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iv   SUMMARY 

SUMMARY  
This dissertation addresses the pressing challenge of motion sickness in automated 

vehicles, emphasising the development of motion planning and control strategies to 

enhance passenger comfort. With the advent of autonomous driving, vehicles are no 

longer controlled by a driver who can intuitively adjust manoeuvres based on passenger 

comfort, making the issue of motion sickness more prominent. Automated driving offers 

numerous benefits and can lead to unpredictable vehicle dynamics from a passenger’s 

perspective, resulting in a heightened incidence of discomfort and motion sickness. This 

dissertation investigates methods to mitigate these effects to improve user experience and 

support wider acceptance of autonomous vehicle technology. The research begins by 

exploring the phenomenon of motion sickness and examining its causes, symptoms, and 

physiological impacts on passengers. Various theories are reviewed to explain why motion 

sickness occurs, including sensory conflict, postural instability, and subjective vertical 

mismatch theories, each offering insight into how human perception and control systems 

respond to unpredictable or sustained vehicle motion. The dissertation delves into 

methods for evaluating motion sickness, discussing different models, questionnaires, and 

indexes that quantify the likelihood or severity of motion sickness in various driving 

scenarios. Furthermore, it examines existing mitigation methods, categorising them into 

three broad approaches: behavioural practices, medical and supplementary solutions, 

and technological interventions related to vehicle design and control. This comprehensive 

understanding of motion sickness forms the foundation for the control and planning 

strategies proposed later in the dissertation. A central focus of the research is motion 

planning for comfort, identifying the significance of designing trajectories that reduce 

abrupt changes in speed and direction. Motion planning is positioned as one of the most 

promising methods for mitigating motion sickness, as it allows for pre-emptive control of 

vehicle dynamics to maintain smooth and predictable motion. The dissertation evaluates 

several planning algorithms and methodologies, illustrating how strategic trajectory 

design can contribute to reducing the lateral and longitudinal forces that typically lead to 

discomfort. By emphasising smooth, predictable movements, motion planning 

significantly enhances passenger comfort, supporting the hypothesis that a tailored 

approach to trajectory design can minimise motion sickness. In addition to motion 

planning, the dissertation explores nonlinear model predictive control (NMPC) 

algorithms, which are particularly suited to handling the complex, nonlinear dynamics 

involved in automated driving. Several NMPC strategies are discussed, including traction 

control, torque vectoring, and active suspension systems. Through simulations and 

experiments, the NMPC strategies demonstrate their capacity for precisely modulating 

vehicle dynamics, paving the way for further investigation of their efficiency in 

counteracting the potential sources of motion sickness by keeping movements within 

comfortable bounds. This combination of motion planning and NMPC strategies could 

offer a holistic approach to enhancing passenger comfort in autonomous vehicles. The 
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findings illustrate that by integrating smooth trajectory planning with advanced control 

algorithms, it is possible to create an automated driving experience that prioritises 

comfort and reduces the risk of motion sickness. Concluding the dissertation, the research 

points to future directions that could build on these results, such as refining motion 

sickness modelling, developing more adaptive control systems, and validating the 

methods in real-world driving scenarios. Through its in-depth investigation of motion 

sickness and its proposed mitigation methods, this dissertation contributes valuable 

insights to the field of autonomous vehicle design, aiming to make autonomous driving 

more comfortable and appealing for passengers. 
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1  
INTRODUCTION  

Once something is a passion, the motivation is 

there. 

Michael Schumacher 

  



2   1. INTRODUCTION 

1.1 MOTIVATION 

The rapid advancement of automated vehicle technology has the potential to transform 

transportation, offering increased safety, efficiency, and convenience. However, despite 

the remarkable technical progress in autonomy and control, a crucial aspect has received 

less attention: passenger comfort, specifically motion sickness. For this reason, leading 

automakers and mobility companies, such as Tesla, Waymo and Zoox, are prioritising 

passenger comfort to ease the broad acceptance by the public of this technology. 

Moreover, with the rise of shared mobility services like Uber, Lyft and autonomous 

shuttles, ensuring passengers’ comfort during multiple-stop journeys is a crucial aspect. 

Motion sickness (MS) is a phenomenon that can significantly impair the passenger 

experience, causing symptoms such as nausea, dizziness, and general discomfort. With 

the transition from driver-controlled to autonomous vehicles, the nature of vehicle 

dynamics and passenger roles has fundamentally shifted, leading to new challenges in 

understanding and mitigating motion sickness. In conventional, driver-controlled 

vehicles, passengers can anticipate motion by observing the driver’s actions, which helps 

alleviate some symptoms of motion sickness. In autonomous vehicles, however, 

passengers lack this anticipatory control and are more likely to engage in activities such 

as reading or working on electronic devices – activities that are highly conducive to motion 

sickness. As a result, the prevalence of MS in automated vehicles is anticipated to increase, 

potentially posing a barrier to adopting these technologies. Therefore, finding effective 

strategies to predict, measure, and mitigate motion sickness has become essential for the 

success of autonomous vehicle deployment. Understanding the mechanisms behind 

motion sickness and developing methods to minimise its effects in automated vehicles 

represents a highly interdisciplinary challenge. Research must incorporate human 

physiology, psychology, vehicle dynamics, and control engineering insights. While motion 

sickness has been studied for decades, especially in contexts like maritime, aviation, and 

virtual reality, the unique conditions of automated road transport introduce additional 

complexities. For instance, in vehicles, low-frequency accelerations – particularly those 

within around 0.2 Hz – are known to provoke motion sickness most intensely. This 

frequency range often corresponds to typical vehicle accelerations and decelerations, 

making automated driving scenarios especially prone to induce discomfort. In the context 

of automated vehicles, new methodologies are needed to understand the root causes of 

motion sickness and develop effective strategies to counteract it through vehicle control. 

Many conventional mitigation strategies, such as behavioural practices and medical 

solutions, may offer limited relief and can be inconsistent with the autonomous driving 

experience. Consequently, there is a compelling need to explore technological solutions 

that are both robust and seamlessly integrable within the framework of automated vehicle 

control systems. Specifically, motion planning and control strategies that consider 

passenger comfort as a primary design objective hold promise as practical solutions to 

address motion sickness.  
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The goal of this research is motivated by the need to bridge gaps in current motion 

sickness mitigation strategies for automated vehicles. This research aims to reduce the 

incidence of motion sickness symptoms without compromising vehicle performance by 

optimising motion planning and vehicle control systems. Additionally, understanding the 

physiological impact of vehicle motion on passengers – such as the impact of accelerations 

at various frequencies on the human vestibular system – offers a pathway to design 

algorithms that account for human comfort at a granular level. This is particularly 

significant because conventional vehicle control systems are typically designed for 

objectives like stability, responsiveness, and efficiency, with limited regard for human 

comfort regarding motion sickness. The field requires new approaches incorporating 

motion sickness considerations as an integral part of vehicle dynamics control. This 

research also seeks to develop practical guidelines and frameworks for integrating motion 

sickness mitigation strategies within motion planning and nonlinear model predictive 

control (NMPC) systems in response to these challenges. NMPC techniques allow for a 

proactive approach to motion sickness mitigation, enabling real-time adjustments to 

vehicle dynamics that accommodate the comfort needs of passengers. By implementing 

torque-vectoring, traction control, and active suspension strategies, this research aims to 

deliver a holistic solution that addresses motion sickness from multiple angles, 

encompassing lateral and vertical dynamics control. These solutions not only optimise 

vehicle performance but may also enhance passenger comfort – a critical aspect that will 

play a decisive role in the widespread acceptance of autonomous vehicles. Additionally, 

by exploring and incorporating advanced control strategies and motion planning 

algorithms that leverage proper motion sickness metrics, this research seeks to lay the 

groundwork for future motion sickness assessment and mitigation solutions tailored for 

autonomous vehicles. The broader motivation for this research extends beyond individual 

comfort. The success of automated vehicles depends on user acceptance, and comfort is 

a primary factor in shaping public perception and willingness to adopt this technology. A 

vehicle that minimises discomfort will contribute positively to the image of autonomous 

technology, influencing market penetration and overall societal impact. For vulnerable 

groups, such as elderly or sensitive passengers, addressing motion sickness becomes even 

more crucial, ensuring that autonomous vehicles are accessible and comfortable for a 

wide range of users. Ultimately, achieving a comfortable, motion sickness-free experience 

in automated vehicles will be an essential milestone in the journey toward fully 

autonomous transportation systems that are technically capable and human-centred. In 

conclusion, this research addresses a critical challenge that autonomous vehicles face as 

they transition from technical concepts to widely used transportation options. By 

investigating motion sickness mechanisms, developing effective control and motion 

planning strategies, and creating a framework for continuous improvement, this work 

aims to contribute significantly to the emerging field of motion comfort in automated 

vehicles. This research aspires to push the boundaries of current vehicle dynamics control 

approaches, paving the way for a new generation of autonomous systems that prioritise 
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passenger well-being, enhance user experience, and ensure sustainable adoption of this 

transformative technology. 

1.2 OVERVIEW OF CHAPTERS 

This dissertation is organised into five chapters designed to guide readers through the 

research and its context. The following overview highlights the focus of each chapter and 

illustrates their interconnections. Chapter 1 presents the research's motivation, technical 

background, and relevant literature. The subsequent three chapters provide in-depth 

analyses of the research conducted, including discussions on the interpretation of 

findings. The core objective of this dissertation is to identify the causes of motion sickness, 

as discussed in the literature, explore existing mitigation strategies, and lay the 

groundwork for advanced motion planning control through a study of multi-actuated 

vehicles. Chapter 2 reviews existing theories, metrics, and models used to quantify motion 

sickness and mitigation strategies suggested in the literature. Chapter 3 evaluates a 

motion planning algorithm to reduce motion sickness, with additional advanced 

formulations proposed for future research. Chapter 4 examines various vehicle actuation 

strategies –traction control, torque vectoring, and active suspension systems – to identify 

the optimal approach for future integration into advanced motion planning control 

algorithms. Finally, Chapter 5 presents the main conclusions drawn from Chapters 2–4, 

along with recommendations for future research in this area. For clarity, a summary of 

Chapters 2–4 is provided below. 

1.3.1 Chapter 2 

This chapter presents a comprehensive review of motion sickness (MS), covering 

foundational theories that explain its onset and underlying mechanisms. The chapter 

delves into a range of MS indices, scales, questionnaires, and models used to estimate and 

measure the severity of motion sickness. This detailed examination of assessment tools 

clarifies their theoretical basis and highlights their practical applications across various 

contexts. Following this, an extensive analysis of existing MS mitigation strategies is 

provided, organised into three main categories: (i) behavioural practices, consisting of 

recommendations passengers can follow to alleviate symptoms; (ii) medical and 

supplementary solutions, including wearable devices designed to counteract symptoms; 

and (iii) technological solutions, encompassing vehicle design considerations, the use of 

feedback devices, and advanced planning and control strategies. The chapter concludes 

with insights into emerging trends and offers recommendations on the most promising 

MS mitigation methods, laying a foundation for innovative approaches in this field. 

1.3.2 Chapter 3 

This chapter focuses on developing motion planning strategies to mitigate motion 

sickness (MS) in automated vehicles. It begins with an overview of the state-of-the-art 

research on the sources of MS in autonomous systems, highlighting how accelerations 

within specific frequency ranges are especially likely to induce discomfort. To assess MS 
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effectively, the chapter emphasises the importance of applying particular weighting filters 

that translate seat accelerations into the accelerations experienced by the passenger’s 

head, providing a more accurate measure of potential motion sickness triggers. Four 

motion planning algorithms are developed and presented in pursuit of optimised 

passenger comfort, each integrating these weighting filters into an optimal control 

framework. This approach ensures that passenger comfort considerations are embedded 

within the motion planning process, advancing autonomous vehicles' capacity to 

minimise motion sickness proactively. 

1.3.3 Chapter 4 

In this chapter, several nonlinear model predictive control (NMPC) strategies are 

developed and presented, focusing on advanced vehicle dynamics control. The chapter is 

structured into three main subchapters, each dedicated to a distinct NMPC approach. The 

first subchapter introduces torque-vectoring and traction control strategies, investigating 

optimal integration methods to achieve the best synergy between the two algorithms for 

enhanced vehicle stability and performance. The second subchapter focuses on a torque-

vectoring approach explicitly designed to control trailer sway in a car-trailer system, 

aiming to identify the most effective technique to stabilise the trailer’s lateral movement. 

The final subchapter builds upon this work by extending the torque-vectoring strategy to 

include active suspension control. This combined approach addresses vertical dynamics 

and handling behaviour, enhancing control over the car-trailer system. This focus on 

trailer control through torque vectoring and active suspension systems is justified by the 

dynamic similarities between car-trailer configurations and articulated buses, enabling 

the development of safety control strategies that can be extended to future automated 

articulated buses, with the potential to incorporate motion sickness metrics for enhanced 

passenger comfort. Each subchapter begins with a comprehensive state-of-the-art review 

and concludes with practical guidelines for implementing future NMPC algorithms, 

contributing valuable insights for further advancements in vehicle dynamics control. 
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1.3 CONTRIBUTIONS 

This dissertation presents multiple advancements in enhancing motion comfort for 

automated vehicles, contributing to various aspects of the field, including: 

• Comprehensive literature review on motion sickness: provided an extensive review 

of motion sickness theories, assessment tools (indices, scales, questionnaires, 

models), and mitigation strategies, categorising these into behavioural practices, 

medical solutions, and technological approaches. Recommendations for future 

trends and promising mitigation methods are also offered. 

• Development of motion planning algorithms for MS mitigation: design and 

implement of four motion planning algorithms to reduce motion sickness in 

automated vehicles. These algorithms integrate weighting filters to translate seat 

accelerations into passenger head accelerations, allowing for more accurate MS 

assessments and proactive mitigation. 

• Advancements in nonlinear model predictive control (NMPC) for vehicle 

dynamics: 

o Torque-Vectoring and Traction Control integration: developed and analysed 

strategies combining torque-vectoring with traction control, identifying the 

optimal integration for enhanced vehicle stability. 

o Control of trailer sway in car-trailer configurations: designed NMPC 

strategies using torque-vectoring to mitigate trailer swaying, enhancing 

stability in multi-actuated car-trailer systems. 

o Incorporation of active suspension for vertical and handling dynamics: 

extended the torque-vectoring strategies to include active suspension 

systems, addressing vertical dynamics and improving handling behaviour in 

car-trailer setups. 

• Guidelines for future algorithm development: each technical chapter concludes 

with practical guidelines, offering implementation insights and recommendations 

for future NMPC and motion planning algorithms in the context of vehicle 

dynamics and motion sickness mitigation.  
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2  

MOTION SICKNESS 
Movement is tranquillity. 

Stirling Moss 
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2.1 INTRODUCTION 

In recent years, the amount of time people spend driving has steadily increased, reflecting 

growing trends in urban sprawl, commuting distances, and reliance on personal vehicles 

for transportation. According to the AAA Foundation for Traffic Safety, the time spent in 

cars in 2023 reached ~370 ℎ𝑜𝑢𝑟𝑠 per year per person [1]. The primary inconvenience of 

driving a conventional car is the constant need for active involvement in driving tasks; 

meanwhile, the appealing idea of removing the driver from the equation by using fully 

autonomous vehicles (AVs) is gaining traction. AVs have the potential to relieve the driver 

from the driving tasks, prospecting increased productivity and leisure during AV travel [2], 

[3]. To achieve this, AVs are typically equipped with a wide range of sensors, enabling them 

to collect data from the environment even in the most challenging conditions and make 

the best driving decision to ensure passenger safety, avoid accidental collisions and 

enhance energy efficiency.  

However, to succeed in the complete transition from conventional vehicles to AVs, the 

benefits mentioned above are not enough, as occupants’ engagement in non-driving-

related tasks has been proven to cause motion sickness (MS), thus discomfort due to 

increased conflicts between visual motion cues and vestibular stimuli. MS is identified as 

one of the comfort factors in AVs [4] and is still considered a cause of hesitation for the 

broad acceptance by the public of AVs.  

In a survey conducted across several countries, including the US, China, India, Japan, the 

UK, and Australia, participants were asked if they would ride in an AV. In the US, 23 % of 

respondents said they would not, with similar figures in Australia (21 %) and the UK (23 %). 

Significantly lower percentages were observed in India (8 %) and China (3 %), while Japan 

had a notably higher percentage of 33 % [2], [3]. An interesting finding is the percentage of 

people who indicated what they would do while riding in an autonomous vehicle. On 

average, 46 % of passengers said they would watch the road,. In contrast,the remaining 

passengers would be engaged in other activities such as reading, texting, talking, sleeping, 

watching movies, working, or playing games. The same study provides data on the 

frequency and severity of MS experienced by occupants engaged in these activities. 

Watching a video is less likely to induce MS than reading; 15 % of people watching a video 

reported moderate to severe symptoms of MS, while this number more than doubled to 

32 % when reading a book. Finally, it is noted that, on average, 5 – 12 % of occupants would 

experience moderate to severe MS at some point. In addition to this survey, other studies 

have shown that blind individuals are particularly susceptible to MS [5], [6]. Conversely, 

those who are hypothetically immune to MS under any condition are individuals with a 

total loss of labyrinthine function [7], [8]. However, individuals with a disordered 

vestibular system may be even more prone to MS in everyday environmental situations 

[9].  
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For this reason, the authors of [10], [11] analyse the causes of MS in AVs and offer 

guidelines on how these technologies should be designed and developed. As AVs and 

related technologies are attracting increasing attention, the issue of MS in AVs has yet to 

be fully addressed. 

This chapter aims to provide a systematic review of MS theories found in the literature, 

along with MS indices, scales, and models used to estimate the feeling of sickness. It also 

examines existing techniques proposed to mitigate MS in AVs. Finally, the chapter 

discusses potential future research on mitigation methods and their implementation in 

AVs.  
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2.2 THEORIES 

Reading in a moving vehicle, such as a car, is a luxury that not everyone can enjoy. 

Approximately one-third of the population experiences nausea when attempting to focus 

on a book while in motion, whether in a car, boat, train, or plane. MS, a common 

phenomenon, is still not fully understood by scientists, though several theories attempt to 

explain it. The most widely accepted theory is the conflict theory, suggesting that MS 

results from mismatched sensory signals. When travelling in a car, the body receives 

conflicting information: the eyes perceive the interior of a stationary vehicle, thus signal 

to the brain that the body is standing still; on the other hand, the vestibular system located 

in the inner ear is responsible for detecting movement, signals to the brain that the body 

is accelerating. The vestibular system consists of three semicircular canals, each sensitive 

to rotation in a different dimension of space, and two fluid-filled sacs lined with hair cells, 

see Figure 2.1.  

 

Figure 2.1: Overview of the vestibular system  

As the body moves, the fluid within the sacs shifts, stimulating the hair cells and informing 

the brain about changes in horizontal or vertical movement. These combined sensory 

inputs allow the body to determine its direction, acceleration, and orientation. Thus, in a 

moving car, the vestibular system accurately senses motion, but the eyes – especially if 

focused on a book –  do not. This sensory conflict can also happen in reverse, for example, 

while watching a movie with sweeping camera movements. In such cases, the eyes 

perceive motion, but the vestibular system knows the body is stationary. Early studies 

about these conflicting signals can be traced back to 1881 when Irwin [12] published an 

article in The Lancet titled “The Pathology of Sea-Sickness,” in which he was the first to 

attribute sea-sickness – essentially the same as MS – to a mismatch between information 

from the visual sensory system and the vestibular system. Subsequently, in 1924 Beadnell 

proposed a theory similar to Irwin's [13]. Then, Claremont in 1931,  again proposed that 

MS is caused by a conflict between sensory cues, specifically when there is a discrepancy 
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between motion cues perceived by the visual and vestibular systems [14]. Later, in 1936, 

Hill published a study on sea-sickness, in which he stated that “immunity to sea-sickness 

consists in the development of appropriate conditioned reflex responses” [15]. This 

implies that sea-sickness is not solely due to conflicting signals but also depends on how 

individuals adapt and respond to such situations. This claiming lay the groundwork for 

the development of two more theories, the sensory rearrangement theory and the postural 

instability theory. The former was proposed by Reason in 1975, hinting that MS is caused 

by a conflict between the motion we perceive by sense organs, and the motion our brain 

expects based on past experiences and thus how we react to the mismatch [16]. Whilst, the 

latter was proposed by Riccio in 1991 [17], who stated that the sick feeling comes out in 

situations in which the animals do not possess or do not have yet learned strategies that 

are effective for the maintenance of postural stability. Postural instability occurs when the 

central nervous system is not able to properly integrate sensory signals from visual, 

vestibular and proprioceptive systems, leading to a loss in maintaining muscle balance. 

Although the postural instability theory has been extensively discussed in the literature, 

the sensory conflict theory has shown more congruence with experimental results [18]. 

Later on, the conflict theory and the sensory rearrangement theory were further developed 

in [19]. The authors proposed the subjective-vertical conflict theory, redefining the 

mismatch as a conflict between the perceived vertical acceleration sensed by the 

vestibular system and the subjective vertical acceleration, i.e. the expected motion based 

on prior experience. However, the role of the visual system in the occurrence of MS 

remained unclear. An early study on visual-vestibular interaction was presented in [20], as 

well as in [21], [22], where the authors described the interactions that occur when viewing 

images that may induce MS. Further advancements in this area were proposed in [23], 

where the authors explored the role of sensory-induced self-motion, specifically vection. 

The subjective-vertical conflict theory was broadened in [24] where the authors identified 

as source of MS not solely the vertical mismatch but also the horizontal, i.e. lateral 

acceleration. Finally, in [25], the authors expanded the conflict to the longitudinal 

component as well. These extensions are supported by the findings presented in [26], 

where the authors conducted an analysis of frequency-weighted accelerations in multiple 

directions that passengers experience on different types of coaches. The study revealed 

that, regardless of the coach type, fore-and-aft, lateral, and vertical motions consistently 

exhibit greater magnitudes compared to rotational motions. These translational 

movements, therefore, play a significant role in the onset of MS. Another critical aspect in 

understanding the causes of MS is the frequency of these accelerations. In [27], [28], 

researchers examined the proportion of individuals reaching a specific illness rating when 

exposed to accelerations within the frequency range of 0.0315  Hz to 0.2  Hz. The study 

found that as the frequency approached 0.2  Hz, a larger proportion of participants 

reported higher illness ratings, indicating that lower frequency values provoke less MS. 

Similar conclusions were drawn in [29], where the authors explored the mean time to 

sickness rating, defined as the average duration it takes for subjects to experience initial 
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symptoms, mild nausea, and moderate nausea, in relation to acceleration frequency. The 

shortest time to sickness was consistently observed around 0.2 Hz, further highlighting 

that this frequency range holds the greatest potential for inducing nausea. While many 

theories emphasise the conflicting information received from two different systems, this 

alone may not fully explain MS. For instance, as proposed in [30] the inter-sensory conflict 

can occur within the vestibular system itself, between the otoliths (which detect linear 

acceleration) and the semi-circular canals (which detect rotational velocity), as seen in 

phenomena caused by Coriolis acceleration. Aside from the several declinations of the 

sensory conflict theory, other paths were investigated over the years. Another theory 

claims that virtual environments (VE) can produce MS, and it is caused by eye movement 

conflict [31]. When moving the head in the real world, eyes naturally adjust to maintain a 

stable view of the surroundings, thanks to the vestibulo-ocular reflex (VOR), however in 

VE, head movements may not result in corresponding visual adjustment on the screen. 

This inconsistency forces the eyes to work harder, leading to discomfort and nausea. This 

phenomenon is often related to simulator sickness. In some VE, particularly those that 

simulate first-person movement, the visual flow of the motion could be strong enough to 

trigger a perception of motion in the brain, even though the body is not moving. This 

causes confusion between the systems responsible for spatial orientation, which can 

result in symptoms of MS like dizziness, nausea and disorientation. In this direction, 

Cohen et al. [32] propose that MS is mediated through the orientation properties of 

velocity storage in the vestibular system that tend to align eye velocity produced by the 

angular vestibular-ocular reflex (aVOR) with gravity-inertial acceleration (GIA); later on, 

in [33] the authors reviewed the source of the conflicts that cause the body to generate the 

autonomic signs and symptoms that constitute MS and provide a summary of the 

experimental data that has led to an understanding of how MS is generated and can be 

controlled. In summary, all theories in the literature are grounded in the interaction of 

three key factors: i) the visual sensory system, ii) the vestibular system, and iii) the physical 

environment. Despite the numerous theories proposed, none have been able to fully 

explain the phenomenon of MS. It remains one of those seemingly straightforward 

problems that, despite significant scientific advancements, is still not fully understood. 

For this reason, much of the research focuses on assessing MS through various metrics, 

scales, questionnaires and models, which will be addressed in the following chapter.  
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2.3 INDEXES AND MODELS 

Understanding and quantifying MS has long been a subject of great interest across 

multiple disciplines, from transportation and aviation to virtual reality and human 

physiology. Despite its prevalence and the impact, it has on both comfort and 

performance, MS remains a complex and elusive phenomenon to measure. The challenge 

lies in the multifaceted nature of MS, which can manifest through various physical, 

psychological, and sensory factors. These factors interact in unpredictable ways, making 

it difficult to pinpoint the precise mechanisms that cause an individual to experience 

discomfort or nausea. To address this complexity, researchers have developed a range of 

methods to estimate and evaluate MS. These approaches vary widely in their focus, from 

objective measurements of physiological responses to subjective assessments of 

individual perception. Some methods aim to capture the onset of symptoms, while others 

strive to predict susceptibility before symptoms arise. The diversity of these approaches 

reflects both the complexity of MS itself and the need to account for its variable impact 

across individuals and contexts. In this chapter, the different methodologies that have 

been proposed to estimate MS are explored. Their underlying principles, their practical 

applications, and the insights they offer into the broader understanding of MS will be 

considered. The MS susceptibility questionnaires (MSSQs) designed by Reason and Brand 

were the first systematic tools developed to measure susceptibility to MS [16], [34]. It is a 

retrospective tool assessing an individual’s likelihood of experiencing MS based on past 

experiences in various motion environemnts, such as land, air, and sea travel. It features 

a two-part structure evaluating childhood and adulthood experiences, uses a weighted 

scoring system for frequency and severity, and serves as a predictive measure for future 

susceptibility, making it a versatile and widely used instrument in motion sickness 

research. These questionnaires were later revised by Golding in 1998 [35], resulting in the 

MSSQ-Long Form (MSSQ-LF), which contained 54 items and took a significant amount of 

time to complete. To address this, Golding further revised the questionnaire in 2006 [36], 

creating the MSSQ-Short Form (MSSQ-SF), which reduced the number of items to 18. 

Since virtual reality (VR) technology at the time was not as advanced as it is today and 

exposure to such systems was relatively limited, VR-related questions were excluded from 

the MSSQ-SF. In fact, during the development process in 2006, references to visual devices 

like cinema, video games, and VR were intentionally omitted, as these technologies were 

not as prevalent or widespread as they are today. The MSSQ-SF is widely regarded as the 

standard tool for predicting traditional MS; however, it was not specifically developed to 

assess visually induced MS (VIMS) or cybersickness. To address these forms of MS, the 

literature offers a variety of measurement tools specifically designed to evaluate VIMS and 

cybersickness [37]–[40]. A different approach is used for the Nausea Profile (NP) [41], 

defined as a self-report questionnaire that focuses on the severity of nausea and related 

symptoms. It evaluates different dimensions of nausea, such as the urge to vomit, stomach 

awareness, and overall discomfort, making it useful in both traditional and visually 
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induced MS. Equivalently, the authors in [42] propose the  Motion Sickness Assessment 

Questionnaire (MSAQ), which is a comprehensive tool that evaluates MS across four 

symptom domains: gastrointestinal, central (such as dizziness and fatigue), peripheral 

(such as sweating), and sopite-related symptoms (such as drowsiness and disinterest). 

This questionnaire provides a detailed assessment of the different ways MS can affect 

individuals.  

Despite the huge number of questionnaires available in the literature, over the years, 

researchers have developed various scales to measure the severity and impact of MS 

across different contexts, whether it occurs in traditional settings, such as vehicles and 

simulators, or in more modern environments, like virtual reality. These scales provide 

valuable insights into the onset, progression, and intensity of symptoms, helping to better 

understand and predict MS. Examples of scales used to estimate MS include: i) the 

Pensacola Diagnostic Index [43], one of the earliest tools used to diagnose and rate MS, 

providing a scoring system based on a range of physical symptoms, including nausea, 

vomiting, dizziness, and sweating, and still referenced in research despite being less 

commonly used today; ii) the MIsery SCale (MISC) rating symptoms on a scale where 0 

indicates no issues, 1 represents mild discomfort without specific symptoms, 2-5 cover a 

range of symptoms from vague to severe, excluding nausea, 6-9 reflect increasing levels of 

nausea, and 10 corresponds to vomiting [44]; and iii) the Fast Motion Sickness Scale (FMS), 

which is a verbal rating scale that ranges from 0, indicating no MS, to 20, representing 

severe MS [45]. Both questionnaires and scales are valuable tools for evaluating MS. 

However, incorporating them into control strategies poses a challenge, as such strategies 

typically require a mathematical formulation. This is where mathematical indexes 

become essential, providing a more objective and quantitative approach to understanding 

MS. These indexes are usually derived from physiological measurements or motion data, 

allowing for a more precise assessment of MS. Through the use of mathematical models 

and formulas, these indexes quantify key factors like acceleration, head movement, and 

exposure frequency, all of which contribute to the onset and severity of MS. In this context, 

the ISO 2631-1 is an international standard that provides guidelines for evaluating human 

exposure to whole-body vibration [46]. It outlines methods for assessing the impact of 

mechanical vibrations and shocks on human comfort, health, and performance, with a 

particular focus on motion-induced discomfort or MS. The standard defines how to 

measure and assess whole-body vibration using weighted acceleration values across three 

axes (x, y, and z). It emphasises the importance of frequency weighting, as the human body 

is more sensitive to vibrations at specific frequencies. Lower frequencies, particularly 

between 0.1 Hz and 0.5 Hz, are strongly associated with MS. Additionally, ISO 2631-1 

accounts for the duration of exposure, recognising that the length of time someone is 

subjected to vibration significantly affects its impact. Cumulative exposure is often 

considered in assessing health risks, while shorter exposures focus primarily on comfort. 

This standard is applied across various environments, including transportation (e.g., 

vehicles, boats, and aircraft), industrial settings, and workplaces where humans are 
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exposed to whole-body vibrations. In addition to providing a comprehensive framework 

for evaluating vibrations in different contexts, ISO 2631-1 also defines the Motion Sickness 

Dose Value (MSDV). The MSDV quantifies MS by measuring cumulative exposure to 

motion over time, and it is defined as the root mean square (RMS) of vertical acceleration 

and the duration of exposure, see equation (2.1):  

𝑀𝑆𝐷𝑉𝑧  = √∫ [𝑎𝑤(𝑡)]2𝑑𝑡
𝑇

0

 (2.1) 

where 𝑎𝑤(𝑡) is the frequency-weighted acceleration in the z direction, 𝑇 is the total period 

during which motion occurs. The MSDV, is widely used to predict the likelihood of MS in 

vehicles or environments with prolonged motion exposure. A further elaboration of the 

MSDV, is the Illness Rate (IR), defined as follows: 

𝐼𝑅 = 𝐾 ∙ 𝑀𝑆𝐷𝑉  (2.2) 

where 𝐾 is an empirically derived constant – usually set up to 0.02 – based on data from 

studies of MS in ships and road [47]–[49]. Having explored the various questionnaires, 

scales, and indexes used to assess MS, it is essential to now turn the attention to the more 

advanced approaches involving mathematical models. While indexes provide useful 

metrics and quantitative assessments, mathematical models offer deeper insights by 

simulating the underlying mechanisms that lead to MS. These models not only account 

for the relationship between physical stimuli and physiological responses but also allow 

for the prediction of MS across different scenarios and environments. Transitioning from 

purely descriptive measures to mathematical modelling represents a significant step 

towards a more dynamic and predictive understanding of MS, enabling to better capture 

its complexity. Between 1974 and 1976, O'Hanlon and McCauley conducted one of the 

most well-known and reliable studies aimed at understanding the phenomenon of MS [50], 

[51]. In these works, the authors were the first to propose a mathematical formulation for 

calculating the Motion Sickness Index (MSI) using the mean values and standard 

deviation of the logarithmic acceleration threshold: 

𝑀𝑆𝐼 = ∫
100

𝜎√2𝜋

log𝑎

−∞

𝑒−{[𝑥−𝜇]
2/2𝜎2}𝑑𝑥 (2.3) 

where 𝑥 is a variable of integration in unifs of log 𝑎, and 𝜎 and 𝜇 are parameters with values 

determined empirically. The first mathematical model of MS was introduced by Reason et 

al. in 1978 [34], with the proposal of the neural mismatch model, outlined in Figure 2.2. 

This model aimed to address fundamental questions surrounding MS, such as where and 

when it occurs. By focusing on the mismatch between sensory inputs from different 

systems – such as the visual, vestibular, and proprioceptive systems – the model sought to 

explain how conflicting information leads to the onset of MS symptoms. 
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Figure 2.2: Neural Mismatch Model proposed in [34]. 

However, the proposed model offers a qualitative explanation of the phenomenon of MS 

without providing a formal mathematical framework. Progress in this direction was made 

by Oman in 1982 [52], who developed a mathematical model for conflict generation based 

on the Neural Mismatch Model. The model is depicted in Figure 2.3, where 𝑥 is the body 

actual state vector, 𝑢 is the forcing vector, 𝑚 is the motor outflow vector from the Central 

Nervous System (CNS), 𝑎  is the polysensory afference vector to CNS, 𝑛𝑒  is the external 

disturbance vector, 𝑛𝑎 is the sense organ output vector,  𝐴  is the matrix describing the 

effect on 𝑥 of 𝑥̇, 𝐵 is the matrix describing the effect of forcing vector on 𝑥̇, 𝐶 is the control 

matrix, 𝑆 is the matrix of sense organ gain factors, 𝑇 is the conflict sensitivity matrix, 𝐾𝑐 is 

a gain factor, 𝑥𝑑  represents the desired state vector, 𝑐  is the sensory conflict and the 

notation ̂   represents the respective estimated states and matrices within the internal 

model. This model also incorporates von Holst’s “reafference principle” [53], findings 

from Held’s experiments on adaptation to “sensory rearrangement” [54]–[57], and the 

control engineering perspective introduced by Young et al. [58], which describes the role 

of the CNS and its interaction with the visual and vestibular systems.  
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Figure 2.3: Heuristic Mathematical Model proposed in [52] for the calculation of subjective discomfort. 

In  [59], the author reviewed the stimuli causing MS, presenting a contemporary observer 

theory of the sensory conflict hypothesis and a revised model describing the dynamic 

relationship between conflict signals and the estimated intensity of nausea. Building on 

Oman’s work, Bles and Bos later proposed the Subjective Vertical Conflict (SVC) theory in 

[60], [61]. They extended Oman’s model by incorporating knowledge of the vestibular 

system and reaffirming the sensory rearrangement theory. The proposed model is shown 

in Figure 2.4a), where 𝑉  is the module to compute the sensed vertical, 𝐹  is the transfer 

module allowing compute the measured subjective vertical, 𝑑  is the mismatch vector 

between the perceived vertical and the subjective vertical, i.e. the one computed within 

the internal model, 𝐾𝑑  is a gain factor for the mismatch. In Figure 2.4b) the detailed 

module 𝑉  is represented, where 𝑉𝐼𝑆, 𝑆𝑂𝑀,𝑂𝑇𝑂, 𝑆𝐶𝐶  are the transfer functions for the 

visual system, the somatosensory system, the otholiths and semi-circular canals 

respectively; 𝐿𝑃 is a low-pass filter, allowing to consider the frequencies around 0.2 Hz, 𝑡 

is the difference between the gravito-inertial force vector and the sensed vertical and 𝑟 is 

the vector for the head tilt. In [61] the authors argued that “All situations which provoke 

motion sickness are characterised by a condition in which the sensed vertical, as 

determined based on the integrated information from the eyes, the vestibular system and 

the non-vestibular proprioceptors is at variance with the subjective vertical as expected 

from previous experience”. This concept was further refined through optimal estimation 

theory, using an internal model (or observer) with transfer functions analogous to those 

of the otoliths (OTO) and semicircular canals (SCC) to predict the subjective vertical for a 

given stimulus [60]. 
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(a) 

 

(b) 

Figure 2.4: (a) SVC Model proposed in [60] and [61], (b) Detailed module V included in (a). 

Always in [60], the authors propose a model to predict the amount of MS given any kind 

of motion stimulus, using a model based on the explicit knowledge of the vestibular 

system. In particular, the authors compute the cumulation of MS starting from the SVC 

model output, which is fed into a non-linear transfer function, i.e. Hill Function, which 

can be written as in equation (2.4): 

ℎ =
[𝑑/𝑏] 𝑛

1 + [𝑑/𝑏]𝑛
 (2.4) 

where 𝑏 is the indifferent point, i.e. the point where ℎ(𝑏) = 0.5 and 𝑛 defines the steepness 

of the function, see Figure 2.5. 
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Figure 2.5: Hill Function with different steepness levels and fixed indifferent point b = 0.3. 

Then the output ℎ of the Hill Function is fed into a transfer function, see equation (2.5), to 

compute the MSI as follows: 

𝑀𝑆𝐼 =
𝑃

[𝜇𝑠 + 1]2
ℎ (2.5) 

where 𝑃 considers the maximum percentage of people suffering from MS under the given 

conditions and 𝜇 is a time constant. Finally, the authors present the predicted MSI after 2 

hours of vertical sinusoidal motion, plotted as a function of frequency and acceleration: 

 

Figure 2.6: Motion Sickness Incidence as a function of frequency and RMS of the acceleration. 

In 2001, Braccesi and Cianetti [62] proposed a two-dimensional extension of the model 

presented in [60], which accounts for both vertical and lateral accelerations. The authors 

also analysed the predicted outcomes for tilting trains, emphasising that the empirical 

approach outlined in [46] does not provide reliable predictions for MSI. In 2011, the 

authors further extended the model by proposing: i) a 3D version based solely on 

vestibular stimuli, using linear accelerations in the x, y, and z directions as inputs, and ii) 
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a model that accounts for the contribution of the visual system to motion perception, as 

well as its role in generating inter-sensory conflict, which had not yet been formalised in 

MS prediction models [63]. However, they were not the only ones investigating the 

interactions between the vestibular and visual systems. Back in 2001, Telban and Cardullo 

developed a model of human motion perception that integrates mathematical models for 

both vestibular and visual motion sensations, incorporating non-linear interactions 

between these stimuli [64]. The model also accounts for visually induced self-motion, 

known as vection. Subsequent work focused on visual-vestibular interactions, as 

described in [65], where the authors explore this phenomenon and highlight key vestibular 

concepts fundamental to understanding MS. Building on Bos’s SVC model, [66] developed 

a three-dimensional nerve system model, i.e. the 3D-SVC, to estimate MS. Further 

advancements are found in [24], [67], where the Subjective-Vertical-Horizontal-Conflict 

model accounts for horizontal conflict in a manner similar to vertical conflict. The authors 

claim that this model outperforms those based solely on the SVC. In 2013, Wada et al. [68] 

proposed a mathematical model to calculate MSI with 6 Degrees of Freedom (DoF), 

including head rotation, which can be seen as an extension of the 3D-SVC. This model is 

based on neurophysiological knowledge of the vestibular system but initially neglected 

the contribution of the visual system, which was later incorporated in [69]. The schematic 

of the model, which is nowadays one of the most prominent and used to predict MSI, is 

shown in Figure 2.7.  

