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Abstract
Over the years, the industrial landscape has experienced significant evolutions driven by
advancements in technology, economic fluctuations, shifts in societal and environmental
dynamics, and evolving consumer preferences. These changes have resulted in fundamental
alterations in the way businesses operate, impacting various aspects of the industry,
including the adoption of technology, labor practices, business models, and sustainability
initiatives.

The ever-changing industrial environment is marked by several emerging frontiers
that embrace on the one hand the incorporation of digital technologies, cyber-physical
systems, artificial intelligence, and the internet of things into manufacturing processes
with the potential for future developments, such as Industry 5.0, which emphasizes
the advancement of collaborative robotic systems. Industry 5.0, in particular, places a
significant emphasis on human-robot collaboration (HRC) by valuing human input.

On the other hand, the leading-edge frontiers involve incorporating sensors and data
analytics into intelligent infrastructure, which serves to elevate maintenance standards,
minimize downtime, and enhance safety. This also entails leveraging cooperative robot-
machine systems, such as drones and diagnostic trains, for infrastructure inspections.
These measures contribute to cost reduction and efficiency enhancement in the monitoring
and maintenance processes. In the industrial sector, a realm of new prospects is emerging,
driven by the innovative development of last-mile delivery solutions, encompassing drone
deliveries, autonomous delivery vehicles, and smart lockers, all designed to streamline
urban logistics.

As a result, this thesis is dedicated to solving two of the most important research
challenges in designing decision and control techniques for collaborative and cooperative
robotic systems and in particular for HRC and aerial-ground mobile robotic systems.

In the first part, this thesis aims to address the gaps identified in the existing
literature regarding safe, ergonomic, and efficient HRC, which have been brought to light
through a comprehensive review conducted in this field. In particular, the developed
contributions regard the conceptualization and development of novel architectures and
control techniques for HRC, in presence or absence of optimization. The central aim is to
concurrently optimize the three key objectives, i.e., safety, ergonomics, and efficiency in
tasks associated with addressing the trajectory planning problem formulated as second-
order cone programming problem and solved with the direct transcription method,
while respecting the speed and separation monitoring (SSM) ISO safety requirement and
guaranteeing the ergonomic optimal position of the operator during the collaborative
phase. Expanding upon the essential criteria for a safe and ergonomic HRC to encompass
the emerging domain of collaboration between human and drone, the second goal involves
creating control algorithms, i.e., linear quadratic regulator (LQR) controllers, for systems
involving humans and drones within indoor industrial settings like warehouses 4.0.

The second part of this thesis is focused on the cooperation between a fleet of drones
or an individual drone and a ground mobile robotic system (i.e., train, truck) that entails
these entities working in harmony to achieve specific objectives or tasks in a coordinated
manner. Particular emphasis is placed on the critical phase of drones returning to and
landing on a moving train or truck. Thus, ad-hoc control techniques, i.e., consensus
algorithm, LQR and receding horizon LQR controllers, are presented to tackle such
complex tasks in an efficient and effective way.



Faber est suae quisque fortunae.
Gaio Sallustio Crispo
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Chapter 1

Introduction

I
Since the dawn of Industry 4.0 in the manufacturing scenario less than a decade ago,

the design and development of production systems are experiencing substantial changes
towards full automation. This ongoing challenge is being tackled with the adoption of
robots and their repercussions on society.

While robotics has traditionally possessed an air of esoteric allure, and automation has
often been perceived as the diligent workhorse, primarily associated with manufacturing
and lacking glamour, the year 1984 witnessed a pivotal moment when a visionary group
of researchers orchestrated the union of these two fields.

Despite their differences, –i.e., “...Robotics focuses on systems incorporating sensors and
actuators that operate autonomously or semi-autonomously in cooperation with humans.
Robotics research emphasizes intelligence and adaptability to cope with unstructured
environments. Automation research emphasizes efficiency, productivity, quality, and
reliability, focusing on systems that operate autonomously, often in structured environments
over extended periods, and on the explicit structuring of such environments.”– the union
has thrived, and, akin to most married couples, the partners have cultivated numerous
shared interests over time [1].

In essence, robotics involves employing machines to execute tasks typically undertaken
by humans. This has unquestionably enabled the automation of intricate and repetitive
tasks, culminating in accelerated production, diminished cycle times, and heightened
throughput. Consequently, it has bolstered productivity and efficiency.

Nevertheless, due to their distinct characteristics, in order to keep the couple together,
there is an emerging need for designing appropriate decision and control techniques.

Control manifests in both technical and non-technical systems. A system may
constitute a singular entity, element, part, or an assemblage of objects linked or
interdependent in some manner [2]. Hence, by definition [3], a system is an arrangement of
parts or elements that together exhibit behavior or meaning that the individual constituents
do not.

In short, a system is a structured and organized collection of interrelated components
or elements that work together to achieve a specific set of objectives, functions, or
purposes. In the context of engineering and control theory, a robot can be considered as a
system [4], [5]. It encompasses various interconnected components, including mechanical
elements like joints and actuators, sensory equipment for environmental perception, a
control unit responsible for data processing and decision-making, and at times, software
for programming and communication purposes. These components collaborate in a
coordinated manner to fulfill specific functions or tasks. Similar to any system, a robot
operates with inputs, often comprising sensor data, and produces outputs in the form
of actions or movements in response to these inputs. Robots are essentially controlled
systems, with the control unit or software program issuing commands to direct the robot’s
actions based on sensory input and predetermined algorithms or instructions. Many
robots incorporate feedback mechanisms that enable real-time adjustments, mirroring the
principles of a closed-loop control system. Ultimately, robots are designed with particular
objectives or tasks in mind, ranging from basic functions like object manipulation to
intricate tasks such as navigating complex, unstructured environments. In essence, a
robot is subject to analysis and comprehension as a system due to its interconnected
components working in unison to achieve predefined goals. Engineers and researchers
draw upon principles from control theory, system theory, and robotics to create, assess,
and enhance robotic systems for a wide array of applications.

When we are not referring to a self-contained system but to a complex network or

1



Collaborative vs Cooperative Robotic Systems

collection of individual systems that collaborate to achieve a more extensive and complex
set of goals, we use the term system of systems (SoS). It is essentially a higher-level
composite system comprised of multiple subsystems, each potentially intricate in its own
right, that has both operational and managerial independence of its elements. When the
SoS is deconstructed into its constituent systems, these individual components should
possess the capability to function effectively on their own (operational independence of
the components). Furthermore, these component systems not only have the capability
to operate independently, but they also do so in practice. Each component system is
procured and integrated separately, maintaining ongoing operational autonomy separate
from the SoS (managerial independence of the components) [6], [7].

Various types of systems come together to collectively address complex challenges or
achieve overarching goals. Hence, a SoS can be composed of a diverse class of systems,
including collaborative, cooperative and non-cooperative systems. These constituent
systems contribute to the overall functioning of the SoS based on their characteristics
and the specific context. Collaborative systems involve multiple entities, which could
be humans, machines, or a combination, working together in a coordinated manner to
achieve a common objective. Similarly, some constituent systems within an SoS may
be cooperative systems. They also involve multiple entities working together, but the
emphasis is on entities that have their own distinct goals or objectives while contributing
to a common purpose. Thus, collaboration involves entities that work simultaneously on
a shared object in a shared space whereas cooperation engages entities that work towards
a shared goal in partially or completely shared space. Not all systems within an SoS need
to be collaborative or cooperative. Some systems may operate independently or without
actively participating in coordination efforts. These non-cooperative systems can have
their own goals and functions that are not directly aligned with the common objectives of
the SoS.

In the realm of robotics, a SoS pertains to the integration and coordination of multiple
robotic systems to accomplish intricate tasks or objectives. It involves the collaborative
operation of these robotic systems within a broader context, often with the aim of
addressing complex challenges beyond the capacity of a single robot.

An SoS in robotics encompasses diverse robotic subsystems, which can range
from autonomous robots to collaborative robots and drones. These subsystems are
interconnected or synchronized to enable communication, information sharing, and joint
efforts towards common goals. They are commonly deployed for tasks that demand
a higher degree of complexity, scalability, or extensive coverage. This might include
coordinating multiple robots for tasks like large-scale exploration, search and rescue
missions, or managing a fleet of vehicles. Interoperability is a key consideration, ensuring
that the various robotic systems within the SoS can collaborate effectively. Furthermore,
the interactions among these robotic subsystems within the SoS can lead to emergent
behaviors and properties, making the entire system more adaptable and efficient. SoS
in robotics finds applications in diverse fields, including multi-robot exploration and
collaborative industrial automation. The aim is to harness the capabilities of multiple
robotic systems to address complex challenges more effectively and efficiently.

1.1 Collaborative vs Cooperative Robotic Systems
Collaboration can take various forms depending on the entities involved. In human-robot
collaboration (HRC), the collaboration entails a human working alongside one or more
robots, with the interaction occurring directly between the human and the robot(s). The
primary goal is to enhance the capabilities of both humans and robots, with robots
assisting in tasks while humans contribute cognitive abilities. In contrast, robot-robot
collaboration (RRC) involves collaboration exclusively among robots, with no direct human
involvement. The interaction takes place solely between the robots, and the objective
is to leverage the collective strengths of multiple robots to perform tasks efficiently and
autonomously. This type of collaboration is commonly employed in scenarios where
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robots need to work together to accomplish complex tasks. Finally, Robot-Machine
Collaboration involves robots collaborating with other machines or automated systems,
optimizing complex processes.

As becomes apparent from the emerging sustainable, human-centric and resilient
industrial paradigm, collaboration between humans and robots is generally more
challenging than collaboration between robots. This difficulty arises due to the stark
contrast in their capabilities and characteristics. Humans possess complex cognitive
skills, adaptability, and emotional intelligence, while robots excel in precision, speed,
and repetitive tasks. Ensuring effective communication and coordination between these
diverse entities can be intricate. Safety is a paramount concern when humans work
alongside robots, necessitating the incorporation of safety features and protocols. Moreover,
building trust between humans and robots is a crucial but often time-consuming endeavor.
Collaboration environments involving humans and robots are frequently unpredictable
and dynamic, further complicating the adaptation of robots to changing conditions.
Additionally, these scenarios often require robots to perform tasks designed for human
abilities, introducing complexities in task execution.

Similarly, cooperation can occur between robots and machines, taking two primary
forms: (1) robot-robot cooperation that entails multiple robots working together in a
coordinated manner. They collaborate by sharing information, coordinating actions, or
specializing in different aspects of a task to achieve a common objective; (2) robot-machine
cooperation in which robots collaborate with other machines or automated systems. The
aim is to optimize complex processes (e.g., production processes, logistics processes,
infrastructure monitoring) and enhance overall system efficiency by integrating robot
capabilities with machine functions. These forms of cooperation leverage the strengths of
robots and machines to improve task performance and productivity in various industrial
and automation applications.

Within this specific context, cooperation between robots and machines can pose greater
challenges compared to cooperation among robots. This heightened complexity arises
from factors such as diverse interfaces, compatibility issues, synchronization requirements,
safety considerations, scalability concerns, interoperability challenges, and the need for
adaptability to varied tasks. These complexities stem from the unique characteristics
and functions of both robots and machines, as well as the diverse contexts in which they
cooperate.

As a result, since significant attention and effort need to be dedicated to HRC and
robot-machine cooperation and there is an extreme need to fill the gaps in the related
literature, this thesis follows two main research directions and thus, is structured in two
main parts –anticipated by the present Introduction– as described in the sequel. Note
that this thesis presents the results of research conducted and published in a series of
conference and journal papers by the author.

1.1.1 Human-Robot Collaboration
The fourth industrial revolution, commonly referred to as Industry 4.0, is fundamentally
transforming the way people live and work. It exerts a significant influence on the
manufacturing landscape and is increasingly being embraced across global production,
distribution, and commercialization networks [8].

The pivotal technology underpinning the realization of Industry 4.0 is undoubtedly
collaborative robotics. This technology is also emerging as a cornerstone of the forthcoming
Industry 5.0 [9], a revolution that actively reintegrates humans into the automation chain.
Within this paradigm, the unique qualities and attributes of both humans, such as
intelligence, creativity, and adaptability, and robots, including flexibility, precise accuracy,
and tireless operation, are harmoniously melded to enhance the execution of a wide array
of tasks. As a result, operators and robots are positioned to work together in significantly
closer collaboration, introducing innovative collaborative robot (cobot) models that elevate
the efficiency of production processes [10].
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The collaboration between a human and a collaborative robot can be viewed through
the lens of a SoS. In this scenario, human and cobot function as separate subsystems. The
human represents a complex system with unique capabilities, decision-making processes,
and objectives. Simultaneously, the cobot, serves as another distinct subsystem. Unlike
conventional robots, which typically operate autonomously and are frequently restricted
within safety enclosures, cobots seamlessly cohabitate in shared spaces with humans,
maintaining both safety and operational efficiency. Cobots are purposefully engineered not
to augment or supplant human capabilities, but rather to concentrate on repetitive tasks,
enabling human operators to concentrate their expertise on more intricate problem-solving
endeavors.

The advancement of HRC in industrial contexts is a continuously evolving process with
several notable trends. The European research highlights a substantial surge in digital
and smart manufacturing initiatives, particularly in the creation of collaborative robotic
systems for diverse applications. Clearly, the primary objectives of HRC in industrial
settings revolve around enhancing employee safety and well-being, alongside boosting
profitability and productivity [11]. On the one hand, the portability and compactness
of cobots allow to optimize production processes saving space and improving efficiency
and accuracy. On the other hand, physical and cognitive ergonomics are enhanced by
minimizing mental stress and psychological discomfort, which could be provoked to
operators that share their work space with robots [12].

Thus, designing a robotic controller and analyzing existing decision and control
techniques are essential for creating innovative models and cutting-edge methodologies
for a safe, ergonomic, and efficient HRC. Chapter 2 aims at addressing the emerging
challenges in this area and crafting novel HRC architectures and control methods. This
includes scenarios with or without optimization, aiming to bridge the gaps identified in
the comprehensive literature reviews [11], [13] conducted by the author.

The primary goal of my thesis illustrated in Chapter 3 is to simultaneously address
three critical objectives, i.e., safety, ergonomics, and efficiency, particularly in tasks related
to trajectory planning problems, since the literature has shown that only a small fraction
of scientific articles attempt to optimize all three aspects simultaneously in HRC tasks.
To achieve this, we must consider mechanical aspects of industrial manipulators with an
increasing number of degrees of freedom (DOF), such as statics, kinematics, and dynamics,
and incorporate them into constrained optimal control problems [14]. From an ergonomic
perspective, we integrate the rapid upper limb assessment (RULA) index as an assessment
tool in optimal control problems to evaluate workers’ exposure to ergonomic risk factors.
Additionally, we adhere to safety standards for human workers during collaborations,
following the speed and separation monitoring (SSM) ISO criterion [15].

Extending the key requirements of a safe and ergonomic HRC to the arising field
of collaboration between human and drone, the second objective of my thesis shown in
Chapter 4 focuses on developing control algorithms for trajectory planning/re-planning
problems and collision avoidance issues in human-drone systems, especially in indoor
settings like warehouses [16].

1.1.2 Aerial - Ground Mobile Robotic Systems Cooperation
The cooperative robotic systems are considered as SoSs because they are composed of
multiple interacting and interdependent subsystems (e.g., drone, train, truck), each with
its own specialized function and capabilities.

The aforementioned systems offer a myriad of advantages compared to standalone
systems. They streamline task completion by distributing work among multiple entities,
leading to faster job turnaround and heightened overall productivity. Additionally,
they provide redundancy and reliability, ensuring uninterrupted operation even if one
entity encounters issues. They demonstrate scalability, effortlessly adapting to increased
workloads and changing requirements, while enabling entities to specialize and optimize
resource allocation. Furthermore, they exhibit adaptability in dynamic environments,
making necessary adjustments in interactions and resource allocation. Cooperative
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systems can also be a cost-effective solution, especially when redundancy or extensive
coverage is essential. Heterogeneous cooperative systems, comprising entities with diverse
capabilities, excel in a wide range of tasks and challenges and in critical scenarios, they
reduce time pressure on individual entities, promoting safer and more deliberate actions
[17].

In particular, the cooperative robotic systems examined in this thesis operate
in challenging outdoor environments, with a particular focus on railway diagnostics
(Chapter 5) [18] and last-mile delivery (Chapter 6) [19]. In both applications the fleet
of drones or the drone that interacts with a ground mobile robotic system is considered
as a subsystem of the SoS. Specifically, my goal (i.e., third objective of the thesis) is to
optimally manage the crucial phase of drones returning to and landing on the moving
train or truck that represents the second subsystem. To control the drones, a combination
of consensus algorithms in the leader-following fashion employed for fleet formation,
trajectory re-planning and tracking algorithms (i.e., linear quadratic regulator (LQR),
Receding Horizon LQR) are studied and implemented in real simulations’ scenarios by
managing the real-time changes of the positions of the landing point and considering
some possible moving obstacles (i.e., dynamic environments) like humans or birds.
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Collaborative vs Cooperative Robotic Systems

The design and development of manufacturing systems are experiencing substantial
changes towards Industry 5.0. This ongoing challenge is being tackled by academia
and industrial experts with the adoption of collaborative robots, where the skills and
peculiarities of humans (e.g., intelligence, creativity, adaptability, etc.) and robots (e.g.,
flexibility, pinpoint accuracy, tirelessness, etc.) are combined to better perform a variety
of tasks. Nevertheless, due to their different characteristics, there is an emerging need for
designing suitable decision and control techniques to ensure a safe and ergonomic HRC,
while keeping the highest level of productivity.

Health and safety in workplaces are business imperatives, since they ensure not only
a safe collaboration between industrial machinery and human operators, but also an
increased productivity and flexibility of the entire industrial process. Hence, investing
in health is a real driver for business growth. The key enabling technologies of Industry
5.0, such as collaborative robotics, exoskeletons, virtual and augmented reality, require
standardization and indispensable technical safety requirements that cannot ignore
physical, sensory, and psychological peculiarities of the human worker and aspects like
usability and acceptability of these technologies in performing their activities.

Against this background, the aim of Chapter 2 is to provide researchers and experts
with a reference source in the related field, which can help them designing and developing
suitable solutions to control problems in safe, ergonomic, and efficient collaborative
robotics. In particular, since there is no work cataloging the scientific articles from the
point of view of automatic control in HRC, this chapter aims at classifying the most
relevant and recent works developed by the scientific community according to three key
objectives of HRC in the smart manufacturing systems that are, safety, ergonomics, and
efficiency. The articles are then grouped by problem and type of control, indicating
whether optimization techniques are adopted or not. Finally, the literature review draws
conclusions on relevant and promising future research directions in each analyzed domain.

Since none of the reviewed articles in the literature review is simultaneously focused on
all the three targets (i.e., safety, ergonomics, and efficiency) and only a small percentage
of the related works are written accordingly to dual targets, HRC research will need to
address all three of the previously mentioned objectives simultaneously.

Against this ongoing industrial challenge, the aim of Chapter 3 is to provide researchers
and experts with an innovative HRC trajectory planning methodology focused on
enhancing production efficiency while respecting the speed and separation monitoring
(SSM) ISO safety requirement and guaranteeing the ergonomic optimal position of the
operator during an assembly task. Therefore, the proposed methodology can be a
convenient solution to be deployed in industrial companies, since it can support human
operators by drastically reducing work-related musculoskeletal disorders and augmenting
their performance in the working environment. Specifically, a multi-objective optimization
approach for the trajectory planning in safe and ergonomic HRC is defined, with the
aim of finding the best trade-off between the total traversal time of the trajectory for
the robot and ergonomics for the human worker, while respecting the SSM ISO safety
requirements. The proposed approach consists of three main steps. First, the rapid
upper limb assessment (RULA) ergonomic index is evaluated on a manikin designed on a
dedicated software. The aim is to ensure a high quality of work in the considered HRC
scenario with a consequent decrease of the musculoskeletal disorders associated with
highly repetitive and dangerous activities. Second, a time-optimal and safety-constrained
trajectory planning problem is defined as a second-order cone programming problem.
Finally, a multi-objective control problem is formulated and solved to compute the
trajectory that ensures the best compromise between time end ergonomics. The approach
is applied to a real-life case study, and the ensuing results are deliberated upon, affirming
the approach’s efficacy.

As highlighted by the extensive literature review proposed in Chapter 2, safety is
the primary need in HRC applications, followed by the efficiency and the ergonomics
targets. In Chapter 4, an application of collaboration between human and drone in
warehouses is presented with the fundamental goal of enhancing the operators’ safety
and well-being while simultaneously improving efficiency and reducing production costs.

8



Collaborative vs Cooperative Robotic Systems

Until recently, the predominant emphasis has been on the collaboration between human
and drone in outdoor settings. Comparatively, there have been fewer contributions
for indoor industrial applications. However, indoor drone utilization, particularly in
warehouses, holds significant promise for tasks like inventory management, intra-logistics,
and inspection and surveillance. This study specifically addresses the development of
a safe and ergonomic human-drone architecture for the pick-and-place task within the
intra-logistics sector. Hence, the aim of this chapter is to define a novel trajectory
planning and tracking control algorithm for a quadrotor transporting items from the
picking bay to the palletizing area and supporting the operator tasks inside a warehouse,
while respecting the ISO safety requirements and physical ergonomics in approaching the
operator during the collaboration with the human operator. More specifically, the SSM
methodology is applied for the first time to the collaboration between human and drone,
in analogy to the HRC ISO safety requirements as well as the RULA, for evaluating the
operator’s ergonomic posture during the collaboration with the drone. The outcomes of
the simulations involving the human-drone architecture are presented comprehensively
and discussed, demonstrating the efficacy of the proposed approach in ensuring a safe
and user-friendly collaboration.
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Chapter 2

A Literature Review on Control
Techniques for Safe, Ergonomic, and
Efficient Human-Robot Collaboration in
the Digital Industry

II

Abstract

The fourth industrial revolution, also known as Industry 4.0, is reshaping the way
individuals live and work while providing a substantial influence on the manufacturing
scenario. The key enabling technology that has made Industry 4.0 a concrete reality
is without doubt collaborative robotics, which is also evolving as a fundamental pillar
of the next revolution, the so-called Industry 5.0. The improvement of employees’
safety and well-being, together with the increase of profitability and productivity,
are indeed the main goals of human-robot collaboration (HRC) in the industrial
setting. The robotic controller design and the analysis of existing decision and control
techniques are crucially needed to develop innovative models and state-of-the-art
methodologies for a safe, ergonomic, and efficient HRC. To this aim, this chapter
presents an accurate review of the most recent and relevant contributions to the
related literature, focusing on the control perspective. All the surveyed works are
carefully selected and categorized by target (i.e., safety, ergonomics, and efficiency),
and then by problem and type of control, in presence or absence of optimization.
Finally, the discussion of the achieved results and the analysis of the emerging
challenges in this research field are reported, highlighting the identified gaps and
the promising future developments in the context of the digital evolution.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Control Techniques for Safety in HRC Systems . . . . . . . . . . . . 15
2.4 Control Techniques for Ergonomics in HRC Systems . . . . . . . . . 23
2.5 Control Techniques for Efficiency in HRC Systems . . . . . . . . . . 26
2.6 Discussion and Future Developments . . . . . . . . . . . . . . . . . 30
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2.1 Introduction
Less than a decade has passed since the paradigm of Industry 4.0 faced the manufacturing
scenario. Today, the fourth industrial revolution is riding its peak, and has become a
flourishing reality thanks to the combination of production and network connectivity
through internet of things (IoT) and cyberphysical systems (CPS). In the world economy,
there is still a growing demand for Industry 4.0 to increase the degree of industrialization,
informatization, and digitization, and thus, to achieve superior efficiency, competency,
and competitiveness [1].

Since the dawn of Industry 4.0 in 2011, great emphasis was laid on the coexistence
of humans and robots in the industrial environment [1]. Undoubtedly, the way humans
work together with robots is becoming ever more important in the era of automation and
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robotization. In fact, visionaries are already predicting the next revolution, the so-called
Industry 5.0, that reinserts proactively humans back into the automation chain, allowing
operators and robots to work significantly more closely together [2]. Therefore, humans
are expected to work alongside new models of collaborative robots (cobots), enhancing
production. In contrast to robots that predominantly work independently from humans
and often reside in a cage, cobots co-exist in the same environment together with humans,
without renouncing to safety or efficiency [3]. A cobot is designed not necessarily to
augment the operator’s skills nor to replace her/him, but rather to focus on repetitive
activities, so that the operator can focus on problem-solving tasks.

Cobots are the object of in-depth investigations both in the fields of human-robot
interaction (HRI) and human-robot collaboration (HRC), which are relatively recent
research areas and exactly for this reason the corresponding acronyms are often used
indistinctly and confusedly in the literature and have aroused much debate among
researchers due to conceptual misunderstandings. However, there is a clear distinction
in the two meanings [4]. Collaboration is the activity of two or more entities that
work jointly and sought a common goal. Differently, interaction is the reciprocal
influence of two or more entities that do not necessarily entail a common goal. Both
collaboration and interaction are classes of coexistence, i.e., the entities share the same
environment. Eventually, coexistence can entail no interaction of the coexisting entities.
Summarizing, any collaborative action implies numerous interactions but there may be an
interaction which does not imply any collaboration. Moreover, each interaction signifies a
coexistence of the two intervening beings. However, human and robot can work in the
same environment (coexistence) but without any interaction. In our survey we focus only
on HRC in the manufacturing scenario so as not to mislead the research.

The industrial development of HRC is ongoing in several different areas. The latest
trends of the European research show a significant rise in digital and smart manufacturing
projects, including the development of cobots for several application areas. Obviously,
increasing the profitability of production is the main goal of cobot evolution, which
certainly depends on a safe and efficient HRC in a shared work place [5]. Indeed, the
portability and compactness of cobots allow to optimize the production process, saving
space and improving efficiency and accuracy. In addition, another significant purpose of
the research on collaborative robotics and in general of HRC in the digital industry is to
enhance physical and cognitive ergonomics by minimizing mental stress and psychological
discomfort which could be provoked to operators while sharing the workspace with robots
[6], [7].

In this context, decision and control techniques [8] play a vital role in ensuring a safe
and ergonomic HRC while keeping the highest level of productivity [5]. Therefore, the
aim of this work is to focus on the pivotal goals of cobotics in the manufacturing context
– i.e., safety, ergonomics, and efficiency (Fig. 2.1) – and surveying in detail the main
pertaining control methods presented in the related literature with the aim of identifying
advantages and gaps.

2.1.1 Survey Positioning in the Related Literature
In the last few years several scientists have tried to review and classify the research
content on industrial collaborative robotics (cobotics) from different perspectives.

For instance, Hentout et al. [3] present a literature review of the major recent works
on human-robot (HR) interaction in the industrial context, conducted between 2008 and
2017. A classification of the contents of these works is proposed, ranging into several
categories and sub-categories from hardware and software design of collaborative robotics
systems to robotic programming approaches and virtual & augmented reality, from safety
to cognitive HR interaction. The HRC progress and prospects are further suggested
by Ajoudani et al. who present in their review [9] the state-of-the-art on bi-directional
human-robot interfaces developed for improved human-robot perception and in particular,
for the estimation of the human physical or cognitive state variations with the use of
bio-signals such as electromyography, robot control modalities, control performances
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Figure 2.1: Main targets in HRC.

(system stability and transparency), benchmarking and relevant use cases. Aiming at
presenting to the researchers all the application’s sectors and abilities to assist the workers
in the HRC scenario, Tong and Liu analyze in detail in [10] the supernumerary robotic
limbs (SRLs), which are a new type of wearable robots. In particular, the most recent
control methods of SRLs are discussed and are firstly classified according to the control
complexity into limb mapping control, electromyographic signal control and brain-machine
interface control. Then they are further classified according to the control strategies into
an iterative learning control strategy, phase-variable based control strategy or adaptive
oscillator based control strategy.

Physical and cognitive collaboration in the industrial environment is the focus of the
HRC extensive review proposed by Villani et al. [11]. From this work it emerges that
the primary main challenge in HRC is undoubtedly safety, which must be taken into
account by any approach implementing collaboration between humans and robots. In
order to achieve a safe and flexible HRC, intuitive user interfaces can be properly drawn
and appropriate design methods should be addressed, including control laws, sensors,
task allocation and planning approaches. An overview of the state-of-the-art approaches
for robot programming is also presented by the authors. Another survey proposed by
Tsarouchi et al. [12] groups all the challenges, future trends, and techniques connected
to task planning/coordination and intuitive programming in the manufacturing scenario
such as human-robot task allocation, scheduling, and social aspects.

A systematic literature review is written by Gualtieri et al. [7] who investigate and
categorize the recent research regarding safety and ergonomics or human factors for
industrial collaborative robotics and describe a useful methodology to identify relevant
papers for this study. A particular emphasis on the context of manufacturing is given
in [5], where an overview of collaborative robotics towards manufacturing applications
and the main industrial cases are depicted, and in [13], where the safety requirements
in the manufacturing environment, the methods and challenges of safety assurance are
discussed from the perspective of key functional requirements, collaboration variants,
standardizations, and safety mechanisms.

Some literature reviews in the manufacturing context focus on the critical industrial
process of assembly. For instance, Wang et al. [14] focus on symbiotic HRC assembly and
present some existing communication methods like voice processing, gesture recognition,
haptic interaction, and brainwave perception. Then, the authors illustrate the safety
standards for collision avoidance and deep learning for classification, recognition, and
context awareness identification. Challenges in the context of collaborative assembly
are also highlighted by Papanastasiou et al. [15] who present a large variety of HRC
technologies argued from a safety perspective in a real case study. Furthermore, Michalos
et al. illustrate in [16] an approach in which high payload industrial robots and operators
are employed for HRC assembly with a specific case study in the automotive sector and
with all the safety guidelines described in detail.

Like the previously cited works, safety is considered the most critical concern in
HRC and for this reason the potential strategies and methods for ensuring safety are
also illustrated by Lasota et al. [17] from a different point of view. They classify the
collection of existing works into four major categories: safety through control, motion
planning, prediction, and consideration of psychological factors. Through this work, the
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development of methods and techniques aimed at ensuring safety in the manufacturing
setting is encouraged in order to reduce risks associated with HRC and thus facilitating
the transfer of HRC systems from the research lab into the real world. The concept of
safety also appears in [18], where the different safety measures and the technical standards
relevant to HRC in the industrial production are highlighted. The in-depth conceptual
categorization of the HRC aspects in awareness, intelligence, and compliance is certainly
innovative in the HR taxonomy. Finally, Hashemi-Petroodi et al. [19] focus their work
on operations management that aims at optimizing productivity and responsiveness in a
company. Two main hybrid manufacturing systems, i.e., dual resource constrained and
HRC optimization problems, are discussed, and different features of the workforce and
machines/robots –such as heterogeneity, homogeneity, ergonomics, and flexibility– are
introduced.

From the above analysis of existing surveys on HRC with particular attention to
manufacturing, two crucial findings emerge. Firstly, safety appears to be the main target
in the majority of reviews, like in [13],[17], [18], followed by ergonomics and efficiency,
which are emphasized in [7] and [5],[19] respectively. Secondly, an evident gap surfaces
from the literature. Despite the growing amount of review papers and surveys, there is
no work cataloging the related articles from the point of view of automatic control in
HRC systems. For the sake of coping with this gap, the current survey classifies the most
relevant and recent works developed by the scientific community according to the three
above described key objectives of HRC in the smart manufacturing systems (i.e., safety,
ergonomics, and efficiency) that are also depicted in Fig. 2.1. All the articles are then
grouped by problem and type of control, indicating whether optimization techniques are
adopted or not. Finally, conclusions are drawn on promising future research directions in
each domain.

2.1.2 Objective and Structure
The objective of this chapter is to present a systematic review of the control techniques
used in collaborative robotics.

Control systems allow the coordinated movement and operation of different elements
of the cobot, as well as the execution of a specific sequence of tasks, even in the presence
of unpredicted events [20]. To ensure an effective HRC in the industrial scenario, an
appropriate control method must be chosen and ad hoc controllers must be designed
according to the desired specifications.

With the aim of providing the interested reader with a systematic guide to the control
methods used for HRC in the industrial sector, we group the contributions by target (i.e.,
safety, ergonomics, and efficiency) and then by control problem per each target, reviewing
the control techniques applied in each case, the obtained results, the corresponding
advantages, and the eventual open issues.

First, in order to guarantee a safe HRC, no undesired contact must happen between
robot and human. For this reason, several control algorithms have been proposed in the
literature to prevent collisions by defining safety regions or tracking separation distance to
guide robots away from humans and to detect collisions with the aim of reducing operator’s
injuries. Therefore, in cobotics, safety is understood as a fundamental requirement that
allows operators to work side-by-side with “fenceless” robots in compliance with ISO/TS
15066 standards, i.e., limitation of maximum permissible forces or torques, speed reduction,
and respect of a minimum protective separation distance.

