
23 January 2025

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

Graph Neural Networks for fluid mechanics: data-assimilation and optimization / Quattromini, Michele. - ELETTRONICO.
- (2025).

This is a PhD Thesis

Original Citation:

Graph Neural Networks for fluid mechanics: data-assimilation and optimization

Published version
DOI:

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/282760 since: 2025-01-21

Publisher: Politecnico di Bari

Department of Mechanics, Mathematics and Management

MECHANICAL AND MANAGEMENT ENGINEERING

Ph.D. Program
SSD: ING-IND/06–FLUID DYNAMICS

Final Dissertation

Graph Neural Networks for fluid mechanics:

data-assimilation and optimization

by

Michele Quattromini:

 Supervisors:

Prof. Stefania Cherubini

Prof. Caroline Nore

Coordinator of Ph.D. Program:

Prof. Giuseppe Casalino

Course n°37, 01/11/2021-31/10/2024

LIBERATORIA PER L’ARCHIVIAZIONE DELLA TESI DI DOTTORATO

Al Magnifico Rettore

del Politecnico di Bari

Il sottoscrittoMichele Quattromini nato a Altamura il 30/06/1992

residente a Altamura in via fratelli Scarati n.5 e-mailmichele.quattromini@poliba.it

iscritto al 3° anno di Corso di Dottorato di Ricerca in Ingegneria Meccanica ciclo XXXVII

ed essendo stato ammesso a sostenere l’esame finale con la prevista discussione della tesi dal titolo:

Graph Neural Networks for fluid mechanics: data-assimilation and optimization

DICHIARA

1) di essere consapevole che, ai sensi del D.P.R. n. 445 del 28.12.2000, le dichiarazioni mendaci, la falsità negli atti e
l’uso di atti falsi sono puniti ai sensi del codice penale e delle Leggi speciali in materia, e che nel caso ricorressero

dette ipotesi, decade fin dall’inizio e senza necessità di nessuna formalità dai benefici conseguenti al provvedimento

emanato sulla base di tali dichiarazioni;

2) di essere iscritto al Corso di Dottorato di ricerca Ingegneria Meccanica ciclo XXXVII, corso attivato ai sensi del
“Regolamento dei Corsi di Dottorato di ricerca del Politecnico di Bari”, emanato con D.R. n.286 del 01.07.2013;

3) di essere pienamente a conoscenza delle disposizioni contenute nel predetto Regolamento in merito alla procedura di
deposito, pubblicazione e autoarchiviazione della tesi di dottorato nell’Archivio Istituzionale ad accesso aperto alla

letteratura scientifica;

4) di essere consapevole che attraverso l’autoarchiviazione delle tesi nell’Archivio Istituzionale ad accesso aperto alla
letteratura scientifica del Politecnico di Bari (IRIS-POLIBA), l’Ateneo archivierà e renderà consultabile in rete (nel

rispetto della Policy di Ateneo di cui al D.R. 642 del 13.11.2015) il testo completo della tesi di dottorato, fatta salva la

possibilità di sottoscrizione di apposite licenze per le relative condizioni di utilizzo (di cui al sito

http://www.creativecommons.it/Licenze), e fatte salve, altresì, le eventuali esigenze di “embargo”, legate a strette

considerazioni sulla tutelabilità e sfruttamento industriale/commerciale dei contenuti della tesi, da rappresentarsi

mediante compilazione e sottoscrizione del modulo in calce (Richiesta di embargo);

5) che la tesi da depositare in IRIS-POLIBA, in formato digitale (PDF/A) sarà del tutto identica a quelle consegnate ai
componenti della commissione per l’esame finale e a qualsiasi altra copia depositata presso gli Uffici del Politecnico

di Bari in forma cartacea o digitale, ovvero a quella da discutere in sede di esame finale, a quella da depositare, a cura

dell’Ateneo, presso le Biblioteche Nazionali Centrali di Roma e Firenze e presso tutti gli Uffici competenti per legge

al momento del deposito stesso, e che di conseguenza va esclusa qualsiasi responsabilità del Politecnico di Bari per

quanto riguarda eventuali errori, imprecisioni o omissioni nei contenuti della tesi;

6) che il contenuto e l’organizzazione della tesi è opera originale realizzata dal sottoscritto e non compromette in alcun
modo i diritti di terzi, ivi compresi quelli relativi alla sicurezza dei dati personali; che pertanto il Politecnico di Bari ed

i suoi funzionari sono in ogni caso esenti da responsabilità di qualsivoglia natura: civile, amministrativa e penale e

saranno dal sottoscritto tenuti indenni da qualsiasi richiesta o rivendicazione da parte di terzi;

7) che il contenuto della tesi non infrange in alcun modo il diritto d’Autore né gli obblighi connessi alla salvaguardia di
diritti morali od economici di altri autori o di altri aventi diritto, sia per testi, immagini, foto, tabelle, o altre parti di cui

la tesi è composta.

Luogo e data __________________________ Firma _____________________________________

Il sottoscritto, con l’autoarchiviazione della propria tesi di dottorato nell’Archivio Istituzionale ad accesso aperto del

Politecnico di Bari (POLIBA-IRIS), pur mantenendo su di essa tutti i diritti d’autore, morali ed economici, ai sensi della

normativa vigente (Legge 633/1941 e ss.mm.ii.),

CONCEDE

● al Politecnico di Bari il permesso di trasferire l’opera su qualsiasi supporto e di convertirla in qualsiasi formato al

fine di una corretta conservazione nel tempo. Il Politecnico di Bari garantisce che non verrà effettuata alcuna

modifica al contenuto e alla struttura dell’opera.

● al Politecnico di Bari la possibilità di riprodurre l’opera in più di una copia per fini di sicurezza, back-up e

conservazione.

Luogo e data __________________________ Firma _____________________________________

Firma Relatore __________________________________

Bari, 08/01/2025

08/01/2025Bari,

3

Department of Mechanics, Mathematics and Management

MECHANICAL ANDMANAGEMENT ENGINEERING

Ph.D. Program
SSD: ING-IND/06–FLUID DYNAMICS

Final Dissertation

Graph Neural Networks for fluid mechanics:
data-assimilation and optimization

by

Michele Quattromini:

Referees:

Prof. Taraneh Sayadi

Prof. Miguel A. Mendez

Supervisors:

Prof. Stefania Cherubini

Prof. Caroline Nore

Coordinator of Ph.D Program:

Prof. Giuseppe Casalino

Course n°37, 01/11/2021-31/10/2024

4

Titre: Graph Neural Networks pour la mécanique des fluides : data-assimilation et optimisation.

Mots clés: Apprentissage automatique, Apprentissage automatique informé par la physique,

Graph Neural Networks, Dynamique des fluides numérique, Équations de Reynolds-Averaged

Navier Stokes, Assimilation de données.

Résumé: Cette thèse de doctorat explore

l’application des réseaux de neurones en

graphes (GNN) dans le domaine de la dy-

namique des fluides numérique (CFD), avec un

accent particulier sur l’assimilation de données

et l’optimisation. Le travail est structuré en trois

parties principales: assimilation de données

pour les équations de Navier-Stokes moyen-

nées à la Reynolds (RANS) basée sur des mod-

èles GNN; assimilation de données augmentée

par les GNN avec des contraintes physiques

imposées par la méthode adjointe; optimisa-

tion des systèmes fluides par des techniques

d’apprentissage automatique (ML).

Dans la première partie, la thèse examine

le potentiel des GNN pour contourner les mod-

èles de fermeture traditionnels, qui nécessitent

souvent une calibrationmanuelle et sont sujets

à des inexactitudes. En exploitant des données

de simulation à haute fidélité, les GNN sont en-

traînés à apprendre directement les quantités

non résolues de l’écoulement, offrant ainsi un

cadre plus flexible pour le problème de fer-

meture des équations RANS. Cette approche

élimine le besoin de modèles de fermeture cal-

ibrés manuellement, fournissant une alterna-

tive généralisée et basée sur les données. De

plus, dans cette première partie, une étude ap-

profondie de l’impact de la quantité de don-

nées sur les performances des GNN est réal-

isée, avec la conception d’une stratégie d’Active

Learning pour sélectionner les données les plus

informatives parmi celles disponibles.

Sur la base de ces résultats, la deux-

ième partie de la thèse aborde un défi

critique souvent rencontré par les modèles

d’apprentissage automatique: l’absence de

garantie de cohérence physique dans leurs

prédictions. Afin de garantir que les GNN

non seulement minimisent les erreurs, mais

produisent également des résultats physique-

ment valides, cette partie intègre des con-

traintes physiques directement dans le proces-

sus d’entraînement des GNN. En incorporant

les principes clés de la mécanique des fluides

dans le cadre de l’apprentissage automatique,

le modèle produit des prédictions à la fois fi-

ables et cohérentes avec les lois physiques

sous-jacentes, améliorant ainsi son applicabil-

ité aux problèmes réels.

Dans la troisième partie, la thèse démon-

tre l’application des GNN pour optimiser les

systèmes de dynamique des fluides, avec un

accent particulier sur la conception des éoli-

ennes. Ici, les GNN sont utilisés comme mod-

èles de substitution, permettant des prédic-

tions rapides de diverses configurations de

conception sans avoir besoin de réaliser une

simulation CFD complète à chaque itération.

Cette approche accélère considérablement le

processus de conception et montre le poten-

tiel de l’optimisation basée sur l’apprentissage

automatique dans le cadre de la CFD, permet-

tant une exploration plus efficace des espaces

de conception et une convergence plus rapide

vers des solutions optimales.

Sur le plan méthodologique, la thèse intro-

duit une architecture GNN sur mesure spéci-

fiquement adaptée aux applications CFD. Con-

trairement aux réseaux de neurones tradi-

tionnels, les GNN sont intrinsèquement ca-

pables de gérer des données de maillage

non structurées, ce qui est courant dans les

problèmes de mécanique des fluides impli-

quant des géométries irrégulières et des do-

maines d’écoulement complexes. À cette fin,

la thèse présente une interface en deux par-

ties entre les solveurs de la méthode des

éléments finis (FEM) et l’architecture GNN.

Cette interface transforme les champs vecto-

riels FEM en tenseurs numériques pouvant être

traités efficacement par le réseau neuronal,

permettant ainsi l’échange de données entre

l’environnement de simulation et le modèle

d’apprentissage.

Title: Graph Neural Networks for fluid mechanics: data-assimilation and optimization

Keywords: Machine Learning, Physics-Informed Machine Learning, Graph Neural Networks,

Computational Fluid Dynamics, Reynolds-Averaged Navier-Stokes, Data assimilation

Abstract: This PhD thesis investigates the ap-

plication of Graph Neural Networks (GNNs)

in the field of Computational Fluid Dynam-

ics (CFD), with a focus on data-assimilation

and optimization. The work is structured

into three main parts: data-assimilation for

Reynolds-AveragedNavier-Stokes (RANS) equa-

tions based on GNN models; data-assimilation

augmented by GNN and adjoint-based en-

forced physical constraint; fluid systems opti-

mization by ML techniques.

In the first part, the thesis explores the po-

tential of GNNs to bypass traditional closure

models, which often require manual calibra-

tion and are prone to inaccuracies. By lever-

aging high-fidelity simulation data, GNNs are

trained to directly learn the unresolved flow

quantities, offering a more flexible framework

for the RANS closure problem. This approach

eliminates the need for manually tuned clo-

sure models, providing a generalized and data-

driven alternative. Moreover, in this first part,

a comprehensive study of the impact of data

quantity on GNN performance is conducted,

designing an Active Learning strategy to select

the most informative data among those avail-

able.

Building on these results, the second part

of the thesis addresses a critical challenge of-

ten faced by ML models: the lack of guaran-

teed physical consistency in their predictions.

To ensure that the GNNs not only minimize er-

rors but also produce physically valid results,

this part integrates physical constraints directly

into the GNN training process. By embedding

key fluidmechanics principles into themachine

learning framework, the model produces pre-

dictions that are both reliable and consistent

with the underlying physical laws, enhancing its

applicability to real-world problems.

In the third part, the thesis demonstrates

the application of GNNs to optimize fluid dy-

namics systems, with a particular focus onwind

turbine design. Here, GNNs are employed as

surrogate models, enabling rapid predictions

of various design configurations without the

need for performing a full CFD simulation at

each iteration. This approach significantly ac-

celerates the design process and demonstrates

the potential of ML-driven optimization in CFD

workflows, allowing for more efficient explo-

ration of design spaces and faster convergence

toward optimal solutions.

On the methodology side, the thesis intro-

duces a custom GNN architecture specifically

tailored for CFD applications. Unlike traditional

neural networks, GNNs are inherently capable

of handling unstructured mesh data, which is

common in fluid mechanics problems involv-

ing irregular geometries and complex flow do-

mains. To this end, the thesis presents a two-

fold interface between Finite Element Method

(FEM) solvers and the GNN architecture. This

interface transforms FEM vector fields into nu-

merical tensors that can be efficiently pro-

cessed by the neural network, allowing data

exchange between the simulation environment

and the learning model.

6

Contents

Nomenclature 11

Acronyms 13

1 Introduction 15

1.1 Impact of Machine Learning (ML) on Scientific World . 15

1.2 Machine Learning (ML) in Computational Fluid Dynamics (CFD) 17

1.3 The chosen physicalmodel: introduction to Reynolds AveragedNavier-Stokes Equations

(RANS) . 20

1.4 The chosen ML architecture: introduction to Graph Neural Network (GNN) 21

1.5 Objectives of the thesis . 22

1.6 Structure of the thesis . 23

2 Computational Fluid Dynamics (CFD) 25

2.1 General Aspect . 25

2.2 Navier-Stokes (NS) Equations . 25

2.2.1 Continuity Equation . 26

2.2.2 Momentum Equation . 27

2.2.3 Non-dimensionalization and Dimensionless Equations 27

2.3 Reynolds Averaged Navier-Stokes (RANS) Equations . 29

2.3.1 Introduction to turbulence . 30

2.3.2 Approximate Models for Navier-Stokes Equations 30

2.3.3 From NS to RANS . 31

2.3.4 RANS Turbulence Closure Models . 32

2.4 Finite Element Methods (FEM) . 36

2.4.1 Introduction . 36

2.4.2 Spatial and Temporal Discretization . 37

2.4.3 Weak Formulation . 39

2.4.4 Assembly of Global System of Equations . 40

2.4.5 Boundary conditions . 41

2.4.6 Numerical Solver . 42

3 Machine Learning (ML) 43

3.1 Basic structure of a Neural Network (NN) . 43

3.2 Functioning of a Neural Network (NN) . 45

3.3 Neural Networks (NNs) as Universal Approximator . 47

3.4 Types of Neural Networks (NNs) . 48

3.5 Limitations of Neural Networks (NNs) . 50

3.6 Graph Theory . 50

7

3.6.1 Introduction to Graph Theory . 51

3.6.2 Mathematical representation of Graphs . 52

3.7 Graph Neural Network (GNN) . 54

3.7.1 Core principles of GNNs . 54

3.8 A custom Graph Neural Network (GNN) architecture . 56

3.8.1 Data Structuring . 58

3.8.2 GNN Training Algorithm . 60

3.8.3 GNN hyperparameters . 61

4 Adjoint Optimization 65

4.1 Introduction to optimization methods . 65

4.2 History of optimization . 65

4.3 Fundamental concepts of optimization . 66

4.4 Optimization methods overview . 67

4.4.1 Gradient based methods . 68

4.4.2 Gradient free methods . 69

4.5 Introduction to Adjoint Methods . 70

4.5.1 General Methodology of Adjoint Methods . 72

4.5.2 Adjoint Method applied to RANS . 73

5 Part I: RANS closure term prediction 79

5.1 Introduction . 79

5.2 Design of experiment and numerical setup . 81

5.2.1 Cylinder flow . 81

5.2.2 Flow around random shapes . 85

5.3 Results . 86

5.3.1 Test Cases . 86

5.3.2 Proof-of-concept training: flow past a cylinder flow 87

5.3.3 Data augmentation and active learning: fluid flows past random geometries . . 90

5.3.4 Similarity criteria algorithm details . 97

5.3.5 Quantitative comparison . 98

5.4 Discussion . 100

6 Part II: Physics-Constrained Graph Neural Network (PhyCo-GNN) 103

6.1 Introduction . 103

6.2 Methodology . 104

6.2.1 The training process . 105

6.2.2 On the pre-training step . 106

6.2.3 On the loss function . 107

6.3 Results . 107

6.3.1 Proof of Concept . 108

6.3.2 Generalization . 108

6.3.3 Sparse Measurement . 110

8

6.3.4 Denoising . 111

6.3.5 Inpainting . 112

6.3.6 Discussion and outlooks . 112

7 Part III: Shape optimization of Ducted Wind Turbines (DAWT) 117

7.1 Introduction . 117

7.2 DAWT Ground Truth Data and Numerical Setup . 122

7.3 Optimization Loop . 125

7.4 Machine Learning (ML) in the Optimization Loop . 126

7.4.1 NNs pre-training . 127

7.5 The Optimization Cost Function . 128

7.6 Reinforcement Learning (RL) in the Optimization Loop 131

7.6.1 Introduction to Reinforcement Learning (RL) . 131

7.6.2 Application of DDPG in the Optimization Loop . 134

7.7 The Mesh Generator . 135

7.8 Discussion . 136

8 Conclusion 139

9 Acknowledgements 143

List of Figures 145

List of Tables 151

Bibliography 153

9

10

Nomenclature

Relationships

= Equality

:= Definition

← Assignment

Vector and matrices

a Scalar

a Vector

A Matrix

Aij , Ai, Aj (i, j)-entry, i-th row, j-th column of a matrixA

aT ,AT Transpose of vector a, transpose of matrixA

∥a∥p :=
�Pn

j=1|aj |
p
� 1

p

ℓp-norm of a ∈ R
n, ℓ1 is the absolute norm, ℓ2 is the

Euclidean norm

⟨·, ·⟩ Inner product

I Identity matrix

Computational Fluid Dynamics

u = (u, v, w) Velocity vector

u = (u, v, w) Mean velocity vector

f = (fx, fy, fz) Reynolds forcing stress

Re Reynolds number

ν, µ Kinematic viscosity, dinamic viscosity

Ω Computational domain

Machine Learning

x,y, ŷ Input, target and predicted output vectors

σ Non linear activation function

11

θ Neural Network’s weight matrix

Other symbols

Hn(Ω) Sobolev space, order n, domain Ω

12

Acronyms

ADAM Adaptive Moment Estimation. 47

AI Artificial Intelligence. 15, 16, 50, 131

BET Blade Element Theory. 122, 128, 130

BFGS Broyden-Fletcher-Goldfarb-Shanno. 69

CFD Computational Fluid Dynamics. 17, 19–26, 32, 33, 36–38, 49, 56–59, 61,

63, 70, 71, 73, 77, 103, 104, 117, 120, 122, 126, 127, 139–141

CFL Courant-Friedrichs-Lewy. 38, 82

CNN Convolutional Neural Network. 19, 21, 49, 80

DAWT Diffuser-Augmented Wind Turbine. 117, 119, 120, 122–125, 140, 149

DDPG Deep Deterministic Policy Gradient. 131–134

DL Deep Learning. 16

DNS Direct Numerical Simulation. 20, 21, 29, 31, 32, 35, 105–107, 110, 139

DOF Degrees Of Freedom. 29

FDM Finite Difference Method. 26

FEM Finite Element Method. 26, 36, 37, 39–42, 80, 81, 100, 105, 106, 113

FVM Finite Volume Method. 26

GAN Generative Adversial Network. 19, 49

GNN Graph Neural Network. 21–24, 43, 49, 51, 54–63, 65, 71, 73, 77, 79–81,

86–96, 98–110, 112–114, 120–122, 125–128, 130, 136–141, 146, 147, 149, 150

HAWT Horizontal Axis Wind Turbines. 117

LES Large Eddy Simulation. 31, 80

MAE Mean Absolute Error. 97, 147

ML Machine Learning. 15–23, 35, 43, 71, 79, 103, 104, 114, 117, 139–141

13

MLP Multi-Layer Perceptron. 15, 16, 43, 45, 48, 55–60, 126, 127, 134, 145

MP Message Passing. 55–58, 60

MSE Mean Squared Error. 46, 97, 106

NN Neural Network. 15, 16, 18–23, 43–50, 54, 61, 79, 80, 100, 101, 103, 104, 120,

125–128, 134, 135, 137, 149

NSE Navier-Stokes Equations. 17, 20, 25–31, 36, 42, 75, 76, 79, 82

OWT Open-Rotor Wind Turbines. 117, 124, 149

PDE Partial Differential Equation. 25, 36, 39, 41, 42, 70–73, 81

PINN Physics-Informed Neural Network. 18, 103

POD Proper Orthogonal Decomposition. 18

PPO Proximal Policy Optimization. 131

RANS Reynolds Averaged Navier-Stokes. 17, 18, 20–24, 29–33, 65, 70–74, 76,

77, 79, 87, 100, 103–108, 112–114, 120, 122, 124, 126, 127, 139

ReLU Rectified Linear Unit. 44

RL Reinforcement Learning. 15, 19, 66, 121, 125, 126, 131–138, 141

RNN Recurrant Neural Networks. 21, 49, 101, 140

SGD Stochastic Gradient Descent. 46, 47, 68

TBNNs Tensor-Basis Neural Networks. 18

14

1 - Introduction

1.1 . Impact of Machine Learning (ML) on Scientific World

Figure 1.1: Alan Mathison Tur-

ing (London, 1912 – Wilmslow,

1954)

The history of ML dates back to mid-

20th century. In 1950, Alan M. Turing

(Fig. 1.1), a British mathematician and logi-

cian, posed the revolutionary question "Can

machines think?" presented in his seminal

paper "Computing Machinery and Intelli-

gence" [Turing, 1950]. Turing questioned for

the first time in history whether a machine

could exhibit intelligent behavior compara-

ble or indistinguishable from that of a hu-

man.

It’s the birth of themodernMachine Learning

(ML). In less than 10 years, in the late 1950s,

the term "Machine Learning" was officially

coined by Arthur Lee Samuel, a USA profes-

sor and pioneer in Artificial Intelligence (AI)

and Computer Sciences [Samuel, 1959]. Samuel’s work, firstly on a checkers-

playing game, effectively demonstrated that machines could be taught to im-

prove their performance through experience, concept that, later on, will be

known as Reinforcement Learning (RL), a branch of the broader AI.

During the next decade, in the 1960s, human brain’s structure and functioning

inspired the conception of the Neural Network (NN) whose first implementa-

tion was represented by the Perceptron idealized by Frank Rosenblatt, a USA

psychologist [Rosenblatt, 1958].

From that point on and for more than 20 years, due to the strong critics by

Marvin Minsky and Seymour Paper, the ML field falls in a forgotten area of

study, known as Artificial Intelligence winter. In their book "Perceptron", in-

deed, they pointed out the insurmountable limitations of early NN as com-

pared to the available computational resources of the time [Minsky and Pa-

pert, 1969].

The resurrection of the ML began between the 1980s and 1990s with the de-

velopment, in 1986, of the back-propagation algorithm. Designed by David

Rumelhart, Geoffrey Hinton and RonaldWilliams, this algorithm soon became

a milestone in the ML field [Rumelhart et al., 1986]. This mechanism, indeed,

made it feasible to efficiently train NNs with more than one layers, known as

Multi-Layer Perceptron (MLP). Accelerated by the huge increase of the com-

putational power, research in ML finally gained significant momentum, and

15

techniques such as Decision Trees [Quinlan, 1986], Support Vector Machines

[Cortes and Vapnik, 1995] and Ensemble Methods [Breiman, 1996] became

prominent.

The 21st century has seen exponential growth in ML, driven by the advent of

Big Data and the continuous increase of computational resources’ availabil-

ity. During this period, the concept of DL [Goodfellow et al., 2016] emerged,

characterized by the use of NNs significantly deeper and novel architectures,

which allowed for the modeling of complex patterns and hierarchical repre-

sentations far beyond what traditional MLPs could achieve. This new subfield

of ML has led to breakthroughs in fields such as image and speech recogni-

tion, natural language processing and autonomous systems.

The global attention on ML was further boosted by the victory in 2016 of the

DeepMind’s AlphaGo, a ML based software, which defeated the world cham-

pion Go player [Silver et al., 2016].

Since then, researcher throughout theworld have contributed toML advance-

ment. More and more scientists began to question about the benefits of ML

in scientific progress, leading to a huge dissemination of AI algorithms across

almost every scientific discipline.

As a matter of fact, Machine Learning has profoundly transformed the sci-

entific landscape, with its unparalleled capability to process and analyze vast

sets of data, uncover complex patterns, generative and predictive potential.

In genomics, for example, analysis of large scale DNA with sequencing data

ML techniques has paved the way to discoveries about genetic disorders, evo-

lutionary biology and personalized treatments [Libbrecht and Noble, 2015].

On the medical point of view, among many other applications, it has been

successfully used to enhance biomarkers analysis for early cancer diagnosis

[Esteva et al., 2019].

In chemistry, ML models can be used to predict molecular properties and

reactions, accelerating the process of drugs design and materials discovery

[Butler et al., 2018].

In physics, ML algorithm can analyze experimental data to further enhance

the physics phenomena understanding. The Large Hadron Collider (LHC) at

CERN, for instance, heavily relies onML to process and interpret the immense

volumes of data produced by particle collisions [Radovic et al., 2018].

Therefore, ML has a deep impact on the scientific world by enhancing data-

driven discovery, improving predictive models, accelerating research and fos-

tering interdisciplinary collaborations. Nowadays, ML is still a very promising

research field on itself and for its application to scientific world and its popu-

larity and influence is expected to grow even further in the near future.

16

1.2 . Machine Learning (ML) in Computational Fluid Dynamics

(CFD)

Figure 1.2: Claude-Louis Navier (Left)

and George Stokes (Right)

Among the many scientific fields

being revolutionized by the increas-

ing integration ofML, Computational

Fluid Dynamics (CFD) offers a very

promising area for significant ad-

vancements.

CFD is a branch of fluid mechan-

ics that uses numerical analysis to

solve problems involving fluid flows.

CFD spans through a wide range of

applications including aerodynam-

ics, weather forecasting, ocean mo-

tion and environmental engineering.

By solving the Navier-Stokes Equations (NSE), proposed in the 19th century

by Claude-Louis Navier and George Stokes (see Fig. 1.2), which describe the

motion of fluid flows, CFD allows simulating the behavior of fluids in various

conditions, providing insights that are often difficult or impossible to obtain

experimentally. However, this process can be computationally expensive and

time-consuming, and it often requires significant expertise to achieve accu-

rate results. ML inclusion in traditional CFD techniques offers an innovative

and promising approach to tackle these problems and enhance CFD’s capa-

bility to explore a broader range of fluid dynamics phenomena, overcoming

the limitations of mathematical traditional techniques [Brunton et al., 2020b].

ML models offer the capability to learn from large datasets of high-fidelity

simulations or experimental data, enhancing the prediction of fluid behav-

iors. Brunton et al. [2020b] provides an extensive review of ML’s applications

to fluid mechanics, emphasizing how data-driven models can complement

traditional methods and lead to enhanced simulations by reducing the need

for empirical adjustments.

Alternative applications can be found for fluidmechanics in the realms of clas-

sification problems, clustering or control, where the number of contributions

combiningML and standard techniques of analysis has been constantly grow-

ing in the last years [Raissi et al., 2020, Brunton et al., 2020a,b, Garnier et al.,

2021, Vinuesa and Brunton, 2022, Mendez et al., 2023, 2022].

A major area where ML has been applied in CFD is turbulence model-

ing. Traditional approaches such as the Reynolds Averaged Navier-Stokes

(RANS) equations, used for time-averaged flow quantities, introduce a clo-

sure term that needs to be modeled. This can be done using the classical

closure models discussed in section 2.3.4, or leveraging ML for directly ap-

17

proximating the Reynolds stress or improving the existing models [Lapeyre

et al., 2019, Beck and Kurz, 2021, Volpiani et al., 2021, Patel et al., 2024, Zhao

et al., 2020]. Among the numerous authors that addressed this problem, Ling

and Templeton [2015] applied classification methods for identifying regions

of uncertainties where the closure term of the RANS might fail; Ströfer and

Xiao [2021] combined data assimilation with NN modelling of the Reynolds

stress using limited observation. Other approaches leverage baseline models

such as the Spalart-Allmaras closure [Singh and Duraisamy, 2016], Physics-

Informed Neural Network (PINN)s [Eivazi et al., 2022, Patel et al., 2024], ran-

dom forests [Wang et al., 2017], regression methods [Schmelzer et al., 2020],

decision trees [Duraisamy et al., 2019], ensemble methods [McConkey et al.,

2022], genetic programming [Weatheritt and Sandberg, 2016, Zhao et al., 2020]

or Bayesian approaches [Xiao et al., 2016]. Dupuy et al. [2023a] introduced a

data-driven wall modeling approach for turbulent separated flows, demon-

strating the potential of neural networks tomodelwall shear stress effectively,

even in complex separated regions. For a broader overview, we refer to Du-

raisamy et al. [2019] and Beck and Kurz [2021], where the different levels of

approximation are discussed together with a critical take on the limitations

of the approach. In the specific case of an eddy viscosity closure model, the

recent studies by Ling et al. [2016] demonstrated the effectiveness of Tensor-

Basis Neural Networks (TBNNs) in learning a General Eddy Viscosity model

type [Pope, 1975]. TBNNs capitalize on the tensor decomposition approach

proposed by Pope to account for invariances and streamline the number of

parameters to be learned. The inductive bias introduced by this modelling

approach restricts TBNN application to nearly homogeneous flows with high

Reynolds numbers, where local effects predominate [Cai et al., 2024].

In the context of dimensionality reduction, Beck and Kurz [2021] explored

the use of ML for dimensionality reduction, combining these techniques with

reduced-order models to create efficient solutions for high-dimensional fluid

problems.

Among the ML applications, clustering and classification techniques are play-

ing an important role in Fluid Mechanics, due to their versatility in identifying

flow structures and complementing advanced methods, such as the multi-

scale Proper Orthogonal Decomposition (POD) [Mendez et al., 2019]. These

methods are used for identifying flow structures or - for the case of POD or

related techniques - used as basis of projection for computing reduced or-

der models preserving the key flow characteristics. Kaiser et al. [2014] suc-

cessfully employed k-means clustering to discretize a high-dimensional phase

space for the fluid mixing layer. This approach was later enhanced by Colvert

et al. [2018], who used NNs to classify wake topologies behind a pitching air-

foil. Their work highlights how ML can automate the identification of flow

18

features, improving both accuracy and efficiency.

Super-resolution, another area where ML has proven valuable, has been

used to enhance the resolution of fluid flow simulations. Fukami et al. [2018]

developed a CNN-based super-resolution algorithm to reconstruct turbulent

flow fields, accurately preserving the energy spectrum. Xie et al. [2018] em-

ployed Generative Adversial Network (GAN)s to further improve the resolu-

tion of flow simulations, demonstrating that ML can provide high-fidelity re-

sults with reduced computational costs.

ML has also found extensive application in both the optimization and con-

trol of fluid systems. To begin with, we cite the comparative analysis by Pino

et al. [2023], where various ML methods for active flow control are assessed.

Among them, Rabault et al. [2019] used deep Reinforcement Learning (RL) to

control oscillatory laminar flows; Bucci et al. [2019] applied Deep RL to control

chaotic systems governed by the Kuramoto-Sivashinsky equation, which is a

benchmark for spatiotemporal chaotic systems; Lee et al. [1997] investigates

the use of NNs, for turbulence control aimed at drag reduction, specifically

employing feedforward NNs trained to optimize control strategies; Colabrese

et al. [2017] applied RL to optimize the movement of micro-swimmers, tiny

artificial agents that navigate fluid environments; Sun et al. [2020] employed

a ML algorithm as a surrogate model to rapidly predict metrics of fluid flow

cases, without performing the entire CFD simulation. In this latter context, ML

can, therefore, also enhance the spectrum of potential configurations by ex-

ploring a larger solution space and even find optimal solutions thatmay seem

not intuitive for engineers.

Despite these benefits, there are some warnings to be aware of when in-

tegrating ML in CFD. Firstly, every ML algorithm is fueled by a huge availability

of data [Jordan andMitchell, 2015]. Moreover, high-quality data are necessary

for an accurate NN training. Generating andmaintaining such data can be re-

sources demanding and computationally expensive, although without it, the

potential of a ML based model is severely limited.

While ML algorithms are often valued for their potential to model complex

patterns, their ability to generalize to unseen scenarios remains a significant

challenge, particularly when the unseen data falls outside the range or vicinity

of the training data. The threshold at which the model’s capability to gener-

alize starts to degrade is typically loose and not well-defined, making predic-

tions beyond the training range less reliable and prone to inaccuracies. These

latter limits, often related to the overfitting and underfitting problems, are of

great concern and must be carefully taken into consideration to avoid poor

prediction results.

19

Eventually, ML algorithms in their original conception, are fully data-driven as

they leverage data to be trained, and they act as a statistical tool on these data.

The physical plausibility of a NN outcome, therefore, is not a-priori granted.

As a consequence, many ML algorithms require the incorporation of physi-

cal constraints during the training process to ensure coherence and reliabil-

ity in their predictions. This process often involves sophisticated techniques

that blend traditional physics-based methods with advanced ML approaches

[Willard et al., 2020]. When used with caution, the application of ML algorithm

to CFD field is, ultimately, leading this latter to a whole new level by improving

the efficiency of classical techniques or reducing the computational expenses

naturally associated with CFD simulations.

1.3 . The chosen physical model: introduction to Reynolds Av-

eraged Navier-Stokes Equations (RANS)

In the realm of CFD, the selection of an appropriate physical model is es-

sential to achieve a balance between computational feasibility and the de-

sired level of accuracy. The most accurate available method is Direct Nu-

merical Simulation (DNS) [Moin andMahesh, 1998], which involves solving the

full, time-dependent NSE without introducing any simplifying assumptions or

modeling approximations. This method directly resolves all scales of turbu-

lence (Sec. 2.3.1), capturing the full spectrum of fluid motion. However, de-

spite the accuracy it offers, the computational cost associated with DNS is

prohibitively high for most practical applications, especially in industrial set-

tings.

In many industrial environments, indeed, the focus often shifts away from

capturing the detailed, chaotic and transient fluid behavior to obtaining key

integral quantities, such as forces on structures, heat transfer rates, or time

averaged flow characteristics over the entire computational domain. These

quantities are typically statistically steady or time-averaged, making a highly

detailed resolution of turbulent structures unnecessary. For these applica-

tions, the trade-off between accuracy and computational efficiency becomes

critical. This is where the RANS model excels. RANS simplifies the problem by

focusing on time-averaged quantities, rather than attempting to resolve the

full turbulent structure at every scale [Pope, 2000].

While this significantly reduces the computational demands, it introduces ad-

ditional challenges: the turbulent fluctuations need to be modeled through

turbulence closure schemes. These schemes provide approximations for the

unknown terms introduced by the averaging process, but their accuracy can

vary depending on the flow conditions. The empirical nature of many turbu-

lence models involve correlations and assumptions that may not hold univer-

sally and as a result, careful calibration of the turbulencemodel to the specific

20

flow conditions is often required to ensure accurate results.

Nonetheless, for many industrial applications, where the primary concern is

obtaining reliable predictions of averaged quantities at a reasonable compu-

tational cost, RANS remains the most widely used approach.

In conclusion, while DNS offers unmatched accuracy by capturing all scales

of turbulence, its computational cost makes it impractical for most real-world

applications, particularly when combined with machine learning (ML) algo-

rithms. These latter, indeed, require large amounts of data and therefore a

huge number of simulations. For these reasons, the RANS model has been

chosen as the reference physical model in this thesis, as it allows for a feasi-

ble integration with ML algorithms.

1.4 . The chosenML architecture: introduction to GraphNeural

Network (GNN)

Figure 1.3: A Graph Neural Network

(GNN) representation

In the realm of ML, selecting the

NN architecture is critical to achieve

optimal performances. While tra-

ditional NN such as Convolutional

Neural Network (CNN)s [LeCun et al.,

1998] or Recurrant Neural Networks

(RNN)s [Hopfield, 1982] have demon-

strated exceptional performance in

processing structured data such as

images or time series respectively,

they face significant limitationswhen

applied to unstructured data, which

is often the case in CFD field. When

dealing with complex geometries or intricate fluid flow cases, indeed, the re-

finement of the mesh is of fundamental importance to achieve accurate re-

sults in the simulation. Structured meshes, exhibiting regular and ordered

elements to represent the computational domain, are sometimes not flexible

enough to handle these cases; unstructured meshes are therefore essential

and lead to great improvement in the simulation accuracy. Therefore, in CFD,

data typically come from spatial discretization in the form of irregular, un-

structured meshes.

To overcome these challenges, Graph Neural Network (GNN)s (Fig. 1.3)

[Scarselli et al., 2008] have emerged as a powerful alternative. Unlike CNNs

or RNNs, GNNs are explicitly designed to operate on graph-structured data,

making them ideally suited for the kind of unstructured, relational data found

in CFD simulations. In a GNN, nodes represent entities such as mesh points,

while edges capture the interactions or dependencies between these entities,

21

mirroring the relationships found in fluid flow simulations mesh points. This

feature improves the capability of this ML architecture to effectively capture

the spatial dependencies between data, leading to a more accurate and real-

istic simulations of the fluid behavior.