 

Figure 2.7: 6DoF-Model including visual system interaction proposed in [69]. 

where the dashed line identifies the internal model, the dotted line highlights the 

contribution of the visual system, and the terms with 𝐾 are scaling factors. It is important 

to note that, according to the optimal estimation theory, the transfer function for the 

vestibular systems, i.e. the otholiths (𝑂𝑇𝑂), the semi-circular canals (𝑆𝐶𝐶), and the visual 

system (𝑉𝐼𝑆), along with the low-pass filter (𝐿𝑃) defined in the sensory part, are identical 

for the internal model. A more recent model, the Visual-Vestibular Motion Sickness 
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(VVMS) model, is described in [70]. The VVMS model integrates vestibular sensory 

dynamics, visual motion perception, and visual-vestibular cue conflict to determine the 

discrepancy between the sensed and true vertical orientation of the passenger. With the 

aim of offering a comprehensive comparison to help identify gaps in existing models and 

guide future research, table X provides a summary of various MS models, categorised by 

the different theories found in the literature. It highlights the causes of MS identified by 

the respective authors, the sensory systems considered, the type of model used, as well as 

its inputs, outputs, and key assumptions. Additionally, the table outlines each model’s 

novelties and limitations. 
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2.4 STATE-OF-THE-ART OF MITIGATION METHODS 

So far, this chapter has introduced the phenomenon of MS, reviewed the prominent 

theories that explain its causes, and outlined various methods used to estimate its 

occurrence and severity. While understanding the underlying mechanisms and prediction 

methods is essential, it is equally important to explore strategies for mitigating MS, 

especially given its impact on comfort and performance in various environments, such as 

transportation, virtual reality, and autonomous systems. In the following section, the 

approaches developed to reduce or prevent MS are examined. In literature, several 

solutions are proposed to mitigate MS, which can be categorised into three main groups: 

i) behavioural practices, consisting of recommendations that passengers can follow; ii) 

medical and supplementary solutions, including wearable devices; iii) technological 

solutions, encompassing vehicle design considerations, use of feedback devices, as well as 

planning and control strategies. Behavioural practices are a simple yet effective approach 

to mitigating MS by minimising sensory conflicts and discomfort during travel. Passengers 

are advised to focus on stable visual references, such as the horizon, and to sit in areas 

with less motion, such as the front seat of a vehicle, to reduce the effects of conflicting 

sensory inputs. Activities that require close visual focus, like reading or using screens, 

should be avoided as they can intensify symptoms. Taking regular breaks, practising 

controlled breathing, and ensuring proper ventilation are also useful strategies. 

Additionally, maintaining light meals and avoiding alcohol before travel can help prevent 

nausea. These practices, although easy to implement, play a significant role in improving 

passenger comfort during motion exposure. While behavioural practices can be effective 

in mitigating MS for many individuals, they may not work for everyone. As a result, some 

people turn to medical and supplementary solutions or wearable devices to manage their 

symptoms more effectively. Medical and supplementary solutions include a range of 

remedies designed to prevent or alleviate the symptoms of MS. Common medications, 

such as antihistamines, are widely used to reduce nausea and dizziness by blocking signals 

from the vestibular system. In addition to medications, wearable devices like acupressure 

wristbands and specialised goggles with moving fluid are designed to help stabilise the 

sensory input and reduce the mismatch between visual and vestibular signals. These 

wristbands apply pressure to specific points on the wrist, believed to ease nausea, while 

the fluid-filled goggles create an artificial horizon, helping the brain process motion more 

accurately. Together, these medical and supplementary solutions offer an alternative for 

individuals who do not find relief through behavioural practices alone. Nevertheless, 

while many individuals rely on behavioural practices, medical solutions, including 

wearable devices, or a combination of these methods to find relief from MS, their 

effectiveness can vary significantly among users. This variability underscores the necessity 

for ongoing research and innovation in technological solutions aimed at enhancing 

overall comfort and reducing the incidence of MS. In this regard, in [4], the authors 

describe all the passenger side effects of riding an autonomous vehicle, with the associated 

research solutions proposed in the literature until 2015. The authors emphasise how MS 



2. MOTION SICKNESS   29 

 

 
 

can be mitigated by using device-vehicle interface (DVI) feedback systems, redesigning 

certain components of the vehicle, or by employing a smooth lateral control coupled with 

the generation of continuous curvature paths. These approaches aim to minimise abrupt 

changes in motion and enhance passenger comfort by reducing sensory conflicts during 

travel. DVI solutions aim at letting the passenger know what the next manoeuvre will be, 

thus reducing the sense of loss of controllability [71]. This approach involves the use of VR 

systems to align the visual path with the actual travel path, as drivers typically rely on 

specific visual references on the road to match its curvature. In this context, Cho et al. [72] 

conducted an experiment comparing sickness levels before and after implementing three 

different scenarios while riding in a car and using VR: i) the default scenario, where VR 

content is displayed without modification; ii) the transparent wall scenario where both the 

VR content and its background adjust in response to the car's motion; and iii) the particle 

flow scenario, in which the estimated motion flow of the car is visualised as moving 

particles that blend with the VR content. The results indicate that both scenarios ii) and 

iii) consistently reduce MS, although not to a negligible level. Regarding vehicle design 

considerations, several solutions have been proposed, such as those outlined in [73], 

where the authors suggest using Occipital Bone Support (OBS) to stabilise the head and 

minimise excessive low-frequency accelerations. Additionally, emerging research trends 

are exploring the development of pre-emptive active seats that can tilt passengers in 

response to vehicle manoeuvres, aiming to reduce the sensation of MS [74]. While others 

propose vibrating seats, cueing the passenger into the upcoming manoeuvre  [75]. These 

innovations focus on directly mitigating the physical causes of sensory conflict during 

travel. Other mitigation strategies involve optimising trajectory planning to generate 

smoother paths, as proposed in [76], using continuous curvature path-planning methods, 

as explored in [77], [78], or including jerk minimisation within the path-planning problem 

as suggested in [79]. These approaches aim to reduce abrupt lateral accelerations and jerky 

motions, which can exacerbate MS, by ensuring smoother transitions and more 

predictable vehicle movements. However, based on the studies presented in [26]–[29], to 

effectively address MS, the solution must be sought somewhere else within the software 

architecture of AVs. This suggests that simply modifying vehicle design or applying control 

strategies may not be sufficient, and more advanced approaches, such as rethinking the 

interaction between vehicle dynamics and passenger comfort systems, may be required 

to significantly reduce MS in autonomous transport systems. Motion planning, among the 

various countermeasures, is the best candidate to mitigate MS with its capability to control 

the accelerations and their frequencies. In [80], the authors proposed a motion planning 

strategy aimed at optimising MS feeling by minimising the IR for both longitudinal and 

lateral accelerations, while also considering journey time. Building on this, in [81], the 

same authors further explored the fundamentals of motion planning to minimise MS. In 

the study, a Pareto front is introduced, illustrating the trade-off between travel time and 

MS, highlighting the conflicting relationship between the two: longer travel times result in 

lower MS, whereas shorter travel times lead to increased susceptibility to MS. Li et al. [82] 
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proposed a novel approach to addressing motion sickness (MS) by focusing on motion 

planning rather than motion control. Their strategy incorporates a frequency-shaping 

approach that targets the most provocative frequencies associated with MS. Similarly, in 

[83], the authors developed a motion planning strategy in which speed profiles are 

optimised by minimising accelerations, leading to a reduction in the MSDV. Another 

method is presented by [84], where trajectory and velocity planning are used to adjust AV 

paths, mitigating the negative effects of bumpy roads on passenger comfort by keeping 

the weighted RMS of acceleration below a predefined threshold of 0.315 m/s². In [85], a 

trajectory planning algorithm is proposed that calculates paths based on predefined 

waypoints describing a global map. Each candidate path is paired with a velocity profile 

and evaluated against several criteria, including passenger comfort—measured by the 

peak value of lateral acceleration – as well as obstacle avoidance and overall trajectory 

tracking. While these studies offer various ways to mitigate MS, none incorporate the most 

advanced MS models, such as those discussed in earlier sections, for predicting the MSI – 

one of the most reliable metrics for evaluating passenger discomfort. A small step in this 

direction is taken in [86], where the authors conducted two studies on real-world 

autonomous driving conditions and measured induced MS in passengers. They used the 

6DoF-SVC model to predict MSI, but found that the model, in its current form, was not 

fully reliable. By optimising the parameters of the model, they improved its accuracy for 

the specific experiments conducted. A more recent and advanced approach is presented 

in [87], where the authors developed an optimisation-based motion planning strategy to 

mitigate MS by using frequency-weighted filtered accelerations within a receding horizon 

framework. Results demonstrated a reduction of frequency-weighted accelerations by 

11.3  % compared to methods that did not consider frequency sensitivity. Additionally, 

experiments on human drivers in real-world conditions showed a 19 % improvement in 

overall acceleration comfort and a 32  % reduction in squared MSDV, highlighting the 

potential benefits of implementing this algorithm in real transportation systems. In 

conclusion, numerous strategies have been explored to mitigate MS,  ranging from 

behavioural practices and medical solutions to vehicle design modifications and control 

strategies. Among these, motion planning has emerged as the most promising approach 

due to its ability to manage accelerations and their frequencies, directly addressing the 

core causes of MS. By optimising trajectory smoothness and minimising the most 

provocative motion frequencies, motion planning offers a targeted, proactive solution 

that holds great potential for enhancing passenger comfort, especially in AVs. 
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2.5 CONCLUDING REMARKS 

Motion sickness (MS) remains a multifaceted issue, driven by an interplay of sensory, 

cognitive, and environmental factors. Theories such as the sensory conflict theory, 

postural instability theory, and subjective vertical mismatch theory have each contributed 

essential perspectives, though no single framework fully explains the wide range of 

symptoms or their varying intensity among individuals. This underscores the complexity 

of the phenomenon, suggesting that future advancements in understanding MS will likely 

depend on an integration of these theoretical models. Equally challenging is the task of 

measuring MS, as estimation methods range from subjective scales – such as self-reported 

questionnaires and symptom scales – to objective approaches like monitoring 

physiological responses, including heart rate variability and galvanic skin responses. 

Although these methods provide insight into the severity and onset of MS, variability in 

individual responses and experimental conditions can make it difficult to apply them 

universally, highlighting the need for more robust and comprehensive metrics. When it 

comes to mitigation, the state of the art reflects a broad spectrum of strategies. 

Behavioural practices, including habituation techniques and controlled exposure, remain 

valuable for certain contexts but are often limited by their reliance on long-term 

adaptation. On the medical front, pharmacological interventions such as antihistamines 

and anticholinergics offer immediate relief but may come with side effects that limit their 

use, especially in situations requiring cognitive alertness. Meanwhile, non-invasive 

wearable devices that use techniques such as galvanic vestibular stimulation are gaining 

traction as supplementary solutions with minimal side effects. However, the most 

promising area of development lies in technological interventions. Advances in vehicle 

design, particularly the optimisation of motion cues and the reduction of sensory conflicts 

through intelligent motion planning and control strategies present an innovative 

approach to mitigating MS. These technological innovations not only address the root 

causes of sensory conflict but also pave the way for more comfortable and efficient 

transportation systems, especially in the era of automated vehicles. In summary, while 

significant strides have been made in understanding and addressing MS, it remains a field 

ripe for further research and innovation. The growing intersection of behavioural science, 

medicine, and technology holds promise for future solutions that could one day make MS 

outdated. Through continued interdisciplinary collaboration and technological 

advancements, it is conceivable that MS, once seen as an inevitable consequence of 

motion, will become a manageable and, in many cases, preventable issue. 
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3  

MOTION PLANNING  
If you no longer go for a gap that exists, you are no longer a racing driver. 

Ayrton Senna 
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3.1 STATE-OF-THE-ART 

The rise of automated vehicles (AVs) signifies a new era in transportation, promising a 

transformative impact on how people travel. To achieve the complete transition from 

conventional vehicles to AVs, the focus on occupants’ comfort becomes a pivotal area of 

exploration. The prospect of increased productivity and leisure during AV travel [1] is 

considered as one of the main reasons for the adoption of AVs by consumers [2]. However, 

occupants’ engagement in non-driving-related tasks has proven to increase motion 

sickness (MS) due to increased conflicts between visual motion cues and vestibular stimuli. 

Meanwhile, AVs driving style is expected to be more aggressive increasing postural 

instability and head motion. Hence, an urgent need has risen to mitigate MS and enhance 

comfort in AVs to secure their acceptance, and their great potential. Current research 

efforts focus on understanding MS and developing countermeasures for its mitigation 

while being driven in AVs. MS has been attributed to multiple theories, yet none of them 

has been claimed to be definitive. Most of the studies relate MS to sensory conflict [3]–[5]; 

others associate it with postural instability [6]. The majority of the experimental research 

about sickness originates from sea studies highlighting vertical accelerations as the most 

provocative, which is also adopted by ISO-2631 [7] the international about evaluating 

human body vibrations. The standard considers the assessment of MS incidence levels as 

a function of the frequency-weighted vertical accelerations only. However, as far as the 

vehicle dynamics, longitudinal and lateral accelerations have proven to be the most 

provocative for MS [8]–[10], particularly in the range between 0.03 and 0.20 Hz [11], [12]. 

To that end, motion planning has been considered one of the main countermeasures for 

mitigating MS in AVs by minimising the low-frequency horizontal accelerations.  

The motion planner layer in AVs determines the optimal trajectory and behaviour based 

on surroundings, being able to ensure a more comfortable ride experience. Previous 

research has proposed a method to produce smooth trajectories [13] or continuous 

curvature paths [14]. The former relies on the use of clothoid curves, which increase the 

computational effort required, whilst the latter is restricted to wheelchairs. Other works 

proposed to mitigate MS through motion planning by minimising jerk [15]. However, no 

MS metric was used neither as an objective for optimising the trajectory, nor for assessing 

the optimal trajectories. More recently, Htike et al. [16], [17] proposed a motion planning 

strategy that minimises the Illness Rating [9], [10] for longitudinal and lateral accelerations 

without compromising the journey time. As a drawback, these works relied on an 

oversimplified vehicle model, and the algorithm was developed in an offline optimisation 

software (GPOPs-II [18]) not providing real-time configurations. Later, a similar algorithm 

was implemented in real-time and tested with human-in-the-loop experiments, 

mitigating MS by even 40 % [19]. A more recent study focused on enhancing the accuracy 

of MS assessment within the control modules by proposing a frequency-shaping-based 

motion planning algorithm [20]. Nevertheless, the weighting was conducted using the 

corresponding filter for vertical accelerations proposed by ISO-2631:1991 [7], which has 
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proven incompatible with the longitudinal and lateral accelerations [21], [22]. A further 

step in this direction is presented in [23], where a receding-horizon formulation is 

proposed for optimisation-based motion planning. In the same fashion as [20], a band-

pass filter was designed to filter the accelerations. The effectiveness of the motion 

planning algorithm proved to surpass human driving, saving up to 70 % frequency-

weighted acceleration energy. Despite the efforts to enhance the performance of the 

algorithms either by improving the MS assessment within the control modules or the 

performance of the motion planner, limited studies have considered body dynamics. 

Head motion significantly differs from vehicle motion and is proven to be a key 

determinant for the accumulation of MS. According to simulation studies [24], [25], 

neglecting a human body model leads to an overall underestimation of MS of ∼65%. A 

more accurate model would be needed for a better prediction; as a drawback, it might 

increase the computational burden if all the degrees of motion are considered [26]. In this 

direction, [27] proposed a trajectory planning algorithm incorporating passive head tilting 

and the subjective vertical conflict (𝑆𝑉𝐶) model. However, the vehicle model is a simple 

kinematic model and the human body model is oversimplified. 

To this end, the contributions of this work are the following:  

• Consideration of proper seat-to-head transfer functions within the optimal control 

problem [24];  

• Use of appropriate frequency weightings [7], [21], [22] together with the seat-to-

head weighting filters to account only for head longitudinal, lateral and rotational 

accelerations;  

• Development of a real-time motion planning algorithms with non-linear model 

predictive control (NMPC) to mitigate MS and enhance postural stability. 

The rest of the chapter is organised as follows. Section 3.2 introduces the simulation 

models in detail, including the formulation of the seat-to-head transfer function and the 

frequency weighting. Section 3.3 describes the motion planning algorithms, the optimal 

control problem and the testing scenarios chosen for assessing the algorithms. Section 3.4 

shows the results with a detailed discussion of the achievement. Finally, Section 3.5 

concludes the chapter by summarising this study’s findings and limitations and 

suggesting potential future research directions.    
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3.2 SIMULATION MODELS 

3.2.1 VEHICLE MODEL 

The NMPC prediction model is based on a nonlinear 3-degree-of-freedom (3DoF) front-

wheel steering double-track formulation, neglecting wheel dynamics. The sign 

conventions of the main variables are in Figure 3.2.1, and its main parameters are reported 

in Table 3.2.1.  

Table 3.2.1 – Main vehicle parameters. 

Symbol Name and unit Value 

𝑚 Mass  [kg] 6800 
𝐽𝑧 Yaw mass moment of inertia [kgm2] 12994.917 
𝐿𝑇𝑂𝑇  Wheelbase [m] 3.57 
𝐿𝐹  Front semi-wheelbase [m] 1.05 
𝑑𝐹  Front track width [m] 1.625 
𝑑𝑅  Rear track width [m] 1.625 
𝐻𝐶𝐺  Height of the vehicle centre of mass [m] 0.55 
𝐶𝑦,𝐹  Front axle cornering stiffness [kN/rad) 252.1 

𝐶𝑦,𝑅 Rear axle cornering stiffness [kN/rad] 236.0 

𝐹𝑥,𝑡𝑜𝑡
𝑇𝑅,𝑚𝑎𝑥  Maximum rear axle longitudinal traction force [kN] 10 

𝐹𝑥,𝑡𝑜𝑡
𝐵𝑅,𝑚𝑎𝑥  Maximum rear axle longitudinal braking force [kN) 30 

The model is described by the following differential equations: 

• Longitudinal force balance  

𝑚𝑉̇𝑥 = {[𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] cos(𝛿) − [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] sin(𝛿) + [𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅]

−
1

2
𝜌𝑉2𝑆𝐶𝑑𝑟𝑎𝑔} + 𝑚𝑉𝑦𝜓̇ 

(3.2.1) 

where 𝑚  is the vehicle mass; 𝑉𝑥  and 𝑉𝑦  are the longitudinal and lateral components of 

vehicle velocity; 𝜓̇ is the yaw rate; 𝐹𝑥,𝑖𝑗 and 𝐹𝑦,𝑖𝑗 are the longitudinal and lateral tire forces; 

 

Figure 3.2.1: Top view of the vehicle, with indication of the main variables and their sign conventions. 
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𝜌 is air density in [kg/m3]; 𝑆 is the vehicle frontal area in [m2]; and 𝐶𝑑𝑟𝑎𝑔 is the aerodynamic 

drag coefficient. 

• Lateral force balance  

𝑚𝑉̇𝑦 = {[𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝛿) + [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝛿) + [𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]} − 𝑚𝑉𝑥𝜓̇ (3.2.2) 

• Yaw moment balance  

𝐽𝑧𝜓̈ = 𝐿𝐹{[𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝛿) + [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝛿)} − 𝐿𝑅[𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

+ 
𝑑𝐹
2
{[𝐹𝑦,𝐹𝐿 − 𝐹𝑦,𝐹𝑅] sin(𝛿) + [𝐹𝑥,𝐹𝑅 − 𝐹𝑥,𝐹𝐿]cos (𝛿)}

+
𝑑𝑅
2
[𝐹𝑥,𝑅𝑅 + 𝐹𝑥,𝑅𝐿] 

(3.2.3) 

where 𝐽𝑧 is the vehicle yaw mass moment of inertia; 𝐿𝐹 and 𝐿𝑅 are the front and rear semi-

wheelbases; and 𝑑𝐹 and 𝑑𝑅 are the front and rear track widths. The lateral tyre forces are 

modelled with the linear model through equations (3.2.1)–(3.2.3): 

F𝑦,𝑖𝑗 = −𝐶𝑦,𝑖𝛼𝑖𝑗 (3.2.4) 

where 𝐶𝑖𝑗  is the tyre cornering stiffness on each corner; and 𝛼𝑖𝑗  is the tyre slip angle on 

each corner computed as follows: 

𝛼𝑖𝑗 = tan−1(
𝑉𝑦 + 𝑘2𝜓̇𝐿𝑖

𝑉𝑥 + 𝑘1𝜓̇
𝑑𝑖
2

) − 𝑘3𝛿

 

 (3.2.5) 

where 𝑘1, 𝑘2 and 𝑘3 are defined based on the subscripts 𝑖 and 𝑗: 

𝑗 = 𝐿, 𝑅 {
𝑘1 = −1 if 𝑗 = 𝐿
𝑘1 = 1 if 𝑗 = 𝑅

𝑖 = 𝐹, 𝑅 {
𝑘2 = 1 if 𝑖 = 𝐹
𝑘2 = −1 if 𝑖 = 𝑅

 

𝑖 = 𝐹, 𝐿 {
𝑘3 = 1 𝑖𝑓 𝑖 = 𝐹
𝑘3 = 0 𝑖𝑓 𝑖 = 𝑅

 

 (3.2.6) 

3.2.2 ROAD MODEL 

A common approach in motion planning involves adding three more equations on top of 

(3.2.1)–(3.2.3), to account for the road’s curvilinear coordinates: 

𝑆̇ =
𝑉̇𝑥 cos(𝛼𝑠) − 𝑉𝑦 sin(𝛼𝑠)

1 − 𝑆𝑛𝜅 
 (3.2.7) 

𝑆̇𝑛 = 𝑉𝑥 sin(𝛼𝑠) + 𝑉𝑦 cos(𝛼𝑠) (3.2.8) 

𝛼̇𝑠 = 𝜓̇ − 𝑆̇𝜅(𝑆) (3.2.9) 
𝛼𝑠 = 𝜓 − 𝜃𝑅  (3.2.10) 

where 𝑆 is the travelled distance by the vehicle; 𝑆𝑛 is the lateral deviation of the vehicle 

from the centre lane of the road; 𝛼𝑠 is the deviation of the vehicle heading angle, i.e. 𝜓, 

from the road angle 𝜃𝑅, see equation  (3.2.10); 𝜅(𝑆) is the road curvature as a function of 

the travelled distance 𝑆.  
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3.2.3 MOTION COMFORT ASSESSMENT 

Given that the primary goal of motion planning is to mitigate MS, it is essential to 

incorporate MS metrics directly into the internal model. This integration can be achieved 

by introducing additional differential equations that represent the dynamic factors 

contributing to MS. In this direction, the ISO-2631-1 [7], provides objective guidelines for 

measuring and evaluating human exposure to whole-body mechanical vibration and 

repeated shock. According to the guidelines, two comfort metrics are derived: i) Ride 

Comfort (RC) emphasising the higher frequencies (mainly above 1 Hz); ii) 𝑀𝑆 emphasising 

the lower frequencies (mainly below 1 Hz), as suggested in [11], [12]. According to the 

standard, comfort is assessed by combining the root-mean-square (RMS) values of 

weighted accelerations (𝑀𝑆𝑖,𝑊), along all translational and rotational directions, measured 

at the vehicle’s centre of gravity, whilst the total 𝑀𝑆 is computed as the sum of the squared 

𝑀𝑆𝑖,𝑊:  

𝑀𝑆𝑖,𝑊 = [
1

𝑡
∫ [𝑎𝑖,𝑊]

2
𝑑𝑡

𝑡

0

]

1/2

 

  (3.2.11) 

𝑀𝑆𝑡𝑜𝑡 =∑[𝑀𝑆𝑖,𝑊]
2

𝑖

 (3.2.12) 

3.2.4 WEIGHTING FILTER DESIGN 

In this work, two sets of weighting filters are designed: i) the seat-to-head weighing filters 

to transfer the vehicle-based accelerations to the head [24], and ii) the frequency-

weighting filters to weight the head accelerations based on MS susceptibility [7], [21], [22]. 

The filtered accelerations in the most complex formulation, i.e. including both set of filters, 

are fed at first into the seat-to-head weighting filters, and then the resulting filtered 

accelerations are fed into the frequency-weighting filters  

3.2.4.1 Seat-to-head weighting filters 

These filters are available as experimental data in the literature [24]; however, they can 

also be implemented within the internal model by expressing them as transfer functions. 

To achieve this, equations describing the filter dynamics are derived by fitting the data 

using the iirlpnorm Matlab Function [28]. The iirlpnorm function generates a filter with a 

numerator of order 𝑛 and denominator of order 𝑑, providing the best approximation to 

the desired frequency response (defined by input frequency and amplitude), in the least 

pth-sense.  

The algorithm to get the transfer functions consists of three steps: 

• Map the weighting curves in continuous-time frequency onto the unit circle via the 

bilinear transformation: 

𝛺𝑖 =
2

𝑇
𝑡𝑎𝑛−1 (

𝑇𝜔𝑖
2
) =

2

𝑇
𝑡𝑎𝑛−1(𝑇𝜋𝑓𝑖) ,  𝑤𝑖𝑡ℎ 𝑇 = 0.5
 

  (3.2.13) 
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• Design the optimal least-pth digital filter 𝑊𝐷(𝑧) to be nimised: 

 ∑ ||𝑊𝐷(𝑧𝑖)| −𝑊𝑖|
𝑝𝑁

𝑖=1

 
, 𝑤𝑖𝑡ℎ 𝑝 = 2 (3.2.14) 

𝑧𝑖 = 𝑒𝑗Ω𝑖 (3.2.15) 

𝑊𝐷(𝑧𝑖) =
𝑏̅𝑛𝑧

−𝑛 +⋯ 𝑏̅1𝑧
−1 + 𝑏̅0

𝑧−𝑛 +⋯ 𝑎̅1𝑧−1 + 𝑎̅0
 (3.2.16) 

where, 𝑊𝑖  are the empirical frequency weightings, 𝑊𝐷(𝑧𝑖)  are the frequency-weighting 

obtained by the transfer function, and 𝑝 defines the order of the filter, which for the test 

case is set up to 2; 

• Obtain the filter in the s-domain via the bilinear transformation: 

𝑊(𝑠) = 𝑊𝐷(𝑧)|𝑧=(1+𝑇𝑠/2)/(1−𝑇𝑠/2)
 

  (3.2.17) 

For the test case, the considered transfer functions account for: i) head’s longitudinal and 

pitch acceleration due to seat longitudinal acceleration; ii) head’s lateral and yaw 

acceleration due to seat lateral acceleration; and iii) head’s yaw acceleration due to vehicle 

yaw acceleration. Leading to a total of five transfer functions (𝑊𝑠,ℎ), where the subscript 𝑠 

identifies the vehicle’s acceleration influencig the head’s acceleration identified with the 

subscript ℎ. The general formulation of the filters is the following: 

𝑊𝑠,ℎ(𝑠) =
𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠)

𝑎𝑠(𝑠)
=

𝐴𝑠 + 𝐵

𝑠2 + 𝐶𝑠 + 𝐷
 (3.2.18) 

where 𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠)  is the band-pass seat-to-head filtered acceleration; 𝑎𝑠(𝑠)  is the seat 

acceleration, in the specific implementation approximated to vehicle’s acceleration 𝑎𝑖 ; 

and 𝐴, 𝐵, 𝐶, 𝐷 are the generic coefficients of the band-pass filters 

The fitted transfer functions are defined through equations (3.2.19)–(3.2.23), and the fitted 

curves are shown in Figure 3.2.2: 

𝑊𝑥,𝑥(𝑠) =
6.0465𝑠 + 135.0036

𝑠2 + 12.4489𝑠 + 126.6507
 (3.2.19) 

𝑊𝑥,𝜃(𝑠) =
[1.4679𝑠 + 1.6974] ∙ 104

𝑠2 + 10.4703𝑠 + 553.0141
 (3.2.20) 

𝑊𝑦,𝑦(𝑠) =
−1.1201𝑠 + 112.2811

𝑠2 + 8.6734𝑠 + 90.3275
 (3.2.21) 

𝑊𝑦,𝜓(𝑠) =
[1.5365𝑠 + 2.2522] ∙ 103

𝑠2 + 5.7160𝑠 + 119.2104
 (3.2.22) 

𝑊𝜓,𝜓(𝑠) =
5.8346𝑠 − 381.9114

𝑠2 + 5.3268𝑠 + 348.8255
 (3.2.23) 
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3.2.4.2 Frequency weighting filters 

The frequency weighting filters are designed to cut-off the acceleration components 

which are not involved in causing MS. These are defined for translational acceleration 

along the z-axis and rotational accelerations [7], translational acceleration along the x-axis  

[21], and y-axis [22], see Figure 3.2.3: 

 

 

 

Figure 3.2.2: Fitted seat-to-head weighting filters. 
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As for the seat-to-head filters, the same procedure described in Section 3.2.4.1, using 

equations (3.2.13)–(3.2.17) is applied for the frequency-weighting filters. 

The general formulation of the filters is the following: 

𝑊𝑃𝑓𝑠(𝑠) =
𝑎𝐵𝑃𝐹
𝐹𝑆 (𝑠)

𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠)
=

𝐴𝑠 + 𝐵

𝑠2 + 𝐶𝑠 + 𝐷
 (3.2.24) 

where 𝑎𝐵𝑃𝐹
𝐹𝑆 (𝑠) is the band-pass frequency-weighted filtered acceleration. 

The fitted transfer functions are defined through equations (3.2.25)–(3.2.28), and the fitted 

curves are shown in Figure 3.2.4: 

𝑊𝑃𝑓𝑥(𝑠) =
0.6316𝑠 + 1.1 ∙ 10−3

𝑠2 + 0.5764𝑠 + 1.1542
 (3.2.25) 

𝑊𝑃𝑓𝑦(𝑠) =
0.6771𝑠 + 1.6313 ∙ 10−4

𝑠2 + 0.6𝑠 + 0.09
 (3.2.26) 

𝑊𝑃𝑓𝑧(𝑠) =
0.7531𝑠 + 1.18 ∙ 10−2

𝑠2 + 0.5277 + 1.0323
 (3.2.27) 

𝑊𝐴𝑓𝑟(𝑠) =
0.0861𝑠 + 1.3004

𝑠2 + 1.5375𝑠 + 1.3045
 (3.2.28) 

 

  

 

Figure 3.2.3: Frequency weighting filters for translational and rotational accelerations. 
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3.2.4.3 Filters implementation 

Both set of filters described in Sections 3.2.4.1–3.2.4.2 need to be rearranged as ordinary 

differential equation in order to be implemented within the internal model formulation. 

To this end, it should be noted that the seat-to-head filters are essentially band-pass filters 

and consequently, equations (3.2.19)–(3.2.23) can be factorised at the denominator to 

simplify their implementation as a series of an high-pass filter and a low-pass filter. 

However, the factorisation cannot be achieved without using complex numbers. To 

 

 
(a) 

 
(b) 

Figure 3.2.4: Fitted frequency weighting filters for (a) longitudinal, lateral and vertical accelerations; 
and (b) rotational accelerations. 
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sidestep the issue of factorisation, a dummy low-pass filter, i.e. with a small time constant, 

is added to each filter: 

 𝑊𝑠,ℎ(𝑠) =
𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠)

𝑎𝑖(𝑠)
=

1

10−5𝑠+1

𝐴𝑠+𝐵

𝑠2+𝐶𝑠+𝐷
 (3.2.29) 

The vehicle's acceleration 𝑎𝑖(𝑠) can be treated as input to the dummy low-pass filter, with 

the resulting filtered acceleration then used as input to the band-pass filter.  

These mathematical operations can be expressed as follows: 

𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹(𝑠)

𝑎𝑖(𝑠)
=

1

10−5𝑠 + 1
 (3.2.30) 

𝑎̇𝑠,ℎ,𝐷−𝐿𝑃𝐹(𝑠) =
𝑎𝑖(𝑠) − 𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹(𝑠)

10−5
 (3.2.31) 

where 𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹(s)   is the filtered signal through the dummy low-pass filter, and 

𝑎̇𝑠,ℎ,𝐷−𝐿𝑃𝐹(s) is the time derivative of 𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹(s) , which is used in the band-pass filter’s 

equations: 

𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠)

𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹(𝑠)
=

𝐴𝑠 + 𝐵

𝑠2 + 𝐶𝑠 + 𝐷
 (3.2.32) 

𝑎̈𝑠,ℎ,𝐵𝑃𝐹(𝑠) = 𝐴𝑎̇𝑠,ℎ,𝐷−𝐿𝑃𝐹(𝑠) + 𝐵𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹(𝑠) − 𝐶𝑎̇𝑠,ℎ,𝐵𝑃𝐹(𝑠) − 𝐷𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠) (3.2.33) 

𝑎̇𝑠,ℎ,𝐵𝑃𝐹(𝑠) =
𝑑

𝑑𝑡
(𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠)) (3.2.34) 

where 𝑎̇𝑠,ℎ,𝐵𝑃𝐹(𝑠) and 𝑎̈𝑠,ℎ,𝐵𝑃𝐹(𝑠) are respectively the first time and second time derivative 

of the band-pass filtered acceleration 𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠). 

As for the frequency-weighting filters, they do not require any further manipulation, thus 

equation (3.2.18) can be rearranged as: 

𝑎̈𝐹𝑆(𝑠) = 𝐴𝑎̇𝑠,ℎ,𝐵𝑃𝐹(𝑠) + 𝐵𝑎𝑠,ℎ,𝐵𝑃𝐹(𝑠) − 𝐶𝑎̇
𝐹𝑆(𝑠) − 𝐷𝑎𝐹𝑆(𝑠) (3.2.35) 

𝑎̇𝐹𝑆(𝑠) =
𝑑

𝑑𝑡
(𝑎𝐹𝑆(𝑠)) (3.2.36) 

In summary, the seat-to-head weighting filters can be incorporated into the internal 

model by adding three differential equations per filter, while the frequency-weighting 

filters require the addition of two differential equations each. 
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3.3 MOTION PLANNING ALGORITHM 

3.3.1 PROBLEM FORMULATION 

The motion planning algorithms are formulated as optimal control problems (OCPs) 

applied to driving on a path known a priori, neglecting interactions with other road users. 

As the aim of the work is to investigate the compromise of motion planner between 

journey time and MS mitigation, the whole state space is converted from time domain to 

space domain using the following relation: 

𝑑𝑋

𝑑𝑆
= 𝑋′ =

𝑋

𝑑𝑡

𝑑𝑡

𝑑𝑆
= 𝑋̇𝑡′  (3.3.1) 

where 𝑋′  represents the differential variable X in the space domain, while 𝑡′  is an 

additional differential state useful to incorporate the journey time as a state variable in the 

OCP. The state array of each formulation depends on the considered filters within the 

internal model. In particular the set of states can be written as: 

𝑋1 = [𝑉𝑥, 𝑉𝑦, 𝜓̇, 𝑆, 𝑆𝑛, 𝛼𝑠, 𝑡] (3.3.2) 

𝑋2 = [𝑎𝑠,ℎ,𝐷−𝐿𝑃𝐹, 𝑎𝑠,ℎ,𝐵𝑃𝐹 , 𝑎𝑠,ℎ,𝐵𝑃𝐹
′ ] (3.3.3) 

𝑋3 = [𝑎𝐵𝑃𝐹
𝐹𝑆 , 𝑎𝐵𝑃𝐹

′𝐹𝑆 ] (3.3.4) 

𝑋4 = [𝑀𝑆𝑖,𝑊]  (3.3.5) 

𝑋5[𝛿, 𝐹𝑥,𝑡𝑜𝑡] (3.3.6) 

Where, 𝑋1 includes the vehicle and road states as well as the journey time, derived from 

equations (3.2.1)–(3.2.3), (3.2.7)–(3.2.9) and (3.3.1); 𝑋2 includes the seat-to-head weighting 

filters’ states, derived from equations (3.2.32)–(3.2.34); 𝑋3  includes the frequency-

weighting filter’s states, derived from equations (3.2.35)–(3.2.36); 𝑋4  includes the MS 

metrics along each considered direction, see equations (3.2.11); and 𝑋5  includes the 

integral of the control actions. All states vector in equations (3.3.2)–(3.3.6) are defined in 

space domain according to (3.3.1). All states are obtained from the differential states of the 

systems, and are defined in the space domain according to (3.3.1). 

Finally, the control actions vector 𝑈 is defined as: 

𝑈 = [𝛿′, 𝐹𝑥,𝑡𝑜𝑡
′ ] (3.3.7) 

Where 𝛿′ and 𝐹𝑥,𝑡𝑜𝑡
′  are the steering rate of the front wheels and the longitudinal force rate 

on the rear axle of the car, defined in space domain. 

In particular, four motion planning algorithms are developed and are: i) the motion 

planner based vehicle accelerations to compute the MS metric, is described by 𝑋1, 𝑋4 and 

𝑋5 without any consideretion of the filters; ii) the motion planner that considers the seat-

to-head weighting filters described by 𝑋1, 𝑋2, 𝑋4  and 𝑋5 ; iii) the motion planner that 

considers the frequency weighting filters described by 𝑋1, 𝑋3, 𝑋4 and 𝑋5; and iv) the most 

advanced formulation of motion planner, accounting for both set of filters and described 

by 𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5. 
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3.3.2 OBJECTIVES 

The OCP is implemented through nonlinear model predictive control (NMPC) with the 

receding horizon approach [29] in ACADO [30]. The NMPC minimises a cost function 𝐽, 

subjected to equality and inequality constraints, and the discrete form of the nonlinear 

optimal control problem is defined as: 

min
𝑈
𝐽 (𝑍(0), 𝑈(∙)) ≔

1

2
∑ (‖𝑍𝑘 − 𝑍𝑟𝑒𝑓

𝑘 ‖
𝑄
+ ‖𝑈𝑘‖𝑅)

2

 

𝑁−1

𝑘=0

+ ‖𝑍𝑁 − 𝑍𝑟𝑒𝑓
𝑁 ‖

𝑄𝑁

2
 

s. t. 

