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Abstract — This paper Part II deals with the software 
platform that implements the workflow described in Part 
I, i.e. a thermography-based diagnostics able to provide a 
detailed, clear and unambiguous information on the 
health state of PV modules. The methodology, in fact, 
allows a numerical and qualitative evaluation of each cell 
of the PV module.  

In particular, this paper deeply describes the main 
features of the software platform and introduces the 
Graphical User Interface that makes the framework 
efficiently and effectively adoptable, since it leads to the 
automatic generation of a report. In order to show the 
manifold features, three cases of study, deriving from a 
real monitoring survey are discussed, highlighting the 
critical situations revealed neither with a direct 
observation of the infrared image, nor with its manual 
processing: the first case regards a defected PV module, 
the second one an almost completely uniform module, 
while the third one deals with a dis-homogeneous module. 
 

Index Terms — Thermography, computer aided 
diagnostics, digital image processing, PV cells, PV 
modules, PV devices, filtering. 

I. INTRODUCTION 

ometimes, the power losses in PhotoVoltaic (PV) 
modules are due either to the dust or to the dirt, 

but they also may depend on internal problems of the 
cells. 

In order to monitor the performance of the PV 
systems, a lot of commercial software solutions have 
been proposed in the last years, since the diffusion of 
the PV technology speeded up. In this context, we 
prefer not naming some specific products rather than 
others, because anyone can have an idea about the 
many available solutions simply through a search on 
the Internet. Anyway, the most known software 
platforms have been generally conceived for the 
supervision of PV plants, and operate monitoring the 
values of electrical parameters, combined with the 
environmental ones.  

Moreover, the depth of their probing is also related 
to the configuration of the PV system, and needs to 
take into account the presence of distributed or 
centralized inverters, the connection in parallel or not 
of the panels, and so on: in any case, this electrical 
monitoring never regards the single cells of a PV 
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module, because its grain is constituted by the entire 
PV module. Therefore, when problems arise at the cell 
level, advanced solutions have to be studied for 
whoever is interested in investigating the reasons of the 
power loss, and not simply its amount.  

At the cell level, the above problems are classified as 
defects, which are essentially grouped in two main 
typologies [1]-[2]: material-induced, depending on the 
internal material structure, and process-induced, 
generated during the productive process. In order to 
deeper investigate these phenomena, some specific and 
known defects have been modelled and inserted in 
well-operating PV cells, and their thermal effects have 
been analyzed in [3], whereas models of PV cell, able 
to take into account the variable environmental 
conditions, are proposed in [4]-[5]. 

Anyway, it results that any defect manifests itself as 
over temperature, as reported in Table 3 of [6]. This 
effect makes the thermography a powerful tool for 
diagnostic purpose of PV modules [7], also compared 
or combined with other modern diagnostic techniques 
[8-10]. For instance, in [11] the thermographic analysis 
is used to identify the mismatch faults of PV modules; 
in [12] it is used for detecting snail trails and cell 
micro-cracks, and in [13] the thermography is proposed 
for improving the energy efficiency under partial 
shading conditions. Nevertheless, a PV module is 
constituted of many PV cells, but neither the simple 
thermography, nor the tools generally embedded into 
the thermo-cameras, nor image processors running on a 
PC, provide detailed information about each cell, since 
these on-the-shelf tools allow extrapolating only simple 
data (e.g. temperature of a selected pixel, mean of 
rectangular regions, histograms, etc.). For this aim, in 
the Part I [14], we have proposed a diagnostic 
workflow for carrying out an accurate analysis of each 
single PV  cell, based on the automatic processing of 
the infrared image of the PV modules. Since the 
workflow encompasses several steps and many 
calculations, and the number of PV modules which is 
usually investigated during a maintenance campaign 
might be huge (e.g., 1-MWp PV plant can contain over 
5,000 PV modules), in this Part II we present a 
software platform that, exploiting the OpenCV 
software library [15], implements the workflow and 
allows to perform a correct and fine diagnostics in a 
very short time. The platform is characterized by an 
easy-to-use Graphical User Interface (GUI) which 
follows step by step the workflow, making the partial 
results available to the user as soon as they are 
produced, so helping him in tuning the required 
diagnostic parameters. The results are displayed both in 
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numerical and in graphical form, and can be collected 
in a printable report. 