Secondly, ergonomics aspects implying the psycho-physical well-being of workers are
also of crucial importance. Cobots indeed reduce physical labor by helping operators with
repetitive tasks but at the same time augment psychological stress connected to close HRC
that can lead to a reduction in performance. Thus, physical and cognitive ergonomics
must be taken into account in the design of HRC. Physical ergonomics is considered
in collaborative robotics as the prevention of injuries associated with repetitive and
dangerous tasks, and design and evaluation of workplaces; whereas cognitive ergonomics
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Figure 2.2: Search criteria and outcomes.

is associated with brain functions in the context of accident investigation or error analysis,
mental workload, decision making, usability, and training [21].

Finally, HRC is aimed at increasing productivity, which has always been the primary
goal of industrial companies. Cobots are certainly able to guarantee both a safe
and ergonomic collaboration with humans, while significantly reducing the downtime,
optimizing the production, and increasing the overall profitability. In the current analysis,
efficiency is thus intended as the improvement of the entire industrial process or merely
as the simplification of the operator’s actions to complete a task by scheduling activities
or planning the actions performed by the worker and the robot in the optimal way.

For the sake of providing the reader with an overview of the recent research activities in
the field of cobotic control systems, the main findings of the selected works in the related
literature are reported and summarized in the sequel. In particular, the remainder of this
chapter is structured as follows. Section 2.2 delineates the research methodology used in
this work. Each of the following sections –i.e., Section 2.3, Section 2.4, and Section 2.5– is
dedicated to one of the above discussed HRC targets –i.e., safety, ergonomics, and efficiency,
respectively– and it is structured in accordance with a higher-level classification into
five main addressed problems: collision avoidance, collision detection, motion planning,
control system design, and scheduling. Then, a lower-level categorization is applied to
each problem aiming at highlighting the type of control and the eventual utilization of
optimization methods. Section 2.6 identifies the gaps in the HRC research field regarding
the developed control methods and provides an overview of emerging challenges for future
investigation in this area. Finally, concluding remarks are reported in Section 2.7.

2.2 Research Methodology
This section presents in detail the methodology (see Fig. 2.2) used to select the most
relevant works regarding the application of automatic control methods to ensure a safe,
ergonomic, and efficient HRC. In particular, the well-known IEEE Xplore, Science Direct,
and Scopus database have been consulted.

As for the IEEE Xplore database, the papers related to the HRC field in the control
perspective were identified by using the ‘control’ keyword combined with the following
ones: cobots, collaborative robotics, and human-robot collaboration. The research focused
on papers published in the last ten years; nevertheless, it appears that the most significant
works were published since 2015, when an exponential growth in the field of collaborative
robotics is observed in the scientific community. Firstly, the research was limited to
journals with a prominent interest for control engineering, such as IEEE Transactions
on Automation Science and Engineering (T-ASE) and IEEE Transactions on Robotics
(T-RO). This choice was made to focus on articles that present state-of-the-art control
techniques in cobotics. As a result of this first research, we obtained 64 relevant papers. In
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Figure 2.3: Percentage of analyzed papers per target in the present survey.

the second phase, the search was extended to all IEEE journals and the number of relevant
papers increased to 380 articles. Among these, only those related to the manufacturing
context were selected. To sum up, 64 IEEE journal papers (including 21 T-ASE and
T-RO articles) were in total included in this survey. Then, we focused our study on the
most relevant and cited IEEE conference papers from 2017 onwards and 18 of them were
included in this literature review.

As for the Science Direct database, only contributions published in journals from
2015 onwards were selected with the same rule indicated for IEEE Xplore database and
the search was further limited to the subject areas engineering, computer science, and
decision science. Among the obtained 265 results, only those related to cobotics in the
digital industry were identified and the 30 most relevant papers were reported here.

Finally, it is worth mentioning that the search was extended to Scopus in order to
eventually identify other interesting journals related to the investigated HRC targets. As
a result of this final step, 8 further journal papers were considered worthy of mention in
the current review.

Summarizing, 120 papers were in total considered to be the most relevant by analyzing
the corresponding contents and will be presented in detail in the current survey. In the
last step, all the selected articles were categorized according to the three above described
targets: safety, ergonomics, and efficiency. To this aim, the works were analyzed in
detail by grouping them into tables with title, author, year, application, control system,
and key findings. Finally, all the results were reported on a spreadsheet where they
were organized by target and then by type of addressed control problem related to the
specific target. According to the final analysis, 71 (59%) analyzed papers are related to
safety, 21 (18%) to ergonomics and 28 (23%) to efficiency, as shown in Fig. 2.3. More
specifically, as schematized in Fig. 2.4, the 71 articles from the safety perspective are
divided into four problems: collision avoidance, collision detection, motion planning,
and safety-oriented control system design. Conversely, both the classes of the 21 papers
related to ergonomics and the 28 papers addressing the efficiency enhancement in HRC
are grouped into three categories: motion planning, scheduling, and ergonomics/efficiency-
oriented control system design. Furthermore, some papers focus on multiple targets,
while occasionally several problems are simultaneously addressed in a single contribution.
In such a case, the content of the articles is treated in different sections as long as the
research contribution is significant to the corresponding addressed target.

2.3 Control Techniques for Safety in HRC Systems
In HRC applications, safety requirements are the primary need, as can be seen from
the large number of articles focused on this concept, as highlighted in Fig. 2.3. For this
reason, several control techniques and state-of-the-art control frameworks, schematized
in Fig. 2.5, have been developed to meet the ‘safety first’ slogan in the digital industry.
All the papers from the safety point of view are synthesized in this section outlining the
relationships between them.

15



Control Techniques for Safety in HRC Systems

HRC

Ergonomics EfficiencySafety

Collision avoidance

Collision detection

Motion planning

Safety-oriented 

control system design

Scheduling

Ergonomics-oriented 

control system design

Efficiency-oriented 

control system design

Figure 2.4: Taxonomy of control problems in HRC (the problems addressing multiple targets are shown
by dashed boxes).
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Figure 2.5: Overview of approaches in the safety target.

2.3.1 Collision Avoidance
A large amount of cobotics safety schemes rely on pre-collision systems, which aim at
predicting the human intention, with the help of four classes of approaches: 1) learning-
based techniques, 2) exteroceptive and proprioceptive sensors, 3) speed and separation
monitoring and 4) power and force limiting (see Fig. 2.5), allowing the cobot to stop or
modify its trajectory before impact occurs.

From a detailed search in the related literature, it is evident that the estimation of
human impedance and motion intention is mostly achieved by learning-based techniques,
i.e., neural networks (NNs), recurrent neural networks (RNNs), and radial basis function
neural networks (RBFNNs). Yu et al. [22] present an adaptive neural admittance control
(AC) for collision avoidance in HRC with position constraint, based on an integral barrier
Lyapunov function (IBLF), that is adopted for improving tracking accuracy and interactive
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compliance. An impedance model and a soft saturation function are used to generate a
differentiable reference trajectory. A complete framework for safe HRC is developed in
[23], where the robot’s learning is applied not only to the human motion intention but
also to the human impedance, estimated in real-time by RBFNNs and a least square (LS)
method, respectively. The human impedance and motion intention are evaluated by the
same research group in another paper [24]. In particular, the human stiffness obeying to
the Gaussian distribution is estimated by using a Bayesian method and the human motion
intention by knowing the dynamic relationship between human stiffness and motion intent.
Yu et al. employ also in this paper NNs to handle model uncertainties in the robot’s
dynamics and impedance control (IC) to obtain an efficient HRC, while a stability analysis
is performed by using Lyapunov function candidates. Furthermore, Yasar and Iqbal
present in [25] a state-of-the-art sequence learning approach using RNNs which aims at
predicting the motion of all agents in a given workspace. Its performance is compared to
other motion prediction methodologies and it is shown that the model developed by the
authors can prevent collisions more accurately by having a short-term performance and
can plan the robot’s actions more precisely by having a long-term performance. Another
technique for human motion prediction in production lines, which combines RNNs and
inverse kinematics, is presented by R. Liu and C. Liu in [26]. More specifically, the former
is used to predict the wrist motion, whereas the latter expands the prediction to the
full-arm. Finally, in [27], Liu and Wang present a context awareness-based collision-free
HRC that is combined with a collision sensing module with sensor calibration algorithms.
A learning-based algorithm is implemented in order to identify the human operator’s pose
during the assembly task.

As mentioned before, multi-sensor control systems are alternatively used to avoid
collisions by detecting the human presence and evaluating in real-time the distance
between the robot and the object in the workspace. In particular, two research groups
implement this type of control technique for the complex robotic system in their works.
Khatib et al. develop in [28] a multi-sensor control system for collision avoidance with both
static and dynamic constraints and use a saturation in the null space (SNS) algorithm to
categorize the tasks by priority’s levels by giving the highest priority to collision avoidance
of the whole robot body and then of the robot’s end-effector. A mixed reality interface is
also added to the system in order to facilitate HRC. Moon et al. also propose in [29] a
control method for static and dynamic obstacle avoidance in real-time that employs a
dual-type proximity sensor developed for HR distance evaluation. A trajectory planning
scheme and a virtual force method are also presented and experimentally validated by the
authors. Instead, Fernández et al. propose in [30] an optimization-based control scheme
that integrates multi-sensor workspace monitoring and tracking algorithms together with
collision avoidance algorithms: the resulting real-time solution allows the cobot movements
to be free of self-collisions and collisions with external objects. The obstacle-robot distance
evaluation in real-time is also the objective of the article [31] by Nascimento et al., who
develop a different control system architecture that uses a limitation of the repulsive force
model with safety contour and of the paper [32] by Nikolakis et al. who focus on a cyber-
physical system (CPS) for a safe HRC assembly. A closed-loop control system, based on
the human’s proximity to the robot is implemented in order to allow the safety assessment
and to guarantee the collision avoidance. Optical sensors are also inserted in the CPS
architecture to monitor the working space and to evaluate the human-robot distance.
Furthermore, a new safety methodology called kinetostatic safety field is presented by
Polverini et al. in [33] in order to introduce a straightforward safety measure for any
moving rigid bodies. By combining the concept of safety field with a safety-oriented
control strategy for redundant manipulators, the proposed approach is able to enhance
safety in several real-time collision avoidance scenarios, including collision avoidance with
potential obstacles, self-collision avoidance and safe HR coexistence.

In addition to the two above discussed approaches, some authors concentrate on
methodologies that respect the new ISO standards related to the safety concept with the
use of speed and separation monitoring (SSM) and power and force limiting (PFL). For
instance, Liu et al. propose in [34] a dynamic risk assessment method based on modified
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SSM that respects the safety regulations. An innovative collision avoidance strategy
based on a dynamic risk index minimization using gradient descent is developed. The
authors integrate the SSM and visual risk field in augmented reality to obtain an advanced
HRC interface. Conversely, Ferraguti et al. exploit in their two works reported in this
survey the theoretical framework of control barrier functions (CBFs) in order to guarantee
collision-free trajectories along the robot. More in detail, they propose in the first paper
[35] an optimization-based control algorithm where the difference between the nominal
acceleration input and the commanded one is minimized. The human accelerations and
velocities are computed with a bank of Kalman filters. In the second paper [36], the same
authors provide an innovative control method that overcomes the limitations of SSM and
PFL by developing a zeroing CBF optimization approach, which is compatible with the
requirements of ISO/TS 15066, in order to act as a safety filter, by modifying the nominal
control input only when safety can be a threat.

2.3.2 Collision Detection
Sometimes physical contact is required in HRC tasks. Therefore, learning-based methods
and non-linear optimization problems (see Fig. 2.5) that provide safety by detecting
collisions are developed to meet this need.

Haddadin et al. survey and discuss in detail in [37] the model-based algorithms for
real-time collision detection, isolation, and identification that use only proprioceptive
sensors. More specifically, the authors present the collision monitoring methods from scalar
monitoring of robot energy to momentum-based observers, highlighting the advantages
and disadvantages of each algorithm. The techniques are further evaluated and compared
in simulations and experiments. On the other hand, a sensorless collision detection and
coordinated compliance control method based on momentum observer for a dual-arm
robot is proposed by Han et al. in [38]. Similarly to the collision avoidance problem
(Section 2.3.1), learning-based control methodologies are the most employed techniques,
since proprioceptive torque sensors are vital in identifying possible collisions. Furthermore,
it is worth mentioning that the majority of the related works aims at designing an observer
that provides an estimation of the internal state, which is surely needed to detect collisions.
For instance, Ren et al. [39] introduce a collision detection method based on encoders and
torque sensors by combining the robot dynamics and the design of a modified extended
state observer (MESO). Another framework based on a deep learning approach, that is
capable to monitor signal estimation and recognize any collision with a particular type
of observer, is proposed by Heo et al. in [40]. A convolutional neural network (CNN) is
adopted in order to achieve both high sensitivity to collisions and low susceptibility to false
alarms. Park et al. [41] design two real-time learning-based detection methods, namely
a linear support vector machine (SVM) and CNN. Only motor current measurements
together with a robot dynamic model and a momentum observer are required. Thus,
manual tuning collision detection thresholds for each joints can be avoided. Four further
articles exploit learning-based control techniques. On the one hand, Sharkawy and Mostfa
design in [42] a neural network for collision detection by examining the robot dynamics
and by doing the training with the algorithm of Levenberg-Marquardt. More precisely,
four NN’s types are implemented by the authors, that are multilayer feedforward with
one hidden layer and two hidden layers, cascaded forward, and recurrent NNs. A 1 degree
of freedom (DOF) robot is chosen to test the proposed techniques which from the results
appear to be very effective in detecting collisions. On the other hand, Lippi and Marino
propose in [43] a solution based on RNNs that is able to detect and classify the nature
of the contact with human, either intentional or accidental and to properly react. In
particular, a long short term memory network is implemented to detect human contact.
Furthermore, Zhang et al. design in [44] an online collision detection and identification
scheme that consists of a signal classifier and an online diagnosor using supervised learning
and Bayesian decision theory (BDT). Supervised learning NNs are also implemented in
combination with signal filtering in [45] with the aim of improving the sensitivity of the
system and reducing the computation time. In such a paper, Aivaliotis et al. present a
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power and force limiting methodology for online collision detection without the use of
external sensors. Another article written by Kouris et al. [46] is dedicated to developing
a novel frequency domain scheme that aims at distinguishing unexpected dangerous
collisions from voluntary contacts by detecting the external forces at the end-effector and
the external joint torques with the help of proprioceptive torque sensors. With the same
objective as the previous article, Mariotti et al. propose in [47] admittance control laws
for a safe HRC in manual guidance mode by using 6D Force/Torque (F/T) sensor at
the end-effector in addition to kinematic inputs information. Forces’ detection prevents
accidental collisions and avoids unintended contacts during robot movements. Hence,
Gaz et al. present in [48] a control algorithm that allows the operator to reorient a
work-piece held by the robot in polishing tasks of metallic surfaces and to distinguish
the external torques acting at the robot joints in two components: the former is due
to the polishing forces applied to the work-piece mounted on the end effector, whereas
the latter depends on the reconfiguration of the manipulator arm. In order to detect
the contact points on the robot and to evaluate the exchanged contact forces, Magrini
and De Luca implement in [49] a parallel graphics processing unit (GPU) algorithm
that monitors in real-time the dynamic distances between a robot and generic moving
obstacles in the environment. A safety framework that includes safety measures and
requirements is presented by Magrini et al. in [50], with the aim of ensuring HRC in open
industrial robotic cells. To augment the level of safety, a depth-space algorithm for online
monitoring of relative HR distance is implemented and combined with redundant sensing
hardware, i.e., two laser scanners working in parallel in the cell. As a final contribution
to the category of studies on the collision detection techniques without any optimization
problem, the paper [51] by Labrecque et al. presents a macro-mini architecture with
a novel passive mini mechanism to minimize the impedance, eliminate the nonlinear
impedance and decouple HR dynamics. Advanced control collision detection strategies
are specifically designed for this architecture.

Differently from the above, a collision detection approach based on constrained non-
linear optimization is presented in [52], where a strategy to change speed is formulated
by using a danger index and an elite real-coded genetic algorithm (ERGA) is used to
guarantee the operator’s safety.

2.3.3 Motion Planning
In collaborative applications, trajectory planning allows to reduce the risk of possible HR
contacts, leveraging on the operator’s motion prediction. The first part of this section
deals with learning-based control and non-linear optimization problems, whereas the
second one with model predictive control, probabilistic-based control, compliance control,
reinforcement learning, admittance control and filter-based generation (see Fig. 2.5).

Most of the related works formulate the trajectory planning as a constrained
optimization problem, whereas, as explained in Section 2.3.1, some ISO requirements must
be respected to obtain a safe HRC in the manufacturing scenario. Oleinikov et al. propose
in [53] a non-linear model predictive control (NMPC) approach for real-time planning
based on SSM specifications for industrial applications. Sloth and Petersen present in
[54] a method to compute a safe path velocity under the ISO/TS 15066 requirements
for avoiding collisions between human and robot by implementing firstly an eigenvalue
problem for stationary bodies and then a polynomial optimization combined with a
line-search for moving bodies. The two different SSM and PFL strategies, mentioned in
Section 2.3.1, are merged in the following two papers: in [55], where the initial velocity is
optimally scaled to preserve the operator’s safety and the path consistency of the robot
trajectory, and in [56], where a machine learning (ML) method is proposed as a support
for the combination of the two techniques in order to examine the human body movements.
The use of the current methodology aims at reducing the safety zone’s dimensions that
are usually oversized for various simplifications in the practical applications. Another
article [57] written by Costanzo et al. presents a strategy based on SSM. More precisely,
safety through prediction is integrated with safety through control by combining tracking
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separation distance and human actions prediction with safety regions and speed monitoring
to avoid possible collisions. The authors implement a CNN that combines spatial and
thermal information for human detection and an advanced fuzzy logic approach for robot
speed scaling by monitoring the HR distance in real-time. The approach is verified in
cooperative assembly of aeronautical structural parts. Furthermore, a kinematic control
strategy based on metrics for safety assessment is proposed in [58] by Zanchettin et al. In
order to respect the rules imposed by the minimum separation distance criterion, a set of
constraints can be used in real-time to limit the velocity, according to the distance from
the operator. The same research group proposes another trajectory generation algorithm
in [59]. The pre-programmed trajectory can be modified by the robot controller in order
to enforce the safety constraints, while anticipating task interruption.

An innovative safe minimum-time trajectory planning along specified paths in the
HRC scenario is presented by Palleschi et al. in [60], where safety is iteratively guaranteed
by using a safety module and a safety evaluation module. At every cycle, the high-speed
motions are restored as soon as the safety issue is resolved. Non-linear optimization
problems in real-time are presented in [61], where the trajectory planning problem is
solved by using a decoupling method that transforms the original coupled optimization
problem into multiple independent optimization problems, to reduce the computational
burden. A non-linear programming (NLP) problem with human-in-the-loop constraints
is also solved in the reference [62] in order to optimize the desired path subdivided into
multiple segments. To ensure a flexible real-time use, a generalized method using dynamic
movement primitives (DMPs) and the compliance of constraints is proposed. A proactive
path planning for cobots is proposed in [63], where the robotic safe trajectory is optimized
according to a prediction of the volume occupied by the human. Conversely, Kanazawa
et al. [64] present an online motion planning system that computes an optimal trajectory
to avoid collisions based on the probabilistic prediction of the worker’s motion and the
receding horizon scheme for the trajectory planning. Another receding horizon control
approach is proposed by Ducaju et al. in [65]. In particular, the authors implement a
model predictive control (MPC) fixed-time point-to-point online trajectory generation
method with the addition of the null space motion that is used to guarantee a continuous
movement of all joints during the entire trajectory task, to avoid joint stiction, and
to facilitate the kinesthetic teaching in a redundant robot. A planning algorithm that
depends on a stochastic trajectory optimizer (STOMP) is proposed by Mainprice et al.
in [66]. The key of this approach is to predict the human motion for tasks not known a
priori by learning an unknown cost function that describes the human movements. An
integrated framework that includes plan recognition and trajectory prediction modules is
proposed by Cheng et al. in [67]. More specifically, a robust plan recognition algorithm
based on neural networks and Bayesian inference is implemented by the authors. Lastly,
in [68] an algorithm that predicts human motions by combining the minimum jerk model
with semi-adaptable neural networks is similarly used to estimate future positions of the
human hand based on previous training.

As an alternative to the use of optimization, few works in this category rely on different
techniques. For instance, in [69], a methodology to transfer human experience directly to
the robot through a collaborative control system based on forward dynamics compliance
control (FDCC) is presented. This framework is designed to exploit the operator’s
experience which is then applied to plan the trajectories for the robot. Similarly, Zhao et
al. propose in [70] a reinforcement learning (RL) based method with a hazard estimator
to balance task following and human safety with the aim of making a trade-off between
following demonstrated path and adapting to human movements. Instead, Chen and Song
develop in [71] a control framework for a collision-free trajectory in HRC scenarios which
includes three main parts: 3D perception and object tracking, potential field generation
composed of attractive and repulsive forces where the former is applied to reach the target
position whereas the latter to avoid collisions, and a real-time motion planning under the
Cartesian constraint of the environment. In [72], Ji et al. implement a partially observable
Markov decision process (POMDP) for human-aware motion planning in industrial HRC
where the robot executes the sequential decision making problems without being able
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to fully observe the human state and especially the human intention. In [73], He et al.
design a soft saturation function for path planning and an admittance-based controller
in the constrained task space that involves integral barrier Lyapunov function that is
implemented for tracking issues and radial basis function NNs that is used for dynamic
uncertainties’ approximation. Finally, Besset and Béarée [74] present a finite impulse
response (FIR) filter-based trajectory generator which produce online time-optimal jerk-
limited trajectories from arbitrary initial velocity and acceleration conditions, while
respecting the kinematics constraints of position, velocity, acceleration and jerk. The
methodology adopted by the authors is suitable for systems with a large DOF and in
dynamic environments where the robot controller must quickly react to unpredictable
events.

2.3.4 Safety-Oriented Control System Design
This sub-section includes all the works that aim at designing advanced controllers for
a safe HRC without specifically referring to any of the control problems addressed in
the previous sub-sections. The employed approaches are summarized in Fig. 2.5. They
incorporate optimal control, MPC, learning-based control, AC/IC, sliding mode control
(SMC), and compliance control.

To begin the discussion, a complete control framework with a large quantity of
innovative robotics elements, i.e., trajectory optimization, admittance control, and image
processing is presented to the reader. The article proposed [75] written by Cherubini
et al. is certainly interesting for HRC researchers for its completeness and its practical
application in the manufacturing scenario. The authors develop a control scheme for
collaborative safe assembly that consists of two steps: the offline nominal trajectory
generation step and the online controller for the assembly task.

In the following papers some constrained control frameworks are described, starting
from a discrete controller developed by Roveda et al. [76] with a two layers’ structure
that can be used in both the free-motion and contact phases. The admittance regulator
gains can be computed by solving a linear quadratic regulator (LQR) optimal control
problem. The current method avoids force overshoots and instabilities. The objective
of the next paper is to define a safe zone to move in without endangering the human.
Aiming at this purpose, an innovative control scheme for HRC, which enforces dynamic
constraints even in the presence of external forces, is designed in [77] by Kimmel and
Hirche. Then, Bednarczyk et al. combine impedance control (IC) and MPC in [78],
since this control field is relatively new for HRC and no research has been performed
yet. Thus, a new controller named model predictive impedance controller (MPIC) is
presented by the authors. The strong point of the MPIC is the ability to integrate
different type of constrains like speed, energy, and jerk limits that can affect the operator’s
security. Furthermore, Reyes-Uquillas and Hsiao design in [79] an adaptive admittance
law, for parameters tuning in manual guidance tasks, which enables to satisfy three
typical HRC constraints that are singularities, joints, and workspace limits. The proposed
methodology allows to tune the parameters during the normal operation area with the
input forces/torques detected at the robot end-effector. On the other hand, Xiao et
al. present in [80] a HRC assembly scheme without employing additional force/torque
sensors and considering load and friction compensation with the aim of improving safety,
compliance, and flexibility of the loaded robots.

In addition to the above discussed approaches that make use of optimization techniques,
further related works focus on learning-based and sensor-based controllers that are designed
to reactively adapt to continuous changes in the environment. For instance, a multi
modal responsive and sensor-based controller is presented by Cherubini et al. [81]. The
control framework operates by activating or deactivating various tasks, according to the
sensed data and to the application’s needs. A method able to detect and compensate
for undefined behaviors due to collisions and other unexpected events is suggested
by Suzuki et al. in [82]. The proposed compensation technique employs a switching
function that allows to move from a learning-based to a model-based controller by using
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internal representation of a task-trained RNN. A novel neural adaptive controller, that
achieves globally asymptotically trajectory tracking for a flexible-joint robot with unknown
dynamics, is presented by Chen and Wen in [83], where the tracking performance of
the controller is improved by using the regressor online learning. Lastly, Cremer et al.
[84] propose another neuroadaptive controller framework for stable and efficient HRC
using a two-loop structure where both the robot dynamics and the human intent during
collaboration are being evaluated online. Two NNs in the outer-loop predict human
motion intent and estimate a reference trajectory for the robot that the inner-loop follows.
A third NN is used in the inner loop to impose a prescribed error dynamics and feedback
linearize the robot dynamics. Results show fast convergence of the proposed controller and
a reduced position error and motion jerk compared to a standard admittance controller.

Various methodologies have been developed in the literature to investigate the stability
limits of a robot under admittance control, during HRC. A model-free control scheme is
proposed by Dimeas and Aspragathosfor in [85] for detecting instabilities –i.e., introduction
of the additional feedback term at high stiffness of the robot’s environment– of the
admittance controller and for adjusting online the admittance parameters to stabilize the
robot and thus, to obtain low effort HRC. A stability and steady-state analysis are outlined
in another paper written by [86] in order to guarantee a safe HRC. Li et al. develop an
impedance controller on the basis of PD control to realize the active compliance, while
the passive one is achieved by a specially designed elastic element. The trade-off between
stability and transparency is a core challenge addressed also in [87], where a new variable
fractional order admittance controller (FOAC) is proposed to handle this trade-off. The
designed controller displays stability robustness against the system disturbances. In
addition to ensuring asymptotic stability, a controller design must be able to guarantee
passivity. Raiola et al. [88] introduce a novel impedance controller which allows a safe
HRC through energy and power limitations, assuring passivity through energy-tanks. The
compliant joint manipulators can store a huge amount of energy potentially dangerous
due to nonlinearities.

Other techniques based on SMC and AC have been implemented in the state-of-the-art
controllers. For instance, an innovative controller, for a safe and performing control of
compliant joint manipulators, is presented in [89]. The variable boundary layer SMC
(VBSMC) allows to achieve various interaction levels while maintaining good tracking
performances. Furthermore, Solanes et al. present in [90] an approach for HRC in
transportation applications using multi-task, non-conventional SMC, admittance control,
and the gradient projection method. A hybrid position-force scheme is designed since
some coordinates of the robot pose are controlled via a position feedback loop, while
others via a force feedback loop. Three tasks with different priority levels are defined in
the controller to cooperatively perform the safe transportation of an object with a human
worker. In [91], Liu et al. propose a generalized dynamic behavior control framework that
incorporates four models: the task model, which includes role allocation, motion planning,
control performance, and intentional interaction, the dynamic behavior control model, the
robot model, and the human model. In this article, the authors not only concentrate on
single-point HR interaction but also on multi-point HR interaction, both in the Cartesian
space and joint space. In the second HR interaction scenario that consists of two main
issues’ types, i.e., expected interaction and undesired collision, a smooth task transition
algorithm is defined to ensure safety during the task switching process. To conclude, Fu
and Zhao propose in [92] two different Maxwell model-based compliance control methods
in HRC scenarios that minimize the effect of collisions compared to the conventional
Voigt model. In particular, a Maxwell model-based Cartesian admittance control scheme
is developed to generate an innovative plastic compliance of the robot end-effector and a
Maxwell model-based null space admittance control approach for redundant manipulators
is realized to obtain a plastic whole body compliance.
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Figure 2.6: Overview of approaches in the ergonomics target.

2.4 Control Techniques for Ergonomics in HRC Systems
In the developed countries, the so-called work-related musculoskeletal disorders (MSDs)
affect almost 50% of human workers. Aiming at minimizing MSDs, and other health
issues and injuries provoked by poor ergonomics, collaborative robots are introduced
in the manufacturing scenario. Cobots are increasingly adopted in tasks involving
repetitive motions to reduce the operator’s fatigue, increment the overall level of comfort,
and augment productivity by shortening a task time. However, close HRC can induce
psychological stress in the operator that must be evaluated and analyzed in order to
design robots adapt to human features and smooth interactions.

In this section a review of the articles with an ergonomic control perspective are
discussed in detail. All the control approaches employed are synthesized in Fig. 2.6.

2.4.1 Motion Planning
Also in the ergonomics perspective, motion planning plays an important role both for the
physical and cognitive HRC. Two main control methods are considered for motion planning:
biological and non-biological trajectory optimization and minimum jerk trajectory planning
(see Fig. 2.6).

As for the physical HRC, a crucial issue lies in how humans lead the movement and
how the cobot motion can be controlled for efficient and intuitive collaboration. In this
view, Maurice et al. [93] investigate quantitatively the human ability to non-biological
patterns in robot movements. In particular, the human adaptability to biological and
non-biological velocity profiles during an elliptic movement are examined, showing that a
robot control oriented to the biological velocity profiles increases the physical ergonomics
for the operator. Similarly, [94] –which mainly aims at improving the efficiency of the
assembly process– focuses on the motion planning problem aiming at optimizing the
handover between robot and human in the ergonomics perspective.

As for cognitive ergonomics, it is taken into account in [95], where Rojas et al. propose
a novel trajectory-planning methodology that aims at ensuring both psychological and
physical safety by using the minimum-jerk variational problem which is also able to
minimize vibrations. The same research group proposes in a more recent work [96] a
similar trajectory planning technique that seeks to reduce simultaneously the execution
time and the psychological stress inducted on employees when working with cobots.
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2.4.2 Scheduling
An excellent scheduling of activities is certainly a starting point for reducing physical and
cognitive stress. For this reason, many researchers address the HRC scheduling problem
from the ergonomic perspective, as reported in this sub-section. The control methods
adopted in this context mainly rely on mixed-integer linear programming, Stochastic Petri
nets, cognitive-load optimization, feedforward/feedback optimization, and decision-making
(DM) model as shown in Fig. 2.6.

In contrast to the majority of the existing studies for scheduling and allocating
tasks, which do not consider the ergonomic factors, Pearce et al. [97] firstly analyze
the differences in skills between human and robot and the differential ergonomic impact
of tasks on operators and then generate task assignments by using a mixed-integer
linear program (MILP) scheduler. Aiming at improving ergonomics and reducing the
worker’s physical strain, the authors introduce a variation of the so-called strain index
method as a measure of human physical stress of each work element in a task. Several
other works focus on ergonomics-oriented scheduling; however, the underlying analysis
relates to a specific application area. For instance, in [98] the risk for musculoskeletal
disorders resulting from repetitive movements and excessive fatigue of the operator in
the kitting process is alleviated by optimally allocating the tasks between human and
robot with an online scheduling algorithm. A novel stochastic Petri net control framework
is proposed by Hu and Chen [99] to solve an optimal task-allocation problem for the
human-machine collaborative manufacturing process. The proposed stochastic framework
allows to model the impact of human fatigue on the process dynamics. In addition, Faber
et al. [100] develop a cognitive control unit (CCU) which is extended by a graph-based
assembly sequence planner (GASP) in order to reduce the cognitive and physical risk in
the collaborative assembly process. Similarly, Rahman and Wang [101] present a two-
level (feedforward and feedback) optimization strategy for trust-based subtask allocation
between the human and the robot in flexible lightweight assembly. Lastly, Jiang and
Wang design in [102] a human-like DM under risk model that can be involved in HRC task
allocation. A mathematical DM model is designed to enclose the psychological effects,
including regret effects, probability weighting effects, and range effects and a fuzzy logic
controller is employed to collect data from individual decision makers.

2.4.3 Ergonomics-Oriented Control System Design
This sub-section illustrates all the works aimed at designing advanced controllers for
an ergonomic HRC, without specifically referring to any of the two ergonomics-oriented
control problems addressed in the previous sub-sections. In particular, the majority of
works minimize the human physical and cognitive discomfort in the collaboration with
robots by designing optimal control strategies (i.e., haptic assistance, optimal control,
whole-body control, and game theory), while the remaining ones aim at improving
ergonomics by designing control strategies based on NNs, RL, gesture-based control, and
admittance control (see Fig. 2.6).