𝑋𝑘+1 = 𝑓𝑑  (𝑋
𝑘, 𝑈𝑘) 

𝑍𝑘 = ℎ𝑑  (𝑋
𝑘, 𝑈𝑘) 

𝑍 ≤ 𝑍𝑘 ≤ 𝑍 

𝑍 ≤ 𝑍𝑁 ≤ 𝑍 

𝑈 ≤ 𝑈𝑘 ≤ 𝑈 

𝑈(∙) ∶ [0, 𝑁 − 1] 

(3.3.8) 

where the index 𝑘  refers to the step number along the prediction horizon, including 𝑁 

steps in total; 𝑍  is the output vector; 𝑍𝑟𝑒𝑓  is the reference value of 𝑍 ; the symbols  ̲  ’ 

and   ̅ ’ indicates the lower and upper limits respectively of the array; 𝑓𝑑 and ℎ𝑑 are the 

discretised nonlinear functions; and 𝑅 , 𝑄 , and 𝑄𝑁  are positive semi-definite weight 

matrices. The length of the prediction horizon 𝐻𝑝 is given by: 

𝐻𝑝 = 𝑁 ∙ 𝐷𝑠 (3.3.9) 

where 𝐷𝑠 is the size of each step, expressed in meters. In the specific implementation 𝑁 =

[25, 25 ,25] and 𝐷𝑠 = [0.1, 0.5, 1.0], leading to a total length of 𝐻𝑝 of 40 m. The choice of the 

prediction horizon, defined in terms of step size, is calibrated to balance an appropriate 

level of accuracy in representing vehicle dynamics within the internal model, while 

simultaneously extending the horizon sufficiently to capture the accumulation of MS to 

an appreciable degree, thereby enabling effective mitigation; this setup is also chosen with 

consideration for the real-time implementation of the algorithm. 

Given the objective of the motion planner, the terms in 𝑍 are the increment of time Δ𝑡 and 

the increment of Δ𝑀𝑆 along the prediction horizon: 

Δ𝑡 = 𝑡𝑘 − 𝑡𝑖𝑛𝑖𝑡 (3.3.10) 

Δ𝑀𝑆 = 𝑀𝑆𝑖,𝑤
𝑘 −𝑀𝑆𝑖𝑛𝑖𝑡 (3.3.11) 

where 𝑡𝑘   and 𝑀𝑆𝑖,𝑤
𝑘   are the predicted time and MS along the prediction horizon, whilst  

𝑡𝑖𝑛𝑖𝑡  and 𝑀𝑆𝑖𝑛𝑖𝑡  are the values at the beginning of the prediction horizon, provided as 

feedback data from the previous simulation step. Given the terms in 𝑍 , the respective 

reference vector 𝑍𝑟𝑒𝑓 = [0,0]. 

The hard constraints in (3.3.8) are defined for: the longitudinal and lateral vehicle speed 

𝑉𝑥  and 𝑉𝑦;  the vehicle yaw rate 𝜓̇  and yaw acceleration 𝜓̈;  the lateral shift from the 

centerline of the road 𝑆𝑛; the longitudinal and lateral acceleration of the vehicle 𝑎𝑥 and 𝑎𝑦; 
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the steering angle and steering rate 𝛿  and 𝛿̇ ; and the longitudinal axle force and 

longitudinal axle force rate 𝐹𝑥,𝑡𝑜𝑡 and 𝐹̇𝑥,𝑡𝑜𝑡.  

In particular, the longitudinal and lateral accelerations are bounded with the friction circle 

equation: 

√𝑘𝑎𝑎𝑥2 + [1 − 𝑘𝑎]𝑎𝑦2 ≤ 𝜇𝑔𝑘𝑑 (3.3.12) 

Here, 𝑘𝑎 and 𝑘𝑑 are additional tuning parameters designed to keep total acceleration 

within comfort limits [31]. These parameters also allow for shifting the emphasis within 

the friction circle between 𝑎𝑥  and 𝑎𝑦 , thus adjusting the relative importance of these 

components depending on whether the vehicle is in traction or braking conditions, see 

equations (3.3.13)–(3.3.16). 

𝑘𝑎
𝑇𝑅 =

𝑎𝑥̅̅ ̅
2

𝑎𝑥̅̅ ̅
2 + 𝑎𝑦̅̅ ̅

2 (3.3.13) 

𝑘𝑎
𝐵𝑅 =

𝑎𝑥̲̲ ̲
2

𝑎𝑥̲̲ ̲
2 + 𝑎𝑦̲̲ ̲

2
 (3.3.14) 

𝑘𝑑
𝑇𝑅 =

[𝑎𝑥̅̅ ̅
2 + 𝑎𝑦̅̅ ̅

2]
1/2

𝑔
 (3.3.15) 

𝑘𝑑
𝐵𝑅 =

[𝑎𝑥̲̲ ̲
2 + 𝑎𝑦̲̲ ̲

2]
1/2

𝑔
 (3.3.16) 

where the superscript  𝑇𝑅’ and  𝐵𝑅’ indicates the traction and braking mode, which are 

selected based on the actual value of the longitudinal acceleration: 

 𝑘𝑎 = {
𝑘𝑎
𝑇𝑅 𝑖𝑓 𝑎𝑥 ≥ 0

𝑘𝑎
𝐵𝑅 𝑖𝑓 𝑎𝑥 < 0

 (3.3.17) 

𝑘𝑑 = {
𝑘𝑑
𝑇𝑅 𝑖𝑓 𝑎𝑥 ≥ 0

𝑘𝑑
𝐵𝑅 𝑖𝑓 𝑎𝑥 < 0

 (3.3.18) 

Table 3.3.1 summarises the values for the lower and upper limits of each constraint: 

Table 3.3.1 – Lower and upper limits of each constraint 

Limits Units 

5 ≤ 𝑉𝑥 ≤ 25 m/s 
−1.5 ≤ 𝑉𝑦 ≤ 1.5 m/s 

−0.7 ≤ 𝜓̇ ≤ 0.7 rad/s 

−2 ≤ 𝜓̈ ≤ 2 rad/ s2 
−1.5 ≤ 𝑆𝑛 ≤ 1.5 m 
−2.94 ≤ 𝑎𝑥 ≤ 1.47 m/s2 
−3.92 ≤ 𝑎𝑦 ≤ 3.92 m/s2 

−0.45 ≤ 𝛿 ≤ 0.45 rad 

−0.5 ≤ 𝛿̇ ≤ 0.5 rad/s 
−30 ≤ 𝐹𝑥,𝑡𝑜𝑡 ≤ 10 kN 

−10 ≤ 𝐹̇𝑥,𝑡𝑜𝑡 ≤ 10 kN/s 
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3.3.3 COST FUNCTION NORMALISATION 

Given the various nature of the terms in the cost function, i.e. increment of time, 

increment of MS metric, steering rate and force rate, a common approach in these cases 

is to normalise each term with respect to a parameter so that the magnitude of each term 

is ~1 . Consequently, easing the choice of weighting matrices 𝑄, 𝑅  and 𝑄𝑁  in equation 

(3.3.8), and facilitating the interpretation of the controllers’ objective function. To this end, 

the choice of the normalisation factor is crucial to ensure a fair influence of each term.  

A brute force algorithm is developed with Matlab fmincon [33], seeking for the best 

combination of weights to achieve: i) the minimum journey time; and ii) the minimum 𝑀𝑆 

alongh the path. The initial guesses for the optimisation algorithm are derived from a set 

of manually tuned weights, carefully selected to ensure the successful completion of the 

simulation. The two limit cases, i) and ii), are useful to define the range of the weights in 𝑄 

and 𝑅: 

 𝐽𝐾𝑃𝐼
∗ = min

𝑄𝑜𝑝𝑡,𝑅𝑜𝑝𝑡
𝐽𝐾𝑃𝐼|𝑆𝑖

𝑆𝑓
 

s. t. 
 𝑄̲ ≤ 𝑄𝑜𝑝𝑡 ≤ 𝑄̅ 

𝑅̲ ≤ 𝑅𝑜𝑝𝑡 ≤ 𝑅̅ 

(3.3.19) 

where  𝑄̲, 𝑄̅, 𝑅̲ and 𝑅̅ are the vector of the lower and upper bounds of the tuning weights 

in (3.3.8); 𝑄𝑜𝑝𝑡  and 𝑅𝑜𝑝𝑡  are the optimal values of the weight vectors; 𝑆𝑖  and 𝑆𝑓  are the 

initial and final spaces of the relevant portion of the test; and 𝐽𝐾𝑃𝐼
∗  is the optimal value of 

𝐽𝐾𝑃𝐼 , which can be either the journey time or the total cumulated 𝑀𝑆  alongh the path 

shown in Figure 3.4.1.   

As an outcome of the optimisation, in both limit cases, the weight related to the steering 

rate resulted higher in magnitude with respect to the others, whilst the weight related to 

the force rate is zero. The higher weight on the steering rate is justified by the tool used for 

the NMPC implementation [30]. Specifically, the algorithm implemented in ACADO is 

exported as a Real-Time Iteration Scheme (RTI), which does not fully converge to the 

solution of the nonlinear optimisation at each time step. Instead, it performs only one 

iteration of a sequential quadratic programming algorithm, based on the estimation of the 

previous solution. This approach prioritises quick control feedback to the system, and a 

higher sampling frequency to improve the closed-loop system's stability. Consequently, it 

is not possible to set the KKT tolerance as a convergence criterion for the algorithm [32]. 

Therefore, high weight values are necessary to ensure that the optimisation algorithm 

adheres to a sufficiently small tolerance. 

To ensure a balanced influence of the terms in the cost function, the weights are 

configured so that the controller's focus is equally distributed between the steering rate 

and either Δ𝑡 or Δ𝑀𝑆, aiming for either minimal journey time or reduced MS, respectively. 
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The normalisation factors are determined through an optimisation process as defined in 

equation (3.3.20): 

𝐽𝐾𝑃𝐼
∗ = min

𝑁𝑜𝑝𝑡
𝐽𝐾𝑃𝐼|𝑆𝑖

𝑆𝑓
 

s. t. 
 𝑁̲ ≤ 𝑁𝑜𝑝𝑡 ≤ 𝑁̅ 

(3.3.20) 

where  𝑁̲ and 𝑁̅ are the vector of the lower and upper bounds of the normalisation factors; 

and  𝑁𝑜𝑝𝑡 is the optimal values of the normalisation factors vector. 

Once 𝑁Δt, 𝑁Δt and 𝑁δ̇  have been defined, i.e. the normalisation factor for Δ𝑡, Δ𝑀𝑆 and 𝛿̇, it 

is possible to rewrite the NMPC cost function in equation (3.3.8) as: 

min
𝑈
𝐽 (𝑍(0), 𝑈(∙)) ≔

1

2
∑ (‖

𝑍𝑘 − 𝑍𝑟𝑒𝑓
𝑘

𝑁𝑍
‖
𝑄

+ ‖
𝑈𝑘

𝑁𝑈
‖
𝑅

)

2

 

𝑁−1

𝑘=0

+ ‖
𝑍𝑁 − 𝑍𝑟𝑒𝑓

𝑁

𝑁𝑍
‖
𝑄𝑁

2

 

s. t. 

𝑋𝑘+1 = 𝑓𝑑  (𝑋
𝑘, 𝑈𝑘) 

𝑍𝑘 = ℎ𝑑  (𝑋
𝑘, 𝑈𝑘) 

𝑍 ≤ 𝑍𝑘 ≤ 𝑍 

𝑍 ≤ 𝑍𝑁 ≤ 𝑍 

𝑈 ≤ 𝑈𝑘 ≤ 𝑈 

𝑈(∙) ∶ [0, 𝑁 − 1] 

(3.3.21) 

where 𝑁𝑍 and 𝑁𝑈 are the normalisation vectors for the output vector and control actions 

vector, respectively. 
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3.4 RESULTS 

The test path was designed to replicate typical driving conditions that challenge both 

vehicle stability and passenger comfort. The path begins with an initial straight segment 

measuring 31 meters in length, providing a controlled start to the testing scenario. 

Following this straight section, the path transitions into a left turn with a radius of 

curvature of approximately 7.5 meters, covered over a distance of 7.75 meters. 

Immediately after, the path reverses direction into a right turn, again with a radius of 

curvature of roughly 7.5 meters, spanning another 7.75 meters to bring the vehicle back to 

a straight trajectory. This sequence is followed by a second straight segment of 31 meters, 

leading into another set of turns that mirrors the first turning sequence: left-right and left-

right curves, each with similar curvatures and distances. This repeated sequence of turns 

adds complexity, requiring the vehicle's control system to continuously adapt to changes 

in path curvature. The test concludes with a final straight segment of 31 meters., see Figure 

3.4.1. 

This structured pattern of straight lines and alternating curves was selected to capture a 

comprehensive range of manoeuvres, allowing for effective assessment of the control 

system's response in both steady-state and transitional dynamics. The frequent changes 

in curvature create conditions conducive to evaluating both vehicle stability and 

passenger comfort, as well as the control system's ability to mitigate MS. 

3.4.1 MOTION PLANNER BASED ON VEHICLE ACCELERATIONS – COST FUNCTION 

NOT NORMALISED 

The motion planner that computes the MS metric based on vehicle acceleration, 

described in Section 3.3.1, has been tested on the path shown in Figure 3.4.1. The 

minimum time and minimum MS scenarios for this algorithm are computed based on 

equation (3.3.19). The space profiles of the main variables are shown in Figure 3.4.2: 

  

 

Figure 3.4.1: Path used for the test case. 
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Following the theoretical findings outlined in Chapter 2, the minimum MS scenario yields 

to an almost constant speed profile, shown in Figure 3.4.1 (a), reflecting the reduction in 

the accelerations, see Figure 3.4.1 (b)–(c). Nevertheless, the longitudinal acceleration 

profiles are affected by high-frequency oscillations that may be attributed to the not 

normalised cost function since the algorith might prioritise certain objective excessively 

at the expenses of smoothness. Thus, this imbalance can result in chattering behaviour, 

where the planner produces overly aggressive control actions to achieve its goal, leading 

to high-frequency noise in the longitudinal acceleration profiles to avoid exceeding the 

constraint on Sn . The speed profile for the minimum time case decreases only in the 

cornering sections. Figure 3.4.1 (d) depicts the steering angle 𝛿, highlighting a smoother 

behaviour for the minium MS case with respect to the minimum time case, reflecting a 

smaller lateral acceleration in Figure 3.4.1 (c). The total longitudinal force on the rear axle 

𝐹𝑥,𝑡𝑜𝑡 in Figure 3.4.1 (e) highlights a more aggressive behaviour for the minimum time case, 

with frequent slope variations, leading to a similar behaviour in the longitudinal 

acceleration depicted in Figure 3.4.1 (b). Finally, as expected, the minimum time case 

leads to an overall higher 𝑀𝑆 of 12.22 m/s1.5 against the 3.22 m/s1.5 for the minimum MS 

case, whilst the journey times are ~19.52 s and ~36.45 s respectively. For the specific test 

case, a reduction of ~73.65 % in the MS metrics, corresponds to an increase of ~86.73 % 

in journey time.  

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3.4.2: Space profiles of the main variables of the motion planner based on vehicle accelerations 
to compute the MS metric with cost function not normalised for the minimum time  and minimum MS 

scenarios: (a) speed profile; (b) longitudinal acceleration; (c) lateral acceleration; (d) steering angle 
profile; (e) longitudinal force on the rear axle; and (f) MS accumulation. 
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3.4.2 MOTION PLANNER BASED ON VEHICLE ACCELERATIONS – NORMALISED 

COST FUNCTION 

As detailed in Section 3.3.3, the terms in the cost function need normalisation factors to 

ensure a fair influence of the terms in equation (3.3.8).  

 

(a) 

 
(b) 

 
(c) 

Figure 3.4.3: MS cumulation along the path in the case of: (a) minimum time; (b) trade-off; and (c) 
minimum MS. 
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For this purpose, using the cost function defined in equation (3.3.21). Figure 3.4.3 

compares the MS cumulation along the path in three scenarios: i) minimum time; ii) the 

minimum MS; and iii) trade-off, with 70  % focus on minimising Δ𝑡  and 30  % on 

minimising Δ𝑀𝑆. From Figure 3.4.3 (a)–(b) it is possible to observe that the minimum time 

scenario reaches comparable levels of MS cumulation with respect to the trade-off 

scenario at 𝑥 = 60  m, whilst from Figure 3.4.3 (a)–(c), it is possible to observe a 

comparable level of cumulated MS already in the first portion of the manoeuvre, i.e. before 

𝑥 = 40  m. The second portion of the manoeuvre, 𝑥 = 100  m up to 𝑥 = 140 , is more 

provocative for MS as it is possible to observe a sudden increment, i.e. color shift from 

blue to red, in the minimum time and trade-off scenarios, whilst the transition is quite 

smooth for the minimum MS case. As for the journey time and the 𝑀𝑆 cumulation are of 

the same magnitude of the one presented in 3.4.1, while the trade-off scenario completes 

the path in ~25 s, with a 𝑀𝑆 of ~6.14 m/s1.5.  

The advantage of using a normalised cost function relies upon the capability to gradually 

shift the weight from Δ𝑡  to Δ𝑀𝑆 , generating all the intermediate trade-off scenarios, 

without compromising the steering rate required to face the cornering portions of the path. 

The trade-off scenarios highlight the relationship between the journey time and the 

accumulation of MS along the path: 

The Pareto front in Figure 3.4.4 illustrates the trade-off between minimising MS 

cumulation and journey time. Points along the front, highlight that as the journey time 

increases, there is a corresponding decrease of MS cumulation, reflecting the balance 

between passenger comfort and travel efficiency. The points closer to the left of the plot 

represent scenarios with quicker journeys, whilst the points toward the right represent 

scenario favouring passenger's comfort with lower cumulated MS.  

For a further understanding of the relationship between journey time and MS cumulation, 

Table 3.4.1 shows the reduction of MS in % due to the increase of time in %, with respect 

to the minimum time scenario: 

 

Figure 3.4.4: Pareto front for journey time and MS cumulation 
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Table 3.4.1 – Time increment vs MS reduction 

𝑡Δ 
[%] 

𝑀𝑆Δ 
[%] 

21.57 -38.10 
27.96 -44.72 
39.91 -52.51 
41.81 -53.45 
45.80 -55.88 
50.95 -57.82 
77.54 -64.43 
98.61 -72.77 

In Table 3.4.1 𝑡Δ and 𝑀𝑆Δ are computed as follows: 

𝑡Δ =
𝑡𝑒𝑛𝑑,𝑖−𝑡𝑒𝑛𝑑,𝑚𝑖𝑛𝑡𝑖𝑚𝑒

𝑡𝑒𝑛𝑑,𝑚𝑖𝑛𝑡𝑖𝑚𝑒
∙ 100    (3.4.1) 

𝑀𝑆Δ =
𝑀𝑆𝑒𝑛𝑑,𝑖 −𝑀𝑆𝑒𝑛𝑑,𝑚𝑖𝑛𝑡𝑖𝑚𝑒

𝑀𝑆𝑒𝑛𝑑,𝑚𝑖𝑛𝑡𝑖𝑚𝑒
∙ 100 (3.4.2) 

where 𝑡𝑒𝑛𝑑,𝑖  and 𝑀𝑆𝑒𝑛𝑑,𝑖   are the time and 𝑀𝑆  of each point on the Pareto front, whilst 

𝑡𝑒𝑛𝑑,𝑚𝑖𝑛𝑡𝑖𝑚𝑒 and 𝑀𝑆𝑒𝑛𝑑,𝑚𝑖𝑛𝑡𝑖𝑚𝑒 are the time and 𝑀𝑆 of the minimum time scenario.  

The results suggest that it may not be needed to fully sacrifice the journey time to 

effectively reduce the cumulative MS, as an increase in journey time of only 39.91  % 

achieves a reduction in MS of 52.51 %. 

These initial results highlight the promising potential of using motion planning to mitigate 

MS. Future work will focus on implementing more advanced motion planning strategies 

that incorporate frequency-weighting filters and seat-to-head transfer functions, as 

outlined in Sections 3.2.4.1–3.2.4.2, to further enhance passenger comfort. Additionally, 

exploring alternative actuation strategies, such as traction control, torque-vectoring, and 

active suspension control, alongside refined MS metrics, will broaden the vehicle’s 

capabilities, ensuring safety while providing smoother, more comfortable journeys. 
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3.5 CONCLUDING REMARKS 

This study presented a comparison among four implementable NMPC strategies for 

motion planning for MS mitigation through consideration of appropriate MS metrics. The 

first algorithm computes the 𝑀𝑆  based on the vehicle’s acceleration; the second one 

considers seat-to-head weighting filters as suggested by the literature; the third applies 

frequency-weighting filters accounting for the most provocative frequencies for MS 

insurgence; and the fourth based on both set of filters. All four motion planner are based 

on a 3DoF vehicle model neglecting wheel dynamic, and the road curvilinear coordinates, 

while the OCP is shifted into space domain through 𝑡′ . For a fair assessment of the 

relationship between journey time and MS cumulation, the terms within the OCP cost 

function are normalised with appropriate factors, defined through an optimisation 

routine for the case of fixed weights on the increment of time, or increment of 𝑀𝑆 

cumulation along the prediction horizon, and steering rate. The motion planner has been 

assessed on a path designed to replicate typical driving conditions challenging both 

vehicle stability and passengers’ comfort, and the simulation analysis brought the 

following main conclusions: 

• The motion planner with the terms not normalised in the cost function is capable 

to mitigate MS or minimise the journey time, at the cost of higher complexity in 

defining the weights for the terms in the cost function. 

• The minimum time and minimum MS scenario obtained using the algorithm which 

employs a cost function with unnormalised terms, do not share consistent weights 

on the control actions, i.e. the  steering rate. This disparity in weights suggest that 

deriving a Pareto front to balance these objectives would be complex. 

• Conversely, using a motion planner with a normalised cost function simplifies the 

definition of weights and enhances the clarity of the controller's focus. 

• However, due to the diverse nature of the terms within the cost function and 

limitations imposed by the NMPC implementation tool, determining the 

normalisation factors requires an optimisation routine that establishes these 

factors for given fixed weights assigned to the cost function terms. 

• Nonetheless, the motion planner using the normalised cost function demonstrates 

more consistent behaviour, particularly in the steering angle produced by the 

steering rate, whose percentage importance remains constant across different 

scenarios. 

• Furthermore, the algorithm with the normalised cost function simplifies the 

process of generating a Pareto front, allowing for trade-off scenarios that illustrate 

the relationship between journey time and cumulative MS. 

• The results demonstrate the overall effectiveness of the proposed algorithm in 

mitigating motion sickness. Future developments in this area include refining the 

alternative motion planner, which is based on frequency-weighted filters or/and 

the seat-to-head transfer function, with the aim of comparing the planners’ 
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performance while addressing the challenges of real-time implementation posed 

by the increased number of states. 
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4  

NONLINEAR MODEL 

PREDICTIVE CONTROL  
Control is not just about steering and braking.  

It’s about managing your mind, emotions, and your fear at 200 mph. 

Jenson Button 
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4.1 INTRODUCTION 

In this chapter, advanced strategies using nonlinear model predictive control (NMPC) will 

be explored, focusing on: traction control (TC), torque-vectoring (TV) and active 

suspension system (AS). TC is fundamental in ensuring vehicle stability, enhancing 

handling, and optimising passenger comfort under varying driving conditions, making it 

a key aspect in mitigating motion sickness (MS). NMPC, with its ability to predict future 

vehicle behaviour and optimise control inputs in real time, provides a powerful framework 

for managing the complex dynamics involved in traction control, offering opportunities 

to minimise vehicle oscillations, abrupt movements, and other dynamics that often trigger 

MS. TC focuses on maintaining the appropriate level of grip between the tires and the road, 

ensuring the vehicle does not experience wheel slip or lose traction in challenging 

conditions, such as during rapid acceleration or on slippery surfaces. By regulating torque 

distribution to the wheels, TC systems prevent sudden changes in vehicle velocity or 

direction, which are common contributors to MS. Maintaining consistent grip and 

stability helps reduce jerks, unwanted accelerations, and sudden shifts in body posture, 

all of which are triggers for MS. Furthermore, by providing smoother acceleration and 

deceleration profiles, traction control plays a key role in creating a more predictable and 

comfortable ride, which is critical for passengers who are prone to MS. TV, which – in the 

specific test case – dynamically adjusts the distribution of driving torque between the left 

and right wheels of an axle, adds an additional layer of control to traction systems. It is 

particularly useful in enhancing the vehicle’s cornering capabilities and maintaining 

optimal yaw control. By selectively distributing torque, TV can reduce understeer or 

oversteer, keeping the vehicle more aligned with the intended path and reducing abrupt 

lateral accelerations or oscillations that can exacerbate MS. From the perspective of MS 

mitigation, TV is significant because it can fine-tune the vehicle’s lateral dynamics, 

minimising the unpredictable, swaying motions that often lead to discomfort in 

passengers. It enables smoother cornering transitions and better control over the vehicle’s 

rotational behaviour, reducing the forces acting on the passengers’ vestibular systems, 

which is often a key contributor to the onset of MS. However, TV alone may not address 

all aspects of vehicle dynamics that contribute to MS, particularly those related to vertical 

and lateral body movements over uneven terrain. To mitigate MS more comprehensively, 

it is important to consider its integration with AS. This system provides the capability to 

modify the suspension forces in real time, adjusting to road conditions to control body roll, 

pitch, and vertical accelerations. These vertical dynamics are critical for MS, as excessive 

or sudden changes in pitch (nose diving or lifting) and roll (side-to-side body tilt) can 

trigger vestibular disturbances. By actively counteracting these motions, AS can reduce 

the perception of abrupt or excessive movements that might provoke MS symptoms. In 

addition, AS systems help in maintaining optimal tire contact with the road, which not 

only improves traction and handling but also ensures smoother ride quality, further 

minimising the high-frequency vibrations and bumps that can lead to discomfort. When 

TV and AS systems are integrated into a unified control strategy, they offer a more 
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comprehensive approach to addressing the various aspects of vehicle dynamics that 

contribute to MS. Torque vectoring’s precise control over yaw and lateral dynamics, 

combined with active suspension’s ability to manage vertical dynamics and body roll, can 

create a much smoother, more controlled driving experience. This synergy helps in 

reducing the lateral, longitudinal, and vertical forces that act on the passengers, 

significantly mitigating the triggers of motion sickness. By leveraging NMPC to predict and 

optimise these control strategies in real time, this integrated approach presents an 

effective solution for motion sickness mitigation, particularly in vehicles that navigate 

complex terrains or engage in dynamic manoeuvres. 
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4.2 TRACTION CONTROLLERS 

4.2.1 STATE-OF-THE-ART 

Passenger cars can experience lateral stability and agility issues in several situations, e.g., 

while traveling on slippery roads, or, in general, during emergency steering conditions, 

such as those of obstacle avoidance manoeuvres. Critical vehicle behaviour is caused by 

the saturation of the lateral tire forces when they reach the friction limit [1], which usually 

does not concurrently occur on the front and rear axles.  

During the last three decades, vehicle dynamics control systems based on direct yaw 

moment control (DYC) have been widely implemented in production cars, to improve 

their active safety performance. While these systems traditionally rely on the actuation of 

the friction brakes only in emergency conditions [2], a broad literature has also dealt with 

the benefits of continuously active torque-vectoring (TV), especially for electric vehicle 

architectures with two powertrains per axle [3].  

The main targets of DYC systems [4] are: i) at the vehicle level, lateral and yaw dynamics 

control, via the attenuation of the yaw rate and sideslip angle peaks during limit handling 

operation, and, in case of TV, generation of desirable levels of vehicle understeer 

throughout the lateral acceleration range, e.g., to increase cornering agility; and ii) at the 

individual corner level, wheel slip control in traction and braking, which also contributes 

to i). With respect to (w.r.t.) ii), the higher control bandwidth and accuracy in torque 

generation of individually controlled electric motors enable continuous wheel torque 

modulation, which brings enhanced tire slip control, and thus the reduction of the vehicle 

stopping distances and acceleration times, see the experimental results in [5] and [6].  

In parallel, thanks to the rapidly increasing performance of the available computing 

hardware and numerical optimisation algorithms, model predictive control (MPC) has 

become a popular technique for vehicle dynamics applications at the research level. MPC 

is based on the solution of an optimisation problem minimising a cost function evaluated 

by a model along a finite prediction horizon, subject to a set of constraints [7]. Several MPC 

formulations for vehicle dynamics control have been demonstrated in real-time, e.g., see 

[8]–[14], which makes MPC potentially attractive also for future production vehicles. In 

the active safety context, MPC implementations mainly address: 1) path tracking for 

automated or semi-automated vehicles, e.g., see the nonlinear model predictive 

controllers (NMPCs) in [15] and [16], and the comparison between an NMPC and two 

linear time-varying (LTV) MPCs in [9]; 2) active safety control systems, e.g., see [17], 

including DYC, which is the focus of this study; and 3) the combination of 1) and 2) [10].  

W.r.t. DYC, targets i) (i.e., vehicle yaw/sideslip control), and ii) (i.e., wheel slip control) can 

be achieved through different MPC-based architectures, depending on: 
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• The nature of the selected MPC algorithm, i.e., the optimal control problem: 1) can 

be linear (e.g., see the LTV MPCs in [18], and [11]), nonlinear [13], [14], [19]–[21], or 

hybrid [17]; and 2) can be solved online ([11], [13], [21]), in the framework of the so-

called implicit MPC, which implies significant computational load in the control 

unit, or offline [17], [19], [20], in which case the optimal (explicit) solution is stored 

in the control unit, which only needs to carry out a computationally light function 

evaluation, at the expense of much more demanding memory requirements. 

• The mechanical degrees of freedom of the vehicle prediction model embedded in 

the MPC algorithm, and in particular on whether this: 1) considers [12], [13], [21], 

[22] or neglects [18], [19] the longitudinal vehicle dynamics; and 2) includes ([13], 

[23], [22]) or excludes [12], [14], [18], [19], [21] the rotational wheel dynamics. 

• The DYC control input, which can be in the form of: 1) a reference direct yaw 

moment [17], to be converted into reference wheel torque levels by the bottom 

layers of the control architecture; 2) reference longitudinal slip ratios for the four 

vehicle corners, which requires the presence – outside the DYC algorithm – of 

external continuously active wheel slip controllers [21], [22]. Although 2) brings 

some numerical benefits in the solution of the DYC optimisation problem [24], 

from a practical viewpoint this arrangement is difficult to implement in TV systems, 

because it requires accurate and smooth wheel slip control also in normal driving 

conditions; or 3) reference wheel torque levels for the four vehicle corners [11], [13], 

[22], [23]. 

• The inclusion of the wheel slip control function in the DYC algorithm [23], 

according to a centralised architecture, or in an external control layer [21], [22] 

within a multi-layer architecture. In the first case, the longitudinal slip limitation 

can be implemented in the form of a constraint on the individual slip ratios, wheel 

torque levels, or longitudinal tire forces. In some studies, such constraint is based 

on the imposed or estimated tire-road friction factor [11], which, however, on its 

own would not be practically effective on real vehicles, given the significant level of 

uncertainty of currently available estimators. Alternatively, similarly to production 

vehicles, the wheel slip control function can be achieved through feedback control 

structures in a separate control layer w.r.t. the DYC, see the architecture in [21], [22], 

which uses sliding mode control (SMC) for traction control (TC). Further examples 

of independent wheel slip controllers that are applicable to multi-layer control 

layouts are the proportional integral (PI) controller in [25], the SMC in [26], the 

maximum transmissible torque estimation strategy in [27], and the MPCs in [25], 

[28]–[30]. 

The literature includes extremely limited comparative analyses of MPC-based DYCs, from 

the viewpoint of their integration and interaction with the wheel slip control function. 

More specifically, [22] compares: a model predictive DYC including the wheel slip 

dynamics in the prediction model, and using the individually controllable rear wheel 
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torque levels as control inputs; with: 2) an MPC-based DYC neglecting the wheel dynamics, 

and adopting the rear longitudinal slips as control inputs, which are continuously tracked 

by an SMC. The authors state that the inclusion of the wheel dynamics results only in a 

more complex optimisation problem and does not provide any appreciable performance 

benefit. However, the comparison is conducted for typical pure cornering manoeuvres, 

with zero torque demand at the vehicle level, in which high wheel slip events are marginal. 

The detailed comparisons among multiple implicit and explicit MPC-based DYC 

configurations in [20] and [21] only involve prediction models without wheel dynamics, 

and – again – focus the assessment on the lateral vehicle dynamics.  

In summary, for operating conditions with significant longitudinal acceleration during 

extreme cornering, the available MPC-based DYC literature lacks analyses and 

performance comparisons of: 1) prediction model implementations excluding and 

including wheel dynamics; and 2) centralised and multi-layer architectures for vehicle 

stability and wheel slip control, and the interaction between the two functions.  

To address the gap, during cornering-while-accelerating manoeuvres at the limit of 

handling, this study proposes and compares: 1) a novel multi-layer TV and TC architecture, 

consisting of an NMPC algorithm for DYC, using prediction models with and without 

wheel dynamics, and coupled with external feedback wheel slip controllers, which 

communicate their control inputs to the powertrains, as well as back to the DYC for 

imposing realistic direct yaw moment constraints; and 2) a centralised NMPC architecture 

( Centralised NMPC’ in the remainder), similar to the one in [13], which includes a soft 

constraint on the longitudinal slips, in addition to the terms for the control of the yaw and 

sideslip dynamics. The simulation analysis, based on a high-fidelity vehicle model, 

considers the computational performance and aspects associated with the prediction 

horizon length and its discretisation. The chapter is organised as follows: Section 4.2.2 

discusses the simulation and control framework; Section 4.2.3 describes the controllers; 

Section 4.2.4 deals with the controller calibration routine and key performance indicators 

(KPIs); Section 4.2.5 analyses the simulation results; finally, the main conclusions are 

summarised in Section 4.2.6. 
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4.2.2 SIMULATION AND CONTROL FRAMEWORK 

The simulation and control framework, integrated in the Matlab/Simulink environment, 

consists of (Figure 4.2.1): 

• The driver model, which outputs the accelerator pedal position, 𝑝𝑎; the brake pedal 

force, 𝐹𝑝; and the steering angle, 𝛿. 

• The braking system model, which converts 𝐹𝑝  into a tandem master cylinder 

pressure, pb, and friction braking torque values, 𝑇𝑖𝑗,𝑏 , where the subscript i = F, R 

indicates the front or rear axles, and the subscript j = L, R refers to the left or right 

sides. 

• The reference and limit values generation layer, including: 1) the drivability and 

regenerative braking controller, which computes the total torque demand,𝑇𝑟𝑒𝑓, for 

the electric powertrains; 2) the reference yaw rate 𝜓̇𝑟𝑒𝑓 generator; 3) the generator 

of the limit values of the longitudinal slip ratios, 𝑠𝑥,𝐹𝑗
𝑚𝑎𝑥  , for traction control 

operation; and 4) the generator of the motor torque limits, 𝑇𝐹𝑗
𝑚𝑎𝑥 𝑚𝑖𝑛⁄

 , which vary 

with speed and temperature. 

• The TV layer, which outputs the individual front reference powertrain torque values, 

referred to as 𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓  or 𝑇𝐹𝑗,𝑇𝑉 , depending on the controller configuration. This 

layer includes: 1) the NMPCs that implement the optimal control problems 

described in Section 3, where  Centralised NMPC’ operates as an integrated DYC 

and TC system, while  TV NMPC’ operates only as a DYC; and 2) alternatively to 1), 

the benchmarking  Passive’ configuration, which provides even front motor torque 

distribution on the left and right machines. Appropriate switches are implemented 

 

Figure 4.2.1: Simplified schematic of the implemented simulation and control framework. 
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in the simulation environment to select the control configuration for the specific 

test. 

• The TC layer, which is active only with  TV NMPC’, and contains proportional 

integral (PI) TCs, which output the modified motor torque demands, 𝑇𝐹𝑗,𝑃𝐼 , to 

prevent excessive wheel slip. The 𝑇𝐹𝑗,𝑃𝐼 values are sent only to the plant in the so-

called  TV NMPC w/o FB’ configurations, i.e., the TV block is not aware of the TC 

interventions. On the contrary, in the  TV NMPC w/ FB’ configurations, the 𝑇𝐹𝑗,𝑃𝐼 

values are also communicated back to the TV controller, which considers them 

within the constraints, see Section 4.2.3.  

• The high-fidelity nonlinear simulation model for control system assessment, 

implemented in CarMaker, including the degrees of freedom of the sprung and 

unsprung masses, suspension elasto-kinematics, and a nonlinear tire model (the 

magic formula 5.2) with relaxation. The model formulation is completely 

independent from the one of the prediction models in Section 3, which enables a 

realistic assessment of controller robustness. The model generates the set of vehicle 

variables, Θ, required for the operation of the other simulation and control layers. 

As it is discussed by a broad literature, e.g., see [31], the state estimation layer, e.g., 

to estimate the sideslip angle (𝛽) and vehicle speed (𝑉) values for the operation TV 

controllers, is not included in the implementation. The case study application is the 

front-wheel-drive commercial electric vehicle with direct drive in-wheel motors of 

the European SYS2WHEEL project. Its main parameters, provided by the involved 

industrial participants, are reported in Table 4.2.2. 

Table 4.2.2 – Main vehicle parameters. 

Symbol Name and unit Value 

𝑚 Mass (kg) 2252 
𝐽𝑧 Yaw mass moment of inertia (kgm2) 4825 
𝐿𝑇𝑂𝑇  Wheelbase (m) 3.1 
𝐿𝐹  Front semi-wheelbase (m) 1.6 
𝑅𝑤 Laden wheel radius (m) 0.31 
𝑑𝐹  Front track width (m) 1.51 
𝑑𝑅  Rear track width (m) 1.53 
𝐻𝐶𝐺  Height of the vehicle centre of mass (m) 0.62 
𝑇𝑚𝑜𝑡,𝐹𝑗
𝑚𝑎𝑥  Peak value of the in-wheel motor torque (Nm) 700 

𝑃𝑚𝑜𝑡,𝐹𝑗
𝑚𝑎𝑥  Maximum in-wheel motor power (kW) 75 

𝜔𝑚𝑜𝑡,𝐹𝑗
𝑚𝑎𝑥  Maximum in-wheel motor speed (rpm) 1500 
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4.2.3 CONTROLLER FORMULATIONS 

4.2.3.1 Reference yaw rate and longitudinal slip ratios 

In accordance with the requirements provided by the manufacturer of the considered 

light commercial vehicle, the objective of the specific TV controller is to bring a cornering 

response that is as close as possible to the one of the  Passive’ configuration in steady-state 

cornering in high tire-road friction conditions, for given steering input and vehicle speed. 

Hence, the TV system compensates the effects of the steering transients and 

traction/braking torque levels, thus enhancing active safety, but – given the vehicle 

category – is not used to shape the understeer characteristic in nominal conditions. As a 

consequence, the steady-state reference yaw rate, 𝜓̇𝑟𝑒𝑓,𝑆𝑆, is expressed as a nonlinear map, 

see Figure 4.2.2, that is a function of 𝛿 and 𝑉, and was generated by simulating the  Passive’ 

vehicle during ramp steer manoeuvres at different constant speed values, for high tire-

road friction conditions. In the online algorithm, 𝜓̇𝑟𝑒𝑓,𝑆𝑆 is saturated based on the available 

tire-road friction level:  

𝜓̇𝑟𝑒𝑓,𝑆𝑆,𝜇 = 𝑠𝑎𝑡
−𝜓̇𝑠𝑎𝑡,𝜇

𝜓̇𝑠𝑎𝑡,𝜇 (𝜓̇𝑟𝑒𝑓,𝑆𝑆 ), 

with: 𝜓̇𝑠𝑎𝑡,𝜇 =
𝜇𝑔

𝑉
 

(4.2.1) 

where 𝜇  is the estimated tire-road friction coefficient, and 𝑔  is the gravitational 

acceleration. Then 𝜓̇𝑟𝑒𝑓,𝑆𝑆,𝜇  is filtered through a first order transfer function, which 

provides the reference dynamic behaviour in cornering, and outputs 𝜓̇𝑟𝑒𝑓. The selected 

steady-state reference yaw rate formulation tends to compensate for the variation of the 

understeer characteristic associated with the tire-road friction level, and thus enhances 

the predictability of the cornering response. Future analyses for different demonstrator 

vehicles will include reference yaw rate set-ups that modify also the steady-state cornering 

response, see [3]. Nevertheless, during the activity it was verified that the reference yaw 

rate formulation does not have any significant impact on the results of the comparison 

between centralised and multi-layer MPC implementations, which is the objective of this 

study.  

