 5.5 μm
obtained in case of sensor-base feedback, on an actuation
stroke of about 1.7 mm. The resulting accuracy is satisfactory
in many micropositioning applications. Compensation of the
position drift due to the material creep is also effectively
achieved by means of self-sensing feedback.

It can be noted that the self-sensing still performs satis-
factorily even if the capacitance estimation requires the deri-
vative of the control voltage (see (5)). The noise amplification
produced by this derivative tends to become more significant
when the self-sensing operates in closed loop, especially for
larger controller gains which tend to amplify even more such
effects. Therefore, further developments of the current work
will be devoted to investigate more sophisticated self-sensing
methodologies which allow to eliminate such dependency on
the voltage derivative. The analytical investigation of the effects
of the self-sensing in the control loop, and the joint optimization
of the controller and the self-sensing parameters are other
interesting directions for further research.
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Table 3. Laser based feedback versus self-sensing based feedback, performance comparison.

Tracking error, sensor Tracking error, self-sensing Displacement estimation error

Experiment
shown in rms (μm) PK (μm)

PK,
SS (μm) rms (μm) PK (μm)

PK,
SS (μm) rms (%) PK (%)

PK,
SS (%)

Figure 17 168 735 5.25 176 713 9.45 0.82 4.25 0.35
Figure 18 118 458 3.45 127 484 8.25 0.91 5.57 0.32
Figure 19 106 432 1.80 115 461 10.2 1.00 7.28 0.38
Figure 20 197 735 5.40 176 714 10.4 0.87 3.65 0.37
Figure 21 26.4 51.2 — 32.4 57.9 — 0.55 1.24 —

Figure 22 8.72 18 — 15.8 35.9 — 0.53 1.31 —

Figure 23 4.36 9.90 — 21.0 80.3 — 0.73 3.13 —

Figure 24 26.1 51.0 — 49.2 31.4 — 0.49 1.38 —
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