The paper is structured as follows. Section II deals 
with the implementation issues of the procedures 
encapsulated in the platform, while its GUI is shown in 
Section III. Section IV discusses several tests 
performed on operating PV modules, and Conclusions 
ends the paper. 

II. IMPLEMENTATION ISSUES 

The software platform translates the diagnostic 
workflow summarized in Fig. 1. The role of each 
algorithmic step enclosed in the phases PRE-
PROCESSING, INPUT, PROCESSING, POST-
PROCESSING, and OUTPUT has been described in 
[14], thus, in this paper we are going to discuss the 
implementation issues of the above phases.  
 

 
Fig. 1. Phases of the diagnostic workflow. 

A. Input 

The Input phase concerns not only the InfraRed (IR) 
image to be analyzed, but also some environmental 
parameters and few threshold values, which are needed 
in order to correctly carry out the diagnostics.  

The platform saves these data in a log file and 
proposes the most recently used as default. In fact, 
during a maintenance campaign of a PV plant, the 
analyzed PV devices have often the same structure and 
characteristic, as well as the IR images may have been 
acquired under the same environmental conditions. 
Therefore, iterate the input phase can be avoided, 
saving time. 

B. Pre-processing 

After having loaded the IR image and defined the 
Region Of Interest (ROI) inscribing the PV module -as 
later highlighted by the green quadrangle on Fig. 5(a)-, 
a Preprocessing phase is needed to correct the 
perspective and, eventually, to reduce the noise.  

To correct the perspective is necessary in order to 
get an “undistorted image” in which all the PV cells are 
resized to an identical area. To have each cell 
represented by the same number of IR pixels is 
mandatory for getting a correct analysis and it is 

obtained through an affine transformation, i.e., a 
function between affine spaces which preserves points, 
straight lines and planes. An affine transformation does 
not necessarily preserve angles between lines or 
distances between points, though it preserves ratios of 
distances between points lying on a straight line.  

In this scenario, the platform corrects the 
perspective, exploiting the geometrical condition that 
the four vertexes of the quadrangular ROI should be 
mapped as vertexes of a rectangle onto the destination 
(undistorted) space. 

In case a noise reduction is needed, as described in 
Part I [14], the workflow provides three possible 
filtering strategies based either on a median filter, or on 
a Gaussian filter, or on a cascade of them. These ones 
have been implemented employing the C++ methods 
medianBlur and GaussianBlur. 

C. Processing 

The Processing phase encloses the algorithmic steps 
which are “strictly” diagnostic, and are (see [14]):  

 Cell analysis, which investigates the health of 
each PV cell, through its thermal state, as if this 
one was not connected to other cells;  

 Cell classification, in which cells having uniform 
temperature are studied by comparing the mean 
temperatures of the cells with the expected 
temperature determined basing both on the 
Nominal Operative Cell Temperature (NOCT), 
and on the environmental conditions, such as 
irradiance level and air temperature;  

 Cluster assignment, in which cells having mean 
temperatures enclosed in a given range are 
grouped in families called clusters;  

 Cluster analysis, which analyzes each cluster 
basing on the number of enclosed cells, the 
position inside the PV module, the mean value of 
the cluster temperature; 

 Cluster classification where the clusters are sorted 
from the no-problem ones to the most critical one, 
on the basis of the power loss. 

These steps have been implemented by means of a 
C++ code, in which each PV cell and PV module are 
represented as “objects” of the ad hoc defined classes 
PVCell and PVModule, whose main members are recalled 
in Fig. 2. 