Another key aspect of the GNNs is their inherent invariance to permutation

[Scarselli et al., 2008] of the nodes in the graph, meaning that the NN’s output

does not depend on the order of the nodes. This feature is essential for the

generalization capability since it allows the GNN to be completely detached

from the position of the mesh points within the computational domain and

therefore be able to provide predictions for geometric configurations never

seen in the training process.

For all these reasons, the GNN architecture offers an excellent choice for CFD

problems, as a robust and flexible learning framework. It will be the standard

ML base when referring to NN architecture in this thesis.

1.5 . Objectives of the thesis

The main goal of this thesis is to investigate the extent to which a ML al-

gorithm, specifically a GNN, can be effectively integrated into the framework

of RANS simulations in the CFD context. This research focuses on evaluating

various applications of GNNs within RANS simulations to demonstrate their

potential advantages over traditional CFD techniques, particularly in terms of

improving prediction accuracy and reducing computational costs.

The thesis is organized around three key challenges and objectives, each ad-

dressing a critical aspect of the integration of ML models into CFD workflows:

• Addressing the RANS Closure Problem: justified by the growing body of

literature demonstrating the success of data-driven models in learning

complex, nonlinear relationships [Wang et al., 2020, Pfaff et al., 2021],

the first objective of this thesis is to explore whether GNNs can leverage

high-fidelity simulation data, to directly infer the missing RANS closure

term. This approach is focused on transitional flow regimes where the

complexity associated with turbulence modeling is reduced, providing

a proof-of-concept for thismethodology. While not imposing additional

physical constraints, this work explores the feasibility of data-driven clo-

sure modeling in a controlled setting, paving the way for future gener-

alizations.

• Physical Consistency in Data-Driven Approaches: While purely data-driven

models have shown great potential, they are not without limitations. A

common issuewith data-drivenMLmodels is their tendency to produce

physically inconsistent results. For instance, ML models may predict

solutions that violate fundamental physical laws, such as conservation

22

of mass or momentum. The second objective of this thesis is to ad-

dress this challenge by incorporating physical constraints directly into

the training process of the GNN. This approach, that will be referred to

as physics-constrained ML, involves embedding known physical equa-

tions into the architecture of the GNN to guide the learning process.

By doing so, the model is not only trained to minimize error against

the data, but also to ensure that its predictions adhere to key phys-

ical principles. This hybrid approach, combining data-driven learning

with physics-based constraints, is expected to improve the robustness

and reliability of the GNN’s predictions, making it more suitable for real-

world engineering applications where physical consistency is critical.

• Optimization in Fluid Systems: The third objective of this thesis is to test

the proposed GNN architecture in the context of fluid system optimiza-

tion, focusing on a practical case involving the cross-section shape op-

timization of a duct placed around a wind turbine rotor, with the aim

of increasing its power output. The goal, here, is not solely to focus on

the specifics of wind turbine design, but rather to show how GNNs can

transform the optimization process in fluid dynamics applications. In

conventional CFD-based optimization, a series of simulations are run

iteratively with varying control parameters, to converge on an optimal

solution. In this thesis, GNNs are introduced as a surrogate model to

predict the outcomes of different design configurations without need-

ing to run a full CFD simulation for each iteration.

1.6 . Structure of the thesis

The thesis is structured in two parts. In the first part, covering the chapters

2-4, we briefly introduce the theoretical foundations and the methodologies,

including some practical applications of GNN in CFD. In particular, the first

section set the stage providing basic concepts and nomenclature for the CFD

(Sec. 2), including the underlying governing equations (Sec. 2.2), and basics

on the numerical schemes adopted in the thesis. The section also includes a

thorough explanation of the RANS equations (Sec. 2.3), turbulence modeling

challenges (Sec. 2.3.1), and the RANS closure problem (Sec.2.3.3).

Following the CFD section, the thesis shifts into the theoretical framework of

NNs (Sec. 3) before delving into the specific of the GNNs architecture. Sec. 3.7

is dedicated to provide an overview of this NN architecture, covering its key

components (Sec. 3.7.1). The chapter also details the custom GNN designed

in the context of this thesis (Sec. 3.8) and the training algorithms used for the

training process (Sec. 3.8.2). Finally, the first part finalizes with an introduction

to adjoint methods (Sec. 4), adopted to enforce physical constraints directly

into the GNN training loop. In the specific, the adjoint method allows for the

23

efficient calculation of gradients, enabling the model to learn from both the

data and the governing physical equations.

The second part consists of three distinct yet interconnected projects (see

Sec. 1.5) demonstrating the practical application of GNNs to CFD problems.

These projects serve as case studies to highlight the potential benefits of in-

tegrating GNNs into RANS simulations or fluid systems’ optimization. The first

two works in (Sec. 5 and Sec. 6) are adapted from submitted journal articles,

while the third (Sec. 7) is a technical report.

24

2 - Computational Fluid Dynamics (CFD)

2.1 . General Aspect

Figure 2.1: A fluid dynamic simulation

Computational Fluid Dynamics

(CFD) is a branch of fluid mechanics

that uses numerical methods and al-

gorithms to analyze and solve prob-

lems that involve fluid flows (Fig. 2.1).

The development of CFD as a disci-

pline can be traced to the beginning

of the 1960s with the advent of digi-

tal computers. At the very beginning,

this disciplinewas focused on simple

flow problems and laid the founda-

tion for the sophisticated methods used today. It was during the 1970s that

CFD gained its proper traction in scientific research. Over the decades, ad-

vances in computational power, numerical methods, and understanding of

fluid dynamics have transformed CFD into a critical tool in both academic re-

search and industrial applications.

The vast importance of CFD lies in its ability to provide detailed and compre-

hensive insight into fluid flow phenomena without the need for physical pro-

totypes or experiments, which can be expensive and time-consuming. By us-

ing CFD, engineers and scientists can predict performance, identify potential

issues and optimize designs in a virtual environment for fluid dynamics re-

lated applications.

Due to its broad range of applications, from aerospace to biomedical engi-

neering, CFD is nowadays a fundamental tool in modern science.

2.2 . Navier-Stokes (NS) Equations

In CFD, the behavior of fluid flows is governed bymathematical equations

that describe how quantities like velocity, pressure, and temperature evolve

over space and time. The most critical of these equations for CFD are the

Navier-Stokes Equations (NSE), which provide a detailed description of fluid

flow evolution. The NSE are derived from the fundamental principles of con-

servation of mass, momentum and energy and are essential for accurately

modeling fluid dynamics across a wide range of applications.

The NSE are a set of nonlinear Partial Differential Equation (PDE)s, particularly

challenging to solve analytically. Interestingly, the NSE are also at the center

25

of one of the most famous unsolved problems in mathematics, highlighted

by the Millennium Prize Problems.

Given thedifficulty infinding exact closed solutions, thefield of CFDhas emerged

as a practical and powerful alternative. By employing numerical methods,

CFD enables the approximation of solutions to the NSE, making it possible to

simulate complex fluid behaviors in a wide range of engineering and scien-

tific applications. Instead of seeking exact analytical solutions, CFD breaks

down the flow domain into discrete elements and applies numerical tech-

niques to solve the governing equations locally. These numerical methods,

such as the Finite Volume Method (FVM), the Finite Element Method (FEM), or

the Finite DifferenceMethod (FDM), allow for the discretization of the fluid do-

main, transforming the NSE into a system of algebraic equations that can be

solved iteratively. By leveraging the power of computational resources, CFD

has become indispensable for modeling fluid dynamics, enabling engineers

and scientists to predict and analyze flow behaviors that would be otherwise

impossible to capture analytically.

The NSE include the continuity equation (Eq. 2.1), which ensures the con-

servation of mass, the momentum equations (Eq. 2.2), derived from Newton’s

second law, and the energy equation, which accounts for the conservation

of energy within the system. However, in the case of incompressible flows,

which are the focus of this thesis, the energy equation can be neglected. This

simplification is justified by the fact that in incompressible flows, changes in

fluid density are negligible. Consequently, the variations in internal energy,

which the energy equation would capture, are minimal and have little to no

impact on the velocity and pressure fields of the flow [White, 2006].

2.2.1 . Continuity Equation

The equation ensuring the conservation of mass, also referred to as the

continuity equation, for incompressible flows is expressed as

∇ · u = 0, (2.1)

where u = (u, v, w) is the velocity vector representing the fluid velocities in

the x, y and z directions respectively. The physical meaning of this equation

is that, for an incompressible flow, the volume of fluid entering and leaving

any given control volume is balanced, ensuring that no accumulation or de-

pletion of mass occurs over time. In other words, for incompressible flows,

the density of the fluid remains constant, and thus the rate of mass across

any arbitrary boundary must be conserved. Without satisfying this condition,

fluid simulationswould yield physically unrealistic results, such as the artificial

creation or destruction of mass. Therefore, enforcing the continuity equation

is a necessary step to ensure the accuracy and physical relevance of CFD sim-

ulations for incompressible flows.

26

2.2.2 . Momentum Equation

The conservation of momentum equation states that the rate of change

of momentum within a fluid system must be balanced by the forces acting

of the fluid. In other words, the momentum of a fluid element (the product

of mass and velocity) changes over time due to the transport of momentum

(through convection) and the influence of external forces. This fundamental

concept is mathematically represented by the momentum equation, which

for an incompressible Newtonian fluid takes the form:

ρ

�

∂u

∂t
+ u ·∇u

�

= −∇p+ µ∇2u+ F. (2.2)

Each term in this equation has a specific physical meaning, contributing to the

description of how forces and flow dynamics interact within the fluid:

• Density (ρ): represent the fluid’s density, assumed to be constant for

incompressible flows.

• Local Acceleration

�

∂u

∂t

�

: captures the rate of change of the fluid ve-

locity at a specific point in space over time. In steady-state conditions,

this term becomes zero, simplifying the momentum equation further.

• Convective Acceleration (u ·∇u): describes how the velocity changes

due to the movement of the fluid itself. It represents the transport of

momentum by the flow, meaning that as fluid particles move from one

region to another, they carry their momentum with them.

• Pressure Gradient Force (−∇p): where p is the pressure field. This term

reflects the force (per unit area) exerted by pressure differences within

the fluid. Fluids naturally move from regions of higher pressure to re-

gions of lower pressure, and this term drives much of the motion in

many fluid flows. In physical terms, the pressure gradient force repre-

sents the driving force in fluid flows phenomena.

• Viscous Force (µ∇2u): with µ being the dynamic viscosity. This term

accounts for the internal friction within the fluid due to viscosity, which

acts to resist motion and causes the diffusion of momentum.

• External Forces (F): represents any additional forces acting on the fluid

from external sources, such as gravity, electromagnetic fields, or sur-

face tension, which can influence the flow dynamics.

2.2.3 . Non-dimensionalization and Dimensionless Equations

Often the NSE are presented in their non-dimensional form. This process,

known as non-dimensionalization, is a mathematical technique used to re-

duce the number of parameters governing the physical problem. By trans-

forming the dimensional variables into their dimensionless counterpart, the

27

Scaling Parameter Description Dimensionless variable

U Characteristic Speed u
∗
=

u

U
L Characteristic Length x

∗
=

x

L
and∇∗

= L∇

L/U Characteristic Time t∗ =
t

L/U
=

tU

L

P = ρU2 Characteristic Pressure p∗ =
p

ρU2

Table 2.1: Dimensionless Variable

equations are simplified and reveal dominantmechanisms governing the flow

behavior. This approach allows for a clearer comparison of different flow

regimes and systems, regardless of the specific physical units being used.

To beginwith, it is necessary to identify the relevant dimensional variables;

in incompressible flows, they are usually the velocity u = (u, v, w), the spatial

coordinates x = (x, y, z), time t and pressure p. Next, we introduce character-

istic scales to normalize these variables. The characteristic scales represent

typical magnitudes of the relevant physical quantities, chosen based on the

specifics of the problem or the geometry being studied. The typical charac-

teristic scales, summarized in Tab. 2.1, are:

• Characteristic speed U : A representative velocity scale, such as the free-

stream velocity.

• Characteristic length L: A typical length scale, such as the diameter of a

bluff body or the length of an airfoil.

• Characteristic pressure P : A representative pressure scale, often taken

as ρU2, where ρ is the fluid density.

Plugging these dimensionless variables into the dimensional NSE and dividing

by U2/L, the resulting system of equations reads as:

∂u∗

∂t
+ (u∗ ·∇∗)u∗ = −∇∗p∗ +

ν

UL
∇∗2u∗ + F (2.3a)

∇∗ · u∗ = 0 (2.3b)

where ν is the dynamic viscosity. To further simplify, a dimensionless number

can be introduced and referred to as the Reynolds Number (Re)

Re =
ρUL

µ
=

UL

ν
. (2.4)

The Reynolds numberRe is an extremely important dimensionless parameter

that quantifies the relative importance of the inertial forces (which drive the

flow) to viscous forces (which resist the flow). The Reynolds number allows

characterizing different flow regimes

28

• Low Reynolds numbers indicate that viscous forces dominate, leading

to smooth, orderly, and laminar flow.

• Intermediate Reynolds numbers suggest a transitional regime, where

the flow may shift from laminar to turbulent depending on the condi-

tions.

• High Reynolds numbers signify that inertial forces dominate, leading to

chaotic and turbulent flow with significant mixing and irregular fluid

motion.

Critical Reynolds numbers characterize the threshold identifying the shifting

between the different regimes, and can be determined according to the cases

under investigations. By introducing theReynolds number into thenon-dimensional

NSE (Eq. 2.3b), results in the final dimensionless formulation of the NSE:

∂u∗

∂t
+ (u∗ ·∇∗)u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ + F (2.5a)

∇∗ · u∗ = 0. (2.5b)

In the following, the ∗ superscript will be dropped, and the NSE will be always

expressed in their nondimensional form.

2.3 . Reynolds Averaged Navier-Stokes (RANS) Equations

Solving the complete NSE (Eq. 2.5b) for turbulent flows via DNS can be

computationally prohibitive, especially for large-scale, high Reynolds number

flows. The number of Degrees Of Freedom (DOF), or grid points, necessary

for a DNS increases dramatically as the Reynolds number grows. Specifically,

the computational cost of DNS scales with the Reynolds number Re as Re9/4

[Pope, 2000]. This scaling is due to the fact that the smallest turbulent scales

decrease in size asRe increases, which means that finer spatial and temporal

resolutions are required to accurately capture the entire range of turbulent

motions. As a result, for high Reynolds number flows, which are common in

industrial and engineering applications, the number of grid points and time

steps needed to solve the flow can become prohibitively large. For example, a

DNS simulation of turbulent air flow around a large aircraft atRe ∼ 106 would

require a number of grid points on the order ofRe9/4 ∼ 1015. Simulating such

flows usingDNSwould be computationally infeasible with current technology.

Therefore, various approximation methods have been developed to balance

accuracy and computational feasibility.

The RANS approach is one of the most widely used models in industrial ap-

plications. This allows for capturing essential flow features without resolving

every turbulent scale, making it suitable for practical engineering problems.

29

Although this thesis does not focus on turbulence models or turbulent flow

cases, a brief introduction to turbulence is provided for completeness. This

general overview provides the necessary context to better understand how

the RANS equations are derived, and highlights the key differences between

RANS and the full NSE.

2.3.1 . Introduction to turbulence

Figure 2.2: The Kolmogorov Energy

Cascade

Turbulence is a highly complex,

multiscale, chaotic phenomenon that

arises influidflowswhen theReynolds

number (Eq. 2.4) is sufficiently high

and inertial forces dominate over

viscous forces. In turbulent flows,

there is a wide range of energy

scales, from large energy-containing

eddies to small dissipative eddies

where energy is dissipated as heat

due to viscous forces. The Kol-

mogorov Energy Cascade (Fig. 2.2)

better introduces this key concept.

Introduced by Andrey Kolmogorov in 1941, this model explains how energy is

transferred from large eddies down to progressively smaller eddies through

a cascade process until it reaches the smallest scales, called the Kolmogorov

scales, where energy dissipation occurs. The size of the Kolmogorov scale can

be estimated as

η =

�

ν3

ϵ

�0.25

, (2.6)

where ν is the kinematic viscosity and ϵ is the rate of energy dissipation. In

other words, the largest eddies collapse and split into smaller eddies, trans-

ferring energy to finer scales until it eventually dissipates at the Kolmogorov

scale.

For this reason, resolving all turbulent scales, from largest to Kolmogorov

scale, requires fine meshes and appropriate time discretization, which is in-

feasible for most real world applications. Therefore, models are needed to

approximate turbulent behavior without solving every scale explicitly.

2.3.2 . Approximate Models for Navier-Stokes Equations

Tohandle the challenges posedby turbulence, several approximationmod-

els have been developed, each targeting different scales of the turbulence

spectrum. The primary approaches used in relation to the Kolmogorov en-

ergy cascade (Fig. 2.2) are:

30

• Direct Numerical Simulation (DNS): DNS resolves all turbulence scales

by solving the full NSE without any approximation. While DNS provides

highly accurate results, it is computationally prohibitive because it re-

quires resolving the smallest Kolmogorov scales, demanding extremely

fine spatial and temporal discretization.

• Large Eddy Simulation (LES): LES resolves the large, energy-containing

eddies while modeling the smaller dissipative eddies. By resolving only

the large-scale structures, LES reduces computational cost compared

to DNS, but it is still computational demanding, particularly for high

Reynolds number flows or complex geometries. The smallest scales are

approximate using models like the Smagorinsky model [Pope, 2000].

• Reynolds Averaged Navier-Stokes (RANS): RANS completely models the

turbulent phenomenon without resolving any of its scale. By time aver-

aging the fluctuating quantities, this model focuses on the mean flow.

While less accurate than DNS or LES, RANS is computationally efficient

and widely used in cases where steady-state or time-averaged quanti-

ties are of interest, such as for example drag or lift. To approximate the

effects of turbulence on the mean flow, a turbulence closure models is

required. Some of the most commonly used includes the k − ϵ or the

k− ω models as well as the Spalart-Allmaras model (Sec. 2.3.4) [Wilcox,

2006].

• Hybrid RANS/LES: Hybrid RANS/LES models combine the advantages of

both RANS and LES approaches. The idea is to use RANS to model the

flow in regions where turbulence is less significant and the mean flow

dominates, while applying LES in regions where turbulent structures

need to be resolved, such as near walls or in separated flows. This hy-

brid approach offers a compromise, improving accuracy in critical flow

regions while keeping computational costs lower than a full LES simu-

lation.

2.3.3 . From NS to RANS

The transition from the full NSE to theRANS formulation is achieved through

Reynolds decomposition, which separates flow variables into mean and fluc-

tuating components. Given the velocity field u(x, t) = (u, v, w)T , it can be

decomposed as:

u(x, t) = u(x) + u′(x, t) (2.7)

where u(x) = (u, v, w)T represents the time-averaged component of the un-

steady velocity andu′(x, t) = (u′, v′, w′)T is thefluctuating component around

the mean flow. Plugging the Reynolds decomposition (Eq. 2.7) into the NS

31

equations (Eq. 2.5b) and ensamble averaging results in:

u ·∇u+∇p− 1

Re
∇2u = f (2.8a)

∇ · u = 0, (2.8b)

where p is the mean pressure field and the term f is the Reynolds stress ten-

sor. The introduction of the Reynolds stresses brings additional unknowns

to the system, making the equations underdetermined. To close the system,

turbulence closure models are used, the most common of which are detailed

in Sec. 2.3.4, which approximate the Reynolds stresses based on known quan-

tities. Ideally, f can be directly computed, when data are available, as:

f = −∇ · (u′u′) (2.9)

In practice, mathematically computing f requires sufficient statistical conver-

gence of the second-order statistics, which can be achieved through either

DNS or experimental measurements. While time-resolved data can provide

detailed insights, techniques such as Laser Doppler Velocimetry (LDV), which

provide pointwise measurements, or Particle Image Velocimetry (PIV), which

provide spatially resolved data, are often sufficient for obtaining reliable sta-

tistical averages. This challenge is commonly referred to in CFD as the RANS

closure problem.

2.3.4 . RANS Turbulence Closure Models

This section provides a concise overview of the most widely used turbu-

lence closure models for RANS equations. The theoretical foundations and

equations presented here are derived primarily from Wilcox [2006], a com-

prehensive reference on turbulence modeling. The Reynolds stress tensor,

f (Eq. 2.9), which appears in the RANS formulation, introduces additional un-

knowns. A turbulence closure model provides practical, computationally ef-

ficient approximations for these terms. Among the many turbulence closure

models exiting in the literature for engineering applications, the most widely

used are the k-ϵmodel, the k-ω model and the Spalart-Allmaras model. Each

of these models is fundamentally based on the Boussinesq approximation

which models the Reynolds stresses as:

−u′u′ = νt(∇u+∇uT)− 2

3
kI (2.10)

where νt is the turbulent or eddy viscosity, k is the turbulent kinetic energy

contributing to the isotropic component of the stress, and I is the identity ma-

trix, ensuring that k contributes only to the normal (diagonal) components.

It is important to note that the Spalart-Allmaras model omits the term −2

3
kI,

due to its formulation, which does not explicitly depend on turbulent kinetic

32

energy. Consequently, it employs the resulting simplified expression for the

Reynolds stresses. A short description of themost usedmodels (non-exhaustive

list) is provided below:

• k-ϵmodel: it is one of the most widely used two-equation models in

CFD for RANS-based turbulence modeling. It introduces two transport

equations, one for the turbulent kinetic energy (k) and another for the

rate of turbulent dissipation (ϵ). The transport equation for the turbu-

lent kinetic energy k is formulated as:

∂k

∂t
+ (u ·∇)k = Pk − ϵ+∇ ·

��

ν +
νt

σk

�

∇k

�

(2.11)

where ϵ is the turbulent dissipation rate, σk is a model constant con-

trolling the diffusion of k, νt represents the turbulent viscosity, whose

expression will be provided in Eq. 2.14 below, and Pk is the turbulent

kinetic energy production term expressed as:

Pk = νt(∇u : ∇u) (2.12)

The transport equation for the turbulent dissipation rate ϵ is given by:

∂ϵ

∂t
+ (u ·∇)ϵ = Cϵ1

ϵ

k
Pk − Cϵ2

ϵ2

k
+∇ ·

��

ν +
νt

σϵ

�

∇ϵ

�

(2.13)

where σϵ is a model constant for the diffusion of ϵ and Cϵ1 and Cϵ2 are

empirically derived constants. The turbulent viscosity νt is computed

as:

νt = Cµ
k2

ϵ
(2.14)

where Cµ is a model constant. The standard k-ϵmodel is based on the

following constants [Launder and Sharma, 1974]:

Cϵ1 = 1.44, Cϵ2 = 1.92, Cµ = 0.09, σk = 1.0, σϵ = 1.3 (2.15)

The k-ϵ model is widely used due to its computational efficiency and

versatility, particularly in free-shear flows such as jets andmixing layers.

However, a notable disadvantage is its limited accuracy near walls, es-

pecially in flowswith strong pressure gradients, separations, or adverse

wall effects. The model also assumes isotropy in turbulence, which lim-

its its accuracy inflowswith high anisotropy, such as swirling or complex

separated flows.

• k-ω model: another widely used two-equations turbulence model, sim-

ilar in the structure to the previous k-ϵmodel. This approach often en-

hances performance in boundary layers and flows with adverse pres-

sure gradients. The transport equation for k in the k-ωmodel is formu-

lated as:

∂k

∂t
+ (u ·∇)k = Pk − β∗kω +∇ ·

��

ν + σ∗
k

ω

�

∇k

�

(2.16)

33

where Pk is the kinetic energy production term as defined in Eq. 2.12, β
∗

and σ∗ are model constants.

The transport equation for the specific dissipation rate ω is given by:

∂ω

∂t
+(u ·∇)ω = α

ω

k
Pk−βω2+

σd

ω
∇k∇ω+∇ ·

��

ν + σ
k

ω

�

∇ω

�

(2.17)

where α, β, σd and σ are model constants controlling the balance be-

tween production and dissipation of ω. With these equations, the eddy

viscosity νt is calculated as:

νt =
k

ω
(2.18)

The k-ωmodel is effective in simulating flows with strong adverse pres-

sure gradients and boundary layer effects, which makes it a preferred

choice for applications involving near-wall regions and complex bound-

ary layer behaviors. However, thismodel canbe sensitive to free-stream

boundary conditions, which may lead to inaccuracies in flows where

boundary conditions are uncertain or vary significantly.

• Spalart-Allmaras model: is a one-equation turbulence model. Unlike

the k-ϵ and k-ωmodels, the Spalart-Allmaras model uses a single trans-

port equation for a modified eddy viscosity ν̃. This design simplifies

the model, which is effective for boundary-layer-dominated flows. The

transport equation for ν̃ is given by:

∂ν̃

∂t
+ (u ·∇)ν̃ = Cb1S̃ν̃ +

1

σ
∇ · ((ν + ν̃)∇ν̃)

+
Cb2

σ
(∇ν̃) · (∇ν̃)− (Cw1fw)

ν̃2

d2

(2.19)

where d is the distance to the nearest surface and σ, Cb1, Cb2, Cω1 are

model constants. The function fω depends on themodel constant while

S̃ is defined as:

S̃ = S +
ν̃

k2d2
fv2 (2.20)

fv2 being a function of the model constants and S being the magnitude

of the mean strain rate, defined as:

S =
p

2ΩijΩij (2.21)

with Ωij as the rotation tensor.

The eddy viscosity is then determined as:

νt = ν̃fv1 (2.22)

where fv1 is a function designed to adjusts ν̃ in near walls regions, im-

proving performance in boundary layers. The Spalart-Allmaras model,

34

as a one-equationmodel, is computationally simpler andmore efficient

than two-equation models. However, the model is limited in accurately

capturing complex turbulent flows with separation, reattachment, or

high anisotropy, as it lacks a term explicitly representing turbulent ki-

netic energy.

In contrast to the turbulence closure models discussed above, this thesis em-

ploys a fundamentally different approach by directly deriving the Reynolds

stresses f from their analytical formulation (Eq. 2.9), as obtained from the fluc-

tuating components in DNS data. Unlike turbulence models, which impose

predefined assumptions on turbulence structure and behavior, this method

seeks to represent the turbulent stress tensor using information directly re-

solved by DNS, reducing reliance on potentially restrictive or inaccurate as-

sumptions. While this method avoids the explicit modelling assumptions in-

herent to traditional turbulence closuremodels, the computation of Reynolds

stresses from DNS data requires careful consideration of statistical conver-

gence to ensure accurate representation of the turbulent stress tensor. This

thesis aims to mitigate these limitations by combining high-fidelity DNS data

withmachine learning techniques that are capable of capturing complex, non-

linear dependencies within the data. The goal is to train ML models that are

not only informed by accurate data derived from DNS but also generalizable

to new, unseen flow conditions beyond those explicitly simulated. By mini-

mizing explicit bias in the initial formulation of the Reynolds stress tensor, the

ML model is provided with the flexibility to explore a broader range of poten-

tial relationships within the data. However, this flexibility is contingent upon

the statistical reliability of the DNS-derived stresses, which requires rigorous

preprocessing and validation to ensure consistency. The resulting model, in-

formed by high-fidelity data and guided by machine learning inference, re-

tains the full complexity of turbulent structures while aiming to generalize

beyond the specific conditions of the original dataset.

35

2.4 . Finite Element Methods (FEM)

2.4.1 . Introduction

Figure 2.3: Boris Grigorye-

vich Galerkin (Polotsk, 1871 –

Moscow, 1945)

Finite Element Method (FEM) is a numer-

ical technique developed to find approxi-

mate solutions to complex PDEs in various

engineering and scientific disciplines [Logg

et al., 2012]. Its original formulation can be

traced to the 1940s and 1950s, when it was

primarily developed for structural analysis in

aerospace engineering. The method gained

widespread adoption in the 1970s due to ad-

vances in digital computing and numerical

methods.

In CFD, FEM is used to numerically solve the

NSE and other governing equations of fluid

dynamics. The core strength of the FEM

method is in its flexibility in handling com-

plex geometries and fluid dynamic configu-

rations.

The application of FEM typically follows a structured process that includes

the following key steps:

• Spatial and Temporal Discretization: The first step is to discretize both

the spatial and temporal domains. The physical domain is divided into

finite discrete elements that cover the problem space, known asmesh.

In case of time-dependent problems, the simulation time is also divided

into discrete time steps, enabling the solution to evolve incrementally

over time.

• Weak Formulation: The governing PDEs are transformed into theirweak

form, typically through the Galerkin (Fig. 2.3) method. The weak form

reduces the complexity of the equations, making them suitable for nu-

merical solutions.

• Assembly of Global System of Equations: The local equations fromeach

element are then assembled into a global systemof algebraic equations

that represents the entire problem domain.

• Boundary Conditions: Applying appropriate boundary conditions is cru-

cial to ensure a physically meaningful solution. These conditions can

include prescribed velocities or pressures at the domain boundaries,

and their correct implementation significantly affects the accuracy of

the simulation.

36

Figure 2.4: (Left) Structured mesh (Right) Unstructured mesh

• Numerical Solver: Finally, the assembled system of equations is solved

using iterative numerical techniques. Given the large size of the systems

involved in CFD, specialized solvers are used to efficiently handle the

sparse matrices resulting from the FEM discretization.

2.4.2 . Spatial and Temporal Discretization

Spatial discretization refers to subdividing thephysical domain into smaller,

discrete elements, resulting in what is known as the mesh. The quality and

type of spatial discretization are crucial, as they directly influence the accu-

racy and computational efficiency of the CFD simulation. The two primary

types of meshes are:

• Structured Meshes (Fig. 2.4, Left): These are characterized by a regular,

grid-like arrangement of elements, where each element (triangular, quadri-

lateral or hexahedral) follows a predictable and ordered pattern. The

discretized domain can therefore be described by a uniform Cartesian

grid:

xi = i ·∆x, yj = j ·∆j, (2.23)

with i, j being the index of the node and∆x and∆y the element size in

x and y direction, respectively. This regularity allows for efficient imple-

mentation, but structured meshes are less flexible in handling complex

geometries or localized refinement, which is often required in CFD.

• Unstructured Meshes (Fig. 2.4, Right): These meshes are composed of

elements arranged in an irregular pattern. The flexibility of unstruc-

tured meshes makes them ideal for handling complex geometries, as

they can easily adapt to curved surfaces, sharp corners, and varying lev-

els of detail. The flexibility of unstructured meshes comes at the cost

of increased computational complexity and a more challenging solver

implementation.

37

The choice between these two types of meshes hugely depends on the spe-

cific requirements and necessity of the CFD simulation.

In addition to discretizing space, temporal discretization is necessary for

time-dependent problems. This process involves breaking the time domain

into discrete intervals, called time steps, and approximating the time deriva-

tives in the governing equations using finite difference methods. There are

several commonly used methods for temporal discretization:

• Explicit Methods: In an explicitmethod, such as the forward Eulermethod,

the time derivative is approximated as:

∂u

∂t
≈ un+1 − un

∆t
(2.24)

where n represents the time step. The future state un+1 is computed

directly from the known value at the current time step un. These meth-

ods are simple to implement, but they are conditionally stable. The time

step size must, indeed, be sufficiently small to ensure that information

does not travel more than one grid cell in a single time step. This con-

dition is known as Courant-Friedrichs-Lewy (CFL) condition and for the

stability of explicit methods must be satisfied as:

CFL =
U ·∆t

∆x
≤ 1 (2.25)

where U is the characteristic velocity, ∆x is the spatial mesh size, and

∆t is the time step size. For problems with rapid changes or high ve-

locities, this can lead to an impractically small time step, increasing the

computational cost.

• Implicit Methods: In an implicit method, such as the backward Euler

method, the time derivative is approximated as:

∂u

∂t
≈ un − un−1

∆t
(2.26)

where n represents the time step. While implicit methods are compu-

tationally more expensive, they are unconditionally stable, allowing for

larger time steps without risking instability.

• Crank-Nicolson Methods: This method is a combination of explicit and

implicit methods. It averages the forward Euler and backward Euler

methods to achieve second-order accuracy in time and it balances the

accuracy of explicit methods with the stability of implicit methods

The coupling between spatial and temporal discretization impacts the stabil-

ity and convergence of the simulation [Drazin and Reid, 2002, Charru, 2011].

38

For instance, finer meshes in regions of interest (e.g., boundary layers or ar-

eas with steep gradients) necessitate smaller time steps in explicit methods,

increasing the overall computational cost. Implicit methods, though compu-

tationally intensive, allow for larger time steps, making them better suited

for simulations where long-term accuracy is prioritized over computational

speed.

2.4.3 . Weak Formulation

Named after Boris G. Galerkin (Fig. 2.3), a Russian mathematician, the

Galerkin method is a key component of the FEM since it allows to convert a

PDE into a system of algebraic equations that can be solved numerically. The

essence of the Galerkin method lies in approximating the solution of a PDE as

a linear combination of basis functions, transforming a continuous problem

into a discrete one.

Consider a PDE such as the Poisson equation, which often arises in physics

and engineering problems. The equation is given by

−∇2u = s, (2.27)

where u is the unknown solution and s is a source term.

The first step in FEM consists of deriving a weak form (or variational form)

of the PDE. This is done by multiplying the governing equation by a test func-

tion v, chosen from a suitable function space, and integrating over the com-

putational domain Ω

−
Z

Ω

v∇2udΩ =

Z

Ω

vsdΩ. (2.28)

The test function v is typically chosen from the same function space as the

trial (or solution) function u. The appropriate function space is typically the

Sobolev space,H1(Ω), which consists of functions that are square-integrable

along with their first derivatives. Mathematically, this is expressed as

H1(Ω) =
�

u ∈ L2(Ω)|∇u ∈ L2(Ω)
	

, (2.29)

which ensures that u and∇u are square-integrable on the computational do-

main and thus that the integral is well-defined and meaningful in the weak

form. To reduce the complexity of the equation and lowering the order of

differentiation required, an integration by parts is then applied. Applying this

technique to the weak form of the Poisson equation leads to

Z

Ω

∇v ·∇udΩ−
Z

∂Ω

v∇u · ndT =

Z

Ω

vsdΩ, (2.30)

where ∂Ω is the boundary of the domainΩ andn is the outward normal to the

boundary. This latter formulation involves quantities defined on the bound-

ary of the domain, therefore incorporating appropriate boundary conditions

39

is crucial as they are essential in ensuring that the solution behaves as ex-

pected at the edges of the domain (Sec. 2.4.5).

Once the weak form has been established, the next step is to approximate

the solution u and the test function v using basis functions (also called shape

functions). These functions are defined locally on each element of the dis-

cretized mesh and represent the solution in terms of its values at the mesh

nodes. The finite element approximation of the solution and test functions

can be written as

uh =
N
X

i=1

Uiϕi, vh =
N
X

i=1

Vjϕj , (2.31a)

where uh and vh are the approximated solution and test function, respec-

tively; ϕi and ϕj are the basis functions, typically chosen to have local sup-

port, meaning that they are non-zero only over a small number of elements;

Ui and Vj are the unknown coefficients that need to be determined, and N is

the total number of nodes in the mesh.

2.4.4 . Assembly of Global System of Equations

The solution and the test functions are approximated by a finite set of

basis (or shape) functions. For each element e in the mesh, a local version

of the weak form is computed, producing a local stiffness matrix Ae and a

local force vector Fe. These local matrices and vectors are derived from the

integration of the weak form over each element, using the shape functions

defined for that element.

To form the global system of equations, the contributions from each element

need to be combined. For the entiremesh, this results in the following system:

AU = F, (2.32)

whereA is the global stiffnessmatrix,U is the vector of unknown coefficients

at each node in the mesh, and F is the global force vector. The global stiff-

ness matrix A and the global force vector F are obtained by assembling the

contributions from all the elements in the mesh:

A =
X

e

Ae F =
X

e

Fe (2.33a)

The stiffness matrix A that results from this process is typically sparse. This

means that most of the entries in thematrix are zero. The sparsity ofA is one

of the key advantages of FEM because it allows the system of equations to be

solved efficiently, even for large-scale problems.

40

2.4.5 . Boundary conditions

Boundary conditions are essential in defining a well-posed problem in the

FEM. They describe how the solution behaves at the boundaries of the com-

putational domain and must be carefully incorporated into the weak form of

the PDEs. Depending on the nature of the PDE and the problem being solved,

different types of boundary conditions can be applied.

• Dirichlet Boundary Conditions: specify the value of the solution on the

boundary of the domain. These conditions are used when the value of

the variable being solved for (e.g., temperature, velocity, or displace-

ment) is known or fixed at certain points on the boundary. In the con-

text of FEM, Dirichlet boundary conditions are applied directly to the

trial function u. This is typically done bymodifying the basis functions to

respect the boundary conditions. For example, if the solution u is fixed

at a certain boundary node, then the corresponding entry in the global

system of equations is adjusted to reflect this known value. Mathemat-

ically, Dirichlet boundary conditions take the form:

u = g on ∂ΩD (2.34)

where g is the prescribed value at the Dirichlet boundary ∂ΩD.