The works that address the design of optimal control strategies to increase the
ergonomics level of HRC typically integrate human factors in the HRC control schemes.
In particular, Medina et al. in [103] minimize the human effort by designing a novel
anticipatory model-based haptic assistance scheme that considers model uncertainty in the
robot interaction control, while in [104], Ansari and Karayiannidis present a task-based
role-adaptation control that can produce assistive robot forces based on the task’s velocity
profile in cooperative object manipulation. An assistive force can be applied by an active
robot according to a similar task. In particular, in the latter work, the task executed by
the human is identified in real-time and modeled as an integer linear programming (ILP)
problem that is employed to detect the closest velocity profile to the ongoing velocity
for an interval of time and is also able to compute the similarity factor for each task.
Aiming at enhancing the working conditions for the human co-worker in co-manipulation
and handover tasks, Peternel et al. propose in [105] an innovative dynamic HRC control
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approach in which the human body configuration, that minimizes the overloading joint
torques, is found. With the same overall aim, Kim et al. present in [106] a state-of-the-art
HRC control strategy that allows the operator to work in a more ergonomic configuration
during dexterous operations like drilling or polishing tasks. For this purpose, the authors
develop an optimization problem that minimizes the overloading torques in the human
joints by taking into account the worker’s ergonomics aspects with the use of constraints,
such as the human arm muscular manipulability. Since the operator’s performance could
vary due to factors such as individual strength, working pattern, and interaction with the
robot, Sadrfaridpour and Wang [107] develop a novel framework which integrates physical
and social HR interaction factors into the robot motion controller for HRC assembly
tasks. To improve physical HR interaction the robot speed can be controlled with the
aim of synchronizing its motion progress with that of the human during the task. For
greater social HR interaction, human trust in robot and visual feedbacks are provided
for a better performance and safety. Similarly, the work [75], already described from the
safety control perspective, aims at improving the physical ergonomics in the development
of the state-of-the-art control framework. Lastly, Messeri et al. propose in [108] a HRC
framework in which the trade-off between human physiological stress and productivity is
optimized in real-time by using a non-cooperative game theoretic approach.

In contrast to the previous contributions, the following ones still include human factors
in the controller design but do not address any optimization problem. In particular,
in [109] the human factors, –i.e., the weight perception in the control of HR systems–
during the manipulation task of heavy objects are examined. The author develops an
adaptive control algorithm based on human characteristics and uses RL to predict the
control parameters producing the best control performance. To test the control system,
a 1 DOF testbed power assist robotic system is defined and several position and force
control strategies for the system are set and compared, showing the best performance of
the method in case of position control. The complex influence of several human factors
on the operator performance is also identified by using a neural network based learning
approach in the paper [110] by Oliff et al., where a framework that integrates intelligent
control and data processing is developed to improve coexistence with human colleagues
in the manufacturing context. In another article [111] by Shen et al., an innovative
framework is developed to improve HRC by endowing the robot with the capability of
understanding human personalities during face-to-face interaction. The experimental
protocol developed by the authors consists of the nonverbal feature extraction and the
machine learning model training that uses the ridge regression and support vector machine
(SVM) classifiers. Another original control framework that consists of two control loops
is developed by Modares et al. in [112] with the aim of minimizing the human effort and
achieving an optimal performance. The inner-loop neuro-adaptive controller is designed
to make the nonlinear unknown robot dynamics behave like a prescribed robot impedance
model whereas the outer-loop controller is developed to find the optimal parameters of the
impedance model and minimize the tracking error. RL is also implemented to solve the
LQR control problem that is formulated to find the optimal parameters of the impedance
model. Furthermore, in the paper [84] by Cremer et al., already mentioned from the
safety point of view, the human effort is minimized by using the so-called human intent
estimator that proactively helps the user follow the desired trajectory. The human factor
analysis tools are also involved in the design of the gesture commands. For instance,
Tang and Webb [113] develop a hand gesture robot control system which enables the user
to perform motion control and simple programming of an industrial robot. As opposed
to the previous authors, who paid attention to cognitive ergonomics, Zanchettin et al.
focus on physical ergonomics in [114]. They present a control strategy for the robotic
manipulator to minimize the muscular fatigue of the worker during the manipulation of
bulky objects. The proposed method shows a significant mitigation of the musculoskeletal
disorders’ risks and a remarkable reduction in the cycle time and thus, an increase in
productivity. To conclude, the article [115] by Yao et al. aims also at reducing the burden
on the human with the help of radial basis function (RBF) by describing a dynamic model
of an industrial robot in both dynamic and quasi-static mode that computes the external
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Figure 2.7: Overview of approaches in the efficiency target.

force produced by the human operator. Admittance control is implemented in order to
transfer the detected external force into reference position and velocity of the robot.

2.5 Control Techniques for Efficiency in HRC Systems
In today’s high-tech manufacturing scenarios, collaborative robotics is employed to
augment productivity, flexibility, and profitability. The cycle times can be roughly halved
using HRC as opposed to workers only and, as demonstrated in a research conducted
by Shah [116], the idle time is shortened by 85% when operators work collaboratively
with a human-aware robot rather than when working in all-human teams. Therefore,
manufacturing processes, i.e., assembly, machine tending, and palletizing are faster, more
efficient, and more cost-effective with cobots’ application.

A large number of control techniques for HRC are developed to minimize costs and
increase the overall level of productivity in the digital industry. In this section all the
related papers written from an efficiency perspective are reported and described in detail.
The taxonomy of the control approaches is synthesized in Fig. 2.7.

2.5.1 Motion Planning
This sub-section discusses the control techniques aimed at optimizing robot trajectories
to minimize the time needed to complete an industrial task and/or improve the quality
and comfort of collaborative tasks. The control methods applied to such purposes are
various and largely depend on the specific application. They include constraint-based
planning, graph-search, impedance control, non-linear optimization, receding horizon
control, learning-based algorithms, speed and separation monitoring, active compliant
control, and reparametrization algorithm (see Fig. 2.7).

Firstly, Raessa et al. propose in [94] a constraint-based incremental manipulation
planning method to generate the motion for the robot system, while distributing efficiently
the subtasks of a complex task to robots and humans. Differently, an online adaptive
robot motion generation for a dyadic collaborative manipulation scenario is presented by
Stouraitis et al. in [117] where graph-search (GS) methods are used in combination with
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trajectory optimization. The current approach computes the optimal hybrid policy for
the robot to complete manipulation tasks as a member of a dyad or alone.

On the other hand, Balatti et al. [118] focus on the complex problem of pallet jack
recognition and re-positioning in order to enable the mobile collaborative robot assistant
(MOCA) to execute the loco-manipulation tasks autonomously, or in collaboration with
humans. The proposed framework consists of four main modules: pallet jack reaching,
handle detection, handle preparation and pallet jack repositioning. A whole-body
impedance controller and a trajectory planner, which considers the mobility constraints
of the robot-pallet jack chain, are implemented for this purpose. The impedance control
reveals particularly appropriate for such task where contact forces must be kept small, but
accurate regulation is not required. Like in the previous article, Wu et al. present in [119]
an innovative weighted whole-body cartesian impedance controller for the MOCA, which
is used for a door opening task. In particular, three motion modes are defined –pure
locomotion, manipulation, and coupled loco-manipulation– in addition to the classical
loco-manipulation pattern.

Furthermore, it is worth mentioning here some works already discussed in the safety
section as they are written according to dual targets. In [62], Weitschat and Aschemann
solve a non-linear optimal problem by minimizing the time needed by the robot to reach
the goal position under human-in-the loop constraints. In [64], the online computation and
control of the optimal trajectory, that is based on a receding horizon, aims at decreasing
the waste time, by incorporating and managing effectively the temporal requirements
needed to predict the workers’ behavior, and thus, at improving the work-time efficiency.
In [27], the robotic path is planned combining the use of sensors and a learning based
algorithm, not only to avoid obstacles but also to reach the target position in time by
maintaining the assembly efficiency at the highest level. Also the authors of [34] aim at
preserving productivity although the primary goal remains to avoid collisions along the
robot’s trajectory. In [58] and [55], the productivity is maintained at the maximum level,
while guaranteeing safety. In [67], Cheng et al. aim not only at improving safety but also
at minimizing the task completion time. Lastly, in [57] high profitability, efficiency, and
reduced cycle time are obtained by minimizing unnecessary robot stops and slowdowns in
case of false-positive human detection.

Differently from the above cited works, reference [120] describes a new optimization-
free method for one of the most difficult disassembly tasks, i.e., the unfastening of screws.
A cobot equipped with an adapted electrical nutrunner is used for this scope. A spiral
search motion is performed to align, locate, and engage a nutrunner onto a hex screw
with an initial positional error. The authors implement a control strategy combining
torque and position monitoring with active compliance. To conclude, Rojas and Vidoni
propose in [96] a non-linear reparametrization –based on the calculus of variations and
the theory behind the Noether’s Theorem– that aims at minimizing the execution time
while controlling and preserving the degree of motion’s smoothness.

2.5.2 Scheduling
Productivity can be optimized by implementing scheduling algorithms for HRC. The
control methods used in this context are based on reinforcement learning (RL),
convolutional neural network (CNN), Petri nets, optimization-based scheduling, and
digital twin (DT)-based task assignment (see Fig. 2.7).

For instance, Yu et al. make in [121], an analogy between a chessboard and the
assembly process. The selection of moves in the chessboard are compared with the HR
decision-making. A self-play algorithm based on RL is used to obtain the optimal policy
and a CNN is trained to predict the distribution of the priority of move selections and
whether a working sequence is the one resulting in the highest HRC efficiency. On the
other hand, the assembly planning and processes are modeled in [122] with the use
of AND/OR graphs. Johannsmeier and Haddadin propose a HRC framework for task
allocation at team and agent level by optimally combining the capabilities of humans and
robots in industrial assembly tasks.
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Casalino et al. propose in [123] a scheduler based on timed Petri nets to maximize the
throughput and minimize the idle time of each agent involved in collaborative assembly
tasks. Furthermore, the goal of the paper by Pearce et al. [97] is the optimization of
production time -by minimizing the makespan (task completion time) and the worker’s
idle time - in addition to the ergonomics improvement.

Conversely, a recent work [124] by Zanchettin aims at minimizing the difference of the
actual production from a reference one –i.e., the tracking error– rather than minimizing
the idle time or maximizing the throughput. The author suggests a robust scheduling
and dispatching rules for high-mix collaborative manufacturing systems by developing
an optimization algorithm that is then tested with an assembly layout composed of six
stations and four resources.

Reducing the planning time and the efficient spatial utilization is instead the purpose
of the article written by Michalos et al. [125] who present a multi-criteria task assignment
problem by considering the spatial layout of the assembly workplace. On the one hand,
CAD models are utilized for the extraction of a product’s assembly sequence, on the other
hand, an algorithm is implemented for the generation and examination of alternative
planning scenarios. An optimal study for an effective reconfiguration of the assembly cells
is proposed by Tsarouchi et al. in [126]. The authors outline a method for the allocation
of sequential tasks assigned to the robot and the operator placed in different workspaces
and in particular in the assembly lines of an automotive industry. Conversely, Xu et al.
propose in [127] an optimization problem to find the best disassembly sequence that is
considered the key step in remanufacturing. The disassembly sequence planning (DSP) is
computed by the modified discrete bees algorithm based on Pareto (MDBA-Pareto) with
the aim of minimizing the disassembly time, cost, and difficulty.

A hierarchical task model from human demonstrations that is able to identify the
sequential and parallel relationships of the task at all levels of abstraction in assembly
scenarios is proposed by Cheng et al. in [128]. An optimization-based planner is also
developed by the authors in order to minimize the completion time for the planning
horizon by excellently assigning the parallel sub-tasks to the human and the robot.

Finally, some authors develop a digital twin with the aim of improving the efficiency
of the HRC industrial processes. For instance, Wang et al. create in [129] a DT for
human-robot interactive welding that includes the robot, the operator, and the welding
scene in order to replicate the welding operations and analyze the welder behaviors after
a welding skill level classification from demonstrated operation data. To this intent, a
combination of fast Fourier transform (FFT), principal component analysis (PCA), and
support vector machine (SVM) is proposed by the authors. Aiming at increasing the
assembly flexibility, Bilberg and Malik design in [130] a digital twin of an assembly cell for
skill-based tasks distribution between human and robot, task sequencing, and program
development. Finally, an innovative framework based on digital twin is developed by Lv
et al. in [131] to cope with the increasing demand for medical equipment in the COVID-19
era. The assembly process is segmented after analyzing each assembly element and the
double deep deterministic policy gradient (D-DDPG) is chosen as an optimization method
for learning the optimal HRC action sequence and action path for assembly task.

2.5.3 Efficiency-Oriented Control System Design
This last sub-section illustrates all the frameworks designed to augment the performance
and efficiency of a cooperative task and, thus, productivity and profitability of the digital
factory without specifically referring to any of the efficiency-oriented control problem
addressed in the previous sub-sections. The available control systems design approaches are
mainly based on impedance or optimal control combined with learning-based approaches
(see Fig. 2.7).

A general framework based on Pareto optimization is proposed by Aydin et al. [132] in
order to handle the trade-off between stability robustness and transparency of a closed-loop
physical HR interaction. The proposed design not only enables to optimize the controller
parameters for the best trade-off performance, but also allows the designer to make a
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well thought decision by comparing all the interaction optimal controllers with different
structures. The HR interaction performance is also optimized in [133], where a novel
adaptive impedance control is employed for the robotic manipulator. The acquisition of
an optimal impedance model of the individual arm is obtained by formulating the LQR
that is then solved with integral reinforcement learning. A novel BLF based adaptive
impedance control is developed for physical limits, transient perturbations, and time
varying dynamics.

Except for the above cited studies, most of the related works in this category specifically
focus on assembly, since it is one of the most critical process in the manufacturing
scenario. For instance, a human-robot framework named FLEXHRC+ is designed for
greater flexibility and scalability in assembly tasks by Darvish et al. in [134]. The
authors implement a first order logic (FOL) based hierarchical AND/OR graph structure
that makes the task representation suitable for any type of scenario. In order to avoid
damaging the work-pieces, the flexibility of the robot is usually ensured by installing
a six-dimensional force/torque sensor on the robot. In [135], Noohi et al. propose
a model to improve HRC that computes the interaction force by measuring only the
force applied by the human. Firstly, the scheme is embedded in an offline controller
and then in an online-controller that estimates the interaction force in real-time. No
difference in performance is shown between the two proposed controllers. Conversely,
other works rely on sensorless solutions that allow the robot to learn and improve the
industrial process. In particular, Zeng et al. propose in [136] a sensorless compliant
control method for a 6 DOF robot which aims at reducing the costs connected to the
sensors implementation. A unified impedance model of the robot and the environment
is established and based on that, the virtual contact surface is proposed to optimize
the assembly. Similarly, Roveda et al. [137] design a HRC framework for assembly task
learning and optimization. The authors employ a task trajectory learning algorithm
based on a few human’s demonstrations (exploiting an hidden Markov model approach),
and an autonomous optimization procedure of the task execution (exploiting Bayesian
optimization). In this article, the sensorless Cartesian impedance controller is involved
to perform the task execution. Furthermore, in order to simplify the assembly tasks,
Polverini et al. [138] make use of a constraint-skill-based programming which allows to
specify force control actions at task level and provide compliant capabilities, without the
need to specify the motions of the robot. Thus, this approach helps simultaneously the
skill developer to embed force control requirements within the specification of an assembly
skill and the non-expert user to intuitively program a complex assembly task by simple
sequence of assembly skills.

Cobots are not only employed in assembly tasks but also in palletizing as demonstrated
in [139], where Lamon et al. propose an innovative HRC framework for mixed case
palletizing by using a MOCA. Several problems linked to the box and pallet detection are
addressed simultaneously by implementing firstly an optimization algorithm to maximize
the number of boxes in a pallet, then a role allocation algorithm to assign three possible
modes (i.e., autonomous MOCA mode, autonomous human mode, HRC mode). An
impedance controller is used to manage the MOCA and visual perception algorithms are
added to facilitate the entire process.

Finally, it is worthwhile mentioning that HRC can be improved by using learning-based
approaches i.e., learning from demonstration (LfD) and RL. On the one hand, Al-Yacoub
et al. present in [140] a LfD methodology that combines a machine learning algorithm
–i.e., random forest (RF)– with stochastic regression, using haptic information captured
from human demonstration. On the other hand, Ghadirzadeh et al. propose in [141] a RL
based framework for a more time-efficient HRC that finds an optimal balance between
timely actions and the risk of taking improper actions.

To conclude this sub-section, the HRC is improved in [142] by designing a controller
that allows the human to choose what to focus on in a 6 DOF Cartesian space. The
scheme is tested using a virtual reality system and the experiments show its efficiency
and thus, its possible application in sophisticated HR collaborative tasks.
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Figure 2.8: Annual distribution of the analyzed papers for each HRC target in the selected time span.

2.6 Discussion and Future Developments
In this section all the results of the previous examination are summarized and discussed.
Then, outlooks from the control point of view for a safe, ergonomic, and efficient HRC
are provided to identify the main lacks in the related literature.

2.6.1 Current Research Trends in HRC Control Systems
A large number of control approaches for HRC are examined by the authors of the
papers reviewed in this survey and are experimented and tested in real case studies in
laboratories or directly in the industrial setting. All the control techniques implemented
by the respective authors, application, and cobot models employed for the simulation
and/or experiment are summarized by target and problem in Tables 2.1, 2.2, and 2.3. In
particular, Tables I, II, and III refer respectively to the safety, ergonomics, and efficiency
targets. Each table summarizes the control problems related to the considered target (I
column), the literature reference (II column), the authors of the contribution and the year
of publication (III and IV column), the control techniques tested by researchers in the
laboratory and/or in the industrial field (V column), the type of application (VI column),
and the cobot model (VII column).

As a preliminary remark on the rapid and increasing research interest in HRC control,
Fig. 2.8 reports the annual distribution of the surveyed papers for each analyzed target.
From the figure it can be seen that since the beginning of the research on collaborative
robotics, safety first has been the guiding principle, and nowadays it is a consolidated
concept in the scientific community. In fact, as shown by the trends in Fig. 2.8, after
a slight rise in the first years, a rapid growth from 2019, and a steady state period
between 2020 and 2021, the search for a safe HRC continues to be the primary need in
the digital industry. Over the years, the number of cobots in production as well as the
distribution and commercialization chains has increased exponentially worldwide to cope
with the change in the marketplace. The fundamental purpose of the digital industry is to
obtain simultaneously in the shortest production time high quality of products, pinpoint
accuracy, and optimal flexibility in the industrial process. All these goals can be achieved
by improving efficiency and, in fact, from the graph in Fig. 2.8, it is evident that the
total annual papers from an efficiency perspective exhibits lately a significant growth
from 2019 until it reaches a peak in 2020. Compared to the well-established concepts of
safety and efficiency, physical and cognitive ergonomics is still emerging in the scientific
research. As a matter of fact, the number of existing works focused on ergonomics from
the control perspective is lower than that of the other two targets. As depicted in Fig. 2.8,
although the number of articles on the ergonomics point of view shows a fluctuating trend
throughout the period considered in this survey, there seems to be a slight rise from 2019
which bodes well for the HRC research field and there will be surely a growth of papers
based on this concern in the near future.

30



Discussion and Future Developments

Table 2.1: Summary of recent studies related to safety-oriented HRC control techniques

Problem Ref. No Authors Year Control technique Application Cobot model

[22] Yu et al. 2019 Neural-AC/IBLF Manipulation Baxter robot
[23] Yu et al. 2020 RBFNNs/LS Co-transporting Baxter robot
[24] Yu et al. 2021 Bayesian method/IC/NNs Co-transporting Baxter robot
[25] Yasar and Iqbal 2021 RNNs Motion prediction -
[26] R. Liu and C. Liu 2021 RNNs/IK Assembly 5-DOF manipulator
[27] H. Liu and Wang 2021 Sensor/Learning-based alg. Assembly Virtual robot model
[28] Khatib et al. 2021 Sensor-based system/SNS Coordinated motion KUKA LWR4

Collision avoidance [29] Moon et al. 2021 Sensor-based control Multiple tasks UR10 robot
[30] Fernández et al. 2017 Whole-body control Handling/Assembly Kuka LBR iiwa
[31] Nascimento et al. 2021 Safety contour HR distance evaluation Kuka LBR iiwa
[32] Nikolakis et al. 2019 Closed-loop control system Assembly COMAU Racer 7 robot
[33] Polverini et al. 2017 Kinetostatic safety field Pos./orient. tasks ABB Frida
[34] Liu et al. 2020 Modified SSM Path planning Industrial robot
[35] Ferraguti et al. 2020 CBFs HR sharing workspace Universal robot UR5/Puma 260
[36] Ferraguti et al. 2020 CBFs Human tracking Universal robot UR5
[37] Haddadin et al. 2017 Collision monitoring methods Multiple tasks DLR/KUKA LWR
[38] Han et al. 2019 Coordinated compliance control Multiple tasks ABB YuMi robot
[39] Ren et al. 2018 MESO Dynamic/quasi-static impact 7 DOF cobot
[40] Heo et al. 2019 CNNs Multiple tasks 6 DOF manipulator
[41] Park et al. 2020 SVM/CNN Multiple tasks 6 DOF cobot
[42] Sharkawy and Mostfa 2021 NNs Multiple tasks KUKA LWR
[43] Lippi and Marino 2020 RNNs Multiple domestic tasks Kinova Jaco2/3 fingers gripper

Collision detection [44] Zhang et al. 2020 Supervised Learning/BDT Multiple tasks Kuka LWR4+
[45] P. Aivaliotis et al. 2019 Supervised Learning NNs Multiple tasks COMAU Racer 7 robot
[46] Kouris et al. 2018 Frequency domain approach Multiple tasks KUKA LWR
[47] Mariotti et al. 2019 Admittance control Cyclic, piecewise linear path KUKA KR5 Sixx R650 robot
[48] Gaz et al. 2018 HRC control algorithm Polishing Universal Robot UR10
[49] Magrini and De Luca 2017 GPU algorithm Multiple tasks KUKA LWR
[50] Magrini et al. 2020 Depth-space algorithm Tasks in open industrial cells 6R ABB-IRB 4600-60 robot
[51] Labrecque et al. 2017 Closed-loop system Peg-in-hole assembly uMan
[52] Chan and Tsai 2020 Danger index/ERGA Pick & place 6 DOF industrial robot
[53] Oleinikov et al. 2021 NMPC Pick & place Kinova Gen3 robot
[54] Sloth and Petersen 2018 Optimization problem Multiple tasks 3 DOF robot
[55] Lucci et al. 2020 SSM/PFL Multiple tasks ABB Yumi robot
[56] Lemmerz et al. 2019 SSM/PFL/ML Assembly Manipulator PRBT
[57] Costanzo et al. 2021 CNN/Fuzzy control logic Assembly Yaskawa MOTOMAN SIA5F
[58] Zanchettin et al. 2015 Kinematic control Manipulation/Assembly ABB Frida
[59] Ragaglia et al. 2018 Trajectory generation Pick & place ABB IRB1 40 robot
[60] Palleschi et al. 2021 Time-optimal trajectory planning Unwrapping task Franka Emika Panda arm
[61] Zhang et al. 2020 Decoupled optimization Manipulation ABB IRB1 40 robot
[62] Weitschat and Aschemann 2018 NLP/DMPs Path planning 8 DOF robotic system

Motion planning [63] Casalino et al. 2019 Proactive path planning Assembly ABB Yumi robot
[64] Kanazawa et al. 2019 Adaptive control Assembly Two-link planar manipulator
[65] Ducaju et al. 2021 MPC Multiple tasks Franka Emika Panda arm
[66] Mainprice et al. 2016 STOMP Assembly PR2 robot
[67] Cheng et al. 2020 NNs/Bayesian inference Assembly FANUC LR Mate 200iD/7L
[68] Landi et al. 2019 Semi-Adaptable NN Multiple tasks FANUC LR Mate 200iD/7L
[69] Maric et al. 2020 FDCC Sanding Kuka KR10
[70] Zhao et al. 2021 RL Assembly UR5 robot
[71] Chen and Song 2018 Collision-free motion planning Multiple tasks Techman TM5
[72] Ji et al. 2020 POMDP Assembly ABB IRB1200
[73] He et al. 2020 AC/IBLF/RBFNN Multiple tasks Baxter robot
[74] Besset and Béarée 2017 FIR filtering Multiple tasks Kuka LBR iiwa
[75] Cherubini et al. 2016 Sensor-based/AC Assembly KUKA LWR IV
[76] Roveda et al. 2018 IC Interaction tasks KUKA LWR4+
[77] Kimmel and Hirche 2017 Invariance control Multiple tasks 7 DOF Anthropomorphic robot
[78] Bednarczyk et al. 2020 MPIC Multiple tasks KUKA iiwa 14
[79] Reyes-Uquillas and Hsiao 2021 Adaptive admittance law Manual guidance task HIWIN RA605
[80] Xiao et al. 2021 Sensorless scheme Peg-in-hole assembly 6-DOF cobot
[81] Cherubini et al. 2015 Reactive sensor-based Screwing KUKA LWR IV
[82] Suzuki et al. 2021 RNN Pick & place Torobo ARM

Control system [83] Chen and Wen 2020 Adaptive NN Multiple tasks Baxter robot
design [84] Cremer et al. 2019 Adaptive NN Assisted tasks PR2 robot

[85] Dimeas and Aspragathosfor 2016 AC Co-manipulation KUKA LWR
[86] Li et al. 2017 IC based on PD Medical tasks 4 DOF robotic arm
[87] Sirintuna et al. 2020 FOAC Drilling KUKA LBR iiwa 7 R800
[88] Raiola et al. 2018 IC/Energy-tanks Co-manipulation KUKA LWR4+
[89] Makrini et al. 2016 VBSMC Multiple tasks Baxter robot
[90] Solanes et al. 2018 Non-conventional SMC/AC Handling Sawyer robot
[91] Liu et al. 2021 Dynamic Behavior Control System Manipulation 2-DOF robot
[92] Fu and Zhao 2021 Maxwell model Domestic/Assembly/Puncturing tasks KUKA LWR 4+/LBR iiwa 14 R820

Figure 2.9: Number of papers related to the analyzed control problems for each HRC target in the
2015-2021 time span.

For the sake of identifying which of the analyzed control problem represents the most
trending research field in HRC, Fig. 2.9 shows the distribution of the surveyed papers per
control problem for each HRC target. According to Fig. 2.9, all three targets are mostly
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Table 2.2: Summary of recent studies related to ergonomics-oriented HRC control techniques

Problem Ref. No Authors Year Control technique Application Cobot model

Motion planning [93] Maurice et al. 2017 Biological/Non-biological planning Multiple tasks User handle
[95] Rojas et al. 2019 Minimum-jerk trajectory Assembly Universal Robots UR3
[97] Pearce et al. 2018 MILP 6 real-world factory tasks Baxter Robot
[98] Maderna et al. 2020 MILP Kitting Robot manipulator

Scheduling [99] Hu and Chen 2017 Stochastic Petri Nets Assembly -
[100] Faber et al. 2017 CCU/GASP Assembly -
[101] Rahman and Wang 2018 Feedforward/Feedback optimization Assembly Hybrid cell
[102] Jiang and Wang 2021 DM model Multiple tasks -
[103] Medina et al. 2015 Haptic assistance Multiple tasks -
[104] Ansari and Karayiannidis 2021 Integer linear programming Rotation/Translation UR10 robotic manipulator
[105] Peternel et al. 2017 Whole-body control Co-manipulation/Handover tasks KUKA-Pisa/IIT Softhand
[106] Kim et al. 2021 Optimization problem Drilling/ Polishing KUKA LBR IV+
[107] Sadrfaridpour and Wang 2018 Speed control Assembly Baxter Robot

Control system [108] Messeri et al. 2021 Game theory Assembly ABB Yumi robot
design [109] Rahman 2021 Position/Force control/RL Manipulation PAO

[110] Oliff et al. 2020 NN Multiple tasks -
[111] Shen et al. 2020 Machine learning Personality assessment Pepper robot
[112] Modares et al. 2015 Two-loops framework/RL/LQR Point-to-point motion PR2 robot
[113] Tang and Webb 2018 Hand gesture robot control Multiple tasks Universal Robot UR5
[114] Zanchettin et al. 2019 Ergonomics-based control law Painting COMAU SmartSix
[115] Yao et al. 2018 Admittance control Multiple tasks KUKA KR 6 R700 sixx

Table 2.3: Summary of recent studies related to efficiency-oriented HRC control techniques

Problem Ref. No Authors Year Control technique Application Cobot model

[94] Raessa et al. 2020 Constrained planning Assembly UR3 arms
[117] Stouraitis et al. 2020 GS/trajectory opt Dyadic manipulation KukaLBRiiwa 820 arms

Motion [118] Balatti et al. 2020 IC/trajectory planning Palletizing MOCA
planning [119] Wu et al. 2021 Cartesian IC Door opening MOCA

[120] Li et al. 2020 Torque-position/compliance Disassembly KUKA LBR iiwa 14 R800
[96] Rojas and Vidoni 2021 Reparametrization algorithm Pick & pass Universal Robot UR3
[121] Yu et al. 2020 RL/CNN Assembly -
[122] Johannsmeier and Haddadin 2016 AND/OR graphs Assembly KUKA LWR
[123] Casalino et al. 2021 Time Petri nets Assembly ABB Yumi Robot
[124] Zanchettin 2021 Scheduling algorithm Assembly -
[125] Michalos et al. 2018 Multi-criteria task assignment Assembly -

Scheduling [126] Tsarouchi et al. 2017 Task allocation Assembly SmartSix Comau Robots
[127] Xu et al. 2020 MDBA-Pareto Disassembly -
[128] Cheng et al. 2021 Hierarchical task model Assembly/Shelving FANUC LR Mate 200iD/7L.
[129] Wang et al. 2020 DT-based/FFT/PCA/SVM Welding -
[130] Bilberg and Malik 2019 DT-based/Task allocation Assembly -
[131] Lv et al. 2021 DT-based/D-DDPG Assembly -
[132] Aydin et al. 2020 Pareto optimization HR interaction tasks UR5 Robot
[133] Li et al. 2017 BLF based aIC/LQR/IRL Multiple tasks Robotic exoskeleton
[134] Darvish et al. 2020 FOL based hierarchical AND/OR graph Assembly FLEXHRC+
[135] Noohi et al. 2016 IC Dyadic manipulation 4 DOF WAM arm

Control system [136] Zeng et al. 2019 Sensorless compliance/VCS Peg-in-hole assembly 6 DOF cobot
design [137] Roveda et al. 2021 IC-HMM/BO Assembly Franka EMIKA panda manipulator

[138] Polverini et al. 2019 Constraint-based programming Assembly ABB Yumi Robot
[139] Lamon et al. 2020 Opt/IC/Visual perception Palletizing MOCA
[140] Al-Yacoub et al. 2021 LfD/RF Assembly Motoman SDA10D robot
[141] Ghadirzadeh et al. 2020 Deep RL Packaging ABB Yumi Robot
[142] Whitsell and Artemiadis 2017 RL Multiple tasks 7DOF KUKA LBR iiwa

focused on the design of state-of-the-art controllers. In particular, a safe collaboration of
humans with robots is obtained by developing controllers that aim at speed and separation
monitoring by defining safe zones to avoid unwanted HR contacts or adjusting the speed
in the robot’s proximity and at power and force limiting. Sometimes NNs are used to
predict the human motion intent, other times energy tanks are involved to ensure stability
and passivity. To improve the working conditions and reduce physical and psychological
stress, HRC factors are integrated in the controllers that can also exploit human gestures
commands. Learning-based frameworks and sensorless solutions are also designed to
increase efficiency and the overall level of productivity. An ergonomics improvement is
obtained with a perfect task allocation and scheduling of activities. In fact, as shown in
Fig. 2.9, scheduling is a relevant issue in the ergonomics target. The optimal scheduling
problem is also very important to minimize the downtime and augment the profitability.
Looking at the literature from the safety perspective, the trajectory planning optimization
problems are solved to react to sudden changes in the environment and to avoid the
operator’s injuries. For this reason, approximately 31% of the papers on safety belongs to
this category. Collision detection and avoidance techniques with and without optimal
control are widely studied by researchers in the field of robotics and in the last decade
in collaborative robotics. In total, around 44% of the safety-oriented surveyed papers
concern the implementation of algorithms to avoid or detect collisions.

32



Discussion and Future Developments

2.6.2 Emerging Control Issues and Challenges
To collaborate together, humans and robots need a common view of their working
environment. This requires that HRC control systems must rely, in an essential way, on
tools and techniques such as sensing, data fusion, and deep learning to safely, ergonomically,
and efficiently define, plan, execute, and optimize joint tasks.

Due to the recent growth on bio-inspired measurement technologies that have made
sensors affordable and lightweight, as well as easy to use on robots, sensor-based
methodologies are employed in a large number of HR collaborative tasks, as shown
in Table 2.1, 2.2, and 2.3. Four different state-of-the-art types of modes (audio-based,
touch-based, vision-based, and distance-based) are generally implemented in robotics
systems where recently they are often combined with virtual and augmented reality to
reduce the control’s computational complexity and make interfaces more intuitive and
readable by non-expert users.

Multiple sensors [28], [30], [31], [39], [46], [47], [75] are often involved in fully integrated
robotic systems to collect and learn the huge amount of data over time that are used
to predict the human movements during the collaboration with robots. Sometimes,
learning-based solutions [27] are employed in decoding the sensors’ signals to generate an
intelligible representation of the phenomenon initially perceived. Other times, sensorless
solutions [38], [80], [136], [137] often integrated in learning-based approaches [45] are
exploited to overcome the limitations imposed by sensors’ implementation that are visible
degrees of hysteresis, non-stationarity, and other mechanical nonlinearities.