Two options were considered w.r.t. the slip ratio (𝑠𝑥) threshold used by the TCs, to ensure 

that the conclusions of the comparison are not misled by a specific threshold selection: 1) 

constant threshold set to 0.1. 𝑠𝑥,𝐹𝑗
𝑚𝑎𝑥 = 0.1 is a rather conservative selection for the specific 

tire characteristics, see the very limited reduction of 𝐹𝑦 , and thus vehicle cornering 

capability, w.r.t. 𝐹𝑦0 , for any tire slip angle value, 𝛼 , in the plot in Figure 4.2.3 of the 

nondimensional lateral tire force, 𝐹𝑦/𝐹𝑦0 , as a function of 𝑠𝑥 , where 𝐹𝑦  is the lateral tire 

force at the considered 𝑠𝑥 value, and 𝐹𝑦0 is the lateral tire force at zero slip ratio; and 2) 

variable slip ratio threshold as a function of 𝛼, to achieve the condition 𝐹𝑦/𝐹𝑦0 = 0.45 for 

any 𝛼, according to the horizontal line in Figure 4.2.3. Setting 2) implies less invasive TC 

interventions at significantly larger 𝑠𝑥 levels than 1). 
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Figure 4.2.2: Extract of the nonlinear reference yaw 
rate map. 

Figure 4.2.3: Normalised lateral tire forces as 
functions of the slip ratio for different slip angles, 

at a constant vertical load (4 kN). 

4.2.3.2 Prediction models 

In the most advanced NMPC set-ups of this study, the prediction model is based on a 

nonlinear 7-degree-of-freedom (7-DoF) double track formulation, including wheel 

dynamics. The sign conventions of the main variables are in Figure 4.2.4.  

The model is described by the following differential equations: 

• Longitudinal force balance  

𝑚𝑉̇𝑥 = {[𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] cos(𝛿) − [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] sin(𝛿) + [𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅]

−
1

2
𝜌𝑉2𝑆𝐶𝑑𝑟𝑎𝑔} + 𝑚𝑉𝑦𝜓̇ 

(4.2.2) 

where 𝑚  is the vehicle mass; 𝑉𝑥  and 𝑉𝑦  are the longitudinal and lateral components of 

 

Figure 4.2.4: Top view of the vehicle, with indication of the main variables and their sign conventions.  
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vehicle velocity; 𝜓̇ is the yaw rate; 𝐹𝑥,𝑖𝑗 and 𝐹𝑦,𝑖𝑗 are the longitudinal and lateral tire forces; 

𝜌 is air density; 𝑆 is the vehicle frontal area; and 𝐶𝑑𝑟𝑎𝑔 is the aerodynamic drag coefficient. 

• Lateral force balance  

𝑚𝑉̇𝑦 = {[𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝛿) + [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝛿) + [𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]} − 𝑚𝑉𝑥𝜓̇ (4.2.3) 

• Yaw moment balance  

𝐽𝑧𝜓̈ = 𝐿𝐹{[𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝛿) + [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝛿)} − 𝐿𝑅[𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

+ 
𝑑𝐹
2
{[𝐹𝑦,𝐹𝐿 − 𝐹𝑦,𝐹𝑅] sin(𝛿) + [𝐹𝑥,𝐹𝑅 − 𝐹𝑥,𝐹𝐿]cos (𝛿)}

+
𝑑𝑅
2
[𝐹𝑥,𝑅𝑅 + 𝐹𝑥,𝑅𝐿] 

(4.2.4) 

where 𝐽𝑧 is the vehicle yaw mass moment of inertia; 𝐿𝐹 and 𝐿𝑅 are the front and rear semi-

wheelbases; and 𝑑𝐹 and 𝑑𝑅 are the front and rear track widths.  

• Wheel moment balance  
𝐼𝑤,𝑖𝜔̇𝑖𝑗 = 𝑇𝑖𝑗 − 𝐹𝑥,𝑖𝑗𝑅𝑤 − 𝑓𝑟𝑜𝑙𝑙𝐹𝑧,𝑖𝑗𝑅𝑤 (4.2.5) 

where 𝐼𝑤,𝑖  is the wheel moment of inertia, which – given the presence of front in-wheel 

motors – is larger on the front axle; 𝜔̇𝑖𝑗  is the angular wheel acceleration; 𝑇𝑖𝑗  is the 

individual wheel torque, caused by the front electric powertrains (𝑇𝐹𝑗,𝐸𝑀  contribution) 

and/or friction brakes (𝑇𝑖𝑗,𝑏 contribution), i.e., 𝑇𝐹𝑗 = 𝑇𝐹𝑗,𝐸𝑀 − 𝑇𝐹𝑗,𝑏 and 𝑇𝑅𝑗 = −𝑇𝑅𝑗,𝑏; 𝑓𝑟𝑜𝑙𝑙 is 

the rolling resistance coefficient; and 𝐹𝑧,𝑖𝑗 is the vertical tire load.  

• Electric motor and inverter dynamics 

 𝑇̇𝐹𝑗,𝐸𝑀 =
𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓−𝑇𝐹𝑗,𝐸𝑀

𝜏𝑠
 (4.2.6) 

where 𝑇𝐹𝑗,𝐸𝑀  is the simulated actual electromagnetic torque of the in-wheel machine; 

𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓 is the reference torque for the individual front motor, i.e., the control input; and 

𝜏𝑠  is the time constant approximating the powertrain dynamics. The tire forces are 

modelled through a simplified version of the Pacejka magic formula [32], which 

determines the total tire force coefficient, 𝜇𝑖𝑗, as: 

𝜇𝑖𝑗(𝑠𝑖𝑗) = 𝐷𝑖𝑗 sin(𝐶 tan
−1(𝐵𝑖𝑗𝑠𝑖𝑗)) (4.2.7) 

where 𝑠𝑖𝑗 is the total tire slip; and 𝐷𝑖𝑗, 𝐶 and 𝐵𝑖𝑗 are the peak, shape, and stiffness factors. 

Equation (4.2.7) is a simple yet realistic formulation, which is easy to tune and 

independent from the complete set of magic formula coefficients of the high-fidelity 

vehicle model. While 𝐶 is constant, 𝐷𝑖𝑗 and 𝐵𝑖𝑗 are expressed as: 

𝐷𝑖𝑗 = 𝑎1𝐹𝑧,𝑖𝑗
2 + 𝑎2𝐹𝑧,𝑖𝑗 (4.2.8) 

𝐵𝑖𝑗 = 
𝑎3 sin(𝑎4 tan

−1(𝑎5𝐹𝑧,𝑖𝑗))

𝐶𝐷𝑖𝑗
 (4.2.9) 

where 𝑎1 ,.., 𝑎5  are constant coefficients. 𝑠𝑖𝑗  results from the composition of the 

longitudinal and lateral slip components, 𝑠𝑥,𝑖𝑗 and 𝑠𝑦,𝑖𝑗: 

𝑠𝑖𝑗 = √𝑠𝑥,𝑖𝑗
2 + 𝑠𝑦,𝑖𝑗

2  (4.2.10) 
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with 𝑠𝑥,𝑖𝑗 and 𝑠𝑦,𝑖𝑗 being defined as: 

𝑠𝑥,𝑖𝑗 = 
𝜔𝑖𝑗𝑅𝑤,𝑟𝑜𝑙𝑙 − 𝑣𝑤,𝑖𝑗 cos(𝛼𝑖𝑗)

𝑣𝑤,𝑖𝑗 cos(𝛼𝑖𝑗)
 (4.2.11) 

𝑠𝑦,𝑖𝑗 = − tan(𝛼𝑖𝑗) (4.2.12) 

where 𝑅𝑤,𝑟𝑜𝑙𝑙 is the wheel rolling radius; and 𝑣𝑤,𝑖𝑗 is the linear wheel speed at the ground 

contact point, which is expressed as: 

𝑣𝑤,𝑖𝑗 = 𝑉 + 𝑘1𝜓̇ [
𝑑𝑖
2
cos(𝛽) + 𝑘1𝑘2𝐿𝑖 sin(𝛽)]

𝑗 = 𝐿, 𝑅 {
𝑘1 = −1 if 𝑗 = 𝐿
𝑘1 = 1 if 𝑗 = 𝑅

 

𝑖 = 𝐹, 𝑅 {
𝑘2 = 1 if 𝑖 = 𝐹
𝑘2 = −1 if 𝑖 = 𝑅

 (4.2.13) 

where 𝛽 is the sideslip angle at the vehicle center of gravity. 𝛼𝑖𝑗 is computed as in [33]: 

𝛼𝑖𝑗 = tan
−1(

𝑉𝑦 + 𝑘2𝜓̇𝐿𝑖

𝑉𝑥 + 𝑘1𝜓̇
𝑑𝑖
2

) − 𝑘3𝛿

𝑖 = 𝐹, 𝐿 {
𝑘3 = 1 𝑖𝑓 𝑖 = 𝐹
𝑘3 = 0 𝑖𝑓 𝑖 = 𝑅

 

 (4.2.14) 

The longitudinal and lateral tire force coefficients, 𝜇𝑥,𝑖𝑗  and 𝜇𝑦,𝑖𝑗 , are functions of the 

relative magnitude of the slip components: 

𝜇𝑥,𝑖𝑗 =
𝑠𝑥,𝑖𝑗

𝑠𝑖𝑗
𝜇𝑖𝑗(𝑠𝑖𝑗) (4.2.15) 

𝜇𝑦,𝑖𝑗 =
𝑠𝑦,𝑖𝑗

𝑠𝑖𝑗
𝜇𝑖𝑗(𝑠𝑖𝑗) (4.2.16) 

and are used for the computation of 𝐹𝑥,𝑖𝑗 and 𝐹𝑦,𝑖𝑗: 

𝐹𝑥,𝑖𝑗 = 𝜇𝑥,𝑖𝑗𝐹𝑧,𝑖𝑗 (4.2.17) 
𝐹𝑦,𝑖𝑗 = 𝜇𝑦,𝑖𝑗𝐹𝑧,𝑖𝑗 (4.2.18) 

The NMPC prediction model equations are re-arranged to be expressed through the 

following nonlinear continuous time (𝑡) formulation: 

𝑋̇ = 𝑓(𝑋(𝑡), 𝑈(𝑡)) 

𝑍 = ℎ(𝑋(𝑡), 𝑈(𝑡)) 
(4.2.19) 

where 𝑋 , 𝑈  and 𝑍  are the state, control input and output vectors; and 𝑓  and ℎ  are 

nonlinear functions. 𝑋 , 𝑈 , 𝑌 , 𝑍  and 𝑓  and ℎ  differ among the controller configurations 

discussed in the following subsections. 

4.2.3.3 Nonlinear optimal control problem 

NMPC is based on the solution of an optimisation problem, in which the discretised 

dynamic prediction model of the system is solved over a finite prediction horizon, 

consisting of 𝑁  steps. The sequence of optimal control inputs, 𝑈(∙) , targets the 

minimisation of the cost function 𝐽 , subject to appropriate equality and inequality 

constraints, which depend on the considered controller formulation. Only the first 
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element of the control input sequence, 𝑈(0), is applied to the system. Once a new set of 

measured or estimated states is available at the next time step, the whole process is 

repeated, according to the receding horizon approach [7] and [28].  

The discrete form of the nonlinear optimal control problem is: 

min
𝑈
𝐽 (𝑍(0), 𝑈(∙)) ≔

1

2
∑ (‖𝑍𝑘 − 𝑍𝑟𝑒𝑓

𝑘 ‖
𝑄
+ ‖𝑈𝑘‖𝑅)

2

 

𝑁−1

𝑘=0

+ ‖𝑍𝑁 − 𝑍𝑟𝑒𝑓
𝑁 ‖

𝑄𝑁

2
 

s. t. 

𝑋𝑘+1 = 𝑓𝑑  (𝑋
𝑘, 𝑈𝑘) 

𝑍𝑘 = ℎ𝑑  (𝑋
𝑘, 𝑈𝑘) 

𝑍 ≤ 𝑍𝑘 ≤ 𝑍 

𝑍 ≤ 𝑍𝑁 ≤ 𝑍 

𝑈 ≤ 𝑈𝑘 ≤ 𝑈 

𝑈(∙) ∶ [0, 𝑁 − 1] 

(4.2.20) 

where the index 𝑘  refers to the step number along the prediction horizon, including 𝑁 

steps in total; 𝑍𝑟𝑒𝑓 is the reference value of the output vector; 𝑍 and 𝑍 are the lower and 

upper limits for 𝑍 ; 𝑈  and 𝑈  are the lower and upper limits for 𝑈 ; 𝑓𝑑  and ℎ𝑑  are the 

discretised versions of 𝑓  and ℎ ; and 𝑅 , 𝑄 , and 𝑄𝑁  are positive semi-definite weight 

matrices. 

4.2.3.4 Centralised NMPC 

The prediction model of  Centralised NMPC’ uses equations (4.2.1)–(4.2.18). The state, 

control input and output vectors are: 

𝑋 = [𝑉𝑥, 𝑉𝑦, 𝜓̇, 𝜔𝐹𝐿 , 𝜔𝐹𝑅 , 𝜔𝑅𝐿, 𝜔𝑅𝑅, 𝑇𝐹𝐿,𝐸𝑀, 𝑇𝐹𝑅,𝐸𝑀]
𝑇 (4.2.21) 

𝑈 = [𝑇𝐹𝐿,𝐸𝑀,𝑟𝑒𝑓 , 𝑇𝐹𝑅,𝐸𝑀,𝑟𝑒𝑓, 𝑠𝛼, 𝑠𝑠𝑥,𝐹𝐿 , 𝑠𝑠𝑥,𝐹𝑅]
𝑇 (4.2.22) 

𝑍 = [𝜓̇, 𝑇𝑡𝑜𝑡,𝐸𝑀,𝑟𝑒𝑓, 𝑠𝛼, 𝑠𝑠𝑥,𝐹𝑅 , 𝑠𝑠𝑥,𝐹𝑅]
𝑇 (4.2.23) 

where 𝑇𝑡𝑜𝑡,𝐸𝑀,𝑟𝑒𝑓 is the sum of the reference torque values for the front motors, which must 

track 𝑇𝑟𝑒𝑓; 𝑠𝛼 is the slack variable (i.e., an auxiliary variable to impose a soft constraint) on 

the rear axle sideslip angle; and 𝑠𝑠𝑥,𝐹𝐿   and 𝑠𝑠𝑥,𝐹𝑅   are the slack variables constraining the 

longitudinal slip ratios of the respective tires. The optimal control problem is formulated 

as (4.2.20), with hard constraints on 𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓 (4.2.24) and the battery power 𝑃𝑏𝑎𝑡𝑡 (4.2.25), 

based on the respective component characteristics, and soft constraints on the rear axle 

sideslip angle (4.2.26)–(4.2.27) as well as on the longitudinal tire slip (4.2.28)–(4.2.29): 

𝑇𝐹𝑗,𝐸𝑀
𝑚𝑖𝑛 ≤ 𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓

𝑘 ≤ 𝑇𝐹𝑗,𝐸𝑀
𝑚𝑎𝑥  (4.2.24) 

𝑃𝑏𝑎𝑡𝑡
𝑚𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡𝑡

𝑘 ≤ 𝑃𝑏𝑎𝑡𝑡
𝑚𝑎𝑥  (4.2.25) 

𝑠𝛼 ≥ 0 (4.2.26) 

−𝛼𝑟𝑒𝑎𝑟
𝑝𝑒𝑎𝑘(1 + 𝑠𝛼) ≤ 𝛼𝑟𝑒𝑎𝑟

𝑘 ≤ 𝛼𝑟𝑒𝑎𝑟
𝑝𝑒𝑎𝑘(1 + 𝑠𝛼) (4.2.27) 

𝑠𝑠𝑥,𝐹𝑗 ≥ (4.2.28) 

𝑠𝑥,𝐹𝑗
𝑚𝑖𝑛 [1 + 𝑠𝑠𝑥,𝐹𝑗] ≤ 𝑠𝑥,𝐹𝑗

𝑘 ≤ 𝑠𝑥,𝐹𝑗
𝑚𝑎𝑥 [1 + 𝑠𝑠𝑥,𝐹𝑗] (4.2.29) 
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4.2.3.5 TV NMPC+PI with or without torque feedback 

The notation  TV NMPC+PI’ indicates the controller architectures in which the TV 

function is carried out by the NMPC algorithm, while the TC function is implemented 

through a PI controller, see Figure 1 and the benchmarking TC in [25]. Given the presence 

of a bottom layer modifying the wheel torque, the prediction model of  NMPC TV+PI’ does 

not include the in-wheel motor dynamics expressed through (5), while the other internal 

model equations are identical to those of  Centralised NMPC’. Hence, 𝑋 , 𝑈  and 𝑍  are 

defined as: 

𝑋 = [𝑉𝑥, 𝑉𝑦, 𝜓̇, 𝜔𝐹𝐿 , 𝜔𝐹𝑅 , 𝜔𝑅𝐿, 𝜔𝑅𝑅]
𝑇 (4.2.30) 

𝑈 = [𝑇𝐹𝐿,𝑇𝑉, 𝑇𝐹𝑅,𝑇𝑉, 𝑠𝛼]
𝑇 (4.2.31) 

𝑍 = [𝜓̇, 𝑇𝑡𝑜𝑡,𝐸𝑀,𝑟𝑒𝑓, 𝑠𝛼]
𝑇 (4.2.32) 

The optimal control problem is formulated as (4.2.20), with constraints on the motor 

torque, battery power, and rear axle sideslip angle, see (4.2.24)–(4.2.27).  

In the configuration  TV NMPC+PI w/ FB’, including feedback from the PI-based TC, the 

upper boundary of the electric motor torque, 𝑇𝐹𝑗,𝐸𝑀
𝑚𝑎𝑥  , accounts for the torque limitation 

applied by the TC layer in critical longitudinal slip conditions, on top of the torque limit, 

𝑇𝐹𝑗,𝑃𝑊𝑇
𝑚𝑎𝑥 , associated with the powertrain components (electric machine and inverter): 

𝑇𝐹𝑗,𝐸𝑀
𝑚𝑎𝑥 = min(𝑇𝐹𝑗,𝑃𝑊𝑇

𝑚𝑎𝑥 , 𝑘𝑇𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓) (4.2.33) 

where 𝑘𝑇 is a tunable relaxation factor, which is set to 1.1 in this study, to ensure that the 

TV layer does not over-constrain the reference torque w.r.t. the available tire-road friction 

level. 

4.2.3.6 TV NMPC+PI with or without torque feedback and neglecting wheel 

dynamics 

The prediction model formulation of the TV NMPC cases without wheel dynamics, 

indicated through the notation  w/o WD’ in the remainder (in the remainder, the absence 

of this notation implies that the wheel dynamics are considered), neglects the wheel 

moment balance (4.2.5) and the motor torque dynamics (4.2.6), i.e.: 

𝐹𝑥,𝐹𝑗 =
𝑇𝐹𝑗,𝐸𝑀,𝑟𝑒𝑓 − 𝑇𝐹𝑗,𝑏

𝑅𝑤
 (4.2.34) 

while the longitudinal tire slips are considered constant along the prediction horizon. 

Therefore, 𝑋 and 𝑍 are (see (4.2.31) for 𝑈): 

𝑋 = [𝑉𝑥, 𝑉𝑦, 𝜓̇]
𝑇 (4.2.35) 

𝑍 = [𝜓̇, 𝐹𝑥,𝑟𝑒𝑓, 𝑠𝛼]
𝑇 (4.2.36) 

The optimal control problem is formulated as (4.2.20), with constraints on the motor 

torque, battery power, and rear axle sideslip angle, see (4.2.24)–(4.2.27), with the same 

distinction as in Section 4.2.3.5 between the upper boundary of the electric motor torque 

for the cases with and without TC torque feedback.  
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4.2.4 CONTROLLERS IMPLEMENTATION AND TUNING 

4.2.4.1 Controller implementation 

The NMPC formulations in Sections 4.2.3.4–4.2.3.6 were set up through the ACADO toolkit, 

which is a software environment and algorithm collection in C++ for automatic control 

and dynamic optimisation [34]. ACADO was used to solve the proposed constrained 

nonlinear optimisation problems (implicit NMPC). The toolkit generates a C-code, which 

is then usable in the Matlab/Simulink environment, see Figure 4.2.1, including the TC as 

well as the driver and CarMaker vehicle models. The selected solver parameters are: 

multiple shooting discretisation method, fourth order Runge Kutta integrator, and 

qpOASES QP optimisation algorithm. 

4.2.4.2 Controller calibration routine 

Given the significant variability of controller performance depending on the values of the 

calibration parameters, e.g., the cost function weights, a brute force optimisation routine 

of the proposed NMPCs was implemented, for a fair comparison of the architectures. The 

routine considers the following KPIs, where the notation  ̅ ’ indicates that the index is 

normalised: 

• The root mean square value of the yaw rate error, 𝑅𝑀𝑆𝐸𝛥𝜓̇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: 

𝑅𝑀𝑆𝐸𝛥𝜓̇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

√
1

𝑡𝑓 − 𝑡𝑖
∫ [𝜓̇𝑟𝑒𝑓(𝑡) − 𝜓̇(𝑡)]

2
𝑑𝑡

𝑡𝑓
𝑡𝑖

𝑀𝛥𝜓̇

 
(4.2.37) 

where 𝑡𝑖 and 𝑡𝑓 are the initial and final times of the relevant part of the manoeuvre; 

and 𝑀𝛥𝜓̇ is the normalisation factor. 

• The maximum value of the yaw rate error magnitude along the manoeuvre, i.e., 

𝛥𝜓̇𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅, which penalises the yaw rate error peaks: 

𝛥𝜓̇𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅̅ ̅ =
max(|𝜓̇𝑟𝑒𝑓(𝑡) − 𝜓̇(𝑡)|)

𝑀𝛥𝜓̇𝑚𝑎𝑥
 (4.2.38) 

with 𝑀𝛥𝜓̇𝑚𝑎𝑥  being the normalisation factor. 

• The peak value of the rear axle sideslip angle, 𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅, which assesses the stabilisation 

performance of the controller: 

𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ =

max|𝛼𝑟𝑒𝑎𝑟|

𝑀𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥

 (4.2.39) 

with 𝑀𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥  being the respective normalisation factor. 

• The normalised – through the factor 𝑀𝑉𝑒𝑛𝑑  – and re-arranged vehicle speed at the 

end of the manoeuvre, 𝑉𝑒𝑛𝑑̅̅ ̅̅ ̅̅  , which evaluates the longitudinal acceleration 
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performance of the vehicle, and ensures that good performance corresponds to a 

low value of the indicator: 

𝑉𝑒𝑛𝑑̅̅ ̅̅ ̅̅ = 1 −
𝑉𝑒𝑛𝑑
𝑀𝑉𝑒𝑛𝑑

 (4.2.40) 

• The root mean square value of the longitudinal slip error on the individual front tire, 

𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , which assesses the TC performance: 

𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

√
1

𝑡𝑓 − 𝑡𝑖
∫ [DB−∞

𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓 (𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓(𝑡) − 𝑠𝑥,𝐹𝑗(𝑡))]
2

𝑑𝑡
𝑡𝑓
𝑡𝑖

𝑀𝛥𝑠𝑥,𝐹𝑗
 

(4.2.41) 

where 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓 = 𝑠𝑥,𝐹𝑗
𝑚𝑎𝑥   is the desired longitudinal slip; DB  indicates the deadband 

function, which outputs a nonzero error only when 𝑠𝑥,𝐹𝑗 exceeds 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓; and 𝑀𝛥𝑠𝑥,𝐹𝑗  

is the normalisation factor. 

• The integral of the absolute value of the direct yaw moment control action, 𝐼𝐴𝐶𝐴𝑀𝑍
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

which evaluates the control effort: 

𝐼𝐴𝐶𝐴𝑀𝑍
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1
𝑡𝑓 − 𝑡𝑖

∫ |𝑀𝑧|𝑑𝑡
𝑡𝑓
𝑡𝑖

𝑀𝐼𝐴𝐶𝐴
 

(4.2.42) 

where 𝑀𝐼𝐴𝐶𝐴 is the normalisation factor; and 𝑀𝑧 is the direct yaw moment, which is 

approximated as: 

𝑀𝑧 =
[𝑇𝐹𝐿(𝑡) − 𝑇𝐹𝑅(𝑡)]𝑑𝐹

2𝑅𝑤
 (4.2.43) 

The normalisation factors (𝑀𝛥𝜓̇ =  20 deg/s; 𝑀𝛥𝜓̇𝑚𝑎𝑥 =  60 deg/s; 𝑀𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥 =  16 deg; 𝑀𝑉𝑒𝑛𝑑 = 

125 km/h; 𝑀𝛥𝑠𝑥,𝐹𝑗 =  0.12; and 𝑀𝐼𝐴𝐶𝐴 =  3896 Nm) are considered as the values of the 

respective indicator in its dimensional form for the  Passive’ case, with the exception of 

𝑀𝐼𝐴𝐶𝐴, which, being zero for the  Passive’ vehicle, is set as the maximum 𝐼𝐴𝐶𝐴𝑀𝑍
 obtained 

through the controller configurations along the simulation set.  

The automated brute force optimisation algorithm and the following analyses (see 4.2.5) 

focus on the multiple-step steer manoeuvre (i.e., a sequence of swift positive and negative 

steering inputs), carried out from an initial speed of 100 km/h, with 𝑇𝑟𝑒𝑓 = 600 Nm, and a 

maximum steering angle amplitude at the wheels of 14 deg, in high tire-road friction 

conditions. In the  Passive’ configuration, this test brings significant yaw rate and sideslip 

angle peaks, as well as evident wheel spinning. Therefore, this manoeuvre is selected as a 

representative example of extreme acceleration-while-turning conditions, requiring 

extensive and concurrent interventions of the TV and TC functions.  
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The optimisation routine runs simulations of the selected test – by using the high fidelity 

simulation model – for a dense grid of calibration parameter values, i.e., the elements of 𝑄 

in (4.2.20), with the exception on the weight on the driver torque demand tracking, which 

is considered to be the same for all configurations. The brute force algorithm minimises 

the cost function 𝐽𝐾𝑃𝐼: 

𝐽𝐾𝑃𝐼
∗ = min

𝑄
𝐽𝐾𝑃𝐼|𝑡𝑖

𝑡𝑓

= min
𝑄
[𝑊1𝑅𝑀𝑆𝐸𝛥𝜓̇̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +𝑊2𝛥𝜓̇𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑊3𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ + 𝑊4𝑉𝑒𝑛𝑑̅̅ ̅̅ ̅̅

+ 𝑊5 ∑ 𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑗=𝐿,𝑅

+𝑊6𝐼𝐴𝐶𝐴𝑀𝑍
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] 

s. t. 𝑄𝐿𝐵 ≤ 𝑄𝑜𝑝𝑡 ≤ 𝑄𝑈𝐵 

(4.2.44) 

where 𝐽𝐾𝑃𝐼
∗   is the optimal cost function value; 𝑄𝑝𝑞,𝐿𝐵  and 𝑄𝑝𝑞,𝑈𝐵  are the lower and upper 

bounds for the 𝑝𝑞 element of 𝑄𝑜𝑝𝑡; and 𝑊1,…, 𝑊6 are weights, which were selected (𝑊1 = 

0.4; 𝑊2 = 0.15; 𝑊3 = 0.1; 𝑊4 = 0.15; 𝑊5 = 0.05; and 𝑊6 = 0.1) to prioritise the yaw rate and 

sideslip angle performance, w.r.t. to the tracking of the individual tire slip ratios. For all 

configurations, 𝛼𝑟𝑒𝑎𝑟
𝑝𝑒𝑎𝑘 in (4.2.27) is set to 3 deg. 
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4.2.5 SIMULATION RESULTS 

4.2.5.1 Sensitivity on prediction horizon and time step 

For the  Centralised NMPC’ and  TV NMPC+PI w/ FB’ configurations, a sensitivity analysis 

was carried out with the simulation and control framework in Figure 1 along the 

considered multiple step steer, to investigate the effect of: 1) the controller sampling time, 

𝑇𝑠, i.e., the time step at which the controller generates its control actions; and 2) the NMPC 

prediction horizon, 𝐻𝑝 = 𝑁𝑇𝑠, i.e., the time horizon covered by the NMPC prediction. For 

all configurations, the internal model discretisation time, 𝑇𝑑, i.e., the integration time step 

of the prediction model, was set to be 𝑇𝑑 = 𝑇𝑠/𝑘𝑖, with 𝑘𝑖 = 40. The controller calibration 

was optimised according to (4.2.44) for the  TV NMPC+PI w/ FB’ configuration with 𝑇𝑠 = 

30 ms and 𝐻𝑝 = 90 ms, and – unless otherwise specified – was kept constant for the other 

configurations.  

  

(a) (b) 

Figure 4.2.5: 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  as a function of 𝑅𝑀𝑆𝐸𝛥𝜓̇, for different values of 𝐻𝑝 and 𝑇𝑠: (a)  Centralised NMPC’; 

and (b)  TV NMPC+PI w/ FB’. 

Figure 5 reports the NMPC execution time index, 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , as a function of 𝑅𝑀𝑆𝐸𝛥𝜓̇ , for 

 Centralised NMPC’ (subplot (a)) and  TV NMPC+PI w/ FB’ (subplot (b)). 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is a 

dimensionless value, defined as:  

𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝜏𝐶𝑃𝑈,𝑎𝑣𝑔
𝐶,𝑇𝑠−𝐻𝑝

𝜏𝑛𝑜𝑟𝑚
 (4.2.45) 

where 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔
𝐶,𝑇𝑠−𝐻𝑝   is the average central processing unit (CPU) time along the selected 

manoeuvre, for the controller operating at a given sample time 𝑇𝑠 and prediction horizon 

𝐻𝑝 ; and 𝜏𝑛𝑜𝑟𝑚  is a normalisation time, which is the same in the two subplots, and 

corresponds to the CPU time of one of the real-time configurations in Section 4.2.5.2. For 

 Centralised NMPC’, 𝑅𝑀𝑆𝐸𝛥𝜓̇  improves, i.e., it is subject to a reduction, for decreasing 

values of 𝑇𝑠  – and thus 𝑇𝑑  – for a given 𝐻𝑝 . For example, with 𝐻𝑝 =  90 ms, 𝑅𝑀𝑆𝐸𝛥𝜓̇  goes 

from ~3 deg/s with 𝑇𝑠 = 30 ms down to ~2.4 deg/s for 𝑇𝑠 = 10 ms. At the same time, 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

increases, e.g., from ~2 to ~4, respectively for 𝑇𝑠 =  30 ms and 10 ms. For a fixed 𝑇𝑠 , the 
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increase of 𝐻𝑝 tends to bring a smaller performance benefit than the decrease of 𝑇𝑠, at the 

price of a much more substantial increase in computational load. For example, for 𝑇𝑠 = 10 

ms, 𝑅𝑀𝑆𝐸𝛥𝜓̇ and 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are ~2.8 deg/s and ~1 at 𝐻𝑝 = 30 ms, ~2.3 deg/s and ~7 at 𝐻𝑝 = 

150 ms, and ~2.3 deg/s and ~15 at 𝐻𝑝 = 270 ms. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.2.6: Time profiles of the main variables for  TV NMPC+PI w/ FB’, for 𝐻𝑝 = 90 ms and different 

𝑇𝑠 values: (a) yaw rate tracking performance; (b) rear axle sideslip angle and its soft constraint bounds; 
(c) direct yaw moment; (d) front left and (e) front right longitudinal tire slips and their limit values; and 

(f) vehicle speed. 

Figure 4.2.6 shows the time profiles of the main variables for  Passive’ and  TV NMPC+PI 

w/ FB’ with 𝐻𝑝 = 90 ms and 𝑇𝑠 = 10, 20, and 30 ms. Figure 6 highlights the major vehicle 

dynamics benefits in terms of yaw rate overshoot and rear axle sideslip angle peak 

reduction brought by  TV NMPC+PI w/ FB’ w.r.t.  Passive’. The yaw rate and sideslip angle 

profiles are safe and comparable for all controller settings, although the increase of 

sampling time implies a rather marginal performance deterioration, e.g., see the slight yaw 

rate oscillations for 𝑇𝑠 = 30 ms. As the wheel dynamics are faster than the vehicle yaw and 

sideslip response, the effect of 𝑇𝑠 is much more evident on the longitudinal slip dynamics 

in Figure 4.2.6(d–e), which are significantly more oscillatory for 𝑇𝑠 = 30 ms.  

W.r.t.  Centralised NMPC’,  TV NMPC+PI w/ FB’ is characterised by a generalised 

reduction – by a factor exceeding 1.5 – of 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  . In parallel, w.r.t. the corresponding 

 Centralised NMPC’ configuration, i.e., with the same 𝑇𝑠 and 𝐻𝑝 values,  TV NMPC+PI w/ 

FB’ shows a slight deterioration – amounting to an average of ~0.3 deg/s – of the yaw rate 

tracking performance.  
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For both architectures, a good compromise between vehicle dynamics performance and 

computational effort is represented by 𝐻𝑝  = 90 ms and 𝑇𝑠 =  10 ms. Therefore, the 

automated calibration routine was run also for this setting, which corresponds to the 

results highlighted by the dashed circles in Figure 4.2.5. The optimised versions of 

 Centralised NMPC’ and  TV NMPC+PI w/ FB’ achieve 𝑅𝑀𝑆𝐸𝛥𝜓̇ of 2.3 and 2.4 deg/s (also 

𝐽𝐾𝑃𝐼
∗  is marginally lower – i.e., better – for the centralised architecture), whilst their 𝜏𝐶𝑃𝑈,𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

values are ~4 and ~2.5.  

The important conclusions are that: 1) for enhancing control system performance without 

significantly penalising the computational effort, it is more convenient to reduce 𝑇𝑠 rather 

than extending 𝐻𝑝; and 2) the vehicle dynamics results of the two architectures are almost 

comparable, but the average execution time is significantly lower for the multi-layer 

architecture, thanks to the reduced complexity of its prediction model, and the lower 

number of control inputs and states. 

4.2.5.2 Real-time implementations 

The proposed  Centralised NMPC’ and  TV NMPC+PI’ architectures were implemented in 

real-time on a rapid control prototyping unit, i.e., a dSPACE MicroAutoBox II 1401/1513 

with an IBM 900 MHz processor, see Figure 4.2.7. 

Table 4.2.2 lists the real-time capable controller configurations that were verified on the 

specific control hardware, and their settings in terms of 𝑇𝑠 and respective 𝑁𝑚𝑎𝑥, i.e., the 

maximum value of 𝑁. 

  

 

Figure 4.2.7: Real-time implementation set-up for the proposed NMPC configurations. 
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Table 4.2.2 – Settings of the considered real-time capable NMPC architectures 

Controller configurations 𝑇𝑠 (ms) 𝑁𝑚𝑎𝑥  (-) 

Centralised NMPC 27 2 

TV NMPC+PI w/ or w/o FB 

11 2 
16 3 
21 4 
26 5 

TV NMPC+PI w/ or w/o FB, w/o WD 

8 2 
12 3 
16 4 
20 5 

The observation of the real-time options highlights that the wheel dynamics have an 

impact on the computational load of  TV NMPC+PI’, which, for example, can operate with 

𝑁𝑚𝑎𝑥 = 3 or 4 for 𝑇𝑠 = 16 ms, respectively when including or excluding the wheel dynamics 

(WD). Because of its additional states and control inputs,  Centralised NMPC’ is by far 

computationally heavier than its multi-layer counterparts and could run in real-time only 

with 𝑁𝑚𝑎𝑥 =  2 at 𝑇𝑠 =  27 ms. Despite this, given the progressive availability of more 

performing control hardware, e.g., dSPACE MicroAutoBox III,  Centralised NMPC’ should 

not be excluded from future consideration for real-time implementation. 

All controllers in Table 4.2.2 were analysed through the simulation framework in Section 

4.2.2, along the following test cases: 

• Test case 1: the same calibration weights for all controllers, according to the tuning 

used for Figure 4.2.5, and adoption of variable 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓, see the discussion of Figure 

4.2.3 in 0. 

• Test case 2: optimised calibration weights for each controller configuration, and 

variable 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓. 

• Test case 3: the same as test case 1, but with 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓 = 0.1. 

The resulting KPIs for the 𝑇𝑠  and 𝑁  settings providing the lowest 𝐽𝐾𝑃𝐼  values for each 

controller configuration in each test case, together with those of  Passive’, are summarised 

in Table 4.2.3, see also their normalised values in the polar plots in Figure 4.2.8. 

Table 4.2.3 – KPI values for a selection of real-time capable controllers 

Controller 
𝑅𝑀𝑆𝐸Δ𝜓̇ 

(deg/s) 

𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝐿 

(-) 

𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝑅 

(-) 

𝐼𝐴𝐶𝐴𝑀𝑍 

(Nm) 

|𝛥𝜓̇𝑚𝑎𝑥| 
(deg/s) 

|𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥| 

(deg) 
𝑉𝑒𝑛𝑑   

(km/h) 
𝐽𝐾𝑃𝐼  
(-) 

Test case 1: same calibration weights for all configurations and variable 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓  

Centralised NMPC; 𝑇𝑠= 27 ms; 𝑁=2 3.35 0.01 0.01 1416 12.10 5.49 104.01 0.21 
TV NMPC+PI w/ FB; 𝑇𝑠=21 ms; 𝑁=4 2.90 0.01 0.01 1680 9.63 4.72 98.12 0.20 

TV NMPC+PI w/o FB; 𝑇𝑠=21 ms; 𝑁=4 2.88 0.01 0.01 1705 9.80 4.78 102.28 0.20 
TV NMPC+PI w/ FB w/o WD; 𝑇𝑠=20 ms; 

𝑁=5 
3.95 0.01 0.01 1057 13.29 6.18 112.47 0.22 

TV NMPC+PI w/o FB w/o WD; 𝑇𝑠=20 ms; 
𝑁=5 

3.93 0.01 0.01 1101 14.24 6.24 112.64 0.21 

Test case 2: optimised weights for each configuration and variable 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓  
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Centralised NMPC; 𝑇𝑠= 27 ms; 𝑁=2 2.79 0.00 0.00 1847 8.61 4.60 97.94 0.19 
TV NMPC+PI w/ FB; 𝑇𝑠=16 ms; 𝑁=3 2.74 0.01 0.01 1497 10.76 5.02 104.61 0.19 

TV NMPC+PI w/o FB; 𝑇𝑠=26 ms; 𝑁=5 2.76 0.00 0.00 2031 7.54 4.14 98.57 0.19 
TV NMPC+PI w/ FB w/o WD; 𝑇𝑠=12 ms; 

𝑁=3 
3.67 0.01 0.01 1140 12.94 5.69 110.71 0.21 

TV NMPC+PI w/o FB w/o WD; 𝑇𝑠=8 ms; 
𝑁=2 

3.42 0.00 0.01 1189 12.16 5.51 107.32 0.20 

Test case 3: same calibration weights for all configurations and 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓 = 0.1 

Centralised NMPC 𝑇𝑠= 27 ms 𝑁=2 2.89 0.03 0.04 1870 8.83 5.01 69.12 0.25 
TV NMPC+PI w/ FB 𝑇𝑠=21 ms 𝑁=4 2.62 0.01 0.02 2064 10.09 4.46 70.04 0.23 

TV NMPC+PI w/o FB 𝑇𝑠=26 ms 𝑁=5 2.82 0.05 0.06 1882 8.53 4.67 85.65 0.25 
TV NMPC+PI w/ FB w/o WD 𝑇𝑠=20 ms 

𝑁=5 
6.89 0.02 0.03 1509 21.73 10.79 74.26 0.39 

TV NMPC+PI w/o FB w/o WD 𝑇𝑠=16 ms 
𝑁=4 

5.07 0.06 0.06 1266 16.17 8.06 99.93 0.32 

Passive 

/ 11.81 0.03 0.01 - 24.83 16.71 116.13 0.4794 

The resulting KPIs for the 𝑇𝑠  and 𝑁  settings providing the lowest 𝐽𝐾𝑃𝐼  values for each 

controller configuration in each test case, together with those of  Passive’, are summarised 

in Table 4.2.3, see also their normalised values in the polar plots in Figure 4.2.8. The 

normalisation is obtained by dividing the dimensional form of the KPI by its maximum 

value among the controlled configurations in the table. 