• Neumann Boundary Conditions: specify the value of the derivative of

the solution normal to the boundary. These conditions are often used

when the flux or gradient of a variable is known along the boundary.

Mathematically, Neumann conditions are written as:

∂u

∂n
= h on ∂ΩN (2.35)

where ∂u

∂n
is the derivative of the solution normal to the boundary ∂ΩN ,

and h is the prescribed flux or gradient. These conditions are incorpo-

rated into the weak form through the boundary integral term, which

arises during the integration by parts process.

• Mixed Boundary Conditions: involve the application of both Dirichlet

and Neumann conditions on different parts of the boundary. This is

common in many real-world problems, such as fluid flow, where one

part of the boundary may have a specified velocity (Dirichlet), while an-

other partmay have a specified stress or flux (Neumann). Incorporating

mixed boundary conditions requires careful handling during the formu-

lation and solution process, ensuring that both types of conditions are

appropriately enforced in the weak form and the system of equations.

The Dirichlet conditions directly modify the solution, while Neumann

conditions are incorporated via the boundary integral terms.

41

2.4.6 . Numerical Solver

Depending on the nature of the underlying PDE, the resulting system can

either be linear or nonlinear.

For linear systems (i.e., when the governing equations and boundary con-

ditions are linear), solvers can be broadly classified into direct solvers and

iterative solvers. Direct solvers, such as Gaussian elimination and LU decom-

position, compute the solution by manipulating the matrix to eliminate un-

knowns. Thesemethods are accurate but computationally expensive for large

systems. Iterative solvers, such as Conjugate Gradient (CG) and GMRES, are

more efficient for large, sparse systems. These methods iteratively approxi-

mate the solution by refining an initial guess, making them more suitable for

the large-scale linear systems common in FEM.

For nonlinear systems of equations, the relationship between the solu-

tions and the governing equations exhibits nonlinear behavior. These sys-

tems arise naturally inmanyfields, including problems governedbyNSE. There

are several iterative methods available for solving nonlinear systems. The

Newton’s method is the most widely used approach for nonlinear systems.

It iteratively refines the solution by linearizing the system at each step using a

Taylor series expansion. The Quasi-Newton methods approximate the Jaco-

bianmatrix, reducing the computational cost compared to Newton’s method.

Finally, the Newton-Krylov methods combine Newton’s method with Krylov

subspace solvers (like GMRES) to handle large systemswithout explicitly form-

ing the Jacobian matrix.

Although thesemethods canbeused in various contexts, Newton’smethod

is the solver employed in this thesis due to its effectiveness for handling the

nonlinearities characterizing the NSE and for its quadratic convergence when

the initial guess is close to the true solution. Details of the numerical setting,

including boundary conditions and time integration scheme, are provided in

Chapter 5.

42

3 - Machine Learning (ML)

ML provides a vast range of tools and approaches, from traditional lin-

ear models to advanced deep learning techniques, each suited to different

types of data and analytical goals. However, given the specific objectives of

this thesis, the focus will be directed toward NNs and GNNs. On one hand,

NNs provide a general structure for capturing complex relationships across

data, while GNNs extend this capability specifically to graph-structured data,

aligning with the scope of the present thesis.

3.1 . Basic structure of a Neural Network (NN)

At the core of any NN is the artificial neuron also known as Perceptron

[Rosenblatt, 1958], which mimics the behavior of biological neurons in the

brain. While biological neurons receive electrical impulses through synapses,

artificial neurons receive input values. Although the biological analogy is in-

spiring, NNs are based on mathematical principles, where artificial neurons

process inputs, apply transformations, and produce outputs that drive pre-

dictions or decisions.

Figure 3.1: (Left) A Perceptron and (Right) a Multi-Layer Perceptron MLP rep-

resentation.

Each neuron performs a simple mathematical operation by combining

these inputs into a weighted sum, adding a bias term, and then passing the

result through a non-linear function known as the activation function. With

reference to Fig. 3.1 (Left), the operation of a Perceptron can be expressed

mathematically as:

z =

n
X

i=1

wixi + b (3.1)

43

where z is the pre-activation value, xi are the inputs to the neurons, wi are the

weights applied to each input, b is the bias term and n is the number of in-

put nodes. The weights wi represent the strength of the connection between

two neurons, while the bias b helps the neuron to adjust its output indepen-

dently of its inputs, adding flexibility to the model. A compact representation

of Eq. 3.1, particularly useful when handling inputs of higher dimensions, i.e.

xi ∈ R
m, can be expressed in matrix notation as:

z = WTx+ b, (3.2)

where x ∈ R
n×m is the input tensor,WT ∈ R

f×n is the weight tensor, z ∈
R
f×m is the pre-activation tensor, b ∈ R

f×m is the bias tensor, n is the number

of input nodes,m is the dimension of xi and f is the number of output nodes.

Once the neuron computes the weighted sum z, it passes the result through

an activation function σ(z), which introduces non-linearity and provides the

output y

y = σ(z). (3.3)

Non-linearity is essential because, without it, the NN would behave like a sim-

ple linear model, unable to capture complex patterns in data. Some com-

monly used activation functions include (non-exhaustive list):

• Linear Activation function: is the simplest form of activation, where the

output is directly proportional to the input. However, since it does not

introduce any non-linearity, a network with only linear activations be-

haves like a linear model regardless of the number of layers:

σ(z) = z. (3.4)

• Sigmoid function: maps the output to a range between 0 and 1, and

it’s useful in the output layer for binary classification, where the output

represents a probability.:

σ(z) =
1

1 + e−z
. (3.5)

• Hyperbolic Tangent (Tanh): similar to the Sigmoid function but outputs

values between−1 and 1, often leading to faster convergence in certain

tasks:

σ(z) = tanh(z) =
ez − e−z

ez + e−z
. (3.6)

• Rectified Linear Unit (ReLU): themost popular activation function in deep

learning, ReLU outputs z if z > 0 and 0 otherwise. ReLU is computation-

ally efficient and well-suited for hidden layers in deep neural networks:

σ(z) = max(0, z) (3.7)

44

• Softmax: is used in the output layer of neural networks when handling

multi-class classification problems. It converts the raw output scores

into probabilities that sum to 1, providing a normalized distribution

across all possible classes. In the following equation, zi represents the

score for class i, and the denominator normalizes the values across all

classes j:

σ(zi) =
ezi

P

j e
zj
. (3.8)

The choice of activation function can significantly affect the performance of

a NN. There is no universal rule for selecting the best activation function; in-

stead, the optimal choice heavily depends on the specific problem being ad-

dressed, and empirical experimentation is often necessary. The artificial neu-

ron thus serves as the building block for all NNs, where theweights and biases

are adjustable parameters that are learned during the training process.

When Perceptrons start to be stacked together, a more complex network

emerges, knownasMulti-Layer Perceptron, see Fig. 3.1 (Right) [Rosenblatt, 1958].

TheMLP extends the concept of the Perceptron by introducingmultiple layers

of neurons, organized into an input layer, one or more hidden layers, and an

output layer. Each layer can be fully connected to the next, meaning that each

neuron in a given layer is connected to every neuron in the following layer.

3.2 . Functioning of a Neural Network (NN)

The functioning of a NN, particularly during training, revolves around two

keyprocesses: forward propagation andbackward propagation [Rumelhart et al.,

1986]. These two stepswork together to enable the network to learn fromdata

and improve its predictions.

With reference to Fig. 3.1 (Right), in the forward propagation step, input data

is fed into the network, processed through each hidden layer of neurons, and

transformed into an output. Starting from the input layer, the flowing of in-

formation in an MLP can be mathematically described as follows, in matrix

notation

• Input to the first hidden layer:

z(1) = W(1)x+ b(1) (3.9a)

a(1) = σ(z(1)). (3.9b)

• Subsequent hidden layers:

z(l) = W(l)a(l−1) + b(l) (3.10a)

a(l) = σ(z(l)). (3.10b)

45

• Output layer:

y = W(L)a(L−1) + b(L), (3.11)

whereW(i) are the weight matrices, x the input vector, y the output vector,

a(i) the inner layer vectors, b(i) the bias vectors, σ the non-linear activation

functions; the apex represents the step index in the NN structure, ranging

from 1 (input layer) to L (output layer). The final output of the network is the

result of this process and represents the network’s prediction. Depending on

the task at hand, the output can be interpreted as a classification, regression

value, or any other target.

Once the forward pass is complete, the network compares its predicted out-

put ŷ with the actual target value y using a loss function. The loss function

quantifies the error between the predicted and actual values, guiding the net-

work in learning how to improve its predictions. Among several loss functions

available, the most common include (non-exhaustive list):

• Mean Squared Error (MSE): for regression tasks. It calculates the aver-

age squared difference between the predicted and actual values as:

MSE =
1

n

n
X

i=1

(yi − ŷi)
2. (3.12)

• Cross-Entropy Loss: for classification tasks. It compares the predicted

probability distribution ŷ with the true distribution y, driving themodel

to assign higher probabilities to the correct classes:

Cross-Entropy = −
n
X

i=1

yi log(ŷi). (3.13)

After the loss is calculated, the network enters the backward propagation

step, where it adjusts its weights and biases to reduce the loss in future pre-

dictions. Backward propagation works by computing the gradients of the loss

function with respect to each weight and bias in the network using the chain

rule from calculus. This process estimates how much each weight and bias

in the network contribute to the error. Then, weights and biases of the NN

are adjusted using an optimization algorithm. Among several optimization

methods available, the most common include (non-exhaustive list):

• Stochastic Gradient Descent (SGD): SGD is one of the most commonly

used optimization algorithm. The term stochastic refers to the random-

ness introduced by using only a random subset xN ⊂ X of data ex-

tracted from the datasetX, rather than the full dataset, when comput-

ing the required gradients. This randomness often helps escape local

minima or saddle points, allowing the network to find a better global

46

optimum.

Each update of the weights for the l-th layer of the NN in SGD is calcu-

lated as:

W(l) ← W(l) − η
∂L(xN)

∂W(l)
(3.14a)

b(l) ← b(l) − η
∂L(xN)

∂b(l)
(3.14b)

where xN represents the portion of the data used to compute the gra-

dients and η is the learning ratewhich controls the step size in the gradi-

ent direction. ∂L(xN)/∂W(l) and ∂L(xN)/∂b(l) are the gradients of the loss

function with respect to the weights matrix and the bias vector, respec-

tively.

• Adaptive Moment Estimation (ADAM): ADAM is an advanced optimiza-

tion algorithm. Instead of using a single global learning rate, ADAM

maintains adaptive learning rates for each parameter based on the first

and secondmoments (mean and uncentered variance) of the gradients.

A complete forward-backward loop on each data x in the training datasetX is

called an epoch. The number of epochs determines howmany times the entire

dataset is passed through the network during the training phase. The training

process continues until the loss converges, meaning that additional training

no longer leads to significant improvements, or until a specified number of

epochs is reached. The network typically improves over multiple epochs, but

it’s important to monitor the loss to avoid some of the common problems

found when training a NN.

3.3 . Neural Networks (NNs) as Universal Approximator

One of the most remarkable properties of NNs is their ability to function

as Universal Approximators. This concept, formalized by Cybenko [1989] for

sigmoid activation functions and later extended by Hornik [1991], is known as

the Universal Approximation Theorem. It’s definition asserts:

Universal Approximation Theorem. Let σ be a continuous, bounded, and

non-constant activation function. Then for any continuous function f defined on

a compact subset K ⊂ R
n and for any ϵ > 0, there exists a feedforward neural

network with a single hidden layer and a finite number of neurons such that the

network’s output f̂ approximates f within ϵ, i.e.,

|f(x)− f̂(x)| < ϵ ∀x ∈ K

In other words, this theorem states that a feedforward NN, with at least

one hidden layer containing a sufficient number of neurons, can approximate

47

any continuous function to any desired degree of accuracy. The theoremhigh-

lights the immense expressive power of NNs, making them capable of repre-

senting highly complex, non-linear relationships between inputs and outputs.

The two conditions posed in the theorem definition are critical requirements;

firstly, the activation function must be non-linear. In the case of a linear ac-

tivation function, the network’s output would simply be a linear combination

of the inputs, limiting the network to modeling only linearly separable data.

Secondly, the activation functionmust be bounded, meaning that there exists

some constantM > 0 such that |f(z)| ≤ M for all z ∈ R
n.

The Universal Approximation Theorem guarantees that NNs can, in principle,

learn and approximate any continuous function as long as they have suffi-

cient capacity, meaning enough neurons and layers.

However, it’s important to note that the theorem only guarantees the exis-

tence of a network capable of approximating the function, but it doesn’t pro-

vide practical guidance on how to design such a network or how to efficiently

train it. In practice, achieving good approximations often requires careful ar-

chitecture design, hyperparameter tuning, and a well-chosen training algo-

rithm.

In addition, the theorem doesn’t account for the generalization ability of the

network. A model that perfectly approximates a function on the training data

may not generalize well to unseen data if it has been overfitted. Thus, while

neural networks have the power to approximate any function, considerations

such asmodel expressivity, complexity, and generalization are crucial for real-

world applications.

3.4 . Types of Neural Networks (NNs)

NNs come in a great variety of architectures, each suited to different types

of data and tasks. The architecture chosen for a specific task depends on the

nature of the data, the complexity of the problem, and the desired output.

Below are the primary types of neural networks, their structural characteris-

tics, and their typical applications (non-exhaustive list):

• Multi-Layer Perceptron (MLP)s: the simplest form of Neural Network,

characterized by the presence of one or more hidden layers between

those of input and output. In these networks, data flows in a unidirec-

tional manner, passing through the various hidden layers, with each

neuron in one layer connected to all neurons in the subsequent layer.

MLP utilize non-linear activation functions (Sec. 3.1) which allow them to

learn complex representations from the data. This architecture is par-

ticularly effective for classification and regression tasks, making them

suitable for a wide range of applications, including image recognition,

data analysis, and predictive modeling.

48

• Convolutional Neural Network (CNN)s: specifically designed to process

data with a grid-like topology, such as images or videos. CNNs utilize

a specialized layer known as the convolutional layer, which applies fil-

ters or kernels over the input data to automatically detect and learn

important features such as edges, textures, or complex patterns. This

is followed by pooling layers that reduce the spatial dimensions of the

data, helping to reduce the computational cost by retaining only the

most important features.

• Recurrant Neural Networks (RNN)s: designed to handle sequential data,

where the order of the inputs is important. RNNs have connections that

form cycles, allowing the network to maintain a memory of previous in-

puts by passing information forward through time. This makes RNNs

especially suited for tasks that require the network to reproduce the

temporal correlation and dynamics underneath the data.

• Autoencoders: primarily used for unsupervised learning. The architec-

ture consists of two main components: an encoder, which compresses

the input data into a low-dimensional latent space, and adecoder, which

reconstructs the original input from this compressed representation.

The goal is to learn an efficient representation of the data in the latent

space that captures themost salient features. Autoencoders are widely

used for dimensionality reduction, anomaly detection, and data gener-

ation.

• Generative Adversial Network (GAN)s: consist of two competing NNs: a

generator and a discriminator. The generator’s task is to create realistic-

looking fake data samples (e.g., images, videos, or audio), while the dis-

criminator tries to distinguish between real and fake data samples. The

two networks are trained simultaneously in a game-theoretic frame-

work, where the generator improves by "fooling" the discriminator, and

the discriminator improves by getting better at detecting fakes. GANs

have revolutionized the field of generative models, producing highly re-

alistic images, video, and audio content.

• Graph Neural Network (GNN)s: designed to handle data represented in

graph structures, where relationships between entities are defined by

edges. GNNs excel at capturing complex dependencies and relation-

ships between entities in unstructured data. In GNNs, nodes represent

data points, and edges represent the relationships or interactions be-

tween them. Due to their unique ability tomodel relationships between

entities, GNNs are increasingly used in fields like network analysis, so-

cial networkmodeling, recommendation systems, andmolecular chem-

istry. More recently, GNNs have been applied to CFD to model fluid

49

interactions, making them an emerging tool in this field.

3.5 . Limitations of Neural Networks (NNs)

Despite their success, traditional NNs face several limitations that restrict

their scalability, interpretability, and efficiency in real-world applications.

A first concern is about the scalability of these structures. As NNs grow in

size to handle complex tasks, their computational complexity increases ex-

ponentially. Training deep networks with millions (or billions) of parameters

requires substantial computational resources and can take significant time,

especially when dealing with large datasets. This high resource demand can

make NNs impractical for real-time or resource-constrained environments.

Directly related to this problem is the high energy consumption and, as ex-

tension, the environmental impact concerns, emphasizing the need for more

efficient and sustainable AI technologies.

Another key limitation of NNs is their black box nature, which results from

their lack of transparency in decision-making. The internal processes of a NN

are indeed not easily interpretable, making some outputs difficult to explain.

This characteristic can pose challenges in sensitive domains such as health-

care, finance, and autonomous systems, where decisions need to be both

explainable and reliable.

Moreover, NNs are data-hungry and require large amounts of labeled data to

perform well. This dependence can be a bottleneck in data-scarce fields. Ad-

ditionally, traditional NNs often struggle with generalization to unseen data,

especially when trained on narrow or biased datasets. NNs are often ineffi-

cient in termsof parameter utilization. While they are powerful universal func-

tion approximators, traditional feedforward architectures can require a dis-

proportionately large number of parameters to represent even simple func-

tions in low-dimensional spaces. In an attempt to overcome these limitations,

researchers are developing advanced NN architectures and research focuses

on energy-efficient models, enhancing explainability through Explainable AI

[Barredo Arrieta et al., 2020], and improving generalization using techniques

like transfer learning [Thrun and Pratt, 1998].

3.6 . Graph Theory

Graph theory is a fundamental branch of mathematics that deals with

studying the properties and relationships of graphs [Wilson, 1996]. Graphs are

mathematical structures used to represent pairwise connections between ob-

jects. These structures are pivotal in awide range offields, including computer

science, physics, engineering, biology, and social sciences. In the context of

this thesis, graph theory provides the foundational framework necessary to

50

Figure 3.2: A pictorial representation of a graph G (Eq. 3.15)

understand the working principles of GNNs, the central model explored in

this work.

3.6.1 . Introduction to Graph Theory

Formally, a graphG, whose sketch can be seen in Fig. 3.2, is defined as an

ordered pair

G = (V,E) , (3.15)

where V represents the set of vertices (or nodes) and E is a set of edges

connecting pairs of vertices. The verticesV can represent entities or objects in

a system, while the edges E define the relationships or interactions between

these entities.

Graphs can be categorized based on their structural characteristics and the

nature of connections between their vertices:

• Directed and Undirected Graphs: An Undirected graph is one in which

edges have no direction, meaning that an edge between two vertices u

and v, denoted as (u, v) is identical to (v, u). Undirected graphs are used

in situations where relationships are mutual, such as friendships in so-

cial networks. On the other hand, when (u, v) is not the same as (v, u)

and the edge represents a one-way relationship, such as the flow of in-

formation in communicationnetworks or dependencies in task schedul-

ing, the graph is called directed graph.

51

• Weighted and Unweighted Graphs: A weighted graph assigns a numer-

ical weight to each edge, representing the strength, cost, or capacity

of the relationship between the connected vertices. For example, in

a transportation network, weights could represent distances or travel

times between cities. An unweighted graph treats all edges as equal,

with no specific value assigned to the relationships.

• Simple Graphs and Multigraphs: A simple graph contains no loops (edges

that connect a vertex to itself) and nomultiple edges between the same

pair of vertices. This is the most basic type of graph and is widely used

in many applications where redundant or reflexive relationships are

not meaningful. A multigraph, by contrast, allows multiple edges be-

tween the same pair of vertices, which can represent multiple types or

instances of relationships.

• Complete Graphs: A complete graph is one in which every pair of dis-

tinct vertices is connected by a unique edge. These graphs are often

used in theoretical contexts, as they represent the maximum number

of relationships between a set of nodes. In practical applications, they

are less common due to their density and complexity.

• Bipartite Graphs: A bipartite graph is one where the vertex set V can

be divided into two disjoint subsetsV1 andV2, such that all edges con-

nect a vertex in one set to a vertex in another set. There are no edges

between vertices within the disjoint sets.

Depending on the types of connected information upon which the graph is

built, mathematical differences there exists and, as a consequence, different

types of graphs shows different properties and are suited for different analy-

sis and applications.

3.6.2 . Mathematical representation of Graphs

Graphs can be mathematically represented in multiple ways depending

on the type of analysis or application. Each representation provides a differ-

ent perspective on the properties of the graph’s structure and connectivity.

This section explores the most common ways to represent a graph mathe-

matically, as well as key properties that provide deeper insights into its struc-

ture.

• Adjacency Matrix: one of the most widely used representations of a

graph. Given a graph G (Eq. 3.15) with n vertices, the adjacency ma-

trixA is an n×nmatrix that encodes the presence or absence of edges

between pairs of vertices. The matrix element Aij is defined as:

Aij =

(

1 if there is an edge between vertex vi and vj ,

0 otherwise.
(3.16)

52

Forweighted graphs, the adjacencymatrix generalizes to store theweight

of the edge between two vertices:

Aij =

(

wij if there is an edge between vertex vi and vj ,

0 otherwise.
(3.17)

For undirected graphs, the matrix is symmetric (i.e., Aij = Aji), while

for directed graphs, the matrix is not necessarily symmetric, reflecting

the directionality of the edges.

• Incidence Matrix: captures the relationship between vertices andedges.

LetG have n vertices andm edges. The incidence matrixB is an n×m

matrix, where each row corresponds to a vertex and each column cor-

responds to an edge. The matrix element Bij is defined as:

Bij =

(

1 if vertex vi is incident to edge ej ,

0 otherwise.
(3.18)

Alongside their representation,manyproperties canbedefined for a graph.

• Degree of a Vertex: It represents the number of edges connected to a

given vertex. In undirected graphs, the degree of a vertex vi denoted as

d(vi), is simply the number of edges that involve vi. In directed graphs,

an in-degree and an out-degree can be defined on each vertex. Mathe-

matically, they are defines as:

din (vi) =
n
X

j=1

Aji, dout (vi) =
n
X

j=1

Aij . (3.19a)

They indicate respectively the number of incoming and outgoing edges

for the vertex vi

• Path and Cycle: A path in a graph is a sequence of edges that connects

a sequence of distinct vertices. Formally, a path P of length k is a se-

quence of vertices (v0, v1, . . . , vk) such that there exists an edge be-

tween vi and vi+1 for all 0 ≤ i < k. Paths are fundamental for traversing

graphs and are used in algorithms such as shortest path algorithms.

A cycle is a special type of path where the starting and ending vertices

are the same. Formally, a cycle C is a path P = (v0, v1, . . . , vk) such that

v0 = vk. These two concepts are visually represented in Fig. 3.2.

• Graph Diameter and Radius: Thediameter of a graph is the longest among

the shortest path between any two vertices. Formally, if d(u, v) repre-

sents the shortest path between vertices u and v, the diameter of the

graphG is given by:

diam(G) = max
u,v∈V

d(u, v). (3.20)

53

The diameter gives an indication of the spread of the graph, represent-

ing the maximum distance between any two vertices. The radius of a

graph is the minimum eccentricity of any vertex. The eccentricity e(v)

of a vertex v is the greatest distance from v to any other vertex. The

radius is defined as:

radius(G) = min
v∈V

e(v). (3.21)

This measure provides insight into the centrality of the most central

vertex in the graph.

• Centrality and Importance of Vertices: The centrality of a vertex quan-

tifies its relative importance within a graph. One simple measure is the

degree of centrality, which is proportional to the number of edges con-

nected to a vertex. Vertices with high degree of centrality are often seen

as influential or central to the graph’s structure. Other centrality mea-

sures, such as betweenness centrality and closeness centrality, focus on

the role of a vertex in facilitating connections between other vertices or

its proximity to other vertices within the network.

3.7 . Graph Neural Network (GNN)

GNNswere introduced to extend traditionalNNs to graph-structureddata,

addressing the limitations of standard models designed for grid-like struc-

tures (e.g., images, sequences). The foundational work by Scarselli et al. [2008]

formalized GNNs, focusing on the need to model complex relationships in

fields such as social networks and molecular chemistry. Early GNNs aimed

to process data with irregular structures, where nodes and edges represent

entities and their relationships.

The key mechanism in GNNs ismessage passing (Sec. 3.7.1), where each node

aggregates information from its neighbors, updating its representation. Through

multiple layers, the network learns complex relationships by iteratively ex-

changing information across the graph. This allows GNNs to capture both

local and global structural patterns, making them powerful for relational data

modeling.

3.7.1 . Core principles of GNNs

GNNs are a powerful extension of traditional NNs, designed to process

graph-structured data. Unlike data arranged in regular grids (e.g., images or

sequences), graphs consist of nodes (vertices) and edges, representing com-

plex relationships between entities. The foundational computational frame-

work of GNNs is known asmessage passing or neighborhood aggregation, which

enables nodes to exchange information iteratively with their neighbors, up-

dating their representations layer by layer.

54

This core operation can be expressed using the following general message

passing formula:

x
(k+1)
i = γ(k)



x
(k)
i ,

M

j∈N (i)

ϕ(k)(x
(k)
i ,x

(k)
j , eij)



 (3.22)

This formula encapsulates the entire message passing mechanism, and un-

derstanding it is crucial to grasp how GNNs operate. Each component of this

equation is examined in the following, along with the theoretical principles

that govern them.

• Node Features x
(k)
i : The feature vector x

(k)
i represents the state of the

node i at layer k of the GNN. Initially, these features may represent in-

trinsic properties of the node (e.g., molecular structure in a chemistry

graphor user profile in a social network). As theMP iterates, this feature

vector is updated through interactions with neighboring nodes, pro-

gressively incorporating more information from the graph structure.

• NeighborhoodN (i): N (i) denotes the set of neighbors of node i. GNNs

are local aggregators, meaning that at each step of the MP, a node

only interacts with its immediate neighbors. As the GNN goes deeper

(i.e., through more MP steps), the node indirectly aggregates informa-

tion from nodes further away in the graph, eventually capturing global

graph patterns.

• Message Functionϕ(k): The functionϕ(k) computes themessagepassed

from each neighboring node j to node i. This function depends on the

features of both the source node j and the target node i, as well as any

additional edge features eij thatmay exist between them. Themessage

function ϕ is typically a learnable transformation, such as an MLP. The

purpose of this function is to encode the interaction between neigh-

boring nodes in a way that is useful for the task at hand (e.g., node

classification, link prediction).

• Aggregation Function
L

: The symbol
L

represents the aggregation

operation, which combines the messages mi,j received from all neigh-

bors j ∈ N (i). Common choices for this aggregation include:

– Summation: which aggregates the messages by adding them to-

gether:
X

j∈N (i)

mi,j . (3.23)

– Mean: which takes the average of the messages:

1

|N (i)|

X

j∈N (i)

mi,j . (3.24)

55

– Maximization: which selects the maximum message value across

all neighbors:

max
j∈N (i)

mi,j . (3.25)

The choice of aggregation function can significantly impact the perfor-

mance of the GNN and heavily depends on the task at hand.

• Update Function γ(k): After aggregating the messages from neighbors,

the update function γ(k) combines the aggregated message with the

current feature vector of the node to produce the updated node repre-

sentation x
(k+1)
i . This step allows the node to incorporate information

from its neighbors while retaining aspects of its previous state. The up-

date function is often implemented as a learnable neural network layer,

such as an MLP.

The procedure of the MP is repeated for multiple layers (or iterations), al-

lowing information to propagate across the graph. At each layer k, a node

aggregates information from its neighbors, updates its feature vector, and

passes this information to the next layer. After K layers, each node has ag-

gregated information from nodes up to K graph steps away, thus captur-

ing broader graph structures. This iterative nature is what allows GNNs to

model complex dependencies in the graph. A shallow GNN (e.g., with one

or two layers) may only capture local structures, while a deeper GNN can

learn more global patterns by aggregating information from nodes that are

far apart in the graph. However, deeper GNNs can also suffer from issues

like over-smoothing, where node features become indistinguishable as more

layers are added.

3.8 . A custom Graph Neural Network (GNN) architecture

Building upon the general principles of GNNs introduced in Sec. 3.7.1, this

section presents the custom GNN architecture specifically designed to tackle

challenges in CFD. The architecture is tailored to fit the physics of the fluid sys-

tem, characterized by convective and diffusive dynamics, the flow properties

like the Reynolds number and the chosen numerical approximation defined

on an unstructured mesh.

This custom GNN model will be used throughout the present thesis as the

primary architecture for all the proposed CFD applications. It is specifically

designed to interact with unstructured CFD data and to adapt across a wide

range of geometries and problem settings, making it a versatile solution for

the problems tackled in this work. MP, as referred to our custom GNN, to be

thought as node centered, involves three fundamental steps:

56

1. Message Creation: Eachnode i initiates an embedding state represented

by an array hi. Initially set to zero, this vector accumulates and handles

information as the MP proceeds. The dimension dh of hi is constant

across all nodes and is a key model hyperparameter. Note that the em-

bedded state itself does not have a direct physical interpretation.

2. Message Propagation: Information is then propagated between nodes.

To capture the convective and diffusive dynamics of the underlying CFD

systems, messages are transmitted bidirectionally between connected

nodes. Given a generic pair of connected nodes i and j and a directed

connection between them aij from i to j, the abstract information (or

message) generated on them is defined as:

φ
(k)
i,j = ζ(k)(h

(k−1)
i ,aij ,h

(k−1)
j), (3.26)

where h
(k−1)
i is the embedded state from the previous MP layer k −

1, and ζ(k) is a differentiable operator, such as, in our case, an MLP.

Note that swapping the indices i and j in Eq. 3.26, gives the definition

for the message that flows from j to i. Depending on the number of j

connected nodes in the neighboring set of i, namely Ni, for each node

i the global outgoing message is then computed as:

φi,→ =
M

j∈Ni

φi,j (3.27)

where
L

is an arbitrary differentiable, permutation invariant function,

e.g., sum, mean or max.

3. Message Aggregation: Each node i aggregates the collected informa-

tion to update its embedded state h
(k)
i :

h
(k)
i = h

(k−1)
i + αΨ(k)(h

(k−1)
i ,Gi,φ

(k)
i,→,φ

(k)
i,←,φ

(k)
i,⟳), (3.28)

where Gi represents the external injected quantities, i.e. the data in-

put to the GNN. This input, provided at each update k, depends on the

specific application, and it will be clarified for each of them. The vectors

φ
(k)
i,→ and φ

(k)
i,← represent respectively the message sent to and received

from all the neighboring nodes. The vectorφ
(k)
i,⟳ is the self-message that

the node i send to itself in order to maintain the node’s own informa-

tion while aggregating messages from its neighbors. Their mathemati-

cal definition, with the appropriate change in notation, is expressed in

Eq. 3.26. The term Ψ
(k) is a differentiable operator, typically an MLP,

used to handle together the gathered information. The term α is a hy-

perparameter relaxation coefficient controlling the update scale.

57

By the end of the message passing process, each node’s embedded state

has been updated k times, integrating information from other nodes in the

graph. Research has shown that the choice of this hyperparameter k is crucial:

it should be adapted to the specific mesh to improve the network’s general-

ization capability across graphs of varying sizes. The study by Nastorg [2024]

demonstrates that k should ideally be proportional to the graph’s diameter

(Sec. 3.6.2), ensuring effective information propagation throughout the entire

structure. [Donon et al., 2020], suggest that k should match or exceed the

diameter of the graph. However, since the graphs in the dataset used in this

study exhibit a relatively consistent diameter, we opted to optimize this hy-

perparameter using genetic algorithms (Sec. 3.8.3). This approach allows the

network to efficiently adapt to the dataset’s structure, without overextending

beyond the scope of this thesis, as hyperparameter tuning is not our primary

focus. Interestingly, Nastorg [2024] explored a recurrent or adaptive architec-

ture that could theoretically allow for variable k, dynamically adjusting to the

graph’s structure.

At the end of the MP process, the latest k-updated embedded state on each

node i is projected back into a physical state as prediction of the required

target, which depends on the specific learning task. A differentiable operator

such as an MLP, namely a Decoder D, is tasked with this latter operation.

It is important to highlight the custom GNN architecture presented here di-

verges from standard GNN models (Sec. 3.7) as it address specific require-

ments that are typical of CFD applications. First, external quantities G are

introduced at each update step, allowing the network to incorporate domain-

specific information. Secondly, the MP process is bidirectional: it considers

both incoming and outgoing information at each node, a design choice that

reflects the conservation principles and convective-diffusive dynamics of the

governing physical laws. Finally, as the aggregation function, themean is cho-

sen to maintain permutation invariance with respect to the number of neigh-

boring nodes. This decision is critical for working with unstructured meshes,

where the neighborhood size of each node may vary across cases and nodes,

allowing the model to generalize effectively over different mesh configura-

tions.

3.8.1 . Data Structuring

Applying GNNs to unstructured data requires their graph representation.

In order to obtain the CFD-GNN interface, each mesh node is aligned with a

GNNnode. To this end, the CFD data are structured into tensors thatmaintain

adjacency properties from the mesh. Specifically, for each case in the ground

truth dataset, different data structure are generated:

• A matrix A ∈ R
ni×dh , where ni is the number of nodes in the mesh

and dh is the dimension of the embedded state defined on each node.

58

A, therefore, is a tensor stacking together all the embedded arrays hi
defined on all the nodes.

• A matrix C ∈ R
c×2, where c is the number of mesh edges, defining the

nodes connections. C, therefore, is a tensorial representation of the

adjacency scheme of the mesh.

• A matrixD ∈ R
c×2, containing the distances between connected nodes

in the x and y directions. D, therefore, express the properties, in the

meaning of nodes distances, of the adjacency scheme of the mesh.

Ani,dh =











a1,1 a1,2 · · · a1,dh
a2,1 a2,2 · · · a2,dh
...

...
. . .

...

ani,1 ani,2 · · · ani,dh











,

Cc,2 =











i1 j1
i2 j2
...
...

ic jc











, Dc,2 =











xi1 − xj1 yi1 − yj1
xi2 − xj2 yi2 − yj2
...

...

xic − xjc yic − yjc











.

Each column ofA serves as a feature vector for neurons in the MLPs used in

the GNN (ζ ,Ψ, and the decoderD). The structure of these MLPs is instead de-

fined by the dimension dh of the embedded state, while the number of nodes

ni corresponds to the feature count per neuron. This setup allows us to ap-

ply the same MLPs architectures across different CFD simulations, regardless

of the geometry or node count, as the number of nodes does not affect the

underlying structure of the MLPs. This approach makes the presented cus-

tom GNN particularly well-suited for interacting with unstructured meshes,

learning from various geometries and configurations.

59

3.8.2 . GNN Training Algorithm

Figure 3.3: The overall framework of our GNN training process. MP k are

the message passing algorithms; Dk are the k decoders trainable MLPs; Ak

are the k matrices containing the embedded states from each node;G is the
vector containing the input injected in the GNN. Figure inspired by Donon

et al. [2020].

The training framework for the GNN is illustrated in Fig. 3.3. The process

begins with A0, a matrix of zero-initialized embedded states. This matrix,

along with external inputs G, is provided to the first message passing algo-

rithm MP1. The updated embedded state matrix A1, then, passes through

a decoder D1, an MLP tasked with reconstructing the target physical state

g. The predicted target ĝ1 is compared with the ground truth corresponding

data g using a loss function:

ℓk =
1

ni

ni
X

i=1

(gki − ĝi)
2 (3.29)

where ni is the number of nodes and k indicates the layer number of the

MP process. This process is then repeated across the k layers of the GNN.

Following the intuition of Dononet al. [2020], all these intermediate loss values

from the different update layers are considered in a global loss function L, in

order to robustify the learning process:

L =
k̄
X

k=1

γk̄−k · ℓk (3.30)

where, k̄ is the number of update layers, and γ is a hyperparameter control-

ling the weight of each of them. As the MP process goes on, each node col-

lects more and more information. The exponential term γk̄−k ensures that

later updates, which are supposed to be richer in information, have greater

influence on the learning process.

60

3.8.3 . GNN hyperparameters

The structure and performance of a neural network, are heavily influ-

enced by its hyperparameters. These hyperparameters are values set before

the training process begins and are not learnable from the data during train-

ing, but instead, they govern the capacity and behavior of the model. We can

categorize hyperparameters into twomain types: model hyperparameters and

process hyperparameters.

• Model hyperparameters: These define the capacity of the NN, which

refers to the model’s ability to approximate complex, non-linear func-

tions. The capacity is directly influenced by factors such as the number

of layers, the number of neurons in each layer, and the dimensionality

of the embedded node features. Higher capacity allows the model to

representmore complex relationships in the data but comes at the cost

of increased computational demand. In our GNN, model hyperparam-

eters determine how well the network can capture the patterns of fluid

dynamics represented in the mesh-based CFD data.

• Process hyperparameters: These govern the training process itself, af-

fecting the duration, computational costs, and efficiency of the training

phase. Process hyperparameters include aspects such as the learning

rate, which controls how fast the model’s weights are updated, and the

regularization techniques applied to prevent overfitting. Proper tuning

of these hyperparameters is essential to ensure that the model con-

verges effectively while minimizing training time and computational re-

source usage.