Without doubt, among all the techniques addressed by the surveyed papers, learning-
based control methodologies are the most popular in the scientific community and it
is foreseeable that these will continue to be addressed in the long term. It has to be
specified that, in general, the learning-based techniques aim at introducing, in addition
to motion/force control, an analysis of the human behavior to avoid unsafe situations or
facilitate HRC by predicting in real time the human behavior and thus control accordingly
the robot. Consequently, in case of learning-based control methods, the control of the
robot benefits from the prediction of the human behavior to improve safety, efficiency,
and ergonomics. From Tables 2.1, 2.2, and 2.3, it is evident that a large variety of NNs
algorithms are applied to robot control problems where the training can be performed
online or offline, depending on the type of task. On the one hand, offline training of
NNs is more straightforward than the online approach, since the designed parameters are
not adjusted according to the differences between expected and actual outputs; however,
a successive online training is sometimes needed in order to achieve the real dynamics.
On the other hand, online training is more precise than the offline approach but could
deal with unknown dynamic uncertainties, i.e., payloads or frictions, that affect the
robot’s performance. As shown in the summaries (Tables 2.1, 2.2, and 2.3), RNNs [25],
[26], [43], [82] are one of the most popular type of NNs employed in all the proposed
targets, since they have feedback mechanisms that allow to avoid an offline training in the
majority of real-time control problems. Aiming at compensating for unknown dynamic
uncertainties, feedforward NNs with radial basis function [23], [73] are also employed for
their effectiveness in solving dynamic and kinematic problems of robot manipulators. Due
to the intrinsic structure of this type of networks, it is proven that they are faster than
typical back propagation networks when trained by a supervised learning method like
in [44], [45]. Alternatively, convolutional NNs [40], [41], [57], [121] are chosen for object
detection and categorization, but it is demonstrated that in the majority of cases they
cannot be applied in real-time and are used with a limited number of object categories.

All the aforementioned control strategies based on learning have been developed
to address uncertainties and external disturbances that might provoke the robot’s
performance degradation by replacing the traditional proportional-integral-derivative
controllers, typically characterized by a complicated tuning of control parameters.
Since the above described methods suffer from several problems, ranging from a huge
computation time to a limited generalizability or adaptability to unseen situations, NNs
based on modern control theories –e.g., SMC [89], [90], Takagi-Sugeno fuzzy control
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[57], and RL [70], [109], [112], [121], [133], [141]– are introduced in the literature and
modeled to overcome these complex robot’s control issues. Obviously, also these innovative
advanced techniques present limitations, such as chattering and sensitive problems for the
SMC and possible instabilities for fuzzy approaches. Although learning-based algorithms
present these limitations, they have recently gained in popularity thanks to the ability
to learn from demonstrations [140], high generalization performance, and capability to
approximate an arbitrary function with adequate number of neurons.

As a consequence, there is an emerging need of tackling uncertainties while keeping
the controller’s performance and robustness at the highest level. To cope with this issue,
hybrid control techniques that combine NNs with admittance/impedance control [22],
[23], stochastic control techniques [24], [67], and optimization-based methods [56], [68]
are introduced in some of the selected papers and could be the turning point in future
research in collaborative robotics.

Impedance and admittance control methodologies [47], [75], [76], [85], [118], [119],
[135] are widely employed to regulate interactive forces in HRC. The main difference
between them is that the former controls motion after the force’s detection, especially in
dynamic interaction with stiff environments, whereas the latter controls force after the
measurement of motion or deviation from a set point in interaction with soft environments
or operation in free space. In general, impedance controllers are modeled as open-loop
force systems by avoiding the use of force sensors which are expensive and sensitive to
drift and temperature change. However, this type of control can be affected by friction.
In some articles presented in this survey, a variable impedance controller integrates an
energy tank [88] –only a certain amount of energy that is stored in the system can be used
to perform a task– as a tool for passivity-based control in order to guarantee asymptotic
stability also in non-passive environments. Aiming at improving the robotic controllers’
efficiency, the awareness of the energy amount needed to perform a specific task can be
integrated in the energy tank systems.

In other works described in the previous sections, stochastic approaches, i.e., Bayesian
robot programming [24], [44], [137], hidden Markov model [137], and Gaussian mixture
model are preferred by the authors to deal with incomplete and uncertain information in
hard environments, due to their simplicity in implementation, clear theoretical foundations,
rigorous programming methodology, and homogeneity of representations and resolution
processes.

In a large number of the reviewed works, optimization-based methods are introduced
to improve the calculator performance and develop high-speed algorithms. In a multitude
of cases, they are used in combination with other techniques, e.g., learning-based and
sensor-based, and change the cost function according to the target and problem analyzed.
On the one hand, optimal control is implemented to respect the new ISO industrial safety
requirements by exploiting CBFs [35], [36], that overcome the limitations of both SSM
and PFL [34], [54]–[56], and in the future can be combined with human gesture prediction
[113] and integrated with MPC [78] to plan the best safe behavior in the long term. As
it is well-known, MPC is a high-tech control technique that solves at every time step a
finite-horizon control problem with multiple constraints in multi-variable systems. Thanks
to its flexibility in achieving complicated goals and implementing robust robot constraints,
MPC [53], [65] has been recently introduced in HR interaction control, even if the concept
of receding horizon has already been exploited for task-parameterized and multi-agent
motion planning, and for haptic assistance – i.e., stochastic trajectory optimization for
motion planning [66], incremental trajectory optimization for motion planning, particle
swarm optimization –. Unfortunately, the MPC control technique has several drawbacks
from the computational complexity – iterative calculation at each time step – and high
number of control variables, to the derivation of the complex robot’s dynamic models.
Aiming at solving these issues and also instabilities that can appear during HRC, MPC
can be combined with other control methodologies i.e., impedance and admittance control
or stochastic techniques. On the other hand, several optimization-based approaches are
proposed for task allocations and scheduling problems by maximizing the productivity
and minimizing the human effort, physical, and psychological stress. Aiming at assigning
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tasks optimally and robustly by maximizing the throughput and minimizing the cycle
time, sometimes ILP and MILP [97], [98] are chosen and other times graph search, timed
[123] and stochastic Petri Nets [99] are implemented in robotics systems.

As a further remark, it is worthwhile mentioning that only a small quantity of papers
summarized in this survey aims at optimizing multiple targets through the above discussed
techniques. Specifically, none of the reviewed articles is simultaneously focused on all the
three targets (i.e., safety, ergonomics, and efficiency). Approximately 12% (14 papers)
of the selected works are written accordingly to dual targets. In particular, more than
half of the dual targets’ articles ([27], [34], [55], [57], [58], [62], [64], [67]) are formulated
from the safety and efficiency control perspective; the remaining ones address the safety
and ergonomics control perspective ([75], [84] ) and ergonomics and efficiency control
perspective ([94], [96], [97], [108]).

Aiming at filling this gap and thus at improving the cobots’ performance in the
industrial context, HRC research will have to try to deal with the three objectives at the
same time. For instance, RULA (rapid upper limb assessment) [113] and REBA (rapid
entire body assessment) [114], can be integrated as assessment tools in the optimization
processes to evaluate the exposure of individual workers to ergonomic risk factors. With
the expected coming of Industry 5.0, which is centered on sustainability and human
perspective, there will certainly be an increase in the use of cobots in the manufacturing
scenario since HRC will be the turning point of this new revolution. Therefore, researchers
will continue to experiment with innovative control techniques to ensure operator’s safety
and well-being.

2.6.3 HRC Applications in Industry
The discussion about HRC control techniques is concluded with some remarks related
to their applications in the digital industry. From Tables 2.1, 2.2, and 2.3, it emerges
that, in almost all the reviewed articles, the control techniques are usually applied to
the assembly or disassembly processes. In the near future the application context could
be extended to other industrial processes which are under study and development by
the leaders of robotics and cobotics worldwide. In particular, the most appreciated
fields of development are: accurate assembly processes (e.g., screw driving, nut driving,
part fitting, and insertion to painting, polishing, and sanding), material handling (i.e.,
packaging, palletizing, and kitting), material removal (i.e., grinding, milling, and drilling),
welding, quality inspection and machine tending. In all such activities, the main aim is
to reduce repetitive workplace injuries and to achieve greater productivity in the global
market. For all the reported applications, cobots also offer higher speed and process
quality, pinpoint accuracy and optimal flexibility, for multiple tasks in operations of every
size. Consequently, their success can become unquestioned in the most varied sectors (e.g.,
automotive, electronics, agriculture, food processing, logistics, and metalwork). The main
companies that are contributing to the development of cobots are ABB Robotics [143],
which is the pioneer company in robotics, machine automation, and digital services, and
Universal Robots [144] which is a Danish manufacturer of flexible industrial collaborative
robot arms. In addition to these developers, also Rethink Robotics [145] –a pioneer in the
field of collaborative robotic solutions which has recently entered into a joint development
agreement with Siemens Technology Accelerator and Siemens Corporate Technology– and
Omron [146] –a Japanese manufacturer in industrial automation, in the healthcare sector,
and in electronic components– are developing new innovative cobotics technologies in
several sectors and fields of application.

Lastly, only recently novel priority areas of application for cobots are emerging, such
as the healthcare and pharmaceutical sectors for which cobots could be part of the regular
cleaning cycle aiming at preventing and reducing the spread of infectious diseases, viruses,
and bacteria. Moreover, given the current situation where COVID-19 is changing lives
and habits, cobots can be included in areas such as sanitization and inventory to help
workers maintain healthy work environments.
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2.7 Conclusions
Collaborative robotics is currently the fastest growing segment of industrial robotics, as
demonstrated by the increasing number of papers in the recent literature. The analysis
of the state-of-the-art of cobotics is essential for researchers to identify gaps and future
developments in this context of digital evolution. Thus, the categorization of the main
works related to a safe, ergonomic, and efficient human-robot collaboration and the
identification of the pertaining existing and trending decision and control techniques,
which are the objective of this survey, will be useful to the scientific community to improve
the current methodologies and seek alternative solutions.
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Chapter 3

A Multi-objective Optimization
Approach for Trajectory Planning in a
Safe and Ergonomic Human-Robot
Collaboration III

Abstract

The demand for safe and ergonomic workplaces is rapidly growing in modern
industrial scenarios, especially for companies that intensely rely on human-robot
collaboration (HRC). This work focuses on optimizing the trajectory of the end-
effector of a cobot arm in a collaborative industrial environment, ensuring the
maximization of the operator’s safety and ergonomics without sacrificing production
efficiency requirements. Hence, a multi-objective optimization strategy for trajectory
planning in a safe and ergonomic HRC is defined. This approach aims at finding the
best trade-off between the total traversal time of the cobot’s end-effector trajectory
and ergonomics for the human worker, while respecting in the kinematic constraint
of the optimization problem the ISO safety requirements through the well-known
speed and separation monitoring (SSM) methodology. Guaranteeing an ergonomic
HRC means reducing musculoskeletal disorders linked to risky and highly repetitive
activities. The three main phases of the proposed technique are described as follows.
First, a manikin designed using a dedicated software is employed to evaluate the
rapid upper limb assessment (RULA) ergonomic index in the working area. Next, a
second-order cone programming problem is defined to represent a time-optimal safety
compliant trajectory planning problem. Finally, the trajectory that ensures the best
compromise between these two opposing goals –minimizing the task’s traversal time
and maintaining a high level of ergonomics for the human worker– is computed by
defining and solving a multi-objective control problem. The method is tested on an
experimental case study in reference to an assembly task and the obtained results
are discussed, showing the effectiveness of the proposed approach.

3.1 Introduction
Human-robot collaboration (HRC) is widely recognized as the essential enabling technology
of the fourth industrial revolution, also known as Industry 4.0, and as one of the
foundation stones of the upcoming Industry 5.0. HRC can improve manufacturing
processes, increasing productivity and profitability and, then, leading to prominent
positions in the current hyper-competitive industrial scenario.

The goal of the latest collaborative robots, the so-called cobots, is to allow humans
and robots to work together in the same industrial environment without compromising
the health and safety of workers [1]–[3]. In the cobot’s design, safety is guaranteed by a
large number of proprioceptive and exteroceptive sensors positioned ad hoc to control all
movements relative to both internal and external states and by limitations on speed and
force that are taken into consideration by the International Standards Organization (ISO)
requirements –i.e., speed and separation monitoring (SSM) and power and force limiting
(PFL). In the industrial setting, physical and cognitive ergonomics are additional crucial
factors to be considered in order to prevent injuries, associated with highly repetitive
and dangerous tasks, and to minimize mental stress and psychological discomfort, which
could be experienced by operators sharing their working space with cobots.
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Table 3.1: Summary of works related to the trajectory planning optimization problem.

Publication Optimization target Resolution method
Industrial robot applications

[9] time direct transcription
[10] time indirect
[11] time indirect
[12] time dynamic programming
[13] time dynamic programming
[14] time direct transcription
[15] time direct transcription
[16] time direct transcription
[17] time-energy direct transcription

Cobot applications
[18] time-safety direct transcription
[19] safety-ergonomics not specified

proposed approach time-safety-ergonomics direct transcription

The implementation of comprehensive analyses to evaluate risk factors for human
operators and the development of consequent risk reduction strategies are nowadays
necessary, due to the rapid increase of work-related musculoskeletal disorders, which
are affecting approximately 50% of human workers in industrialized countries. As an
example, the HRC designs can incorporate the evaluation of the well-known rapid upper
limb assessment (RULA) [4], [5] and rapid entire body assessment (REBA) [6] indices to
determine the exposure of employees to ergonomic risk factors.

A key factor for an efficient and ergonomic HRC is the development of a systematic
procedure that allows the simultaneous optimization of the human worker’s well-being
and industrial process productivity. Therefore, the aim of this work is to deal with
the three pivotal goals of the trajectory planning for a cobot arm in a manufacturing
environment, i.e., safety, ergonomics, and efficiency [7], [8]. In particular, the objective
is to ensure the best compromise between the traversal time of the trajectory for the
cobot and ergonomics for the human worker, while guaranteeing the SSM ISO safety
requirement.

The remainder of this chapter is structured as follows. Section 3.2 sheds light on the
main contributions of this work, positioning them with respect to the related literature.
Section 3.3 delineates the structure of the optimization problem, and in particular the
procedure for evaluating the operator’s ergonomic posture (Section 3.3.1), the speed
and separation monitoring requirement (Section 3.3.2), and the time-optimal trajectory
planning along a predefined path while ensuring ISO safety requirements (Section 3.3.3),
and the mathematical formulation of the multi-objective optimization (MOO) approach
(Section 3.3.4). The case study with the experimental setup and results are discussed
in Section 3.4. Finally, concluding remarks and future developments are reported in
Section 3.5.

3.2 Related Works and Contributions
Despite the growing amount of papers on HRC, comprehensive literature reviews on the
related feedback control problems [8], [20], [21] highlight that only a small percentage
of works aims at simultaneously optimizing multiple control targets, such as time,
energy, and efficiency. Furthermore, to the best of the authors’ knowledge, all scientific
contributions addressing the trajectory planning problem for collaborative robots do not
aim at simultaneously fulfilling time, safety, and ergonomics requirements, as summarized
in Table 3.1. Therefore, the goal and innovation of this work is to develop a novel approach
to fill this gap in the HRC control field.

In the scientific and industrial sectors the trajectory planning of robot arms is a
well-known and largely discussed topic. Due to the advantages it provides, as well as
its issues with the simultaneous optimization of the time interval required to complete
the task and of the smoothness of the trajectory execution by the manipulator, time-
optimal trajectory planning emerges as an ongoing and complicated research challenge
[9]. From the analysis of the related works in the literature, it emerges that the problem
of planning a time-optimal motion along a predefined path is mainly performed for
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traditional industrial robots (see Table 3.1). The time-optimal trajectory planning is
eventually extended to a multi-objective optimization problem by combining time and
energy optimization. Still, the majority of works are related to industrial robots, whose
main aim is to remove humans from hazardous, hard and dirty jobs in industry. In this
context, the available contributions can be classified into three categories, based on the
programming methodology used to solve the optimization problem, i.e., indirect methods,
dynamic programming methods, and direct transcription methods (see Table 3.1 - column
III). The indirect methods [10], [11] are more precise than the other two methods, but
they are difficult to implement, since they find the numerical solution through a procedure
based on “forward” and “backward” integrations and require the implementation of
a certain number of steps, which need the choice of tolerance and stop criteria. An
alternative approach is represented by dynamic programming methods [12], [13], based on
the principle of the mathematician Richard Bellman, that simplifies a trajectory planning
problem by decomposing it into simpler sub-problems in a recursive manner. The third
category consists of the direct transcription methods, used in [9], [14]–[18], that are even
less precise, but are easier to implement, being based on the resolution of non linear
systems, which can be solved by ad hoc "solvers" that compute the solution to the problem
in a short time and efficiently.

Only recently, due to the advances in industrial automation introduced by the
Industry 4.0 key enabling technologies [22], [23], the scientific community has focused on
collaborative robotics and dedicated efforts to the related trajectory planning problem.
However, although time and safety are critical HRC requirements, to the best of our
knowledge, only one work [18] proposes a trajectory planning algorithm to plan fast and
safe motions for cobots. In particular, in [18], the time-optimal planning is combined
with a safety evaluation module for collaborative robots in shared environments.

Finally, also ergonomics is barely considered in HRC control targets. Indeed, one of the
few works considering safety and ergonomics but not time for industrial co-manipulators
is the article [19] by Ferraguti et al., as the control architecture incorporates two working
modes, an ergonomic planner and an admittance controller that can be initialized in a
mutually exclusive manner.

With the aim of filling the discussed gaps, this work, which comes as an extension of
the article [24], proposes a novel methodology for the trajectory planning of a cobot arm
that aims at simultaneously optimizing time and ergonomics, while guaranteeing safety for
the human worker through the SSM ISO requirement. First, we propose a time-optimal
trajectory planning problem that integrates the SSM safety requirements in accordance
with the ISO/TS 15066 standards [25]. Unlike our previous work [24], the proposed
approach integrates the SSM into the kinematic constraint of the optimization problem,
limiting the speed of the robot’s end-effector. This innovation, along with the technical
limits on joint speed and acceleration described in [24], allows reducing the risk of injury
as specified in the ISO technical specification for collaborative robots. Consequently,
our approach enhances the overall operator safety and improves the capabilities of the
control system. The time-optimal trajectory planning task is then solved using a direct
transcription method, transforming the initial non linear and non convex optimal control
problem into a convex optimization problem in second-order cone programming (SOCP)
form [16]. This ensures the existence and uniqueness of a solution to the problem.
Additionally, to ensure ergonomic collaboration, reduce operator fatigue, increase comfort,
and boost productivity, we define a systematic procedure for evaluating the RULA index in
the whole collaborative working space [4], [5]. Finally, by solving a multi-objective control
problem, we determine a trajectory that strikes the best balance between minimizing
task traversal time and maintaining a high level of ergonomics for the human operator.
Differently from [24], we perform a sensitivity analysis to assess the uncertainty associated
with the non-optimal positioning of the cobot’s end-effector, using the results obtained
from the multi-objective optimization (MOO) problem. We remark that, to the best of our
knowledge, there is no paper in the literature that simultaneously addresses the trajectory
planning problem considering efficiency and safety while also ensuring a comfortable and
ergonomic working environment for human operators.
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Design of a manikin of the operator

Definition of the work volume 𝒱𝒱

Definition of the ergonomics index 𝑓𝑓𝐸𝐸(⋅)
over the work volume 𝒱𝒱

Resolution of the safety compliant, ergonomic and time-optimal
trajectory planning problem, i.e.:

find the Pareto optimal end points 𝑷𝑷𝑓𝑓 such that:   min
𝑷𝑷𝑓𝑓∈𝒱𝒱

�
𝑓𝑓𝐸𝐸 𝑷𝑷𝑓𝑓
𝑓𝑓𝑇𝑇 𝑷𝑷𝑓𝑓

Reformulation into a convex SOCP form

where:

𝑓𝑓𝑇𝑇 𝑷𝑷𝑓𝑓 = min
𝒙𝒙

𝑓𝑓𝑇𝑇(𝒙𝒙,𝑷𝑷𝑓𝑓)
subject to:
• kinematics and dynamics constraints
• speed and separation monitoring constraint

Formulation of the non convex safety
compliant time-optimal trajectory planning
problem for any end point 𝑷𝑷𝑓𝑓

Definition of the kinematics and dynamics
manipulator input data

Definition of the speed and separation
monitoring parameters

Figure 3.1: Overview diagram of the proposed methodology.

The method proposed in this work has a number of potential applications in the
context of Industry 4.0. In particular, the approach can be employed in tasks where high
precision is needed, ranging from pick and place to accurate assembly (e.g., screw driving,
nut driving, part fitting), material removal, or any other specific application that can
be associated with the “3D” (Dull, Dirty, Dangerous). An experimental case study is
analyzed to verify the effectiveness of the suggested approach in one of the aforementioned
industrial scenarios.

3.3 Proposed Methodology
The main objective of this work is to ergonomically optimize the posture for the operator
and satisfy the SSM ISO safety requirement during the trajectory planning of the task to
be performed by the cobot in the shortest possible time.

In particular, the considered industrial scenario examines the collaboration in a shared
workspace between a human operator and a cobot that moves with its end-effector a
work-piece on which the human is expected to complete some operations. All the tasks
performed by the cobot must take into account the safety of the human operator. The
cobot follows a trajectory that minimizes the time required to move the object from a
fixed starting point to an end point that is ergonomically optimal for the operator, with
the aim of reducing the musculoskeletal disorders that may arise, especially in highly
repetitive tasks.

Figure 3.1 summarizes all the steps of the proposed methodology. The formulation
of the multi-objective control problem (bottom of the diagram) – aimed at finding the
best compromise between the ergonomics for the human worker and the traversal time of
the trajectory for the cobot, while guaranteeing the SSM ISO safety requirement inside
the kinematic constraint (see Section 3.3.4) and thus, at allowing the offline solution
of the trajectory planning problem – relies on some preliminary steps related to the
evaluation of ergonomics, and to the formulation of the time-optimal safety compliant
trajectory planning along a predefined path. On the one hand, a three-step systematic
procedure (described in the three blocks on the top-left of the diagram) is conducted
with the aim of determining the level of ergonomics in terms of RULA index (denoted
as fE(Pf ) as detailed in the sequel) for a set of potential end points (denoted as Pf

as detailed in the sequel) of the planned cobot’s trajectory (see Section 3.3.1). On the
other hand, for any end point, the time-optimal safety compliant trajectory planning
problem is converted into a SOCP problem following the steps illustrated in the top-right
of the diagram. The first preliminary step consists in generating the path and defining
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the kinematics and dynamics manipulator input data, i.e., the starting and ending pose,
the Denavit-Hartenberg parameters, and the kinematic and dynamics indicators. In
the second step, the speed and separation monitoring parameters (see Section 3.3.2)
are defined in order to be included in the kinematic constraint. Then, the non convex
time-optimal safety compliant trajectory planning problem is formulated by defining the
objective function and the kinematic and dynamic constraints. Finally, by performing the
convex relaxation, such problem is discretized and transformed into a convex optimization
problem in SOCP form (see Section 3.3.3), whose resolution consists in optimizing one of
the objective functions (denoted as f̃T (Pf ) as detailed in the sequel) of the MOO problem
(dashed block at the bottom of the diagram).

3.3.1 Evaluation of Ergonomics in HRC
In this section, we present the specific procedure to determine the ergonomics’ level. This
novel procedure is based on three steps and employs the RULA index to classify the set
of potential end points of the planned cobot’s trajectory.

Different criteria, including the RULA, rapid entire body assessment (REBA), postural
loading on the upper body assessment (LUBA), and occupational repetitive action (OCRA)
are nowadays employed in the related literature to estimate the ergonomics of a given
posture [26]. We employ the RULA index as a means of assessing the ergonomic posture
of the operator as we are interested in reducing upper limb disorders in the investigated
industrial setting. Nevertheless, the procedure described in the sequel is still valid
replacing the RULA with other evaluation indicators.

The RULA index is calculated by analyzing postures, repetitiveness of movements,
applied strength, and static musculoskeletal activity. To this aim, each of the main
body areas —arm, forearm, wrist, neck, and trunk— receives a score. Each RULA score
corresponds to a degree of risk exposure ranging from 0 (representing a minimal risk
requiring no special countermeasure) to 6 (corresponding to high risk). Note that one
RULA test can only measure the effort made by the right or left side of the body.

Ad hoc computer-aided design and engineering software, such as CATIA [27] or Process
Simulate (Siemens) [28], can be used to evaluate ergonomics of human operators in generic
workspaces. With the help of these tools, it is possible to easily design virtual manikins
that represent the operator and consequently simulate any possible working condition in
a given work volume.

The first step of the proposed systematic procedure is therefore the design of a virtual
manikin in the selected tool to assess the operator’s ergonomic posture. During this phase,
a number of different features can be given in the manikin configuration, such as gender,
percentile applied to the stature (height), weight, and any other anthropometric factors
determined in accordance with the selected reference population. Note that during the
characterization of the manikin it is convenient to place its initial reference point between
its feet.

The second step of the procedure is the definition of a work volume V ⊆ R3, whose
dimensions depend on the characteristics of the manikin generated in the previous phase.
The work volume is made of a set of points Pf ∈ V that the manikin arm is able to reach
and that coincides with all the endpoints of the trajectory that the end-effector can follow.

Then, in the third step of the procedure the ergonomics function fE(Pf ), i.e., the
function that estimates ergonomics in terms of RULA for each candidate point Pf ∈ V,
is determined with a design of experiments (DOE). For each candidate point, the RULA
is estimated considering that the manikin simulates an operator standing and handling a
tool in a posture that allows to reach the candidate point.

As previously mentioned, the RULA index allows the evaluation of the ergonomic
posture with regard to just one side of the body. Hence, for a right-handed person, the
RULA analysis must be carried out on the right side, and for a left-handed person, on the
left side. It is important to note that the previously defined work volume will be mirrored
around the mid-sagittal plane of the body for a left-handed person. Additionally, the
frequency at which the operation is performed as well as the load of the manipulated
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(a) (b)

Figure 3.2: Scheme of the SSM criterion with the operator (green), collaborative (orange), and robot
(yellow) working zones (a). Profile of the robot speed during the task execution (b).

item must be specified during the evaluation of the RULA index. It is evident that the
RULA score grows when task repetition and load increase.

3.3.2 Speed and Separation Monitoring Requirement
HRC is leaving behind the traditional paradigm of robots living in separate safety cages,
allowing human operators to work side-by-side with “fenceless” robots for completing
an increasing number of complex industrial tasks. Consequently, the safety of human
operators is nowadays understood as a fundamental requirement in collaborative robotic
applications.

In the related literature, several control algorithms have been implemented to safely
guide a robot during the execution of its tasks. These approaches avoid dangerous
situations by defining safety regions, that the robot cannot access, or by dynamically
tracking the separation distance between the robot and other obstacles, such as human
operators [8].

According to the ISO/TS 15066 standards, safety can be guaranteed by limiting the
maximum permissible forces or torques and consequently the energy transfer on potential
direct physical contact between the operator and the robot, i.e., PFL, or by prescribing
that the speed must be related to a certain separation distance between the human and
the robot, i.e., SSM. In the current work, we assume that no undesired contact must
happen between the operator and the cobot arm. Thus, during the collaboration, the
SSM ISO safety requirement is chosen to help safeguard the operator by allowing the
robot actuation system to have the deceleration capability necessary to achieve a complete
stop before eventually coming in contact with the operator [29], [30].

With the aim of preserving a safe separation distance between the operator and the
cobot arm, the SSM method monitors the regions surrounding the robot, and issues a
command to slow or stop the robot as the human operator approaches. This method is
based on the continuous measurement of the distance between the robot and a detected
operator (i.e., the human-robot separation distance), which is compared with the so-called
authorized (operator protective) distance [31], [32]. Hence, when the separation distance
is lower than the authorized distance, and consequently when the cobot arm enters the
collaborative working zone (Fig. 3.2a), the SSM system decreases the robot’s speed,
initiating a safety-rated controlled stop to avoid an impact with the operator (Fig. 3.2b).
The robot may then resume its motion once the separation distance is greater than the
authorized distance.

More in detail, the minimum allowable human-robot distance S at a given time t0 is
computed by using the equation prescribed in ISO/TS 15066 [25], that is:

S(t0) = Sh + Sr + Ss + C + Zd + Zr (3.1)

50



Proposed Methodology

where Sh and Sr indicate the operator’s and robot’s change in location, respectively, and
Ss is the maximum stopping distance of the robot. The remaining terms of (3.1) capture
the uncertainty of measurements, being C an intrusion distance safety margin based on
the expected human reach and Zd + Zr the position uncertainty for both the robot and
operator.

Equation (3.1) can be reformulated under static conditions, i.e., assuming a constant
speed of the robot, as follows:

S(t0) = (vh(t0)Tr + vh(t0)Ts) + vrTr +B + C + Zd + Zr (3.2)

where vh(t0) indicates the speed of the operator (i.e., the rate of the operator’s motion
toward the robot), vr is the speed of the robot directed towards the operator in the
collaborative work zone, Tr represents the time for the robot system to respond to the
operator’s presence, including the time required to detect the position of the operator,
process this signal, and activate the robot’s stop, and finally Ts is the time to safely stop
the motion of the robot. Note that Ts is a function of the robotic system configuration,
planned movement, speed, and load, while parameter B denotes the braking distance
traveled by the cobot arm.

In particular, since in our work the operator is in a fixed standing position, vh is equal
to zero as well as parameter C and uncertainties Zd + Zr. Hence, given our assumptions,
(3.2) may be rewritten as:

S(t0) = vrTr +B (3.3)

where parameter B is computed as v2
r/2ar with ar being the worst-case deceleration value

of the robot during the stopping procedure. In Fig. 3.2b, we report the profile of the
robot’s speed vr as a function of time, which drops abruptly once the robot enters into
the collaborative work zone.

With the aim of controlling the robot’s speed, the SSM criterion is applied in the
kinematic constraint of the time-optimal safety compliant trajectory planning along a
predefined path problem (see Section 3.3.3). In particular, being the human-robot distance
S(t0) known at each given time, in (3.3) the allowed speed vr is treated as an unknown.
From the resolution of the second degree equation (3.3) with respect to vr we get two
speed values, one of which is positive and one negative. Among these two solutions, we
disregard the negative one having no physical meaning while we employ the positive speed
value vr as the upper limit of the kinematic constraint as follows:

vr ≤ vr. (3.4)

3.3.3 Time-Optimal Safety Compliant Trajectory Planning along a
Predefined Path

In this section we formulate the problem of planning the trajectory of the cobot, aiming at
minimizing the traversal time, from a fixed starting point Pi ∈ R3 to a given ergonomically
optimal end point Pf ∈ V ⊆ R3. We specifically assume that the end-effector of the cobot
must follow a geometrical rectilinear path between these two points while satisfying the
SSM requirement inside the kinematic constraint and the imposed kinematic and dynamic
joint’s limits.

Without loss of generality, we assume that the trajectory starts at time t = 0 in Pi and
ends at time t = T in Pf . Hence, by defining the time-dependent scalar path coordinate
s(t), we have that s(0) = 0 ≤ s(t) ≤ 1 = s(T ). For the sake of notation clarity, we omit
the time dependency of s and its derivatives in the rest of this manuscript.

As the aforementioned geometric path is given in the operational spatial coordinates,
let us employ the kinematic inversion to obtain the path in joint space coordinates. More
in detail, we consider a generic n-DOF (degree of freedom) robotic manipulator, that
can be represented by its configuration, i.e., the angular position of its n joints q ∈ Rn.
The goal of the inverse kinematic is therefore to define a map that, given the scalar time
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dependent path coordinate s(t), calculates the related path in joint space coordinates
q(s) ∈ Rn.

By following the procedures outlined in [17], the joint velocities and accelerations for
the given path q(s) can be expressed using the chain rule as follows:

q̇ = q′(s)ṡ (3.5)

q̈ = q′(s)s̈+ q′′(s)ṡ2 (3.6)

where q′(s) = δq(s)
δs and q′′(s) = δ2q(s)

δ2s represent the first and second partial derivatives
of the geometric path q(s) with respect to parameter s, whereas ṡ = δs

δt and s̈ = δ2s
δ2t

represent the pseudo-speed and pseudo-acceleration along the path, respectively. We
remark that s is a monotonically increasing parameter, and thus it holds ṡ > 0.

Let us express the dynamical equation of motion for the robotic manipulator as a
function of the applied torques τ ∈ Rn in each joint:

M(q)q̈ + C(q, q̇)q̇ + Fvq̇ + Fs sgn(q̇) + g(q) = τ (3.7)

where we define M(q) ∈ Rn×n as a positive definite mass matrix, C(q, q̇) ∈ Rn×n as a
matrix taking into account the Coriolis and centrifugal factors, g(q) ∈ Rn as the vector
denoting the gravitational torques, and lastly Fv,Fs ∈ Rn×n as diagonal matrices that
represent the coefficients of viscous and Coulomb friction, respectively.