An instance of the PVModule class encapsulates a 2-D 
array of PVCell objects, organized into NumberOfRows 

rows and NumberOfColumns columns. Each cell of such 
array (say Cell[i][j]) is therefore characterized by the 
variance and the mean computed among all the 
temperatures inside the cell itself (say respectively, 
Cell[i][j].VarianceTemp and Cell[i][j].MeanTemp); these 
numerical values are initialized by the methods of the 
class PVCell, through the temperature map in the IR 
image. Cell[i][j].VarianceTemp is used to discriminate if 
Cell[i][j] is uniform or not, comparing it with respect to a 
predefined threshold (say, UniformityThreshold); then, in 
case of uniformity, Cell[i][j] is classified through 
Cell[i][j].MeanTemp.  
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 Fig. 2. PVCell and PVModule classes. 
 

More in detail, the method 

CellClassificationAndClustering (see Fig. 3) assigns a value 
(among “Non Uniform”, “Normal”, “Light Hot Cell”, “Medium 

Hot Cell” and “Strong Hot Cell”) to the attribute Cell[i,j].Type 

in function of two thresholds (say, LightMediumThreshold 

and MediumStrongThreshold). The same method performs 
the clustering, too, i.e. it assigns the cells of the module 
to a certain cluster, simply initializing Cell[i][j].ClusterID 
with the difference between the temperatures 
Cell[i][j].MeanTemp and MinTemp, quantized by a factor 
said ClusterTemperatureRange. 
 

 
Fig. 3. CellClassificationAndClustering method. 
 

Clusters are analyzed mainly basing on blob analysis 
techniques. Given the PV module X, X.BinaryImage, a 
vector of X.NumberOfClusters binary images (i.e., having 
as many elements as the clusters enclosed in the PV 
module X), is created. The binary image X.BinaryImage[k] 
is associated to the cluster #k having all its pixels equal 
to “0”, except those of the cells X.Cell[i][j] where 

X.Cell[i][j].ClusterID == k, which are set to “1”. 
Therefore, the blob structure of the cluster #k is 

graphically generated applying in X.BinaryImage[k] the 
C++ method findContours(), while the number of cells is 
evaluated using the C++ method countNonZero(). The 
cluster classification is merely performed through the 

numeric value of ClusterID, which, thanks to the 
method CellClassificationAndClustering, results in an index 
related to the power loss (higher the index, higher the 
loss). 

D. Post-processing  

A post processing, basically consisting on an 
equalization, is applied on the ROIs produced at each 
step. This allows to assign the whole available 8-bits 
dynamic only to the temperature range present inside 
the ROI, i.e., on the PV module. Obviously, this 
equalization does not modify the temperature values, 
but only their representation, in order to get a better 
visualization, as we evidence in the case of study 
discussed in Section IV.B. 

E. Output 

Once the PV module has been completely analyzed, 
the platform produces a printable report in PDF format, 
in which all the input data, and above all the produced 
results, are collected both in numerical and in graphical 
form in an easy-to-interpret template. 

III. GRAPHICAL USER INTERFACE 

Fig. 4 shows a screenshot of the GUI, captured during 
the “cell analysis” step.  

In the top area are visible several buttons. Those on 
the first line are related each one to a single step of the 
workflow: once the step S is performed, the related 
button commutates to a dual “back to the S step” 
button, as the case of the first five buttons shown in the 
screen shot. The long button on the second line, 
activates instead an all-in-one macro, which launches 
the whole workflow and may be usefully employed in 
case the environmental parameters and the thresholds 
are not newly required, being those already saved as 
default values in the log file (see Section II.A).  