Given the need for a computationally efficient yet expressive model, the hy-

perparameters defining the NNs architecture must be optimized carefully.

Unlike continuous parameters that can be fine-tuned using gradient-based

methods, many of the hyperparameters involved in NN design, such as the

number of layers or neurons, are discrete and cannot be adjusted using stan-

dard gradient-based optimization techniques. For this reason, gradient-free

optimization algorithms are used to explore the hyperparameter space effi-

ciently.

Various libraries and tools are available for automating the hyperparameter

optimization process by systematically searching through combinations of

possible hyperparameters and pruning unpromising configurations. In this

work, we employed the open-source optimization library Optuna [Akiba et al.,

2019], which combines efficient searching with advanced pruning strategies

to identify the best-performing set of hyperparameters based on validation

metrics.

Optuna operates by first defining the search space, which includes the pos-

sible ranges or values for each hyperparameter. It then evaluates the GNN’s

61

performance over multiple trials, each corresponding to a different set of hy-

perparameters. During this process, Optuna applies dynamic pruning, where

trials that are unlikely to yield improvements are terminated early, reducing

unnecessary computational costs.

After extensive exploration of the hyperparameter space, Optuna identified

the following optimal set of hyperparameters, which maximized the GNN’s

performance in terms of accuracy, at least for the flow cases under consider-

ation, that will be discussed in Chapters 5, 6, and 7:

• Embedded dimension: 35. This hyperparameter controls the size of the

hidden feature space for each node in the GNN. A higher dimension

allows for richer representations of each node’s features, but too high a

valuewould increase computational cost without necessarily improving

performance.

• Number of GNN layers: k = 40. This defines the depth of the GNN,

which in turn determines how many message-passing steps are per-

formed across the graph. A deeper network allows each node to ag-

gregate information from further parts of the graph, capturing global

structure. However, increasing the number of layers toomuch can lead

to over-smoothing, where node features become indistinguishable, and

computational costs rise unnecessarily.

• Update relaxation weight: α = 6× 10−1. This coefficient scales the con-

tribution of each message-passing update, controlling how much new

information influences the node’s updated feature representation. A

well-chosen value of α ensures that updates are neither too drastic nor

too small, facilitating stable and effective learning.

• Loss function weight: γ = 0.1. This parameter controls the weight-

ing of the loss terms from different layers in the GNN during training.

By assigning higher weights to losses from later layers, we emphasize

updates that incorporate information from a wider context, which can

improve the model’s ability to capture long-range dependencies in the

graph.

• Learning rate: LR = 3 × 10−3. The learning rate governs the step size

for gradient descent during the training process. A higher learning rate

speeds up convergence but may result in unstable updates, while a

lower learning rate ensures more stable learning but can slow down

convergence.

These hyperparameters were optimized to achieve a balance between the

model’s accuracy and its computational efficiency. The final set of hyperpa-

rameters enables the GNN to effectively model the complex dynamics of fluid

62

flows, while maintaining computational feasibility as a surrogate model for

CFD applications.

It is worth noting that these hyperparameters are inherently task-dependent

and, in theory, should be re-optimized for each specific learning task to en-

sure optimal performance. However, the primary objective of this thesis is to

demonstrate the methodology rather than to focus on the exact numerical

outcomes for each case. Consequently, it was not necessary to perform a hy-

perparameter optimization for every individual scenario.

Re-optimization was conducted for certain learning tasks, and the results in-

dicated that the hyperparameters remained largely consistent, with only mi-

nor variations across different tasks. This outcome suggests that the GNN ar-

chitecture demonstrates inherent robustness to hyperparameter variations

within the range of learning tasks addressed in this thesis. As a result, the

proposed GNN structure exhibits significant resilience to changes in hyper-

parameters, enabling it to perform effectively and efficiently across a broad

spectrum of CFD problems without requiring substantial hyperparameter ad-

justments.

63

64

4 - Adjoint Optimization

4.1 . Introduction to optimization methods

Optimization methods are mathematical techniques designed to find the

best possible solution to a problem within a set of constraints. These meth-

ods are essential in fields such as engineering, economics, and data science,

where improving efficiency, performance, or resource allocation is key im-

portant. The core of optimization lies in maximizing or minimizing an objec-

tive function, which represents the goal of the problem, subject to given con-

straints.

In the context of this thesis, optimization methods are introduced to provide

the foundation for the adjoint methods, which are critical, in this context, for

enforcing the RANS equations within the optimization loop of the GNNmodel.

4.2 . History of optimization

Figure 4.1: (Left) Johann Bernoulli

(Basel, 1667 - Basel 1748) (Right) Leon-

hard Euler (Basel, 1707 – Saint Peters-

burg, 1783

The history of optimization re-

flects the broader evolution ofmath-

ematical thought and the increas-

ing computational capabilities that

have shaped its development over

the centuries. In the 17th century,

pioneers like Johann Bernoulli and

Leonhard Euler (Fig. 4.1) began ex-

ploring optimization through the cal-

culus of variations, applying it to

physical problems. Their work laid

the groundwork for formal optimiza-

tion techniques.

In the 20th century, George Dantzig

introduced the Simplex Method, a

major breakthrough in solving linear programming problems. This method

quickly found applications in transportation, manufacturing, and finance by

optimizing linear objective functions under linear constraints. With the rise

of computational power, non-linear optimization methods such as gradient

descent and Newton’s method were developed to handle more complex sys-

tems where both the objective functions and constraints are non-linear.

The latter half of the century saw the emergence of global optimization tech-

niques like Genetic Algorithms [Goldberg and Holland, 1988], Simulated An-

65

nealing [Kirkpatrick et al., 1983], and Particle Swarm Optimization [Kennedy

and Eberhart, 1995]. Thesemetaheuristic approaches were designed to tackle

problems with multiple local optima, inspired by natural processes and offer-

ing solutions for highly complex and multimodal problems.

In recent years, optimization has advanced further with machine learning

and computational growth. Modern methods such as Bayesian optimiza-

tion and Reinforcement Learning (RL) are now used to solve large-scale, high-

dimensional problems, particularly in fields like artificial intelligence and data

science.

4.3 . Fundamental concepts of optimization

Optimization problems involve determining the best possible solution by

maximizing or minimizing an objective function, which mathematically repre-

sents the goal of the problem. Formally, the objective function is expressed

as f(x), where x represents the decision variables on which the function de-

pends. For example, in a cost minimization problem, f(x) could represent

the total cost to be minimized, and x could be the set of variables influencing

that cost.

In most optimization problems, solutions are subject to certain constraints,

which are conditions that must be satisfied by the decision variables. Con-

straints can be written in the form of equalities (e.g., g(x) = 0) or inequalities

(e.g., h(x) ≤ 0) and represent the physical, financial, or operational limitations

of the problem. These constraints define the feasible region, which is the set

of all points x that satisfy the given constraints. The solution to the optimiza-

tion problem must lie within this feasible region.

Depending on the structure of the objective function and the constraints, op-

timization problems can be classified into different categories:

• Linear Optimization: In linear optimization, both the objective function

and the constraints are linear. A linear objective function can be ex-

pressed as:

f(x) = Cx (4.1)

where C ∈ R
m×n is the coefficients matrix and x ∈ R

n is the decision

variables vector. Similarly, the constraints are also linear functions of

the decision variables. This class of problems can be efficiently solved

using methods like the Simplex Method or Interior Point Methods.

• Nonlinear Optimization: In nonlinear optimization, either the objective

function or the constraints (or both) are nonlinear, for example:

f(x) = N (x) (4.2)

66

where N (x) is a generic non-linear operator. Nonlinear problems are

inherently more complex and often require iterative methods like Gra-

dient Descent, Newton’s Method, or Quasi-Newton Methods. These al-

gorithms are commonly used inmachine learning, engineering, and sci-

entific research.

A special class of optimization problems arises when the objective func-

tion is convex and the feasible region is a convex set. Convexity is a critical

property that simplifies the optimization process. In convex optimization, if a

function f(x) is convex and the feasible region is also convex, any local mini-

mum is guaranteed to be a global minimum. Mathematically, a function f(x)

is convex if:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (4.3)

for all x1,x2 ∈ R
n and λ ∈ [0, 1]. This property greatly reduces the complex-

ity of finding an optimal solution, as it avoids the problem of multiple local

minima often present in non-convex optimization.

For a solution to be considered optimal, certain conditions must be sat-

isfied. These conditions vary depending on whether the problem is uncon-

strained or constrained.

• Unconstrained Optimization: In the simplest case, the goal is to find the

minimum or maximum of an objective function f(x) without any con-

straints. If the function is differentiable, a necessary condition for x to

be a local minimum, called xopt, is that the gradient of f at xopt must be

zero:

∇f(xopt) = 0 (4.4)

This condition indicates that the function has a stationary point at xopt.

However, this is only a necessary condition. To further ensure that xopt

is a localminimum, a second-order conditionmust also be satisfied: the

Hessian matrix of f(x), denoted by Hf (x
opt), must be positive semi-

definite at xopt. This ensures that the function curves upwards in all

directions at xopt, confirming it is a local minimum.

• Constrained Optimization: When constraints are present, the optimal-

ity conditions become more complex. In this case, the Karush-Kuhn-

Tucker (KKT) conditions provide the necessary criteria for optimality.

The KKT conditions extend the concept of the gradient to account for

the constraints by introducing Lagrange multipliers.

4.4 . Optimization methods overview

Optimization problems can be broadly categorized into gradient-based

methods, gradient-free methods, and hybrid methods. Each category ad-

67

dresses different types of optimization problems by employing various math-

ematical and computational strategies to search for optimal solutions. The

choice of method depends on the properties of the objective function, such

as smoothness, differentiability, and the presence of constraints, as well as

the computational resources available.

4.4.1 . Gradient based methods

Gradient-based methods rely on the gradient of the objective function to

iteratively move towards an optimal solution. These methods assume that

the objective function is differentiable, and they make use of first-order (and

sometimes second-order) derivative information to guide the search. Gradient-

based techniques are effectivewhen the function is smooth andwell-behaved,

as they can exploit local curvature information to accelerate convergence.

• Gradient Descent: The Gradient Descent method is one of the simplest

and most widely used optimization algorithms. It iteratively adjusts the

solution based on the gradient of the objective function, moving in the

direction of steepest descent to minimize the function. Starting from

an initial guess x0, the update rule is given by:

xk+1 = xk − α∇f (xk) (4.5)

where α is the step size or learning rate and ∇f (xk) is the gradient of

the objective function evaluated at xk. The algorithm continues until

the gradient is sufficiently small, indicating convergence to a local mini-

mum. An important variant is Stochastic Gradient Descent (SGD), which

approximates the gradient using a random subset (or mini-batch) of

data points, making it particularly effective for large-scale problems like

those encountered in machine learning. The use of smaller batches re-

duces computational overhead per iteration, but it may introduce noise

into the gradient, which can slow convergence but also help escape lo-

cal minima.

• Newton’s Method: Newton’smethod incorporates second-order deriva-

tive information through the Hessianmatrix of the objective function. It

is particularly effective when the objective function is smooth and con-

vex, as it adjusts the step direction and size based on the curvature of

the function. The update rule for Newton’s method is:

xk+1 = xk −Hf (xk)
−1∇f (xk) (4.6)

whereHf (xk) is theHessianmatrix, which represents the second-order

partial derivatives of the objective function at xk. This method con-

verges faster than gradient descent, especially near the optimal point,

but requires calculating and inverting the Hessian, which can be com-

putationally expensive for large problems.

68

• Quasi Newton Method: Quasi-Newtonmethods aim to approximate the

behavior of Newton’s method without directly computing the Hessian

matrix. Instead, they build an approximation to the Hessian using only

gradient information. One of themostwidely used quasi-Newtonmeth-

ods is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The

BFGS method iteratively updates an estimate of the Hessian inverse,

making it more efficient for high-dimensional problems compared to

standard Newton’s method. A limited-memory version, L-BFGS, is often

used for very large-scale problems, as it reduces memory and compu-

tational requirements by storing only a few vectors from the gradient

history.

• Conjugate Gradient Method: The conjugate gradient method is partic-

ularly suited for large-scale optimization problems, especially those in-

volving large, sparse systems. Conjugate gradient methods generate

a sequence of k search directions that are mutually conjugate with re-

spect to the Hessian Hf , meaning that the following condition has to

be satisfied by the k-th search direction pk:

pT
kHfpk−1 = 0. (4.7)

This method is commonly used for solving large linear systems but can

also be applied to non-linear optimizationwhen coupledwith line search

techniques. The next step optimization process is obtained as:

xk+1 = xk + αkpk (4.8)

where αk is the step size along the k-th search direction.

4.4.2 . Gradient free methods

In situations where the objective function is non-differentiable, discon-

tinuous, or noisy, or computation of gradients is computationally expensive,

gradient-basedmethods become impractical or ineffective. Gradient-freemeth-

ods are designed for such cases, as they do not require derivative information

and instead rely on function evaluations.

The key techniques in this category include (non-exhaustive list):

• Genetic Algorithms (GA): are inspired by the principles of natural selec-

tion and genetics. Theywork by evolving a population of candidate solu-

tions over several iterations (generations). At each generation, the best

solutions are selected, combined (crossover), and randomlymutated to

explore new areas of the solution space. Over time, the population con-

verges toward optimal or near-optimal solutions. Genetic Algorithms

are highly flexible and can be applied to a wide range of optimization

problems, especially those with complex, multimodal landscapes.

69

• Simulated Annealing (SA): is inspired by the annealing process in met-

allurgy, where a material is slowly cooled to remove defects and min-

imize energy. In optimization, SA probabilistically accepts worse solu-

tions early in the search to avoid local minima, but gradually reduces

the acceptance probability as the search progresses. This approach al-

lows the algorithm to explore the solution space more broadly at the

start and then focus on fine-tuning the best solutions as it converges.

• Bayesian Optimization: is a sequential design strategy for the global op-

timization of black-box functions, where the objective function is ex-

pensive to evaluate. It builds a probabilistic model (usually a Gaussian

process) of the objective function and uses this model to decide where

to sample next. By balancing exploration (sampling regions with high

uncertainty) and exploitation (sampling regions likely to have good solu-

tions), Bayesian optimization can efficiently find optimal solutions with

a limited number of function evaluations.

4.5 . Introduction to Adjoint Methods

In the context of optimization, especially for high-dimensional and com-

putationally expensive problems, Adjoint Methods provide an efficient way to

compute gradients of an objective function with respect to a large number of

variables. These methods are particularly valuable when solving optimization

problems that involve PDEs, such as the RANS equations in CFD.

Adjointmethods havebeen foundational in CFDoptimization, notably through

the pioneering contributions by Jameson [1988], who pioneered adjoint-based

optimization for aerodynamic design, and by Pironneau [1974], who explored

optimal design approaches in fluid mechanics, laying the groundwork for ad-

joint applications in CFD. Amoignon et al. [2004] extended these ideas by ap-

plying adjoint-based techniques for the shape optimization of aerodynamic

surfaces, specifically targeting natural laminar flow designs. Giles and Pierce

[2000], furthered this development, providing a comprehensive introduction

to the adjoint approach specifically tailored to design problems in CFD. Opti-

mization problems with PDE constraints have also received considerable at-

tention. Works by Borzi and Schulz [2012] and Hinze et al. [2008] address

the complexities involved in optimization constrained by elliptic and parabolic

PDEs, while Lions [1971] introduced foundational concepts for handling hyper-

bolic constraints in optimization frameworks.

Within this context, the Field Inversion and Machine Learning (FIML) frame-

work proposed by Parish and Duraisamy [2016] is particularly relevant. This

approach combines adjoint-basedoptimizationwithmachine learning to infer

unknown quantities, such as closure terms in turbulence modeling, directly

from data. The methodology shares conceptual similarities with the scope of

70

this thesis, where adjoint methods are used to guide the training of ML mod-

els while ensuring consistency with governing PDEs.

Based on these fundamental works, adjoint equations have been also ex-

tensively used in the context of flow control, flow sensitivity and instability

[Cherubini et al., 2010, 2013, Semeraro et al., 2013, Loiseau et al., 2014]. Among

the others, it is worth mentioning the works by Giannetti and Luchini [2007],

Marquet et al. [2008] and Luchini et al. [2009] on the sensitivity framework,

providing a method to identify critical regions in the flow most susceptible

to control interventions. This technique has been later extended to numer-

ous works and configurations, ranging from bluff bodies wakes to control of

Rijke tube oscillations [Luchini and Bottaro, 2014]. These approaches allow

targeted adjustments that can suppress instability or delay transition by care-

fully manipulating the sensitive regions identified by adjoint solutions. Recent

developments discussed in Costanzo et al. [2022] may enable the application

of these techniques to cases characterized by larger computational domains

or unsteady flows through parallel-in-time optimization.

An extensive review covering many of these applications is provided by Lu-

chini and Bottaro [2014], who highlight how adjoint-based techniques have

transformed our understanding of flow stability and receptivity, particularly

in cases like the noise-amplifying instabilities in boundary layers.

The applications of adjoint methods extend beyond stability analysis. For

instance, they have become crucial in error estimation and grid adaptation

within CFD, as noted by Venditti and Darmofal [2003] and Park [2002], who

demonstrate how adjoint error analysis can guide grid refinement to improve

accuracy in functional outputs like drag or lift. The importance of this ap-

proach is underscored by Rumsey and Ying [2002] for high-lift configurations,

where numerical errors and modeling fidelity significantly affect simulation

results. Furthermore, uncertainty quantification has leveraged adjoint-based

sensitivity to manage the curse of dimensionality, allowing efficient propaga-

tion of uncertainties through complex CFD simulations. For example, Wang

et al. [2009] and Dow andWang [2013] have used adjoint sensitivity analysis to

identify themost influential variables affecting turbomachinery performance,

while facilitating surrogatemodel development to address geometric variabil-

ity.

In this thesis, Adjoint Methods are crucial because they enable us to en-

force the physical constraints defined by the RANS equations within the train-

ing process of the GNN. By integrating adjoint-based optimization, we can ef-

fectively compute the gradients required to adjust the parameters of theGNN.

This makes the optimization process physically consistent, ensuring that the

predictions of the GNN align with fluid behavior.

4.5.1 . General Methodology of Adjoint Methods

71

The central idea behind Adjoint Methods is to reformulate optimization

problems constrained by partial differential equations (PDEs). Thesemethods

leverage the fact that the governing constraints, expressed as PDEs such as

the RANS equations, are inherently satisfied by the solver, without requiring

them to be explicitly enforced in the optimization process. This allows the in-

troduction of adjoint variables (or Lagrange multipliers), which are chosen to

simplify the gradient computation. With reference to a general optimization

problem, we introduce an objective function J(x), which we aim to minimize

(or maximize), subject to constraints represented by a set of PDEs

min
x

J(x,u(x)) subject to C(u(x),x) = 0 (4.9)

where J(x,u(x)) is the objective function that depends on both the design

variables x and the state variables u(x), which typically satisfy the govern-

ing PDEs. C(u(x),x) = 0 represents the PDE constraint, where C is a set of

governing equations (e.g., RANS equations) that describe the behavior of the

state variables u given the design variables x.

The key challenge here is that directly computing the gradient of J with re-

spect to x would require solving the PDE for every design variable, which is

computationally prohibitive for high-dimensional problems. To overcome this

issue, the adjoint method introduces the Lagrangian functional:

L(x,u,λ) = J(x,u) + λTC(u,x), (4.10)

where λ is the vector of adjoint variables (or Lagrange multipliers). The PDE

constraints C(u,x) = 0 are inherently satisfied by the solver ensuring that

the term λTC(u,x) is identically zero. This provides the flexibility to choose

λ in a way that simplifies the gradient computation.

By constructing the Lagrangian functional, we convert the constrained opti-

mization problem into an unconstrained one, where the solution is sought by

zeroing the variations of L with respect to both the state variables u and the

adjoint variables λ. To compute the gradient of J with respect to the design

variables x, we proceed by taking the total derivative of L with respect to x:

dL

dx
=

∂J

∂x
+

∂J

∂u

du

dx
+ λT

�

∂C

∂x
+

∂C

∂u

du

dx

�

(4.11)

In this expression, dudx represents how the state variables change with respect

to the design variables. However, solving for du
dx directly is expensive, as it in-

volves differentiating the entire set of PDEs with respect to x. To avoid this,

we first take the variation of the Lagrangian functional with respect to u, en-

forcing the following adjoint equation to be satisfied:

dL

du
=

∂J

∂u
+ λT ∂C

∂u
= 0. (4.12)

72

Solving this equation provides the adjoint variable λ. With λ determined, the

gradient of the objective function with respect to the design variables x can

be simplified to:
dL

dx
=

∂J

∂x
+ λT ∂C

∂x
. (4.13)

This is the central result of the adjoint method: the gradient
dL

dx
is computed

without needing to evaluate
du

dx
directly, which significantly reduces the com-

putational cost.

To summarize the entire adjoint process:

1. Solve the PDE (primal problem): For a given design variable x, solve the

governing equations C(u(x),x) = 0 to find the state variables u(x).

2. Solve the adjoint equation: Using the solution for u(x), solve the ad-

joint equation to find the adjoint variable λ.

3. Compute the gradient: With λ and u(x), compute the gradient of the

objective function with respect to the design variables x.

4. Update the design variables: Use an optimization algorithm (e.g., gra-

dient descent, Newton’s method) to update x based on the computed

gradient.

By repeating these steps, the adjoint method efficiently finds the optimal so-

lution to high-dimensional optimization problems constrained by complex

PDEs.

In this thesis, adjoint methods are employed to compute the gradients

necessary for training the GNN. Instead of relying solely on the differentiable

nature of the GNN to calculate the gradients from numerical data, the adjoint

method is used to obtain analytic gradients that are grounded in the RANS,

which govern fluid dynamics. This approach ensures that the gradients incor-

porate the underlying physical laws, rather than being based purely on data.

By leveraging adjoint methods, the GNN is trained to not only minimize pre-

diction error but also to adhere to the RANS equations, resulting in a model

that is both data-driven and physically consistent.

4.5.2 . Adjoint Method applied to RANS

In this section, the Adjoint Method is tailored for the CFD applications an-

alyzed in this thesis. While the general principles of Adjoint Methods have

already been discussed, this section introduces the specific details of the cus-

tom Adjoint Method we developed for our case study. The application draws

inspiration from the work of Foures et al. [2014], where a data assimilation

scheme is introducedbasedon this framework; specifically, the baselinemodel

73

is provided by the RANS equations (Eq. 2.8b) and the control variable is rep-

resented by the forcing stress term f (Eq. 2.9). The goal is to minimize the

discrepancy between a reconstructed mean flow field û and a ground truth

mean flow u (Eq. 2.7) obtained from numerical simulations.

At the core of any adjoint-based optimization method lies the definition of a

cost function that quantifies thedifferencebetween thedesired andpredicted

results. In our case, the goal of the optimization is to minimize the error be-

tween the ground truth mean flow u (obtained from high-fidelity simulations)

and the reconstructed mean flow û produced by the RANS model during the

optimization loop. The cost function thatmeasures this discrepancy is defined

as:

ε
�

û
�

=
1

2
||u− û||2 (4.14)

where || · ||2 represents the L
2-norm, defined as

||c||2 =
p

⟨c · c⟩, (4.15)

and associated with the scalar product

⟨a,b⟩ =
Z

Ω

a · bdΩ, (4.16)

with a, b and c denoting arbitrary vectors and Ω denoting the computational

domain. The smaller the value of ε, the closer the predicted flow û is to the

ground truth u.

The control variable in our optimization framework is the forcing stress term f .

This forcing term is introduced into the RANS equations (Eq. 2.8b) as a means

to adjust the flow predictions û in order to minimize the cost function. The

ultimate goal of the optimization process is to iteratively refine this forcing

term so that the predicted flow ûmatches the ground truth flow as closely as

possible. However, since the cost function ε does not directly depend on the

forcing stress f (Eq. 2.9), a relationship between the two must be established

in order to compute the necessary gradients for optimization. To this end, an

augmented Lagrangian functional is introduced, that incorporates both the

objective function and the governing constraints (i.e., the RANS equations).

The augmented Lagrangian formalism allows to transform a constrained op-

timization problem into an unconstrained one. This is achieved by incorporat-

ing the governing equations of the system (in this case, the RANS equations)

into the optimization framework via Lagrange multipliers. For our case, the

augmented Lagrangian functional is defined as:

L
�

f , û, p̂, û
†
, p̂†

�

= ε
�

û
�

−⟨û†
, û ·∇û+∇p̂− 1

Re
∇2û− f⟩−⟨p̂†,∇ · û⟩. (4.17)

In this expression, û
†
and p̂† are the adjoint variables (also called Lagrange

multipliers), introduced to compute the gradients efficiently. These adjoint

74

variables are fundamental to the adjoint method, as they ensure that the cost

function minimizes with respect to both the direct variables (û and p̂) and

the control variable (f). The terms ⟨·, ·⟩ represent spatial scalar products as
defined in Eq. 4.16, integrating the Lagrangemultiplier terms over the domain

of the flow.

By minimizing the augmented Lagrangian functional, we derive the adjoint

NSE. These equations govern the behavior of the adjoint variables and are

essential for computing the gradient of the cost function with respect to the

control variable f . The adjoint NSE are given by:

−û ·∇û
†
+ û

†
·∇û

T −∇p̂† − 1

Re
∇2û

†
=

∂ε

∂û
(4.18a)

∇ · û
†
= 0. (4.18b)

The first equation governs the momentum equation for the adjoint variables,

while the second enforces the incompressibility condition on the adjoint ve-

locity field. These adjoint equations are forced by the derivative of the cost

function ε with respect to the predicted mean flow û. This term,
∂ε

∂û
, can be

computed directly from the cost function as:

∂ε

∂û
= û− u. (4.19)

This equation expresses the difference between the predictedmean flow and

the ground truth mean flow, which drives the adjoint optimization process. It

provides the necessary gradient information for adjusting the forcing term f

to minimize the cost function ε.

Once the adjoint equations have been solved, we can compute the gradient of

the cost function with respect to the control variable f . This gradient is given

by:
∂ε

∂f
= û

†
. (4.20)

This equation provides the information needed to update the forcing term f

during the optimization process. The adjoint variable û
†
acts as the sensitiv-

ity of the cost function to changes in the forcing term. By using this gradient,

we can iteratively adjust the forcing term to minimize the cost function and

bring the predicted flow closer to the ground truth. The optimization process

proceeds by updating the forcing term f according to a gradient descent al-

gorithm:

f (n+1) = f (n) − ∂ε(n)

∂f (n)
(4.21)

where n denotes the iteration number. The optimization loop continues until

the cost function ε reaches an acceptable threshold, indicating that the pre-

dicted flow û closely matches the ground truth u.

75

The boundary conditions for the adjoint NSE differ from those of the direct

problem, as they reflect the sensitivity of the cost function to perturbations at

the boundaries. Nonetheless, since the adjoint boundary conditions rely on

the direct problem’s boundary conditions, these latter are included here for

reference and clarification


























u = 1, v = 0 at the inlet,

u = 0, v = 0 on the cylinder surface,

∂yu = 0, v = 0 on symmetry boundaries,
1

Re
∂xu− p = 0, ∂xv = 0 at the outlet.

(4.22)

By performing integration by parts and eliminating terms that depend on

boundary conditions, we derive the boundary conditions for the adjoint prob-

lem directly from those of the direct problem. For our adjoint method, this

leads to the following boundary conditions for the adjoint velocity û
†
and ad-

joint pressure p̂†:


























u† = 1, v† = 0 at the inlet,

u† = 0, v† = 0 on the cylinder surface,

∂yu
† = 0, v† = 0 on symmetry boundaries,

1

Re
∂xu

† + p† = −uu†,
1

Re
∂xv

† = −uv† at the outlet.

(4.23)

These boundary conditions ensure that the adjoint variables are appropri-

ately constrained at the domain boundaries, allowing for accurate computa-

tion of the gradient
∂ε

∂f
.

To summarize the complete optimization loop, the key steps are listed in the

following.

• Initialization: An initial guess for the control variable f ismade. Typically,

f = 0 is chosen as the starting point to satisfy divergence-free and no-

slip conditions.

• Forward Step: The direct RANS equations are solved to obtain a predic-

tion of the mean flow û, given the current forcing term f .

• Cost Function Evaluation: The cost function ε is evaluated, measuring

the error between the predicted flow û and the ground truth u.

• Adjoint Step: The adjoint NSE are solved to compute the adjoint vari-

ables û
†
and p̂†.

• Control Variable Update: Using the adjoint variables, the gradient of the

cost function with respect to the forcing term is computed, and f is up-

dated accordingly.

76

The loop is repeated until convergence, i.e. when the cost function ε falls be-

low a chosen threshold.

The adjoint method developed for this thesis handles the optimization

of the forcing term f within the RANS framework. By combining the adjoint-

based gradients, this data assimilation scheme can be coupled to the training

process of the GNN in order to ensure that the model is trained in a manner

consistent to the simulation data and the governing laws. This physically con-

sistent approach enhances the predictive accuracy of the model while mini-

mizing computational costs, making it a robust tool for CFD applications.

77

78

5 - Part I: RANS closure term prediction

5.1 . Introduction

The main goal of the present work is to develop a GNN-based surrogate

model to predict the closure term f of a RANS system of equations, given as

input the meanflow.

In a very schematic way, for a regression problem, ML techniques enable to

identify mappings between observables of a system (inputs) and quantities of

interest (outputs) we aim to predict by leveraging data; when these analyzed

data are governed by deterministic or statistical laws, in principle, these map-

pings correspond to approximating models.

At low Reynolds numbers, we consider a data assimilation approach, where

the closure model corresponds to the control parameter of an adjoint-based

loop [Foures et al., 2014]; without explicitly introducing a tensor structure or

Boussinesq approximations, thismethod is well suited for non-homogeneous

flows at lower Reynolds numbers. Here, we take inspiration from these ap-

plications and mainly focus on unsteady flows developing past bluff bodies

at low Reynolds numbers 50 ≤ Re ≤ 150; we consider RANS as baseline, al-

though alternative choices can be also adopted, such as Euler equations or

linearized NSE in resolvent form, where the parameter to be tuned is the dis-

sipation term [Morra et al., 2019, Pickering et al., 2021, von Saldern et al., 2023].

With respect to standard approaches, we focus here on a supervised learn-

ing strategy where the closure model is identified by inference from available

data. In principle, we could identify universal closure models directly from

data, having at disposal an infinite amount of them. In practice, in real cases,

we may deal with a limited amount of data or few localized measurements;

these limitations can impact on the use ofmethods such asNNs, where the ex-

pressivity and generic structure make them suitable for a large class of mod-

els, but prone to generalization problems. In this sense, ML models risk to be

representative solely of the datasets included in the training process; thus, it

becomes compelling given the available data to circumvent these problems

by inputting well selected data during the training or providing prior knowl-

edge through modelling [Shukla et al., 2022, Bucci et al., 2023].

With this in mind, we will test if it is possible to identify generic closure

models from data defined on unstructured meshes while only relying on a

small amount of data chosen on principled criteria. In order to answer these

questions, a first ingredient is the introduction of GNN [Scarselli et al., 2008];

this architecture is characterized by complex multi-connected nets of nodes

that can be naturally adapted to unstructured meshes: the convolution in a

GNN is performed by aggregating information from neighboring nodes, thus

79

overcoming the limitations imposed by the geometry in contrast with CNN.

Moreover, GNNs: i) show remarkable generalization capabilities as compared

to standard network models [Sanchez-Gonzalez et al., 2018]; ii) are differen-

tiable; iii) provide the possibility of directly targeting the learning of the oper-

ator via discrete stencils [Shukla et al., 2022]. Due to these features, this archi-

tecture has recently attracted attention in fluid mechanics. A review is avail-

able on the subject authored by Lino et al. [2023], while examples are given

by the works of Toshev et al. [2023] or Dupuy et al. [2023b], where wall shear

stress are modelled for LES simulations based on GNN. Here, we take inspira-

tion from Donon et al. [2020], where a GNN-based architecture incorporating

permutation and translation invariance is combined with the statistical solver

problem; Donon et al. [2020] proofed that the architecture – referred to as

deep statistical solver – has some universal approximation properties, and it

is capable of operator learning.

In this contribution, GNN are combined with numerical simulations per-

formed using FEM. The GNN-FEM interface allows the use of NN predictions

in post-processing FEM analysis since it provides a two-way coupling between

NN and FEM environments. However – as already mentioned – the volume of

data can represent a bottleneck if the available amount is insufficient. More-

over, also quality of data impacts on the prediction properties in pure data-

driven modelling [Bucci et al., 2023], in particular when data at hand are not

sufficient in representing correctly the distribution of the overall dataset. In-

consistent or unbalanceddata distributionsmay lead themodel to being trained

on subsets of data that do not adequately represent the underneath physics

of the problem. Thus, as second, fundamental ingredient we adopt active

learning, aimed to increase the dissimilarity between data points and ensure

that the model distills all discriminant features necessary to perform the re-

quired task effectively. At the best of our knowledge, this application is among

the first in fluid mechanics where selection of data is performed by applying

an active learning criterion. Readers are directed to Ren et al. [2021] for a com-

prehensive overview of active learning methods in deep learning. We follow

the work by Charpiat et al. [2019] where scalar products of gradients asso-

ciated with the update of the model weights of the GNN are considered as

similarity metric between samples; the chosen criterion allows to dynamically

increase the training dataset by introducing data that promote diversity in the

dataset.

The set of equations used for the numerical simulations is discussed in

Sec. 2.3.3, while details on the numerical setup can be found in Sec. 5.2.1.

The flow cases are shown in Sec. 5.2. The theoretical background and how

this architecture is coupled with numerical simulations resolved on unstruc-

tured meshes can be found in Sec. 3.8. Then, the work moves into the re-

sults section (Sec. 5.3): GNNmodels are trained on datasets composed by the

80

mean flows (input) and the Reynolds stress (target); the baseline is provided

by the closure problem in cylinder flows at Reynolds numbers 50 ≤ Re ≤ 150

(Sec. 5.3.2). Generalization properties are assessed using 4 different bench-

marks defined in Sec. 5.3.1, not included in the training sets. This baseline

is thus compared with models trained with different strategies of data selec-

tion. First, we consider cases where data augmentation is performed using

simulations of flows past bluff bodies of random geometry (Sec. 5.3.3); sec-

ond, active learning is introduced in Sec. 5.3.3. Some conclusions on the work

presented in this Chapter are drawn in Sec. 5.4.

5.2 . Design of experiment and numerical setup

The numerical simulations used to generate the ground truth data for

training the GNNwere conducted in-house using a custom Python script, built

on the FEniCS library [Alnæs et al., 2015]. This computational framework was

specifically designed to solve the PDEs equations such as fluid dynamics re-

lated problems using the FEM approach. In this study, we consider bluff bod-

ies geometries at different Reynolds numbers, such that a comprehensive

dataset is obtained to handle a larger variety of flow scenarios. In the follow-

ing, the reference case – i.e. the cylinder flow – is discussed in Sec. 5.2.1 along

with the necessary numerical details, while the flows past random geometries

are discussed in Sec. 5.2.2.

5.2.1 . Cylinder flow

Figure 5.1: (a) Stream-wise component of the meanflow u and vorticity iso-

lines ω = ∇ × u for the flow past a cylinder at Re = 150. (b) For the same
case, the stream-wise component of the closure term f is shown. In both

cases, only a portion of the domain is shown.

(a) (b)

Theunsteadywakedeveloping past a cylinder is awell documentedbench-

mark in fluid dynamics literature, and it is often found as reference case in

works of data-assimilation for the assessment of novel techniques; it exhibits

steady behavior until a critical Reynolds number of Rec ∼= 46.7, when a su-

percritical Hopf bifurcation occurs [Provansal et al., 1987, Giannetti and Lu-

chini, 2007]. At higher Reynolds numbers, the baseflow becomes an unsta-

81

ble solution and the unsteady flow develops into a limit cycle known as von

Karman street (Fig. 5.1a). This behavior can be observed until Re = 150, for

two-dimensional (2D) cases. Beyond this point, alongside periodic vortex for-

mation, irregular velocity fluctuations begin to emerge [Anatol, 1958]; note

that transition to turbulence occurs when three dimensional cases are con-

sidered, which is beyond the scope of the present work. Instead, this work

aims at a quantitative analysis of GNN model emulators trained in low-data

limits leveraging active learning processes; as such, we will benchmark the

proposed algorithm on simpler 2D scenarios exhibiting the limit cycle behav-

ior, in the range 50 ≤ Re ≤ 150; we perform numerical simulations at differ-

ent Re numbers in the mentioned range, with ∆Re = 10, in order to collect

the necessary data to train the GNNmodel and compose the dataset. The nu-

merical simulations are resolved in time, while themeanflowu and the forcing

term f (Eq. 2.9) are computed by averaging on-the-fly until convergence. As

an example of this data, Fig. 5.1a illustrates the stream-wise component of the

meanflow u alongside the vorticity isolines ω = ∇ × u, while Fig. 5.1b shows

the stream-wise component of the closure term f for Re = 150. The key nu-

merical aspects of the simulations, including the employed spatial discretiza-

tion, time integration schemes, and solver techniques, are detailed in Guégan

[2022]. Here, we provide a summary of the essential elements and highlight

the validation process that underlines the reliability of the simulation data.