The analysis of the results brings the following main conclusions: 

• All proposed real-time implementations enable a major  

• Vehicle response enhancement w.r.t. the  Passive’ configuration.  

• For test case 2, i.e., among the configurations with optimised weights,  Centralised 

NMPC’ is at the top of the ranking, as it has the lowest 𝐽𝐾𝑃𝐼 , followed by:  TV 

NMPC+PI w/ FB’, whose cost function value differs from the one of the centralised 

case by only ~0.001, and corresponds to the lowest 𝑅𝑀𝑆𝐸Δ𝜓̇ value, see also Figure 

4.2.9;  TV NMPC+PI w/o FB’;  TV NMPC+PI w/o FB w/o WD’; and  TV NMPC+PI w/ 

FB w/o WD’.  

• Given the specific tuning of 𝐽𝐾𝑃𝐼, focused on the cornering response, see Section 4, 

the best configurations bring very desirable yaw rate tracking and sideslip angle 

limitation performances, but tend to be characterised by the highest values of 

𝐼𝐴𝐶𝐴𝑀𝑍
 and limited longitudinal acceleration, the latter caused by more aggressive 

torque reductions 

• Although limiting the slip ratio peaks very effectively,  Centralised NMPC’ generates 

longitudinal slip oscillations, which are absent in  TV NMPC+PI w/ FB’ because of 

its lower 𝑇𝑠 , see also Figure 4.2.9 and the TC results in [25]. Furthermore,  TV 

NMPC+PI w/ FB’, in addition to a better control of the longitudinal slip, manages 

to obtain a higher final speed than  Centralised NMPC’. 

• For test cases 1 and 3, i.e., without optimised weights, the best lateral vehicle 

control performance and the minimum 𝐽𝐾𝑃𝐼 value are obtained by  TV NMPC+PI w/ 



4. NONLINEAR MODEL PREDICTIVE CONTROL  85 

 
 

FB’, which tends to have more robust performance than the specific  Centralised 

NMPC’ setting. The other rankings remain unaltered w.r.t. test case 2. 

• In both configurations neglecting the wheel dynamics, 𝐼𝐴𝐶𝐴𝑀𝑍
  is significantly 

reduced (e.g., from 1680 Nm for  TV NMPC+PI w/ FB’ down to 1057 Nm for  TV 

NMPC+PI w/ FB w/o WD’ in test case 1), at the price of larger 𝑅𝑀𝑆𝐸Δ𝜓̇ and |𝛥𝜓̇𝑚𝑎𝑥| 

(e.g., 2.90 deg/s and 9.63 deg/s for  TV NMPC+PI w/ FB’, and 3.95 deg/s and 13.29 

deg/s for  TV NMPC+PI w/ FB w/o WD’). 

• For the  TV NMPC+PI’ configurations, the wheel slip control performance is 

significantly enhanced by the inclusion of torque feedback from the TC to the 

NMPC (e.g., with 𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝐿  and 𝑅𝑀𝑆𝐸𝛥𝑠𝑥,𝐹𝑅 values of 0.01 and 0.02 for  TV NMPC 

w/ FB’, and 0.05 and 0.06 for  TV NMPC+PI w/o FB’ in test case 3). 

  

 

 

Figure 4.2.8:  Polar plots of the normalised KPIs for the real-time implemented controller settings, for 
test cases 1–3. The bold line refers to the controller achieving the best performance, i.e., the lowest 𝐽𝐾𝑃𝐼  

value. 
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Figure 4.2.9: Time profiles of the main variables for  Centralised NMPC’ and  TV NMPC+PI w/ FB’ in 
test case 2, i.e., the best two real-time implementable configurations: (a) yaw rate tracking 

performance; (b) rear axle sideslip angle and its soft constraint bounds; (c) direct yaw moment; (d) 
front left and (e) front right longitudinal tire slips and their bounds; and (f) vehicle speed. 

4.2.5.3 Effect of torque-feedback from the traction controller 

To assess the effect of the torque feedback from the TC to the TV NMPC module, see Figure 

4.2.1 and equation (4.2.33), the following additional KPI is considered: 

𝑅𝑀𝑆𝐸𝛥𝑀𝑧 = √
1

𝑡𝑓 − 𝑡𝑖
∫ [𝑀𝑧

𝑃𝑜𝑠𝑡−𝑇𝐶(𝑡) −𝑀𝑧
𝑃𝑟𝑒−𝑇𝐶(𝑡)]2𝑑𝑡

𝑡𝑓

𝑡𝑖

 (4.2.46) 

where 𝑀𝑧
𝑃𝑟𝑒−𝑇𝐶  and 𝑀𝑧

𝑃𝑜𝑠𝑡−𝑇𝐶 are the direct yaw moments before (i.e., at the output of the 

TV NMPC algorithm) and after (i.e., at the output of the TC module, which intervenes 

when 𝑠𝑥,𝐹𝑗 exceeds 𝑠𝑥,𝐹𝑗,𝑟𝑒𝑓) the PI-based TC. 𝑀𝑧
𝑃𝑟𝑒−𝑇𝐶  and 𝑀𝑧

𝑃𝑜𝑠𝑡−𝑇𝐶 are calculated as: 

𝑀𝑧
𝑃𝑟𝑒−𝑇𝐶 =

[𝑇𝐹𝐿,𝐸𝑀,𝑟𝑒𝑓 − 𝑇𝐹𝑅,𝐸𝑀,𝑟𝑒𝑓]𝑑𝐹

2𝑅𝑤
 

𝑀𝑧
𝑃𝑜𝑠𝑡−𝑇𝐶 =

[𝑇𝐹𝐿,𝑃𝐼 − 𝑇𝐹𝑅,𝑃𝐼]𝑑𝐹
2𝑅𝑤

 

(4.2.47) 

Figure 4.2.10: Test case 3 results: (a) time profiles of |𝛥𝑀𝑧| for  TV NMPC+PI w/ FB’ (𝑇𝑠 = 

11; 𝑁 = 2) and  TV NMPC+PI w/o FB’ (𝑇𝑠 = 11; 𝑁 = 2); and (b) 𝑅𝑀𝑆𝐸𝛥𝑀𝑧values for different 

𝑇𝑠 and 𝑁 , for  TV NMPC+PI w/ FB’ and  TV NMPC+PI w/o FB’.(a) reports the time profiles 

of |𝛥𝑀𝑧| = |𝑀𝑧
𝑃𝑟𝑒−𝑇𝐶 −𝑀𝑧

𝑃𝑜𝑠𝑡−𝑇𝐶| , which show that the torque feedback significantly 

reduces the amplitude and extension of the peaks of direct yaw moment actuation error 

during the manoeuvre. This is reflected in the 𝑅𝑀𝑆𝐸𝛥𝑀𝑧  histograms of Figure 4.2.10(b) for 
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multiple 𝑇𝑠  and 𝑁  settings, in which – on average – 𝑅𝑀𝑆𝐸𝛥𝑀𝑧   is halved for the 

configurations with torque feedback. The conclusion is that the torque feedback function 

permits to tailor the intervention of the NMPC on the lateral dynamics to the longitudinal 

tire slip condition and the actually available tire-road friction level. 

  

(a) (b) 

Figure 4.2.10: Test case 3 results: (a) time profiles of |𝛥𝑀𝑧| for  TV NMPC+PI w/ FB’ (𝑇𝑠 = 11; 𝑁 = 2) and 
 TV NMPC+PI w/o FB’ (𝑇𝑠 = 11; 𝑁 = 2); and (b) 𝑅𝑀𝑆𝐸𝛥𝑀𝑧values for different 𝑇𝑠 and 𝑁 , for  TV NMPC+PI 

w/ FB’ and  TV NMPC+PI w/o FB’. 

4.2.5.4 Robustness analysis 

A controller robustness analysis was run for the multi-layer architecture, in which the 

CarMaker model parameters were significantly varied, while the NMPC prediction model 

parameters were kept equal to their nominal value in Table 3.2.1. This is a rather 

conservative assumption, as in modern vehicles the payload can be approximately 

estimated through dedicated observers and/or on-board sensors, e.g., those required for 

the operation of rear self-levelling suspension actuators. In particular, the performance 

has been evaluated for: i) nominal vehicle parameters; ii) increased vehicle mass by 750 

kg; iii) increased yaw mass moment of inertia by 1607 kgm2; and iv) concurrently increased 

𝑚 and 𝐽𝑧, by the same amounts specified under ii) and iii). The sensitivity analysis has been 

carried out during a multiple step steer test (with a steering angle magnitude of 12 deg for 

the first two steps, and 14 deg for the last two applications) in high tire-road friction 

conditions, from an initial speed of 80 km/h, at a constant wheel torque demand of 1000 

Nm. Table 4.2.4 reports the results for  Passive’ and  TV NMPC + PI w/FB’, where the latter 

is implemented with 𝑇𝑠 =  16 ms, 𝑁  = 3, and optimised cost function weights, see Table 

4.2.2.  
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Table 4.2.4 – Analysis of controller performance sensitivity to vehicle mass and yaw mass moment of 

inertia. 

Configuration KPI TV NMPC+PI w/ FB Passive 𝐼 (%) 

𝑚 = 2252 kg 
𝐽𝑧 = 4825 kgm2 

𝑅𝑀𝑆𝐸𝛥𝜓̇ (deg/s) 2.87 16.59 82.70 

𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥  (deg) 4.76 22.49 78.84 

𝑚 = 3002 kg 
𝐽𝑧 = 4825 kgm2 

𝑅𝑀𝑆𝐸𝛥𝜓̇ (deg/s) 3.50 36.32* 90.36 

𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥  (deg) 5.23 79.71* 93.44 

𝑚 = 2252 kg 
𝐽𝑧 = 6432 kgm2 

𝑅𝑀𝑆𝐸𝛥𝜓̇ (deg/s) 3.55 10.15 65.02 

𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥  (deg) 5.04 13.09 61.50 

𝑚 = 3002 kg 
𝐽𝑧 = 6432 kgm2 

𝑅𝑀𝑆𝐸𝛥𝜓̇ (deg/s) 4.02 38.36* 89.52 

𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥  (deg) 5.42 82.33* 93.42 

*: The vehicle does not complete the manoeuvre as it spins. 

Table 4.2.4 includes 𝑅𝑀𝑆𝐸𝛥𝜓̇, 𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥, and 𝐼, i.e., the percentage reduction of the considered 

indicator brought by the controller: 

𝐼 =
𝐾𝑃𝐼𝐶 − 𝐾𝑃𝐼𝑃

𝐾𝑃𝐼𝑃
∙ 100 (4.2.48) 

where 𝐾𝑃𝐼𝐶   is the KPI for the controlled configuration, whilst 𝐾𝑃𝐼𝑃  is the KPI for the 

passive configuration with the same inertial parameters. The main observations are: i) 

w.r.t. the corresponding passive configuration,  TV NMPC+PI w/FB’ significantly reduces 

𝑅𝑀𝑆𝐸𝛥𝜓̇  and 𝛼𝑟𝑒𝑎𝑟
𝑚𝑎𝑥   across the parametrisations, i.e., by at least by 65% and 61%; ii)  TV 

NMPC+PI w/FB’ shows a consistently safe vehicle response, with magnitude of the rear 

axle sideslip angle peaks below 5.5 deg; and iii)  Passive’ cannot complete the manoeuvre 

in the second and fourth test, because of vehicle spinning, which highlights the crucial 

stabilising function of the direct yaw moment controller. Comparable results were 

observed for the other controller configurations. 
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4.2.6 CONCLUDING REMARKS 

This study presented a comparison among five real-time implementable nonlinear model 

predictive control (NMPC) strategies for torque-vectoring and traction control, one of 

them based on a centralised architecture, and the other four using a multi-layer approach, 

in which the top layer is responsible for the vehicle-level control aspects in terms of yaw 

rate tracking and sideslip angle limitation through torque-vectoring, and the bottom layer 

deals with the longitudinal slip control of the individual tires. For the multi-layer 

implementations, the analysis considered NMPC prediction models with and without 

wheel dynamics, as well as the presence or absence of torque feedback from the 

proportional integral (PI) wheel slip controllers to the NMPC torque-vectoring algorithm. 

For fairness of comparison, all strategies were assessed with the same NMPC weights, and 

also with optimised weights obtained through an automated calibration routine.  

The simulation analysis, focused on extreme accelerating-while-turning manoeuvres in 

transient steering conditions, brought the following main conclusions: 

• All proposed real-time implementations enable a major vehicle response 

enhancement w.r.t. the vehicle configuration without controllers, also in case of 

significant parameter variations. 

• For the same controller implementation step (𝑇𝑠) and prediction horizon (𝐻𝑝), the 

vehicle dynamics results of the centralised and multi-layer architectures are almost 

comparable, but the average execution time is significantly lower for the multi-layer 

one, thanks to the reduced complexity of its optimisation problem, and the lower 

number of control inputs and states. 

• For enhancing performance without significantly penalising the computational 

effort, in all considered strategies it is more convenient to reduce 𝑇𝑠 than to extend 

𝐻𝑝.  

• Among the real-time configurations with optimised weights, the centralised 

architecture is at the top of the ranking, followed by the multi-layer one including 

wheel dynamics as well as torque feedback. Nevertheless, the calibration cost 

function value (𝐽𝐾𝑃𝐼) of the latter is substantially aligned with that of the centralised 

one.  

• Although limiting the peaks of slip ratio very effectively, the real-time 

implementation of the centralised architecture generates longitudinal slip 

oscillations that are absent in the multi-layer architectures, because of their lower 

𝑇𝑠 values (e.g., 𝑇𝑠 = 27 and 16 ms, respectively for the real-time centralised and best 

multi-layer configurations). 

• For the test cases using the same NMPC cost function weights in all controller 

configurations, the best lateral vehicle control performance and the minimum 

value of 𝐽𝐾𝑃𝐼 are obtained by the multi-layer architecture with wheel dynamics and 

torque feedback, which overtakes the centralised one. In general, in comparison 
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with the centralised architecture, the real-time implemented multi-layer set-ups 

provide more robust performance w.r.t. their calibration parameters. 

• In the specific tests implying concurrent interventions of the torque-vectoring and 

wheel slip control functions, it is more beneficial for the multi-layer architectures 

to include the wheel dynamics, rather than the torque feedback from the wheel slip 

control layer, although the latter approximately halves the root mean square value 

of the direct yaw moment generation error. 
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4.3 TORQUE-VECTORING 

4.3.1 STATE-OF-THE-ART 

The response of car-trailer systems in high-speed conditions can be affected by significant 

oscillations and stability issues, which are very difficult to control also for experienced 

drivers, and cause safety-critical scenarios. For example, depending on the vehicle 

parameters and operating conditions, car–trailer systems can become prone to jack-

knifing and snaking. The insurgence of the hitch angle dynamics is facilitated by specific 

sets of trailer parameters, which vary with the payload. The dominant factors affecting 

lateral stability are the trailer yaw mass moment of inertia, the longitudinal position of the 

trailer centre of gravity, the location of the hitch joint, and the position of the trailer axle/s, 

while the trailer mass alone does not significantly affect high-speed stability [1]. Trailer 

oscillations can be mitigated through appropriate controllers. Several studies from the 

literature apply the control action only to the towing vehicle. For example, in Gerum et al. 

[2] braking torques are generated on the rear wheels of the tractor, to produce the direct 

yaw moment computed by an adaptive controller supported by an adaptive observer for 

hitch angle and hitch rate estimation. In [3] Mokhiamar and Abe propose two sliding mode 

formulations for direct yaw moment control, one based on the sideslip angle and the other 

one on the yaw rate of the towing vehicle. In [4] Deng and Kang compare multiple 

feedback controllers, which, starting from the hitch angle and hitch rate of the trailer, or 

on the yaw rate and lateral velocity of the towing vehicle, or the combination of the 

previous variables, generate a reference steering angle for the rear wheels of the car. Other 

authors only consider actuators located on the trailer. In this respect, in [5] Fernández and 

Sharp use the measured hitch angle and its time derivative to calculate asymmetric 

braking pressure demands for a caravan, to limit its sway. In [6] Plöchl et al. propose a 

sliding mode controller that calculates a corrective direct yaw moment actuated by the 

trailer brakes, starting from the yaw rates of the trailer and tractor. In [7] Sun et al. 

investigate an active trailer differential braking controller based on a linear quadratic 

regulator (LQR) and highlight that its integration with an active car differential braking 

controller would further improve the lateral stability of the car–trailer combination. In [8] 

Shamim et al. compare three stability control methods for car–trailer systems, namely 

active trailer braking, active trailer steering, and a variable geometry approach based on 

the active control of the lateral displacement of the car–trailer hitch joint. The results show 

that active trailer braking control has the best capability of rejecting external disturbances 

and maintaining stable operation of the car–trailer combination at high speeds. In [9] 

MacAdam et al. discuss a simple brake control algorithm to reduce the rearward 

amplification (RWA) in doubles and triples combination trucks, with a modular layout that 

can be implemented on a trailer-by-trailer basis. In [10] Milani et al. propose three LQR 

formulations to improve articulated heavy vehicle (AHV) manoeuvrability and stability 

through active semitrailer steering and anti-roll control, where the state feedback is based 

on the roll angle, roll rates, yaw rates and sideslip angles of the vehicle units. In [11] 



4. NONLINEAR MODEL PREDICTIVE CONTROL  95 

 
 

Tabatabaei Oreh et al. discuss an active steering system for the trailer, based on fuzzy logic 

control, to track a reference hitch angle based on a novel formulation. References [12] and 

[13] deal with active trailer steering controllers for AHVs, based on LQRs including hitch 

angle feedback. In [14] the LQR approach, in this case based on state feedback using the 

yaw rate and lateral slip speed of each vehicle unit, is robustified through the 

implementation of a linear-matrix-inequality-based method. Islam et al. [15] present a 

parallel design optimisation method for AHVs with active safety systems, which 

simultaneously optimises the active design variables of the controllers and passive design 

variables of the trailers in a single loop. A few studies compare actuation solutions located 

on the towing vehicle, the trailer, or both. One of the main conclusions is that if the 

dynamic coupling between the towing vehicle and trailer is weak, then a leading unit 

based controller may not be effective to suppress violent trailer oscillations in critical 

conditions [16]. However, this does not have general validity. For example, Abroshan et al. 

[17] present a model predictive controller (MPC) for the yaw stabilisation of an articulated 

vehicle capable of differential braking actuated either on the trailer or the tractor, where 

the latter – for the specific vehicle – is the more effective solution. This outcome is 

confirmed by Zhang et al. [18], who propose a reconfigurable MPC architecture for 

articulated vehicle stabilisation, which is tested on an electrified car–trailer combination 

capable of multiple direct yaw moment generation options. In [19] Wang et al. highlight 

the benefits of the concurrent control of tractor and trailer, with respect to the control of 

the individual units, by applying a proportional integral derivative (PID) direct yaw 

moment controller to a single-track articulated vehicle model. The current industrial 

solution adopted in the stability controllers of passenger cars is to include trailer sway 

mitigation algorithms without any dedicated system to measure or estimate the hitch 

angle or yaw rate of the trailer [20], [21]. According to this approach, the yaw rate error of 

the car is subjected to band-pass filtering to obtain a signal in the typical frequency range 

of the trailer resonance. When this variable exceeds a threshold, critical trailer behaviour 

can be inferred, and appropriate control action is applied through the braking system of 

the car [22]. While the method can be effective in addressing the persistent oscillations of 

snaking at high speed, its benefits are very limited in the compensation of trailer sway 

caused by extreme transient steering applications, e.g. typical of obstacle avoidance or 

emergency manoeuvring. A simple yet effective commercially available solution is 

represented by the ATC system by AL-KO [23], which provides emergency braking 

functionality to the trailer, and is activated automatically if the vehicle combination 

experiences stability issues, i.e. if the swinging of the trailer reaches a critical level. The 

simulation and experimental analysis in [24] compares a conventional yaw rate based 

commercial trailer sway mitigation algorithm with a feedback control formulation 

correcting the yaw rate error with a hitch angle error contribution in case of major trailer 

oscillations in car–trailer combinations. The results show the potentially significant active 

safety benefits of direct hitch angle control, with respect to the production yaw rate 

focused strategies. Moreover, as the recent literature discusses several methods for hitch 
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angle estimation or measurement, e.g. through model-based techniques or ultra-sonic 

sensors or vision systems located on the rear end of the towing vehicle [25]–[31], the 

additional complexity related to the on-board acquisition of the hitch angle information 

could soon become industrially viable. While in production passenger cars the trailer sway 

control function is actuated through the friction brakes, in next generation electric 

vehicles with multiple motors, the corrective direct yaw moment could be implemented 

through individual motor control, i.e. through torque-vectoring (TV) [24], thus providing 

enhanced tracking performance and progressivity as well as reduced power losses. MPC 

is gaining increasing attention for advanced vehicle dynamics control. For example, the 

path tracking controller of the automated articulated agricultural vehicle in [32] uses a 

nonlinear kinematic model, and, although providing excellent results for the specific 

application, neglects the axle slip angles, which are of the essence in road vehicles for 

capturing the hitch angle dynamics in emergency conditions. In the context of trailer sway 

control, the available pioneering implementations in [17], [18] and [33] are based on linear 

time-varying MPC, i.e. the internal vehicle model, and in particular its tyre model, is 

linearised at each time step, and its parametrisation is kept constant along the prediction 

horizon. This simplified prediction model is an extension of the well-known two-degree-

of-freedom linear bicycle model for rigid vehicles. The benefit is a reduction of the 

computational effort for the solution of the optimal control problem, while still providing 

good vehicle stabilisation capability. The drawbacks are: (a) the potentially reduced 

performance, as the control input is expressed in terms of reference yaw moment, and 

therefore the prediction model does not account for the interaction between longitudinal 

and lateral tyre forces, see also the analysis in [34] on the significance of the internal model 

features on stability control performance in rigid vehicles; (b) the exclusion of the wheel 

dynamics from the internal model formulation, which does not allow the implementation 

of integrated wheel slip control; (c) the need for the continuous and precise information 

on the current value of the axle cornering stiffness, which implies additional estimation 

complexity, with respect to the estimation of the tangential tyre forces and slip angles; and 

(d) limitations with respect to the future development of MPC formulations considering 

longer prediction horizons, within which the linearisation approximation would not be 

reliable any longer. In fact, in the next generation of pre-emptive stability controllers for 

connected vehicles, see [35], the future steering inputs and reference state profiles, e.g. the 

reference yaw rate, could be approximately known a priori, and thus the extension of the 

prediction horizon would bring evident vehicle stabilisation improvements, provided that 

the internal model can accurately predict the vehicle system dynamics for the range of 

conditions within the selected horizon. In summary, to the best of our knowledge, none 

of the previous studies proposes hitch angle controllers based on nonlinear model 

predictive control (NMPC) technology, which is becoming real-time implementable, see 

the examples in [36]–[38], thanks to the development of dedicated computationally 

efficient solvers [39], and the progressive improvement of automotive control hardware. 

This chapter targets the identified gap, through the following contributions: 
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• Four NMPC formulations for an electric car with front individually controlled 

powertrains and towing a passive single-axle trailer, including continuous control 

of the yaw rate of the car as well as sideslip angle and hitch angle limitation in 

emergency conditions. 

• The objective comparison of the performance of the proposed trailer sway 

mitigation algorithms with that of a benchmarking TV formulation designed for the 

control of the car on its own. All configurations are tuned through an optimisation 

routine and assessed through an experimentally validated vehicle model. 

• The assessment of the sensitivity of controller performance to the variation of the 

trailer parameters, without varying the controller or prediction model parameters. 

The chapter is organised as follows: Section 4.3.2 discusses the controller formulations; 

Section 4.3.3 describes the simulation environment, and the controller implementation 

and tuning details; Section 4.3.4 presents the controller comparison results; finally, 

Section 4.3.5 summarises the main conclusions. 
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4.3.2 CONTROLLER FORMULATIONS 

4.3.2.1 Reference yaw rate and hitch angle 

In the specific implementation of this study, for the control of the car yaw rate and hitch 

angle dynamics, in accordance with the common practices of vehicle stability control [40], 

[41], the reference variables correspond to the steady-state cornering condition of the 

vehicle, for the given driver inputs. The dynamic instability of the car–trailer combination 

is identified when the actual response significantly differs from the steady-state 

conditions. The nonlinear map of the steady-state reference yaw rate of the towing car, 

𝜓̇𝑑,𝑆𝑆, is designed to match the steady-state cornering response of the passive (i.e. without 

TV) rigid vehicle, and is expressed as a function of steering angle, 𝑆𝑊, vehicle speed, 𝑉, 

and tyre-road friction coefficient, 𝜇 , see the extract in Figure 4.3.1. In the online 

implementation of the controller, 𝜓̇𝑑,𝑆𝑆 is filtered through a first-order transfer function to 

obtain the car reference yaw rate, 𝜓̇𝑑. It was verified that the controller can successfully 

operate even if the reference yaw rate for the car is not accounting for the interaction 

between trailer and car, which is, however, considered in the internal model described in 

the remainder for three of the proposed NMPC formulations, and through the hitch angle 

feedback. Figure 1 compares the steady-state yaw rate generated with the rigid vehicle, 

used as reference yaw rate for the car–trailer combination, and the actual steady-state yaw 

rate of the car–trailer combination, in case of trailer A (see Table 4.3.1 in Section 4.3.3.2). 

The presence of the trailer increases the vertical tyre load on the rear axle of the car and 

transmits lateral and longitudinal forces to the towing vehicle through the hitch joint. The 

result is an increase of the corresponding rear axle slip angles, and thus a reduction of the 

level of vehicle understeer, with increased yaw rate values of the car for given 𝑆𝑊 and 𝑉. 

However, the car yaw rate for the car–trailer combination is not significantly different from 

the yaw rate of the rigid vehicle, which means that the results presented in the remainder 

are acceptable. Moreover, it was verified through specific simulations that the inclusion 

of the reference yaw rate of the car–trailer combination would bring worse results in terms 

of hitch angle stability, given the marginally larger magnitude of the yaw rate of the 

combination vehicle. The conclusion is that the considered approximation is not only 

acceptable, but also safe and conservative. In the proposed formulations, the reference 

yaw rate mainly targets the control of the cornering behaviour of the car when the hitch 

angle dynamics are not critical, similarly to the operation of typical stability controllers or 

TV controllers for rigid vehicles, while the trailer sway mitigation function is mainly 

achieved through hitch angle feedback. Similarly to [24], the reference hitch angle, 𝜃𝑑, is 

obtained from the differential equation describing the hitch dynamics at constant 𝑉 , 

under the assumption of kinematic steering conditions, i.e. with zero axle slip angles: 

𝜃̇ =
𝑉

𝐿𝑇𝑂𝑇
{
𝐿𝑇𝑂𝑇
𝐿𝑇𝑂𝑇,𝑇

sin(𝜃) + [
𝑐 − 𝐿𝑅
𝐿𝑇𝑂𝑇

cos(𝜃) + 1] tan (𝑆𝑊)} (4.3.1) 

where 𝜃̇  is the time derivative of the hitch angle 𝜃  , defined as the angle between the 

longitudinal axes of the towing vehicle and trailer, see the schematic and nomenclature in 
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Figure 4.3.2; 𝐿𝑇𝑂𝑇 is the wheelbase of the towing car, while 𝐿𝑅 is its rear semi-wheelbase; 𝑐 

is the longitudinal distance between the centre of gravity of the car (𝐶𝐺) and the hitch joint; 

and 𝐿𝑇𝑂𝑇,𝑇 is the distance between the hinge and the rear axle of the trailer. By imposing 

𝜃̇ = 0 in (4.3.1), 𝜃𝑑 is obtained as: 

𝜃𝑑 = tan−1(
tan(𝑆𝑊)[𝐿𝑇𝑂𝑇

2 𝐿𝑇𝑂𝑇,𝑇+[𝑐−𝐿𝑅]√tan2(𝑆𝑊) 𝐿𝑇𝑂𝑇
2 [𝑐−𝐿𝑅]2−tan2(𝑆𝑊)𝐿𝑇𝑂𝑇

2 𝐿𝑇𝑂𝑇,𝑇
2 +𝐿𝑇𝑂𝑇

4 ]

𝐿𝑇𝑂𝑇[−tan2(𝑆𝑊)𝐿𝑇𝑂𝑇,𝑇[𝑐−𝐿𝑅]+√tan2(𝑆𝑊) 𝐿𝑇𝑂𝑇
2 [𝑐−𝐿𝑅]2−tan2(𝑆𝑊)𝐿𝑇𝑂𝑇

2 𝐿𝑇𝑂𝑇,𝑇
2 +𝐿𝑇𝑂𝑇

4 ]
) (4.3.2) 

 

 

 

 

Figure 4.3.1: Steady-state yaw rate as a function of steering angle and vehicle speed, for high tyre-road 
friction conditions, obtained during ramp steer tests with the car (these profiles were used for the 

steady-state reference yaw rate map in the controller implementations of this study) and the car-trailer 
combination 
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4.3.2.2 Internal model formulation 

The equations of the car–trailer body dynamics of the NMPC internal model – also called 

prediction model – were obtained through the Lagrange method, which, in the specific 

case, is expressed through the formulation in [42], to obtain the system dynamics in the 

reference frame of the towing car (𝑥𝑦): 

𝜕

𝜕𝑡
(
𝜕𝑇

𝜕𝑤
) + 𝐴𝑇 {𝐴̇ − [𝑤𝑇𝐴𝑇

𝜕𝐴

𝜕𝑞𝑙
 ]}
𝜕𝑇

𝜕𝑤
− 𝐴𝑇

𝜕𝑇

𝜕𝑞𝑙
+
𝜕𝐹

𝜕𝑤
= 𝐴𝑇𝑄𝑙  (4.3.3) 

where 𝑡  is time; 𝑇  is the kinetic energy of the system; 𝑤 = [𝑉𝑥, 𝑉𝑦, 𝜓̇, 𝜃̇]
𝑇
  is the vector of 

generalised velocities, in which 𝑉𝑥 and 𝑉𝑦 are the longitudinal and lateral components of 

the vehicle velocity 𝑉 , and 𝜓̇  is the car yaw rate; 𝐹 =  0.5Γ𝜃̇2  is the Rayleigh dissipation 

function, which is used to approximate viscous or friction effects in the hitch joint, with Γ 

being the damping coefficient of the hinge; 𝑞𝑙 , with 𝑙  = 1,…,4, indicates the individual 

generalised coordinates of the Lagrange formulation, which form the vector 𝑞 =

 [𝑋𝐶𝐺 , 𝑌𝐶𝐺 , 𝜓 , 𝜃 ]
𝑇  , with 𝑋𝐶𝐺  and 𝑌𝐶𝐺 being the coordinates of the centre of gravity of the 

towing vehicle (i.e. the car) in the inertial reference frame; 𝑄𝑙 indicates the corresponding 

generalised forces, 𝐹𝑋 and 𝐹𝑌 , in the inertial reference frame, and the moments related to 

the rotations 𝜓 and 𝜃; and 𝐴 is the rotation matrix from the towing vehicle reference frame 

(𝑥𝑦) to the inertial reference frame (𝑋𝑌), such that 𝑤 = 𝐴𝑇𝑞̇. According to this approach, 

the kinetic energy of the system can be expressed as a function of 𝑤: 

 

Figure 4.3.2: Simplified top view of the car-trailer system with the adopted nomenclature 
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𝑇 =
1

2
𝑀[𝑉𝑥

2 + 𝑉𝑦
2] +

1

2
𝐽1(𝜃)𝜓̇

2 +
1

2
𝐽3𝜃̇

2 − 𝐽2(𝜃)𝜓̇𝜃̇

− 𝑚𝑇𝑉𝑦{𝑐𝜓̇𝐿𝐹,𝑇[𝜓̇ − 𝜃̇] cos(𝜃) − 𝑚𝑇𝑉𝑥𝐿𝐹.𝑇[𝜓̇ − 𝜃̇] sin(𝜃)}  
(4.3.4) 

where 𝑀 = 𝑚+𝑚𝑇  is the total mass of the vehicle-trailer combination; 𝑚𝑇 is the mass of 

the trailer; 𝐿𝐹,𝑇  is the distance between the hinge and the centre of gravity of the trailer; 

and 𝐽1(𝜃), 𝐽2(𝜃) and 𝐽3 are equivalent mass moments of inertia, defined as: 

𝐽1(𝜃) = 𝐽𝑍 + 𝐽𝑇 +𝑚𝑇[𝐿𝐹,𝑇
2 + 𝑐2 + 2𝐿𝐹,𝑇𝑐 𝑐𝑜𝑠(𝜃)]  (4.3.5) 

𝐽2(𝜃) = 𝐽𝑇 +𝑚𝑇[𝐿𝐹,𝑇
2 + 𝐿𝐹,𝑇𝑐 𝑐𝑜𝑠(𝜃)] (4.3.6) 

𝐽3 = 𝐽𝑇 +𝑚𝑇𝐿𝐹,𝑇
2  (4.3.7) 

where 𝐽𝑍 and 𝐽𝑇  are the yaw mass moments of inertia of the car and trailer. The generalised 

forces and moments in the car reference frame, 𝐴𝑇𝑄𝑙, are obtained through D’Alembert’s 

principle, according to which the total virtual work, 𝛿𝐿, is defined as: 

𝛿𝐿 =∑𝐹𝑛𝛿𝑙𝑖𝑛,𝑛 +

𝑛

∑𝑀𝑛𝛿𝑎𝑛𝑔,𝑛
𝑛

 (4.3.8) 

where 𝐹𝑛  and 𝑀𝑛  indicate the virtual forces and moments; and 𝛿𝑙𝑖𝑛,𝑛  and 𝛿𝑎𝑛𝑔,𝑛  are the 

relevant components of the linear and angular displacements. The main sources of virtual 

work are the longitudinal and lateral tyre forces of the car and the trailer, which, in the 

remainder, are referred to as 𝐹𝑥,𝑖𝑗  and 𝐹𝑦,𝑖𝑗 , where the subscript 𝑖 =  𝐹, 𝑅, 𝑇  indicates the 

front or rear axles of the car, or the trailer axle, and j = L, R indicates the left or right vehicle 

sides. For the derivation of the virtual work, 𝐹𝑥,𝐹𝑗  and 𝐹𝑦,𝐹𝑗 are projected along the axes of 

the 𝑥𝑦 reference system of the car, according to the steering angle 𝑆𝑊, while, under the 

assumption of zero toe angle, 𝐹𝑥,𝑅𝑗, 𝐹𝑦,𝑅𝑗, 𝐹𝑥,𝑇𝑗 and 𝐹𝑦,𝑇𝑗, are already aligned with the axes 

of the coordinate systems of the respective vehicle, and therefore do not need any 

manipulation. The resulting forces are multiplied by the longitudinal and lateral virtual 

displacements of the car corners, 𝛿𝑥𝑖𝑗 and 𝛿𝑦𝑖𝑗, and trailer corners, 𝛿𝑥𝑇𝑗and 𝛿𝑦𝑇𝑗, expressed 

in the respective vehicle unit reference frames: 

{
 
 

 
 

𝛿𝑥𝑖𝑗 = 𝛿𝑥 − 𝑦𝑖𝑗𝛿𝜓, 𝑖 = 𝐹, 𝑅

𝛿𝑦𝑖𝑗 = 𝛿𝑦 − 𝑥𝑖𝑗𝛿𝜓, 𝑖 = 𝐹, 𝑅

𝛿𝑥𝑇𝑗 = 𝛿𝑥 cos(𝜃) − 𝛿𝑦 sin(𝜃) + 𝑐𝛿𝜓 sin(𝜃) − 𝑦𝑇𝑗[𝛿𝜓 − 𝛿𝜃]

𝛿𝑦𝑇𝑗 = 𝛿𝑥 sin(𝜃) − 𝛿𝑦 cos(𝜃) − 𝑐𝛿𝜓 cos(𝜃) − 𝐿𝑇𝑂𝑇,𝑡[𝛿𝜓 − 𝛿𝜃]

 (4.3.9) 

where the notation 𝛿 refers to a generic virtual displacement; 𝑥𝑖𝑗 and 𝑦𝑖𝑗 (𝑖 = 𝐹, 𝑅) are the 

longitudinal and lateral coordinates of the 𝑖𝑗 wheel of the car, in the 𝑥𝑦 system; and 𝑦𝑇𝑗 is 

the lateral coordinate of the 𝑗 wheel of the trailer, in the 𝑥𝑇𝑦𝑇 reference system. The tyre 

self alignment moments are neglected in the prediction model formulations. The terms 

𝐴𝑇𝑄𝑙  are obtained by differentiating the virtual work with respect to the virtual 

displacements 𝛿𝑥, 𝛿𝑦, 𝛿𝜓 and 𝛿𝜃: 

𝐴𝑇𝑄𝑙 =
𝜕𝛿𝐿

𝜕𝛿𝑞𝑙
 (4.3.10) 

The resulting equations of motion are: 
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• Longitudinal vehicle dynamics equation 

𝑀[𝑉̇𝑥 − 𝜓̇𝑉𝑦] − 𝑚𝑇𝐿𝐹,𝑡[𝜓̈ − 𝜃̈] sin(𝜃) − 2𝑚𝑇𝐿𝐹,𝑇𝜓̇𝜃̇ cos(𝜃) + 𝑚𝑇𝐿𝐹,𝑇𝜃̇
2 cos(𝜃)

+ 𝑚𝑇𝜓̇
2[𝑐 + 𝐿𝐹,𝑇 cos(𝜃)]

= [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] cos(𝑆𝑊) − [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] sin(𝑆𝑊) + 𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅

+ ∑  

𝑗=𝐿,𝑅

[𝐹𝑥,𝑇𝑗 cos(𝜃) + 𝐹𝑦,𝑇𝑗 sin(𝜃)] − 𝐹𝑑𝑟𝑎𝑔 

(4.3.11) 

where 𝐹𝑑𝑟𝑎𝑔 is the equivalend aerodynamic drag force of the vehicle comination, for 

simplicity considered along the longitudinal axis of the car. 