By replacing (3.5) and (3.6) in (3.7), and neglecting the impact of viscous and Coulomb
frictions Fvq̇ + Fs sgn(q̇), we obtain the following dynamic equation:

a1(s)a(s) + a2(s)b(s) + a3(s) = τ (s) (3.8)

where ai(s) ∈ Rn, i = 1, 2, 3 are defined as:

a1(s) = M(q(s))q′(s) (3.9)

a2(s) = M(q(s))q′′(s) + C(q(s), q′(s))q′(s) (3.10)

a3(s) = g(q(s)) (3.11)

and:
a(s) = s̈ (3.12)

b(s) = ṡ2 (3.13)

are optimization variables introduced to allow a convexification of the trajectory planning
problem [16]. Furthermore, to solve the time-optimal trajectory planning problem, the
following linear differential equality constraint must be included:

b′(s) = 2a(s) (3.14)

which follows from the fact that:

ḃ(s) = b′(s)ṡ = 2ṡs̈ ↔ b′(s) = 2a(s) if ṡ > 0. (3.15)

Having defined the dynamical equations of the manipulator, let us now represent a
number of technical constraints that must be included in the trajectory planning problem.

First, we include the torque limit constraints as follows:

τ (s) ≤ τ (s) ≤ τ (s) (3.16)

where we define τ (s) ∈ Rn and τ (s) ∈ Rn, with τ (s) = −τ (s), as the lower and upper
limits on joints torques that are a function of s. Note that (3.16) is necessary to obtain a
solution for the trajectory planning problem that guarantees a positive traversal time,
i.e., T > 0.
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In addition to the above constraints on torques, let us now describe in detail the
constraints on the kinematic variables. These constraints must be included in order to
satisfy the technical limitations imposed by the HRC task and to guarantee the SSM
requirements and thus, safety of the human operator.

On the one hand, the speed limits are defined as:

q̇(s) ≤ q̇(s) ≤ q̇(s) (3.17)

where q̇(s) ∈ Rn and q̇(s) ∈ Rn, with q̇(s) = −q̇(s), are the lower and upper limits of the
robot’s speed. More specifically, q̇

i
(s) and q̇i(s) with i = 1, ..., n−1 represent the technical

limits of the robot’s joints, whereas q̇
n
(s) and q̇n(s) represent the limits of the robot’s

end-effector. In particular, q̇n(s) is set equal to vr in compliance with the SSM ISO
safety requirement for the operator (i.e., inequality (3.4)). Note that the SSM criterion is
applied to limit the speed of the robot’s end-effector which will then affect the slowdown
of the entire kinematic chain. Inequality (3.17) can be conveniently reformulated as:

(q′(s) ⊙ q′(s))b(s) ≤ q̇
2(s) (3.18)

due to the fact that q̇(s) ≤ q̇(s) ≤ q̇(s) ↔ q̇(s)2 = (q′(s)ṡ)2 = (q′(s) ⊙ q′(s))b(s) ≤ q̇
2(s).

On the other hand, the acceleration limits are:

q̈(s) ≤ q̈(s) ≤ q̈(s) (3.19)

where q̈(s) ∈ Rn and q̈(s) ∈ Rn, with q̈(s) = −q̈(s), represent the lower and upper limits
of the acceleration, respectively. Similarly to the velocity, also in this case we can rewrite
(3.19) as:

q̈(s) ≤ q′′(s)b(s) + q′(s)a(s) ≤ q̈(s). (3.20)

Clearly, by adding the limits on speed and acceleration, the total traversal time T will
not be the optimal one, but rather a compromise between safety for the human operator
and efficiency of the task.

By changing the integration variable from t to s after completing the aforementioned
preceding stages, it is straightforward to formulate the objective function of the time-
optimal trajectory planning problem. The goal is to minimize the total traversal time,
defined as:

T =
∫ T

0
dt =

∫ 1

0

(
ds

dt

)−1
ds =

∫ 1

0

1
ṡ
ds. (3.21)

In addition, by defining:
c(s) =

√
b(s) = ṡ (3.22)

and since b(s), c(s) ≥ 0 during the trajectory, we can rewrite the objective function (3.21)
as follows:

T =
∫ 1

0

1
ṡ
ds =

∫ 1

0

1√
b(s)

ds =
∫ 1

0

1
c(s)ds. (3.23)

Note that the integral in (3.23) is defined in the interval [0+, 1−], as the objective
function has no upper bound when the initial and final pseudo-speeds are zero.
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Summing up, let us formulate the time-optimal trajectory planning problem as:

minimize
a(s), b(s), c(s), τ (s)

∫ 1−

0+

1
c(s)ds

subject to
b(0) = ṡ2

0, b(1) = ṡ2
T ,

c(0) = ṡ0, c(1)= ṡT ,

τ (s) = a1(s)a(s) + a2(s)b(s) + a3(s),
τ ≤ τ (s) ≤ τ ,

∀s ∈ [0, 1],
b′(s) = 2a(s),
c(s) =

√
b(s),

(q′(s) ⊙ q′(s))b(s) ≤ q̇
2(s),

q̈(s) ≤ q′′(s)b(s) + q′(s)a(s) ≤ q̈(s),
b(s), c(s) ≥ 0,
∀s ∈ [0+, 1−].

(3.24)

Let us gather the decision variables in one decision vector:

x = (a(s), b(s), c(s), τ (s)⊤)⊤ (3.25)

and then, let us rewrite the above problem in a compact form by defining fT (·) as the
function expressing the total traversal time with respect to the end point Pf and trajectory
parameters x in (3.25):

minimize
x

fT (x,Pf )

subject to
constraints (3.24).

(3.26)

There are a variety of approaches (such as indirect methods, dynamic programming
methods, and direct transcription methods) that are commonly used to address problem
(3.26), however, for the sake of simplicity and computational speed, we opted for the
methodology suggested by [16]. In particular, we perform the ”convex relaxation” by
transforming the unique non linear equality constraint c(s) =

√
b(s) with the equivalent

expression 1√
b(s)

≤ 1
c(s) , and then we convert the optimal control problem (3.24) into a

convex optimization problem in SOCP form using the direct transcription technique and
the relation d(s) ≥ 1

c(s) . The resulting convex optimization problem can be solved by one
of several tools available for convex programming and is formally defined as follows:

minimize
ak, bk, ck, dk, τk

1
2 [(1 − α)∆s1(d(0+) + d2)+

N−2∑
k=2

∆sk(dk + dk+1)+

(1 − α)∆sN−1(dN−1 + d(1−))]
subject to

b1 = ṡ2
0, bN = ṡ2

T ,

c1 = ṡ0, cN = ṡT ,

τk = a1(sk)ak + a2(sk)bk + a3(sk), (3.27)
τ ≤ τ (sk) ≤ τ ,∣∣∣∣∣∣∣∣[ 2ck

bk − 1

] ∣∣∣∣∣∣∣∣
2
≤ bk + 1,

54



Proposed Methodology

(q′(sk) ⊙ q′(sk))b(sk) ≤ q̇
2(sk),

q̈(sk) ≤ q′′(sk)b(sk) + q′(sk)a(sk) ≤ q̈(sk),
for k = 1, ..., N,

bj+1 − bj = ∆sj(aj+1 + aj) for j = 1, ..., N − 1,
bl > 0, cl > 0,∣∣∣∣∣∣∣∣[ 2
cl − dl

] ∣∣∣∣∣∣∣∣
2
≤ cl + dl for l = 2, ..., N − 1,∣∣∣∣∣∣∣∣[ 2

c(0+) − d(0+)

] ∣∣∣∣∣∣∣∣
2
≤ c(0+) + d(0+),∣∣∣∣∣∣∣∣[ 2

c(1−) − d(1−)

] ∣∣∣∣∣∣∣∣
2
≤ c(1−) + d(1−)

where parameter ∆sj = sj+1 − sj , j = 1, 2, ..., N − 1 is a discretization interval while
α > 0 is a technical parameter that can be adjusted based on the applicative scenario.
The solution of problem (3.27), i.e., a∗(s), b∗(s), c∗(s), d∗(s), and τ ∗(s), is computed
at the sampling points s1 = 0 < s2 < ... < sN = 1. Clearly, it is possible to derive
q∗

d(t), q̇∗
d(t), q̈∗

d(t), and τ ∗
d (t) as we remark that a one-to-one correspondence between s

and t is enforced. Hence, the last step is to compute time t with the inverse relation
shown below:

t(s) = t(0+) +
∫ s

0+

1
c(u)du (3.28)

that can be expressed as a function of the previously discretized k-th parameter
1/c(s) = d(s) as follows:

t(sk) =t(sk−1) +
∫ sk

sk−1

d(u)du =

t(sk−1) + 1
2∆sk−1(dk−1 + dk)

(3.29)

for k = 1, ..., N . The value corresponding to tN is therefore the total traversal time T of
the planned trajectory.

Note that the problem (3.27) is a convex optimization problem. As, it is well known,
convexity in optimization problems guarantees the existence and uniqueness of a solution
and ensures the convergence of the solver [33]. The convexity of the trajectory planning
problem provides strong theoretical assurances regarding the effectiveness and reliability
of our approach. It ensures that the optimization algorithm will converge to an optimal
solution that satisfies both the time optimization objective and the safety constraint,
further strengthening the practical applicability and effectiveness of our methodology.

3.3.4 Formulation of the Multi-Objective Optimization Problem
This section is devoted to the description of the MOO problem that determines the
optimal cobot trajectory by seeking a trade-off solution between two different needs. In
detail, the MOO approach aims at efficiently operating the robot, that is minimizing
the traversal time with the constrained trajectory planning optimal control problem in
Section 3.3.3, and maximizing the ergonomics level for the human worker in Section 3.3.1,
while respecting the SSM ISO safety requirement in Section 3.3.2.

More in detail, for a given starting point Pi, the MOO problem seeks to choose the
best end point Pf ∈ V such that the corresponding RULA ergonomics index is minimized
and the associated trajectory parameters x defined in (3.25) correspond to a traversal
time that can be safely attained by the end-effector of the cobot in the shortest time.
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The MOO problem can be formally defined as follows:

min
x,Pf

{
fE(Pf )
fT (x,Pf )

subject to
constraints (3.24) and
Pf ∈ V

(3.30)

where we recall that fE(Pf ) indicates the evaluation of the RULA index for the end point
Pf varying over the work volume V while fT (x,Pf ) denotes the total traversal time along
the rectilinear path connecting the fixed initial point Pi and the end point Pf given the
trajectory parameters x.

By leveraging the parametric optimization properties (i.e., miny,z f(y, z) =
miny(minz f(y, z)) = miny f̃(y) where f̃(y) = minz f(y, z)) [34], we can define the para-
metric optimization function f̃T (Pf ) as:

f̃T (Pf ) = min
x
fT (x,Pf )

subject to
constraints (3.24)

(3.31)

and thus we can transform the MOO problem (3.30) in the following equivalent form:

min
Pf

{
fE(Pf )
f̃T (Pf )

subject to
Pf ∈ V.

(3.32)

The MOO problem in (3.32) has, in general, a number of (possibly infinite) solutions.
Nevertheless, there may not exist a single solution that simultaneously optimizes the
two above-mentioned objectives, which are therefore said to be conflicting. Informally
speaking, a solution for the MOO problem in (3.32) is called Pareto optimal if none
of the two conflicting objectives functions, i.e., f̃T and fE , can be improved without
degrading the other one. Hence, we can identify different Pareto optimal points Pf ∈ V,
corresponding to solutions with minimum RULA index, shorter traversal time, and
intermediate trade-offs between time and ergonomics. The choice of the final solution for
(3.32) depends on the prioritization given by the HRC targets, in fact, without additional
preferences, all the Pareto optimal solutions are considered equally good [35]–[38].

3.4 Case Study

3.4.1 Experimental Setup
In this section we describe the experimental setup of the proposed MOO trajectory
planning approach for a safe and ergonomic HRC. The goal of our case study is to safely
and ergonomically perform an assembly task in an industrial scenario where an operator
works closely with a cobot. In detail, we assume that a cam organ is moved and oriented
by the cobot’s end-effector in such a way as to allow its assembly inside the engine head
where the operator inserts the screws as efficiently and ergonomically as possible (Fig.
3.3).

All the experiments are conducted on a laptop with a 2.5 GHz Intel Core i5-7200U
CPU and 8 GB RAM using the CAD software CATIA V5 [27] and MATLAB.

The main focus is the time optimization along the desired trajectory followed by the
cobot from a fixed starting point Pi = (Pxi

, Pyi
, Pzi

)⊤ = (0.6, −0.1, 1.7)⊤ (coordinates
in meters) to an ergonomically optimal end point Pf = (Pxf

, Pyf
, Pzf

)⊤ for the operator.
The end points should be comprised in the work volume V, comprehending all candidate
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Figure 3.3: The assembly task performed in a safe and ergonomic HRC.

Table 3.2: Denavit Hartenberg parameters for Comau Racer5-0.80.

Joint qi [rad] di [m] αi [rad] ai [m]
Base q1 0.365 -1.571 0.05

Shoulder q2 0 0 0.37
Elbow q3 0 -1.571 0.05
Wrist 1 q4 0.386 1.571 0
Wrist 2 q5 0 -1.571 0
Wrist 3 q6 0.08 0 0

points where the cobots and the operator may interact, that is designed as a rectangular
cuboid with the subsequent bounding dimensions (in meters): Pxf ,min = 0.2, Pxf ,max =
0.5, Pyf ,min = −0.5, Pyf ,max = 0.1, Pzf ,min = 1, Pzf ,max = 1.5.

In order to perform the collaborative assembly, we design a human operator on the
CAD software CATIA. In particular, we consider a real right-handed female operator with
height and weight percentile equal to 95 and 80, respectively. The initial referential point
of the manikin is chosen between the feet for the evaluation of the operator’s ergonomic
posture.

Subsequently, a DOE is performed in order to identify the ergonomics function fE(Pf ),
i.e., the function that quantifies ergonomics in terms of RULA for each candidate point
Pf ∈ V. To this aim, we divide the given work volume V into u rectangular cuboids
Vu ⊆ V of equal size and we assume that the ergonomics function is constant within these
volumes. i.e., fE(Pf ) is constant for all Pf ∈ Vu. Note that this assumption allows fast
identification of the ergonomics function and, for a sufficiently high number of cuboids,
also an accurate computation of ergonomics for each candidate point. For the presented
scenario we assume a number of cuboids equal to u = 225 with sizes (in meters) of 0.06,
0.12 and 0.05 along the X, Y, and Z axis, respectively. Then, we compute the RULA
index for the centroid Cu of each of these cuboids Vu and we assign this value to all the
points belonging to it, fE(Pf ) = fE(Cu) for all Pf ∈ Vu. Lastly, we save the value of this
function in a look-up table, in which all the RULA indices are collected.

As a cobot, we employ the Racer5-0.80, an adaptable and flexible collaborative arm
by the Italian corporation Comau [39]. The Denavit Hartenberg (DH) parameters and
the dynamic parameters of the cobot are fed into the developed framework including
the MATLAB Peter Corke Robotic Toolbox [40]. Table 3.2 shows the Racer5-0.80 DH
characteristics, while Table 3.3 collects data related to mass (m), center of mass (rmi) of
each link, and inertia matrices (I). The motor inertia (Jm) and transmission ratio (G) of
each link are available on the manufacturer’s website [39]. It should be noted that the center
of mass is determined with respect to the i-th link reference frame, and link inertia matrices
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Table 3.3: Dynamics Parameters for the Comau Racer5-0.80.

Link m [Kg] rmi [m] I [kg m2]
1 9.843 [0.002929, -0.000097, 0.153701] [0.266 0 -0.005;0 0.285 0; -0.005 0 0.042]
2 5.131 [0.040000, -0.320000, -0.018000] [0.564 0.069 0.004;0.069 0.038 -0.030; 0.004 -0.030 0.560]
3 8.242 [0.222000, -0.009000, -0.013000] [0.235 0.029 0.029;0.029 0.432 -0.009; 0.029 -0.009 0.415]
4 3.320 [0.022000, -0.002000, 0.000300] [0.008 0 -0.002;0 0.011 0; -0.002 0 0.008]
5 5.230 [-0.016000, 0.229000,-0.002000] [0.316 0.002 0;0.002 0.009 0.002; 0 0.002 0.373]
6 0.979 [0, 0, 0.039000] [0.002 0 0;0 0.002 0; 0 0 0]

Table 3.4: Lower and upper Kinematic Limits for the Comau Racer5-0.80.

Link q [rad] q̇ [rad/s] q̈ [rad/s2]
1 ±3.142 ±6.283 ±15.708
2 ±3.142 ±5.236 ±8.055
3 ±3.142 ±5.760 ±14.399
4 ±3.142 ±8.727 ±17.453
5 ±3.142 ±8.727 ±17.453
6 ±3.142 ±v ±27.890

associated with the i-th link reference frame are calculated with good approximation by
characterizing each link as a cylinder with different densities [41]. Additionally, the Racer5-
0.80 base is set up in the workbench location Pw = (xw, yw, zw)⊤ = (0.15, −0.10, 1.00)⊤

(coordinates in meters).
The starting and end points of the geometric rectilinear path are related to

the orientation of the cobot’s end-effector in Euler’s angles (in radians) as follows:
Φi = (ϕi, θi, ψi)⊤ = (1.396, 0.262, 2.007)⊤ and Φf = (ϕf , θf , ψf )⊤ where
ϕf = 1.396, θf = 0.367, ψf = 1.571 if Pf ∈ {(Pxf

, Pyf
, Pzf

)⊤ ∈ V| 0.2 ≤ Pxf
≤

0.5,−0.5 ≤ Pyf
≤ 0.1, 1 ≤ Pzf

< 1.437}, and ϕf = 1.571, θf = 0, ψf = 1.222 if Pf ∈
{(Pxf

, Pyf
, Pzf

)⊤ ∈ V| Pzf
≥ 1.435}.

Then, we select the parametric optimization function f̃T (Pf ), which is the function
that identifies the traversal time to bring the work-piece from the starting point to each
end point of the work volume. The value f̃T (Pf ) is the solution of the time-optimal
trajectory planning problem (3.31).

In order to solve problem (3.31), a set of technical parameters must be carefully
determined. For the speed (ineq. 3.18), and acceleration (ineq. 3.20) constraints, we
specifically refer to the lower and upper Racer5-0.80 kinematic limits reported in Table 3.4,
and to the torque limits (ineq. ( 3.16)) in [39]. The discretization interval ∆s and
parameter α are both equal to 0.1. Note that the end-effector’s speed is limited by the
values v obtained in the simulation through the SSM criterion.

Next, we solve the overall MOO control problem (3.32). Note that the mathematical
formulation in (3.32) is nontrivial as it comprehends the minimization of two functions
with different natures: f̃T in (3.31) is computed by solving the convex optimization
problem formulated in (3.27), whereas fE is calculated using the look-up table in which
all the RULA indices are collected for each point of the work volume V.

Due to the extremely non linear structure of the proposed optimization problem, we
solve it employing a genetic algorithm. These solution algorithms are widely recognized
as efficient and powerful global methods to handle non linear optimization problems [42].
In detail, we implement the problem in MATLAB using the gamultiobj function of the
Global Optimization Toolbox with a tolerance parameter, i.e, FunctionTolerance, equal
to 10−6.

As regards the integration of the objective functions in the genetic algorithm, on the
one hand, fE(Pf ) is computed with the built look-up table; on the other hand, for each
point Pf ∈ V, f̃T (Pf ) is coded using the CVX Toolbox in MATLAB, an efficient solver
for convex optimization problem in SOCP form [43], which is interfaced with the genetic
algorithm.
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Figure 3.4: Virtual manikin and work volume. We indicate the centroid Cu of each of these cuboids Vu

with different shapes and colors: yellow squares (RULA 3), orange spots (RULA 4), and red stars (RULA
5).

3.4.2 Experimental Results
In order to evaluate the efficiency of the approach presented in this work, we analyze the
results that are presented and discussed in detail in the current subsection.

The problem presented in Section 3.3.4 consists in finding an ergonomic point in the
volume V (see Fig. 3.4), defined in Section 3.3.1, that is the end point of the time-optimal
trajectory taken by the end-effector of the Racer5-0.80.

As already mentioned in the previous sections, a RULA index is associated with the
centroid of each sub-volume where ergonomics is assumed constant, as depicted in Fig. 3.4
with a color scale varying from yellow (for the minimum RULA index) passing through
orange to red (for the highest RULA index). Hence, in our case study, the RULA index
can have a score ranging from 3 (negligible risk) to 5 (medium risk that requires further
investigation and must be changed soon) within volume V.

As a result of the optimization problem (3.32), using the genetic algorithm (gamultiobj),
we obtain three solutions on the Pareto front associated with the three RULA indices
(Table 3.5). It is clear from Table 5.2 that the two optimization goals are in competition
with each other. The traversal time decreases together with the distance covered by the
robot: indeed, the longest traversal time is associated with the lowest RULA index equal
to 3, whereas the lowest time corresponds to the highest RULA index equal to 5. The
smallest RULA region corresponds to points closer to the operator in the work volume V
(Fig. 3.4), thus it is obvious that time is greater for these points. Therefore, the solution
having a RULA index equal to 4 is a good trade-off between ergonomics and task efficiency.
Nevertheless, we remark that the definitive choice of the end point of the robot’s trajectory
must be conducted by the decision maker. As mentioned above, the MOO problem is
solved offline; thus, the computation time does not pose a significant issue to consider
for a practical application. In our setting, the computation time is approximately three
hours, thus making the methodology implementable for any collaborative robotic system.

Uncertainty in robot components modeling and sensor measurements may result in
a non-optimal positioning of the end-effector. This leads to a possible deviation from
the optimum in the ergonomics and efficiency performance of the end point associated
to the actually executed trajectory. Hence, it is important to evaluate the sensitivity of
the results obtained by the MOO approach with respect to small spatial deviations of
the end point from the optimum due to uncertainty. We analyze this effect by exploring
two grids of 5 × 5 additional end points in the x-y and y-z planes centered in each of
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Table 3.5: Solutions of the multi-objective optimization problem.

.
Pf Coordinates [m] RULA Time [s]
P a

f [0.4250, −0.0500, 1.3125] 3 4.3847
P b

f [0.3500, −0.3500, 1.4375] 4 1.7875
P c

f [0.3500, −0.3500, 1.5000] 5 1.6964

Figure 3.5: Results of the sensitivity analysis on Pareto solutions obtained by the proposed method:
the plots show the variation of the RULA index and traversal time induced by moving the end-effector
position in the x-y and y-z planes. For the analyzed end points, the RULA index is represented by
different edge colors (yellow, orange, and red for RULA equal to 3, 4, and 5, respectively), whilst the
traversal time is denoted in accordance with a blue colormap (higher the time, higher the color intensity).

the above-mentioned Pareto frontier points as shown in Fig. 3.5. In particular, for each
analyzed point, we represent the value of the RULA index with different colors (yellow,
orange, and red for RULA equal to 3, 4, and 5, respectively), whilst the traversal time is
denoted in accordance with a blue colormap (the higher the time, the higher the color
intensity). From the figure, it is clear that the points with a RULA index equal to 5 (which
have a lower traversal time than the former ones, as expected) do not show significant
variation in the traversal time. Conversely, by analyzing both the points with a RULA
index equal to 3 and the ones with a RULA index equal to 4, it is interesting to note that
the traversal time has a non negligible variation, even if the spatial deviation of the end
point is small, and this effect could thus be taken into account as a criterion in the choice
of the Pareto solution.

3.5 Conclusions
Trajectory planning is one of the major challenges addressed in the robotics and cobotics
literature. Indeed, speeding up a task in real experiments and/or industrial applications,
can increase profitability for industrial players.
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In this chapter, we propose a novel multi-objective optimization approach for time-
optimal trajectory planning in a safe and ergonomic HRC scenario with the aim of
guaranteeing the best compromise between ergonomics for the human worker and time
efficiency for the cobot, while adhering to the Speed and Separation Monitoring ISO
safety regulations. The effectiveness of the proposed technique is verified through an
experimental case study on the Comau Racer5-0.80, while the manikin replicating the
operator is developed in the CATIA software and the optimization problem is solved by a
genetic algorithm in the MATLAB environment.

Future works will focus on enhancing the safe and ergonomic HRC architecture by
accounting for unpredictable human behaviors and thus by replanning online the trajectory
taking into account large variations in the position and eventually physical features of the
operators that collaborate with the robot. In this perspective, our proposed technique
should be extended and integrated with other ad-hoc methodologies. For instance, a
future development could consist in the offline definition, with the proposed approach, of
a proper database of trajectories that considers the most varied positions of several types
of operators with different characteristics (i.e., gender, height, weight). The database
could provide the appropriate trajectory and control actions depending on the considered
scenario (i.e., the features of the operator and the monitored and/or predicted dynamics
of the operator). Finally, it may be convenient to evaluate the RULA index on a more
advanced manikin that is able to emulate reality more accurately.
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Chapter 4

A Safe and Ergonomic Collaboration
between Human and Drone in
Warehouses

IV

Abstract

Recently, collaboration between human and drone is gaining momentum for indoor
environments applications, with a notable focus on the enhancement of automation in
industrial processes. In particular, drones have shown high potential for warehousing
operations in three areas: inventory management, intra-logistics, and inspection
& surveillance. In this work, we propose an application of human collaboration
with drone to warehouses 4.0 devoted to one pick and place operation in the intra-
logistics sector, with the aim of improving the operators’ safety and well-being, while
augmenting efficiency and reducing production costs. The speed and separation
monitoring (SSM) criterion is applied for the first time to collaboration between
human and drone, in analogy to the human-robot collaboration (HRC) ISO safety
requirements, for safeguarding the operator in the collaborative task. In addition,
we employ the rapid upper limb assessment (RULA) method for evaluating the
operator’s ergonomic posture during the collaboration with the drone. In order
to validate the proposed approach in a realistic industrial scenario, a quadrotor is
controlled to perform a pick and place task along a desired trajectory, from the
picking bay to the palletizing area, where the operator is located, avoiding collisions
with shelves and eventual other drones in motion inside the warehouse. The control
strategy implements the artificial potential field (APF) technique for trajectory
planning and the linear quadratic regulator (LQR) and iterative LQR algorithms for
trajectory tracking. The obtained results of the human-drone framework simulations
are presented and discussed in detail, proving the effectiveness of the proposed
method for a safe and ergonomic collaboration.

4.1 Introduction
Unmanned Aerial Vehicles (UAVs), commonly known as drones, represent a key enabling
technology of Industry 4.0 [1], thanks to their functionality and versatility in several
industrial sectors. In particular, drones are having a great impact on smart warehouse
management, due to their ability to fly and hover autonomously, avoid obstacles in
different warehouse layouts, navigate indoor, land precisely, and operate in fleets [2].

Nowadays, warehouse areas are typically not completely automated, so that significant
margins are available to improve the industrial process. In this context, indoor drones
play a fundamental role for taking further steps in the complete automation of modern
warehouses (warehouses 4.0). The use of drones can definitely lead to a reduction of
production downtime and of labor turnover, and to a rise in warehouse flexibility and
productivity, as well as in the efficiency of storage processes. Beyond the advantages
mentioned above [3], the main benefit of using drones in warehouses is the improvement
of the operator’s safety in the industrial three-D –dull, dirty, dangerous– operations.
However, as drone involvement in human working activities grows, it is increasingly
crucial to achieve a natural, efficient, and effective collaboration between human and
drone.

Not surprisingly, human collaboration with drone is emerging as a research field
with high potential [4]. Until recently, attention has mostly been devoted to human-
drone systems in the outdoor context [5] (e.g., photography, structural inspections, and
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sports applications), while few contributions focus on human-drone indoor industrial
applications. As the most promising areas of indoor drone use cases in warehouses are
inventory management, intra-logistics, as well as inspection and surveillance [2], in the
current work, a safe and ergonomic human collaboration with drone is addressed in
reference to the pick and place task in the intra-logistics sector.

As highlighted by the extensive literature review [6] proposed in Chapter 2, safety is
the primary need in human-robot collaboration applications, followed by efficiency and
ergonomics targets. More specifically, in collaborative robotics safety is the fundamental
requirement that allows operators to work side-by-side with “fenceless” manipulators
in compliance with the technical specification ISO/TS 15066, i.e., speed and separation
monitoring (SSM) and power and force limiting (PFL) [7], [8]. In addition, the evaluation
of the operator’s ergonomic posture is necessary to prevent injuries associated with
repetitive and dangerous tasks and to design workplaces appropriately, whereas efficiency
is considered as the improvement of the entire industrial process, and thus as the
enhancement of profitability and productivity of companies.

Therefore, in accordance with the aforementioned targets, the aim of this chapter
is to define a novel trajectory planning and tracking control algorithm for a quadrotor
transporting items and supporting the operator inside a warehouse, while respecting the
ISO safety requirements and physical ergonomics in approaching the operator during the
human collaboration with drone phase.

The remainder of this chapter is structured as follows. Section 4.2 sheds light on the
main contributions of this work, positioning them with respect to the related literature.
Section 4.3 delineates the quadrotor model, and in particular the dynamics, operating
modes, and task phases. In Section 4.4 the ascent and descent control problem is
presented, whereas in Section 4.5 the free flight control problem, which includes collision
free trajectory planning and tracking, is formulated. In Section 4.6 the descent for human
collaboration with drone control problem is presented by describing the procedure for
the evaluation of the operator’s ergonomic posture and the SSM methodology. The
experimental setup and results are discussed in Section 4.7. Finally, some concluding
remarks are reported in Section 4.8.

4.2 Related Works and Contributions
One of the major trends in the era of the industrial digitalization and technologization
is the automation of physical and informational processes in logistics and supply chain
management [9]. In this context automation means partial or full replacement or support
of/to an operator-performed physical or informational process by intelligent machines
and robots. All the tasks that concern planning, control, and execution of physical flow
of items, as well as the correlated informational and financial flows within companies and
with supply chain partners, are included in the logistics and supply chain automation
processes [9].

Since warehouses are undoubtedly essential elements in logistics and supply chains, it
becomes important to define and develop new advanced control technologies to enhance
their level of automation. Fully automated warehouses imply the direct control of handling
equipment, inducing movement and storage of loads without the need for operators or
drivers [10]. This affects all the warehouses technologies, which can be divided into devices
that assist the movement of goods and those that improve their handling [11], [12]. The
former class groups automated guided vehicles (AGVs), which move cases and pallets,
automated storage and retrieval systems, which store goods in huge racks with robotic
shuttle systems, conveyorised sortation systems, and innovative swarm robots, like the
famous Amazon’s Kiva robots. The latter class includes devices for autonomous pick and
place, sorting, and palletizing of items. Pick and place operations are the most expensive
and labor-intensive tasks for warehouses, thus their improvement is considered a top
priority for companies worldwide, since it directly affects customer satisfaction, business
reputation, and profitability of the entire industrial process. In general, the automated
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pick and place system includes a robotic arm equipped with sensors and actuators to
detect and measure the shape of the objects to be grasped. Moreover, the robotic arm is
generally devoted to the movement of huge loads and, for safety reasons, it operates in
areas delimited by metallic cages, where mainly automated machines can have access to
provide and collect products to/from the robotized area. In particular, the movement
of goods by AGVs, forklifts, and pallet jacks is employed. However, the exclusive use
of robotic arms for pick and place operations still has technical limitations, and the
intervention of operators, particularly for palletizing activities, is still fundamental.

In fact, another tendency of flexible autonomous warehousing is the adoption of
robots that are designed to work alongside human operators [6], [13]. The reason for
this crucial shift in the global robotics industry is related to the large benefits provided,
from maximization of asset utilization to easy programmability, which are ideal for
dynamic warehousing operations. Collaborative robots (cobots) are largely employed in
manufacturing, warehousing, and logistics sectors since they are lightweight, moveable,
and easy to integrate into existing infrastructure and at the same time they make human
workers more efficient, helping to sustain labor gaps and facilitate the graceful running
of facilities to fill short-run peaks in demand. Their goal is also the improvement of
accuracy and reduction of human mistakes that can be expensive for warehouses and the
enhancement of the productivity level with the reduction of unnecessary walks between
functional sectors during the pick and place process and so the mitigation of fatigue and
boost of employees’ satisfaction.

With the advent of cobots and the elimination of robots’ protection cages, regulations
have been introduced to ensure the operators’ safety in the work environment and
ergonomic indices like the rapid upper limb assessment (RULA) [14] and the rapid entire
body assessment (REBA)[15] have been integrated as assessment tools in human-robot
collaboration (HRC) architectures to evaluate the exposure of workers to risk factors.