From a numerical perspective, the spatial discretization follows the finite

element framework, using a weak formulation of the NSE. Specifically, the

Taylor-Hood elements are employed, which use second-order (P2) elements

for the velocity field and first-order (P1) elements for the pressure field. This

choice ensures both the stability and accuracy of the solution, particularly for

incompressible flow simulations, which are the primary focus of this work.

The time-stepping is handled via a second-order Backward Differentiation

Formula (BDF), which ensures temporal accuracy:























�

3un − 4un−1 + un−2

2∆t

�

+ (un−1 ·∇)un + (un ·∇)un−1

−(un−1 ·∇)un−1 − 1

Re
∆un +∇pn = 0

∇ · un = 0,

(5.1)

In this formulation the n superscript refers to the current time step, with n−1

and n−2 representing values from the previous two time steps. The time step

∆t satisfies the CFL condition, ensuring numerical stability withCFL ≤ 0.5 for

all fluid flow cases under consideration.

The convective terms are handled using a combination of Newton and Picard

iterative methods, where each iteration solves a linear system to converge to

the final solution at each time step.

82

Figure 5.2: Sketch of the computational domain geometry. The diameter of

the circumscribed circle of the bluff body, the height and length of the domain

are given in non-dimensional units.

Themesh used in the simulations is unstructured and refined around crit-

ical flow regions, such as the area near the obstacle and the wake behind it.

This mesh refinement ensures that the simulation accurately captures impor-

tant flow features, including instabilities and vortex shedding. The reference

mesh is based on the well-known benchmark case of flow around a cylinder,

which serves as the foundation for validating the solver and ensuring the ac-

curacy of the results.

Concerning the reference numerical setup, the characteristic dimension is the

diameter D of the circumscribed circle to the bluff body. Based on this di-

mension, the computational domain extends Lx = 27 units in the stream-

wise direction and Ly = 10 units in the transverse direction. The system’s

origin O(0, 0) is positioned ∆x = 9 units downstream from the inlet and

∆y = 5units from the symmetry boundaries. A pictorial sketch of the geomet-

ric configuration of the computational domain is reported in Fig. 5.2. The flow

evolves from left to right with a dimensionless uniform velocity u = (1, 0)T ,

normalized by the reference velocity U∞ of the undisturbed flow. Boundary

conditions follow the setup described by Foures et al. [2014], which read as:



























u = 1, v = 0 at the inlet,

u = 0, v = 0 on the cylinder surface,

∂yu = 0, v = 0 on symmetry boundaries,
1

Re
∂xu− p = 0, ∂xv = 0 at the outlet.

(5.2)

Validation of the numerical solver was conducted by comparing the simulated

drag coefficient (Cd) and lift coefficient (Cl) for flow past a cylinder with estab-

lished results from previous studies. The time evolution of these coefficients

is shown in Fig. 5.3, demonstrating the periodic nature of vortex shedding, a

key characteristic of this type of flow. Additionally, a quantitative comparison

of the time-averaged drag coefficient and the amplitude of the lift coefficient

is presented in Table 5.1. Our results are consistent with values reported in

83

the literature, with only minor discrepancies. The slight overestimation of Cl

is likely due to the size of the computational domain in the y-direction, which

may introduce minor numerical blockage effects.

Figure 5.3: Drag coefficient Cd and lift coefficient Cl of flow past a cylinder.

Cylinder Cd average Cl amplitude

Etienne and Pelletier [2015] 1.36 0.67

Li et al. [2005] 1.34 0.69

Liu et al. [1998] 1.31 0.69

Present result 1.32 0.73

Table 5.1: Comparison of Cd average and Cl amplitude

84

5.2.2 . Flow around random shapes

(a) (b)

(c)

Figure 5.4: Flow past a bluff body with a randomly generated shape at Re =
90. (a) Geometry of the bluff body with α = 60° and unitary diameter of
the circumscribed circle around the body. The resulting meanflow and the

vorticity isolines ω = ∇ × u are shown in (b), while (c) shows the forcing
stress term in a portion of the domain.

As mentioned previously, the dataset can be enriched by including dif-

ferent geometries; thus, alongside with the flow past a cylinder, we include

in the dataset flow fields around obstacles of random shapes. In principle,

we should determine the critical Reynolds number (Rec) at which the flow

around each of the random geometries under analysis develops into unsta-

ble baseflows. This would require an extensive campaign of simulations and

a comprehensive stability analysis, along the footprints of the recent works by

Chiarini et al. [2021, 2022]. Therefore, we adopt amore pragmatic approach by

retaining the geometries that in the range 50 ≤ Re ≤ 150 develop unsteady

flows.

Regarding the geometries of the obstacles, their shape is defined by a set

of splines connected at the location of 4 control points, assuring aC1 continu-

ity between them. The control points (P1 to P4 in Fig. 5.4a) are located along

two orthogonal axes rotated of an angle α with respect to the Cartesian coor-

dinates system of reference. Their distance from the origin O(0, 0) is defined

in the range |s| ∈ [0.1, 0.6], with a discrete step size of ∆s = 0.1. An addi-

tional degree of freedom is added for controlling the angle α ∈ [0◦, 90◦], with

a discrete step size of ∆α = 30◦.

Finally, the random shapes generation script prevents the repetition of

the same set of degrees of freedom defining the shape such that each geom-

etry appears only once in the final dataset. Note that the center of the circum-

scribed circle of each random shape does not align necessarily with the center

of the coordinate system. This is not an accidental feature: in the context of

85

NN training, this strategy corresponds to introducing some positional noise in

the training dataset, thus promoting a more robust and prone-to-generalize

learning of the underlying data. Such variability in the training data further

contributes to reduce the risk of overfitting and enhances the NN ability to

generalize its predictions to new, unseen geometries.

5.3 . Results

The present section is dedicated to the presentation of the results. We in-

troduce a proof-of-concept of the approach in Sec. 5.3.2; in this first analysis,

we train the GNNwith a dataset composed of data obtained from simulations

of the flow past a cylinder at different Reynolds numbers. The aim is to ver-

ify the robustness of the approach with respect to unseen conditions, using

the benchmark cases in Sec. 5.3.1. In Sec. 5.3.2, we focus on the appropriate

choice of the dataset and how the selection of training data can impact the

generalization capabilities of the GNN. In Sec. 5.3.3, we include in the dataset

flow fields from simulations of wakes past randomly generated bluff bodies

(details of shape generation in Sec. 5.2.2); the effects of dataset augmenta-

tion and dataset expansion are discussed in Sec. 5.3.3 and Sec. 5.3.3, respec-

tively, while data selection by active learning criteria is discussed in Sec. 5.3.3.

A quantitative comparative analysis of these training approaches is summa-

rized in Sec. 5.3.5; in the following, we introduce the 4 reference cases used

for all the comparisons discussed in this section.

5.3.1 . Test Cases

We introduce 4 benchmarks to assess the performance of theGNNmodel.

The test cases, labelled fromCase 1 to Case 4, are designed to evaluate specific

aspects of the GNN’s prediction. We cover a broad spectrum of scenarios, in-

cluding variability in Reynolds number and geometry, changes in the position

with respect of the inlet and number of the obstacles.

1. Case 1: in this scenario, we consider the flow past a cylinder, where the

Reynolds number is increased to Re = 200. This exceeds the training

dataset interval, ranging in 50 ≤ Re ≤ 150, and it is used to test the

model’s capability to extrapolate beyond the training data.

2. Case 2: here, we introduce as a test case the flow past a bluff body of

random shape not included in the training dataset atRe = 120, in order

to assess the model generalization capability to unseen shapes.

3. Case 3: this case involves data from simulation of a flow past a bluff

body of random shape, not present in the training dataset, atRe = 100.

The obstacle is positioned downstream of the reference position used

in the dataset.

86

4. Case 4: this test considers a two side-by-side cylinders configuration;

two bluff body obstacles are present in the flow, in contrast to the single

obstacle used for the training. The Reynolds number is Re = 90 and

the aim is to test geometries inducing different dynamics, here the one

stemming from multiple interacting bluff bodies.

Fig. 5.5 shows the streamwise component of the meanflow velocity u, the

isolines of the vorticity ω = ∇ × u (left column) and streamwise component

of the forcing stress f (right column) computed using numerical simulations

for the 4 benchmarks Case 1-4.

Twometrics will be used to evaluate the performance of theGNN. The first

one will be a comparison between the ground truth f and the GNN prediction

for eachof the cases, considered as the relative error ε, basedon theL2-norm,

defined as

ε =
||f − f̂ ||

||f ||
=

h

R

Ω
(f − f̂)2dΩ

i1/2

�R

Ω
f2dΩ

�1/2
. (5.3)

The secondmetric employed arises from the necessity to assess the accuracy

on the meanflow reconstruction û from the GNN prediction with respect to

the ground truth meanflow u. It is defined as

δ =
||u− û||

||u||
=

�R

Ω
(u− û)2dΩ

�1/2

�R

Ω
u2dΩ

�1/2
. (5.4)

In the previous equations, Ω is the computational domain (Sec. 5.2.1), f̂ is the

GNN prediction and f is the closure term of the RANS equations coming from

the DNS. Plugging f̂ in Eq. 2.8b and solving the inverse problem, we can obtain

û, a reconstruction of the meanflow based on the GNN prediction.

5.3.2 . Proof-of-concept training: flow past a cylinder flow

Here, we consider the baseline results that in the following we will indi-

cate as proof-of-concept (PC). The training dataset contains data obtained

from DNS simulations of the flow past a cylinder; it is composed by 11 pairs

of meanflows u (input) and Reynolds forcing stress f (target), in the interval

50 ≤ Re ≤ 150, with a stride of ∆Re = 10. As previously mentioned, all the

cases in the dataset exhibit a von Karman street instability in the wake of the

bluff body.

Fig. 5.6 shows the training and validation loss curves for this training ap-

proach. The training loss behavior underlines the model’s ability to capture

thedynamics of thefluidflows and to learn thepatterns in the training dataset.

However, a significant gap can be observed between the training and valida-

tion loss curves. This discrepancy suggests a potential problem of overfitting

to the training data. This problem is not unexpected, considering that the

87

Case 1

Case 2

Case 3

Case 4

Figure 5.5: Test cases used as a benchmark of the learning strategies dis-

cussed in Sec. 5.3. From the top raw to the bottom one: Case 1, cylinder flow

at Re = 200; Case 2, flow past a random-shaped bluff body at Re = 120;
Case 3, flow past a random-shaped bluff body shifted in the computational

domain at Re = 100; Case 4, flow past a two side-by-side cylinders configura-
tion atRe = 90. For each of the cases, the left column shows the stream-wise
component of the meanflow u, along with the vorticity isolines ω = ∇ × u,

while the right column show the stream-wise component of the forcing stress

f .

training dataset is composed exclusively of data obtained from simulations

past the same geometry. Thus, when the GNN model is tested with unseen

shapes or fluid dynamic conditions, the performance drops.

Regarding the test cases, in Case 1 (Fig. 5.7a), the GNN prediction shows

good accuracy in reproducing the fluid structures at higher Reynolds num-

ber Re = 200, with ε = 0.1153. Fig. 5.7(b) shows Case 2, where the differ-

ence between the GNN prediction and the DNS data is primarily visible in the

near wake region. This region is crucial for the development of the unsta-

ble dynamics as it corresponds to the so-called wavemaker region [Giannetti

and Luchini, 2007]; for cases as such of non-standard geometrical shape, the

flow vortex shedding behavior can be quite different from the one observed

88

Figure 5.6: Curves for the training and validation loss for the proof-of-concept

baseline, trained until 3000 epochs. The training dataset is composed by 11
meanflow-forcing pairs stacked at different Reynolds numbers in the range

50 ≤ Re ≤ 150 with ∆Re = 10. The validation set is formed by the test cases
presented in Sec. 5.3.1.

in standard cylinder cases. The ε norm in this case is ε = 0.2995. Case 3

in Fig. 5.7(c) tests the GNN generalization capabilities when the bluff body

changes; the main discrepancies are again observed in the near wake of the

bluff body. The ε norm in this case is ε = 0.2084. Finally, Case 4 in Fig. 5.7(d)

is particularly challenging as it tests generalization capabilities in presence of

multiple bluff bodies. The GNN model’s predictions capture the major fea-

tures of the forcing stress of each of the cylinder. However, discrepancies are

mainly observed in the area between the two cylinders and extending in the

far wake region, where interactions between the Reynolds stress fields of the

two cylinders occur. The ε norm in this case is ε = 0.8704, significantly higher

compared to the previous cases.

In all the cases discussed so far, the presence of some numerical errors

in all the predictions is noted, but these are primarily attributed to statistical

noise or inherent errors typical of neural network models. Neural networks

indeed, by their nature, include elements of statistical uncertainty due to fac-

tors such as the stochastic nature of their training algorithms (e.g., random

initialization of weights, batch selection during training), and the approximate

nature of the model that represents the underlying physics. Beside this as-

pect, this preliminary analysis based on the benchmark cases suggests that

the GNN model performance could be further improved with a training set

including a larger variety of bluff body shapes. Therefore, in what follows, we

study the effects of the data augmentation by including in the training dataset

random shaped bluff bodies with the aim of enhancing the model’s robust-

ness and generalization capabilities.

89

(a)

(b)

(c)

(d)

DNS GNN Difference

Figure 5.7: Stream-wise component comparison of the Reynolds stress ten-

sor. The GNN’s model is trained with a dataset composed by 11 cases of cylin-
der shape bluff bodies, ranging in 50 ≤ Re ≤ 150, ∆Re = 10. (a) Case 1,
Re = 200, cylinder bluff body shape; (b) Case 2, Re = 120, random shape
bluff body; (c) Case 3,Re = 100, random shape shifted bluff body; (d) Case 4,
Re = 90, flow past two side-by-side cylinders.

5.3.3 . Data augmentation and active learning: fluid flows past

random geometries

In the following, we study the effects of data amount and quality on the

training process and generalization properties of the GNNmodels. This study

is structured into distinct steps.

1. Data augmentation (DA): this first approach involves dataset augmen-

tation, meaning that we incorporate bluff bodies of random shapes

cases into the existing dataset, while maintaining the same dataset size

used in the PC case, i.e. 11 cases. This method is aimed at diversifying

the range of geometries used during the training of the model, without

increasing the data volume.

2. Dataset expansion: in this second approach, we expand the dataset

by including 33 cases of bluff bodies of random shapes. We assess the

quality of the used data in terms of sensitivity of the model to specific

configurations by performing a k-fold validation.

3. Active learning (AL) data selection: in this last approach, the training

set is built by adding progressively data chosen by similarity criterion.

The goal is to develop a surrogate model that can generalize at its best

to unseen cases based on a given dataset.

90

Figure 5.8: Curves for the training and validation loss for when DA is per-

formed by introducing 11 cases of flows past random geometries in the
dataset. The Reynolds number varies in the range 50 ≤ Re ≤ 150 with
∆Re = 10. The training runs until 3000 epochs. The validation set is formed
by the test cases presented in Sec. 5.3.1.

1 - Data augmentation with random shapes

In this phase of the study, we employ a stratified random sampling criterion

to select shapes among the randomly generated configurations detailed in

Sec. 5.2.2. This latter involves the generation of the entire set of shapes for

eachReynolds number in the interval 50 ≤ Re ≤ 150,∆Re = 10 and randomly

select 1 shape for each value of the Reynolds number, for a total of 11 shapes

that compose the new training dataset. The chosen geometries are unique.

On the selected shapes, we perform DNS simulations in order to obtain the

meanflow (input) and the forcing stress (target) used to train the GNN.

Fig. 5.8 shows the training and validation loss curves for this second train-

ing approach. The training loss demonstrates a consistent downward trend,

highlighting the learning effectiveness of theGNNmodel. Notably, while there

remains a significant gap between the training and validation loss curves,

this gap is less pronounced when compared to the initial training approach

(Fig. 5.6). This reduced gap is indicative of diminished overfitting and suggests

that the introduction of a wider variety of shapes and flow conditions into the

training dataset leads to improved GNN model’s generalization capabilities.

Regarding theGNNpredictions on test cases, Case 1 (Fig. 5.9a) shows larger

discrepancies in the forcing prediction in the neighborhood of the cylinder

compared to the training approach discussed in Sec. 5.3.2, ε = 0.5033. An in-

terpretation for this result is given by the nature of the PC training dataset that

solely relies on cylindrical geometries; thus, the resulting GNN model is spe-

cialized in the prediction of the cylinder flows. In contrast, the current train-

ing strategy involves flows past random shapes: from one hand, this choice

broads the GNN’s flexibility to capture diverse flow conditions by enhancing

generalization capabilities; on the other hand, it simultaneously decreases the

91

(a)

(b)

(c)

(d)

DNS GNN Difference

Figure 5.9: Stream-wise component comparison of the Reynolds stress ten-

sor. The GNN’s model is trained with a dataset composed by 11 cases of ran-
dom shaped bluff bodies, ranging in the interval 50 ≤ Re ≤ 150, ∆Re = 10.
(a) Case 1, Re = 200, cylinder bluff body shape; (b) Case 2, Re = 120, random
shape bluff body; (c) Case 3, Re = 100, random shape shifted bluff body; (d)
Case 4, Re = 90, flow past two side-by-side cylinders.

prediction accuracy for cylinder shaped cases.

Case 2 (Fig. 5.9b) and Case 3 (Fig. 5.9c) show mainly numerical and sta-

tistical noise in the difference fields while the main features of the Reynolds

stress tensor are well reproduced in the prediction. Contrary to what is ob-

served in Case 1, this training approach leads to an efficient GNN model in

predicting the features of the flows past random shaped bluff bodies. Error

norm is comparable for the two test cases, namely ε = 0.2063 for Case 2 and

ε = 0.1999 for Case 3. Finally, Case 4 is characterized by inaccuracies primarily

located in the wake region similar to the one already observed in the PC case

(for a reference, the reader can compare Fig. 5.7d and Fig. 5.9d). However, it’s

important to note that these errors are quantitatively less significant to those

observed in the first training approach, with ε = 0.6312.

2 - Dataset Expansion

A common technique to improve generalization in neural network models is

to enlarge the volume of data the model is trained with. This approach re-

duces the risk for the NNmodel to overfit to specific conditions observed in a

small dataset and ismore likely to capture the underlying phenomena. There-

fore, we study the effect of tripling the amount of data in the training dataset.

With the same stratified random sampling approach described in the previ-

92

(a) (b)

Figure 5.10: Training and validation loss curves for models trained using 10 k-
fold up to 3000 epochs. (a) shows the training curves, (b) the corresponding
validation curves for each fold.

ous paragraph, we select 3 cases for each of the 11 Reynolds numbers chosen

in the interval of reference, resulting in a 33 cases training dataset. In order

to analyze the sensitivity of the GNN model’s generalization capabilities with

respect to the training dataset, we employ a k-fold validation test. First, we

divide the training dataset into k groups and train k different models. For

each of the kmodels, we use k−1 groups as the training dataset and the k-th

remaining group as the validation dataset. Although this approach is not fea-

sible in practical applications, it is very informative for assessing preliminarily

the impact of the quality of data on the final prediction.

Fig. 5.10(a) shows the training curves of the 10 models, one for each of

the k folds, while Fig. 5.10(b) displays their corresponding validation curves.

The training curves are rather close, independently of the chosen dataset,

thus suggesting a rather consistent behavior of the chosen GNN architecture.

However, the validation loss varies significantly. This variability can be at-

tributed to the distribution of the training dataset. Inconsistent or unbalanced

data distributionsmay lead themodel to being trained on subsets of data that

do not adequately represent the overall dataset, thus impacting negatively on

the validation results. To address this challenge and identify the most effec-

tive dataset, we introduce AL in the following.

3 - Active Learning data selection

AL allows to dynamically adjust the dataset, targeting the data that contribute

most significantly to the model’s generalization capability. We exploit a simi-

larity criterion from theGNNperspective, following the study by Charpiat et al.

[2019]. The key idea is to avoid including in the training dataset cases that

do not lead to any significative improvement of the model from the gener-

alization viewpoint; instead, in order to induce diversity in the GNN model,

93

we need to select cases that are as most as different from each other from

the GNN perspective. We can achieve this goal by comparing, for each of the

available data pairs, the vector gradient of the cost function with respect to

the θ learnable parameters of the GNN by means of scalar products. As a

comparison metric, we employ the cosine similarity angular distance

cos(β) =
a · b

∥a∥ ∥b∥ , (5.5)

where a ∈ R
m and b ∈ R

m are two generic m-dimensional vectors and β is

the angle between them. The basic idea is that each gradient vector steers

the neural network’s state to a specific direction within the solution space.

Therefore, including multiple data points whose gradients point in the same

direction might be redundant. Instead, our aim is to select and include in the

training dataset as many different directions as possible, in order to explore

more extensively the solution space (see also 5.3.4).

The selectionprocess stopswhenapredefined similarity threshold is reached,

such that only the pairs exhibiting a similarity below this threshold are added

to the dataset. Conversely, cases that show a similarity value exceeding the

threshold are discarded. However, the similarity threshold does not have a

direct, interpretablemeaning and needs to be tuned as an input parameter of

the process, according to the required performances. In general, a lower simi-

larity thresholdmeans thatmore caseswill be included in the training dataset.

While this can enhancemodels behavior to diverse scenarios, it may also lead

to a more complex and time-consuming training process. On the other hand,

a too restrictive similarity threshold might exclude potentially valuable train-

ing data. Therefore, an optimal similarity threshold is chosen as a trade-off

between the training computational costs and the model generalization per-

formances.

In our study, we explore three different similarity threshold values, cos(β) ∈
[0.7, 0.8, 0.9]. This approach allows to observe the impact of varying levels of

data inclusion on the model’s training and performance. Results shown in

Fig. 5.12 and Fig. 5.11 are obtained with a similarity threshold of 0.8, which re-

sults in only 6 selected random bluff body cases for the training dataset; the

results for the other threshold values are detailed in Sec. 5.3.5. Fig. 5.11 re-

ports the training and validation loss curves: the reduced disparity observed

between the two curves – compared to the results from the previous learning

approaches – underscores a notable decrease in the issue of overfitting. The

training is initiated with a single case in the training dataset, specifically the

cylinder case at Re = 120.

Once the convergence of the vector gradients is reached (Sec. 5.3.4), a new

case in the training set is selected; since this process is a seek-and-include al-

gorithm that enlarges the dataset at each step, two different approaches can

94

Figure 5.11: Training and validation loss curves are shown when AL with sim-

ilarity threshold 0.8 is performed until 3000 epochs. The training dataset is
formed by 6 random shaped bluff bodies. Their Reynolds number varies in
the interval 50 ≤ Re ≤ 150. The validation set is formed by the test cases
presented in Sec. 5.3.1.

be applied. The first strategy is inspired by the curriculum learning framework

[Bengio et al., 2009], where each selected case is added to the ongoing train-

ing. Thus, the model is progressively updated. A second approach, applied

in this work, consists in reinitializing the GNN weights every time the dataset

is enlarged with a new pair. The rationale behind this choice is based on the

dynamics of the solution space, that changes when new data are added to

the training set; in this sense, there is no guarantee that the new minima will

be "closer" to the previous ones than to the initialization point of the GNN.

Nonetheless, we observed that for the analyzed flow cases the two training

strategies lead to negligible differences in the final results.

Considering the benchmarks for the model assessment, Case 1 leads to

ε = 0.5507 between the GNN predictions of the Reynolds stress tensor and

the DNS ones. The error is ε = 0.1518 for the random shape bluff body

case (Case 2), ε = 0.3595 for the downstream shifted random shape bluff

body (Case 3) and ε = 0.5243 for the two side-to-side cylinder configuration

(Case 4). The results respect the symmetry of the solutions with respect of

the y axis and only minor inconsistencies can be observed in the far wake; we

note that the errors are concentrated in the region immediately downstream

of the bluff body, but we interpret these errors as numerical or stochastic in

nature rather than being prediction inaccuracies of the fluid structures.

95

(a)

(b)

(c)

(d)

DNS GNN Difference

Figure 5.12: Stream-wise component comparison of the Reynolds stress ten-

sor. The GNN’s model is trained with a dataset composed by 6 cases of bluff
bodies of random shape selected with the AL approach, ranging in the inter-

val 50 ≤ Re ≤ 150,∆Re = 10. (a) Case 1, flow past a cylinder at Re = 200; (b)
Case 2, flow past a random shaped bluff body atRe = 120; (c) Case 3, random
shaped bluff body atRe = 100, shifted downstream; (d) Case 4, flow past two
side-by-side cylinders at Re = 90.

96

5.3.4 . Similarity criteria algorithm details

Figure 5.13: Visualization of gradient auto-similarity convergence over multi-

ple training epochs using MAE for 9 distinct cases within the training data set.

The similarity criteria algorithm designed to compare different data from

the neural network perspective is based on the analysis of the vector gra-

dients of a metric function (Eq. 5.7) with respect to the θ parameters of the

neural network. In particular, the similarity comparison between two generic

m-dimensional vectors a ∈ R
m and b ∈ R

m is computed using the cosine

similarity, defined as

cos(β) =
a · b

∥a∥ ∥b∥ , (5.6)

where β is the angle between the two vectors. In this context the metric we

use is the Mean Absolute Error (MAE), a piecewise linear function defined as:

MAE =

ni
X

i=1

|xi − yi|, (5.7)

in which xi is the NN prediction on the node i, yi the ground truth and ni the

number of nodes.

The choice of MAE is crucial for our analysis. In scenarios where the Mean

Squared Error (MSE) is used, we empirically observe marked oscillations in

the direction of the auto-similarity of the vector gradient throughout succes-

sive training epochs. Conversely, when employing MAE, the auto-similarity

of the vector gradient tends to approach unity, suggesting a stable direction

in the solution space, for the data under analysis. A visual representation of

the consistent convergence of the vector gradient auto-similarity as function

of the epochs is shown in Fig. 5.13, for a training process involving 9 cases in

97

the training dataset. Training begins with a specific initial dataset; when ev-

ery data point in the training dataset achieves an auto-similarity convergence

exceeding a predefined threshold of 0.99, the training is stopped and we can

assume that the vector gradient’s direction for each instance in the training

dataset has stabilized.

The following step is to assess the similarity between cases within the

training dataset and those outside it. This aims at identifying the most di-

verse cases among those not included in the training set, which will then be

added to the training dataset to enhance diversity. Firstly, the GNN runs for

additional 10 epochs to obtain the vector gradients of each out-of-training

dataset instance. Then, a similarity matrix is computed by cross calculating

the similarity between each in-training instance and each out-of-training in-

stance. The case that shows the lowest similarity score is also themost diverse

one and enables to promote diversification in the training dataset based on

available data. Note that the values are normalized using a z-score value

z =
S − µ

σ
, (5.8)

where S represents the similarity score for a specific data point, µ is themean

of all similarity scores, and σ their standard deviation. In summary, the ap-

proach outlined here serves as a robust method for comparing and evalu-

ating the similarities in data behavior leveraging the neural network model,

thereby enhancing the efficacy of the training process.

5.3.5 . Quantitative comparison

In conclusion, we summarize the results in Tab. 5.2. A direct comparison

between the first two training approaches (PC and DA) reveals that enriching

the training dataset with random geometries enhances the generalization ca-

pabilities of the GNN. This behavior is not unexpected, although an exception

is observed when extrapolating at higher Reynolds numbers (Case 1), where

we observe that the PC approach outperforms DA. As already discussed, this

behavior can be understood by observing that the GNNmodel trained follow-

ing the approach PC is specialized in predicting the flow past a cylinder as it

is trained on this specific geometry.

On the other hand, the AL training approach allows to obtain GNN models

demonstrating overall superior performance in terms of generalization capa-

bilities as compared to PC and DA approaches, in particular for Case 2 and

Case 4, while in Case 3 performance are essentially comparable. The mean

error decreases in all the 4 test cases in the AL approach, indicating an im-

provement in the global performance of the model. An important aspect re-

garding the active selection of data for the training is the amount of data.

Good performances are achieved with only 6 pairs when a threshold 0.8, al-

though it is also possible to observe a strong variation in the total number of

98

Cases

PC DA AL

0.7 0.8 0.9

ε δ ε δ ε δ ε δ ε δ

Case 1 0.1153 0.0118 0.5033 0.1987 0.8671 0.1859 0.5507 0.1165 0.4132 0.1162

Case 2 0.2995 0.0280 0.2063 0.0160 0.1256 0.0079 0.1518 0.0166 0.1124 0.0092

Case 3 0.2084 0.0131 0.1999 0.0090 0.3058 0.0107 0.3595 0.0183 0.2123 0.0082

Case 4 0.8707 0.2683 0.6312 0.1701 0.6751 0.1930 0.5243 0.1565 0.5719 0.1653

Training data 11 11 3 6 19

Table 5.2: Comparison on the 4 cases defined as benchmark for the
three different training approaches: the proof-of-concept (PC) training

(Sec. 5.3.2), the data augmentation (DA) training (Sec. 5.3.3), and the ac-

tive learning (AL) strategy (Sec. 5.3.3). For the latter, we consider three

similarity threshold values cos(β) ∈ [0.7, 0.8, 0.9]. The chosen metric ε
and δ are defined respectively in Eq. 5.3 and Eq. 5.4. In the last row,

the number of pairs used during the training process is reported.

pairs used for the training as a function of the chosen threshold. It is crucial

to observe, however, that for all the AL cases the introduction of a selection

criterion guarantees that the chosen data points lead to good performance in

terms of generalization.

When comparing our work with existing literature, the notable aspect is that

our approach achieves comparable accuracy with significantly fewer train-

ing cases. For instance, in Chen et al. [2021] the authors utilize 2000 cases

in their training dataset for steady-state incompressible flow around a cylin-

der at Re = 10. In contrast, we use only 19 cases for the largest dataset used

and still manage to generalize to different Reynolds numbers and bluff body

positions, with comparable accuracy results. In Lee and You [2019], 500k cases

are used for the training dataset, although an unsteady flow is predicted us-

ing CNN. It is worth noting that the use of a GNN architecture enables to

generalize on different geometries and Re numbers, an aspect that is not

addressed in Lee and You [2019]. Finally, in Thuerey et al. [2020], a GNN is

employed for predicting time–averaged steady flow. The dataset consists of

12800 data points while the GNNmodel has a complexity of over 30M param-

eters, prohibitive for most practical applications. Our GNN architecture, on

the contrary, can count up to approximately 900k parameters. In conclusion,

we believe that the combination of GNN models and active learning makes

our method more accessible and practical for broader applications thanks to

the parsimony of the data requirements.

99

5.4 . Discussion

The application ofmachine learning techniques in fluidmechanics is often

characterized by shortcomings such as overfitting, lack of robustness of the

prediction with respect to unseen cases and data-hungriness. In this study,

we proposed a novel approach that combines a neural architecture based

on Graph Neural Network (GNN), numerical solvers based on Finite Element

Method (FEM) and an active learning procedure in order to tackle some of

these limitations. Here, we consider a data-assimilation schemes that does

not rely on anoptimizationprocess anduse as baseline equations theReynolds

Averaged Navier-Stokes (RANS) equations. GNN models are trained as a sur-

rogate to predict the forcing/closure term, obtained as an output of the su-

pervised learning, while a givenmean flow serves as input. The GNN architec-

ture is particularly suitable in this study due to its adaptability to unstructured

meshes and its generalization capability, as compared to other literature ap-

proaches. Moreover, this architecture allows frugal training within the low-

data limit, as compare to alternative, more expensive in terms of required

data, architectures.

A two-fold interface between FEM and GNN environment has been devel-

oped to transform a FEM vector field into a numerical tensor that can be han-

dled by a NN structure and vice versa, preserving critical information through-

out the process. As a test-bed, we focussed on two dimensional, incompress-

ible flows past obstacles at low Reynolds numbers, namely in the range 50 ≤
Re ≤ 150. At these regimes, the presence of obstacles triggers instabilities

developing in unsteady flows. We started by studying a cylindrical geometry

in the range 50 ≤ Re ≤ 150 as initial benchmark, in order to assess the ex-

tent to which a model based on this training dataset can be used also for un-

seen cases. Not surprisingly, we found good performance at unseen Reynolds

number for the cylinder case. On the other hand, when the flow around the

bluff bodies of random geometry is considered, it is observed lack of accuracy

in the prediction and overfitting.

In order to tackle these limitations, we explored the impact of the training data

on the generalization capabilities of the GNN in terms of quantity and quality

of data. First, we considered an extended dataset. Our results indicate that

the quality and volumeof data notably affect the spectrumof unseen cases on

which the model can generalize to. Particularly, the inclusion of diverse fluid

flow conditions into the training dataset improves the overall generalization

capabilities for the vast majority of cases. Finally, we introduced an active

learning data selection criterion based on the analysis of gradient similarity,

with the aimof building a dataset extending the distribution of the data. At the

best of authors knowledge, this is one of the first applications in the commu-

nity of fluid mechanics where a systematic selection of the data is performed

100

addressing the generalization of the NNmodel prediction to unseen cases by

maximizing the quality of the predictions and at same time minimizing the

amount of data used in the training set. The results clearly indicate the possi-

bility of improving the performance of the model, also in terms of generaliza-

tion, while keeping a rather small amount of data in the training set. The crite-

rion is especially relevant in the contexts where computational resources for

training surrogatemodels are limited, and a trade-offbetween accuracy of the

predictions and training computational cost is sought. It is stressed that the

datasets used during the training process are relatively small as compared to

other approaches appeared in ML literature, as the most expensive one con-

sists of less than 20 pairs of snapshots. These datasets are selected through

a criterion that minimizes the number of data points required and is robust

enough to be applied to larger datasets to efficiently reduce themwhilemain-

taining essential information. In terms of future studies, this project hasmany

potential directions and developments that can be pursued. Among them,

one possible development is the implementation of a sensitivity analysis of

the GNN predictions by leveraging the gradients of the model. Specifically,

this involves analyzing the sensitivity of GNN predictions with respect to vari-

ations in the input parameters, such as themean flow. This could be followed

by an adaptive training procedure where a weight mask is applied to the loss

function to concentrate the training effort on the most sensitive regions of

the flow. For example, the GNN could initially predict a sensitivity map of the

input mean flow, highlighting the zones with the highest influence on the pre-

dicted field. The loss function could then be adapted for each specific case to

focus the training more accurately on these sensitive areas, leading to more

efficient and localized learning.

A similar approach could be adopted using uncertainty quantification. By

quantifying the uncertainty in the GNN’s predictions, regions with high un-

certainty could be identified, and the training could be adaptively focused

on these areas to reduce the model’s uncertainty and increase robustness.

This would involve dynamically adjusting the loss function to prioritize regions

with higher uncertainty, thereby guiding the model to learn where it is most

needed.

Another promising direction is exploring different neural network architec-

tures, such as Recurrant Neural Networks (RNN)s with adaptive updatemech-

anisms. This could involve an adaptive number of iterations to improve effi-

ciency and accuracy depending on the training case [Nastorg, 2024].

Transformers [Vaswani et al., 2017], with their ability to capture long-range

dependencies, could be another architecture worth exploring. Unlike GNNs,

which excel in capturing local relationships, transformers could help in under-

standing global interactions between distant points in the flow field. Leverag-

ing a combination of these two approaches could lead to potential benefit in

101

terms of accuracy and generalization capabilities.

In the next Chapter we will extend our findings by incorporating physi-

cal constraint in the learning loop through the adjoint equations associated

with the assimilation loop. This integration aims to further refine the predic-

tive performance and generalization capabilities of the GNN leveraging the

physics constraints. The final goal of these data-assimilation schemes is to

adapt our training approach to cases where solely limited or corrupted mea-

surements of the flow are available, such as those based on sparse probe

measurements, noisy or incomplete data.

102

6 - Part II: Physics-Constrained Graph Neural

Network (PhyCo-GNN)

6.1 . Introduction

In recent years, the integration of Machine Learning (ML) algorithms into

Computational Fluid Dynamic (CFD) has seen a significant boost, driven by the

increasing efficiency of ML models in processing large dataset and their im-

pressive inference and predicting capabilities.

Literature is already disseminated with different, effective ways to combine

ML algorithms into CFD, as can be found in the annual review by Brunton et al.

[2020b] and in Vinuesa and Brunton [2022]. These applications range from

addressing the closure problem of Reynolds-averaged Navier-Stokes (RANS)

equations to optimization problems. Notably, Duraisamy et al. [2019] and

Beck and Kurz [2021] provide a thorough overview of ML techniques applied

specifically to turbulence modeling and RANS equation closure. In Ling and

Templeton [2015], authors used classification methods to identify regions of

high uncertainty in RANS fluid flow predictions. In Ströfer and Xiao [2021], the

authors combined NN with a Spalart-Allmaras turbulence baseline model to

enhance fluid flow RANS predictions. Data-assimilation techniques are also

been explored to enhance the turbulence models of RANS equations, as can

be found in the extensive study by Cato et al. [2023]. However, despite the

potential of ML models, one of the persistent challenges is ensuring that the

learned solutions adhere to fundamental physical laws. Unconstrained ML

models may yield results that violate physical principles, undermining the re-

liability and interpretability of simulations. To address this problem, an es-

tablished approach is the use of Physics-Informed Neural Network (PINN)s,

which incorporate physical equations as part of the NN training process to

maintain physical consistency Cai et al. [2021].