• Lateral vehicle dynamics equation 

𝑀[𝑉̇𝑦 + 𝜓̇𝑉𝑥] − 𝑚𝑇𝜓̈[𝑐 + 𝐿𝐹,𝑇 cos(𝜃)] + 𝑚𝑇𝑙𝐹,𝑇𝜃̈ cos(𝜃) − 𝑚𝑇𝐿𝐹,𝑇 sin(𝜃) [𝜓̇ − 𝜃̇]
2

= [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝑆𝑊) + [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝑆𝑊) + [𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

+ ∑  

𝑗=𝐿,𝑅

[−𝐹𝑥,𝑇𝑗 sin(𝜃) + 𝐹𝑦,𝑇𝑗 cos(𝜃)] 
(4.3.12) 

• Yaw dynamics equation 

𝐽1(𝜃)𝜓̈ − 𝐽2(𝜃)𝜃̈ + 𝑚𝑇𝐿𝐹,𝑇𝐶 sin(𝜃) [𝜃̇
2 − 2𝜃̇𝜓̇] − 𝑚𝑇𝐿𝐹,𝑇 sin(𝜃) [𝑉̇𝑥 − 𝑉𝑦𝜓̇]

− 𝑚𝑇[𝑉̇𝑦 + 𝑉𝑥𝜓̇][𝐶 + 𝐿𝐹,𝑇 cos(𝜃)]

= 𝐿𝐹{[𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝑆𝑊) + [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝑆𝑊)}

− 𝐿𝑅[𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

+ 
𝑑𝐹
2
{[𝐹𝑦,𝐹𝐿 − 𝐹𝑦,𝐹𝑅] sin(𝑆𝑊) + [𝐹𝑥,𝐹𝑅 − 𝐹𝑥,𝐹𝐿] cos(𝑆𝑊)}  

+
𝑑𝑅
2
[𝐹𝑥,𝑅𝑅 − 𝐹𝑥,𝑅𝐿]

+ ∑  

𝑗=𝐿,𝑅

{𝐹𝑥,𝑇𝑗[𝑐 sin(𝜃) − 𝑦𝑇𝑗] + 𝐹𝑦,𝑇𝑗[−𝑐 cos(𝜃) − 𝐿𝑇𝑂𝑇,𝑡 ]} 

(4.3.13) 

where 𝐿𝐹 is the front semi-wheelbase of the car; and 𝑑𝐹 and 𝑑𝑅 are its front and rear 

track widths. 

• Hitch dynamics equation 

𝐽3𝜃̈ − 𝐽2(𝜃)𝜓̈ + 𝑚𝑇𝐿𝐹,𝑇 cos(𝜃) [𝑉𝑦̇ + 𝑉𝑥𝜓̇] + 𝑚𝑇𝐿𝐹,𝑇 sin(𝜃) {𝑉𝑥̇ − 𝜓̇[𝑉𝑦 − 𝑐𝜓̇]}

= ∑  

𝑗=𝐿,𝑅

[𝐹𝑥,𝑇𝑗𝑦𝑇𝑗 + 𝐹𝑦,𝑇𝑗𝐿𝑇𝑂𝑇,𝑇] −  Γ𝜃̇ (4.3.14) 

The wheel moment balance equations, which were obtained outside the Lagrange 

formulation because of their simplicity are: 

𝐼𝑤,𝐹𝜔̇𝐹𝑗 = 𝜏𝑚,𝐹𝑗 − 𝜏𝑏,𝐹𝑗 − 𝐹𝑥,𝐹𝑗𝑅 − 𝑓𝐹𝑧,𝐹𝑗𝑅 

𝐼𝑤,𝑅𝜔̇𝑅𝑗 = −𝜏𝑏,𝑅𝑗 − 𝐹𝑥,𝑅𝑗𝑅 − 𝑓𝐹𝑧,𝑅𝑗𝑅 

𝐼𝑤,𝑇𝜔̇𝑇𝑗 = −𝜏𝑏,𝑇𝑗 − 𝐹𝑥,𝑇𝑗𝑅 − 𝑓𝐹𝑧,𝑇𝑗𝑅 
(4.3.15) 

Where 𝐼𝑤,𝐹, 𝐼𝑤,𝑅 and 𝐼𝑤,𝑇  are the wheel mass moments of inertia on the front and rear axles 

of the car, and the trailer axle; 𝜏𝑚,𝐹𝑗  is the electric powertrain torque at the wheel, which is 

present only on the front axle of the car given the front-wheel-drive architecture of the 

vehicle; 𝜏𝑏,𝑖𝑗is the braking torque, which, in this study focused on traction conditions, is 

considered as an external input; 𝐹𝑧,𝑖𝑗  is the vertical tyre load; 𝑅 is the laden wheel radius; 
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and 𝑓 is the rolling resistance coefficient. In (4.3.11)–(4.3.15), the longitudinal and lateral 

tyre forces are calculated with the Pacejka Magic Formula version in [43], starting from the 

tyre slip ratio, slip angle and vertical load, and including consideration of combined slip 

effects. The slip angles of the car (𝛼𝑖𝑗, with 𝑖 = 𝐹, 𝑅)and the trailer (𝛼𝑇𝑗) are given by: 

𝛼𝑖𝑗 = tan−1 (
𝑉𝑦 + 𝑥𝑖𝑗𝜓̇

𝑉𝑥 − 𝑦𝑖𝑗𝜓̇
) − 𝑘1𝑆𝑊 , for 𝑖 ) 𝐹, 𝑅,where k1 = {

1 𝑖𝑓 𝑖 = 𝐹
0 𝑖𝑓 𝑖 = 𝑅

 

𝛼𝑇𝑗= tan
−1 (

𝑉𝑥 sin(𝜃)+𝑉𝑦 cos(𝜃)−𝑐𝜓̇ cos(𝜃)−𝐿𝑇𝑂𝑇,𝑇[𝜓̇−𝜃̇]

𝑉𝑥 cos−𝑉𝑦 sin(𝜃)+𝑐𝜓̇ sin(𝜃)−𝑦𝑇𝑗[𝜓̇−𝜃̇]
) 

(4.3.16) 

The vertical tyre loads, 𝐹𝑧,𝑖𝑗 , are obtained as the sum of the static loads, 𝐹𝑧,𝑠,𝑖𝑗 , the 

longitudinal load transfers, Δ𝐹𝑧,𝑙𝑜𝑛𝑔,𝑖, and the lateral load transfers, Δ𝐹𝑧,𝑙𝑎𝑡,𝑖: 

𝐹𝑧,𝑖𝑗 = 𝐹𝑧,𝑠,𝑖𝑗 +  Δ𝐹𝑧,𝑙𝑜𝑛𝑔,𝑖 + 𝑘2 Δ𝐹𝑧,𝑙𝑎𝑡,𝑖, where 𝑘2 = {
1 𝑖𝑓 𝑗 = 𝐿
−1 𝑖𝑓 𝑗 = 𝑅

 (4.3.17) 

Δ𝐹𝑧,𝑙𝑜𝑛𝑔,𝑖  and Δ𝐹𝑧,𝑙𝑎𝑡,𝑖   are computed through steady-state equations based on the system 

geometry and roll stiffness distribution, and are considered to be directly proportional to 

the measured longitudinal and lateral accelerations of the towing car, 𝑎𝑥 and 𝑎𝑦, and the 

estimated longitudinal and lateral accelerations of the centre of gravity of the trailer, 𝑎𝑥,𝑇 

and 𝑎𝑦,𝑇, which are assumed constant to the purpose of the NMPC prediction. Hence, also 

the resulting Δ𝐹𝑧,𝑙𝑜𝑛𝑔,𝑖  and Δ𝐹𝑧,𝑙𝑎𝑡,𝑖  remain constant along the prediction horizon. In 

particular, the terms Δ𝐹𝑧,𝑙𝑎𝑡,𝑖, which are especially relevant in the considered manoeuvres, 

are computed as: 

𝛥𝐹𝑧,𝑙𝑎𝑡,𝐹

= −{
𝑚𝑎𝑦𝐿𝑅

𝐿𝑇𝑂𝑇
− [𝑚𝑇𝑎𝑥,𝑇 sin(𝜃) +

𝑚𝑇𝑎𝑦,𝑇𝐿𝑅,𝑇

𝐿𝑇𝑂𝑇,𝑇
cos(𝜃)]

𝑐 − 𝐿𝑅
𝐿𝑇𝑂𝑇

}
𝑅𝐶𝐻

𝑑𝐹

−
𝐾𝑟𝑜𝑙𝑙,𝐹 {𝑚𝑎𝑦𝐻𝑟𝑜𝑙𝑙 + [𝑚𝑇𝑎𝑥,𝑇 sin(𝜃) +

𝑚𝑇𝑎𝑦,𝑇𝐿𝑅,𝑇
𝐿𝑇𝑂𝑇,𝑇

cos(𝜃)] [𝐻ℎ𝑖𝑡𝑐ℎ − 𝑅𝐶𝐻]}

𝑑𝐹[𝐾𝑟𝑜𝑙𝑙,𝐹 + 𝐾𝑟𝑜𝑙𝑙,𝑅]
 

(4.3.18) 

𝛥𝐹𝑧,𝑙𝑎𝑡,𝑅

= −{
𝑚𝑎𝑦𝐿𝐹

𝐿𝑇𝑂𝑇
+ [𝑚𝑇𝑎𝑥,𝑇 sin(𝜃) +

𝑚𝑇𝑎𝑦,𝑇𝐿𝑅,𝑇

𝐿𝑇𝑂𝑇,𝑇
cos(𝜃)]

𝑐 + 𝐿𝐹
𝐿𝑇𝑂𝑇

}
𝑅𝐶𝐻

𝑑𝑅

−

𝐾𝑟𝑜𝑙𝑙,𝑅 {𝑚𝑎𝑦𝐻𝑟𝑜𝑙𝑙 + [𝑚𝑇𝑎𝑥,𝑇 sin(𝜃) +
𝑚𝑇𝑎𝑦,𝑇𝐿𝑅,𝑇
𝐿𝑇𝑂𝑇,𝑇

cos(𝜃)] [𝐻ℎ𝑖𝑡𝑐ℎ − 𝑅𝐶𝐻]}

𝑑𝑅[𝐾𝑟𝑜𝑙𝑙,𝐹 + 𝐾𝑟𝑜𝑙𝑙,𝑅]
 

(4.3.19) 

Δ𝐹𝑧,𝑙𝑎𝑡,𝑇 =
𝑚𝑇𝑎𝑦,𝑇𝐿𝑅,𝑇

𝑑𝑇𝐿𝑇𝑂𝑇,𝑇
𝐻ℎ𝑖𝑡𝑐ℎ −

𝑚𝑇𝑎𝑦,𝑇𝐻𝐶𝐺,𝑇

𝑑𝑇
 (4.3.20) 

where 𝑅𝐶𝐻 is the roll centre height of the suspensions of the car, for which the roll axis is 

approximated as horizontal; 𝐻𝑟𝑜𝑙𝑙 is the distance between the centre of gravity and roll axis 

of the car; 𝐻𝐶𝐺,𝑇 is the centre of gravity height of the trailer; 𝐻ℎ𝑖𝑡𝑐ℎ is the height of the hitch 

joint from the ground; and 𝐾𝑟𝑜𝑙𝑙,𝐹  and 𝐾𝑟𝑜𝑙𝑙,𝑅  are the front and rear roll stiffness of the 

suspensions of the car. Equations (4.3.11)–(4.3.20), together with the definitions of the slip 
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ratios, the tyre model, and the load transfer formulations, were re-arranged through 

symbolic computation software (MAPLE) into a nonlinear state-space formulation: 

𝑋𝑆̇ = 𝑓(𝑋𝑆(𝑡), 𝑈𝐶(𝑡)) (4.3.21) 

where 𝑋𝑆 is the state vector: 

𝑋𝑆 = [𝑉𝑥 , 𝑉𝑦, 𝜓̇, 𝜃̇, 𝜃, 𝜔𝐹𝐿 , 𝜔𝐹𝑅 , 𝜔𝑅𝐿 , 𝜔𝑅𝑅 , 𝜔𝑇𝐿 , 𝜔𝑇𝑅]
𝑇 (4.3.22) 

and 𝑈𝐶  is the control action vector: 

𝑈𝐶 = [𝜏𝑚,𝐹𝐿 , 𝜏𝑚,𝐹𝑅]
𝑇 (4.3.23) 

 

4.3.2.3 Nonlinear optimal control problem formulation 

Nonlinear model predictive control is based on the solution of an optimisation problem, 

in which the discretised internal model is used to predict the future behaviour of the 

system over a finite prediction horizon, along which the control actions are obtained to 

minimise an optimality criterion, i.e., a cost function, while satisfying an assigned set of 

constraints. Only the control actions computed for the first step of the prediction horizon 

are applied to the plant, whilst the following control inputs are discarded. Once a new set 

of states at the next time step is obtained, the whole process is repeated, and new control 

actions are determined, according to the so-called receding horizon approach [44]. The 

discrete-time formulation of the nonlinear optimal control problem is:  

min
𝑈
𝐽 (𝑍(0), 𝑈(∙)) ≔

1

2
∑ [‖𝑍𝑘 − 𝑍𝑑

𝑘‖
2

𝑄
+ ‖𝑈𝑘‖2𝑅] 

𝑁−1

𝑘=0

+ ‖𝑍𝑁 − 𝑍𝑑
𝑁‖𝑄𝑁

2  

s. t.
𝑍𝑘+1 = 𝑓𝑑  (𝑋

𝑘, 𝑈𝑘)

𝑍 ≤ 𝑍𝑘 ≤ 𝑍

𝑍 ≤ 𝑍𝑁 ≤ 𝑍

𝑈 ≤ 𝑈𝑘 ≤ 𝑈

𝑈(∙) ∶ [0, 𝑁 − 1]

 

(4.3.24) 

where 𝐽  is the cost function; 𝑍  is the output vector; 𝑈  is the control input vector, which 

includes 𝑈𝐶  and the slack variables (defined in the remainder); 𝑁 is the number of steps of 

the prediction horizon, which is equal to the control horizon in the considered 

implementations; the superscript 𝑘  indicates the discretisation step; 𝑍𝑑  is the vector of 

desired outputs, which are considered constant along the prediction horizon; 𝑍 and 𝑍 are 

the lower and upper limits for 𝑍; 𝑈 and 𝑈 are the lower and upper limits for 𝑈; and 𝑄, 𝑄𝑁 

and 𝑅 are positive semi-definite weight matrices. The following subsections 4.3.2.4–4.3.2.8 

provide the details of the considered TV controller formulations based on the general 

nonlinear optimal control problem in (24). 
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4.3.2.4 Benchmarking TV controller for rigid vehicles (𝑌𝑅𝑟𝑖𝑔) 

This controller, referred to as 𝑌𝑅𝑟𝑖𝑔 , uses the internal model of the rigid vehicle 

configuration, i.e., it excludes the trailer terms of (4.3.11)–(4.3.22), and does not consider 

the presence of the trailer in any aspect of the formulation (hence, it excludes hitch angle 

feedback). Therefore, in the remainder it is considered as the benchmarking controller. 

The objective of the formulation is to simultaneously track the desired total powertrain 

torque demand, 𝜏𝑚,𝑡𝑜𝑡,𝑑, set by a dedicated drivability module, and the reference yaw rate, 

𝜓̇𝑑, while limiting the rear axle sideslip angle, 𝛼𝑅, for stability reasons.  

The output and reference vectors are defined as: 

𝑍 = [𝜏𝑚,𝑡𝑜𝑡 , 𝜓̇ , 𝑠𝛼]
𝑇 

𝑍𝑑 = [𝜏𝑚,𝑡𝑜𝑡,𝑑 , 𝜓̇𝑑 , 0]
𝑇 (4.3.25) 

where 𝜏𝑚,𝑡𝑜𝑡 = 𝜏𝑚,𝐹𝐿 + 𝜏𝑚,𝐹𝑅 is the total motor torque demand at the wheels; and 𝑠𝛼, which 

has zero as reference value, is the slack variable used for imposing the soft constraint on 

𝛼𝑅. (4.3.26)–(4.3.29) are the constraint formulations: 

𝜏𝑚,𝐹𝑗
𝑚𝑖𝑛 ≤ 𝜏𝑚,𝐹𝑗

𝑘 ≤ 𝜏𝑚,𝐹𝑗
𝑚𝑎𝑥  (4.3.26) 

𝑠𝛼
𝑘 ≥ 0 (4.3.27) 

−𝛼𝑅
𝑚𝑎𝑥(1 + 𝑠𝛼

𝑘) ≤ 𝛼𝑅
𝑘 ≤ 𝛼𝑅

𝑚𝑎𝑥(1 + 𝑠𝛼
𝑘) (4.3.28) 

𝑃𝐵𝑎𝑡𝑡
𝑚𝑖𝑛 ≤ 𝑃𝐵𝑎𝑡𝑡

𝑘 ≤ 𝑃𝐵𝑎𝑡𝑡
𝑚𝑎𝑥  (4.3.29) 

In particular, (4.3.26) expresses the constraint in terms of upper and lower bounds on the 

motor torque demand, defined from the limits of the electric machines and the possible 

output of an external traction controller; (4.3.27) and (4.3.28) express the soft constraint 

on 𝛼𝑅 ; and (4.3.29) deals with the battery power limits, defined by 𝑃𝐵𝑎𝑡𝑡
𝑚𝑖𝑛   and 𝑃𝐵𝑎𝑡𝑡

𝑚𝑎𝑥  . The 

constraints in (4.3.26)–(4.3.29) are used also in the other NMPC formulations in Sections 

4.3.2.5–4.3.2.8, in which they are omitted for conciseness. 

4.3.2.5 TV controller for car-trailer combinations, based on a modified reference 

yaw rate formulation (𝑀𝑌𝑅𝑑,𝑟𝑖𝑔) 

This formulation, referred to as 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 , is very similar to 𝑌𝑅𝑟𝑖𝑔 , as it uses the internal 

model of the rigid vehicle. However, when the car tows a trailer, 𝜓̇𝑑 in (4.3.25) is replaced 

with a modified reference yaw rate, 𝜓̇𝑑𝑚, which is a weighted linear combination of 𝜓̇𝑑, 

and the hitch angle error ∆𝜃 = 𝜃𝑑 − 𝜃, with 𝜃𝑑 being kept constant along the prediction 

horizon:  

𝜓̇𝑑𝑚  = 𝜓̇𝑑 −𝑊𝜃(1 − 𝐾𝜃)∆𝜃 (4.3.30) 

∆𝜃 has an influence only when it exceeds pre-determined critical thresholds, according to 

the weighting factor 𝐾𝜃 that modulates the hitch angle correction: 
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𝐾𝜃 = 

{
 

 
1 if ∆𝜃 ∈ [−𝛥𝜃𝑡ℎ; 𝛥𝜃𝑡ℎ]

1 +
𝐾𝜃,𝑚𝑖𝑛 − 1

𝛥𝜃𝑡ℎ − 𝛥𝜃𝑙𝑖𝑚
[𝛥𝜃𝑡ℎ − |∆𝜃|] if ∆𝜃 ∈ [−𝛥𝜃𝑙𝑖𝑚; −𝛥𝜃𝑡ℎ] ∪ [𝛥𝜃𝑡ℎ; 𝛥𝜃𝑙𝑖𝑚]

𝐾𝜃,𝑚𝑖𝑛 if ∆𝜃 ∉ [−𝛥𝜃𝑙𝑖𝑚; 𝛥𝜃𝑙𝑖𝑚]

 (4.3.31) 

where 𝛥𝜃𝑡ℎ, 𝛥𝜃𝑙𝑖𝑚 (with 𝛥𝜃𝑙𝑖𝑚 > 𝛥𝜃𝑡ℎ) and 𝐾𝜃,𝑚𝑖𝑛 are tuning parameters. In the first case in 

(4.3.31), the controller tracks only the reference yaw rate of the car, as the hitch angle 

dynamics are not deemed critical. In the second condition in (4.3.31), the controller 

progressively blends the car yaw rate and hitch angle error contributions, i.e., the 

reference yaw rate magnitude is increased if the trailer tends to sway toward the external 

side of the curve with respect to the reference, while the opposite occurs, i.e., |𝜓̇𝑑𝑚| < |𝜓̇𝑑|, 

if the trailer tends to rotate to rotate toward the inner side of the turn. In extremely critical 

conditions, the blending uses 𝐾𝜃,𝑚𝑖𝑛 , which is a small strictly positive value that gives 

priority to hitch angle tracking, but still allows the TV controller to consider the steering 

input by the driver or the automated driving controller also during extreme oscillations of 

the trailer. Finally, 𝑊𝜃  is a constant gain that provides an extra degree of tuning and 

addresses the different dimensions of 𝜓̇𝑑 and ∆𝜃. 

4.3.2.6 TV controller based on the car-trailer model and a hitch angle error 

constraint (𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸) 

The 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸  approach uses the car-trailer model in Section 4.3.2.2 for the NMPC 

prediction, and considers a soft constraint on ∆𝜃 , which is activated only above the 

specified threshold 𝛥𝜃𝑙𝑖𝑚 , through a slack variable 𝑠𝜃 , included in the cost function. 

Therefore, 𝑍 and 𝑍𝑑 are: 

𝑍 = [𝜏𝑚,𝑡𝑜𝑡, 𝜓̇, 𝑠𝛼, 𝑠𝜃]
𝑇 

𝑍𝑑 = [𝜏𝑚,𝑡𝑜𝑡,𝑑 , 𝜓̇𝑑 , 0 ,  0]
𝑇

 
(4.3.32) 

In addition to those in (4.3.26)–(4.3.29), the control problem includes the constraints 

related to 𝑠𝜃: 

𝑠𝜃
𝑘 ≥ 0 (4.3.33) 

−𝛥𝜃𝑙𝑖𝑚(1 + 𝑠𝜃
𝑘) ≤ ∆𝜃𝑘 ≤ 𝛥𝜃𝑙𝑖𝑚(1 + 𝑠𝜃

𝑘) (4.3.34) 
where the dynamics of ∆𝜃 along the prediction horizon are generated by the prediction 

model, starting from the measured hitch angle at the current time. 

4.3.2.7 TV controller based on the car-trailer model and a hitch angle error 

function (𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛) 

The 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛  formulation uses the car-trailer model, and includes the hitch angle 

error in 𝐽, through a continuous deadband-like function, according to which the effect of 

∆𝜃 is progressively taken in account only if the predicted hitch angle error exceeds a pre-

determined threshold. 𝑍 and 𝑍𝑑 are defined as: 

𝑍 = [𝜏𝑡𝑜𝑡, 𝜓̇, ∆𝜃𝑐, 𝑠𝛼]
𝑇 (4.3.35) 
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𝑍𝑑 = [𝜏𝑡𝑜𝑡,𝑑 , 𝜓̇𝑑 , 0, 0 ]
𝑇

 

in which ∆𝜃𝑐 is the modified hitch angle error, shown in Figure 3 as a function of ∆𝜃, and 

formulated as: 

∆𝜃𝑐 = ∆𝜃 − 𝛥𝜃𝑡ℎtanh (
∆𝜃

𝛥𝜃𝑡ℎ
) (4.3.36) 

where Δ𝜃𝑡ℎ  is the hitch angle error threshold, which is constant along the prediction 

horizon, while ∆𝜃𝑐 and ∆𝜃 vary according to the prediction model dynamics. 

4.3.2.8 TV controller based on the car-trailer model and modified yaw rate error 

(𝑀𝑌𝑅𝐸) 

The 𝑀𝑌𝑅𝐸  approach modifies the yaw rate error 𝛥𝜓̇ = 𝜓̇𝑑 − 𝜓̇ , by substituting it with a 

weighted linear combination (Δ𝜓̇𝑚) of the yaw rate error and hitch angle error, where the 

latter has an influence only when it exceeds pre-determined thresholds, as shown in [24]. 

𝑍 and 𝑍𝑑 are defined as: 

𝑍 = [𝜏𝑚,𝑡𝑜𝑡, Δ𝜓̇𝑚, 𝑠𝛼]
𝑇 

𝑍𝑑 = [𝜏𝑚,𝑡𝑜𝑡,𝑑 , 0 ,  0]
𝑇

 
(4.3.37) 

where Δ𝜓̇𝑚 is given by:  

𝛥𝜓̇𝑚 = 𝐾𝜃𝛥𝜓̇ −𝑊𝜃(1 − 𝐾𝜃)𝛥𝜃 (4.3.38) 
with 𝐾𝜃 having been defined in (4.3.31). 

  

 

 

Figure 4.3.3:  𝛥𝜃𝑐  as a function of ∆𝜃, for different values of 𝛥𝜃𝑡ℎ 
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4.3.3 SIMULATION ENVIRONMENT AND CONTROLLER IMPLEMENTATION 

4.3.3.1 Simulation environment 

The simulation environment for control system performance assessment consists of the 

following functional blocks, see Figure 4.3.4: 

• The driver model, which generates the steering and accelerator pedal inputs, 𝑆𝑊 

and 𝑝𝑎, according to the considered set of manoeuvres. 

• The drivability controller, which outputs the total powertrain torque demand at the 

vehicle level, 𝜏𝑚,𝑡𝑜𝑡, starting mainly from 𝑉 and 𝑝𝑎. 

• The implicit (i.e., online) implementations of the NMPC formulations in 4.3.2.  

• The traction controller, regulating the output torques of the TV controller through 

a proportional integral (PI) controller, to prevent significant levels of wheel slip in 

traction. This control function is not described in detail, as it is never active in the 

selected manoeuvres. 

• The high-fidelity nonlinear vehicle simulation model for control system assessment, 

developed independently from the internal model of the controllers, and 

characterised by a significantly higher level of accuracy. 

The estimators of the relevant vehicle states were not included, as they are covered by a 

rather extensive literature, e.g., see [25]–[31]. 

4.3.3.2 Case study vehicle and simulation model validation 

 

 

Figure 4.3.4: Functional blocks of the simulation environment 
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The case study car is the front-wheel-drive version of the electric sport utility vehicle 

prototype with individually controlled powertrains, developed in the European projects 

E-VECTOORC and iCOMPOSE [24], see its main parameters in Table 4.3.1. The simulation 

model for control system assessment evaluates the combination of this car with three 

production trailers, referred to as trailers A–C in the remainder, with different geometric 

and inertial properties (the values in the table include the considered payload), to analyse 

the sensitivity of controller performance to the trailer parameters. The model was 

implemented in MATLAB-Simulink and includes the relevant degrees of freedom of the 

sprung masses and wheels, nonlinear suspension elasto-kinematics, as well as tyre 

nonlinearities (modelled through the magic formula, version 5.2) with relaxation. 

Table 4.3.1 – Main car-trailer system parameters. 

Symbol Name and unit Value 

𝑚 Mass [kg] 2290 
𝐽𝑧 Yaw mass moment of inertia [kgm2] 2761 
𝐿𝑇𝑂𝑇  Wheelbase [m] 2.660 
𝑅 Wheel radius [m] 0.3706 
𝐿𝐹  Front semi-wheelbase [m] 1.399 
𝑐 Longitudinal distance from 𝐶𝐺 to hitch joint [m] 2.111 

𝑑𝐹 , 𝑑𝑅  Track width [m] 1.625 
𝐻𝐶𝐺  Centre of gravity height [m] 0.550 
𝑅𝐶𝐻 Roll axis height at the longitudinal coordinate of 𝐶𝐺 [m] 0.150 

  Trailer A Trailer B Trailer C 

𝑚𝑇 Mass [kg] 1400 1000 500 
𝐼𝑇  Yaw mass moment of inertia [kgm2] 778 646 481 
𝐿𝐹,𝑇 Hitch joint to trailer centre of gravity distance [m] 2.666 1.961 2.863 
𝐿𝑇𝑂𝑇,𝑇 Hitch joint to trailer axle distance [m] 2.800 2.300 2.940 

 

  

(a) (b) 

Figure 4.3.5: Example of model validation results with trailer A: sinusoidal steering test at ~70 km/h. (a) 
car yaw rate; and (b) hitch angle 
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(a) (b) 

Figure 4.3.6: Example of model validation results with trailer A: sweep steering test at ~90 km/h. (a) car 
yaw rate; and (b) hitch angle 

The accuracy of the model was verified by providing experimental data from real-world 

tests as input to the model and comparing the resulting model outputs to the dynamic 

quantities measured during the tests, conducted at the Lommel proving ground (Belgium) 

at the Vehicle Dynamics Area, on the electric car prototype towing trailer A, without 

activation of the TV controller. For example, Figure 4.3.5 and Figure 4.3.6 report the 

comparison of the experimental and simulation time profiles of the car yaw rate and trailer 

hitch angle, along: i) a single sinusoidal steering test at constant torque demand, with a 40 

deg steering wheel angle amplitude and 3 s duration, at an approximately constant speed 

of 70 km/h; and ii) a sweep steering test at constant torque demand, with a 25 deg 

sinusoidal steering wheel input at progressively increasing frequency, at ~90 km/h. The 

very good match between simulations and experiments, in particular in terms of hitch 

angle oscillations, confirms that the simulation model can be considered a valid tool for 

control system assessment.  

4.3.3.3 Real-time implementation of the controllers 

The controllers in Sections 4.3.2.4–4.3.2.8 were implemented in Simulink through the 

ACADO Toolkit [39], including Gauss-Newton iteration algorithms for fast NMPC with 

constraints. The selected solver parameters are: multiple shooting discretisation method, 

second order Runge Kutta integrator, and qpOASES solver. 
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Figure 4.3.7: Real-time implementation set-up for the proposed NMPC configurations 

Moreover, to demonstrate their real-time capability, all proposed controllers were run in 

real-time on a rapid control prototyping unit, i.e., a dSPACE MicroAutoBox II 1401/1513, 

with an IBM 900 MHz processor and 16 Mb flash memory, see Figure 7. Given the reduced 

number of prediction steps to achieve computationally efficient NMPC implementations, 

the specific dynamic system cannot be considered to be operating in steady-state 

conditions at the end of the prediction horizon [45], and therefore the controllers were set 

to have the same number of steps for the prediction and control horizons. For real-time 

implementation, the controller sampling time 𝑇𝑠 , which is coincident with the 

implementation time, was set to 20 ms, with 2 optimisation steps, which corresponds to a 

40 ms prediction horizon. The discretisation time of the internal model was set to 4 ms, 

which ensures numerical stability without significantly affecting the computational time. 

Unless otherwise specified, the results of the following sections are obtained with this 

controller parametrisation. 

4.3.3.4 Controller tuning routine 

The weights related to common cost function terms among all considered controllers (i.e., 

the weights related to 𝜏𝑚,𝑡𝑜𝑡, 𝜓, 𝜏𝑚,𝐹𝐿 , 𝜏𝑚,𝐹𝑅, and 𝑠𝛼) were selected to be the same across all 

controllers, and to provide good performance in case of rigid vehicle operation, or 

articulated vehicle operation along manoeuvres with limited hitch angle dynamics. The 

cost function weights and calibration parameters that are specific to each controller (see 

Table 4.3.2) were optimised through the automated routine described in this section, to 

achieve a fair assessment. 
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Table 4.3.2 – Features of the implemented controllers and respective tuning parameters 

Controller 
Internal 
model 

Description 𝑃𝐿𝐵 ≤ 𝑃𝑜𝑝𝑡 ≤ 𝑃𝑈𝐵  

𝑌𝑅𝑟𝑖𝑔 Rigid vehicle Yaw rate tracking for the rigid vehicle - 

𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 Rigid vehicle 
Reference yaw rate given by the weighted 
linear combination of the car yaw rate and 

hitch angle error 

-100 s-1 ≤ 𝑊𝜃 ≤ -0.9 s-1 
0.1 ≤ 𝐾𝜃,𝑚𝑖𝑛 ≤ 0.9 

3 deg  ≤ Δ𝜃𝑙𝑖𝑚 ≤ 10 deg  

𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸  Car-trailer 
Yaw rate tracking and soft constraint on 

hitch angle error 

2 ≤ 𝑊𝑠𝜃 ≤ 1000 

3 deg ≤ Δ𝜃𝑙𝑖𝑚 ≤ 10 deg 

𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛 Car-trailer 
Yaw rate tracking and hitch angle error 
control through continuous function 

200 ≤ 𝑊Δ𝜃𝑐 ≤ 4000 

𝑀𝑌𝑅𝐸 Car-trailer 
Control error given by the weighted linear 

combination of the yaw rate error and hitch 
angle error 

-100 s-1 ≤ 𝑊𝜃 ≤ -1 s-1 
0.1 ≤ 𝐾𝜃,𝑚𝑖𝑛 ≤ 1 

3 deg ≤ Δ𝜃𝑙𝑖𝑚 ≤ 10 deg 

The routine runs the simulation model for control system assessment, including the 

controllers, along a typical critical test (indicated as manoeuvre I in the remainder) for 

trailer dynamics evaluation, namely a single sinusoidal steering manoeuvre with a 50 deg 

steering wheel angle amplitude and 3 s duration, from an initial speed of 70 km/h, at a 

constant 200 Nm wheel torque demand, carried out with trailer A. The main features and 

tuning parameters of each controller are summarised in Table 2, where 𝑊𝑠𝜃  and 𝑊𝛥𝜃𝑐  are 

the weights associated with the hitch angle slack variable (4.3.33) and hitch angle error 

function (4.3.36) within the controller cost function (4.3.24). Given the rather limited 

number of tuning parameters of each controller, a brute force algorithm was used to cover 

the whole parameter space in Table 4.3.2, according to the following optimisation 

problem:  

𝐽𝐾𝑃𝐼
∗ = min

𝑃𝑜𝑝𝑡
𝐽𝐾𝑃𝐼|𝑡𝑖

𝑡𝑓 

s. t. 𝑃𝐿𝐵 ≤ 𝑃𝑜𝑝𝑡 ≤ 𝑃𝑈𝐵 
(4.3.39) 

where 𝑃𝐿𝐵 and 𝑃𝑈𝐵  include the lower and upper bounds of the tuning parameters; 𝑃𝑜𝑝𝑡 is 

the optimal value of the parameter vector; 𝑡𝑖 and 𝑡𝑓 are the initial and the final times of the 

relevant part of the test; and 𝐽𝐾𝑃𝐼
∗  is the optimal value of the cost function 𝐽𝐾𝑃𝐼, which is 

given by the weighted sum of multiple non-dimensional key performance indicators 

(KPIs): 

𝐽𝐾𝑃𝐼 = 𝑊1 𝑅𝑀𝑆𝐸𝛥𝜓̇+𝑊2 𝑅𝑀𝑆𝐸𝛥𝜃∗+𝑊3 𝛼𝑅
𝑚𝑎𝑥+𝑊4 𝜃

𝑚𝑎𝑥+𝑊5 𝐼𝐴𝐶𝐴 (4.3.40) 
where 𝑊1−5 are the weights for the individual indicators (𝑊1 = 0.3, 𝑊2 = 0.35, 𝑊3 = 0.10, 

𝑊4 = 0.20, and 𝑊5 = 0.05 in the specific implementation). 

The terms in (4.3.40) are: 

• The root-mean-square value of the yaw rate error: 
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𝑅𝑀𝑆𝐸𝛥𝜓̇ =

√
1

𝑡𝑓 − 𝑡𝑖
∫ [𝜓̇𝑑(𝑡) − 𝜓̇(𝑡)]

2
𝑑𝑡

𝑡𝑓
𝑡𝑖

𝑀𝛥𝜓̇

 
(4.3.41) 

where 𝑀𝛥𝜓̇  is a normalisation factor, expressed as the maximum expected value of the 

performance indicator, i.e., 𝑅𝑀𝑆𝐸𝛥𝜓̇. The same criterion was used for the selection of the 

normalisation factors of the other indicators, i.e., 𝑀𝛥𝜃∗, 𝑀𝛼𝑅
𝑚𝑎𝑥 , and 𝑀𝜃𝑚𝑎𝑥 , and 𝑀𝐼𝐴𝐶𝐴. 

• The root-mean-square value of the hitch angle error, to assess the level of trailer 

sway: 

𝑅𝑀𝑆𝐸Δ𝜃∗ =

√
1

𝑡𝑓 − 𝑡𝑖
∫ [𝛥𝜃∗]2𝑑𝑡
𝑡𝑓
𝑡𝑖

𝑀𝛥𝜃∗
 

(4.3.42) 

𝛥𝜃∗ = {
|𝜃𝑑(𝑡) − 𝜃(𝑡)| − 𝛥𝜃𝑏𝑜𝑢𝑛𝑑 if |𝜃𝑑(𝑡) − 𝜃(𝑡)| >  𝛥𝜃𝑏𝑜𝑢𝑛𝑑

0 if |𝜃𝑑(𝑡) − 𝜃(𝑡)| ≤ 𝛥𝜃𝑏𝑜𝑢𝑛𝑑
 (4.3.43) 

 

where 𝛥𝜃𝑏𝑜𝑢𝑛𝑑 = 7 deg is the hitch angle error bound of the deadband function in (4.3.43). 