HRC is by now playing a central role in repetitive monotonous tasks, jobs requiring
heavy workloads, or tasks in dangerous environments for the operators. In this chapter,
since drones are also key emerging technologies especially for inventory management
systems in indoor environments [11], [16], [17], we focus on the arising field of human
collaboration with drone, extending to this area the key requirements of HRC. In fact,
although there are notable differences between both fixed and mobile cobots and drones,
since the latter have the ability to fly in the three-dimensional (3D) space, there are
similarities in the definition of HRC and human collaboration with drone. As discussed
in [4], HRC can be defined as a field of study dedicated to understanding, designing, and
evaluating robotic systems for use by or with humans; analogously, human collaboration
with drone can be defined as a research field focused on understanding, designing, and
evaluating drone systems for use by or with human users. Therefore, by analogy with
cobots, in this chapter, we apply in an integrated way the well-known speed and separation
monitoring (SSM) approach [7], to guarantee a safe collaboration between human and
drone, and the RULA index, to ensure an ergonomic posture of the operator during the
human collaboration with drone phase. It has to be highlighted that the SSM approach
is more appropriate for collision avoidance, which is the aim of our approach, while the
PFL one is more appropriate for collision detection.

Differently from the state of the art, where the usage of drones for pick and place
in intra-logistics is lacking behind, in this work an indoor quadrotor or quadropter is
chosen to transport items inside a warehouse 4.0 from the picking bay to the palletizing
area, where the collaboration with the operator takes place. Note that quadrotors are
a type of drones that have currently received increased attention in robotics for their
straightforward dynamics and widespread use in the industrial sector [18], [19]. Due to
the novelty of drone applications in indoor manufacturing environments, there are only
few articles in the literature related to operation management [3]. For instance, in [20]
Kloetzer et al. propose a type of vehicle routing problem specifically for drones’ goods
gathering and deployment scenarios. In [21] Cristiani et al. present an architecture for
inventory management within large-scale warehouses through mini-drones. A platform for
controlling and monitoring connected drones in indoor environments is proposed in [22]
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by using indoor flight plans defined by users in a web application. Given the challenges
proposed by the new line of research of human collaboration with drone, there is a great
need to develop control techniques for drones in indoor environments.

Hence, one of the purposes of this chapter is to develop a control algorithm with
the aim of finding a collision free shortest path for the quadrotor inside the warehouse.
As discussed in [23], two approaches named deliberative and reactive paradigm can be
employed for collision avoidance planning. On the one hand, in the former, which is
an open-loop planning, the coordinated trajectories are globally pre-computed for all
agents, sharing the workspace from their initial to goal configuration. On the other
hand, in the latter, which is a closed loop planning, collisions are locally resolved by an
agent observing the immediate surroundings and re-planning the instantaneous locally
relevant trajectory. Although there are some heuristic approaches including prioritised
planning [24] that can handle dynamic and uncertain domains, it may be impractical
for several real-world applications to know a priori the entire environment. Therefore,
reactive collision avoidance techniques, such as methods that utilize the concept of velocity
obstacles and artificial potential field (APF) introduced in [25] and in [26] respectively, are
widely preferred in the related literature. Due to its conceptual simplicity and favourable
characteristics for collision avoidance in the continuous space, in the current work we
implement the APF technique.

In order to follow the planned collision free shortest path, a trajectory tracking
algorithm is needed. Among the classic control techniques, we must certainly mention the
proportional-integral-derivative (PID) control [27], the linear quadratic regulator (LQR)
[28] with the iterative LQR (iLQR) control, and the model predictive control (MPC) [29].
Although PID control is the simplest and easiest algorithm to implement, it requires
its parameters’ re-tuning every time the system changes, to guarantee robustness and
stability. On the other hand, MPC is very popular in industrial process engineering,
since it handles system constraints and non-linearities and it presents a high tracking
performance. However, given the high computational cost that increases as the non-
linearity of the dynamics rises, also MPC is sometimes not adequate. Hence, in this work,
we employ the LQR and iLQR control approaches, which present a good trade off in
terms of tracking performance, simplicity of implementation and computational cost.

Summarizing, the main contribution of this work is the design of a safe and ergonomic
collaboration between human and drone control framework for enhancing automation in
warehouses 4.0 by assisting the movement of items with a quadrotor. In particular, the
efficiency of the pick and place task is improved by planning, with the APF algorithm,
and tracking, with the iLQR controller, the shortest path for the quadrotor to reach the
operator in the palletizing area, while avoiding collisions with shelves and other drones
circulating in the warehouse.

4.3 Quadrotor Model and Tasks
This section describes the dynamic model of the quadrotor (Section 4.3.1) and explains
in detail its operating modes (Section 4.3.2).

Note that throughout the chapter the North-East-Down (NED) inertial frame is
considered as the Reference Coordinate System (RCS) used by drones.

4.3.1 Quadrotor Dynamics
The quadrotor or quadcopter belongs to the family of UAVs, and it consists of two pairs
of counter-rotating rotors and propellers, located at the vertex of a square frame.

The space motion that can be described through six degrees of freedom (DOF) consists
of three barycenter movements and three angular movements, namely, three translation
motions with respect to x–y–z axes of the NED RCS (i.e., forward and backward, lateral,
and vertical motions) and three rotation motions along the three drone principal axes
(i.e., roll, pitch, and yaw motions), which can be controlled by changing the rotational
speeds of the four motors.
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Since the quadrotor is an underactuated non-linear complex system with four inputs
and six outputs, we model the quadrotor as a rigid body, with a symmetric structure and
without ground effect, following the model proposed in [30]. Assuming small angles of
movement [31], the quadrotor’s dynamic model can be simplified and the state’s vector
can be defined as:

s = [p⊤, ṗ⊤, ζ⊤, ζ̇⊤]⊤ ∈ R12 (4.1)

where p = [x, y, z]⊤ and ζ = [ψ, θ, ϕ]⊤ represent respectively the linear and angular
positions along the x–y–z axes, whereas the vectors ṗ = [ẋ, ẏ, ż]⊤ and ζ̇ = [ψ̇, θ̇, ϕ̇]⊤
constitute respectively the linear and angular velocities.

As a consequence, by using the state vector s, the non-linear equations of the
quadrotor’s dynamics are written in the state space form as:

ṡ = f(s) +
4∑

i=1
gi(s)ui. (4.2)

Note that in (4.2) the control inputs u1, u2, u3, u4 are the four actuators (one for the
vertical thrust ft taken upwards and one for each of the angular motions τx, τy, τz) collected
in the control input vector u = [ft, τx, τy, τz]⊤ ∈ R4, while vectors f , gi (i = 1, . . . , 4) are
defined as:

f(s)=



ẋ
ẏ
ż

θ̇ sen(ϕ)
cos(θ) + ϕ̇ cos(ϕ)

cos(θ)
θ̇[cos(ϕ)] − ϕ̇[sen(ϕ)]

ψ̇ + θ̇[sen(ϕ)tan(θ)] + ϕ̇[cos(ϕ)tan(θ)]
0
0
g

Iyy−Izz

Ixx
θ̇ϕ̇

Izz−Ixx

Iyy
ψ̇ϕ̇

Ixx−Iyy

Izz
ψ̇θ̇


g1(s) = [0 0 0 0 0 0 g7

1 g8
1 g9

1 0 0 0]⊤

g2(s) = [0 0 0 0 0 0 0 0 0 1
Ixx

0 0]⊤

g3(s) = [0 0 0 0 0 0 0 0 0 0 1
Iyy

0]⊤

g4(s) = [0 0 0 0 0 0 0 0 0 0 0 1
Izz

]⊤

where g is the gravitational acceleration, Ixx, Iyy, Izz are the components of the diagonal
inertia matrix I = diag(Ixx, Iyy, Izz), and:

g7
1 = − 1

m
[sen(ϕ)sen(ψ) + cos(ϕ)cos(ψ)sen(θ)]

g8
1 = − 1

m
[cos(ψ)sen(ϕ) − cos(ϕ)sen(ψ)sen(θ)]

g9
1 = − 1

m
[cos(ϕ)cos(θ)]

with m the total mass of the quadrotor. Note that m varies according to the presence of
the payload: in particular, m = m0 without payload and m = m0 +M with a payload of
mass M equal to the weight of the transported item.
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Starting from the non-linear quadrotor’s dynamics in (4.2), the discretized and
linearized version of the model is often considered for control purposes. As for the
discretization procedure, a given sampling time ∆t is considered, while the discrete time
index is denoted by n and is used as a subscript of vectors and variables. Moreover, in
order to apply the LQR in the ascent and descent mode (see Section 4.4) and the iLQR
in the free flight and descent for human collaboration with drone modes (see Sections 4.5
and 4.6), the system is linearized around the equilibrium point (se,ue) defined as:

• a constant nominal point se = s∗ and a given control input ue = u∗ in the case of
LQR,

• a sequence of points over the nominal trajectory se = s∗
n and a sequence of given

control inputs ue = u∗
n in the case of iLQR.

The linearized model is the following:

sn+1 = Asn + Bun (4.3)

where:

A =



1 0 0 0 0 0 ∆t 0 0 0 0 0
0 1 0 0 0 0 0 ∆t 0 0 0 0
0 0 1 0 0 0 0 0 ∆t 0 0 0
0 0 0 1 0 0 0 0 0 0 0 ∆t
0 0 0 0 1 0 0 0 0 0 ∆t 0
0 0 0 0 0 1 0 0 0 ∆t 0 0
0 0 0 0 −∆t g 0 1 0 0 0 0 0
0 0 0 0 0 −∆t g 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


s=se, u=ue

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

− ∆t
m 0 0 0

0 ∆t
Ixx

0 0
0 0 ∆t

Iyy
0

0 0 0 ∆t
Izz


s=se, u=ue

with sn = sn − se and un = un − ue.

4.3.2 Quadrotor Operating Modes
For the development of our quadrotor automation, we consider three operating modes
that are described as follows.

I) Ascent and descent mode: Ascent and descent are performed along a vertical
axis. In particular, for the ascent the quadrotor starts from a base raised from the
ground and reaches a certain altitude where it begins to hover, while for the descent the
opposite occurs. Since the current operating mode is quite simple, an LQR controller is
implemented for the computation of the gains to be applied to the front and back motors.

69



Ascent and Descent Control Problem

II) Free flight mode: In this operating mode, the quadrotor is in free flight and there
is no contact with the warehouse floor. First, the shortest path that avoids collisions
with the shelves and any possible moving drones is found with the APF algorithm. Then,
an iterative LQR controller is implemented to ensure tracking of the desired planned
trajectory.

III) Descent for human collaboration with drone mode: Starting from a certain
altitude with a non-zero velocity, the quadrotor descends along a vertical axis with a
gradually decreasing velocity as it approaches the operator. In order to have greater
control over the quadrotor’s velocity, an iLQR is implemented instead of a simple LQR
controller.

4.4 Ascent and Descent Control Problem
For the ascent and descent operating modes, solved as a go to goal task along a vertical
trajectory, an LQR controller is implemented on the quadrotor. Given a control horizon
whose length is N , the objective of the LQR is to find the uLQR

0 , ...,uLQR
N−1 that minimize

the following quadratic cost function subject to the model in (4.3) [32]:

JA,D = (sN − s∗)⊤QA,D
N (sN − s∗)

+
N−1∑
n=0

[(sn − s∗)⊤QA,D
n (sn − s∗)

+(un − u∗)⊤RA,D
n (un − u∗)]

(4.4)

where QA,D
n ∈ R12×12, QA,D

N ∈ R12×12, and RA,D
n ∈ R4×4 are the state cost, final cost,

and input cost diagonal matrices to be tuned. Note that the three terms in (4.4) present
the final state deviation, state deviation, and input size, respectively.

By solving the minimization problem with the objective function JA,D, the state
constraint (4.3), and the initial state s0, we obtain the optimal control law:

uLQR
n = KA,D

n (sn − s∗) + u∗,∀n = 0, . . . , N − 1 (4.5)

where the feedback gain KA,D
n ∈ R12×12 is obtained through the following well-known

Riccati equations [33] that are solved recursively backwards:

KA,D
n = −(RA,D

n + B⊤P A,D
n+1 B)−1B⊤P A,D

n+1 A,

P A,D
n = QA,D

n + A⊤P A,D
n+1 A + A⊤P A,D

n+1 BKA,D
n ,

∀n = 0, . . . , N − 1
(4.6)

being P A,D
n ∈ R12×12 the parameter matrix and initializing P A,D

N = QA,D
N .

4.5 Free Flight Control Problem

4.5.1 Trajectory Planning
In order to perform the pick and place task efficiently, we need to compute the collision
free shortest path for the drone from the charging area (where it is located awaiting the
start of the activity) to the picking bay (in case of free flight without payload) and from
the picking bay to the palletizing area (in case of free flight with payload), where the
operator waits for the delivery of the load by the drone.

Since the warehouse is a dynamic environment, where several missions and tasks can
be performed simultaneously, it is important to consider different drones conducting
multiple human-drone tasks. Hence, we suppose that in total HD + 1 drones executing a
pick and place task are included in the operating scenario. Unlike warehouse’s shelves
that are fixed obstacles within the collision free shortest path planning, for a given drone
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all the others HD UAVs performing their task simultaneously act as mobile obstacles.
Thanks to sensors mounted on board drones’, their positioning is available in real time.
To simplify the discussion, in this chapter we assume that each drone receives the position
along the x–y–z axes of the other drones via the control station, in accordance with the
sampling step ∆t. Through this assumption, for each drone the collision with the shelves
and other drones can be avoided at any instant by implementing the APF-based path
planning algorithm. The APF technique is a straightforward and well-known real-time
path planning algorithm mostly implemented for mobile robots and also for UAVs, e.g., in
[34], where a modified Khatib’s potential field algorithm is proposed for a quadrotor, and
in [35], where a novel dynamic APF path planning technique is developed for multirotor
UAVs that follow ground moving targets. The optimal path planning through the potential
field principle for UAVs is also the objective of [36], where a dynamic environment is
investigated.

According to the APF approach, denoting the position of the drone at time step
n by pn, the total potential UAP F (pn) in the configuration space (C) representing the
warehouse is the sum of the attractive potential field Uatt(pn) to the goal and the repulsive
potential field Urep(pn) from the C-obstacles region (CO):

UAP F (pn) = Uatt(pn) + Urep(pn). (4.7)

The most promising direction of local motion is given by the artificial potential force
fAP F = −∇UAP F (pn).

By employing a paraboloidal potential, the attractive potential field Uatt is given by:

Uatt(pn) = 1
2kae(pn)⊤e(pn) = 1

2ka||e(pn)||2 (4.8)

where ka > 0 is the potential attractive constant and e(pn) = pgoal − pn with pgoal the
end point of the first free flight without payload (i.e., picking bay) and of the second free
flight with payload (i.e., palletizing area). The resulting attractive force is linear in e(pn)
and is equal to:

fatt(pn) = −∇Uatt(pn) = kae(pn) (4.9)

With respect to the generic drone, we consider the set of fixed HS = {1, . . . ,HS}
and mobile HD = {1, . . . ,HD} obstacles, which coincide with the HS = |HS | shelves and
the HD = |HD| other possible drones circulating in the operating scenario. Hence, the
C-obstacles region is given by the union of all the convex regions representing the fixed
(COh, h ∈ HS) and mobile (COh, h ∈ HD) obstacles:

CO =
⋃

h∈HS

COh ∪
⋃

h∈HD

COh. (4.10)

As for the repulsive potential field, it is determined by the superimposition of the
repulsive potential fields induced individually by all the obstacles. The equation of the
repulsive potentials Urep,h that keep the quadrotor away from COh is the following:

Urep,h(pn) =
{

kr,h

γ ( 1
ηh(pn) − 1

η0,h
)γ if ηh(pn) ≤ η0,h

0 if ηh(pn) > η0,h

(4.11)

where kr,h > 0 is the potential repulsive constant, and γ = 2, 3..., η0,h is the range of
influence of COh. Note that ηh(pn) represents the distance of the drone position pn from
COh:

ηh(pn) =
{ minp′∈COh

||pn − p′|| if h ∈ HS

||pn − p
(h)
n || if h ∈ HD

(4.12)

where p
(h)
n denotes the position of the other drone h ∈ HD circulating in the operating

scenario.
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The resulting repulsive force is equal to:

frep,h(pn) = −∇Urep,h(pn) =

=
{

kr,h

η2
h

(pn) ( 1
ηh(pn) − 1

η0,h
)γ−1∇ηh(pn) if ηh(pn) ≤ η0,h

0 if ηh(pn) > η0,h.

(4.13)

In particular, frep,h(pn) is orthogonal to the equipotential contour, passes through
pn and points away from the obstacle and is continuous everywhere thanks to the convex
decomposition of CO.

Summing up, combining (4.9) and (4.13), the overall force is the following:

fAP F (pn) = fatt(pn) +
∑

h∈HS∪HD

frep,h(pn). (4.14)

Finally, relying on the expression of the overall force in (4.14), the planned trajectory is
computed by integrating the drone model at each sampling step ∆t through, for instance,
the Euler method or similar.

4.5.2 Trajectory Tracking
After finding the shortest path through the warehouse’s shelves while avoiding collisions
with other drones with the APF trajectory planning algorithm, the goal is to obtain the
optimal tracking of the desired trajectory.

Since the quadrotor has a nonlinear nature and an under-actuated configuration,
which makes it a great research platform for control systems [37]–[39], several algorithms
for trajectory tracking have been implemented in the literature, from an unconstrained
MPC problem using sequential linear quadratic (SLQ) control in [40] to a combination
of sliding mode control (SMC) and LQR in [41]. A SLQ and iterative linear quadratic
gaussian controllers are also presented by de Crousaz et al. in [18], [28] to achieve stability
with aggressive maneuvers for a quadrotor with slung load. Stabilization of a quadrotor
and tracking of a pre-defined flight path in the presence of external disturbances and
model uncertainties are the objectives of [42], where Nekoukar et al. propose a new robust
flight control system that consists of an adaptive fuzzy terminal sliding mode controller,
and two proportional-derivative controllers. Given the high computational cost resulting
from the nonlinear nature of the quadrotor employed in this work, the iLQR results a
good compromise in terms of tracking performance, simplicity of implementation, and
computational cost.

With the aim of optimizing the overall performance of the human-drone warehouse
framework, we consider the iLQR algorithm that iteratively computes a state evolution of
the system, linearizes it along the simulated trajectory, and then minimizes a quadratic
cost function using the finite-time discrete LQR of the trajectory. This approach allows
us to overcome the inaccuracies of the single operating point of the LQR algorithm while
also designing a feedforward control action to better adapt to a changing trajectory [18],
[40].

In order to implement and initialize the iLQR algorithm, a stable control law is
required to generate a first sequence of states of the system. Even if the algorithm is
designed to work with any initial stable law, aiming at increasing its performance, a
standard LQR is first applied to obtain the initial state and control action guess required
by the algorithm. In particular, the input-state trajectory optimized through LQR is used
as a starting point to linearize the system at each state-control pair with the matrices An

and Bn that, differently from the ascent and descent control problem, are time-variant.
At each iteration step, the system is linearized around the nominal trajectory (s∗

n,u
∗
n)

and a quadratic approximation of the cost function is minimized.
Given a control horizon whose length is N , analogously to Section 4, the optimal

control vectors uiLQR
0 , ...,uiLQR

N−1 are found by minimizing the following cost function [32]
subject to the model in (4.3):
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JF F = (sN − s∗
N )⊤QF F

N (sN − s∗
N )

+
N−1∑
n=0

[(sn − s∗
n)⊤QF F

n (sn − s∗
n)

+(un − u∗
n)⊤RF F

n (un − u∗
n)]

(4.15)

where QF F
n ∈ R12×12, QF F

N ∈ R12×12, and RF F
n ∈ R4×4 are the state cost, final cost, and

input cost diagonal matrices to be tuned. Note that the three terms in (4.15) present the
final state deviation, state deviation, and input size, respectively.

By solving the minimization problem with the objective function JF F , the state
constraint (4.3), and the initial state s0, we obtain the optimal control law:

uiLQR
n = KF F

n (sn − s∗
n) + u∗

n + αnκF F
n ,∀n = 0, . . . , N − 1 (4.16)

where 0 < αn ≤ 1 is the backtracking stepsize, whilst the feedback gain KF F
n ∈ R12×12

and the feedforward gain κF F
n ∈ R4 are obtained through the following well-known Riccati

equations [33] that are solved recursively backwards:

KF F
n = −(RF F

n + B⊤
n P F F

n+1Bn)−1B⊤
n P F F

n+1An,

P F F
n = QF F

n + A⊤
n P F F

n+1An + A⊤
n P F F

n+1BnKF F
n ,

κF F
n = −(RF F

n + B⊤
n P F F

n+1Bn)−1(B⊤
n πF F

n+1 + rF F
n ),

πF F
n = qF F

n + A⊤
n πF F

n+1 + A⊤
n P F F

n+1BnκF F
n ,

∀n = 0, . . . , N − 1

(4.17)

being P F F
n and πF F

n the parameter matrices, qF F
n = −QF F

n s∗
n and rF F

n = −RF F
n u∗

n,
and initializing P F F

N = QF F
N and pF F

N = qF F
N .

We remark that since the iLQR solves a linearized system along a certain trajectory,
κn may not be optimal or even not stable for the non-linear system. Thus, with the
aim of minimizing the cost function and avoiding that the system stumbles into a local
optimum, we perform a line search to find the backtracking parameter αn [43]. To test
the series of the feedforward term, the system is simulated with a diminishing stepsize
until finding the increment that minimizes the cost function.

4.6 Descent for Human Collaboration with Drone Control Problem
In this section, the crucial phase of the human collaboration with drone is described.
Once the quadrotor has reached the palletizing area at a certain altitude, it begins to
approach the collaboration between human and drone point along a vertical trajectory.
The release of the payload by the drone must occur at an ergonomically optimal position
for the operator, which is evaluated through the RULA index (see Section 4.6.1). Since in
the human collaboration with drone it is fundamental to ensure the operator’s safety, we
control the quadrotor’s speed in proximity of the operator applying the SSM approach
(see Section 4.6.2).

4.6.1 Evaluation of the Operator’s Ergonomic Posture
In this work, the evaluation of the operator’s ergonomic posture is integrated in the human-
drone framework with the aim of reducing the work-related musculoskeletal disorders,
which affect workers in repetitive and dangerous tasks, such as the pick and place task
under consideration.

Several criteria for evaluating ergonomics of a given posture, e.g., RULA, REBA,
postural postural loading on the upper body assessment (LUBA), and occupational repetitive
action (OCRA) are illustrated in the related literature. Since we are interested in
evaluating the exposure of workers to risk factors associated with the upper limbs of the
body, the RULA index is chosen as an ergonomic tool for assessing the posture of the
operator.
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Figure 4.1: Virtual manikin with the work volume consisting of sampling points identified by the white
cross markers and the rectangular cuboid with the optimal RULA index highlighted by the red spots.

In the RULA methodology, a score ranging from 0 (negligible risk that requires no
specific countermeasure) to 6+ (high risk) can be assigned to arm, forearm, wrist, neck,
and trunk [14]. Since only the effort made by the right or left part of the body can be
assessed with a single RULA test, in this work the simulation is performed only for a
right-handed woman.

Specifically, following the systematic procedure [44] reported in Chapter 3, a design
of experiments approach is performed to determine the ergonomic operator’s posture.
The first phase of this procedure consists in designing a virtual manikin that simulates
the operator in a fixed standing position with the use of ad hoc computer-aided design
and engineering software, such as CATIA [45] or Process Simulate [46]. Note that it is
convenient to choose the initial referential point of the manikin between its feet for this
procedure. Then, a work volume, whose dimensions depend on the characteristics of
the manikin generated in the previous phase, is defined in the work zone. It consists of
equidistant points reachable by the manikin’s arm, for which the RULA index is evaluated
and collected in a look-up table. Finally, for the sake of identifying the region in which
the collaboration between human and drone point must be located, it is necessary to
subdivide the work volume into rectangular cuboids of equal size, in which we assume
that the ergonomics RULA index is constant, after which we choose the region with
minimum value (Fig. 4.1).

4.6.2 Speed and Separation Monitoring Control Problem
After identifying the rectangular cuboid of the work volume with minimum RULA index
in which the quadrotor must arrive and hover in position, the operator is ready to receive
the item in an ergonomically optimal posture. In addition to the evaluation of ergonomics
in the human-drone framework proposed in this work, another goal is to respect the ISO
safety requirements for the operator during the collaboration [47].

The concept of safety is the fundamental requirement in HRC applications since it
allows operators to work side-by-side with “fenceless” robots in compliance with ISO/TS
15066 standards. According to these requirements, safety can be guaranteed by limiting
the maximum permissible forces or torques, i.e., by a PFL approach, or by prescribing
that the speed must be related to a certain separation distance between the human and
the robot, i.e., by a SSM approach (see Chapter 3). For this work, we assume that no
undesired contact must happen between quadrotor and human. Therefore, the SSM

74



Descent for Human Collaboration with Drone Control Problem

Figure 4.2: SSM scheme in the human collaboration with drone framework.

Figure 4.3: Quadrotor speed profile in the SSM criterion.

strategy is chosen to help safeguarding the operator in this collaborative application, by
allowing the quadrotor actuation system to have the required deceleration capability to
achieve a complete stop before eventually coming in contact with the operator [7], [8].

With the aim of preserving a safe separation distance between the operator and the
quadrotor flying around the collaborative work zone, the SSM method measures the
human-quadrotor separation distance, which is compared with the so called authorized
(operator protective) distance [48], [49]. In particular, it can be assumed that the operator
is safe when the quadrotor is moving outside a sphere of a certain radius, with the human
worker in the center of such a sphere (Fig. 4.2). Since the collaboration occurs in the
descent mode and we know the exact ergonomically optimal position of the operator in
the x–y plane, we are interested in controlling only the quadrotor velocity along the z axis
(i.e., the vertical axis), whose increase is extremely dangerous for the operator. Using
the SSM method, when the separation distance tends to reduce below the authorized
distance, and so when the quadrotor enters the collaborative work zone (Fig. 4.2), the
quadrotor must strongly decrease its linear velocity until it stops (Fig. 4.3).

The above-described SSM method is implemented as follows. The minimum allowable
quadrotor-human distance S(t0) is computed by using the following equation in ISO/TS
15066 [47]:

S(t0) = Sq + Sh + Ss + C + Zd + Zr (4.18)

where, t0 is the initial time of the human collaboration with drone phase, Sq and
Sh indicate the quadrotor’s and operator’s change in location respectively, Ss is the
quadrotor’s stopping distance, C is an intrusion distance safety margin based on the
expected human reach, and Zd + Zr designates the position uncertainty for both the
quadrotor and operator.

For our case study, in which the operator is located in the center of the sphere and
the quadrotor flies around the work zone (Fig. 4.2), by assuming a constant speed of
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the quadrotor, we can now reformulate eq. (4.18) under static conditions, considering
Sq = vqTq + vqTs, Sh = vhTs, Ss = B, thus obtaining:

S(t0) = (vqTq + vqTs) + vhTs +B + C + Zd + Zr (4.19)

where vq is the quadrotor’s speed in the collaborative work zone (i.e., the rate of the
quadrotor’s motion toward the operator) vh indicates the speed of the operator, Tq is
the quadrotor responding time in case of operator’s presence, and Ts is the time to stop
the quadrotor motion. Parameter B is computed as v2

q/2a and Ts as vq/a, with vq = ż
being the maximum scalar velocity of the quadrotor along the z axis and a the worst-case
deceleration value of the quadrotor during the stopping procedure.

In particular, since here the operator is in a fixed standing position, vh is equal to
zero as well as parameter C and uncertainties Zd + Zr. Hence, given our assumptions,
the eq. (4.19) is rewritten as:

S(t0) = (vqTq + vqTs) +B + C. (4.20)

In Fig. 4.3 we report the trend of the quadrotor’s velocity vq as a function of time
that drops abruptly once the quadrotor enters the collaborative work zone.

With the aim of controlling the quadrotor’s velocity during the descent for human
collaboration with drone mode, the SSM criterion is applied inside the iLQR algorithm
described in Section 4.5.2. A standard LQR (described in Section 4.4) is first applied to
obtain the initial control law guess required by the algorithm and to compute the instant
the quadrotor enters the collaborative work zone and violates the authorized distance.
Then, the four Riccati equations in (4.17) and the line search procedure (described in
Section 4.5.2) are implemented to follow the vertical trajectory and reach the collaboration
between human and drone point with a gradually decreasing velocity.

4.7 Case Study
In this section, we describe the experimental setup and the results of the proposed safe
and ergonomic human-drone framework. In particular, the quadrotor’s control system is
implemented on a Jupyter Notebook, whereas the manikin that simulates the operator is
designed and subject to the RULA analysis on the CAD software CATIA V5.

4.7.1 Experimental Setup
The goal of our numerical experiment is to efficiently and ergonomically perform a pick
and place task in a warehouse 4.0, by employing a quadrotor that, after leaving the
charging area, transports an item from the picking bay to the palletizing area where the
collaboration with the operator takes place.

More specifically, with the use of the three quadrotor’s operating modes listed in
Section 4.3.2, it is possible to deliver items within the warehouse 4.0 through six phases,
as detailed below.

1) Ascent without payload: In this phase, the quadrotor ascends from its charging
base, where it is placed before the beginning of the pick and place task, and reaches a
specific altitude along a vertical axis. Then, the quadrotor hovers in this position until
the next phase starts.

2) Free flight without payload: Starting from the hovering position reached in the
previous phase, the quadrotor flies freely in the warehouse towards the picking bay,
following the shortest and collision free planned trajectory.

3) Descent approaching the picking point: In this phase, the quadrotor descends along
a vertical axis to the picking bay, where it picks up the load.

4) Ascent with payload: In this phase, the quadrotor ascends again, now carrying its
load approaching a specific hovering point.
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Figure 4.4: Warehouse map detailing the layout of shelves and position of the charging base, the palletizing
area, and the considered picking bay.

Table 4.1: Quadrotor dynamics parameters.

Phase m [kg] I [kg m2]
Ascent without payload

Free flight without payload 1.38 diag(0.0037,0.0037,0.0073)
Descent approaching the picking point

Ascent with payload
Free flight with payload 2.18 diag(0.0087,0.0087,0.0123)

Descent approaching the HDI point

5) Free flight with payload: Starting from the hovering point reached in the previous
phase, the quadrotor freely flights with the load in the warehouse towards the palletizing
area following the shortest and collision free planned trajectory.

6) Descent approaching the human collaboration with drone point: Once the palletizing
area is reached, the quadrotor begins to approach the operator with a gradually decreasing
velocity by respecting the SSM ISO safety requirements. When the ergonomically perfect
height for the operator is reached, the quadrotor releases the object to the operator who
has a posture with a minimum RULA index.

The realistic scenario addressed in this chapter is shown in Fig. 4.4, which reproduces
an Amazon-like warehouse map of horizontal size 68 × 38 m2, where we consider that each
shelf is equipped with a dedicated automated shuttle system. The shuttle is used to pick
the necessary item and place it at the corresponding picking bay, which is located on one
of the short sides of the shelf. The warehouse is 6 m high and is equipped with 64 4 m
high shelves. Two drones can work simultaneously within the indoor environment. Then,
for each drone the sets of fixed and mobile obstacles (i.e., HS and HD) are respectively
composed of HS = 64 shelves and HD = 1 drone.

The experiment is conducted on the well-known DJI Phantom 4 Pro [50] drones,
which have a maximum speed of 72 km/h and a flight autonomy of about 30 minutes. In
particular, the quadrotor that performs the pick and place task is modeled in accordance
with the dynamic parameters in Table 4.1, where m and I indicate the total mass of the
quadrotor and the diagonal inertia matrix, respectively. The load of mass M carried by
the vacuum gripper attached to the quadrotor base is equal to 0.8 kg. Instead, the drone’
control input vector is defined as u = [mg, 0, 0, 0] with the gravitational acceleration g
set to 9.81 m/s2.

As for the definition of the operator posture, several properties are preliminarily defined
in the manikin configuration designed on CATIA in terms of gender and percentile, applied
to the stature (height) as well as weight and all other anthropometric variables estimated
according to the chosen population. In particular, the considered manikin is a right-
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Figure 4.5: 3D reconstruction of the warehouse environment where the quadrotor supports the operator
in performing a pick and place task.

Figure 4.6: Top view of the quadrotor planned trajectory: the background represents the value of potential
considered by the APF algorithm.

handed woman belonging to the American population with stature and weight percentile
both equal to 50. The initial referential point of the manikin is chosen between the feet
of the manikin for the evaluation of the operator’s ergonomic posture.

The RULA analysis is executed with a payload equal to 0.8 kg for each equidistant
point belonging to the work volume V with bounding dimensions (in meters) measured
in the manikin reference frame: Xmin = 0.2, Xmax = 0.5, Ymin = −0.5, Ymax =
0.1, Zmin = 1, Zmax = 1.5. From the performed DOE, it emerges that the human
collaboration with drone point must be located in the region V∗ with minimum RULA
index equal to 3, which is delimited by the following bounding dimensions (in meters):
X∗

min = 0.35, X∗
max = 0.5, Y ∗

min = −0.2, Y ∗
max = 0.1, Z∗

min = 1.25, Z∗
max = 1.35.

To conclude the experimental setup, we set the sampling step ∆t = 0.01 s and the
following values for the application of the SSM criterion to our case study: vq = 4.5 m/s,
a = 10 m/s2, Tq = 0.2 s, Ts = 0.45 s, and C = 0.3 m.