The bottom area encloses two windows. The left one 
is a toolbox structured into four tabs, each one related 
to the steps: “Load image and setup”, “Filtering”, “Cell 
analysis” and “Cluster analysis”. These tabs contain 
spin boxes for inputting values, and buttons related to 
actions specific of the step, as the analysis launcher and 
the report generation evidenced in Fig. 4. Moreover, 
the tabs provide some numerical outputs, that in case of 
anomalies are displayed in red. Finally, the right side of 
the GUI encloses dynamical tabs, each one hosting the 
graphical output of a certain step: these outputs are 
basically constituted by suitably annotated images, as 
those shown in the tab of Fig. 4. as well as in the 
cropped tabs of Figs. 5, 6, and 7.  

IV. RESULTS AND DISCUSSION  

In this Section we will present three cases of study.  
They are related to a 20 kWp PV plant located on the 

roof of a building, south-oriented and having a tilt of 

40°. The plant has been connected to the grid in 2009, 

employing PV modules whose datasheet parameters 

are reported in Table I. 
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Fig. 4. GUI of the software platform, captured during the Cell analysis, with some explicative over imposed call outs. 

 
  (a)      (b)     (c) 

Fig. 5. (a): ROI and grid of the PV cells; (b): non-uniform (black) and normal (green) cells; medium (orange) and strong (red) hot 
cells; (c): cluster of PV cells, constituted by three blobs, respectively having 1, 5 and 7 cells. 

 
  (a)      (b)     (c) 

Fig. 6. (a): IR image of an almost completely uniform module; (b): classification uniform vs not uniform cells; (c): normal and hot 

cells. 
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  (a)      (b)     (c) 

Fig. 7. (a): IR image of a non-uniform module; (b): colder cluster #0; (c): hotter cluster #1. 
TABLE I. ELECTRICAL PARAMETERS OF THE INVESTIGATED PV 

MODULES IN STC (EXCEPT FOR NOCT) 

PV module PhotoWatt 

Code PV1650 

Material Poly-Si 

Pn [W] 175±3% 

Voc [V] 43.20 

Isc [A] 5.31 

Vmpp [V] 34.80 

Impp [I] 5.03 

NOCT [°C] 45±2 

 
TABLE II. DATASHEET PARAMETERS OF THE EMPLOYED 

THERMAL-CAMERA (THERMALCAM B4©, BY FLIR©) 

Property Value 

Field of view 23° x 17° 

Min focus distance 0.3 m 

Thermal sensitivity 0.08°C at 30°C 

Image frequency 50 Hz non-interlaced 
Focus Manual 

Detector type Focal Focal Plane Array (FPA), 
uncooled microbolometer 
320 x 240 pixels 

Spectral range 7.5 to 13 µm 

Digital zoom 1x, 2x or 4x 

Temperature range -20°C to +100°C 

Operating temperature range -15°C to +50°C 

Accuracy ±2°C, ±2% 

Repeatability ±1°C, ±1% 
 

The employed thermal-camera was the ThermaCAM 
B4© by FLIR©, whose characteristics are reported in 
Table II: it can be noted that it is a long-wave thermal-
camera (see spectral range). The uncooled detector, 
having a 320x240 resolution, allows medium-high 
quality IR images, rigorously measuring and analyzing 
76.800 points. It can operate between -20°C and 
+100°C, with a thermal sensibility of 0,08°C, thus 
making possible the detection of small variations of 
temperature. 

During the acquisitions, the good weather conditions 
(air temperature equal to 10 °C, solar irradiance of 650 
W/m2, and relative humidity of 54%) have allowed a 
correct acquisition of the images, and it has been 
necessary to set (with particular accuracy) several 

specific reference parameters which influence the 
results. Emissivity has been set to 0.85 (it is related to 
the material and thickness of the solar glass, and 
typically ranges from 0.85 to 0.90), while the reflected 
temperature has been changed during the acquisitions, 
being dependent on the mutual position of the thermal-
camera and the target.  