• The maximum rear axle sideslip angle (in absolute value), to assess the car’s 

stability: 

𝛼𝑅
𝑚𝑎𝑥 =

max|𝛼𝑅|

𝑀𝛼𝑅
𝑚𝑎𝑥

 (4.3.44) 

 

• The maximum hitch angle (in absolute value), which shows the most critical 

condition of the vehicle combination: 

𝜃𝑚𝑎𝑥 =
max|𝜃|

𝑀𝜃𝑚𝑎𝑥 
 (4.3.45) 

• The integral of the absolute value of the control action, 𝐼𝐴𝐶𝐴 , given by the front 

powertrain torque difference, which evaluates the control effort: 

𝐼𝐴𝐶𝐴 =

1
𝑡𝑓 − 𝑡𝑖

∫ |𝜏𝑚.𝐹𝐿(𝑡) − 𝜏𝑚,𝐹𝑅(𝑡)|𝑑𝑡
𝑡𝑓
𝑡𝑖

𝑀𝐼𝐴𝐶𝐴
 

(4.3.46) 

To analyse the performance of the controllers in a wider range of conditions, in the 

remainder 𝐽𝐾𝑃𝐼 and the respective individual performance indicators have been calculated 

also for a second test, referred to as manoeuvre II, i.e., a prolonged sinusoidal steering 

manoeuvre at a constant steering input frequency of 0.67 Hz, a 65 deg steering wheel angle 

amplitude, and a ~25 s duration, from an initial speed of 70 km/h, with a constant 200 Nm 

wheel torque demand. The simulations are stopped if the hitch angle reaches a critical 

value of 45 deg.  
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4.3.4 RESULTS 

For the vehicle combination with trailer A and manoeuvres I and II, Figure 4.3.8 and Figure 

4.3.9 show the time histories of the car yaw rate, hitch angle error, rear axle sideslip angle, 

and direct yaw moment control action, the latter calculated as: 

𝑀𝑧 =
[𝜏𝑚,𝐹𝐿 − 𝜏𝑚,𝐹𝑅]𝑑𝐹

2𝑅
 (4.3.47) 

In addition to the considered controlled configurations, the figures include the response 

of the Passive configuration, i.e., without TV control, which becomes unstable in both 

tests, i.e., the simulation is stopped as 𝜃  reaches the critical level of 45 deg. In these 

extreme manoeuvres, the baseline TV configuration, 𝑌𝑅𝑟𝑖𝑔, which neglects the hitch angle 

aspects, although behaving better than the passive vehicle, cannot manage to restrain 𝛥𝜃 

within safe limits, i.e., the hitch angle error has a ~25 deg peak amplitude in manoeuvre I, 

while in manoeuvre II the simulation has to be stopped because of the unstable hitch 

angle dynamics. Interestingly, all formulations including the hitch angle error 

contribution show desirable hitch dynamics, with performance differences that are visible 

only in the zoomed plots in Figure 4.3.8(b) and Figure 4.3.9(b). For the single sinusoidal 

test, Figure 4.3.8(a) highlights that in the configurations with hitch angle feedback the car 

maintains a negative car yaw rate for > 0.5 s after the steering angle is brought back to zero 

at the end of the manoeuvre, because of the direct yaw moment required to correct trailer 

sway. In general, direct hitch angle control implies an increase of the 𝑀𝑧 control action, 

see the profiles in Figure 4.3.8(d), in which 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸  and 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛  reach the yaw 

moment saturation value imposed by the specific electric motors. In the prolonged 

sinusoidal steering test, 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸  and 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛  show the best results in terms of 

hitch angle error limitation, see Figure 4.3.9(b). Among the configurations based on 

feedback hitch angle control, the highest hitch angle error peaks are associated with 

𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 , as a consequence of its simpler internal model, see the comparison with the 

𝑀𝑌𝑅𝐸 formulation, which, although also using a hitch angle based yaw rate correction, 

considers the vehicle combination dynamics. The control action profile in Figure 4.3.9(d) 

is rather similar for all the hitch angle control configurations, and, given the rather extreme 

nature of the manoeuvre, 𝑀𝑧  reaches its saturation value during each trailer oscillation 

cycle until ~17.5 s. Afterwards, the marginal vehicle speed reduction caused by the lateral 

tyre slip power losses makes the manoeuvre less critical, and thus requires less intense 

direct yaw moments. In the specific test, the 𝑀𝑧 peaks tend to limit the magnitude of the 

yaw rate of the car, and thus to reduce the trailer sway toward the inner side of the vehicle 

trajectory. For each controller, Table 4.3.3 reports the values of the performance indicators 

and cost function defined in Section 4.3.3.4 along the two considered manoeuvres, 

performed with the car towing trailers A–C. To evaluate the controller robustness with 

respect to the variation of trailer parameters, for trailers B and C all controller tunings, 

including the internal model parameters, are kept constant and equal to those for trailer 

A. Interestingly, because of its higher mass and yaw moment of inertia, trailer A tends to 

originate the most critical results, and the NMPCs tuned for trailer A provide desirable 
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performance also with trailers B and C, despite the significant difference in trailer 

parameters (e.g., the mass of trailer C is approximately one third of the mass of trailer A).  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.3.8: Single sinusoidal steering test (manoeuvre I) with trailer A: (a) car yaw rate; (b) hitch angle 
error; (c) rear axle sideslip angle; and (d) direct yaw moment control action. 
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(a) (b) 

  

(c) (d) 

Figure 4.3.9: Prolonged sinusoidal steering test (manoeuvre II) with trailer A: (a) car yaw rate; (b) hitch 
angle error; (c) rear axle sideslip angle; and (d) direct yaw moment control action 

The important conclusion is that the model-based hitch angle controllers should be tuned 

for the most critical trailer parametrisation, and then the resulting controller performance 

will be acceptable for a very wide range of trailer parameters. The 𝐽𝐾𝑃𝐼  values across all 

trailer configurations, as well as the other performance indicators, and in particular 

𝑅𝑀𝑆𝐸Δ𝜃∗ and |𝜃𝑚𝑎𝑥|, highlight the good performance of 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸 and 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛, i.e., 

the feedback hitch angle controller formulation should directly consider the hitch angle 

error, and use a prediction model with trailer dynamics. While in absence of significant 

hitch angle dynamics excitation, the controllers using the prediction model for the car-

trailer tend to enhance the car yaw rate tracking performance in comparison with the 

benchmarking 𝑌𝑅𝑟𝑖𝑔, see manoeuvre I with trailer B, in presence of significant hitch angle 

dynamics, the hitch control stabilisation effort can marginally increase 𝑅𝑀𝑆𝐸Δ𝜓̇ , see 

manoeuvre I with trailer A, even if in most cases the hitch angle and yaw rate tracking 

performances concurrently improve. 
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Table 4.3.3 – Key performance indicators associated with the passive vehicle and the vehicle with the real-

time (RT) implementations of the proposed NMPCs, with trailers A-C, and with the NMPCs with longer 
prediction horizon (LPH), applied to trailer A 

 Manoeuvre Pass. 𝑌𝑅𝑟𝑖𝑔 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸  𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛 𝑀𝑌𝑅𝐸 

Trailer A (RT) 

𝑅𝑀𝑆𝐸Δ𝜓̇ [deg/s] 
I 9.90* 1.11 1.61 1.82 2.03 1.82 
II 9.87* 4.49* 2.31 2.22 2.13 2.41 

𝑅𝑀𝑆𝐸Δ𝜃∗  [deg] 
I 13.00* 9.27 0.00 0.00 0.00 0.00 
II 16.70 13.37* 3.44 3.08 2.83 3.18 

|𝛼𝑅
𝑚𝑎𝑥| [deg] 

I 7.06* 2.29 2.29 2.27 2.27 2.29 
II 3.86* 3.00* 3.88 4.08 3.85 3.96 

|𝜃𝑚𝑎𝑥| [deg] 
I 45.00* 25.25 5.89 5.44 5.13 5.65 
II 45.00* 45.00* 27.22 26.30 25.03 26.58 

𝐼𝐴𝐶𝐴 [Nm] 
I - 251 295 318 305 324 
II - 825* 900 920 962 843 

𝐽𝐾𝑃𝐼  [-] 
I / 0.56 0.15 0.15 0.15 0.15 
II / / 0.57 0.55 0.53 0.56 

Trailer B (RT) 

𝑅𝑀𝑆𝐸Δ𝜓̇ [deg/s] 
I 5.29* 1.28 1.28 1.16 1.23 1.38 
II 5.97 2.91 2.12 2.22 2.33 2.37 

𝑅𝑀𝑆𝐸Δ𝜃∗  [deg] 
I 8.63* 0.00 0.00 0.00 0.00 0.00 
II 6.44 5.02 3.15 2.82 2.66 2.98 

|𝛼𝑅
𝑚𝑎𝑥| [deg] 

I 3.04* 2.36 2.36 2.34 2.34 2.37 
II 3.76 2.97 2.71 2.68 2.69 2.70 

|𝜃𝑚𝑎𝑥| [deg] 
I 45.00* 3.22 3.22 3.21 3.21 3.22 
II 40.33 31.88 23.70 22.18 21.88 22.92 

𝐼𝐴𝐶𝐴 [Nm] 
I - 262 262 280 269 248 
II - 622 917 966 984 851 

𝐽𝐾𝑃𝐼  [-] 
I / 0.11 0.11 0.11 0.11 0.11 
II - 0.64 0.51 0.48 0.48 0.49 

Trailer C (RT) 

𝑅𝑀𝑆𝐸Δ𝜓̇ [deg/s] 
I 2.71 0.98 0.98 0.88 0.88 1.07 
II 8.96* 2.82 1.86 1.73 1.70 2.03 

𝑅𝑀𝑆𝐸Δ𝜃∗  [deg] 
I 0.00 0.00 0.00 0.00 0.00 0.00 
II 17.58* 4.39 2.21 1.84 1.79 2.12 

|𝛼𝑅
𝑚𝑎𝑥| [deg] 

I 2.84 2.24 2.24 2.23 2.23 2.25 
II 3.98* 2.80 3.14 2.82 2.93 3.17 

|𝜃𝑚𝑎𝑥| [deg] 
I 5.03 3.94 3.94 3.92 3.92 3.93 
II 45.00* 26.30 21.19 19.72 20.23 21.07 

𝐼𝐴𝐶𝐴 [Nm] 
I - 262 262 280 269 248 
II - 622 917 966 984 851 

𝐽𝐾𝑃𝐼  [-] 
I - 0.11 0.11 0.11 0.11 0.11 
II / 0.55 0.46 0.42 0.43 0.45 

Trailer A (LPH) 

𝑅𝑀𝑆𝐸Δ𝜓̇ [deg/s] 
I 9.90* 1.31* 1.26 2.17 2.10 1.37 
II 9.87* 8.08* 5.98 3.30 3.21 4.24 

𝑅𝑀𝑆𝐸Δ𝜃∗  [deg] 
I 13.00* 15.70* 0.00 0.00 0.00 0.00 
II 16.70 19.85* 6.74 1.49 1.57 4.10 

|𝛼𝑅
𝑚𝑎𝑥| [deg] 

I 7.06* 2.31* 2.31 2.29 2.29 2.29 
II 3.86* 3.57* 5.28 2.90 3.00 5.75 

|𝜃𝑚𝑎𝑥| [deg] 
I 45.00* 45.00* 6.51 5.03 5.18 6.19 
II 45.00* 45.00* 35.96 19.44 19.89 29.57 

𝐼𝐴𝐶𝐴 [Nm] 
I - / 275 299 252 261 
II - / 699 746 756 793 

𝐽𝐾𝑃𝐼  [-] I / / 0.15 0.15 0.14 0.15 
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II / / 0.80 0.43 0.43 0.65 
*: the hitch angle reaches the critical threshold at which the simulation is automatically interrupted 
-: value not calculated  
/: simulation interrupted; value not calculated 

To appreciate the trade-off between yaw rate tracking and hitch angle stabilisation, Figure 

4.3.10(a) plots the trailer sway mitigation improvement with respect to 𝑌𝑅𝑟𝑖𝑔, expressed 

through 𝐼𝑅𝑀𝑆𝐸,Δ𝜃∗  , as a function of the yaw rate tracking improvement, measured by 

𝐼𝑅𝑀𝑆𝐸,Δ𝜓̇ . For each controller, manoeuvre and trailer, 𝐼𝑅𝑀𝑆𝐸,Δ𝜃∗  and 𝐼𝑅𝑀𝑆𝐸,Δ𝜓̇  are defined as: 

𝐼𝑅𝑀𝑆𝐸,Δ𝜃∗ = {
100 

𝑅𝑀𝑆𝐸
Δ𝜃∗
𝑌𝑅𝑟𝑖𝑔 − 𝑅𝑀𝑆𝐸Δ𝜃∗

𝐶𝐶

𝑅𝑀𝑆𝐸Δ𝜃∗
𝑃𝑎𝑠𝑠 if 𝑅𝑀𝑆𝐸Δ𝜃∗

𝑃𝑎𝑠𝑠 > 0

0 if 𝑅𝑀𝑆𝐸Δ𝜃∗
𝑃𝑎𝑠𝑠 = 0

 (4.3.48) 

𝐼𝑅𝑀𝑆𝐸,Δ𝜓̇ = 100 
𝑅𝑀𝑆𝐸

Δ𝜓̇

𝑌𝑅𝑟𝑖𝑔 − 𝑅𝑀𝑆𝐸Δ𝜓̇
𝐶𝐶

𝑅𝑀𝑆𝐸
Δ𝜓̇
𝑃𝑎𝑠𝑠  (4.3.49) 

where the superscript  𝑌𝑅𝑟𝑖𝑔 ’ highlights that the indicator is computed for the 

benchmarking 𝑌𝑅𝑟𝑖𝑔 set-up; the superscript  𝐶𝐶’ indicates the considered controller, i.e., 

the one that is compared with 𝑌𝑅𝑟𝑖𝑔 ; and the superscript  𝑃𝑎𝑠𝑠 ’ refers to the passive 

configuration. Positive values of 𝐼𝑅𝑀𝑆𝐸,Δ𝜃∗ and 𝐼𝑅𝑀𝑆𝐸,Δ𝜓̇  mean enhanced performance with 

respect to 𝑌𝑅𝑟𝑖𝑔 , while negative values correspond to a performance decrease. The 

performance of the passive vehicle combination is used as normalisation factor in the 

denominators in (4.3.48)–(4.3.49), to provide a meaningful order of magnitude of the 

baseline performance (in some cases the root mean square values of all controlled 

configurations are so low, that the percentage variations would appear significant even in 

case of negligible variations of the actual system response). Along manoeuvre I the average 

𝐼𝑅𝑀𝑆𝐸,Δ𝜓̇  values across the three trailers are -1.7%, -0.4%, -1.6% and -4.1%, respectively 

for 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔, 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸, 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛, and 𝑀𝑌𝑅𝐸, i.e., the yaw rate tracking performance 

tends to be very marginally reduced than for the benchmarking 𝑌𝑅𝑟𝑖𝑔, yet it is significantly 

better than for the passive configuration. However, very importantly, during the same 

manoeuvre all hitch angle controllers manage to keep ∆𝜃 within the defined deadband for 

the three trailers, while 𝑌𝑅𝑟𝑖𝑔  cannot for trailer A, which causes vehicle instability, and 

corresponds to 𝐼𝑅𝑀𝑆𝐸,Δ𝜃∗ = 71.3%. In manoeuvre II, the proposed hitch angle controllers 

bring concurrent benefits in terms of trailer sway stabilisation and yaw rate tracking for all 

trailers, with average values of 𝐼𝑅𝑀𝑆𝐸,Δ𝜃∗  and 𝐼𝑅𝑀𝑆𝐸,Δ𝜓̇   equal to 33.6% and 15.3% 

for  𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 , 36.8% and 15.6% for 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸  , 38.2% and 15.4% for 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛 , and 

35.2% and 13.0% for 𝑀𝑌𝑅𝐸. These results, together with the generalised reduction of the 

𝐽𝐾𝑃𝐼  values in the table, indicate a major active safety enhancement, which would justify 

the additional complexity of the hitch angle measurement/estimation for the next 

generation of stability controllers for car-trailer systems. To evaluate whether these trends 

are significantly affected by the NMPC settings, for trailer A Table 4.3.3 and Figure 

4.3.10(b) also include the performance indicators for configurations of the same 

controllers operating with a longer prediction horizon, i.e., 500 ms, obtained by setting 

𝑁 = 50 and 10 ms as update time of the control input. Such configurations are not real 
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time implementable with the hardware in Figure 4.3.7, but could become so with the next 

generations of automotive micro-controllers, and the related results provide generality to 

the comparison. Interestingly, while with the baseline set-up the benchmarking 𝑌𝑅𝑟𝑖𝑔 

configuration manages to complete manoeuvre I, with 𝑁 =  50 it fails to complete both 

manoeuvres, while all proposed hitch angle feedback control configurations are always 

successful. Among them, the best approaches are 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛  and 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸 , which 

outperform 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 and 𝑀𝑌𝑅𝐸. In general, the extension of the prediction horizon does 

not automatically ensure a performance improvement, as the driver inputs, i.e., the total 

wheel torque demand and steering angle, are considered constant along the prediction 

horizon, which is the typical assumption of model predictive control for vehicle dynamics 

control, in absence of integration of the predictive controller with the localisation and 

navigation systems, see the discussion on pre-emptive vehicle stability control in [35]. This 

is confirmed by Figure 4.3.10(b), which plots the percentage variation of 𝐽𝐾𝑃𝐼, i.e., ∆𝐽𝐾𝑃𝐼, for 

each configuration with the longer prediction horizon, with respect to the corresponding 

real-time case (a negative value of ∆𝐽𝐾𝑃𝐼  indicates an improvement with the longer 

prediction horizon). The number of cases with positive and negative ∆𝐽𝐾𝑃𝐼 , and the 

respective magnitudes, are approximately equivalent, which confirms the effectiveness of 

the proposed real-time implementations with short prediction horizon. 

 

  

(a) (b) 

Figure 4.3.10: Hitch angle stabilisation improvement of the real-time controller configurations, evaluated 
through 𝐼𝑅𝑀𝑆𝐸,𝛥𝜃∗, as a function of the car yaw rate tracking improvement, evaluated through 𝐼𝑅𝑀𝑆𝐸,𝛥𝜓̇ , 

with respect to 𝑌𝑅𝑟𝑖𝑔 (the marker associated with  𝑌𝑅𝑟𝑖𝑔 unsuccess.’ highlights the cases in which 𝑌𝑅𝑟𝑖𝑔 

cannot complete the test because of trailer instability); and (b) Percentage variation of 𝐽𝐾𝑃𝐼  for the 
controller implementations for trailer A with 500 ms prediction horizon, with respect to the 

corresponding ones with 40 ms prediction horizon 

Similar simulation results, not included in the manuscript, were obtained also along lane 

change manoeuvres from 100 km/h [46], in which the proposed control strategies provide 

safe behaviour of the car-trailer combination, while the passive vehicle cannot complete 

the test because of the trailer sway with unstable hitch angle dynamics. The benefits, 
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evident across the range of considered performance indicators, include the reduction the 

rearward amplification factor (RWA) of the lateral acceleration, defined as the ratio 

between the maximum value of the lateral acceleration of the centre of gravity of the trailer 

to that of the car during the test. 

  



4. NONLINEAR MODEL PREDICTIVE CONTROL  121 

 
 

4.3.5 CONCLUDING REMARKS 

This study presented four nonlinear model predictive control formulations for the torque-

vectoring control of a car towing a single-axle trailer, under the assumption of the 

availability of measured or estimated hitch angle information. The proposed controllers 

target continuous yaw rate control and sideslip angle limitation for the towing car, while 

limiting the hitch angle dynamics in critical conditions of the vehicle combination. The 

four novel formulations were implemented in real-time on typical automotive rapid 

control prototyping hardware, tuned through an optimisation routine using an 

experimentally validated simulation model, and compared with a benchmarking 

nonlinear model predictive torque-vectoring controller, along two manoeuvres, 

conducted with three trailers covering a wide range of parameters. The analysis brought 

the following conclusions: 

• The benchmarking TV controller, 𝑌𝑅𝑟𝑖𝑔, which tracks only the yaw rate of the car 

and uses a rigid vehicle model as internal model, does not manage to complete the 

manoeuvres when it is associated with the heaviest considered trailer. This 

confirms that dedicated controllers are highly beneficial to the active safety 

enhancement of vehicle combinations.  

• The 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 controller, which uses the hitch angle error to correct the reference 

yaw rate of the towing car and only includes the towing car in its internal model, is 

able to stabilise trailer sway in all considered conditions and shows desirable yaw 

rate tracking performance in most cases. Nevertheless, the hitch angle indicators 

are generally not as good as for the formulations including the car-trailer dynamics 

in the internal model. 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔  can represent a viable compromise between 

simplicity of implementation and effectiveness. 

• The best performance was obtained with the 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛  and 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸 

formulations, which include the car-trailer dynamics in their prediction models 

and use the hitch angle error either in the cost function or in the constraints.  

• The least effective configuration among those including the trailer dynamics in the 

internal model is 𝑀𝑌𝑅𝐸, which modifies the yaw rate error as a function of the hitch 

angle error. Nevertheless, the resulting performance is better than for 𝑀𝑌𝑅𝑑,𝑟𝑖𝑔 and 

especially 𝑌𝑅𝑟𝑖𝑔. 

• The formulations using an internal model of the car-trailer show high level of 

robustness to the variation of the real trailer parameters with respect to their 

nominal values used within the prediction model, e.g., the controllers with fixed 

values of the inertial parameters provided safe performance in emergency 

conditions for trailer mass values ranging from 500 kg to 1400 kg. 

• All proposed controllers are real-time implementable, provided that appropriate 

parameters, e.g., number of prediction steps and implementation time, are 

selected. Short prediction horizons do not represent a performance limitation for 
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the specific controllers, as the driver inputs are considered to remain constant 

along the prediction horizon. 

• The next steps of this research will focus on the implementation and experimental 

assessment of the proposed algorithms on real demonstrator vehicles.   
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4.4 TORQUE-VECTORING AND ACTIVE SUSPENSIONS 

4.4.1 STATE-OF-THE-ART 

Trailers offer practical and versatile transportation solutions. In the past years, the use of 

trailers and semitrailers experienced steady growth mainly due to the rising demand by 

the logistics industry, the e-commerce business, and personal recreational activities. 

Although the market was strongly affected by the pandemic as reported by the US National 

Association of Trailer Manufacturers (NATM) in 2022 [1], the recovery within the last two 

years and the forecasts for this decade create an expectation for a constant increase in the 

market size [1]–[4]. 

An important limitation of car-semitrailer systems, which are the object of this study, is 

that they may suffer from major oscillations and stability issues, leading to safety-critical 

scenarios with partial or total loss of vehicle control by the driver. The occurrence of 

critical hitch angle dynamics mainly depends on the car and semitrailer parameters, 

driver inputs, and payload position. Typical challenging scenarios are represented by jack-

knifing, in which the trailer makes the car spin, and snaking, during which the trailer 

periodically oscillates to the left and right sides of the longitudinal axis of the car. In the 

literature, the yaw mass moment of inertia of the semitrailer, the longitudinal position of 

its centre of gravity, the location of the hitch joint, and the position of the trailer axle/s are 

identified as crucial factors affecting lateral stability [5]. 

To mitigate trailer oscillations and limit the insurgence of safety-critical scenarios, several 

chassis control methods have been proposed. Direct yaw moment control (DYC) is 

evaluated in [6], where the former generates braking torque levels on the rear axle of the 

towing vehicle to stabilise the trailer, and the latter formulates two sliding mode 

controllers based on the sideslip angle and yaw rate of the car. While in traditional cars 

DYC for trailer stability is implemented through the friction brakes in emergency 

conditions, next-generation electric cars could be equipped with multiple motors capable 

of continuous wheel torque distribution control, i.e., torque-vectoring (TV) [7]. In [9], rear-

wheel-steering control is implemented on the car (RWSC), based on measured signals 

from both car and trailer. In [10] and [11], active steering angle control is actuated on the 

trailer (SCT). 

In this context, the development of computationally efficient solvers [12] and progressive 

improvement of automotive control hardware have made model predictive control (MPC), 

including nonlinear MPC (NMPC), real-time implementable for vehicle dynamics 

applications, see [13]–[15]. Examples of linear time-varying MPC implementations for car-

trailer control are discussed in [16] and [17], which focus on differential braking on the 

towing vehicle and/or trailer. For the specific test cases, the control strategy acting on the 

towing vehicle is superior to the one acting on the trailer. Both [16] and [17] assume the 

inertial, geometric as well as tire parameters of the trailer to be known by the controller. 



4. NONLINEAR MODEL PREDICTIVE CONTROL  127 

 
 

Reference [18] presents four real-time implementable NMPCs for the TV control of a car-

semitrailer combination.  

All the previous MPC implementations embed the model of the trailer in their prediction, 

and imply the knowledge, through measurement or estimation, of the hitch angle. 

Although this assumption might be restrictive, the literature proposes several methods for 

hitch angle estimation or measurement, e.g., through model-based techniques, ultra-

sonic sensors, or vision systems located on the rear end of the towing vehicle [19]–[25]. 

Moreover, the majority of trailer control studies require dedicated sensing devices and 

algorithms for the estimation of trailer characteristics. For instance, the algorithms in [26] 

and [27] derive the trailer mass from the longitudinal force balance of the articulated 

vehicle. Reference [28] applies Kalman filtering techniques to the longitudinal force 

balance of an articulated truck, by using the engine torque and longitudinal acceleration 

of the towing vehicle. Recursive techniques are applied to the estimation of the trailer yaw 

mass moment of inertia and centre of gravity height in [29], and trailer mass and yaw 

moment of inertia in [30], through observers based on the longitudinal, lateral, and/or yaw 

dynamics of the car-trailer system. Current industrial solutions for trailer sway mitigation 

are described in [31]–[33]. For ease of implementation, these algorithms lack any 

dedicated system to estimate or measure the hitch angle or hitch rate. They mitigate trailer 

oscillations by applying a braking torque and/or direct yaw moment to the towing vehicle 

when the band-pass filtered yaw rate error of the latter exceeds typical thresholds related 

to trailer sway. However, as shown in [7], their benefit is rather limited. 

The previous literature review highlights that DYC, RWSC and SCT are the most widely 

assessed actuations for car-semitrailer control, either in isolation, or concurrently through 

integrated chassis control (ICC). The significance of ICC is growing, due to its capability of 

better exploiting the potential of the available actuators, see the ICC architecture 

classification in [34], based on the position and role of the actuator coordination layer.  

Although active suspension (AS) systems can provide effective yaw rate control in 

proximity of the limit of handling through the variation of the front-to-total anti-roll 

moment distribution, see [15], [35] and [36], they have not been applied to the trailer sway 

mitigation problem yet. Moreover: i) while the effect of the anti-roll moment distribution 

is predictable on the cornering response of a car in isolation [37], it is much less intuitive 

when dealing with the oscillations of a car-semitrailer system; ii) ASs are likely to become 

more widely spread with the advent of driving automation, with the purpose of enhancing 

comfort and reducing motion sickness [38]; and iii) ASs are going to be implemented in 

vehicles already equipped with DYC capability based on the actuation of the friction 

brakes and/or electric powertrains. i)–iii) justify the design of advanced model-based 

architectures for the integrated control of anti-roll moment distribution and direct yaw 

moment for car-semitrailer systems. 

In summary, the literature lacks investigations on: 
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The stability improvements brought by AS configurations capable of front-to-total anti-

roll moment distribution on the towing car, in car-semitrailer combination vehicles. 

MPC formulations for car-semitrailer control, embedding prediction models of the towing 

car only, while the trailer is considered through the estimated hitch joint force 

components. Such novel algorithms should facilitate the real-time implementation with 

respect to (w.r.t.) the more conventional formulations embedding the trailer dynamics.  

This work aims to cover the identified gap through the following novel contributions: 

• Hitch dynamics control of a car-semitrailer combination vehicle through active 

suspension control, complementing TV control is investigated due to its 

dynamic similarity to articulated buses, where ensuring safety is a prerequisite 

for integrating motion sickness metrics in automated vehicle systems. 

• Prediction model formulations for the predictive control of car-semitrailer 

combination vehicles through AS and TV, considering the trailer either through: 

i) the estimated forces at the hitch joint at the current time instant; or ii) its hitch 

angle dynamics along the prediction horizon. The related controller 

configurations could operate without the requirement of any additional sensors 

on the trailer. 

• Performance comparisons of the resulting NMPCs for AS and TV control, 

implemented through integrated or coexistence-based ICC architectures, with 

a benchmarking TV NMPC configuration targeting only the towing car. 

The chapter is organised as follows: Section 4.4.2 describes the case study vehicle and 

simulation framework architecture; Section 4.4.3 presents the controller formulations; 

Section 4.4.4 discusses the controller implementation and tuning; Section 4.4.5 deals with 

the parameter estimation algorithms; Section 4.4.6 discusses the simulation results; finally, 

Section 4.4.7 outlines the main conclusions. 

4.4.2 CASE STUDY VEHICLE AND CONTROL ARCHITECTURE 

4.4.2.1 Target vehicle 

Figure 4.4.1 is the top view schematic of the vehicle configuration, with indication of the 

sign conventions of the main variables. More specifically, 𝜓̇ is the car yaw rate; 𝛽 is the 

sideslip angle at the center of gravity of the car; 𝑉 is the speed of the towing vehicle; 𝜃 is 

the hitch angle, between the longitudinal axes of the trailer and the car; the subscript 𝑖, 

with 𝑖 = 𝐹, 𝑅 , indicates the axle of the car (front or rear); the subscript 𝑗 , with 𝑗 = 𝐿, 𝑅 , 

indicates the vehicle side (left or right); and the subscript  𝑡’ refers to the trailer-related 

variables and parameters. 
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The car is equipped with: i) four in-wheel direct drive electric powertrains; and ii) an AS 

system based on the KineticTM technology by Tenneco, including four double-acting 

hydraulic actuators, capable of providing variable front-to-total anti-roll moment 

distribution [39]. The semitrailer does not include any actuator nor sensor. Table 4.4.1 

summarises the car parameters, while Table A 1 in the Appendix reports the main trailer 

data.  

Table 4.4.1 – Main towing car parameters. 

Symbol Description and unit Value 

𝑙 Wheelbase (m) 2.926 
𝑙𝐹  Front semi-wheelbase (m) 1.512  
𝐻𝐶𝑜𝐺  Center of gravity (𝐶𝑜𝐺) height (m) 0.501 
𝑑𝐹  Front track width (m) 1.644 
𝑑𝑅  Rear track width (m) 1.638 
𝑚 Vehicle mass (kg) 2323 

𝜏𝑚,𝑖𝑗,𝑚𝑎𝑥  Maximum individual IWM torque (Nm@rpm) 800@1000  

𝑃𝑚𝑎𝑥  Maximum individual IWM power (kW@rpm) 75@1000 

 

With respect to (w.r.t.) the latter, the nominal configuration of the trailer is indicated as 

BMT (benchmarking trailer), while the notations (𝑚𝑡𝐽𝑧,𝑡)𝑥𝑡, (𝑙𝐹,𝑡)𝑥𝑡 and (𝑙𝑡)𝑥𝑡, respectively 

indicate trailer configurations with modified mass and yaw mass moment of inertia, 

different distances between the trailer center of gravity and hitch joint, and modified 

distances between the trailer axle and hitch joint. The value of the subscript  𝑥𝑡’ permits 

to identify their parametrisation according to the table. In total, during the analysis, on 

top of BMT, 13 trailer configurations were considered, i.e., 3 with modified 𝑚𝑡 and 𝐽𝑧,𝑡, 5 

with modified 𝑙𝐹,𝑡, and 5 with modified 𝑙𝑡. The multiple trailer configurations will be used 

to assess the robustness of the controllers. 

 

 

(a) (b) 

Figure 4.4.1: (a) Top and (b) side views of the car-semitrailer system, with indication of the main 
parameters and variables, as well as their sign conventions 
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The vehicle is simulated with an experimentally validated high-fidelity model 

implemented in IPG CarMaker, within a Matlab-based co-simulation environment. The 

model includes the degrees of freedom of the sprung and unsprung masses and their 

dynamic couplings, the suspension kinematic and compliance effects, as well as tire 

nonlinearities, considered through version 5.2 of the Pacejka magic formula with 

relaxation effects. Realistic actuator dynamics are embedded in the plant model, 

emulating the response of the in-wheel motors (IWMs) and AS system, based on data 

provided by the respective manufacturers. For realism of controller evaluation, the high-

fidelity model formulation is completely independent from those of the prediction models 

in Section III. In quasi-steady-state cornering conditions, the car on its own and also the 

considered combination vehicle are characterised by a stable understeering behaviour. 

However, as it will be shown in the simulations of critical manoeuvres in Section 4.4.6, 

during extreme transients the passive vehicle can become unstable in terms of the trailer 

roll and hitch angle dynamics. This kind of critical transient behaviour of the combination 

vehicle is quite typical and has been the subject of deep analyses in the relevant literature, 

e.g., see [40]. 

4.4.2.2 Simulation framework and controller architectures 

Figure 4.4.2 is the schematic of the simulation framework, including: 

• The virtual driver model, generating the accelerator pedal position, 𝐴𝑃𝑃 , brake 

pedal force, 𝐹𝑝, and steering wheel angle, 𝛿𝑠𝑤. The controller assessment is based 

on both open-loop tests, in which the driver commands are pre-defined and 

imposed to the vehicle system, and closed-loop tests, in which the CarMaker driver 

model is used to track a reference trajectory. 

• The braking system model, which outputs the tandem master cylinder pressure, 

𝑝𝑇𝑀𝐶, and individual braking torque levels, 𝑇𝑏,𝑖𝑗. 

• The reference generation and parameter estimation layer, which outputs: a) the 

reference signals, such as the total powertrain torque demand, 𝜏𝑚.𝑡𝑜𝑡,𝑑 , the 

reference yaw rate for the car, 𝜓̇𝑟𝑒𝑓, and the reference hitch angle, 𝜃𝑟𝑒𝑓; and b) the 

estimated parameters and variables, such as the trailer mass and geometry, and the 

actuation limits. 

• The control layer, which includes a set of alternative configurations that will be 

compared in the remainder, each of them covering the entire set of operating 

conditions of the vehicle: 

i) The passive case, with fixed anti-roll moment distribution to provide an 

acceptable trade-off in terms of cornering response, although the controlled 

suspension system still provides an active anti-roll moment proportional to the 

measured lateral acceleration, to reduce the roll motion of the vehicle body. The 

powertrain torque is evenly distributed among the corners of the towing car. 
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ii) The single actuation cases, in which only the AS or TV systems are active. Such 

configurations are indicated as ASc or TVc, with 𝑐 =  1, 2, depending on the 

embedded prediction model. In the remainder, the notation AS specifically 

refers to the activation of the variable anti-roll moment distribution capability 

of the suspension actuators, which – according to i) – are working for reducing 

roll in all the vehicle configurations of this study. Hence, the control input of the 

AS system is the reference front-to-total active anti-roll moment distribution 

variation, 𝛥𝑓𝑟𝑒𝑓 , w.r.t. a fixed nominal value, 𝑓0 , used in absence of such 

functionality. The TV control inputs are the reference motor torque values on 

each corner, 𝜏𝑚,𝑖𝑗,𝑟𝑒𝑓. 

iii) The cases with the concurrent activation of AS and TV, through separate and 

parallel implementations of the respective nonlinear optimal control problems. 

If the two controllers do not share information of the respective control inputs, 

they are referred to as (ASc//TVc)W/oComm, with 𝑐 = 1, 2. On the contrary, if the 

algorithms share the respective control inputs, which are accounted for by the 

internal models according to a peaceful coexistence [34] ICC approach, they are 

referred to as (ASc//TVc)W/Comm. 

iv) The integrated AS and TV controllers, indicated as (AS-TV)c, which concurrently 

generate all control inputs for both the AS and TV actuations through a single 

optimisation. 

As highlighted in the figure, each NMPC algorithm in ii)–iv) consists of: a) an internal (or 

prediction) model, which predicts the behaviour of the system along a finite horizon, see 

also the sensitivity analyses on the effect of the model complexity level in [41]; b) a cost 

function to be minimised; and c) a set of constraints to be met. Two prediction models are 

evaluated for each NMPC configuration in ii)–iv), namely a rigid vehicle model of the 

towing car, corresponding to 𝑐 =  1 (Section 4.4.3.2), and an articulated vehicle model, 

corresponding to 𝑐 = 2 (Section 4.4.3.3). 

The high-fidelity vehicle model of Section 4.4.2.1, which generates the set of vehicle 

variables, Θ, required for the operation of the implemented algorithms. 
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4.4.3 CONTROLLER FORMULATIONS 

4.4.3.1 Reference definition 

Based on the technical requirements from the involved industrial partner, during quasi-

steady-state operation the controller is used only to limit the variations of the cornering 

response w.r.t. to nominal conditions, rather than for modifying the level of vehicle 

understeer such as in [42]–[44]. Hence, the steady-state reference yaw rate of the car-

semitrailer system, 𝜓̇𝑠𝑠, is designed to match the steady-state cornering response of the 

passive rigid vehicle, according to the typical practice for vehicle stability control. 𝜓̇𝑠𝑠 is 

stored as a nonlinear map, as a function of steering angle 𝛿 (computed from 𝛿𝑠𝑤 through 

the steering ratio) and vehicle speed 𝑉 , see Figure 4.4.3. The map was generated by 

simulating the cornering response of the vehicle during ramp steer manoeuvres at 

different speeds, i.e., from 10 km/h to 180 km/h. In the online algorithm, the output of the 

map is saturated based on the estimated tire-road friction factor 𝜇, i.e., the saturation level 

corresponds to a yaw rate magnitude 𝑘
𝜇𝑔

𝑉
 , where 𝑘  is a tuning parameter. To provide 

realistic and desirable dynamics, the saturated output of the map is filtered by a first-order 

transfer function, to obtain 𝜓̇𝑟𝑒𝑓.  

 

 

Figure 4.4.2:  Simplified schematic of the simulation framework, where the dashed lines indicate the 
functional items that are common to all controller configurations, whilst the dash-dotted lines 
represent the subsystems that can be activated based on the selected controller configuration.  
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In the formulations that enable such functionality, the hitch angle dynamics are 

controlled by tracking the reference hitch angle, 𝜃𝑟𝑒𝑓, which – for simplicity – is computed 

as the kinematic hitch angle, i.e., the hitch angle in absence of slip angles, according to 

[45] and the geometric parameters defined in Figure 4.4.1: 

𝜃𝑟𝑒𝑓 = tan−1(
tan(𝛿)[𝑙2𝑙𝑡+[𝑐ℎ−𝑙𝑅]√tan

2(𝛿) 𝑙2[𝑐ℎ−𝑙𝑅]
2−tan2(𝛿)𝑙2𝑙𝑡

2+𝑙4]

𝑙[−tan2(𝛿)𝑙𝑡[𝑐ℎ−𝑙𝑅]+√tan
2(𝛿)𝑙2[𝑐ℎ−𝑙𝑅]

2−tan2(𝛿)𝑙2𝑙𝑡
2+𝑙4]

) (4.4.1) 

4.4.3.2 Rigid vehicle prediction model formulation (𝑐 = 1) 

The proposed prediction model, i.e., the model used by the NMPC for predicting the 

system response [46], is based on the following assumptions: 

• The motion is planar, with negligible road bank and inclination angles. 

• The heave, roll and pitch dynamics are disregarded. 

• For computational efficiency, the effect of the semitrailer is included by considering 

the forces – estimated at the beginning of the prediction – that are applied to the 

towing car through the hitch joint, see 𝐹𝑥,𝑡
𝑗2𝑐
, 𝐹𝑦,𝑡

𝑗2𝑐
, and 𝐹𝑧,𝑡

𝑗2𝑐
 in Figure 4.4.1, expressed 

in the trailer reference system. 