4.7.2 Results
In our work, the quadrotor aims at reaching the operator in the palletizing area by finding
the shortest path and avoiding collisions with the shelves and with another drone moving
inside the warehouse 4.0. The whole pick and place task performed by the quadrotor with
the corresponding actual trajectory is represented in Fig. 4.5, where a zoomed portion of
the warehouse 4.0 in Fig. 4.4 is recreated in a 3D view to help the reader imagine the
real industrial scenario.

78



Conclusions

Table 4.2: Tuning parameters in the quadrotor’s trajectory tracking control.

Phase Control Height at the beginning N ∆t [s] Q R RMSE
technique and end point [m]

Ascent without payload LQR [0.5;5] 501 0.01 10 I12 2 I4 0.0001
Free flight without payload iLQR [5;5] 28800 0.01 diag(50 I3, 100 I9) 2000 I4 12

Descent approaching the picking point LQR [5;1] 2000 0.01 diag(200 I3, 900 I9) 100 I4 0.3
Ascent with payload LQR [1;5] 501 0.01 10 I12 2 I4 0.02

Free flight with payload iLQR [5;5] 28200 0.01 diag(100 I3, 1000 I9) 2000 I4 25.5
Descent approaching the HDI point iLQR [5;1.3] 2000 0.01 diag(200 I3, 900 I9) 100 I4 0.0001

The result of the trajectory planning achieved by using the APF technique (described
in Section 4.5.1) is represented in Fig. 4.6. In particular, it is possible to observe the
planned path in the x–y plane in the first and second free flight on a background with a
color gradient determined by the attractive and repulsive potential field. As can be seen
from Fig. 4.6, the quadrotor manages to avoid the other moving drone, represented as a
square in the middle of the shelves, during the second free flight.

The planned trajectory is followed by the quadrotor with ad hoc controllers for each
phase as summarized in Table 4.2 (I and II columns). More specifically, all the following
parameters are included in Table 4.2: the height, i.e., position of the quadrotor along the z
axis, of the beginning and end of each phase (III column), horizon length N (IV column),
iteration step which is the same for all missions (V column), the diagonal matrices Q (VI
column) and R (VII column).

With the aim of evaluating the effectiveness of the controllers employed in the
considered human-drone application, we compute the root-mean-square error (RMSE)
between the planned and the actual trajectory (reported in column VIII of Table 4.2)
and the minimum distance, that the quadrotor keeps from the shelves and from the other
moving drone at each ∆t, which are equal to about 0.52 m and 0.4 m, respectively. We
remark that the operator’s safety is guaranteed by the protective distance computed by
(4.20), which is equal to 4.2 m. Finally, the effectiveness of the ergonomics procedure is
highlighted noting that the drone reaches the human collaboration with drone point in
the region V∗, as indicated in the set up, at a height of 1.3 m with an RMSE less than
0.0001 m.

4.8 Conclusions
This chapter presents an industrial application of collaboration between human and
drone where a pick and place task is performed by a quadrotor inside a warehouse 4.0.
In particular, the quadrotor is used to transport an item from the picking bay to the
palletizing area where the collaboration with the operator takes place in a safe and
ergonomic way. On the one hand, the ergonomic posture and the human collaboration
with drone point are identified through the rapid upper limb assessment method; on
the other hand, the safety distance between the operator and the quadrotor within
the collaborative work zone is computed using the speed and separation monitoring
methodology.

Future works will focus on enhancing the human-drone framework by considering the
operator in motion instead of being stationary and forecasting the human movement
inside the warehouse 4.0, including collision avoidance with human workers and/or any
kind of object in the ascent and descent phases, as well as analyzing the quadrotor model
with a retractable gripper under more complex tasks.
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Conclusions

Cooperation between a fleet of drones or a single drone and a ground mobile robotic
system (e.g., train, truck) involves these two entities working together in a coordinated
manner to achieve specific objectives or tasks. The cooperation typically requires
communication, data sharing, and synchronized actions between drones and mobile
robotic systems. This type of cooperation can be applied in various fields, such as railway
diagnostics and last-mile delivery, to enhance efficiency and capabilities.

Drones designed to perform landings on a moving platform are often referred to as
"land-on-the-move" drones. These specialized drones are equipped with advanced control
systems and sensors to facilitate safe and precise landings on platforms that are in motion,
such as moving vehicles or trains. This technology is particularly valuable in applications
like surveillance, data collection, and inspections where it is necessary to access a mobile
platform for various tasks. To the best of our knowledge, the landing on a moving platform
approach suitable for quadrotors, where the moving platform is a diagnostic train or a
truck, is developed in a different way both in terms of application and control perspective,
in comparison to the limited number of articles found in the related literature. Hence,
this thesis places particular emphasis on the critical phase of drones returning to and
landing on a moving train or truck. This phase occurs either after the railway inspection
mission has concluded or during the final stages of last-mile delivery.

The employment of drones is being increasingly investigated in different inspection
scenarios including the evaluation of civil engineering structures and infrastructure
health. However, their full potential remains untapped in the realm of automated railway
surveillance and inspection, as evidenced by the limited number of articles in the existing
literature. Thus, the goal of Chapter 5 is to develop an hybrid movable railway diagnostic
architecture based on the use of a diagnostic train and a fleet of drones for the identification
and evaluation of anomalies in railway lines and surrounding areas. To manage the fleet
of drones, a combination of consensus algorithm in the leader-following mode and the use
of linear quadratic regulator (LQR) control is applied. This combination is utilized for
the flight formation phase and the landing phase onto the mobile base platform, which is
the diagnostic train. The landing phase encompasses both vertical and oblique descent
using a go to goal approach, as well as oblique descent following a predefined path. The
outcomes of simulations within the railway diagnostic architecture are presented and
thoroughly discussed.

Existing scientific literature predominantly addresses the strategic aspects of hybrid
truck-drone delivery system design and the offline planning of tasks for both trucks
and drones. However, there is a noticeable absence of articles that specifically delve
into the real-time control of drone missions within a hybrid truck-drone delivery system.
Therefore, Chapter 6 defines a novel control technique for the last-mile delivery problem,
where a drone and a truck are able to autonomously cooperate in order to improve the
efficiency of the delivery. The reference scenario involves a smart city where the drone
within the hybrid delivery framework handles three distinct pick-up and delivery missions:
truck to point (collecting from the truck and delivering to the customer), point to point
(delivering to one customer and collecting from the next), and point to truck (returning
from a customer to the truck). From a control perspective, the drone is optimally guided
through various operational modes, including ascent and descent to/from the truck, free
flight modes with or without payload, and descent for pick-up/delivery operations. This
guidance is achieved using a receding horizon LQR capable of dynamically managing the
drone’s landing on the mobile truck and adjusting the landing point in real-time. This
chapter includes comprehensive simulation results of the truck-drone delivery system,
which are presented and thoroughly analyzed, showcasing the effectiveness of the proposed
approach.
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Chapter 5

Optimal Control of Drones for a
Train-Drone Railway Diagnostic System

VAbstract

The inspection of railway systems with traditional wayside detectors allows mainly
the detection of wheels and axle bearings defects and can be time-demanding, unsafe,
and heavily dependent on humans. To overcome these issues and then optimize and
automate the rail and track diagnosis process, drones can be an excellent solution
thanks to their onboard state-of-the-art cameras and sensors. Thus, with the aim
of rapidly collecting highly accurate data, an innovative hybrid movable railway
diagnostic architecture, consisting of a diagnostic train and a fleet of drones, is
defined in this chapter. From the control point of view, the main interest is in
optimally managing the crucial phase of drones returning to and landing on the
moving train when the railway inspection mission is completed. To control the
fleet of drones, a combination of consensus algorithm in the leader-following mode
and linear quadratic regulator (LQR) is implemented for the flight formation phase
and the landing phase on the moving base platform (i.e., the diagnostic train),
respectively. The landing phase is performed both as vertical or oblique descent
through a go to goal and as oblique descent along a predefined path. The obtained
results of the railway diagnostic architecture simulations are presented and discussed
in detail. In particular, they show that the vertical and oblique descent performed
as go to goal are certainly faster than the oblique descent along a predefined path.

5.1 Introduction
The deterioration of the railway infrastructure is a global problem that needs to be
solved. However, the inspection process is typically conducted every year or each several
months and it may take too long to detect faults in the track that can cause collapses [1],
[2]. Thus, the railway industry needs to improve track diagnostics to ensure the timely
detection of structural degradation. Consequently, a predictive maintenance regime can be
implemented guaranteeing a more cost-effective management of the railway infrastructure
with respect to more traditional tools.

Railway systems employed in infrastructure diagnostic applications include several
devices and vehicles classified according to two main categories that are wayside (track-
based) detectors and movable detectors [3]. The formers are equipped with sensors,
attached to the track or positioned at a certain distance from the track, which are
capable of measuring, among other key parameters, strain, displacement, acceleration,
temperature, humidity, and defects. They are mainly employed for the inspection of
defects related to wheels and axle bearings and present several drawbacks (i.e., limited
performance, sensitivity, and accuracy, strong dependence on operators for supervision
and periodic maintenance, and presence of health and safety concerns). Conversely, the
latter are categorized into trolleys, hi-rail vehicles, condition monitoring systems, track
recording vehicles, drones, and smartphones which can inspect rail and track conditions
while the train is moving. Each of these movable technologies is developed in line with
the recent advances in the related sector with different technical characteristics capable
of capturing various track defects.

Aiming at improving inspection accuracy and automating the detection of both natural
and harmful threat scenarios, an alternative to the use of the diagnostic systems described
above can be the employment of a more advanced diagnostic system. Such a system
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should combine multiple movable devices with distinct features such as drones [4], [5]
that allow verifying the anomalies identified by the diagnostic train during the inspection
process.

In the last decade, unmanned aerial vehicles (UAVs), commonly known as drones,
have had a meaningful growth in several sectors and nowadays are having a great impact
on railway operations worldwide. This is due to their ability to perform a detailed
assessment of large physical structures with few units and their simplicity and flexibility of
implementation, as well as low maintenance and instrumentation costs [4]. Although there
are still some limitations characterizing drones, such as flying autonomy or payload weight,
fleets of drones have become necessary for stable railway inspection systems guaranteeing
railway operators’ safety and reliability, alongside their trustworthy assistance. They are
employed to assess high-voltage electrical lines, railway catenary lines, and even tracks and
switching points. With the drone’s feature of sensor/camera mobility, extensive imagery is
obtained to rapidly amplify the process of detecting flaws, cracks, and additional hazards.
Therefore, the use of drones increases productivity and efficiency of the entire diagnostic
process by minimizing intervention times compared to more traditional methods and
drastically reducing dangerous activities executed by humans [6].

The aim of this chapter is to define a hybrid movable railway diagnostic architecture
based on the use of a diagnostic train and a fleet of drones for the identification and
evaluation of anomalies in railway lines and surrounding areas. In particular, the diagnostic
system is in charge of checking the condition of the tracks and reporting online the issues
that require timely intervention by human maintainers.

5.2 Related Works and Contributions
In this chapter, we focus on the arising field of diagnostics by drones of the railway
infrastructure. This aims at frequently and automatically checking railway infrastructure
parameters, thus leading to the implementation of early warning systems that detect
faults and threats, including natural hazards and intentional attacks [4]. Although the
employment of drones is being increasingly investigated in different inspection scenarios
(e.g., in the health assessment of civil engineering structures and infrastructures), their
potentials have yet to be fully exploited for automated railway surveillance and inspection,
as shown by the few articles present in the related literature. For instance, in [2] and
in [6], the state-of-the-art and future directions of the railway diagnostic systems with
drones are presented, highlighting opportunities (i.e, cost-effectiveness, flexibility) and
actual technical limits (i.e., low endurance, difficulty in using drones in hostile weather
conditions, lack of international standard regulations for drones with maximum take-off
weight lower than 150 kg). In [5], Flammini et al. illustrate a proposal of an early warning
system based on wireless sensor networks for railway infrastructure assessment, whereas
in [7], Kochan et al. present the results of the “Drone-monitor" project that is launched to
assess the possibility of using drones for automating the railway infrastructure inspection.

Aiming at filling the gap in the related research field, in our work we propose a hybrid
movable railway diagnostic architecture that consists of a diagnostic train and a fleet
of drones, which are quadrotors, optimally guided by a dedicated control system. In
particular, we focus on the crucial phase of drones’ return to and landing on the moving
train, when the railway inspection mission is completed. For the flight formation phase,
which allows the drones to follow the diagnostic train and to reach its position and velocity,
we implement the well-known consensus technique in the leader-following mode. This
technique is examined in several papers, such as in [8], where a new kind of distributed
non-smooth control-based formation control algorithm is developed, and in [9], where
an algorithm based on the combination of sliding mode control and linear quadratic
regulator (LQR) is proposed to solve the problem in a leader-follower configuration. In
the proposed architecture, the consensus algorithm is combined with the LQR [10] that
aims at controlling the drones in the landing phase, subsequent to the flight formation
phase. To the best of our knowledge, we develop a landing on a moving platform approach
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suitable for quadrotors, where the moving platform is the diagnostic train, in a different
way (both from an application and control point of view) compared to the few articles in
the related literature [11]–[13]. These, in fact, rely mainly on vision-based and multi-sensor
fusion approaches, which in some cases can present a high computational cost.

5.3 System Modelling and Tasks
This section describes the railway diagnostic system based on the combined use of 3D
quadrotors and a train for inspecting railway lines. In particular, Section 5.3.1 and
Section 5.3.2 present the dynamic models of the quadrotor and the train, respectively,
whereas the operating scenario and tasks phases are illustrated in Section 5.3.3.

5.3.1 Quadrotor Dynamics
As reported in Chapter 4, the quadrotor is a type of helicopter with four propellers at the
extremities and an electronic board in the middle and its space motion can be defined
through six degrees of freedom (DOF).

The quadrotor is modelled as a rigid body, with a symmetric structure and without
ground effect, following the system [14] proposed in Chapter 4. To define the quadrotor’s
structure and position, two different reference frames are considered. We use the north-
east-down (NED) for the first inertial coordinate system (fixed), whereas the aircraft
body center (ABC) is used for the second reference system united with the quadrotor’s
barycenter (mobile).

By calling [xd, yd, zd, ψd, θd, ϕd]⊤ the vector containing the linear xd, yd, zd and angu-
lar ψd, θd, ϕd positions of the quadrotor in the NED frame and [ed, vd, wd, pd, qd, rd]⊤ the
vector containing the linear ed, vd, wd and angular pd, qd, rd velocities in the ABC frame,
we define the state’s vector as follows: [xd, yd, zd, ψd, θd, ϕd, ed, vd, wd, pd, qd, rd]⊤ ∈ R12.
Note that the two reference frames are put in relation by the following equation:

v = R vB

ω = T ωB
(5.1)

where v = [ẋd, ẏd, żd]⊤ ∈ R3, ω = [ψ̇d, θ̇d, ϕ̇d]⊤ ∈ R3, vB = [ed, vd, wd]⊤ ∈
R3, ωB = [pd, qd, rd]⊤ ∈ R3, and R and T are the rotation matrix and the
matrix for angular transformations, respectively. Assuming small angles of movement
[15], the quadrotor’s dynamic model can be simplified by setting [pd, qd, rd]⊤ =
[ψ̇d, θ̇d, ϕ̇d]⊤; hence, we redefine the state’s vector in the inertial frame as sd =
[xd, yd, zd, ψd, θd, ϕd, ẋd, ẏd, żd, ψ̇d, θ̇d, ϕ̇d]⊤ ∈ R12. As a consequence, by using the state
vector sd, the non-linear equations of the quadrotor’s dynamics are written in the state
space form as:

ṡd = f(sd) +
4∑

i=1
gi(sd)ud,i (5.2)

where ud,1, ud,2, ud,3, ud,4 are the four control inputs and:
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f(sd)=



ẋd

ẏd

żd

θ̇d sen(ϕd)
cos(θd) + ϕ̇d cos(ϕd)

cos(θd)
θ̇d[cos(ϕd)] − ϕ̇d[sen(ϕd)]

ψ̇d + θ̇d[sen(ϕd)tan(θd)] + ϕ̇d[cos(ϕd)tan(θd)]
0
0
g

Jyy−Jzz
Jxx

θ̇dϕ̇d

Jzz−Jxx
Jyy

ψ̇dϕ̇d

Jxx−Jyy
Jzz

ψ̇dθ̇d



(5.3)

g1(sd) = [0 0 0 0 0 0 g7
1 g8

1 g9
1 0 0 0]⊤ (5.4)

g2(sd) = [0 0 0 0 0 0 0 0 0 1
Jxx

0 0]⊤ (5.5)

g3(sd) = [0 0 0 0 0 0 0 0 0 0 1
Jyy

0]⊤ (5.6)

g4(sd) = [0 0 0 0 0 0 0 0 0 0 0 1
Jzz

]⊤ (5.7)

where g is the gravity acceleration, Jxx, Jyy, Jzz are the components of the diagonal inertia
matrix J, and:

g7
1 = − 1

md [sen(ϕd)sen(ψd) + cos(ϕd)cos(ψd)sen(θd)] (5.8)

g8
1 = − 1

md [cos(ψd)sen(ϕd) − cos(ϕd)sen(ψd)sen(θd)] (5.9)

g9
1 = − 1

md [cos(ϕd)cos(θd)] (5.10)

with md the total mass of the quadrotor.
Often, starting from the non-linear quadrotor’s dynamics in (5.2), the linearized version

is considered for control purposes (see Section 5.4). By considering the four control inputs,
one for the vertical thrust (fd

t ) taken upwards and one for each of the angular motions
(τd

x , τ
d
y , τ

d
z ), and thus, by setting the control input vector ud = [fd

t , τ
d
x , τ

d
y , τ

d
z ]⊤ ∈ R4,

through the linearization around the nominal point sd,∗ or trajectory sd,∗
n and control

input vector ud,∗
n , using ∆t for the time step in the discretization procedure, we obtain

the following linear dynamics:

sd
n+1 = Asd

n + Bud
n (5.11)

with sd
n = sd

n − sd,∗
n and ud

n = ud
n − ud,∗

n .

5.3.2 Train Model
The train model is formulated in the state space form as:

st
n+1 = f(st

n,u
t
n) (5.12)

where the state vector is defined as st = [xt, yt, zt, ẋt, ẏt, żt]⊤ ∈ R6 with xt, yt, zt the
train’s positions along the X, Y, Z axes and ẋt, ẏt, żt its linear velocities, and the control
input vector as ut = [ẍt, ÿt, z̈t]⊤ ∈ R3 with ẍt, ÿt, z̈t the train’s accelerations.
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Figure 5.1: Railway diagnostic architecture with the operating tasks phases.

5.3.3 Operating Scenario and Tasks Phases
The operating scenario concerns the use of drones for the identification and evaluation
of anomalies of the railway line and surrounding areas thanks to state-of-the-art sensors
mounted on drones’ board that allow to collect data quickly and easily. The architecture
(Fig. 5.1) is composed of a diagnostic train on which the drones’ charging base is positioned
and a fleet of drones that initiate the inspection mission when some anomaly on a given
railway line is identified by the train.

In this context, we focus on the crucial phase of the drones’ returning to the train
once the railway line has been inspected. The approach consists of these phases (Fig. 5.1):

I) Inspection phase (pre-condition): Once the fleet of drones notifies the control station
of the end of the railway line inspection mission, it is ready to receive the current status
of the train and the predicted trajectory in terms of position, velocity, and timestamp of
the landing point situated in the barycentric position of the charging base.

II) Flight formation phase: In this phase, the fleet of drones aims at following the
diagnostic train trajectory, in terms of position and velocity, in single file fleet formation,
ensuring that each drone keeps a safe distance between the preceding and subsequent one
placed in sequence, and aligns its attitude along the X and Y axis of the train at a given
offset over the Z axis. The technique implemented for the flight formation phase is the
consensus algorithm in the leader-following mode.

III) Approaching phase: Once the fleet of drones has aligned with the train, the
starting point of the landing phase must be reached from each drone, one at a time. Then
the drone that has started its approaching phase hovers in its starting point and then
proceeds with the landing phase. Note that, while the first drone starts the landing phase,
the subsequent drones continue following the train up to when their approaching phase
can start. Then they proceed gradually in queue towards the estimated landing point.

IV) Landing phase: After reaching the starting point of the landing phase, the drone
is ready to land and reach the landing area located on the roof of the diagnostic train.
The landing phase can be performed in two different ways. More specifically, it can be
solved as a descent through a go to goal, i.e., from a given point to the target along a
vertical or oblique descent, by implementing a LQR with two Riccati equations, or as
a descent along a predefined path, i.e., the tracking of an oblique given trajectory, by
implementing a LQR with four Riccati equations.

Note that for both the approaching and landing phases, the estimate of the landing
starting point is performed on the basis of the predicted trajectory (in terms of both
position and velocity) of the train that is provided by the control station in accordance
with a certain sampling step (∆t). For the vertical landing, the drone initiates the descent
phase from a point with a vertical and a forward horizontal offset with respect to the
train’s estimated position corresponding to the landing time. Conversely, for the oblique
descent (both through a go to goal and along a predefined path), the drone is initially
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aligned with the train along the X and Y axes, while keeping a given offset along Z, and
reaches the landing point from behind. As a final remark, during the drone’s inspection
phase and subsequent return, the train, if necessary, slows down its velocity to adapt to
the technical characteristics of the drones. The same holds for drones as well.

5.4 Control strategies

5.4.1 Consensus Algorithm in the Leader-Following Mode
The aim of the flight formation phase is to have the drones follow the train, after having
finished their mission. In accordance with this goal, we implement the consensus algorithm
in the leader-following mode [16] along the linear positions and velocities, viewing the train
dynamics as a reference model. Applying the leader-following strategy to our scenario, the
drones and train respectively act as the team followers, denoted as agents {1, . . . , I} (i.e.,
the number of drones is I), and leader, denoted as agent I + 1, respectively. In particular,
follower i has the state information ξd,i ∈ R3 (i.e., the position of drone i [xd,i, yd,i, zd,i]⊤)
and its derivative ζd,i ∈ R3 (i.e., the velocity of drone i [ẋd,i, ẏd,i, żd,i]⊤), whilst the leader
I + 1 has the information state ξI+1 ∆= ξt ∈ R3 (i.e., the train’s position [xt, yt, zt]⊤) and
its derivative ζI+1 ∆= ζt ∈ R3 (i.e., the train’s velocity [ẋt, ẏt, żt]⊤) satisfying the following
discrete-time reference model:

ξt
n+1 = ζt

n, ζt
n+1 = φ(n, ξt

n, ζ
t
n) (5.13)

where φ(·, ·, ·) is required to be piecewise continuous in n and locally Lipschitz in ξt
n and

ζt
n. We assume that the communication topology in the train-drone network – denoted as

GI+1 – is a directed spanning tree and allows the information to flow only from parents
to children. Note that since the flow goes from parents to children, the reference model
in (5.13) is directly available to the neighboring followers of the leader, i.e., the children
of agent I + 1.

The basic idea of the consensus algorithm is to impose similar dynamics on the
information states of each agent. In this case, the information states of the followers
and their derivatives evolve according to the model in (5.13), by guaranteeing that, for
each i, ξd,i

n → ξt
n and ζd,i

n → ζt
n, as n → ∞. By considering the equivalence between the

second-order derivatives of the information states and control inputs ξd,i
n+2 ≡ ζd,i

n+1 ≡ αd,i
n

with αd,i
n ∈ R3 the drone’s acceleration vector in the X, Y, Z axes framework, we define

the algorithm with bounded control inputs as follows:

αd,i
n = 1

ki
(

I∑
j=1

ωij(ζd,j
n − ζd,j

n−1) + ωi(I+1)(ζt
n − ζt

n−1))

− 1
ki

Kri tanh(
I∑

j=1
ωij(ξd,i

n − ξd,j
n ) + ωi(I+1)(ξd,i

n − ξt
n))

− 1
ki

Kvi tanh(
I∑

j=1
ωij(ζd,i

n − ζd,j
n ) + ωi(I+1)(ζd,i

n − ζt
n)),

i = 1, ..., I

(5.14)

where ωij is the (i, j) entry of the adjacency matrix AI+1 ∈ R(I+1)×(I+1) associated with
GI+1, ki

∆=
∑I+1

j=1 aij , Kri and Kvi are 6 × 6 symmetrical positive-definite matrices, and
tanh(·) is defined componentwise. Note that each entity needs the information states and
their first and second-order derivatives (i.e., the information control inputs αd,j

n ) from its
neighbors.
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5.4.2 Landing Optimal Control Problem
As discussed in Section 5.3.3, the landing phase can be solved as a descent through a
go to goal along a vertical or oblique line or as descent along a predefined path which
consists in following an oblique given trajectory. The quadrotor is controlled thanks
to the implementation of a LQR with two and four Riccati equations for the first and
second task, respectively. Note that for the sake of simplifying the notations, we refer
to a single drone in this section and thus, superscript i is removed from the state and
control variables.

On the one hand, in the descent through a go to goal line, linearization (5.11) is
executed around a nominal point sd,∗ and control input vector ud,∗, and given a control
horizon whose length is N, the objective of the LQR is to find the uLQR2

0 , ...,uLQR2
N−1 that

minimize the following quadratic cost function subject to the model in (5.11) [17]:

FG = (sd
N − sd,∗)⊤QG

N(sd
N − sd,∗)

+
N−1∑
n=0

[(sd
n − sd,∗)⊤QG

n (sd
n − sd,∗)

+(ud
n − ud,∗)⊤RG

n (ud
n − ud,∗)]

(5.15)

where QG
N ∈ R12×12, QG

n ∈ R12×12, and RG
n ∈ R4×4 are the final, state, and input cost

diagonal matrices to be tuned. Note that the three terms in (5.15) present the final state
deviation, state deviation, and control input deviation, respectively.

By solving the minimization problem with the objective function FG, the state
constraint (5.11), and the initial state sd

0 , we obtain the optimal control law:

uLQR2
n = KG

n (sd
n − sd,∗) + ud,∗,∀n = 0, . . . ,N − 1 (5.16)

where the feedback gain KG
n ∈ R12×12 is obtained through the following well-known two

Riccati equations [18] that are solved recursively backwards:

KG
n = −(RG

n + B⊤P G
n+1B)−1B⊤P G

n+1A,

P G
n = QG

n + A⊤P G
n+1A + A⊤P G

n+1BKG
n ,

∀n = 0, . . . ,N − 1
(5.17)

being P G
n ∈ R12×12 the parameter matrix and initializing P G

N = QG
N.

On the other hand, in the descent along a predefined path, the system is linearized
around the nominal trajectory (sd,∗

n ,ud,∗
n ) at each iteration step, and a quadratic

approximation of the cost function is minimized.
Given a control horizon whose length is N, analogously to LQR with two Riccati

equations, the optimal control vectors uLQR4
0 , ...,uLQR4

N−1 are found by minimizing the
following cost function [17] subject to the model in (5.11):

FP = (sd
N − sd,∗

N )⊤QP
N(sd

N − sd,∗
N )

+
N−1∑
n=0

[(sd
n − sd,∗

n )⊤QP
n(sd

n − sd,∗
n )

+(ud
n − ud,∗

n )⊤RP
n(ud

n − ud,∗
n )]

(5.18)

where QP
N ∈ R12×12, QP

n ∈ R12×12, and RP
n ∈ R4×4 are the final, state, and input cost

diagonal matrices to be tuned.
By solving the minimization problem with the objective function FP, the state

constraint (5.11), and the initial state sd
0 , we obtain the optimal control law:

uLQR4
n = KP

n (sd
n − sd,∗

n ) + ud,∗
n + kP

n ,∀n = 0, . . . ,N − 1 (5.19)
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Table 5.1: Drone’s dynamics parameters.

Description Parameter Value

Total mass md [kg] 1.38
Motors’ mass mm [kg] 0.06

Gravity acceleration g [m/s2] 9.81
Length lm [m] 0.175

Components Jxx = 2mml2m [kg m2] 0.0037
of the diagonal Jyy = 2mml2m[kg m2] 0.0037
inertia matrix Jxx = 4mml2m[kg m2] 0.0073

Table 5.2: Tuning parameters in the consensus algorithm.

Parameter Value

k 1.2
Kr I6
Kv diag(1.25, 1.3, 1, 1, 1, 1)

where the feedback gain KP
n ∈ R12×12 and the feedforward gain kP

n ∈ R4 (added for the
trajectory tracking problem) are obtained through the following well-known four Riccati
equations [18] that are solved recursively backwards:

KP
n = −(RP

n + B⊤
n P P

n+1Bn)−1B⊤
n P P

n+1An,

P P
n = QP

n + A⊤
n P P

n+1An + A⊤
n P P

n+1BnKP
n ,

kP
n = −(RP

n + B⊤
n P P

n+1Bn)−1(B⊤
n pP

n+1 + rP
n ),

pP
n = qP

n + A⊤
n pP

n+1 + A⊤
n P P

n+1BnkP
n ,

∀n = 0, . . . ,N − 1

(5.20)

being P P
n and pP

n the parameter matrices, qP
n = −QP

nsd,∗
n and rP

n = −RP
nud,∗

n , and
initializing P P

N = QP
N and pP

N = qP
N. Note that the system is linearized at each state-

control pair with the matrices An and Bn that, conversely to the descent through a go
to goal, are time-variant.

5.5 Numerical experiments

5.5.1 System Setup
In this section, we describe the experimental setup of the proposed hybrid movable railway
diagnostic architecture, consisting of a diagnostic train and a fleet of drones, employed for
the identification and evaluation of anomalies of the railway infrastructure. We highlight
that the architecture has been defined in the context of a collaboration with MERMEC
S.p.A., an Italian company producer of railway diagnostic systems. The realistic scenario
addressed in this work is shown in Fig. 5.2, that reproduces a curvilinear portion of
a railway line situated in the Apulian region (Italy) [19]. The goal of our experiment
from the control perspective is to optimally manage the re-entry of the drones on the
moving train, where the drones’ charging base is located, once the inspection mission is
accomplished. Note that the trajectory of the train in terms of position, velocity, and
timestamp of the landing point situated in the barycentric position of the charging base,
is set based on data of the national Italian railway company “Ferrovie dello Stato italiane"
[19].

The drones selected for the system simulation experiments are the well-known DJI
Phantom 4 Pro [20], which have a maximum speed of 72 km/h and a flight autonomy of
about 30 minutes, and are modeled in accordance with the dynamic parameters in Table 5.1.
As for the fleet of drones, we refer to the state of the drone positioned in front of the fleet.
As initial state’s vector of train and drone, and thus as initial condition of the experiment,
we consider st

0 = [500, 0, 3, 11.11, 0, 0]⊤ and sd
0 = [0, 750, 6, 0, 0, 0, 1.39, 0.03, 0, 0, 0, 0]⊤
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(a) (b)

Figure 5.2: 3D train-drone trajectory with time reference (a) and colour-map based on speed (b).

Table 5.3: Tuning parameters in the landing optimal control problem.

Phase Control N ∆t [s] Q R
Vertical descent through a go to goal LQR with 2 Riccati eqs. 1000 0.01 550 I12 2 I4
Oblique descent through a go to goal LQR with 2 Riccati eqs. 1000 0.01 diag(100 I6, 500, 100 I5) 2 I4

Oblique descent along a predefined path LQR with 4 Riccati eqs. 1000 0.1 diag(500, 5000, 500, 100, 100, 100, 106, 105, 100, 100, 100, 100) 2 I4

Table 5.4: Position and speed error in the boarding point.

Phase Position Speed

Vertical descent through a go to goal 1.5017e-04 1.1452e-04
Oblique descent through a go to goal 6.1905e-04 0.0484

Oblique descent along a predefined path 0.0480 1.3164

which are the current state of the train and of the drone at the instant equal to 0,
corresponding to the time when the inspection mission finalized, respectively. The drone
control input vector is defined as ud = [mdg, 0, 0, 0].

As for the initialization of the consensus algorithm which is applied along the linear
positions and velocities, we set the tuning parameters in Table 5.2. Instead, all the
parameters employed for the landing optimal control problem are listed in Table 5.3. As
can be seen from Fig. 5.2, through the consensus algorithm we bring the drones to 1 m
along the Z axis from the train that we consider 3 m high. All the simulations of this
experiment are implemented on Python.

5.5.2 Results
The goal is to control a fleet of drones during the return on the moving train by combining
the consensus algorithm with the LQR employed in the flight formation phase and landing
phase, respectively. For the sake of brevity, we insert in this chapter the results related to
the landing executed as oblique descent along a predefined path for the drone positioned
in front of the fleet. The results of the other two landing modes are fully available as
supplementary material [21].