A. A defected module 

The first case considers the defected PV module of Fig. 
5(a), characterized by hot and cold cells, accidentally 
distributed. The figure shows also the green ROI and 
the red grid of the cells. Fig. 5(b) puts in evidence the 
non-uniform cells (black), the uniform well-working 
cells (green “N”), the medium hot cells (orange “M”), 
and the strong hot cells (red “S”), as determined by the 
processing phase. 

The platform has pointed out several criticalities that 
were not perceptible in the source IR image. Firstly, 
there are 37 strong hot cells, which were masked by the 
luminance of the strongest one in Fig. 5(b). Secondly, 
there are 24 non-uniform cells, and many of them are 
not evident in the IR image. In addition, Fig. 5(b) 
reveals also 7 medium hot spots.  

Finally, we report Fig. 5(c), which shows one of the 
clusters of the PV module: it encloses three blobs, 
containing 1, 5 and 7 cells, evidencing that the platform 
allows to group PV cells with the same thermal 
behavior, even if they are not connected among 
themselves. 

B. An almost completely uniform module 

The second case concerns a PV module visibly 
characterized by only one very critical cell, pointed by 
the white arrow in Fig. 6(a). This circumstance is 
confirmed by the graphical output of Fig. 6(b), which 
evidences it in red, as the unique non-uniform cell. 
Nevertheless, in Fig. 6(c) the cell analysis, after having 
masked in black that non-uniform cell, highlights also 
several light hot cells, which were not noticeable by a 
subjective observation of the input IR image of Fig. 
6(a).  

Note that the spot indicated by the red arrow in Fig. 
6(a) is not a defect, but an over temperature due to the 
junction box on the rear of the PV module (in fact, the 
same phenomenon appears replicated in the module on 
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the left, as evidenced by the black arrow). This 
hypothesis can be confirmed during the acquisition: in 
fact, an insufficient insulation between the junction box 
and the module is revealed as a systematic hot spot 
occurring at the same position in all the modules. 

Finally, Fig. 6(b) explicates also the effects of the 
post processing: in fact in it, thanks to the equalization, 
the temperature gradient (remarked by the dotted red 
arrow) appears much more evident than in the input IR 
image of Fig. 6(a). 

C. A dis-homogeneous module 

A third case of study is related to the PV module of 
Fig. 7(a), visibly characterized by two macro-areas, 
none of them exactly matching a group of cells. We 
remark this case in order to focus the attention on the 
clusters evidenced by the platform: 
 a “subjective analysis” might assume that the cells 

circled by the red curve in Fig 7(a) belong to the 
colder cluster #0 in Fig. 7(b), whereas the 
objectivity of the platform has assigned them to 
the hotter cluster #1;  

 in the same way, the cells evidenced by the white 
ellipse in the Fig. 7(a) might seem belonging to 
the hotter cluster #1 in Fig. 7(c), instead they have 
been assigned to the colder cluster #0. 

This example evidences that the quantitative 
analysis, allowed by the platform, assures an 
aggregation exempt from those subjective errors 
typical of a qualitative analysis. 

V. CONCLUSIONS  

This Part II has presented a software platform 
which implements the innovative diagnostic workflow 
to process the IR images of PV modules, that was 
introduced in Part I [14]. The platform automatically 
performs all the time-consuming recommended steps, 
and generates an immediate and detailed report, 
enclosing numeric and graphic results which are 
focused both on the cell level and on the cluster level. 
Moreover, since it provides information on the health 
state of the PV module, if periodically used, it allows a 
tracking of its ageing trend, too.  

Differently from available commercial software 
products, which limit the analysis at the PV module 
level, our platform allows monitoring each single PV 
cell, thus representing a very important improvement 
for anyone interested in investigating the reasons of the 
power loss, and not simply its amount. 

In the paper, some cases of study have been also 
discussed with the aim of highlighting several features 
of the platform: they put in evidence critical situations 
that manual analyses of the IR images cannot reveal. 

Nowadays, the proposed platform has been 
implemented in a cloud application [16], in order to 
provide the users with updated versions, as new 
features will be added to the workflow.  
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