In this Chapter, we propose a novel approach by combining Graph Neural

Networks (GNNs) (Sec. 3.7) as ML framework with Reynolds-Averaged Navier-

Stokes (RANS) (Sec. 2.3) equations as our physical baseline model. GNNs are

particularly suited for CFD problems due to their ability to handle complex

geometries, often encountered in fluid flow simulations. They extend tradi-

tional neural networks by considering the relationships between data points,

making them ideal for capturing the particles interactions in a fluid flow sys-

tem.

Our primary goal is to develop a hybrid ML-CFD model to accurately recon-

struct themean flow of a fluid dynamics simulation across various application

cases. Traditionally, mean flow reconstruction has been tackled using data-

103

assimilation techniques that combine experimental measurements with CFD

models. Foures et al. [2014] proposed a variational data-assimilation method

that uses forced RANS equations to reconstruct the mean flow field from par-

tial measurements. This method minimizes the discrepancy between the ex-

perimental data and numerical solutions by identifying the optimal forcing

term that represents the unknown Reynolds stresses.

More recently, ML techniques have been explored to enhance flow recon-

struction. Belbute-Peres et al. [2020] developed a hybridmodel that combines

GNNs with differentiable fluid dynamics solvers. This approach leverages the

efficiency of NNs while maintaining the accuracy of physical solvers. Further-

more, Chen et al. [2021] demonstrated the use of GNNs for predicting laminar

flows around arbitrary 2D shapes, showing promising results in terms of ac-

curacy and computational speed compared to traditional solvers.

Specifically, we aim to integrate RANS equations into a GNN training pro-

cess, leveraging the RANS closure term as an optimization term through the

adjoint method (Sec. 4.5). Adjoint method is a powerful mathematical tool

used in CFD to compute gradients efficiently, which are essential in a classical

optimization process. We use the adjointmethod to ensure that the gradients

used in the GNN training process are obtained through a deterministic phys-

ical model. With this approach, we can train the ML model by guaranteeing

physical consistency and leading to improved performance and accuracy with

respect to supervised learning or standard methods. We test our approach

on different CFD scenarios, showing remarkable improvements in mean flow

reconstruction accuracy for different learning tasks as compared to the non

physics constrained counterpart.

Thephysical baselinemodel for theCFD simulations is detailed in Sec. 2.3.3.

The numerical setting used in this study is inherited by the previous study 5,

specifically in 5.2.1. The adjoint optimizationmethod can be found in Sec. 4.5.1.

Sec. 3.7 describes the ML framework, detailing the custom GNN architecture

used in (Sec. 3.7.1), the dataset preprocessing (Sec. 3.8.1) and the training algo-

rithm (Sec. 3.8.2). We continue, then, by presenting our innovative approach

to combine these two frameworks in Sec. 6.2. Results, along with the different

application cases, are presented in Sec. 6.3.

6.2 . Methodology

This section describes themethodology developed here, combining RANS

(Sec. 2.3.3) and the training of a GNN model (Sec. 3.7). The main focus of the

approach relies on the use of gradients derived analytically from the RANS

equations through the adjoint method (Sec. 4.5) to enhance the learning pro-

cess of the GNN and ensure physical consistency in its predictions. The com-

104

plete training process is shown in Fig. 6.1. In the following, Sec. 6.2.2 gives

some technical details on the pre-training phase of the GNN model, while

Sec. 6.2.3 details the approach adopted to combine the transition between

the pre-training phase and the effective training of the GNN.

6.2.1 . The training process

Figure 6.1: End-to-end training loop; u is the GNN’s input mean flow; f̂ is the

GNN’s predicted forcing stress term; θ are the GNN’s trainable parameters;

J (û) is the cost function to minimize.

With reference to Fig. 6.1, the global training process can be ideally divided

into two phases, the forward and the backward step. The forward step begins

with the input of themean flow u (and Reynolds numberRe) into a pretrained

GNN (Sec. 6.2.2), which predicts a forcing stress term f̂ . This predicted forc-

ing term is plugged into the direct RANS equations (Eq. 2.8b). By using the

Finite Element Method (FEM) approach, handled by the python library FEniCS

[Alnæs et al., 2015], we solve numerically the RANS inverse problem to ob-

tain a mean flow prediction û. This result is then compared with the mean

flow ground truth u obtained from the DNS to compute a loss function J that

needs to be minimized:

J =

Z

Ω

(u− û)2dΩ. (6.1)

Eq. 6.1 is computed directly in the FEM environment as an integral over the

entire computational domain Ω of the squared difference between the pre-

dicted mean flow û and its ground truth u.

The second phase, the backward step, starts with the requirement to com-

pute the derivative of the loss function J with respect to the θ parameters of

theGNN. The gradient chain rule for this required term can bemathematically

expressed as:

∂J

∂θ
=

∂J

∂û
·
∂û

∂ f̂
·
∂ f̂

∂θ
=

∂J

∂ f̂
·
∂ f̂

∂θ
. (6.2)

105

The first term ∂J

∂ f̂
of the right-hand side is obtained from Eq. 4.20 after solv-

ing the adjoint equations (Eq. 4.18b). The second term ∂ f̂

∂θ
of the right-hand

side is indeed the gradient of the GNN’s output with respect to the θ parame-

ters of the GNN, which is available using the automatic differentiation. These

two gradients, the analytical one discretized using FEniCS and the numerical

one obtained by the automatic differentiation included in PyTorch Geometric

[Fey and Lenssen, 2019] are combined together to complete the chain rule. Fi-

nally, these compounded gradients are used to train the GNN.

6.2.2 . On the pre-training step

A crucial step of the algorithm is the GNNmodel’s pre-training phase. This

step is necessary to ensure that the GNN’s prediction is plausible enough to

be plugged into the RANS equations. Indeed, the GNN model’s weights and

biases are defined using a default initialization [He et al., 2015] and therefore

early GNN’s predictions are non-physical and cannot be reliably used in the

forward step where the forcing is introduced in the RANS equations for the

computation of the mean flow (Sec. 6.2.1). Indeed, the solution to the RANS

inverse problem may not exist if the initial guess for the forcing term, f̂ , is

too far from a physical value. The pre-training step helps in stabilizing the

GNN’s output and overcome this problem, making the forcing stress term f̂

prediction suitable for subsequent integration into the RANS equations. The

pre-trained model is obtained via a pure supervised learning of the mapping

between the mean flow u (and Reynolds number Re) used as input and the

forcing stress term f as target, both coming from DNS. The loss function used

in this phase is the Mean Squared Error (MSE) lossM, reading as

M =
1

n

n
X

i=1

(fi − f̂i)
2, (6.3)

where n is the number of nodes of the GNN. The number of epochs needed

to reach the required closure term accuracy depends on the specific case at

hand, and it will be specified for each of the training cases shown in the re-

sult section (Sec. 6.3). The closure term accuracy, in this context, refers to

the level of precision necessary for the GNN to produce predictions that en-

able the FEM solver to successfully solve the RANS equations. Throughout the

pretraining phase, the GNN predictions are periodically evaluated by solving

a test FEM step. If the solver converge and accurately resolve the RANS equa-

tions using the GNN predicted closure term, the pretraining phase is consid-

ered complete. This ensures that the GNN has learned an accurate and reli-

able representation of the closure term, making it suitable for advancing to

the full training scheme.

106

6.2.3 . On the loss function

During the pre-training step (Sec. 6.2.2), the GNN model is updated using

a loss function designed to align the model’s predictions with the available

data from DNS. As already stated, this phase can be seen as a warm-up step

of the subsequent main training (Sec. 6.2.1). However, when the pre-training

ends and themain training begins, a different loss function is adopted, as can

be observed by comparing Eq. 6.3 with Eq. 6.1. This change may be detrimen-

tal in terms of convergence and destabilize the training process, as the two

optimization landscapes can be significantly different. To mitigate this risk,

both loss functions are retained during themain training phase and combined

through a weight coefficient β as:

L = (1−β)M+βJ = (1−β)

1

n

n
X

i=1

(fi − f̂i)
2

!

+β

�
Z

Ω

(u− û)2dΩ

�

. (6.4)

This strategy facilitates a smooth transition between the two optimization

steps by adjusting the relative importance of the pretraining and main train-

ing loss functions. In particular, the loss functionM (Eq. 6.3) associated with

the supervised pre-training continues to enforce a data-driven alignment and

guarantees "continuity" in the optimization process. The term J (Eq. 6.1) cor-

responding to the loss function of the physics-constrained loop is introduced

to minimize the mean flow reconstruction error.

Thenext section is dedicated to the discussionof the results. We show that

the converged GNNmodel effectively predicts a forcing term f that is aligned

with the ground truth and consistent with the physics of the system through

the constraint introduced using the adjoint equations. At the same time, an

effective model reconstructing the mean flow u is learned. The method out-

perform the accuracy of standard techniques of mean flow reconstruction.

6.3 . Results

In this section, wepresent the improvements obtainedusing theproposed

data assimilation scheme for the reconstruction of the mean flow field u.

Tests are carried out by considering several scenarios, and in particular the

reconstruction of the mean flow starting from noisy probes, incomplete flow

fields (inpainting) and sparse measurements. The models are compared with

the supervised learning method introduced in chapter 5 introduced as base-

line reference, where the GNN model is trained by solely learning the forcing

stress f based on the DNS data. This forcing stress f is then used as input to

the RANS equations (Eq. 2.8b) in order to reconstruct the mean flow u. The

GNN’s objective is to minimize the discrepancy between the predicted and

the ground truth forcing stress (Eq. 3.30), without any constraint introduced

107

based on the physics of the system. In contrast, the hybrid data assimila-

tion scheme discussed in this chapter introduces in the training process of

the GNN the physics constraint. To compare the two methods, we evaluate

their training curves after the pre-training phase by identifying the minimum

loss values reached by each model in the training process. The percentage

improvement is then computed as follows:

I(%) =
min(JSupervised)−min(JPhysics constrained)

min(JSupervised)
· 102, (6.5)

wheremin(JSupervised) andmin(JPhysics constrained) represent theminimumval-

ues of the loss function on themean flow reconstruction (Eq. 6.1) for the base-

line (pure supervised learning) and the adjoint based methods, respectively.

In the following, we introduce different learning task by focusing on the tech-

nical features of the method and discussing the achieved improvements in

terms of mean flow reconstruction.

6.3.1 . Proof of Concept

The first test case we consider is the flow field reconstruction when the

input of GNN is the complete mean flow u (and Reynolds numberRe) defined

on the entire computational domain Ω. This test case is introduced as proof

of concept of the method. We consider two cases of increasing complexity.

The first case is a flow developing past a 2D cylinder at Reynolds number of

Re = 150. This case is well documented in literature and its time-averaged

mean flow is shown in Fig. 6.2a. The training dataset only contains as input

the mean flow u and its corresponding forcing term f as GNN target. The

training curves in Fig. 6.2b show that starting from the pre-training phase, the

implementation of the approach described in this paper leads to a substantial

improvement in the mean flow reconstruction. Specifically, the improvement

attains the value of I = 58.59%.

The second case consists of a two side-by-side cylinders configuration,

also known in literature as the ’flip flop’ case, at Reynolds number Re = 90.

Its RANS resulting mean flow is shown in Fig. 6.3a. The training curves for this

case in Fig. 6.3b demonstrate an even more pronounced improvement, with

a reduction of I = 82.90% in the loss curve. The results indicate not only the

broad adaptability of the proposed approach but also how, in more complex

models, the underlying physics and governing equations play a crucial role in

further increasing the accuracy of the GNN model’s prediction.

6.3.2 . Generalization

In this section, we test the generalization capabilities of the learnedmodel.

The training dataset consists of three cases of 2D cylinder at Reynolds num-

bers ofRe = [90, 110, 130]. On the other hand, the validation dataset includes

108

a) b)

c) d)

Figure 6.2: (a) The training mean flow input from the ground truth. The
training dataset is composed by 1meanflow-forcing pair at Reynolds number
Re = 150; (b) the loss curves for the pure supervised approach (orange line)
and the proposed approach (blue line) are shown. The two horizontal dotted

lines indicate theminimumvalues of both curves, while the dotted vertical line

indicates the end of the pre-training phase (Sec. 6.2.2); (c) the reconstructed
mean flow from the pure supervised approach; (d) the reconstructed mean
flow from the present approach. 1D line plots are overimposed on figures (c)
and (d), comparing the predicted flow values (red line) with the ground truth
(black line) at various sections along the flow field.

data points not included in the training set related to simulations of the flow

around a 2D cylinder at Reynolds number Re = 120 as interpolation test,

and Re = 150 aimed at testing the extrapolation properties. In Fig. 6.4a, the

mean flow u ground truth atRe = 120 case is shown. Based on the validation

cases, we observe an improvement in the mean flow reconstruction by an

average over the entire validation dataset of I = 73.27%. Specifically, we ob-

tained an improvement of I = 78.96% for the interpolation case at Re = 120,

and I = 13.96% for the extrapolation case at Re = 150. The improvement

obtained on the training cases is I = 40.16% as an average over the entire

training dataset.

With this test case, the primary objective is to show that the presented

approach enhances the generalization capabilities of the GNN model. To en-

sure clarity in our analysis, this generalization test case is deliberately isolated

from the others. This separation allows maintaining a focused evaluation for

each individual test case, targeting the specific goals of those tests without

introducing confounding variables related to generalization.

109

a) b)

c) d)

Figure 6.3: (a) The training mean flow input from the ground truth. The
training dataset is composed by 1meanflow-forcing pair at Reynolds number
Re = 90; (b) the loss curves for the pure supervised approach (orange line)
and the proposed approach (blue line) are shown. The two horizontal dotted

lines indicate theminimumvalues of both curves, while the dotted vertical line

indicates the end of the pre-training phase (Sec. 6.2.2); (c) the reconstructed
mean flow from the pure supervised approach; (d) the reconstructed mean
flow from the present approach. 1D line plots are overimposed on figures (c)
and (d), comparing the predicted flow values (red line) with the ground truth
(black line) at various sections along the flow field.

6.3.3 . Sparse Measurement

The learning task presented here involves the reconstruction of the mean

flowon the entire computational domain using as input for theGNNmeasure-

ments from randomly distributed probes. The training dataset is composed

by two simulations of the flow past a cylinder for each Reynolds number in

the range Re = [90, 110, 130], resulting in six cases. For each case, 450 probes

are placed in the mean flow stream, uniformly distributed across the entire

computational domain Ω. Subsequently, 200 of these probes are randomly

removed, leaving a sparse set of 250 probes. This sparse set of measurement

on the mean flow u is used as input to the GNN while its output prediction is

compared with the corresponding forcing stress tensor from the DNS ground

truth. Fig. 6.5a shows the random probes positioning on themean flow, while

Fig. 6.5b the average training curves on the training dataset. In this case, we

demonstrate an improvement in the mean flow reconstruction across all the

training cases by an average of I = 55.09%. This result highlights the ro-

bustness of the proposed approach in scenarios with sparse and randomly

distributed measurements.

110

a) b)

c) d)

Figure 6.4: (a) The training mean flow input (at Re = 120) from the ground
truth. The training dataset is composed by 3 meanflow-forcing pair at
Reynolds number Re = [90, 110, 130] while the validation dataset contains
cylinder cases at Re = [120, 150]; (b) the loss curves for the pure supervised
approach (orange line) and the proposed approach (blue line) are shown. The

two horizontal dotted lines indicate theminimum values of both curves, while

the dotted vertical line indicates the end of the pre-training phase (Sec. 6.2.2);

(c) the reconstructed mean flow (at Re = 120) from the pure supervised ap-
proach; (d) the reconstructed mean flow (at Re = 120) from the present ap-
proach. 1D line plots are overimposed on figures (c) and (d), comparing the
predicted flow values (red line) with the ground truth (black line) at various

sections along the flow field.

6.3.4 . Denoising

In this test case, the input mean flow field is perturbed with a Gaussian

noise. The probability density function used for the Gaussian distribution

used to generate the noise is given by

ψ (z) =
1

σ
√
2π

e
−(z−µ)2

2σ2 , (6.6)

where z is the random variable, µ is the mean value of the normal distribu-

tion and σ represents its standard deviation. In this case we assumed µ = 0,

namely a standard normal distribution. The training dataset consists of three

cases of cylinder flows, at Reynolds number Re = [90, 110, 130], perturbed

with Gaussian noise having σ = [0.6, 0.4, 0.2], respectively. Fig. 6.6a shows the

effect of σ = 0.4Gaussian noise on themean flow (atRe = 110) while Fig. 6.6b

presents the accuracy in the mean flow reconstruction. The goal here is to re-

move the Gaussian noise and accurately reconstruct the denoised mean flow

field. Our approach demonstrates an improvement on the training dataset

111

a) b)

c) d)

Figure 6.5: (a) An example of the probes positioning on the mean flow. The
training dataset is composed by 6 mean flow-forcing pairs at Reynolds num-
ber in the range Re = [90, 110, 130] (two instances for each case) with 250
randomly distributed probes; (b) the loss curves for the pure supervised ap-
proach (orange line) and the proposed approach (blue line) are shown. The

two horizontal dotted lines indicate theminimum values of both curves, while

the dotted vertical line indicates the end of the pre-training phase (Sec. 6.2.2);

(c) the reconstructed mean flow (at Re = 110) from the pure supervised ap-
proach; (d) the reconstructed mean flow (at Re = 110) from the present ap-
proach. 1D line plots are overimposed on figures (c) and (d), comparing the
predicted flow values (red line) with the ground truth (black line) at various

sections along the flow field.

by a factor of I = 45.67% as an average over the training cases.

6.3.5 . Inpainting

In this test, masking patches are randomly applied to the input mean

flow field. The training dataset consists of three cases of cylinder obstacle

at Reynolds number Re = [90, 110, 130], each with different patch locations

(Fig. 6.7a). The goal is to reconstruct the mean flow field by filling in the miss-

ing patches. The approach demonstrates improvements on the training cases

by an average of I = 41.73%, successfully restoring the missing portions of

the field and enhancing the overall reconstruction accuracy.

6.3.6 . Discussion and outlooks

In this section, we introduced a hybrid data-assimilation for the recon-

struction of the mean flow, starting from corrupted or incomplete data. By

integrating RANS equations into the GNN training process through an adjoint

optimization framework (Sec.4), our model demonstrates superior accuracy

112

a) b)

c) d)

Figure 6.6: (a) Gaussian perturbed mean flow (at Re = 110). The train-
ing dataset is composed by 3 mean flow-forcing pairs at Reynolds number
Re = [90, 110, 130] perturbed with a Gaussian noise having µ = 0 and
σ = [0.6, 0.4, 0.2], respectively; (b) the loss curves for the pure supervised ap-
proach (orange line) and the proposed approach (blue line) are shown. The

two horizontal dotted lines indicate theminimum values of both curves, while

the dotted vertical line indicates the end of the pre-training phase (Sec. 6.2.2);

(c) the reconstructed mean flow (at Re = 110) from the pure supervised ap-
proach; (d) the reconstructed mean flow (at Re = 110) from the present ap-
proach. 1D line plots are overimposed on figures (c) and (d), comparing the
predicted flow values (red line) with the ground truth (black line) at various

sections along the flow field.

in reconstructing mean flows, outperforming purely data-driven models. The

proposed method takes mean flow inputs under varying conditions, such as

noisy, sparse measurements or patch—masked flows, and predicts the clo-

sure term of the RANS equations. This predicted term is then used to solve

the RANS equations and reconstruct a complete, uncorruptedmean flow. The

use of adjointmethods for computing the gradients of the loss function allows

the GNN to incorporate physical knowledge into its training process and en-

hances results’ accuracy when compared to the supervised learning strategy

introduced in chapter 6.

The study offers numerous possibilities for future research. First of all,

the introduction of a numerical solver represents also a bottleneck, as the

solution of the direct and adjoint RANS equations is required. The perfor-

mance of the entire method highly depends on the available computational

resources and the efficiency of the numerical solver used. Improvements can

be achieved by efficient, parallel FEM code. This would enable to test the ap-

113

a) b)

c) d)

Figure 6.7: (a) Patch mask applied on the mean flow (at Re = 110). The
training dataset is composed of 3 mean flow-forcing pairs at Reynolds num-
ber Re = [90, 110, 130] with randomly located patching mask; (b) the loss
curves for the pure supervised approach (orange line) and the proposed ap-

proach (blue line) are shown. The two horizontal dotted lines indicate the

minimum values of both curves, while the dotted vertical line indicates the

end of the pre-training phase (Sec. 6.2.2); (c) the reconstructed mean flow (at
Re = 110) from the pure supervised approach; (d) the reconstructed mean
flow (at Re = 110) from the present approach. 1D line plots are overimposed
on figures (c) and (d), comparing the predicted flow values (red line) with the
ground truth (black line) at various sections along the flow field.

plication of the current data assimilation scheme to more complex 3D cases,

including turbulent flows at higher Reynolds numbers. Test cases of higher

complexity would provide valuable insights into the applicability to realistic

cases at larger scales.

From theML viewpoint, amulti-scale prediction process can be envisioned

where a series of GNNs is introduced at different resolutions aimed at refining

progressively the closure term predictions. For instance, one may introduce

an initial GNN model predicting the forcing stresses on a coarse or sparse

grid, followed by models refining the prediction at finer scales, as done with

super-resolution techniques.

Moreover, additional physics-informed elements could be added into the loss

function. Beyond the RANS equations, the model could include explicit terms

associated with boundary conditions, such as the inflow or outflow profiles,

ensuring that the predicted flows better represent physical expectations.

Finally, one could consider alternative MLmodels to the GNNs such as the

transformers [Vaswani et al., 2017]. In contrast with GNN models, transform-

ers are highly effective in capturing dependencies between widely separated

114

nodes. This attribute is particularly valuable when dealing with sparse or ir-

regularly distributed measurements, as it allows the model to identify spatial

dependencies in the flow field.

115

116

7 - Part III: Shape optimization of DuctedWind

Turbines (DAWT)

7.1 . Introduction

In the field of CFD, traditional optimization methods (Sec. 4.4) face signif-

icant challenges, particularly when applied to complex, nonlinear and multi-

parametric systems. These methods often depend on iterative evaluations of

the objective function, which, when this latter depends on numerical simula-

tions, become computationally expensive [Jameson, 1995, Rao, 2009]. More-

over, these methods struggle to perform effectively in scenarios with large

and complex parameter spaces, where the relationship between design vari-

ables and performance metrics is often highly non-linear. In other words,

the high computational cost of each numerical simulation, combined with the

need for numerous iterations, makes traditional approaches infeasible for op-

timization tasks that demand the exploration of a wide design space. These

limitations hinder the ability to achieve optimal solutions within a reasonable

time frame. An example is givenby the optimization of energy productionflow

systems, in which the maximization of the desired output (i.e., the power pro-

duction, or the overall efficiency of the system, among others) depends on the

complex dynamics of an infinite-dimension system characterized by an often

chaotic and three-dimensional behaviour such as the fluid flow which invests

the machine. A notable example are wind turbines, whose performance opti-

mization is based on the non-trivial dynamics of the flow which invests them,

which is inherently three-dimensional and turbulent (Porté-Agel et al. [2020],

De Cillis et al. [2022]), as well as on the numerous parameters describing the

geometrical configuration of each element of the system (namely, the blade

airfoils and their radial development, the tower and nacelle, etc..).

In this framework we tackle, using ML techniques, the geometry optimiza-

tion of an element of a newly developed wind energy system for urban use,

the Diffuser-Augmented Wind Turbine (DAWT).

DAWTs (Fig. 7.2) are an advanced class of wind turbines that differ from

traditional Open-Rotor Wind Turbines (OWT) by incorporating a surround-

ing diffuser or duct, designed to enhance the flow of wind through the ro-

tor. This configuration results in an increase in power output due to what is

known as the diffuser effect, exceeding the Lanchester-Betz limit for conven-

tional Horizontal Axis Wind Turbines (HAWT) [Bontempo and Di Marzo, 2023].

The Lanchester-Betz limit, formulated by German physicist Albert Betz in 1919,

states that no wind turbine can convert more than 59.3% of the kinetic energy

of the wind into mechanical energy.

117

Figure 7.1: (Left) Representation of the actuator disk configuration for a wind

turbine. (Right) Power coefficient Cp as a function of the axial flow induction

factor a for a wind turbine.

This theoretical maximum arises in the context the actuator disk model,

which is a theoretical approach used to represent the time-averaged behavior

of a wind turbine. It conceptualizes the turbine as a uniformly permeable

disk that extracts energy from the wind flow, without explicitly modeling the

blades.

The actuator disk model assumes that the wind slows down as it approaches

the rotor plane, where energy is extracted. With reference to Fig. 7.1(Left),

denoting the undisturbed velocity of the wind far upstream as v∞, the velocity

at the rotor plane vD can be expressed in terms of the axial flow induction

factor a as:

vD = v∞(1− a) (7.1)

The energy extraction also results in a reduction of wind velocity downstream

vw of the turbine. The velocity far downstream, vw, can be derived as:

vw = (1− 2a)v∞. (7.2)

Given the velocity difference between up and down far stream, an axial thrust

T exerted on the air by the rotor can be defined as:

T = (v∞ − vw)ρAvD (7.3)

This force on the air flow comes from the rotor, or actuator disk, and it’s due

to the pressure difference across the disk. Therefore, it can be seen as:

(p+D − p−D)A = (v∞ − vw)ρAv∞(1− a). (7.4)

where vD is expressed as reported in Eq. 7.1. Combining Eq. 7.4 and Eq. 7.2

and multiplying by vD, the power extracted from the wind can be written as:

P = TvD = 2ρAv3
∞
a(1− a)2 (7.5)

118

To quantify the efficiency of the energy extraction, we define the power coef-

ficient Cp (Fig. 7.1(Right)):

Cp =
P

1
2ρAv

3
∞

(7.6)

where the denominator 1
2ρAv

3
∞
represents the total available power in the

wind. Plugging Eq. 7.5 in Eq. 7.6 gives:

Cp = 4a(1− a)2 (7.7)

To determine the maximum Cp, we take the derivative of Cp with respect to

the axial flow induction factor a and set it equal to zero:

dCp

da
= 4(1− a)(1− 3a) = 0 (7.8)

Solving this equation gives:

a =
1

3
(7.9)

Substituting a = 1
3 back into the expression for Cp, we get:

Cp =
16

27
≈ 0.593 (7.10)

This theoreticalmaximumefficiency arises because thewindmust retain enough

energy to keep flowing past the turbine, ensuring a continuous flow.

In order to overcome this theoretical limit, research have recently devel-

oped the DAWTs concept, where the diffuser accelerates the airflow through

the rotor and creates a region of lower pressure downstream that draws ad-

ditional air through the rotor. This effect allows DAWTs to produce more

power than conventional open-rotor turbines of comparable rotor size [van

Bussel, 2007, Ilhan et al., 2021]. Other advantages of DAWTs are the lower cut-

in speed, sensitivity to yaw angles, noise level, tip speed losses, and a higher

safety footprint in case of mechanical failure of the rotor. All these aspects

make DAWTs particularly suitable for small-size applications in urban envi-

ronments [Dilimulati et al., 2018, Stathopoulos et al., 2018, Hassanli et al., 2019,

Potsis et al., 2023]

Small changes in the duct geometry, particularly in the diffuser angle and

its placement relative to the rotor, can lead to significant variations in DAWT

performance,making it an ideal candidate for shapeoptimization. Indeed, op-

timization of DAWTs has been extensively explored in the literature, focusing

particularly on how geometricmodifications to the diffuser or duct can impact

the turbine performance. Foreman et al. [1978] explored these effects by con-

ducting experiments on diffuser-augmented models, highlighting how spe-

cific duct orientations and geometries could improve wind turbine efficiency.

119

Figure 7.2: (Left) Frontal view of a Diffuser-Augmented Wind Turbine (DAWT)

and its perspective view (Right). Figure inherited from Bontempo and Manna

[2022]

Aranake et al. [2015] advanced the field by applying three-dimensional CFD

analyses to various shrouded turbine configurations, focusing on the effects

of boundary layer separation and vortex shedding within the duct. Their work

showed that flow separation along the inner surfaces of the duct could reduce

efficiency, indicating the need for precise duct shape optimization to mitigate

these effects. Venters et al. [2016] introduced optimization techniques based

on RANS simulations to identify optimal duct configurations for enhanced en-

ergy capture. Their approach used high-fidelity CFD models to iteratively re-

fineduct shapes, emphasizing the computational challenges of such optimiza-

tion processes due to the large number of design variables and the need for

extensive computational resources.

These studies collectively underscore the significant computational cost asso-

ciated with duct shape optimization for DAWTs as many of these approaches

rely on iterative CFD simulations. Each shape modification or adjustment in

duct orientation requires, indeed, a completely new full simulation: an exten-

sive analysis of all possible geometric configurations would result in a high-

dimensional, nonlinear design space, requiring a large number of simulations,

and thus leading to impractical computational costs.

To overcome these limitations, in this work we introduce a GNN as a sur-

rogate model, in order to quickly evaluate the flow fields associated with dif-

ferent duct geometries. This surrogate model, trained on high-fidelity CFD

data (Sec. 7.2), enables a quick evaluation of the performance metrics, avoid-

ing the need of RANS simulations at each iteration. The chosen metric is the

power coefficient (Cp). In principle, simpler NN architectures can be used for

120

the prediction of a scalar output, without necessary including geometric in-

formation. In practice, although Cp remains a crucial performance metric, it

alone cannot capture the interactions in the flow field, which are essential

for assessing variables that impact downstream conditions. For instance, the

prediction of the full flow field enables for broader optimization targets, such

as the reduction of the turbulence intensity and the enhancement of the flow

regularity downstream of the turbine, that are critical in wind farms, where

the wake from an upstream turbine can substantially affect the performance

of downstream turbines, or else, in urban applications, where they impact on

the local population or ecosystem, due to noise or unsteady airflow. More-

over, predicting thewhole flow field allows to avoid critical flow configurations

indicating an incipient flow separation on the diffuser, which may result in a

performance drop for a minimal change of the flow conditions. In this sense,

an architecture predicting the entire flow field offers significant advantages

in addressing these optimization objectives. Finally, it is worth stressing that

the choice of GNNmeets the need of a detailed, geometrical parametrization

of key turbine components, such as the duct shape and diffuser position.

In this work, the optimization process is carried out by pairing the sur-

rogate model based on GNN with a Reinforcement Learning (RL) algorithm

[Sutton and Barto, 2018], which acts as an agent optimizing the duct’s ge-

ometry by adjusting control parameters iteratively based on the feedback

from the surrogate model used as the environment. RL is an umbrella term

covering numerous strategies and algorithms aimed at maximizing or mini-

mizing a reward or cost-function by learning policies from interactions with

an environment that is not necessarily known a priori. Recent results are

showing that these techniques are particularly suitable for problems involving

non-linear environments, including active control of fluid flows and problems

where standard techniques of optimization can be limited due to uncertain-

ties in the modeling step [Rabault et al., 2019, Bucci et al., 2019].

In this part of the thesis, we consider a proof of concept for demonstrating

the feasibility of the approach by focusing on a single geometric parameter:

the angle of the duct α. The RL algorithm is used to optimize this parame-

ter to maximize the power coefficient (Cp). Although this is a simplified case,

the goal is to showcase the potential of combining a GNN-based surrogate

model replacing a full-scale numerical simulation with RL algorithms for the

optimization.

121

Figure 7.3: Sketch of a ducted wind turbine DAWT reporting the relevant geo-

metrical parameters. Figure adapted from Bontempo and Di Marzo [2023].

7.2 . DAWT Ground Truth Data and Numerical Setup

The CFD flow fields used in this work for the optimization of DAWTs duct’s

shape are a series of RANS simulations provided by R. Bontempo 1. These

RANS simulations provide a rich and comprehensive dataset for DAWT per-

formance analysis, with particular focus on the influence of duct geometry on

the wake structure and turbine efficiency. These simulations data serve as

training dataset for the GNN employed in the optimization stages.

In the following, we quickly summarize themain features of theflowunder

consideration, outlined in the work by Bontempo and DiMarzo [2023]. Fig. 7.3

shows a sketch of a DAWT, including the main geometrical parameters de-

scribing its geometry. Specifically, α represents the stagger angle of the duct

(the control parameter in this work), CD is the chord of the duct airfoil shape,

g is the rotor-duct tip gap, R the rotor radius, rhub the hub radius and zLE
the leading edge (LE) axial coordinate. The aerodynamic flow of the DAWT

is simulated using a coupled Blade Element Theory (BET) approach [Burton

et al., 2011]. In this method, Blade Element Theory (BET) is employed to model

the rotor’s aerodynamics, while simultaneously incorporating the effects of

the duct. This coupled approach ensures that the aerodynamic interactions

between the rotor and the duct are fully captured, leading to a more accu-

rate and realistic representation of the complex flow dynamics in the CFD

simulation. The computational domain is a cylindrical volume designed to

1Prof. at Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli

Federico II, Naples, Italy

122

Figure 7.4: Representation of a portion of the computational domain along

with the adopted boundary conditions. Figure adapted from Bontempo and

Di Marzo [2023]

capture the flow field around the DAWT while ensuring minimal boundary

interference, so that the computational results accurately reflect the aerody-

namic interactions without significant distortions from artificial boundary ef-

fects. To this end, the domain extends both upstream and downstream, with

the inlet and outlet boundary set 15 rotor radii R upstream and downstream

from the rotor plane, respectively. The radial boundary extends to 20 rotor

radiiR, balancing computational feasibility with the need for accurate far-field

boundary conditions (Fig. 7.4). The boundary conditions are tailored to reflect

realistic operating conditions for DAWTs. At the inlet boundary, a uniform ve-

locity profile, V∞, simulates the ambient wind. At the outlet boundary, a zero

static pressure condition with radial equilibrium is imposed. The outer radius

boundary is treated as a free-shear wall, while periodic conditions are applied

to the lateral surfaces.

The mesh is divided into distinct regions for the rotor, duct, and exter-

nal flow to optimize grid density where it is most critical. The mesh employs

structured grids for the rotor and duct regions, with dense clustering near

blade surfaces and the duct’s inner walls. This localized refinement is cru-

cial for resolving boundary layer dynamics, flow separation, and other near-

surface phenomena that influence the ducted turbine’s performance. The ro-

tor mesh, developed by stacking 2D grids in the spanwise direction, allows for

detailed representation of blade curvature and twist. Mesh independence is

validated by monitoring the convergence of Cp and radial force distributions

across multiple grid densities (Fig. 7.5), with grid refinement concentrated in

the wake region; only minimal changes were observed between the medium

and fine grids, confirming the mesh’s adequacy for performance analysis.

123

Figure 7.5: Grid independence test. (Left) Power Coefficient Cp andmass flow

rate ingested by the rotor (Right) Linear density of the axial and tangential

forces. Figure taken from Bontempo and Di Marzo [2023]

Figure 7.6: Comparison between the ducted (DAWT) (Top) and open (OWT)

(Bottom) configurations for V∞ = 7m/s: (a) azimuthally-averaged normalized
axial velocity, (b) azimuthally-averaged normalized radial velocity contours,
(c) azimuthally-averaged normalized tangential velocity contours, (d) normal-
ized axial velocity contours at the rotor plane. Figure adapted from Bontempo

and Di Marzo [2023]

(a) (b) (c) (d)

RANS equations are numerically solved using Ansys Fluent’s [ANSYS Inc.,

2023] Finite Volumeapproach. Convectivefluxes are discretizedwith a second-

order upwind scheme, and diffusive terms use a central-difference scheme

to maintain accuracy. To model turbulence, the κ-ω Shear Stress Transport

(SST) model by Menter et al. [2003] is selected for its suitability in wind tur-

bine applications, given its balance of accuracy in boundary layer regions and

computational efficiency. This model is particularly effective in resolving the

separation and reattachment behaviors along the duct surfaces and the rotor

blades, which directly impact DAWT performances.

The resulting flow field is shown in Fig. 7.6 for a freestream velocity V∞ =

7m/s; this velocity is adopted for all the simulations used for creating thedatasets,

ensuring uniformitywhile varying other parameters, such as the angleαof the

124

duct. These flow fields are used as training dataset for the GNN in the next

optimization stages, as detailed in Sec. 7.3.

7.3 . Optimization Loop

Figure 7.7: End-to-end optimization loop; the complete mesh along with the

control variable α are the NN’s block input (Sec. 7.4); u is the GNN’s predicted

mean flow; Cp is power coefficient to maximize.

The optimization process is illustrated in the diagram in Fig. 7.7, which

highlights the interactions between each step in the loop. The aim of this

iterative cycle is to refine the duct’s angle α in order to maximize the power

coefficient (Cp). Below, a brief overview of the loop is provided.