In particular, it is possible to observe the 3D train-drone trajectory with time and
speed reference in Fig. 5.2a and Fig. 5.2b, respectively. The railway path consists of a
curvilinear portion that ends in 850 s, followed by a straight line. As we can see from
Fig. 5.2a, the total mission for this landing mode lasts 1300 s, i.e., sum of drone consensus
(1200 s) and drone LQR (100 s), and thus, lasts 90 s longer than the other two landing
modes (LQR’s duration is equal to 10 s, i.e., product between the parameters in the third
and forth column of Table 5.3). The drone achieves the consensus with the train in about
700 s reaching a speed of 67 Km/h. In the landing phase the drone begins to decelerate
at 1274 s to reach zero speed at the landing area located on the moving train. Since the
descents performed as a go to goal last 10 s, the drone reaches a speed of 10 km/h in a
sudden manner already from the first iterations.
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With the aim of evaluating the effectiveness of the control system employed in this
experiment, we compute for each landing mode the error both in position and in speed of
the landing point with respect to the center of the charging area (see Table 5.4): it is
apparent that negligible errors are generated in all the three landing modes. We finally
remark that the vertical and oblique descent performed as go to goal are certainly faster
than the oblique descent along a predefined path. This aspect is of significant practical
use in the presence of obstacles along the line to be avoid (e.g., pylons), thus implying
that a possible choice of the landing mode is up to the users according to their level of
experience.

5.6 Conclusions
This chapter presents an innovative movable railway diagnostic system architecture that
consists of a diagnostic train and a fleet of drones. We focus on the re-entry phase of
drones on the moving train –once the inspection mission is finalized– that is optimally
controlled by applying a combination of consensus algorithm in the leader-following mode
for the flight formation phase and linear quadratic regulator for the landing phase.

Future works will focus on enhancing the estimation of the landing point’s position
using a dynamic model of the train, comparing the optimal control system of this work
with the model predictive control technique, and implementing the architecture on a real
system with the train’s trajectory consisting of curves, climbs, and descents.

References
[1] Fan, J. and Saadeghvaziri, M. A., “Applications of drones in infrastructures:

Challenges and opportunities,” Int J Mech Mechatron Eng, vol. 13, no. 10, pp. 649–
655, 2019.

[2] Ngamkhanong, C., Kaewunruen, S., and Costa, B. J. A., “State-of-the-art review
of railway track resilience monitoring,” Infrastructures, vol. 3, no. 1, p. 3, 2018.

[3] Falamarzi, A., Moridpour, S., and Nazem, M., “A review on existing sensors and
devices for inspecting railway infrastructure,” Jurnal Kejuruteraan, vol. 31, no. 1,
pp. 1–10, 2019.

[4] Flammini, F., Pragliola, C., and Smarra, G., “Railway infrastructure monitoring
by drones,” in 2016 International Conference on Electrical Systems for Aircraft,
Railway, Ship Propulsion and Road Vehicles & International Transportation
Electrification Conference (ESARS-ITEC), IEEE, 2016, pp. 1–6.

[5] Flammini, F., Gaglione, A., Ottello, F., Pappalardo, A., Pragliola, C., and Tedesco,
A., “Towards wireless sensor networks for railway infrastructure monitoring,” in
Electrical Systems for Aircraft, Railway and Ship Propulsion, IEEE, 2010, pp. 1–6.

[6] Flammini, F., Naddei, R., Pragliola, C., and Smarra, G., “Towards automated drone
surveillance in railways: State-of-the-art and future directions,” in International
conference on advanced concepts for intelligent vision systems, Springer, 2016,
pp. 336–348.

[7] Kochan, A., Rutkowska, P., and Wójcik, M., “Inspection of the railway infras-
tructure with the use of unmanned aerial vehicles,” Archives of Transport System
Telematics, vol. 11, 2018.

[8] Du, H., Zhu, W., Wen, G., Duan, Z., and Lü, J., “Distributed formation control
of multiple quadrotor aircraft based on nonsmooth consensus algorithms,” IEEE
Trans Cybern., vol. 49, no. 1, pp. 342–353, 2017.

[9] Ghamry, K. A. and Zhang, Y., “Formation control of multiple quadrotors based on
leader-follower method,” in 2015 International Conference on Unmanned Aircraft
Systems (ICUAS), IEEE, 2015, pp. 1037–1042.

94



Conclusions

[10] Proia, S., Cavone, G., Camposeo, A., Ceglie, F., Carli, R., and Dotoli, M., “Safe
and ergonomic human-drone interaction in warehouses,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan,
2022, pp. 6681–6686. doi: 10.1109/IROS47612.2022.9981469.

[11] Falanga, D., Zanchettin, A., Simovic, A., Delmerico, J., and Scaramuzza, D.,
“Vision-based autonomous quadrotor landing on a moving platform,” in 2017
IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR),
IEEE, 2017, pp. 200–207.

[12] Hui, C., Yousheng, C., Xiaokun, L., and Shing, W. W., “Autonomous takeoff,
tracking and landing of a uav on a moving ugv using onboard monocular vision,”
in Proceedings of the 32nd Chinese control conference, IEEE, 2013, pp. 5895–5901.

[13] Saripalli, S. and Sukhatme, G. S., “Landing on a moving target using an
autonomous helicopter,” in Field and service robotics, Springer, 2003, pp. 277–286.

[14] Sabatino, F., Quadrotor control: Modeling, nonlinearcontrol design, and simulation,
2015.

[15] Das, A., Subbarao, K., and Lewis, F., “Dynamic inversion with zero-dynamics
stabilisation for quadrotor control,” IET control theory & applications, vol. 3, no. 3,
pp. 303–314, 2009.

[16] Ren, W. and Beard, R. W., Distributed consensus in multi-vehicle cooperative
control. Springer, 2008, vol. 27.

[17] Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N., “The explicit linear
quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20,
2002.

[18] Bittanti, S., Laub, A. J., and Willems, J. C., The Riccati Equation. Springer
Science & Business Media, 2012.

[19] Ferrovie dello Stato italiane, https ://www.rfi. it/ it/rete/ la- rete - oggi .html,
Accessed: 2022-10-01.

[20] Phantom 4 Pro, https : / / www . dji . com / it / phantom - 4 - pro / info, Accessed:
2022-10-01.

[21] CASE23 experimental results, http://dclab.poliba.it/Results-paper-CASE23.pdf,
Accessed: 2023-02-01.

95

https://doi.org/10.1109/IROS47612.2022.9981469
https://www.rfi.it/it/rete/la-rete-oggi.html
https://www.dji.com/it/phantom-4-pro/info
http://dclab.poliba.it/Results-paper-CASE23.pdf


Chapter 6

Optimal Control of Drones for a Hybrid
Truck-Drone Delivery System

VI

Abstract

Last-mile delivery is one of the most discussed problems of the last decade due to
the growing importance of e-commerce and the development of Industry 4.0. In
particular, this problem regards the delivery of parcels from the warehouse to the
final customers. In order to bring efficiency and innovation, in this chapter a hybrid
delivery architecture is considered, which takes advantage of the combined use of a
drone and a truck to perform a sequence of pick-ups and deliveries, and the problem
of optimal control of the drones’ missions is addressed. The reference scenario is
the smart city where the drone of the hybrid delivery architecture is in charge of
three different pick-up and delivery missions: truck to point (i.e., pick-up from the
truck and delivery to the customer), point to point (i.e., delivery to a customer
and pick-up from the subsequent customer), and point to truck (i.e., reentry from
a customer to the truck). From the control point of view, the drone is optimally
guided in all the operating modes, i.e., ascent and descent from/to truck mode,
free flight mode with/without payload, and descent for pick-up/delivery mode, by
a receding horizon linear quadratic regulator (LQR), which is able to manage the
drone in the dynamic landing on a movable vehicle and to allow the changing in
real time of the landing point on the truck. Simulation results of the truck-drone
delivery architecture are presented and discussed in detail, proving the effectiveness
of the proposed method.

6.1 Introduction
In recent years, logistics (i.e., the set of operations aimed at planning, implementing, and
controlling the flow and the storage of goods and related services from external origin
points to companies and from companies to consumption points or final customers) is
becoming more and more important in the development of the industrial sector [1] and
it largely impacts firms’ performance [2], [3]. In this chapter, we focus on Logistics 4.0
(a branch of Industry 4.0) and in particular, on distribution logistics, which generates
the highest percentage of the logistic operations costs [4]. One of the most challenging
and expensive problems in this field, estimated to range from 13% to 73% of the total
distribution costs [5], is the so-called last-mile delivery problem, which consists in the
delivery of parcels from the warehouse to the customers (i.e., final destinations) and
whose relevance has grown with the increase of the online commerce and the same-day
deliveries to single customers. The main issues that trigger relevance for this problem are
[6]: (i) the increasing volume of urbanization and e-commerce, (ii) the sustainability of
the shipping process since the rise in urban parcel demands induces a higher number of
delivery trucks entering the city centers creating congestion and having negative impacts
on health, environment, and safety, (iii) costs, (iv) time pressure because most online
retailers sell next- or even same-day deliveries as one of their basic service promises, (v)
aging workforce that in many industrialized countries enlarges the problem of employers
hiring the required manpower. The last-mile delivery operation is usually performed
by humans or vehicles such as vans, bikes, trains, and autonomous vehicles such as
autonomous vans and drones.

Innovative applications in the last-mile delivery field come with the use of drones
(also known as unmanned aerial vehicles (UAVs)) as vehicles. In the last decade, the
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research and the real field applications of these technologies in the logistic sector are
growing exponentially. One of the first applications was developed by Amazon in 2013,
with the shipping of small parcels turned into Amazon’s drone delivery services Prime Air,
i.e., a drone-only delivery system. Subsequently, other companies such as the Workhorse
company, the “Project Wing” of Google, and the “Parcelcopter” of DHL proposed a
hybrid architecture where drones and trucks cooperate. A typical architecture where
a drone and a truck collaborate consists of a drone that autonomously departs from a
truck, performs the delivery or the pick-up of the parcel, and then comes back to the
truck, while the truck delivers items to the customers or serves as a mobile hub for other
drones (in fact, when the drone is on the truck, its battery can be replaced or recharged
while waiting for the next trip [7]). The related literature abounds with papers that focus
on the design of hybrid drone-truck architectures and their planning. The majority of
contributions regard the offline strategic scheduling and routing of trucks and drones in
the hybrid truck-drone architecture, while only a few works specifically focus on the online
control of the drones’ missions in coordination with the truck travel. Therefore, with the
aim of bridging this gap, in this chapter, we propose a hybrid automated architecture
that consists of a truck and a drone, where the missions of the transportation means
are coordinated and the drone is optimally guided in real-time by a receding horizon
linear quadratic regulator (LQR). The remainder of this chapter is structured as follows.
Section 6.2 presents an overview of the related literature and a discussion about the main
contributions. In Section 6.3 the 3D quadrotor with its operating modes and the truck
dynamic models are examined. The formulation of the receding horizon LQR controller
is presented in Section 6.4, and the simulations setup and results are discussed in Section
6.5. Finally, Section 6.6 reports some concluding remarks.

6.2 Related Works and Contributions
Numerous studies highlight the importance of drones and their flexibility in different
applications such as agriculture, logistics, disaster management, infrastructure, and many
others. Thanks to their high speed, low energy consumption, lightweight, and ability
to move in three dimensions, instead of along a discrete set of static roadways, drones
can employ paths that are closer to straight-line connections and can circumvent traffic
congestion or accidents [8]. However, in the external logistic sector, drones present some
limits if compared to trucks, e.g., short delivery range, low supported weight, and limited
capacity. Consequently, the combined use of drones and trucks for last-mile deliveries can
bring several improvements with respect to the separate use of drones and trucks[7]. In
the related literature, the majority of contributions deal with the strategic design of hybrid
truck-drone delivery architectures and the offline planning of both trucks and drones
tasks. In fact, the recent surveys by Chung et al. [7] and by Madani et al. [9] highlight
that the existing works mainly present mathematical models aimed at offline planning.
and they can be roughly divided into traveling salesman problems with drones and vehicle
routing problems with drones. For instance, Weng et al. [10] focus on deliveries in smart
cities where parcels have to be delivered in restricted traffic zones aiming at determining
the path of the truck out of the restricted zone and the path of the drone inside the
restricted zone minimizing the execution time of the delivery. Similarly, Wang et al.
[11] propose a novel routing and scheduling algorithm, referred to as hybrid truck-drone
delivery, to simultaneously employ trucks, truck-carried drones, and independent drones
to construct a more efficient truck-drone parcel delivery system. As can be deduced,
articles that focus on the online control of drone missions in a hybrid truck-drone delivery
system are lacking, although this aspect is crucial for the successful completion of parcel
delivery. In particular, the efficient control of the whole mission of the drone and the
landing on a moving platform (i.e., the truck) are non-negligible problems. The majority
of contributions focus on landing on a static platform, while a limited number of papers
tackle the problem of landing on a dynamic platform. Promising contributions in this
regard are presented in Paris et al. [12] and in Falanga et al. [13] where the control
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strategy largely relies on the use of artificial vision, while not specifically focusing on
hybrid truck-drone delivery systems applications.

Differently from the discussed literature, this work presents a novel control technique
for the last-mile delivery problem, where a drone and a truck are able to autonomously
collaborate in order to improve the efficiency of the delivery. The proposed approach uses
the receding horizon LQR to control the drone in the dynamic landing managing the
real-time changes of the positions of the landing point.

6.3 System Modelling and Tasks
This section describes the hybrid parcel delivery system based on the combined use of
a 3D quadrotor and a truck. In particular, Section 6.3.1 and Section 6.3.2 present the
dynamic models of the quadrotor and the truck, respectively, whereas the quadrotor
operating modes during the sequence of pick-ups and deliveries tasks are illustrated in
Section 6.3.3.

6.3.1 Quadrotor Dynamics
The quadrotor’s space motion can be described through six degrees of freedom (DOF) as
reported in Chapter 5.

The quadrotor of a total mass md is modelled as a rigid body with a symmetric
structure and without ground effect, following the system [14] proposed in the equations
5.1-5.10 in Chapter 5. Note that md varies according to the presence of the payload: in
particular, it holds md = md

0 without payload and md = md
0 +mp with a payload of mass

mp equal to the weight of the transported item.
Starting from the non-linear quadrotor’s dynamics in (5.2) defined in Chapter 5, the

linearized version is often considered in the literature for control purposes (see Section 6.4).
Through the linearization around the nominal point sd,∗ and control input vector ud,∗,
and by using the sampling time ∆t as a time step and the discrete time index n as a
subscript of vectors and variables, we obtain the following discretized linear dynamics:

sd
n+1 = Asd

n + Bud
n (6.1)

with the state’s vector sd = [xd, yd, zd, ψd, θd, ϕd, ẋd, ẏd, żd, ψ̇d, θ̇d, ϕ̇d]⊤ ∈ R12 composed of
linear xd, yd, zd and angular ψd, θd, ϕd positions and linear ẋd, ẏd, żd and angular ψ̇d, θ̇d, ϕ̇d

velocities of the quadrotor, with the control input vector ud = [fd
t , τ

d
x , τ

d
y , τ

d
z ]⊤ ∈ R4

composed of the vertical thrust fd
t and the angular motions τd

x , τ
d
y , τ

d
z and with

sd
n = sd

n − sd,∗ and ud
n = ud

n − ud,∗.

6.3.2 Truck Model
The truck model is formulated in state space form as:

st
n+1 = f(st

n,u
t
n) (6.2)

where the state vector is defined as st = [xt, yt, zt, ẋt, ẏt, żt]⊤ ∈ R6 with xt, yt, zt the
truck’s positions along the X, Y, Z axes, ẋt, ẏt, żt its linear velocities, and the control
input vector as ut = [ẍt, ÿt, z̈t]⊤ ∈ R3 with ẍt, ÿt, z̈c the truck’s accelerations.

6.3.3 Quadrotor Operating Modes
The considered truck-drone delivery system is composed of a truck on which the drone’s
charging base is positioned and a drone that performs the pick-up and delivery of parcels
from/to the customers in the surrounding areas.

For the development of our truck-drone delivery system automation, we consider three
operating modes for the drone that are defined as follows [15].
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I) Ascent from customer and from truck, and descent to truck mode: Ascent and
descent are performed along a vertical and oblique axis, respectively. In particular, for the
ascent, the quadrotor starts from the landing point, which is situated near the customer
or in the barycentric position of its charging base located on the roof of the truck, and
reaches vertically a certain altitude where it begins to hover, while for descent the opposite
occurs but in oblique.

II) Free flight with/without payload mode: In this operating mode, the quadrotor is
in free flight and there is no contact with the road.

III) Descent for pick-up/delivery mode: Starting from a certain altitude with a non-
zero velocity, the quadrotor descends with a gradually decreasing velocity as it approaches
the customer.

6.4 Control Strategy
For all the drone’s operating modes described in Section 6.3.3, a receding horizon LQR
controller [16] is implemented to control the quadrotor. According to the receding horizon
approach, given the sampling time ∆t, the optimization problem must be solved iteratively
at each j∆t time instants, until the end of the delivery mission. It has to be highlighted
that the nominal landing point might vary during the mission, since a dynamical platform
is considered, thus variables sd,∗

j and ud,∗
j are updated at each time step j and consequently

marked by j as a subscript.
By assuming the lengths of the prediction horizon and control horizon coincident and

equal to N , the receding horizon open loop optimization problem at time step j is defined
by introducing the following objective function:

J(N) = (sd
j+N − sd,∗

j )⊤Qj+N (sd
j+N − sd,∗

j )

+
N−1∑
n=0

[(sd
j+n − sd,∗

j )⊤Qj+n(sd
j+n − sd,∗

j )

+(ud
j+n − ud,∗

j )⊤Rj+n(ud
j+n − ud,∗

j )].

(6.3)

where Qj+N ∈ R12×12, Qj+n ∈ R12×12, and Rj+n ∈ R4×4 are the final cost, state cost,
and input cost diagonal matrices to be tuned. Note that the three terms in (6.3) present
the final state deviation, state deviation, and input size, respectively.

Given the initial state sd
j , let uLQR

j+n , n = 0, ..., N − 1 be the control sequence that
minimizes the quadratic cost function J(N) subject to the state equation:

sd
j+n+1 = A(sd

j+n − sd,∗
j ) + B(uLQR

j+n − ud,∗
j ) + sd,∗

j ,

∀n = 0, . . . , N − 1.
(6.4)

In particular, the optimal control law is computed by the following iterative scheme:
uLQR

j+n = Kj+n(sd
j+n − sd,∗

j ) + ud,∗
j ,∀n = 0, . . . , N − 1 (6.5)

where the state sd
j+n is updated in accordance with the model in (6.4) and the feedback

gain Kj+n ∈ R12×12 is obtained through the following well-known Riccati difference
equations [17] that are solved recursively backwards:

Kj+n = −(Rj+n + B⊤
j Pj+n+1Bj)−1B⊤

j Pj+n+1Aj ,

Pj+n = Qj+n + A⊤
j Pj+n+1Aj + A⊤

j Pj+n+1BjKj+n

∀n = 0, . . . , N − 1
(6.6)

being Pj+n ∈ R12×12 the parameter matrix and initializing Pj+N = Qj+N .
The receding horizon policy proceeds by implementing only the first control input

vector uLQR
j , whilst the rest of the control sequence uLQR

j+n ∀n = 1, . . . , N − 1 is not
considered and sd

j+1 is employed to update the optimization problem as a new initial
condition. The algorithm proceeds until the end of the delivery mission, by shifting the
horizon ahead by one time step.
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Figure 6.1: Parcels’ last-mile delivery architecture with operating tasks phases.

Figure 6.2: Last-mile delivery of parcels architecture with focus on the trajectory performed by the drone
in the third operating task phase, i.e., Point (C) to Truck (D).

6.5 Numerical Experiments

6.5.1 System Setup
In this section, we describe the system setup and the simulation results of the proposed
real-time control strategy for a hybrid truck-drone delivery system. We highlight that the
quadrotor’s control system is implemented on a Jupyter Notebook.

In the context of the last-mile delivery problem, i.e., delivery of items from the
warehouse to the customers, the goal of our experiment is to efficiently perform a sequence
of pick-up and delivery of parcels tasks in a smart city, by employing a hybrid truck-drone
delivery architecture composed of a truck and a drone. Offline scheduled missions and
depart/return together from/to the warehouse – where the truck is loaded with both
its parcels and the ones of the drone – are assigned to the truck and the drone. The
drone can recharge on the truck roof and must pick up and release from/to the truck
light parcels, depending on its admissible payload. Differently, the truck is devoted to
the delivery of heavier parcels. Pick-ups and deliveries can be assigned to both the truck
and the drone, but at each mission, the truck departs and returns from/to the warehouse,
while the drone departs/returns from/to the moving truck. Thanks to state-of-the-art
sensors mounted on drones board that allow collecting data quickly and easily, the control
station can communicate with the drone by notifying the trajectory (both position and
velocity) of the truck in accordance with a certain sampling time ∆t and thus, drone and
truck rejoin along the fixed route of the truck.

More specifically, with the use of the three quadrotor’s operating modes listed in
Section 6.3.3, i.e., ascent and descent from/to truck mode, free flight mode with/without
payload, and descent for pick-up/delivery mode, it is possible to perform a mission (see
Fig. 6.1) through three phases, as detailed below.

1) Truck (A) to Point (B): In this phase, once the truck has left the warehouse, the
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Table 6.1: Quadrotor dynamics parameters.

Phase md [kg] I [kg m2]
Truck (A) to Point (B) 2.18 diag(0.0087,0.0087,0.0123)
Point (C) to Truck (D)
Point (B) to Point (C) 1.38 diag(0.0037,0.0037,0.0073)

drone ascends from its charging base located on the roof of the truck with the parcel
directed towards the customer placed at point B. Hence, the drone performs the route in
free flight mode with payload and then executes the descent towards the customer.

2) Point (B) to Point (C): In this phase, after the drone has released the parcel to the
customer located at point (B), it leaves in free flight mode without payload towards the
second customer, i.e., point (C).

3) Point (C) to Truck (D): In this phase, after the drone picks up the customer parcel
located at point (C), it receives the trajectory (both position and velocity) of the truck
from the control station. Thus, the drone follows the trajectory of the truck in free flight
mode with payload, and then, once reached, it is ready to descend towards the landing
point situated in the barycentric position of the charging base, i.e., point (D). Note that,
since the truck is moving, the drone is initially aligned with the truck along the X and Y
axes, while keeping a given offset along Z, and reaches the landing point from behind. As
a final remark, during the current phase, the truck, if necessary, slows down its velocity to
adapt to the technical characteristics of the drone. The same holds for the drone as well.
The realistic scenario addressed in this work is shown in Fig. 6.1, which reproduces the
hybrid movable architecture that consists of a drone and a truck. In particular, Fig. 6.1
illustrates a portion of an entire daily truck-drone mission, i.e., the route followed by
the truck transporting the items from the warehouse to the various customers located in
different places and the drone that helps the courier to perform pick-ups and deliveries
and once the assigned tasks are completed, it intercepts the truck on which the charging
base is placed. The experiment is conducted considering the well-known DJI Phantom 4
Pro [18] drone, which has a maximum speed of 72 km/h and a flight autonomy of about
30 minutes. In particular, the quadrotor is modeled in accordance with the dynamic
parameters in Table 6.1, where md and I indicate the total mass of the quadrotor and
the diagonal inertia matrix, respectively. The load of mass mp carried by the vacuum
gripper attached to the quadrotor base is equal to 0.8 kg. Instead, the drone’ control
input vector is defined as ud = [mdg, 0, 0, 0] with the gravitational acceleration g set
to 9.81 m/s2. To conclude the system setup, we set the sampling time ∆t = 0.01 s,
N = 2000, as representing a good compromise between computational complexity and
solution quality, the initial state cost matrix Qj+N = 200 I12, and the initial input cost
matrix Rj+N = 2 I4 computed for each time step j.

6.5.2 Results
The goal of our work is to control a drone employed in the last-mile delivery problem in
tandem with a truck with the aim of performing pick-ups/deliveries from/to customers in
a smart city. In the proposed model, the truck works as a primary vehicle and follows
a fixed route determined offline before the beginning of the mission. Instead, the drone
departs from the roof of the truck (which is following its fixed route) and visits the
customers according to the schedule. Then, in order to take other parcels from the truck
and be ready for the next sortie, it returns to the moving truck whose position is notified
by the control station.

The parcels’ last-mile delivery architecture with the truck-drone combined operations
is represented in a schematic configuration in Fig. 6.1 whereas in a 3D reconstruction
in Fig. 6.2 to help the reader imagine the real scenario of an urban environment. For
the sake of clarity, we highlight that the nodes (A), (B), (C), and (D) in Fig. 6.1 and
Fig. 6.2 are coincident. As can be seen from the 3D view (Fig. 6.2), the truck leaves the
warehouse to perform the scheduled deliveries of the heavier parcels and at the same time
the drone carries out pick-ups and deliveries of parcels (i.e., Point (B) and Point (C))
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Figure 6.3: Drone’s trajectory from Point (C) to Truck (D).

Figure 6.4: Drone’s trajectory variation with moving landing point located on the truck.

with a lower payload in the surrounding areas. Furthermore, Fig. 6.2 shows the trajectory
followed by the drone to chase and catch up with the truck and then to perform the
descent towards the landing point located on the roof of the moving truck. The trajectory
from Point (C) to Truck (D) is also represented in red in Fig. 6.3, where it is possible
to observe the perfect tracking executed by the drone of the truck’s trajectory (in blue)
given at each sampling time ∆t by the control station in terms of position and velocity.

The effectiveness of the implemented controller, i.e., the receding horizon LQR, lies in
the possibility of changing online the position of the landing point located on the roof of
the truck (i.e., the final cost in the objective function (6.3)). The drone can not only vary
its speed, depending on the technical characteristics of the truck and vice-versa, but it
can also change its trajectory towards the landing point in case there is an unexpected
event, such as a slowdown of the truck due to traffic or merely a transmission error by the
control station. Fig. 6.4 illustrates the trajectory followed by the drone as the position
of the landing point varies from Point (D) to Point (D’) and then to Point (D”). More
specifically, it is possible to see the drone’s predicted routes in red from different starting
points placed forward on the given prediction horizon whereas the drone’s actual route in
green from Point (C) to Truck (D”), which intersects the n-th predicted routes.

6.6 Conclusions
This chapter presents an automatic real-time control approach for a hybrid truck-drone
delivery system devoted to last-mile deliveries. In particular, the drone is used to help the
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courier to perform a sequence of pick-ups and deliveries of parcels from/to the customers
in the surrounding areas of the smart city and, once the scheduled tasks are finalized, it
intercepts the moving truck and descends towards the charging base placed on its roof.
To accomplish the desired mission, the drone is optimally guided by a receding horizon
linear quadratic regulator in all its operating modes, which are classified as: ascent and
descent from/to truck mode, free flight with/without payload mode, and descent for
pick-up/delivery mode. In particular, the controller is able to manage in real-time the
drone’s landing on the moving truck and allow the online change of the landing point on
the truck.

Future works will focus on enhancing the dynamical model of the drone, in order to
consider the effects of the terrain and the airflow generated by the propellers, and on
employing a dynamical model of the truck with the aim of enhancing the estimation of
the landing point’s position where the descent takes place. In addition, it will be useful
to include the energy management objective in the current cost function, to compare
the performance of the optimal control technique considered in this work with other
receding horizon control strategies like model predictive control with constraints on the
translational speed of the drone and on the flying elevation in a city environment or some
visual-based control approaches and to implement the proposed architecture on a real
system.
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Chapter 7

Conclusions

VII
Over the years, the industry’s primary objective has been straightforward: establish

intelligent, automated production processes centered on digital communication and the
systematic collection of data to perpetually enhance production efficiency.

The evolving landscape of industry is characterized by various emerging frontiers
driven by technological advancements, shifting market dynamics, and innovative business
models. These frontiers encompass on the one hand the integration of digital technologies,
cyber-physical systems, artificial intelligence, and the internet of things into manufacturing
processes, with the potential for future developments such as Industry 5.0 that focuses on
enhanced collaborative robotic systems and in particular, on human-robot collaboration
(HRC) by placing significant value on human input.

HRC democratizes the human touch, departing from traditional fenced-off industrial
robots that replace human labor with automation. Instead, it augments human
craftsmanship by providing the speed, accuracy, and precision needed to craft
contemporary products while preserving that essential human element.

On the other hand, the cutting-edge frontiers include the integration of sensors and
data analytics into smart infrastructure to enhance maintenance, reduce downtime, and
improve safety, and thus, the use of cooperative robot-machine systems like drones and
diagnostic trains for inspections of infrastructure, reducing costs and improving the
efficiency of monitoring and maintenance. Within the industrial domain, a horizon of
fresh possibilities is driven by emerging development of innovative last-mile delivery
solutions, including drone delivery, autonomous delivery vehicles, and smart lockers, to
streamline urban logistics.

In this thesis, two main research directions related to the implementation of control
techniques for collaborative and cooperative robotic systems have been presented.

In the first part we analyze the emerging challenges in the related research field and
we describe and design innovative HRC architectures and control methods in presence or
absence of optimization in order to fill the literature identified gaps emerged from the
extensive and complete reviews [1], [2] conducted by the author. The specific contributions
of each chapter are reported hereafter.

• The analysis of the state-of-the-art of cobotic control systems presented in Chapter 2
is essential for researchers to identify gaps and future developments in the context of
digital evolution. Thus, the categorization of the main works related to the existing
decision and control techniques for a safe, ergonomic, and efficient HRC, which is
the objective of the review, will certainly be useful to the scientific community to
find a way to improve the current control approaches and seek alternative solutions.

• Undoubtedly, trajectory planning stands out as a pivotal concern explored in the
realms of robotics and cobotics research. Its primary objective is to expedite real-
world tasks, whether in experimental settings or industrial applications, ultimately
bolstering a company’s profitability and enhancing the comfort of human workers.
Chapter 3 introduces a fresh perspective, presenting a multi-objective optimization
method tailored for trajectory planning within the context of safe and ergonomic
HRC. The aim is to strike an optimal balance between operator ergonomics and
the time taken by the robot to traverse a predefined path. The effectiveness of this
approach is assessed through an experimental case study.

• Chapter 4 illustrates an industrial use case of human collaboration with drone
involving a quadrotor executing a pick-and-place operation within a warehouse 4.0
environment. Specifically, the quadrotor’s role is to transport an item from the

105



picking bay to the palletizing area, ensuring a safe and ergonomically favorable
collaboration with the operator. To achieve this, two key aspects are addressed:
firstly, the paper identifies the ergonomic posture and the human collaboration with
drone point by employing the rapid upper limb assessment (RULA) methodology.
Secondly, it calculates the safety distance between the operator and the quadrotor,
especially within the collaborative work zone, using the speed and separation
monitoring (SSM) approach. By considering these factors, the study aims to
facilitate safe and efficient human-quadrotor collaboration in a real-world industrial
setting.

The research problems presented in the first part of this thesis have left open problems
and paved the way for novel research directions.

• Future works will center on refining the HRC architecture to accommodate
unforeseeable human behaviors. This will involve dynamic trajectory replanning
in real-time, considering significant variations in the position and potentially the
physical attributes of collaborating operators. Lastly, it might prove advantageous
to assess the RULA index using a more sophisticated manikin that can better
simulate real-world conditions.

• In upcoming research efforts, the emphasis will be on advancing the human
collaboration with drone framework. This will involve accounting for operators who
are in motion rather than stationary and predicting human movement within the
warehouse 4.0 environment. This prediction will encompass aspects such as collision
avoidance with human workers and objects during the ascent and descent phases.
Furthermore, there will be an exploration of the quadrotor model equipped with a
retractable gripper in the context of more intricate tasks.

In the second part of the thesis we focus on the cooperation between a fleet of drones
or an individual drone and a ground mobile robotic system (i.e., train, truck) that entails
these entities operating together in a synchronized fashion to accomplish defined goals or
tasks. The two specific contributions are described hereafter.

• In Chapter 5, we introduce a novel architecture for a movable railway diagnostic
system comprising a diagnostic train and a fleet of drones. The primary focus is
on the re-entry phase of the drones onto the moving train, which occurs once the
inspection mission is completed. To achieve optimal control during this process,
a combination of consensus algorithm in a leader-following mode for the flight
formation phase and a linear quadratic regulator (LQR) for the landing phase are
employed.

• Chapter 6 introduces an automated real-time control strategy designed for a hybrid
truck-drone delivery system primarily tailored for last-mile delivery. Specifically,
the drone plays a supporting role by assisting the courier in executing a series of
parcel pick-ups and deliveries from/to customers in the vicinity of a smart city.
Upon completing the scheduled tasks, the drone intercepts the moving truck and
descends towards a charging station located on the truck’s roof. To accomplish this
mission effectively, the drone’s operations are optimally guided using a receding
horizon LQR across various operating modes. Notably, the controller possesses the
capability to manage the real-time landing of the drone onto the moving truck and
allows for on-the-fly adjustments to the landing point on the truck.

The research problems presented in the second part of this thesis have left open
problems and paved the way for novel research directions.

• Future research will prioritize improvements in conducting a comparative analysis
between the optimal control system presented in this part and the model predictive
control technique and in implementing the proposed architecture in a real-world
system where the train’s trajectory includes curves, inclines, and descents.
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• Future works will concentrate on improving the drone’s dynamical model and
enhancing the accuracy of estimating the landing point during the descent process.
Furthermore, it would be beneficial to integrate an energy management objective
into the existing cost function to compare the performance of the optimal control
method presented in this chapter with other receding horizon control strategies.
Lastly, we plan to implement the proposed architecture in a real-world system,
further validating its effectiveness and practicality in real applications.
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