• Mesh input: The loop begins by feeding a mesh of the DAWT, with an

initial duct angle α, into a pre-trained NN block (Sec. 7.4), which has

been trained to predict the flow fields, given a certain mesh.

• Flow Field Prediction: The pre-trained NN model (Sec. 7.4) takes this

mesh as input, and provides as output the predicted flow fields, thus

replacing in this step a full-order numerical simulation. The NN acts as

surrogate model of the system.

• Cp computation: Thepredictedflowfields are used to calculate the power

coefficient (Cp) (Sec.7.5), which is the performance metric we aim to

maximize.

• Optimization – Reinforcement Learning (RL): The calculated Cp, along

with the geometric parameters of the duct (in this case, the angle of the

duct α), are provided to a RL algorithm (Sec. 7.6). The RL agent evalu-

ates these inputs and selects improved geometric parameters with the

goal of increasing Cp.

125

• Mesh Generation: The optimized parameters chosen by the RL agent

are then passed to a mesh generator, which creates a newmesh based

on the updated geometry.

The new mesh is fed back into the NN surrogate model (Sec. 7.4), and the

loop continues until an optimalCp is achieved. This optimization cycle iterates

until the system converges on an optimal duct geometry that maximizes the

Cp. One of the significant advantages of using a GNN-based surrogate model

in combination with RL is the reduction in computational cost. The ground

truth, which relies on RANS simulations, requires approximately 20 minutes

per simulation, executed on 5 cores of an Intel(R) Core(TM) i9-10900X CPU @

3.70GHz. In contrast, theGNNsurrogatemodel can provide an approximation

of the flow field in just a few seconds on a single core of an Intel(R) Core(TM)

i5-1135G7 @ 2.40GHz. This strong reduction in computational time allows for

more efficient exploration of the design space andmakes RL-based optimiza-

tion practical for realistic applications or when computational resources are

limited.

7.4 . Machine Learning (ML) in the Optimization Loop

This chapter delves into the details of the NN pre-trained block within the

optimization loop (Fig. 7.7). The NN block consists of two primary compo-

nents: a MLP Positional Encoder and a GNN. These two NNs operate in tan-

dem to predict the flow fields for different wind turbine duct configurations,

providing a fast and efficient surrogate model that can replace computation-

ally intensive CFD simulations. Notably, the GNN used in this work shares the

same hyperparameters as the one used in the previous chapters, detailed in

Sec. 3.8.3.

The optimization process starts when the mesh of the wind turbine is fed

into the NN block. However, one of the key challenges in this setup is en-

suring that the GNN can generalize to unseen configurations, as different ge-

ometries andmesh topologiesmay significantly affect the predictive accuracy

of the model. Directly inputting the raw coordinates of the mesh points into

the GNN would result in a GNN model that is highly sensitive to the specific

arrangement of the nodes. The model tends to learn a specific mapping be-

tween these fixed coordinates in the training dataset and the associated flow

field, becoming overly dependent on the precise arrangement of the input

nodes and therefore loosing its inherent invariance to nodes permutation.

In other words, the GNN becomes "fixed" to particular spatial arrangements

from the training dataset, and therefore it struggles to generalize when tested

on new mesh arrangements. This sensitivity can lead to poor generalization,

especially when the mesh structure changes.

To overcome this limitation, weuse anMLPPositional Encoder as a pre-processing

126

step. The MLP transforms the raw coordinates of the mesh points into a la-

tent, non-physical representation. This transformation captures the impor-

tant positional information of the mesh points while abstracting away the ex-

act permutation of these points. The MLP effectively creates a latent space

representation that decouples theGNN from the specific arrangement of nodes,

enabling the GNN to operate independently of the mesh structure. Once the

mesh coordinates have been encoded by the MLP, the resulting latent repre-

sentations are fed into the GNN. The GNN is then responsible for predicting

the flow fields based on the latent representation of the mesh.

This combination of the MLP and GNN allows the network block to handle

a wide range ofmesh configurations and generalize effectively to new geome-

tries. The MLP ensures that the input data is processed in a consistent way,

while the GNN exploits the encoded positional relationships to predict the

flow fields.

7.4.1 . NNs pre-training

A critical aspect of the whole optimization loop is the pre-training of both

the Positional MLP and the GNN. Before these NNs can be used in the opti-

mization process, they must be trained on ground truth data obtained from

CFD simulations (Sec. 7.2), learning to infer the flow fields given a mesh as in-

put. The pre-training is conducted in a supervised learning environment on

data obtained from RANS simulations. From these simulations, a subdomain

of size 1 × R upstream, 2 × R downstream, and 2 × R in the radial direc-

tion (where R is the rotor radius) is extracted. This subdomain is chosen to

reduce the computational load of training the NNs, as the calculation of the

power coefficient (Cp), which we aim to optimize, only requires the flow field

in the immediate vicinity of the rotor. Nonetheless, future works aimed at op-

timizing the far field will require an extended domain for the training process.

The training dataset consists of flow fields for duct configurations with

angles α ranging from 5◦ to 25◦ with ∆α = 5◦, excluding α = 15◦, which was

reserved for validation purposes. A sketch representation of the possible duct

positioning in the training dataset is given in Fig. 7.10. These angles represent

variations in the duct geometry, starting from a baseline configuration where

α = 0. The variations are generated by applying a rigid rotation to the duct

using a rotation matrix centered at the throat point of the duct-rotor system.

The resulting flow fields corresponding to these rotated geometries serve as

the ground truth for the supervised learning process. During training, the two

NNs, the Positional MLP and the GNN, are trained together to learn the map-

ping between the input mesh and duct angle to the corresponding flow fields.

This pre-training phase is conducted independently of the optimization loop

to ensure that the networks can make accurate predictions when included

in the wider optimization framework. Fig. 7.8(a) shows the flow fields sub-

127

Figure 7.8: Comparison of flow fields for α = 15◦ (not included in the training
dataset). (a) the ground truth flow fields, (b) the GNN flow fields prediction,

(Top) axial velocity component, (Bottom) swirl velocity component.

(a) (b)

domain extraction as it comes from the ground truth, while Fig. 7.8(b) their

relative NNs prediction for an angle α not included in the training dataset,

specifically α = 15◦. The accuracy of the reconstruction demonstrates the

network’s ability to generalize to unseen cases included in the interval of pa-

rameters.

7.5 . The Optimization Cost Function

The optimization loop aims to maximize the power coefficient (Cp) of the

wind turbine. Specifically, the power coefficient is calculated using the Euler

equations for turbomachinery, introduced in the following (Eq. 7.14). This ap-

proach provides an efficient method for approximating the power coefficient

Cp based on the flow characteristics upstream and downstream of the rotor

disk. As previously discussed, this model is primarily based on momentum

theory, which considers the conservation of mass, momentum, and energy

across the control volume. While this approach is relatively simplified com-

pared to more detailed models like the Blade Element Theory (BET), it is com-

putationally inexpensive and well-suited for rapid iterative optimization.

Within the rotor disk context, the power extracted by the wind turbine can

be derived using the Euler’s equations for turbomachinery, which describe

128

the relationship between the flow velocity components and the energy ex-

tracted. The basic principle relies on the conservation of angular momentum

through an infinitesimal annular ring of area 2πrdr, which induces a corre-

sponding torque. Since both axial (i.e., va) and tangential (i.e., vθ) components

of the flow velocity depend on the considered radius, the mechanical power

extracted by each infinitesimal annulus of the wind turbine rotor (dP) can be

written as:

dP (r) = dṁ(r)U(r)∆vθ(r) (7.11)

where dṁ is the mass flow rate through the considered annulus; U is the lin-

ear velocity of the rotor’s blade at the considered radius;∆vθ is the difference

in tangential (or swirl) velocity between the upstream and downstream flow

across the actuator disk. The mass flow rate ṁ is defined as

dṁ = 2πrρvadr, (7.12)

in which ρ is the air density, 2πrdr is the cross-sectional area of the annulus

and va is the axial velocity of the flow through the considered annulus. Plug-

ging Eq. 7.12 into Eq. 7.11, we get the equation that represents the mechanical

power extracted from the wind by an annulus of the rotor, where the key

parameters include the mass flow rate, axial velocity, tangential velocity dif-

ference, and the rotor’s angular velocity

dP = 2πrρvaU∆vθdr. (7.13)

To obtain the total power extractedby the rotor, wemust integrate Eq. 7.13

along the entire blade length from the hub (rhub) to the tip (rtip). In fact, the

contribution of each blade element to the total power is, indeed, not uniform,

as the tangential and axial velocity change along the blade. The power extrac-

tion over the entire blade length is given by

P =

Z rtip

rhub

ρva(r)rω∆vθ(r)2πrdr, (7.14)

where ω is the angular velocity of the rotor and r is the local radius of the

actuator disk. This integral equation (Eq. 7.14) accounts for the fact that the

blade speed (related to rω), the tangential flow velocity difference and the

axial velocity vary with the radial position.

Finally, the power coefficient (Cp) quantifies the efficiency of the turbine in

converting wind energy into mechanical power. It is defined as the ratio of

the power extracted by the turbine P (Eq. 7.14) to the total available power in

the wind Pwind. The total available power in the wind is expressed as

Pwind =
1

2
ρAv3

∞
, (7.15)

129

Figure 7.9: Ground truth Cp values for duct angles α ranging from 5◦ to 25◦,
used as a reference dataset for optimization as compared with the Cp ob-

tained by the GNN predicted flows.

in which v∞ is the free-stream velocity of the wind upstream the turbine. The

power coefficient is then given by

Cp =
P

Pwind
. (7.16)

Using the Euler’s equations for turbomachinery to calculate the power coef-

ficient strikes a balance between computational efficiency and accuracy. By

focusing on key flow components such as axial and tangential velocities, this

approach avoids the complexity of methods like Blade Element Theory (BET),

which require detailed geometric and aerodynamic modeling of each blade.

The integration over the rotor radius further enhances accuracy by accounting

for velocity variations across the span. This approach is particularly advanta-

geous in optimization scenarios, where rapid evaluations of Cp are needed to

explore large design spaces efficiently. This latter (Eq. 7.16) will eventually be

the cost function used in the present work, with the aim to maximize it.

The ground truth data available for this work consist of power coefficient (Cp)

values corresponding to specific duct angles α. The angles α range from 5◦

to 25◦ with a stride of 5◦. Although this dataset covers only a few angles, it

serves as a proof of concept for validating the optimization process. The Cp

values associated with these angles, for both the ground truth data and GNN

predicted, are shown in Fig. 7.9, representing the performance of thewind tur-

bine for these specific angles. The maximum of the discrepancy is observed

at α = 20◦, where it reaches a value of 3.8%, which is considered acceptable

for engineering design purposes. Although this discrepancy appears small in

absolute terms, it still requires further investigation, as it reflects the limita-

tions in the generalization capabilities of the GNN. In this case, we observe a

monotonically increasing trend in the Cp values as the duct angle α increases.

130

7.6 . Reinforcement Learning (RL) in the Optimization Loop

The application of RL algorithms for optimization of fluid flows is a re-

cent yet rapidly evolving area of research, showcasing significant potential for

solving complex, high-dimensional problems. Several works have explored

the application of RL in different flow control contexts. For example, Rabault

et al. [2019] demonstrated the use of Proximal Policy Optimization (PPO), an

actor-based RLmethod, to control the flow past a cylinder, achieving effective

performance by leveraging the system’s cumulative rewards. Similarly, Bucci

et al. [2019, 2022] applied the Deep Deterministic Policy Gradient (DDPG) [Sil-

ver et al., 2014, Lillicrap et al., 2015] algorithm to stabilize nonlinear dynamics,

such as those governed by the Kuramoto-Sivashinsky equation. Beyond flow

control, RL has been applied to shape optimization problems. Notable works

in this area include those by Viquerat et al. [2021], Keramati et al. [2022], Dus-

sauge et al. [2023], which demonstrate the ability of RL to optimize shapes

for improved system performance. Furthermore, adaptive mesh refinement

using RL has gained traction in recent years, with innovative approaches pro-

posed by Yang et al. [2023], Foucart et al. [2023] to dynamically refine meshes

and enhance simulation accuracy. A recent review by Vignon et al. [2023]

provides a comprehensive overview of these advancements, highlighting the

growing importance of RL in fluid mechanics.

The goal of this section is not to provide an exhaustive introduction to RL,

as the field is vast, multidisciplinary, and mathematically involved. Indeed, RL

encompasses a wide range of methods, with deepmathematical foundations

that extend beyond the scope of this work. For amore detailed exploration of

RL, readers are referred to foundational resources such as Sutton and Barto

[2018]. In this thesis, RL is used as a practical optimization tool. We adopt RL

as a "plug-and-play" strategy, focusing on the DDPG algorithm [Silver et al.,

2014, Lillicrap et al., 2015], which is well-suited for continuous action spaces

like those found in fluid mechanics.

7.6.1 . Introduction to Reinforcement Learning (RL)

Reinforcement learning is a subfield of Artificial Intelligence (AI) in which

an agent interacts with an environment to achieve a certain goal. The agent

learns to make a sequence of decisions by taking actions in the environment,

observing the results (rewards), and improving its decision-making policy over

time. The ultimate goal is to find the optimal policy thatmaximizes the reward

over time, evaluated by a critic. At a high level, RL involves the following core

components:

• Agent: The agent is the decision-maker. It interacts with the environ-

ment by observing its current state st and selecting actions at to influ-

ence the environment’s future states. The agent’s objective is to maxi-

131

mize its cumulative reward Rt over time, which is achieved by improv-

ing its decision-making policy π through trial and error. In this work,

the agent’s role is to determine the optimal adjustments to the wind

turbine’s duct angle α in order to maximize the power coefficient (Cp).

• Environment: The environment represents the external systemwithwhich

the agent interacts. It defines the state space, the available actions,

and the rewards the agent receives as feedback. The environment in

RL is dynamic, changing in response to the agent’s actions. In our case,

the environment is the wind turbine system, including the aerodynamic

and physical characteristics that influence the power output as a result

of changes in duct angle. The environment provides feedback to the

agent based on how well the turbine performs with respect to energy

extraction after each adjustment.

• State: The state st represents the environment at a specific time step t.

It describes the current situation that the agent perceives, and it may

include all or only a portion of the information necessary for decision-

making. The state space could be continuous or discrete, and the agent

must learn to take appropriate actions based on the current state. In

this work, the state represents the current duct angle α.

• Action: The action at is the decision made by the agent at a given time

step t. It represents the specific operation that influences the environ-

ment. The set of possible actions available to the agent is known as

the action space, which can be either discrete or continuous. In a con-

tinuous action space, like in this work, the agent selects actions that

gradually adjust the duct angle α to optimize Cp.

• Policy: The policy π is a strategy or set of rules that define how the agent

selects actions based on the current state. In mathematical terms, a

policy can be represented as

π : st → at (7.17)

The policy is central to RL because it directly maps the information the

agent observes about the environment (states, st) to its decisions (ac-

tions, at). As the agent learns, it refines its policy π to make better de-

cisions and maximize rewards. In DDPG, a deterministic policy is used,

meaning that for each observed state (e.g., a particular duct angle), the

agent will select a specific adjustment action.

• Reward: The instantaneous reward rt is a score associated with the

action taken by the agent and the environment response to it. It is a

scalar signal that indicates the success or failure of the action in terms

132

of achieving the agent’s overall goal. The agent uses this feedback to

assess the effectiveness of its actions and adjust its policy accordingly.

The ultimate objective of the agent is to maximize the cumulative re-

ward Rt it receives over time. Thus, the cumulative return Rt starting

from a given time step t is defined as

Rt =
∞X
k=0

γkrt+k (7.18)

where γ is the discount factor (0 ≤ γ < 1) that determines the impor-

tance of future rewards. A higher γ placesmore emphasis on long-term

rewards, while a lower γmakes the agent prioritize immediate rewards.

In the context of optimizing the wind turbine, the reward is linked to the

power coefficient (Cp): a higher Cp results in a higher reward, signaling

to the agent that it has made a favorable adjustment to the duct angle.

• Value Function: The value function estimates the expected cumulative

future reward from a given state-action pair. The value function can

be thought of as a measure of long-term potential reward, taking into

account not only immediate rewards but also the future rewards that

the current state or action might lead to. There are two types of value

functions commonly used in RL:

– State Value Function (V (st)): It gives the expected cumulative re-

ward starting from state st and following a certain policy there-

after:

V (st) = E[Rt|st] (7.19)

– Action Value Function or Q-Function (Q(st, at)): It gives the ex-

pected cumulative reward starting from state st, taking action at,

and following the policy thereafter:

Q(st, at) = E[Rt|st, at] (7.20)

• Critic: The critic is responsible for evaluating the actions taken by the

agent based on the state-action pair. In DDPG, the critic approximates

the Q-Function, which estimates the value of a particular action in a

given state. This feedback helps the agent update its policy to choose

actions that maximize long-term rewards. The critic uses the Bellman

equation [Sutton and Barto, 2018] to iteratively improve its estimates of

future rewards, learning how good an action is in terms of maximizing

cumulative rewards. The critic and actor work together: the actor sug-

gests actions, and the critic evaluates them, guiding the actor toward

better policies.

133

This approach allows for control of complex, nonlinear systems through the

interactions of the agent with the environment, assessed by the critic part.

The following section will focus on how DDPG is applied to this problem to

optimize the duct angle for maximizing the power coefficient (Cp).

7.6.2 . Application of DDPG in the Optimization Loop

The DDPG algorithm is an actor-critic method that is well-suited for op-

timization problems involving continuous control. In this work, we will use

a continuous action space to achieve more precise optimization. By allow-

ing the agent to explore continuous values, it can adjust the duct angle with

fine precision to maximize the turbine’s performance. In DDPG, the actor and

the critic are represented by two NNs, namely two MLPs, to approximate key

functions to guide the learning process.

The actor network is responsible for determining which action to take,

given the current state of the system. In this context, the action represents an

adjustment to the duct angle of the wind turbine. The critic network evaluates

the quality of the actions taken by the actor. It does this by approximating

the Q-Function, which predicts the expected cumulative reward (here, related

to the power coefficient Cp) for a given state-action pair. The critic provides

feedback to the actor, helping it improve its policy over time.

In RL, the agent interacts with the environment in episodes. During each

episode, the agent observes the current state, takes an action (adjusts the

duct angle), receives a reward (based on Cp), and transitions to a new state.

The agent’s goal is to maximize the cumulative reward over time by learning

the best sequence of actions. To further stabilize learning, DDPG makes use

of a replay buffer. During training, the agent stores past experiences in the

buffer, where each experience consists of a tuple: state, action, reward, next

state. Instead of updating the actor and critic after each individual experi-

ence, the agent samples mini-batches of experiences from the replay buffer.

This random sampling breaks the temporal correlation between consecutive

experiences, allowing the agent to learn more effectively from diverse situa-

tions.

In the context of this work, the state includes the current duct angle (and

in future works possibly other environmental variables). The action is a con-

tinuous adjustment to the duct angle, and the reward is the power coefficient

(Cp). The DDPG agent interacts with the wind turbine system over multiple

episodes, continuously adjusting the duct angle based on the feedback it re-

ceives. As the agent observes the results of its actions, whether Cp increases

or decreases, it learns to fine-tune its policy. Throughout the training process,

the actor network improves its ability to output the best duct angle adjust-

ments, while the critic network learns to evaluate these actions. Over time,

this results in the agent converging to a policy that optimally adjusts the duct

134

angle, maximizing Cp and enhancing the overall performance of the wind tur-

bine.

7.7 . The Mesh Generator

In this section, we describe the mesh generator script, which plays a cru-

cial role in the optimization loop. It generates new mesh geometries based

on the updated design parameters received from the reinforcement learning

(RL) algorithm, specifically, the duct angle α in this case. This script is written

in Python and uses the Gmsh [Geuzaine and Remacle, 2009] library to create

and modify the mesh.

A critical feature of this mesh generation process is the refinement of the

mesh in specific areas, particularly near the actuator disk. This local refine-

ment is necessary to enhance the precision of the NN predictions, as accurate

flow field predictions are vital in regions where energy extraction occurs. By

increasing the density of mesh elements near the actuator disk, the genera-

tor ensures that the predicted flow characteristics are more detailed, which

in turn improves the feedback provided to the RL agent during optimization.

Figure 7.10: Cross-sectional generated mesh with refinement near the actua-

tor disk at x = 0 along with the different duct positioning based on the angle
α from 5◦ to 25◦

Fig. 7.10 illustrates a two-dimensional cross-sectional view of the gener-

ated wind turbinemesh. Themost refined section of themesh is located near

the actuator disk, which is positioned at x = 0. This increased mesh density

in the region surrounding the actuator disk ensures that the flow predictions

in this critical area are highly accurate. In addition, the various duct positions

135

Figure 7.11: Optimization cycle performance: (Left) the optimization state

curve as a function of the steps in the episodes (Right) the cumulative rewards

per episode

corresponding to angles α ranging from 5◦ to 25◦ are overlaid in the figure.

These ducts represent the different configurations evaluated in the current

optimization process.

Fig. 7.11 showshow theRL-drivenoptimization follows a trajectory thatmatches

the performance of the real system as represented by the ground truth. This

demonstrates that the methodology is not only effective but also accurate,

within the limits of the surrogate model used. The results obtained in this

study are consistent with expectations, demonstrating that the optimization

loop effectively finds themaximumpower coefficient (Cp) within a small num-

ber of episodes. The iterative process of adjusting the duct angle, guided by

the RL algorithm, shows that the system is capable of optimizing the Cp effi-

ciently.

7.8 . Discussion

In this work we combined the use of a surrogate model based on GNN

with an optimization process based on RL; in particular, by considering as

optimization parameter the duct angle α, we demonstrated that it is possible

to combine the two data-driven frameworks for obtaining robust prediction

of the Cp (Fig. 7.9) and maximizing it. The performance of the optimization

loop is effectively captured in Fig. 7.11, which illustrates both the evolution of

the state st of the system over the step in each episode and the cumulative

rewards Rt (Eq. 7.18) at each episode.

The left panel of Fig. 7.11 illustrates the optimization averaged state curve,

where the state of the system st, specifically the duct angle α, as a function of

the step within each episode. The curve presented is an average over all 50

136

episodes, providing a single view of how the state of the system st evolves

throughout the optimization process. The curve shows how the RL agent

gradually learns to adjust the duct angle α, with a consistent trend toward the

maximum angle that optimizes Cp. As the episodes progress, α converges to-

ward higher values, aligning with the physical understanding that increasing

αmaximizes the power coefficient Cp (Fig. 7.9).

The right panel of Fig. 7.11 presents the cumulative rewards Rt obtained

during the training process. The cumulative reward reflects the agent’s over-

all success in achieving its objective, in this case maximizing Cp. The initial

cumulative rewards are relatively low, reflecting the agent’s early phase of

random exploration, where it lacks sufficient knowledge about the system to

make effective adjustments to α. As training proceeds, the cumulative re-

ward increases sharply, indicating rapid learning and an effective refinement

of the agent’s strategy π. This quick rise demonstrates that the agent is effi-

ciently learning the relationship between the duct angle α and Cp. The steep

increase followed by a stabilization at higher reward values confirms that the

optimization problem is relatively simple, allowing the agent to learn an effec-

tive policy rapidly.

Additionally, the cumulative reward curve eventually oscillates around a

maximum value. This behavior is expected in RL applications, particularly

in scenarios where the environment presents some degree of variability or

when the agent reaches a near-optimal policy. The oscillations indicate that

the agent has found a high-performing strategy but continues to explore mi-

nor variations around this optimal configuration to fine-tune its performance.

This exploration-exploitation balance is a distinctive feature of RL, as the agent

seeks to maximize long-term rewards while still occasionally testing slight ad-

justments to ensure it is not missing any better configurations.

Notably, the GNN used in this study was not subject to any hyperparam-

eter optimization (Sec. 3.8.3). The robustness of the learning framework is

demonstrated by the fact that the same hyperparameters, which was opti-

mized in a different case study (Sec. 5 or Sec. 6), also perform well in this

entirely different application. This indicates the general effectiveness of the

chosen GNN configuration. A hyperparameters optimization would likely en-

hance theGNN’s predictive accuracy and the overall efficiency of the optimiza-

tion loop.

While the study focuses on a relatively simple scenario due to the mono-

tonic dependence of the coefficientCp as a function of α, the primary aim is to

demonstrate the methodology and the ability of the RL algorithm, combined

with the NN surrogate model, to optimize the duct geometry effectively.

In future works, we aim to expand this optimization framework to address

more complex and realistic scenarios. Specifically, the approach will be ex-

tended to include additional geometric design variables and control param-

137

eters that influence the resulting flow field. By broadening the range of vari-

ables under consideration, we will aim at optimizing both the geometry and

the flow characteristics simultaneously. As already pointed out in Sec. 7.1,

the optimization framework will be adapted to accommodate multi-objective

optimization problems, balancing aerodynamic efficiency with other critical

factors, such as flow regularity, structural integrity, or environmental impact.

The RL framework is deemed suitable tomanage large and complex optimiza-

tion spaces, like the ones represented by parametrized turbine designs. This

generalization will be crucial for applications such as wind farm optimization,

whereminimizing downstream turbulence andmaximizing overall energy ex-

traction are essential, or urbanwind turbine setups, whereminimizing the dis-

turbance to the environment is a key objective. To this end, future work will

also focus on enhancing the GNN’s capability to generalize across a broader

range of geometries and flow conditions, which will lead to even more accu-

rate and efficient optimizations.

138

8 - Conclusion

The primary objective of this thesis was to investigate the integration of

a ML algorithm, specifically Graph Neural Network (GNN)s, into the field of

Computational Fluid Dynamics (CFD), focusing on data assimilation problems

and optimization of fluid systems. This research is driven by the potential of

ML tools to address some of the limitations of traditional CFD methods, par-

ticularly their high computational cost. These challenges often stem from the

complex parameterization of fluid systems and the need to analyze various

boundary conditions, flow regimes, and geometric configurations, which typ-

ically require extensive additional CFD simulations. By incorporating GNNs,

we aimed to explore practical ways to face these challenges, ultimately sup-

porting the cited aspects of fluid dynamics workflows. This integration is sig-

nificant as emerging computational tools, such as ML, and the increasing of

computational power are becoming available to support and enhance tradi-

tional CFD techniques.

Our researchwas organized around threemain subjects. The first onewas

to address the RANS closure problem by determining whether GNNs could ef-

fectively learn the closure terms for (RANS) models, which can be challenging

to determinewhen complex geometries are analyzed or the access to full data

is limited. Traditional RANS models depend significantly on manually tuned

turbulence closuremodels, which are inherently empirical and often lack gen-

eralizability across different flow conditions. By leveraging high-fidelity Direct

Numerical Simulation (DNS) data, we demonstrated that GNNs could poten-

tially learn these closure terms directly and reduce reliance on traditional tur-

bulence models in certain cases. It is important to emphasize that the aim

here is not to replace traditional turbulence modeling approaches, but rather

to demonstrate how innovative tools like GNNs can provide more adaptive

and general frameworks. Additionally, we employed an active learning strat-

egy to efficiently select data for the training dataset, ensuring that only the

most informative data points were included. This approach minimized the

inclusion of redundant data and enhanced the GNN’s performance and accu-

racy.

Secondly, we explored the importance of physical consistency in MLmod-

els. While data-driven techniques have proven powerful, they often produce

solutions thatmaynot fully adhere to fundamental physical laws, limiting their

application to relevant engineering problems. In response, we embedded

physical constraints into the GNN training process. This physics-constrained

approach helps ensure that the network’s outputs are not only statistically ac-

curate but also consistent with core fluid mechanics principles. This method-

ology aims to bridge the gap between purely empirical modeling and phys-

139

ically grounded predictions, thereby improving the model’s robustness and

fidelity for engineering applications. Although incorporating such physical

constraints shows promises, it remains an area that requires further refine-

ment, as this work primarily aims to show a possible technique to include the

physics of the problem into the GNN training process. ML remains fundamen-

tally a statistical tool, contrasting with the deterministic nature of traditional

CFD methods, and therefore cannot be fully relied upon on its own. This part

of the thesis aims at demonstrating, once again, how this approach can po-

tentially support deterministic CFD techniques, and how a combination of the

two might be both efficient and productive.

The third subject we addressedwas the optimization of fluid systems, with

a focus on practical engineering applications. We employed GNNs as sur-

rogate models to optimize the design of Diffuser-Augmented Wind Turbine

(DAWT) ducts, with the aim to significantly reduce the computational cost as-

sociated with the CFD simulations running during the iterative optimization

process for the cost function evaluations. The approach enabled a more effi-

cient exploration of the design space, serving as a proof of concept for using

GNNs in optimization environments. The results suggest that a surrogate ML

model can be used in fluid dynamics optimization, enabling faster conver-

gence to workable designs and providing a starting point for more compre-

hensive future studies. Even though the application here is limited in terms

of the number of parameters involved in the optimization process, this effort

serves primarily as a preliminary demonstration of the potential for efficient

numerical optimizations. More complex optimizations will require further de-

velopment and testing to establish their effectiveness.

Looking ahead, several promising avenues for further research await ex-

ploration. While GNN-based models have shown potential, further refine-

ments are necessary. From the training process viewpoint, incorporatingmore

complex and diverse datasets, as well as exploring additional neural network

architectures, could enhance the performance and the generalizability of the

models. For example, hybrid architectures that combine GNNs with Recur-

rant Neural Networks (RNN)s or transformers may prove useful in adapting

to various flow conditions and improving predictive accuracy. Additionally,

the development of adaptive learningmethods, such as active learning, could

optimize the training process by selectively focusing on the most informative

data. This targeted approach to data usage has the potential to reduce train-

ing times and enhance the overall robustness and efficiency of the models.

Another area for future exploration is the integration of uncertainty quan-

tification into our GNN framework. AsMLmodels are increasingly deployed in

engineering systems, understanding and mitigating prediction uncertainties

becomes crucial. Incorporatingmethods for uncertainty quantification would

improve the reliability of GNN-based models and support decision-making

140

processes in tasks such as design optimization.

Furthermore, applying these methodologies to more complex flow sce-

narios, such as three-dimensional flows or fully turbulent flows, could help

demonstrate the potential utility of GNNs as these are indeed the scenarios

where traditional CFD approaches face significant computational challenges

and could benefit most from additional support.

Lastly, the combination of Reinforcement Learning (RL) and fluid dynam-

ics optimization holds some promises. The preliminary results reported in

the thesis enter an already wide literature on the potential for reinforcement

learning to effectively optimize dynamic systems. RL may prove particularly

useful in applications requiring continual adaptation, such as the control of

unsteady aerodynamic surfaces, adaptive turbine blade adjustments, or the

real-time optimization fluid systems. By integrating RL with GNN-based mod-

els, it may be possible to create systems capable of learning and adapting in

real-time, potentially improving operational efficiency in specific applications.

In conclusion, this thesis has aimed to provide a contribution towards in-

tegrating GNNs into CFD workflows, demonstrating some predictive and op-

timization capabilities. The findings presented here suggest potential direc-

tions for broader applications that could contribute to more efficient fluid dy-

namics approaches. As ML technologies continue to evolve, its role in fluid

mechanics may grow, offering useful tools to face certain engineering chal-

lenges. While GNNs show promise, significant challenges remain, and con-

tinued research and refinement are necessary to fully understand and utilize

their potential. The work presented in this thesis should be seen as an ex-

ploratory step in integrating modern ML tools with traditional fluid dynamics

approaches, providing insights that could inform both engineering and scien-

tific research in the future.

141

142

9 - Acknowledgements

Here we are, at the end of this extraordinary three-year journey. It’s been

an unforgettable experience, a whirlwind of challenges and triumphs, and

above all, an emotional rollercoaster that has left an indelible mark on me.

As I reflect on this chapter of my life, I’m overwhelmed with gratitude for the

incredible people who made it all possible.

First and foremost, I want to express gratitude to myself. With the risk to

sound selfish, but I believe in acknowledging the perseverance and courage it

took to navigate this journey. The personwho entered the PhDprogram three

years ago is almost unrecognizable compared to the one writing these words.

I faced someof the hardestmoments ofmy life during this time, but I emerged

stronger, more resilient, and more self-aware. So, thank you, Michele, for not

giving up, for adapting, and for growing. You did well.

This journey would not have been possible without the invaluable guid-

ance andmentorship ofmy thesis directors, Prof. Stefania Cherubini andProf.

Caroline Nore, and my co-supervisors, Dr. Onofrio Semeraro and Dr. Michele

Alessandro Bucci. Your expertise, patience, and unwavering support weremy

anchors throughout this process. A special thank you goes to Onofrio, who

has been a constant presence fromday one, offering not only his professional

insight but also his encouragement. Often, it felt like we were walking this

path together.

Tomy family—my parents andmy two brothers— your love and support

have been the firm foundation I could always rely on. No matter how tumul-

tuous things became, you were always there, ready to lift me up and remind

me of my strength. Your unwavering belief in me was my greatest source of

motivation.

To Annalisa, you were my rock during the final and most intense mo-

ments of this journey. Your patience, understanding, and ability to weather

the storm of emotions with me have been nothing short of extraordinary.

Thank you for standing by my side.

To my colleagues and friends, who turned what could have been a soli-

tary journey into a shared adventure: Amine Saibi, Thibault Monsel, Remy

Hosseinkhan — I’m proud to call you friends. Your camaraderie and laugh-

ter brought light to the darkest days. To Cyril, Stephan, Emanuel, Matthieu,

Arthur, Alice, and so many others, thank you for your collaboration and sup-

port. Each of you has left a unique imprint on my experience, and I will carry

those memories with me as I step into the next chapter.

To Matteo, Anna, Ivan, Mary, Bianca (and Martino and Irene), the Italian

Team in Paris, thank you for being my family away from home. With you, I

shared a journey full of moments that will stay with me rent-free: the chal-

143

lenges we faced together (from the COVID19), the endless laughter, the ad-

ventures that took us to new places (Normandy, Bordeaux), and the celebra-

tions that marked our triumphs. Your presence turned this experience into

something deeply meaningful, and I hold you all close to my heart.

To the jury members, thank you for your time, your insightful questions,

and your encouragement. It was an honor to engage with such esteemed re-

searchers, and your recognition of my work is something I will always cherish.

Lastly, to everyone who believed in me and contributed to this journey in

ways big and small: thank you. I’m filled with a sense of gratitude and pride

as I close this chapter and prepare to embark on a new adventure in the “real

world.” Wherever this path takes me, I will carry your support and the lessons

I’ve learned here in my heart.

Thank you, from the bottom of my heart.

144

List of Figures

1.1 A. M. Turing (1912 - 1954) . 15

1.2 C.L. Navier, G. Stokes . 17

1.3 Graph Neural Network representation 21

2.1 A fluid dynamic simulation . 25

2.2 The Kolmogorov Energy Cascade 30

2.3 B.G. Galerkin (1871 - 1945) . 36

2.4 Structured vs Unstructured mesh 37

3.1 (Left) A Perceptron and (Right) a Multi-Layer Perceptron MLP

representation. 43

3.2 A pictorial representation of a graph G (Eq. 3.15) 51

3.3 The overall framework of our GNN training process. MP k are

the message passing algorithms; Dk are the k decoders train-

ableMLPs;Ak are the kmatrices containing the embedded states

from each node;G is the vector containing the input injected in

the GNN. Figure inspired by Donon et al. [2020]. 60

4.1 J. Bernoulli (1667 - 1748) and L. Euler (1707 - 1783) 65

5.1 Unsteady stream-wise velocity and RANS closure term of a flow

past a cylinder at Re = 150 . 81

5.2 Sketch of the computational domain geometry. The diameter of

the circumscribed circle of the bluff body, the height and length

of the domain are given in non-dimensional units. 83

5.3 Drag coefficient Cd and lift coefficient Cl of flow past a cylinder. 84

5.4 Randomly generated bluff body shape and its unsteady stream-

wise velocity and RANS closure term 85

5.5 Test cases used as a benchmark of the learning strategies dis-

cussed in Sec. 5.3. From the top raw to the bottom one: Case 1,

cylinder flow at Re = 200; Case 2, flow past a random-shaped

bluff body atRe = 120; Case 3, flow past a random-shaped bluff

body shifted in the computational domain at Re = 100; Case 4,

flow past a two side-by-side cylinders configuration at Re = 90.

For each of the cases, the left column shows the stream-wise

component of the meanflow u, along with the vorticity isolines

ω = ∇ × u, while the right column show the stream-wise com-

ponent of the forcing stress f . 88

145

5.6 Curves for the training and validation loss for the proof-of-concept

baseline, trained until 3000 epochs. The training dataset is com-

posedby 11meanflow-forcing pairs stacked at different Reynolds

numbers in the range 50 ≤ Re ≤ 150 with ∆Re = 10. The vali-

dation set is formed by the test cases presented in Sec. 5.3.1. . 89

5.7 Stream-wise component comparison of the Reynolds stress ten-

sor. The GNN’s model is trained with a dataset composed by 11

cases of cylinder shape bluff bodies, ranging in 50 ≤ Re ≤ 150,

∆Re = 10. (a) Case 1, Re = 200, cylinder bluff body shape;

(b) Case 2, Re = 120, random shape bluff body; (c) Case 3,

Re = 100, random shape shifted bluff body; (d) Case 4,Re = 90,

flow past two side-by-side cylinders. 90

5.8 Curves for the training and validation loss for when DA is per-

formed by introducing 11 cases of flows past random geome-

tries in the dataset. The Reynolds number varies in the range

50 ≤ Re ≤ 150 with ∆Re = 10. The training runs until 3000

epochs. The validation set is formed by the test cases presented

in Sec. 5.3.1. 91

5.9 Stream-wise component comparison of the Reynolds stress ten-

sor. The GNN’s model is trained with a dataset composed by

11 cases of random shaped bluff bodies, ranging in the interval

50 ≤ Re ≤ 150, ∆Re = 10. (a) Case 1, Re = 200, cylinder bluff

body shape; (b) Case 2, Re = 120, random shape bluff body; (c)

Case 3, Re = 100, random shape shifted bluff body; (d) Case 4,

Re = 90, flow past two side-by-side cylinders. 92

5.10 Training and validation loss curves for models trained using 10

k-fold up to 3000 epochs. (a) shows the training curves, (b) the

corresponding validation curves for each fold. 93

5.11 Training and validation loss curves are shownwhen ALwith sim-

ilarity threshold 0.8 is performed until 3000 epochs. The train-

ing dataset is formed by 6 random shaped bluff bodies. Their

Reynolds number varies in the interval 50 ≤ Re ≤ 150. The

validation set is formed by the test cases presented in Sec. 5.3.1. 95

5.12 Stream-wise component comparison of the Reynolds stress ten-

sor. The GNN’s model is trained with a dataset composed by 6

cases of bluff bodies of random shape selected with the AL ap-

proach, ranging in the interval 50 ≤ Re ≤ 150, ∆Re = 10. (a)

Case 1, flow past a cylinder at Re = 200; (b) Case 2, flow past

a random shaped bluff body at Re = 120; (c) Case 3, random

shaped bluff body atRe = 100, shifted downstream; (d) Case 4,

flow past two side-by-side cylinders at Re = 90. 96

146

5.13 Visualization of gradient auto-similarity convergence over mul-

tiple training epochs using MAE for 9 distinct cases within the

training data set. 97

6.1 End-to-end training loop; u is theGNN’s inputmeanflow; f̂ is the

GNN’s predicted forcing stress term; θ are the GNN’s trainable

parameters; J (û) is the cost function to minimize. 105

6.2 (a) The training mean flow input from the ground truth. The

training dataset is composedby 1meanflow-forcing pair at Reynolds

numberRe = 150; (b) the loss curves for the pure supervised ap-

proach (orange line) and the proposed approach (blue line) are

shown. The two horizontal dotted lines indicate the minimum

values of both curves, while the dotted vertical line indicates the

end of the pre-training phase (Sec. 6.2.2); (c) the reconstructed

mean flow from the pure supervised approach; (d) the recon-

structed mean flow from the present approach. 1D line plots

are overimposed on figures (c) and (d), comparing the predicted

flow values (red line) with the ground truth (black line) at various

sections along the flow field. 109

6.3 (a) The training mean flow input from the ground truth. The

training dataset is composedby 1meanflow-forcing pair at Reynolds

number Re = 90; (b) the loss curves for the pure supervised ap-

proach (orange line) and the proposed approach (blue line) are

shown. The two horizontal dotted lines indicate the minimum

values of both curves, while the dotted vertical line indicates the

end of the pre-training phase (Sec. 6.2.2); (c) the reconstructed

mean flow from the pure supervised approach; (d) the recon-

structed mean flow from the present approach. 1D line plots

are overimposed on figures (c) and (d), comparing the predicted

flow values (red line) with the ground truth (black line) at various

sections along the flow field. 110

147

6.4 (a) The training mean flow input (at Re = 120) from the ground

truth. The training dataset is composed by 3 meanflow-forcing

pair at Reynolds numberRe = [90, 110, 130]while the validation

dataset contains cylinder cases at Re = [120, 150]; (b) the loss

curves for the pure supervised approach (orange line) and the

proposed approach (blue line) are shown. The two horizontal

dotted lines indicate the minimum values of both curves, while

the dotted vertical line indicates the endof the pre-training phase

(Sec. 6.2.2); (c) the reconstructed mean flow (at Re = 120) from

the pure supervised approach; (d) the reconstructed mean flow

(atRe = 120) from the present approach. 1D line plots are over-

imposed on figures (c) and (d), comparing the predicted flow

values (red line) with the ground truth (black line) at various sec-

tions along the flow field. 111

6.5 (a) An example of the probes positioning on the mean flow.

The training dataset is composed by 6 mean flow-forcing pairs

at Reynolds number in the range Re = [90, 110, 130] (two in-

stances for each case) with 250 randomly distributed probes;

(b) the loss curves for the pure supervised approach (orange

line) and the proposed approach (blue line) are shown. The

two horizontal dotted lines indicate theminimumvalues of both

curves, while the dotted vertical line indicates the end of the

pre-training phase (Sec. 6.2.2); (c) the reconstructed mean flow

(atRe = 110) from the pure supervised approach; (d) the recon-

structed mean flow (at Re = 110) from the present approach.

1D line plots are overimposed on figures (c) and (d), comparing

the predicted flow values (red line) with the ground truth (black

line) at various sections along the flow field. 112

6.6 (a) Gaussian perturbed mean flow (at Re = 110). The training

dataset is composed by 3 mean flow-forcing pairs at Reynolds

number Re = [90, 110, 130] perturbed with a Gaussian noise

having µ = 0 and σ = [0.6, 0.4, 0.2], respectively; (b) the loss

curves for the pure supervised approach (orange line) and the

proposed approach (blue line) are shown. The two horizontal

dotted lines indicate the minimum values of both curves, while

the dotted vertical line indicates the endof the pre-training phase

(Sec. 6.2.2); (c) the reconstructed mean flow (at Re = 110) from

the pure supervised approach; (d) the reconstructed mean flow

(atRe = 110) from the present approach. 1D line plots are over-

imposed on figures (c) and (d), comparing the predicted flow

values (red line) with the ground truth (black line) at various sec-

tions along the flow field. 113

148

6.7 (a) Patch mask applied on the mean flow (at Re = 110). The

training dataset is composed of 3 mean flow-forcing pairs at

Reynolds numberRe = [90, 110, 130]with randomly locatedpatch-

ing mask; (b) the loss curves for the pure supervised approach

(orange line) and the proposed approach (blue line) are shown.

The two horizontal dotted lines indicate the minimum values of

both curves, while the dotted vertical line indicates the end of

the pre-training phase (Sec. 6.2.2); (c) the reconstructed mean

flow (at Re = 110) from the pure supervised approach; (d) the

reconstructed mean flow (at Re = 110) from the present ap-

proach. 1D line plots are overimposed on figures (c) and (d),

comparing the predicted flow values (red line) with the ground

truth (black line) at various sections along the flow field. 114

7.1 (Left) Representation of the actuator disk configuration for awind

turbine. (Right) Power coefficient Cp as a function of the axial

flow induction factor a for a wind turbine. 118

7.2 (Left) Frontal viewof aDiffuser-AugmentedWind Turbine (DAWT)

and its perspective view (Right). Figure inherited fromBontempo

and Manna [2022] . 120

7.3 Sketch of a ducted wind turbine DAWT reporting the relevant

geometrical parameters. Figure adapted from Bontempo and

Di Marzo [2023]. 122

7.4 Representation of a portion of the computational domain along

with the adopted boundary conditions. Figure adapted from

Bontempo and Di Marzo [2023] 123

7.5 Grid independence test. (Left) Power Coefficient Cp and mass

flow rate ingested by the rotor (Right) Linear density of the axial

and tangential forces. Figure taken fromBontempoandDiMarzo

[2023] . 124

7.6 Comparison between the ducted (DAWT) (Top) and open (OWT)

(Bottom) configurations forV∞ = 7m/s: (a) azimuthally-averaged

normalized axial velocity, (b) azimuthally-averaged normalized

radial velocity contours, (c) azimuthally-averaged normalized

tangential velocity contours, (d) normalized axial velocity con-

tours at the rotor plane. Figure adapted from Bontempo and

Di Marzo [2023] . 124

7.7 End-to-end optimization loop; the complete mesh along with

the control variable α are the NN’s block input (Sec. 7.4); u is

the GNN’s predicted mean flow; Cp is power coefficient to max-

imize. 125

149

7.8 Comparison of flow fields for α = 15◦ (not included in the train-

ing dataset). (a) the ground truth flow fields, (b) the GNN flow

fields prediction, (Top) axial velocity component, (Bottom) swirl

velocity component. 128

7.9 Ground truthCp values for duct angles α ranging from 5◦ to 25◦,

used as a reference dataset for optimization as compared with

the Cp obtained by the GNN predicted flows. 130

7.10 Cross-sectional generated mesh with refinement near the ac-

tuator disk at x = 0 along with the different duct positioning

based on the angle α from 5◦ to 25◦ 135

7.11 Optimization cycle performance: (Left) the optimization state

curve as a function of the steps in the episodes (Right) the cu-

mulative rewards per episode 136

150

List of Tables

2.1 Dimensionless Variable . 28

5.1 Comparison of Cd average and Cl amplitude 84

5.2 Comparison on the 4 cases defined as benchmark for the three

different training approaches: the proof-of-concept (PC) train-

ing (Sec. 5.3.2), the data augmentation (DA) training (Sec. 5.3.3),

and the active learning (AL) strategy (Sec. 5.3.3). For the latter,

we consider three similarity threshold values cos(β) ∈ [0.7, 0.8, 0.9].

The chosen metric ε and δ are defined respectively in Eq. 5.3

and Eq. 5.4. In the last row, the number of pairs used during

the training process is reported. 99

151

152

Bibliography

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the

25rd Association for Computing Machinery International Conference on Knowl-

edge Discovery and Data Mining, 2019.

M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,

J. Ring, M. E Rognes, and G. N Wells. The FEniCS project version 1.5. Archive

of Numerical Software, 3(100), 2015.

O. Amoignon, J.O. Pralits, A. Hanifi, M. Berggren, and D. S. Henningson.

Adjoint-based shape optimization for natural laminarflowdesign. In ERCOF-

TAC Design Optimization: Methods & Applications Conference, Athens, Greece,

2004.

R. Anatol. Naca report 1191. 1958.

ANSYS Inc. ANSYS Fluent, Release 2023 R2. ANSYS Inc., Canonsburg, PA,

USA, 2023. Available at: https://www.ansys.com/products/fluids/

ansys-fluent.

A. C. Aranake, V. K. Lakshminarayan, and K. Duraisamy. Computational anal-

ysis of shrouded wind turbine configurations using a 3-dimensional rans

solver. Renewable Energy, 75:818–832, 2015.

A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-

bado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and

F. Herrera. Explainable artificial intelligence (xai): Concepts, taxonomies,

opportunities and challenges toward responsible ai. Information Fusion,

58:82–115, 2020. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.

2019.12.012. URL https://www.sciencedirect.com/science/article/

pii/S1566253519308103.

A. Beck and M. Kurz. A perspective on machine learning methods in turbu-

lence modeling. GAMM-Mitteilungen, 44(1):e202100002, 2021.

F. Belbute-Peres, D. T. Economon, and J. Z. Kolter. Combining differentiable

pde solvers and graph neural networks for fluid flow prediction, 2020. URL

https://arxiv.org/abs/2007.04439.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In

Proceedings of the 26th Annual International Conference on Machine Learning,

pages 41–48, 2009.

153

R. Bontempo and E. M. Di Marzo. Diffuser augmented wind turbines: A critical

analysis of the design practice based on the ducting of an existing open

rotor. Journal of Wind Engineering and Industrial Aerodynamics, 238:105428,

2023. doi: 10.1016/j.jweia.2023.105428.

R. Bontempo and M. Manna. The joukowsky rotor for diffuser augmented

wind turbines: design and analysis. Energy Conversion and Management,

252:114952, 2022.

A. Borzi and V. Schulz. Computational Optimization of Systems Governed by Par-

tial Differential Equations. SIAM, 2012.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

S. L. Brunton, M. S. Hemati, and K. Taira. Special issue on machine learning

and data-driven methods in fluid dynamics. Theoretical and Computational

Fluid Dynamics, 34(4):333–337, 2020a.

S.L. Brunton, B.R. Noack, and P. Koumoutsakos. Machine learning for fluid

mechanics. Annual Review of Fluid Mechanics, 52:477–508, 2020b.

M. A. Bucci, O. Semeraro, A. Allauzen, L. Cordier, and L. Mathelin. Nonlin-

ear optimal control using deep reinforcement learning. In International

Conference on Machine Learning, page Chapter 24, 2022. doi: 10.1007/

978-3-030-67902-6_24.

M. A. Bucci, O. Semeraro, A. Allauzen, S. Chibbaro, and L. Mathelin. Curricu-

lum learning for data-driven modeling of dynamical systems. The European

Physical Journal E, 46(3):12, 2023.

M.A. Bucci, O. Semeraro, A. Allauzen, G. Wisniewski, L. Cordier, and L. Mathe-

lin. Control of chaotic systems by deep reinforcement learning. Proceedings

of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475

(2231):20190351, 2019.

T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi. Wind Energy Handbook. John

Wiley & Sons, 2nd edition, 2011.

K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh. Machine

learning for molecular and materials science. Nature, 559:547–555, 2018.

J. Cai, P.E. Angeli, J.M. Martinez, G. Damblin, and D. Lucor. Revisiting tensor

basis neural network for reynolds stress modeling: Application to plane

channel and square duct flows. Computers & Fluids, page 106246, 2024.

S. Cai, Z. Mao, and Z. et al. Wang. Physics-informed neural networks (pinns)

for fluid mechanics: a review. Acta Mechanica Sinica, 2021.

154

A. S. Cato, P. S. Volpiani, V. Mons, O. Marquet, and D. Sipp. Comparison of dif-

ferent data-assimilation approaches to augment rans turbulence models.

Computers & Fluids, 266:106054, 2023. doi: 10.1016/j.compfluid.2023.106054.

G. Charpiat, N. Girard, L. Felardos, and Y. Tarabalka. Input similarity from

the neural network perspective. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

URL https://proceedings.neurips.cc/paper_files/paper/2019/file/

c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf.

F. Charru. Hydrodynamic Instabilities, volume 37. Cambridge University Press,

2011.

J. Chen, E. Hachem, and J. Viquerat. Graph neural networks for laminar flow

prediction around random two-dimensional shapes. Physics of Fluids, 33

(12):123607, 2021.

S. Cherubini, P. De Palma, J. Ch. Robinet, and A. Bottaro. Rapid path to transi-

tion via nonlinear localized optimal perturbations in a boundary-layer flow.

Phys. Rev. E, 82:066302, December 2010. doi: 10.1103/PhysRevE.82.066302.

URL https://link.aps.org/doi/10.1103/PhysRevE.82.066302.

S. Cherubini, J. C. Robinet, and P. De Palma. Nonlinear control of unsteady

finite-amplitude perturbations in the blasius boundary-layer flow. Journal

of Fluid Mechanics, 737:440–465, 2013. doi: 10.1017/jfm.2013.576.

A. Chiarini, M. Quadrio, and F. Auteri. Linear stability of the steady flow past

rectangular cylinders. Journal of Fluid Mechanics, 929, December 2021. doi:

10.1017/jfm.2021.819.

A. Chiarini, M. Quadrio, and F. Auteri. A new scaling for the flow instability

past symmetric bluff bodies. Journal of Fluid Mechanics, 936:R2, 2022. doi:

10.1017/jfm.2022.99.

S. Colabrese, K. Gustavsson, A. Celani, and L. Biferale. Flow navigation by

smart microswimmers via reinforcement learning. Physical Review Letters,

118:158004, 2017. doi: 10.1103/PhysRevLett.118.158004.

B. Colvert, M. Alsalman, and E. Kanso. Classifying vortex wakes using neural

networks. Bioinspiration and Biomimetics, 13(2):025003, 2018.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):

273–297, 1995.

155

S. Costanzo, T. Sayadi, M. Fosas de Pando, P.J. Schmid, and P. Frey. Parallel-

in-time adjoint-based optimization–application to unsteady incompressible

flows. Journal of Computational Physics, 471:111664, 2022.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 2(4):303–314, 1989.

G. De Cillis, S. Cherubini, O. Semeraro, S. Leonardi, and P. De Palma. The

influence of incoming turbulence on the dynamic modes of an nrel-5mw

wind turbine wake. Renewable Energy, 183:601–616, 2022. doi: https://dx.

doi.org/10.1016/j.renene.2021.11.037.

A. Dilimulati, T. Stathopoulos, and M. Paraschivoiu. Wind turbine designs for

urban applications: A case study of shrouded diffuser casing for turbines.

Journal of Wind Engineering and Industrial Aerodynamics, 175:179–192, 2018.

B. Donon, Z. Liu, W. Liu, I. Guyon, A. Marot, and M. Schoenauer. Deep statisti-

cal solvers. Advances in Neural Information Processing Systems, 33:7910–7921,

2020.

E. Dow and Q. Wang. Output based dimensionality reduction of geometric

variability in compressor blades. In Proceedings of the 51st AIAA Aerospace

Sciences Meeting including the New Horizons Forum and Aerospace Exposition,

Grapevine, TX, 2013. AIAA Paper 2013-0420.

P.G. Drazin and W.H. Reid. Hydrodynamic Instabilities. Cambridge University

Press, 2nd edition, 2002. ISBN 9780521538880.

D. Dupuy, N. Odier, and C. Lapeyre. Data-driven wall modeling for turbulent

separated flows. Journal of Computational Physics, 487:112173, 2023a. doi:

10.1016/j.jcp.2023.112173.

D. Dupuy, N. Odier, C. Lapeyre, andD. Papadogiannis. Modeling thewall shear

stress in large-eddy simulation using graph neural networks. Data-Centric

Engineering, 4:e7, 2023b.

K. Duraisamy, G. Iaccarino, and H. Xiao. Turbulence modeling in the age of

data. Annual Review of Fluid Mechanics, 51:357–377, 2019.

T. P. Dussauge, W. J. Sung, Olivier J. P. F., and D. N. Mavris. A reinforcement

learning approach to airfoil shapeoptimization. Scientific Reports, 13(1):9753,

2023.

H. Eivazi, M. Tahani, P. Schlatter, and R. Vinuesa. Physics-informed neural

networks for solving reynolds-averaged navier–stokes equations. Physics

of Fluids, 34(7):075117, 2022.

156

A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou,

C. Cui, G. S. Corrado, S. Thrun, and J. Dean. A guide to deep learning in

healthcare. Nature Medicine, 25(1):24–29, 2019.

S. Etienne and D. Pelletier. Effect of rotational degree of freedom on vortex-

induced vibrations of a circular cylinder in cross-flow. Journal of Fluids and

Structures, 57:1–17, 2015.

M. Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch

geometric. In ICLR Workshop on Representation Learning on Graphs and Man-

ifolds, 2019.

K. M. Foreman, B. Gilbert, and R. A. Oman. Diffuser augmentation of wind

turbines. Solar Energy, 20(4):305–311, 1978.

C. Foucart, A. Charous, and P. F. Lermusiaux. Deep reinforcement learning

for adaptive mesh refinement. Journal of Computational Physics, 491:112381,

2023.

D. P. G. Foures, N. Dovetta, D. Sipp, and P. J. Schmid. A data-assimilation

method for Reynolds-averaged Navier–Stokes-driven mean flow recon-

struction. Journal of Fluid Mechanics, 759:404–431, 2014.

K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of tur-

bulent flows with machine learning. arXiv preprint arXiv:1811.11328, 2018.

P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem. A

review on deep reinforcement learning for fluid mechanics. Computers &

Fluids, 225:104973, 2021.

C. Geuzaine and J.F. Remacle. Gmsh: A 3-d finite elementmesh generator with

built-in pre-andpost-processing facilities. International Journal for Numerical

Methods in Engineering, 79(11):1309–1331, 2009. doi: 10.1002/nme.2579.

F. Giannetti and P. Luchini. Structural sensitivity of the first instability of the

cylinder wake. Journal of Fluid Mechanics, 581:167–197, 2007.

M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design.

Flow, Turbulence and Combustion, 65(3):393–415, 2000.

D. E. Goldberg and J. H. Holland. Genetic algorithms and machine learning.

Machine Learning, 3:95–99, 1988. doi: 10.1023/A:1022602019183.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

T. Guégan. Contrôle d’écouleements turbulents par apprentissage automatique.

Université de Poitiers, 2022.

157

S. Hassanli, K. Chauhan, M. Zhao, and K.C.S. Kwok. Application of through-

building openings for wind energy harvesting in built environment. Journal

of Wind Engineering and Industrial Aerodynamics, 184:445–455, 2019.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages 1026–1034, 2015.

M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Con-

straints. Springer, 2008.

J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, 79

(8):2554–2558, 1982.

K. Hornik. Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2):251–257, 1991.

A. Ilhan, B. Sahin, and M. Bilgili. A review: Diffuser augmented wind turbine

technologies. International Journal of Green Energy, 19(1):1–27, 2021.

A. Jameson. Aerodynamic design via control theory. Journal of Scientific Com-

puting, 3(3):233–260, 1988.

A. Jameson. Optimum aerodynamic design using cfd and control theory. In

37th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronau-

tics and Astronautics, 1995.

M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and

prospects. Science, 349(6245):255–260, 2015.

E. Kaiser, B.R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller,

G. Tadmor, and R.K. Niven. Cluster-based reduced-order modelling of a

mixing layer. Journal of Fluid Mechanics, 754:365–414, 2014.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of

ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–

1948, 1995. doi: 10.1109/ICNN.1995.488968.

H. Keramati, F. Hamdullahpur, andM. Barzegari. Deep reinforcement learning

for heat exchanger shape optimization. International Journal of Heat and

Mass Transfer, 194:123112, 2022.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.

4598.671. URL https://www.science.org/doi/abs/10.1126/science.

220.4598.671.

158

C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot. Training

convolutional neural networks to estimate turbulent sub-grid scale reaction

rates. Combustion and Flame, 203:255–264, 2019.

B.E. Launder and B.I. Sharma. Application of the energy-dissipation model of

turbulence to the calculation of flow near a spinning disc. Letters in Heat

and Mass Transfer, 1(2):131–137, 1974.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

C. Lee, J. Kim, D. Babcock, and R. Goodman. Application of neural networks

to turbulence control for drag reduction. Physics of Fluids, 9(6):1740–1747,

1997. doi: 10.1063/1.869290.

S. Lee and D. You. Data-driven prediction of unsteady flow over a circular

cylinder using deep learning. Journal of Fluid Mechanics, 879:217–254, 2019.

S. Li, J. Wang, and S. Cai. Numerical simulation of flowpast a circular cylinder at

different reynolds numbers. Journal of Hydrodynamics, 17(3):326–332, 2005.

M. W. Libbrecht and W. S. Noble. Machine learning applications in genetics

and genomics. Nature Reviews Genetics, 16:321–332, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra. Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971, 2015.

J. Ling and J. Templeton. Evaluation of machine learning algorithms for pre-

diction of regions of high Reynolds-averaged Navier Stokes uncertainty.

Physics of Fluids, 27(8):085103, 2015.

J. Ling, A. Kurzawski, and J. Templeton. Reynolds averaged turbulence mod-

elling using deep neural networks with embedded invariance. Journal of

Fluid Mechanics, 807:155–166, 2016.

M. Lino, S. Fotiadis, A. A. Bharath, and C. D. Cantwell. Current and emerging

deep-learning methods for the simulation of fluid dynamics. Proceedings of

the Royal Society A, 479(2275):20230058, 2023.

J.L. Lions. Optimal Control of Systems Governed by Partial Differential Equations.

Springer-Verlag, 1971.

C. Liu, X. Zheng, and H.J. Sung. Numerical simulations of two-dimensional

flows past a circular cylinder. Journal of Fluids and Structures, 12(7):851–856,

1998.

159

A. Logg, K.A. Mardal, and G. Wells. Automated Solution of Differential Equations

by the Finite Element Method: The FEniCS Book, volume 84 of Lecture Notes in

Computational Science and Engineering. Springer-Verlag, 2012. ISBN 978-3-

642-23098-1. doi: 10.1007/978-3-642-23099-8.

J.C. Loiseau, J.C. Robinet, S. Cherubini, and E. Leriche. Investigation of the

roughness-induced transition: global stability analyses and direct numeri-

cal simulations. Journal of Fluid Mechanics, 760:175–211, 2014. doi: 10.1017/

jfm.2014.589.

P. Luchini and A. Bottaro. Adjoint equations in stability analysis. Annual

Review of Fluid Mechanics, 46(Volume 46, 2014):493–517, 2014. ISSN

1545-4479. doi: https://doi.org/10.1146/annurev-fluid-010313-141253.

URL https://www.annualreviews.org/content/journals/10.1146/

annurev-fluid-010313-141253.

P. Luchini, F. Giannetti, and J.O. Pralits. Structural sensitivity of the finite-

amplitude vortex shedding behind a circular cylinder. In IUTAM Symposium

on Unsteady Separated Flows and their Control, pages 151–160. Springer, 2009.

O. Marquet, D. Sipp, and L. Jacquin. Sensitivity analysis and passive control

of cylinder flow. Journal of Fluid Mechanics, 615:221–252, 2008. doi: 10.1017/

S0022112008003662.

R. McConkey, E. Yee, and F.S. Lien. On the generalizability of machine-

learning-assisted anisotropymappings for predictive turbulencemodelling.

International Journal of Computational Fluid Dynamics, 36(7):555–577, 2022.

M. A. Mendez, M. Balabane, and J.-M. Buchlin. Multi-scale proper orthogo-

nal decomposition of complex fluid flows. Journal of Fluid Mechanics, 870:

988–1036, May 2019. ISSN 1469-7645. doi: 10.1017/jfm.2019.212. URL

http://dx.doi.org/10.1017/jfm.2019.212.

M. A. Mendez, J. Dominique, M. Fiore, F. Pino, P. Sperotto, and J. Van den

Berghe. Challenges and opportunities for machine learning in fluid me-

chanics. arXiv preprint arXiv:2202.12577, 2022.

M. A. Mendez, A. Ianiro, B. R. Noack, and S. L. Brunton. Data-Driven Fluid Me-

chanics: Combining First Principles and Machine Learning. Cambridge Univer-

sity Press, Cambridge, UK, 2023. ISBN 978-1-108-84214-3.

F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience with

the sst turbulence model. Turbulence, Heat and Mass Transfer, 4(1):625–632,

2003.

160

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geom-

etry. MIT Press, Cambridge, MA, 1969.

P. Moin and K. Mahesh. Direct numerical simulation: A tool in turbulence

research. Annual Review of Fluid Mechanics, 30:539–578, 1998.

P. Morra, O. Semeraro, D.S. Henningson, and C. Cossu. On the relevance of

reynolds stresses in resolvent analyses of turbulent wall-bounded flows.

Journal of Fluid Mechanics, 867:969–984, 2019.

M. Nastorg. Scalable GNN Solutions for CFD Simulations. Thesis, Uni-

versité Paris-Saclay, April 2024. URL https://theses.hal.science/

tel-04590477.

J.E. Parish and K. Duraisamy. A paradigm for data-driven predictive mod-

eling using field inversion and machine learning. Journal of Computa-

tional Physics, 305:758–774, 2016. ISSN 0021-9991. doi: https://doi.org/10.

1016/j.jcp.2015.11.012. URL https://www.sciencedirect.com/science/

article/pii/S0021999115007524.

M. A. Park. Adjoint-based, three-dimensional error prediction and grid adap-

tation. In Proceedings of the 32nd AIAA Fluid Dynamics Conference and Exhibit,

St. Louis, MO, 2002. AIAA. AIAA Paper 2002-3286.

Y. Patel, V. Mons, O. Marquet, and G. Rigas. Turbulence model augmented

physics-informed neural networks for mean-flow reconstruction. Physical

Review Fluids, 9(3):034605, 2024.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-

based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2021.

E. Pickering, G. Rigas, O.T. Schmidt, D. Sipp, and T. Colonius. Optimal eddy vis-

cosity for resolvent-based models of coherent structures in turbulent jets.

Journal of Fluid Mechanics, 917:A29, 2021.

F. Pino, L. Schena, J. Rabault, A. Kuhnle, and M. A. Mendez. Comparative anal-

ysis of machine learning methods for active flow control. Journal of Fluid

Mechanics, 958:A2, 2023.

O. Pironneau. On optimum design in fluidmechanics. Journal of Fluid Mechan-

ics, 64(1):97–110, 1974.

S. B. Pope. A more general effective-viscosity hypothesis. Journal of Fluid Me-

chanics, 72(2):331–340, 1975.

S. B. Pope. Turbulent flows. Cambridge University Press, 2000.

161

F Porté-Agel, M. Bastankhah, and S. Shamsoddin. Wind-turbine and wind-

farm flows: A review. Boundary layer metheorology, 59, 2020.

T. Potsis, Y. Tominaga, and T. Stathopoulos. Computational wind engineering:

30 years of research progress in building structures and environment. Jour-

nal of Wind Engineering and Industrial Aerodynamics, 234:105346, 2023. doi:

10.1016/j.jweia.2023.105346.

M. Provansal, C. Mathis, and L. Boyer. Benard-von Karman instability: tran-

sient and forced regimes. Journal of Fluid Mechanics, 182:1–22, 1987. doi:

10.1017/S0022112087002222.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi. Artificial neu-

ral networks trained through deep reinforcement learning discover control

strategies for active flow control. Journal of Fluid Mechanics, 865:281–302,

2019.

A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel,

S. Ahuja, and D. Trocino. Machine learning at the energy and intensity fron-

tiers of particle physics. Nature, 560:41–48, 2018.

M. Raissi, A. Yazdani, and G.E. Karniadakis. Hidden fluid mechanics: Learn-

ing velocity and pressure fields from flow visualizations. Science, 367(6481):

1026–1030, 2020.

S. S. Rao. Engineering Optimization: Theory and Practice. John Wiley & Sons,

2009.

P. Ren, Y. Xiao, X. Chang, P.Y. Huang, Z. Li, B. B. Gupta, X. Chen, and X. Wang.

A survey of deep active learning. Association for Computing Machinery com-

puting surveys, 54(9):1–40, 2021.

F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323:533–536, 1986.

C. L. Rumsey and S. X. Ying. Prediction of high lift: review of present cfd capa-

bility. Progress in Aerospace Sciences, 38:145–180, 2002.

A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229, 1959.

162

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller,

R. Hadsell, and P. Battaglia. Graph networks as learnable physics engines

for inference and control. In International Conference on Machine Learning,

pages 4470–4479, 2018.

F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, andG.Monfardini. The graph

neural network model. IEEE Transactions on Neural Networks, 20(1):61–80,

2008.

M. Schmelzer, R. P. Dwight, and P. Cinnella. Discovery of algebraic reynolds-

stress models using sparse symbolic regression. Flow, Turbulence and Com-

bustion, 104:579–603, 2020.

O. Semeraro, J. O. Pralits, C. W. Rowley, and D. S. Henningson. Riccati-

less approach for optimal control and estimation: an application to two-

dimensional boundary layers. Journal of Fluid Mechanics, 731:394–417, 2013.

doi: 10.1017/jfm.2013.352.

K. Shukla, M. Xu, N. Trask, and G. E. Karniadakis. Scalable algorithms for

physics-informed neural and graph networks. Data-Centric Engineering, 3,

2022.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deter-

ministic policy gradient algorithms. In Proceedings of the 31st International

Conference on Machine Learning (ICML), pages 387–395. PMLR, 2014.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go

with deep neural networks and tree search. Nature, 529:484–489, 2016.

A. P. Singh and K. Duraisamy. Using field inversion to quantify functional er-

rors in turbulence closures. Physics of Fluids, 28(4):045110, 2016.

T. Stathopoulos, H. Alrawashdeh, A. Al-Quraan, B. Blocken, A. Dilimulati,

M. Paraschivoiu, and P. Pilay. Urban wind energy: Some views on potential

and challenges. Journal of Wind Engineering and Industrial Aerodynamics, 179:

146–157, 2018.

C. A. Ströfer and H. Xiao. End-to-end differentiable learning of turbulence

models from indirect observations. Theoretical and Applied Mechanics Let-

ters, 11(4):100280, 2021.

163

L. Sun, J. Zhang, L. Schaefer, and Q. Wang. Surrogate modeling for fluid flows

based on physics-constrained deep learning without simulation data. Com-

puter Methods in Applied Mechanics and Engineering, 361:112732, 2020.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 2nd edition, 2018. URL http://incompleteideas.net/book/

the-book-2nd.html.

S. Thrun and L. Pratt. Learning to learn: Introduction and overview. In Learning

to Learn, pages 3–17. Springer, 1998.

N. Thuerey, K. Weißenow, L. Prantl, and X. Hu. Deep learning methods for

reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal,

58(1):25–36, 2020.

A. P. Toshev, G. Galletti, J. Brandstetter, S. Adami, and N. A. Adams. Learning

lagrangian fluidmechanics with e (3)-equivariant graph neural networks. In

International Conference on Geometric Science of Information, pages 332–341.

Springer, 2023.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460,

1950.

G.J.W. van Bussel. The science of making more torque from wind: Diffuser

experiments and theory revisited. Journal of Physics: Conference Series, 75

(1):012010, 2007.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in neural information

processing systems, volume 30, pages 5998–6008, 2017.

D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for functional

outputs: application to two-dimensional viscous flows. Journal of Computa-

tional Physics, 187:22–46, 2003.

R. Venters, B. T. Helenbrook, and K. D. Visser. Ducted wind turbine optimiza-

tion. In 34th AIAA Applied Aerodynamics Conference, 2016. doi: 10.2514/6.

2016-3729.

C. Vignon, J. Rabault, and R. Vinuesa. Recent advances in applying deep re-

inforcement learning for flow control: Perspectives and future directions.

Physics of Fluids, 35(3), 2023.

R. Vinuesa and S. L. Brunton. Enhancing computational fluid dynamics with

machine learning. Nature Computational Science, 2(6):358–366, 2022.

164

J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher, and E. Hachem. Di-

rect shape optimization through deep reinforcement learning. Journal of

Computational Physics, 428:110080, 2021.

P.S. Volpiani, M. Meyer, L. Franceschini, J. Dandois, F. Renac, E. Martin, O. Mar-

quet, and D. Sipp. Machine learning-augmented turbulence modeling for

RANS simulations of massively separated flows. Physical Review Fluids, 6(6):

064607, 2021.

J. G. von Saldern, J. M. Reumschüssel, T. L. Kaiser, O. T. Schmidt, P. Jordan, and

K. Oberleithner. Self-consistent closure modeling for linearized mean field

methods. In AIAA AVIATION 2023 Forum, page 4351, 2023.

J.X. Wang, J.L. Wu, and H. Xiao. Physics-informed machine learning approach

for reconstructing reynolds stress modeling discrepancies based on dns

data. Physical Review Fluids, 2(3):034603, 2017.

J.X. Wang, J. Wu, and H. Xiao. Incorporating prior knowledge for turbulence

modeling with data-driven approaches: Physics-informed machine learn-

ing for the rans closure problem. Physics of Fluids, 32(3):035116, 2020.

Q. Wang, F. Ham, G. Iaccarino, and P. Moin. Risk quantification in unsteady

flow simulations using adjoint-based approaches. In Proceedings of the 50th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-

ference, Palm Springs, CA, 2009. AIAA Paper 2009-2277.

J. Weatheritt and R. Sandberg. A novel evolutionary algorithm applied to alge-

braic modifications of the RANS stress–strain relationship. Journal of Com-

putational Physics, 325:22–37, 2016.

F. M. White. Viscous Fluid Flow. McGraw-Hill, 2006.

D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Cañada, CA, 3rd

edition, 2006.

J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating physics-based

modeling with machine learning: A survey. Physics Reports, 896:1–57, 2020.

R. J. Wilson. Introduction to Graph Theory. Addison Wesley, 4th edition, 1996.

ISBN 9780582249936.

H. Xiao, J.L. Wu, J.X. Wang, R. Sun, and C. J. Roy. Quantifying and reducing

model-form uncertainties in reynolds-averaged navier-stokes simulations:

A data-driven, physics-informed bayesian approach. Journal of Computa-

tional Physics, 324:115–136, 2016.

165

Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempogan: a temporally coherent,

volumetric gan for super-resolution fluid flow. ACM Transactions onGraphics

(TOG), 37(4):95, 2018.

J. Yang, T. Dzanic, B. Petersen, J. Kudo, K. Mittal, V. Tomov, J.S. Camier, T. Zhao,

H. Zha, T. Kolev, R. Anderson, and D. Faissol. Reinforcement learning for

adaptive mesh refinement. In International Conference on Artificial Intelli-

gence and Statistics, pages 5997–6014. PMLR, 2023.

Y. Zhao, H. D. Akolekar, J. Weatheritt, V. Michelassi, and R. D. Sandberg. Rans

turbulencemodel development using CFD-drivenmachine learning. Journal

of Computational Physics, 411:109413, 2020.

166