In the remainder, the notations ‘( ̇ )’ and ‘( ̈ )’ respectively refer to first and second order 

time derivatives. The model has 7 degrees of freedom, described by the following 

equations: 

• Longitudinal force balance 

𝑚[𝑣̇𝑥 − 𝜓̇𝑣𝑦] == ∑ [𝐹𝑥,𝐹𝑗 cos(𝛿) − 𝐹𝑦,𝐹𝑗 sin(δ)]

𝑗=𝐿,𝑅

+ ∑ 𝐹𝑥,𝑅𝑗
𝑗=𝐿,𝑅

− 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑥
𝑗2𝑐

 
(4.4.2) 

 

 

Figure 4.4.3:  Map of the steady-state reference yaw rate 𝜓̇𝑠𝑠 of the car-semitrailer system, as a function 
of the steering angle 𝛿 and the vehicle speed 𝑉. 
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• Lateral force balance 

[𝑣̇𝑦 + 𝜓̇𝑣𝑥] =  

= ∑ [𝐹𝑥,𝐹𝑗 sin(𝛿) + 𝐹𝑦,𝐹𝑗 cos(𝛿)]

𝑗=𝐿,𝑅

+ ∑ 𝐹𝑦,𝑅𝑗
𝑗=𝐿,𝑅

+ 𝐹𝑦
𝑗2𝑐

 (4.4.3) 

• Yaw moment balance 

𝐽𝑧𝜓̈ = 𝑙𝐹[𝐹𝑥,𝐹𝐿 sin(𝛿) + 𝐹𝑦,𝐹𝐿 cos(𝛿) + 𝐹𝑥,𝐹𝑅 sin(𝛿) + 𝐹𝑦,𝐹𝑅 cos(𝛿)] − 𝑙𝑅[𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

−
𝑑𝑅
2
[𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅] −

𝑑𝐹
2
[𝐹𝑥,𝐹𝐿 cos(𝛿) − 𝐹𝑥,𝐹𝑅 cos(𝛿)]

+
𝑑𝐹
2
[𝐹𝑦,𝐹𝐿 sin(𝛿) − 𝐹𝑦,𝐹𝑅 sin(𝛿)] + 𝑐ℎ𝐹𝑦

𝑗2𝑐
 

(4.4) 

• Wheel moment balances 

𝐽𝑤,𝑖
𝑒𝑞 𝜔̇𝑖𝑗 = 𝜏𝑚,𝑖𝑗,𝑟𝑒𝑓 − 𝜏𝑏,𝑖𝑗 − 𝑅𝑙,𝑖𝑗𝐹𝑥,𝑖𝑗 −𝑀𝑦,𝑖𝑗 (4.4.5) 

where 𝑣𝑥 and 𝑣𝑦 are the longitudinal and lateral components of the velocity at the center 

of gravity of the car; 𝐹𝑥,𝑖𝑗 and 𝐹𝑦,𝑖𝑗 are the longitudinal and lateral tire forces in the wheel 

reference frame; 𝐹𝑑𝑟𝑎𝑔 is the aerodynamic drag force; 𝐽𝑧 is the yaw mass moment of inertia; 

𝑙𝐹 and 𝑙𝑅 are the front and rear semiwheelbases; 𝑐ℎ is the distance of the hitch joint to the 

car’s center of gravity; 𝐽𝑤,𝑖
𝑒𝑞  is the equivalent mass moment of inertia of the wheels; 𝜔̇𝑖𝑗 are 

the angular wheel accelerations; 𝜏𝑚,𝑖𝑗,𝑟𝑒𝑓  is the individual reference IWM torque (the 

prediction model neglects the actuation delays); and 𝐹𝑥
𝑗2𝑐

  and 𝐹𝑦
𝑗2𝑐
  are the longitudinal 

and lateral forces applied by the trailer to the car through the hitch joint, in the car 

reference system. 

Based on the experimental tire data provided by the industrial partners involved in this 

research work, the Pacejka magic formula (vers. 2002, [47]) – appropriately tuned to fit the 

experimental tire data – calculates the rolling radius, laden radius, rolling resistance, 

longitudinal force, lateral force, and self-aligning moment of the tires, namely 𝑅𝑒,𝑖𝑗, 𝑅𝑙,𝑖𝑗, 

𝑀𝑦,𝑖𝑗, 𝐹𝑥,𝑖𝑗, 𝐹𝑦,𝑖𝑗, and 𝑀𝑧,𝑖𝑗, as functions of the tire slip angle, 𝛼𝑖𝑗, longitudinal slip ratio, 𝜎𝑥,𝑖𝑗, 

and vertical load, 𝐹𝑧,𝑖𝑗. 𝜎𝑥,𝑖𝑗 and 𝛼𝑖𝑗 are defined as: 

𝛼𝑖𝑗 = tan
−1(

𝑣𝑦 + 𝑘1𝑙𝑖𝜓̇

𝑣𝑥 + 𝑘2
𝑑𝑖
2
𝜓̇
) − 𝑘3𝛿

{

𝑘1 =   1, 𝑘3 = 1
𝑘1 = −1, 𝑘3 = 0

if 𝑖 = 𝐹
if 𝑖 = 𝑅

𝑘2 = −1        
𝑘2 =   1        

if 𝑗 = 𝐿
if 𝐽 = 𝑅

 (4.4.6) 

𝜎𝑥,𝑖𝑗 =
𝜔𝑖𝑗𝑅𝑒,𝑖𝑗 − 𝑣𝑥,𝑖𝑗

𝑣𝑥,𝑖𝑗
 (4.4.7) 

where 𝑣𝑥,𝑖𝑗 is the longitudinal component of the wheel velocity in the tire reference frame. 

𝐹𝑧,𝑖𝑗  is expressed as a function of 𝐹𝑥
𝑗2𝑐

 , 𝐹𝑦
𝑗2𝑐

 , and 𝐹𝑧
𝑗2𝑐

 ; the longitudinal and lateral load 

transfers caused by the longitudinal and lateral accelerations, 𝑎𝑥 and 𝑎𝑦, where the lateral 
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load transfer includes the anti-roll moment contribution due to the active suspension 

actuation; and the longitudinal load transfer due to the aerodynamic drag force, Δ𝐹𝑧
𝑑𝑟𝑎𝑔

: 

𝐹𝑧,𝐹𝑗 =
1

2

𝑚𝑔𝑙𝑅
𝑙

+
1

2
[−𝑚𝑎𝑥

𝐻𝐶𝑜𝐺
𝑙

+ 𝐹𝑥
𝑗2𝑐 𝐻𝐻𝑖𝑡𝑐ℎ

𝑙
] + 𝐹𝑧,𝑡

𝑗2𝑐
 
𝑐ℎ − 𝑙𝑅
2𝑙

+ 𝑘1𝛥𝐹𝑧,𝐹
𝑦
− Δ𝐹𝑧

𝑑𝑟𝑎𝑔
 

𝐹𝑧,𝑅𝑗 =
1

2

𝑚𝑔𝑙𝐹
𝑙

+
1

2
[𝑚𝑎𝑥

𝐻𝐶𝑜𝐺
𝑙

− 𝐹𝑥
𝑗2𝑐 𝐻𝐻𝑖𝑡𝑐ℎ

𝑙
] − 𝐹𝑧,𝑡

𝑗2𝑐 𝑐ℎ + 𝑙𝐹
2𝑙

+ 𝑘1𝛥𝐹𝑧,𝑅
𝑦
+ Δ𝐹𝑧

𝑑𝑟𝑎𝑔
 

𝑘1 = {
−1 if 𝑗 = 𝐿
1 if 𝑗 = 𝑅

 

(4.4.8) 

The lateral load transfer on the 𝑖-th axle, 𝛥𝐹𝑧,𝑖
𝑦

, is computed as 

𝛥𝐹𝑧,𝐹
𝑦
= [𝑚𝑎𝑦

𝑙𝑅
𝑙
+ 𝐹𝑦

𝑗2𝑐 𝑐ℎ − 𝑙𝑅
𝑙

]
𝐻𝑅𝐶
𝑑𝐹

+
𝑀𝐴𝑅,𝐹
𝑡𝑜𝑡

𝑑𝐹
 (4.4.9) 

𝛥𝐹𝑧,𝑅
𝑦
= [𝑚𝑎𝑦

𝑙𝐹
𝑙
− 𝐹𝑦

𝑗2𝑐 𝑐ℎ + 𝑙𝐹
𝑙

]
𝐻𝑅𝐶
𝑑𝑅

+
𝑀𝐴𝑅,𝑅
𝑡𝑜𝑡

𝑑𝑅
 (4.4.10) 

where the total suspension anti-roll moments, 𝑀𝐴𝑅,𝐹
𝑡𝑜𝑡  and 𝑀𝐴𝑅,𝑅

𝑡𝑜𝑡 , are given by: 

𝑀𝐴𝑅,𝐹
𝑡𝑜𝑡 = 𝑀𝐴𝑅,𝐹

𝑝𝑎𝑠𝑠𝑖𝑣𝑒 +𝑀𝐴𝑅,𝐹
𝐴𝑆  

𝑀𝐴𝑅,𝑅
𝑡𝑜𝑡 = 𝑀𝐴𝑅,𝑅

𝑝𝑎𝑠𝑠𝑖𝑣𝑒 +𝑀𝐴𝑅,𝑅
𝐴𝑆  

(4.4.11) 

Since – for computational efficiency – the model neglects the roll dynamics, in (4.4.12) the 

passive anti-roll moment contributions, 𝑀𝐴𝑅,𝑖
𝑝𝑎𝑠𝑠𝑖𝑣𝑒, consider only the effect of the springs: 

𝑀𝐴𝑅,𝐹
𝑝𝑎𝑠𝑠𝑖𝑣𝑒 =

𝐾𝜑,𝐹

𝐾𝜑,𝐹 + 𝐾𝜑,𝑅
{[1 − 𝐾𝑐𝑜𝑚𝑝]𝑚𝑎𝑦[𝐻𝐶𝑜𝐺 − 𝐻𝑅𝐶] −𝐹𝑦

𝑗2𝑐[𝐻𝐻𝑖𝑡𝑐ℎ − 𝐻𝑅𝐶]} 

𝑀𝐴𝑅,𝑅
𝑝𝑎𝑠𝑠𝑖𝑣𝑒 =

𝐾𝜑,𝑅

𝐾𝜑,𝐹 + 𝐾𝜑,𝑅
{[1 − 𝐾𝑐𝑜𝑚𝑝]𝑚𝑎𝑦[𝐻𝐶𝑜𝐺 − 𝐻𝑅𝐶]−𝐹𝑦

𝑗2𝑐[𝐻𝐻𝑖𝑡𝑐ℎ − 𝐻𝑅𝐶]} 
(4.4.12) 

where 𝐾𝜙,𝑖 is the roll stiffness of the passive suspension components; 𝐻𝑅𝐶  is the roll axis 

height at the longitudinal coordinate of 𝐶𝑜𝐺; and 𝐻𝐻𝑖𝑡𝑐ℎ is the height of the hitch joint. The 

active suspension anti-roll moments, 𝑀𝐴𝑅,𝑖
𝐴𝑆 , are linear functions of the lateral acceleration, 

𝑎𝑦 , according to the suspension control design practice of the involved industrial 

company: 

𝑀𝐴𝑅,𝐹
𝐴𝑆 = 𝐾𝑐𝑜𝑚𝑝𝑓𝑚𝑎𝑦[𝐻𝐶𝑜𝐺 − 𝐻𝑅𝐶] 

𝑀𝐴𝑅,𝑅
𝐴𝑆 = 𝐾𝑐𝑜𝑚𝑝[1 − 𝑓]𝑚𝑎𝑦[𝐻𝐶𝑜𝐺 − 𝐻𝑅𝐶] 

(4.4.13) 

where 0 ≤ 𝐾𝑐𝑜𝑚𝑝 ≤ 1  is the roll motion compensation factor, i.e., 𝐾𝑐𝑜𝑚𝑝 =  1 implies that 

the whole roll moment is compensated by the suspension actuators rather than by the 

passive suspension components, with virtually zero roll angle in cornering; and 𝑓 = 𝑓0 +

𝛥𝑓  is the variable front-to-total anti-roll moment distribution factor, with 𝑓0  being its 

nominal value. 
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4.4.3.3 Articulated vehicle prediction model formulation (𝑐 = 2) 

The internal model equations of the car-semitrailer dynamics of the alternative NMPC 

configurations were obtained through the Lagrange method [48], [49]. The articulated 

vehicle dynamics are described by (see also Figure 4.4.1): 

• Longitudinal dynamics equation 

𝑀[𝑣̇𝑥 − 𝜓̇𝑣𝑦] − 𝑚𝑡𝑙𝐹,𝑡[𝜓̈ − 𝜃̈] sin(𝜃) − 2𝑚𝑡𝑙𝐹,𝑡𝜓̇𝜃̇ cos(𝜃) + 𝑚𝑡𝑙𝐹,𝑡𝜃̇
2 cos(𝜃)

+ 𝑚𝑡𝜓̇
2[𝑐ℎ + 𝑙𝐹,𝑡 cos(𝜃)]

= [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] cos(𝛿) − [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] sin(𝛿) + 𝐹𝑥,𝑅𝐿 + 𝐹𝑥,𝑅𝑅

+ ∑  

𝑗=𝐿,𝑅

[𝐹𝑥,𝑡𝑗 cos(𝜃) + 𝐹𝑦,𝑡𝑗 sin(𝜃)] − 𝐹𝑑𝑟𝑎𝑔 

(4.4.14) 

• Lateral dynamics equation 

𝑀[𝑣̇𝑦 + 𝜓̇𝑣𝑥] − 𝑚𝑡𝜓̈[𝑐ℎ + 𝑙𝐹,𝑡 cos(𝜃)] + 𝑚𝑡𝑙𝐹,𝑡𝜃̈ cos(𝜃) − 𝑚𝑡𝑙𝐹,𝑡 sin(𝜃) [𝜓̇ − 𝜃̇]
2

= [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝛿) + [𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝛿) + [𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

+ ∑  

𝑗=𝐿,𝑅

[−𝐹𝑥,𝑡𝑗 sin(𝜃) + 𝐹𝑦,𝑡𝑗 cos(𝜃)] 
(4.4.15) 

• Yaw dynamics equation 

𝐽1,𝜃𝜓̈ − 𝐽2,𝜃𝜃̈ + 𝑚𝑡𝑙𝐹,𝑡𝑐ℎ sin(𝜃) [𝜃̇
2 − 2𝜃̇𝜓̇] − 𝑚𝑡𝑙𝐹,𝑡 sin(𝜃) [𝑣̇𝑥 − 𝑣𝑦𝜓̇]

− 𝑚𝑡[𝑣̇𝑦 + 𝑣𝑥𝜓̇][𝑐ℎ + 𝑙𝐹,𝑡 cos(𝜃)]

= 𝑙𝐹{[𝐹𝑦,𝐹𝐿 + 𝐹𝑦,𝐹𝑅] cos(𝛿) + [𝐹𝑥,𝐹𝐿 + 𝐹𝑥,𝐹𝑅] sin(𝛿)}

− 𝑙𝑅[𝐹𝑦,𝑅𝐿 + 𝐹𝑦,𝑅𝑅]

+ 
𝑑𝐹
2
{[𝐹𝑦,𝐹𝐿 − 𝐹𝑦,𝐹𝑅] sin(𝛿) + [𝐹𝑥,𝐹𝑅 − 𝐹𝑥,𝐹𝐿] cos(𝛿)}  

+
𝑑𝑅
2
[𝐹𝑥,𝑅𝑅 − 𝐹𝑥,𝑅𝐿]

+ ∑  

𝑗=𝐿,𝑅

{𝐹𝑥,𝑡𝑗 [𝑐ℎ sin(𝜃) −
𝑑𝑅,𝑡
2
] + 𝐹𝑦,𝑡𝑗[−𝑐ℎ cos(𝜃) − 𝑙𝑡 ]} 

(4.4.16) 

• Hitch dynamic equation 

𝐽3,𝜃𝜃̈ − 𝐽2,𝜃𝜓̈ + 𝑚𝑡𝑙𝐹,𝑡 cos(𝜃) [𝑣𝑦̇ + 𝑣𝑥𝜓̇] + 𝑚𝑡𝑙𝐹,𝑡 sin(𝜃) {𝑣𝑥̇ − 𝜓̇[𝑣𝑦 − 𝑐ℎ𝜓̇]}

= ∑  

𝑗=𝐿,𝑅

[𝐹𝑥,𝑡𝑗
𝑑𝑅,𝑡
2
+ 𝐹𝑦,𝑇𝑗𝑙𝑡] −  Γ𝜃̇ (4.4.17) 

• Wheel moment balances, i.e., the same as in (4.4.5) this time also including those 

for the trailer wheels. 

In the previous formulations, 𝑀 is the mass of the car-semitrailer system; 𝑚𝑡 is the mass 

of the trailer; 𝐹𝑥,𝑡𝑗 and 𝐹𝑦,𝑡𝑗 are the longitudinal and lateral tire forces for the trailer; 𝑙𝑡 is 

distance from the hitch joint to the trailer axle; 𝑙𝐹,𝑡 is the distance from the hitch joint to 

the center of gravity of the trailer, 𝐶𝑜𝐺𝑡; 𝑙𝑅,𝑡 is the distance from 𝐶𝑜𝐺𝑡 to the trailer axle; 𝑑𝑅,𝑡 

is the trailer track width; Γ is the coefficient of the Rayleigh dissipation term, accounting 
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for the damping level within the hitch joint; and 𝐽1,𝜃 , 𝐽2,𝜃 , and 𝐽3,𝜃  are equivalent mass 

moments of inertia, defined as: 

𝐽1,𝜃 = 𝐽𝑧 + 𝐽𝑧,𝑡 +𝑚𝑡[𝑙𝐹,𝑡
2 + 𝑐2 + 2𝑙𝐹,𝑡𝑐ℎ cos(𝜃)] (4.4.18) 

𝐽2,𝜃 = 𝐽𝑧,𝑡 +𝑚𝑡[𝑙𝐹,𝑡
2 + 𝑙𝐹,𝑡𝑐ℎ cos(𝜃)] (4.4.19) 

𝐽3,𝜃 = 𝐽𝑧,𝑡 +𝑚𝑡𝑙𝐹,𝑡
2  (4.4.20) 

where 𝐽𝑧,𝑡 is the trailer yaw mass moment of inertia. The longitudinal and lateral tire forces 

are calculated with the same magic formula version as for 𝑐 =1. The tire slip angles and 

slip ratios of the car are given by (4.4.6) and (4.4.7). For the semitrailer, the tire slip ratios, 

𝜎𝑥,𝑡𝑗, are calculated as in (4.4.7), while the slip angles, 𝛼𝑡𝑗, are defined as: 

𝛼𝑡𝑗= tan
−1 (

𝑣𝑥 sin(𝜃)+𝑣𝑦 cos(𝜃)−𝑐ℎ𝜓̇ cos(𝜃)−𝑙𝑡[𝜓̇−𝜃̇]

𝑣𝑥 cos−𝑣𝑦 sin(𝜃)+𝑐ℎ𝜓̇ sin(𝜃)−
𝑑𝑅,𝑡
2
[𝜓̇−𝜃̇]

) (4.4.21) 

For the car, the vertical tire loads 𝐹𝑧,𝑖𝑗 are obtained as in (8), whereas the lateral load 

transfer on the trailer, 𝛥𝐹𝑧,𝑡
𝑦

, is given by: 

𝛥𝐹𝑧,𝑡
𝑦
=
𝑚𝑡𝑎𝑦,𝑡𝑙𝑅,𝑡

𝑑𝑅,𝑡𝑙𝑡
𝐻𝐻𝑖𝑡𝑐ℎ −

𝑚𝑡𝑎𝑦,𝑡𝐻𝐶𝑜𝐺,𝑡

𝑑𝑅,𝑡
 (4.4.22) 

where 𝐻𝐶𝑜𝐺,𝑡  is the height of 𝐶𝑜𝐺𝑡 . (4.4.14)–(4.4.22) are re-arranged through a symbolic 

computation software (MAPLE) into a nonlinear state-space formulation. 

4.4.3.4 Nonlinear optimal control problem formulation 

The NMPC prediction models are expressed through the following continuous nonlinear 

state-space formulation: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (4.4.23) 
where the state vectors for the rigid and articulated vehicle models, i.e., 𝑥1 and 𝑥2, are: 

𝑥1 = [𝑣𝑥 𝑣𝑦 𝜓̇ 𝜔𝐹𝐿 𝜔𝐹𝑅 𝜔𝑅𝐿 𝜔𝑅𝑅] (4.4.24) 

𝑥2 = [𝑣𝑥  𝑣𝑦   𝜓̇  𝜃̇  𝜃  𝜔𝐹𝐿  𝜔𝐹𝑅  𝜔𝑅𝐿  𝜔𝑅𝑅  𝜔𝑡𝐿  𝜔𝑡𝑅] (4.4.25) 
while the control input vector, 𝑢 , of the integrated AS-TV system, which is the most 

advanced control option, is: 

𝑢 = [Δ𝑓 𝜏𝑚,𝐹𝐿 𝜏𝑚,𝐹𝑅 𝜏𝑚,𝑅𝐿 𝜏𝑚,𝑅𝑅] (4.4.26) 
For the NMPC algorithms involving only AS or TV control, 𝑢 respectively includes either 

the Δ𝑓 or 𝜏𝑚,𝑖𝑗 terms.  

The NMPC control law minimises the cost function 𝐽 , subject to a set of equality and 

inequality constraints. According to the receding horizon approach [50], the optimal 

control problem is defined in discrete time as: 
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min
𝑢
𝐽(𝑥(0), 𝑢𝑎𝑢𝑔(∙)) ≔ ℓ𝑁(𝑥(𝑁)) + ∑ ℓ𝑐(𝑥(𝑘), 𝑢𝑎𝑢𝑔(𝑘)) 

𝑁−1

𝑘=0

s. t.
𝑥(0) = 𝑥𝑖𝑛

𝑥(𝑘 + 1) = 𝑓𝑑 (𝑥(𝑘), 𝑢𝑎𝑢𝑔(𝑘))

𝑥 ≤ 𝑥(𝑘) ≤ 𝑥

𝑥 ≤ 𝑥(𝑁) ≤ 𝑥

𝑢𝑎𝑢𝑔 ≤ 𝑢𝑎𝑢𝑔(𝑘) ≤ 𝑢𝑎𝑢𝑔

𝑢𝑎𝑢𝑔(∙): [0, 𝑁 − 1]

 (4.4.27) 

where ℓ𝑁(𝑥(𝑁))  is the terminal cost, facilitating convergence and stability; 𝑁  is the 

number of steps of the prediction horizon 𝐻𝑝, in the considered implementation equal to 

the control horizon 𝐻𝑐, i.e., 𝐻𝑝 = 𝐻𝑐 = 𝑁𝑡𝑠, with 𝑡𝑠 being the sampling time; 𝑘 indicates the 

discretisation step along 𝐻𝑝 ; 𝑥  and 𝑥  are the lower and upper limits for 𝑥 ; 𝑢𝑎𝑢𝑔  and 𝑢𝑎𝑢𝑔 

include the lower and upper limits for the components of the augmented control input 

vector 𝑢𝑎𝑢𝑔 , which, according to Figure 4.4.2, on top of the components of 𝑢  in (4.4.26) 

(referring to the most advanced control case), includes the slack variable 𝑠𝛼𝑅, defining the 

soft constraint on the average rear slip angle of the car, 𝛼𝑅; the notation 𝑢𝑎𝑢𝑔(∙): [0, 𝑁 − 1] 

defines the control horizon for 𝑢𝑎𝑢𝑔, from the first step, corresponding to 𝑘 = 0, up to the 

last step, with 𝑘 = 𝑁 − 1; and 𝑥(𝑘 + 1) = 𝑓𝑑 (𝑥(𝑘), 𝑢𝑎𝑢𝑔(𝑘)) is the discretised version of the 

model in (4.4.23).  

The stage costs ℓ𝑐, with 𝑐 = 1 or 2, are defined by the following least-squares functions, 

depending on the selected prediction model: 

𝑙1(𝑥(𝑘), 𝑢(𝑘)) = 𝑊𝑄,Δ𝜓̇Δ𝜓̇
2 +𝑊𝑄,Δ𝜏𝑚,𝑡𝑜𝑡Δ𝜏𝑚,𝑡𝑜𝑡

2 +𝑊𝑅,𝜏𝑚,𝑖𝑗
∑ 𝜏𝑚,𝑖𝑗

2

𝑖=𝐹,𝑅
𝑗=𝐿,𝑅

+𝑊𝑅,𝛥𝑓Δ𝑓
2

+𝑊𝑅,𝑠𝛼𝑅
𝑠𝛼𝑅
2  

(4.4.28) 

𝑙2(𝑥(𝑘), 𝑢(𝑘))

= 𝑊𝑄,Δ𝜓̇𝛥𝜓̇
2 +𝑊𝑄,𝛥𝜏𝑚,𝑡𝑜𝑡𝛥𝜏𝑚,𝑡𝑜𝑡

2 +𝑊𝑄,𝛥𝜃𝛥𝜃
2 +𝑊𝑅,𝜏𝑚,𝑖𝑗

∑ 𝜏𝑚,𝑖𝑗
2

𝑖=𝐹,𝑅
𝑗=𝐿,𝑅

+𝑊𝑅,𝛥𝑓𝛥𝑓
2 +𝑊𝑅,𝑠𝛼𝑅

𝑠𝛼𝑅
2  

(4.4.29) 

where Δ𝜓̇ = 𝜓̇𝑟𝑒𝑓 − 𝜓̇  is the yaw rate tracking error; 𝛥𝜏𝑚,𝑡𝑜𝑡  is the wheel torque tracking 

error at the vehicle level, i.e., the difference between the driver torque request and the total 

reference wheel torque from the controller; Δ𝜃 = 𝜃𝑟𝑒𝑓 − 𝜃 is the hitch angle tracking error, 

which is included only in the cost function of the controllers with the articulated vehicle 

prediction model; 𝑊𝑄,Δ𝜓̇ , 𝑊𝑄,Δ𝜏𝑚,𝑡𝑜𝑡  and 𝑊𝑄,𝛥𝜃  are weights, respectively prioritising the 

tracking of the reference yaw rate of the car, the driver torque demand, and the reference 

hitch angle; 𝑊𝑅,𝑠𝛼𝑅
is the weight for the rear slip angle slack variable; and 𝑊𝑅,𝜏𝑚,𝑖𝑗

 and 𝑊𝑅,𝛥𝑓 
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are the weights that penalise the actuation effort. ℓ𝑁(𝑥(𝑁)) has the same formulation as 

the stage cost, apart from the control input contributions, which are absent by definition. 

In (4.4.27), inequality constraints are implemented on: 

• The IWM torque, i.e., 𝜏̲𝑚 ≤ 𝜏𝑚,𝑖𝑗 ≤ 𝜏𝑚̅ , where 𝜏̲𝑚  and 𝜏𝑚̅  are the minimum and 

maximum torque values according to the powertrain limitations. 

• The deviation of the front-to-total anti-roll moment distribution from 𝑓0, i.e., Δ𝑓̲̲̲̲ ≤

Δ𝑓 ≤ Δ𝑓̅̅̅̅  , where Δ𝑓̲̲̲̲   and Δ𝑓̅̅̅̅   are the minimum and maximum admissible front-to-

total anti-roll moment distribution deviations. 

• 𝛼𝑅 , such that |𝛼𝑅| ≤ 𝛼𝑅
𝑚𝑎𝑥[1 + 𝑠𝛼𝑅] , which, coupled with 𝑠𝛼𝑅 ≥ 0 , imposes a soft 

constraint on the rear slip angle, to facilitate lateral stability, where 𝛼𝑅
𝑚𝑎𝑥 is set to 3 

deg in all the simulations of this study. 

According to the typical NMPC implementations for vehicle dynamics control, the driver 

inputs, i.e., 𝛿𝑠𝑤 , 𝐴𝑃𝑃 , and 𝐹𝑝 , are kept constant along 𝐻𝑝 . The same applies to the 

longitudinal and lateral accelerations that are used for the computation of the load 

transfers; the vehicle speed 𝑉 used for computing 𝐹𝑑𝑟𝑎𝑔 and Δ𝐹𝑧
𝑑𝑟𝑎𝑔

; and the longitudinal, 

lateral and vertical components of the hitch joint force, 𝐹𝑥
𝑗2𝑐

 , 𝐹𝑦
𝑗2𝑐

 , and 𝐹𝑧
𝑗2𝑐

 , for the 

controller configurations with the rigid vehicle internal model including the trailer 

contributions. 

4.4.4 CONTROLLERS IMPLEMENTATION AND TUNING 

4.4.4.1 Controller implementation 

The NMPC algorithms are implemented in their implicit form via the ACADO toolkit [12], 

with the following settings: i) Gauss Newton Hessian approximation; ii) multiple shooting 

discretisation; iii) qpOASES solver; iv) two iterations in the optimisation; v) 𝑁 = 2; and vi) 5 

ms discretisation time (𝑡𝑑) of the internal models, which ensures numerical stability. 

Table 4.4.2: Controller Settings for Real-Time Implementation 

Controller 
Prediction 

model 
States Integrator 

𝑡𝑑 
(ms) 

𝑡𝑠 
(ms) 

AS1 RV+𝐹𝑖
𝑗2𝑐

 𝑣𝑥 , 𝑣𝑦 , 𝜓̇ IRK-GL4 5 15 

AS2 AV 𝑣𝑥 , 𝑣𝑦 , 𝜓̇, 𝜃̇, 𝜃 IRK-GL2 5 35 

TV1 RV+𝐹𝑗2𝑐  𝑣𝑥 , 𝑣𝑦 , 𝜓̇, 𝜔𝑖𝑗  IRK-GL4 5 15 

TV2 AV 
𝑣𝑥 , 𝑣𝑦 , 𝜓̇, 𝜃̇, 𝜃, 𝜔𝑖𝑗  

 
IRK-GL2 5 35 

(AS-TV)1 RV+𝐹𝑗2𝑐  𝑣𝑥 , 𝑣𝑦 , 𝜓̇, 𝜔𝑖𝑗  IRK-GL4 5 15 

(AS-TV)2 AV 
𝑣𝑥 , 𝑣𝑦 , 𝜓̇, 𝜃̇, 𝜃, 𝜔𝑖𝑗  

 
IRK-GL2 5 35 

AS1 RV+𝐹𝑖
𝑗2𝑐

 𝑣𝑥 , 𝑣𝑦 , 𝜓̇ IRK-GL4 5 15 

RV+𝐹𝑖
𝑗2𝑐

: rigid vehicle prediction model with consideration of the hitch joint forces 

AV: articulated vehicle prediction model 

Table 4.4.2 summarises the integrator type and order, i.e., 2nd and 4th order Implicit Runge 
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Kutta integrators, referred to as IRK-GL2 and IRK-GL4, and the sampling time, 𝑡𝑠, for each 

controller configuration. Extensive simulations showed that the adopted 

parametrisations are a good compromise between performance and computational 

efficiency, and enable all controllers to run in real-time on a dSPACE MicroAutoBox II 

system (900 MHz, 16 Mb flash memory), as shown in Figure 4.4.4 reporting the turnaround 

time (𝑡𝑡𝑎) profiles for (AS-TV)1 and (AS-TV)2. Given the reduced number of prediction steps 

to achieve real-time capability, the specific dynamic system cannot be considered to be 

operating in steady-state conditions at the end of the prediction horizon [51], and 

therefore the controllers are set to have the same number of steps for the prediction and 

control horizons. 

4.4.4.2 Controller tuning routine 

On the one hand, the cost function weights on the control effort terms are selected to be 

the same across all the considered controllers, to provide good performance and 

comfortable behaviour in normal driving conditions for both rigid and articulated vehicle 

operation. On the other hand, for fairness of assessment, the cost function weights that 

are relevant to the vehicle cornering response (see Table 4.4.3) are optimised via an 

automated routine.  

The routine runs the simulation model for control system assessment, including the 

controllers, along a typical critical test for trailer dynamics evaluation, namely the lane 

change manoeuvre defined in [52], from an initial speed of 88 km/h, at a constant 200 Nm 

wheel torque demand, carried out with the BMT. The optimisation based tuning 

parameters of each controller, see Table 4.4.3, are: i) 𝑊𝑄,𝛥𝜓̇, the yaw rate tracking weight; 

ii) 𝑊𝑅,𝑠𝛼𝑅
, the weight of the slack variable providing the soft constraint on the rear slip angle 

of the towing car; and iii) 𝑊𝑄,𝛥𝜃, the hitch angle tracking weight, which is present only in 

the controllers embedding the articulated vehicle model. 

 

 

 (a) (b)  

Figure 4.4.4:  Profiles of the turnaround time for a) (AS-TV)1 and b) (AS-TV)2 during an extreme step 
steer test. 
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Table 4.4.3: Tuning Parameters Resulting from Optimisation. 

Controller Description Tuning parameters 

AS1 Standalone AS controller 0 ≤  𝑊𝑄,Δ𝜓̇ ≤ 𝑊̅𝑄,Δ𝜓̇ 

0 ≤ 𝑊𝑅,𝑠𝛼𝑅
≤ 𝑊̅𝑅,𝑠𝛼𝑅

 
TV1 Standalone TV controller 

(AS-TV)1 Integrated AS-TV controller 
AS2 Standalone AS controller 0 ≤  𝑊𝑄,Δ𝜓̇ ≤ 𝑊̅𝑄,Δ𝜓̇ 

0 ≤  𝑊𝑄,Δ𝜃 ≤ 𝑊̅𝑄,Δ𝜃 

0 ≤ 𝑊𝑅,𝑠𝛼𝑅
≤ 𝑊̅𝑅,𝑠𝛼𝑅

 

TV2 Standalone TV controller 

(AS-TV)2 Integrated AS-TV controller 

Given the rather limited number of tuning parameters, a brute force algorithm is used to 

solve the following optimisation problem: 

𝐽𝐾𝑃𝐼
∗ = min

𝑊𝑜𝑝𝑡
𝐽𝐾𝑃𝐼|𝑡𝑖

𝑡𝑓
 

s. t. 𝑊̲̲̲ ≤ 𝑊𝑜𝑝𝑡 ≤ 𝑊̅ 
(4.4.30) 

where 𝑊̅ is the vector of the upper bounds of the tuning weights, whose parameter space 

is discretised with a fine granularity within the defined interval; 𝑊𝑜𝑝𝑡 is the optimal value 

of the weight vector; 𝑡𝑖 and 𝑡𝑓 are the initial and final times of the relevant portion of the 

test; and 𝐽𝐾𝑃𝐼
∗  is the optimal value of the cost function 𝐽𝐾𝑃𝐼, given by the weighted sum of 

multiple non-dimensional key performance indicators (KPIs): 

𝐽𝐾𝑃𝐼 = 𝑊𝑅𝑀𝑆𝐸Δ𝜓̇
𝐾𝑅𝑀𝑆𝐸Δ𝜓̇𝑅𝑀𝑆𝐸Δ𝜓̇ +𝑊𝑅𝑀𝑆𝐸Δ𝜃

𝐾𝑅𝑀𝑆𝐸Δ𝜃𝑅𝑀𝑆𝐸Δ𝜃

+𝑊Δ𝐹𝑧
𝑚𝑒𝑎𝑠𝐾Δ𝐹𝑧𝑚𝑒𝑎𝑠𝑅𝑀𝑆Δ𝐹𝑧𝑚𝑒𝑎𝑠 +𝑊|𝜃|𝑚𝑎𝑥𝐾|𝜃|𝑚𝑎𝑥|𝜃|

𝑚𝑎𝑥

+𝑊|𝛼𝑅|
𝑚𝑎𝑥𝐾|𝛼𝑅|𝑚𝑎𝑥|𝛼𝑅|

𝑚𝑎𝑥 +𝑊𝑅𝑊𝐴𝐾𝑅𝑊𝐴𝑅𝑊𝐴 
(4.4.31) 

where the terms 𝑊𝐾𝑃𝐼  (with the subscript 𝐾𝑃𝐼 = 𝑅𝑀𝑆𝐸Δ𝜓̇ , 𝑅𝑀𝑆𝐸Δ𝜃 , 𝑅𝑀𝑆Δ𝐹𝑧𝑚𝑒𝑎𝑠  , |𝜃|
𝑚𝑎𝑥  , |𝛼𝑅|

𝑚𝑎𝑥  , and 𝑅𝑊𝐴 ) 

are the weights for the individual indicators, i.e., 𝑊𝑅𝑀𝑆𝐸Δ𝜓̇
= 0.25, 𝑊𝑅𝑀𝑆𝐸Δ𝜃= 0.25, 𝑊Δ𝐹𝑧

𝑚𝑒𝑎𝑠= 0.10, 

𝑊|𝜃|𝑚𝑎𝑥 = 0.20, 𝑊|𝛼𝑅|
𝑚𝑎𝑥 = 0.10, and 𝑊𝑅𝑊𝐴 = 0.10 in the specific implementation; and 𝐾𝐾𝑃𝐼  are 

normalisation factors, expressed as the maximum expected value of the KPI. The selected 

KPIs in (4.4.31) are: 

• The root-mean-square value of the yaw rate error of the towing car: 

𝑅𝑀𝑆𝐸𝛥𝜓̇ = √
1

𝑡𝑓 − 𝑡𝑖
∫ [𝜓̇𝑟𝑒𝑓(𝑡) − 𝜓̇(𝑡)]

2
𝑑𝑡

𝑡𝑓

𝑡𝑖

 (4.4.32) 

• The root-mean-square value of the hitch angle error, to assess the level of trailer sway: 

𝑅𝑀𝑆𝐸𝛥𝜃∗ = √
1

𝑡𝑓 − 𝑡𝑖
∫ [𝛥𝜃∗]2𝑑𝑡
𝑡𝑓

𝑡𝑖

 (4.4.33) 

with: 

𝛥𝜃∗= {
|𝜃𝑟𝑒𝑓(𝑡) − 𝜃(𝑡)| − 𝛥𝜃𝑏𝑜𝑢𝑛𝑑 𝑖𝑓 |𝜃𝑟𝑒𝑓(𝑡) − 𝜃(𝑡)| >  𝛥𝜃𝑏𝑜𝑢𝑛𝑑

0 𝑖𝑓 |𝜃𝑟𝑒𝑓(𝑡) − 𝜃(𝑡)| ≤ 𝛥𝜃𝑏𝑜𝑢𝑛𝑑
 (4.4.34) 

where Δ𝜃𝑏𝑜𝑢𝑛𝑑 = 7 deg is the hitch angle error bound of the dead-band function in (4.4.34), 

i.e., the hitch angle error is accounted for only when it exceeds the defined threshold. 
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• The root-mean-square value of the lateral load transfer computed from the tire loads 

generated by the high-fidelity model: 

𝑅𝑀𝑆𝛥𝐹𝑧𝑚𝑒𝑎𝑠 = √
1

𝑡𝑓 − 𝑡𝑖
∫ [𝐹𝑧,𝐹𝐿 + 𝐹𝑧,𝑅𝐿 − 𝐹𝑧,𝐹𝑅 − 𝐹𝑧,𝑅𝑅]

2
𝑑𝑡

𝑡𝑓

𝑡𝑖

 (4.4.35) 

• The maximum hitch angle magnitude, which shows the most critical condition of the 

combination vehicle: 

𝜃𝑚𝑎𝑥 = 𝑚𝑎𝑥|𝜃| (4.4.36) 

• The maximum rear axle slip angle magnitude, to assess the stability of the towing car: 

𝛼𝑅
𝑚𝑎𝑥 = 𝑚𝑎𝑥|𝛼𝑅| (4.4.37) 

• The rearward amplification factor, to assess trailer stability: 

𝑅𝑊𝐴 =
𝑚𝑎𝑥|𝑎𝑦,𝑡|

𝑚𝑎𝑥|𝑎𝑦|
 (4.4.38) 

where 𝑎𝑦,𝑡  is the lateral acceleration of the trailer.  

In addition to being used for optimised control tuning with the BMT, in the remainder 𝐽𝐾𝑃𝐼 

and the respective individual indicators are also calculated for different trailers and 

manoeuvres, to support the controller assessment phase. 

4.4.5 ESTIMATION OF RELEVANT VARIABLES AND PARAMETERS. 

4.4.5.1 Hitch joint forces 

In real-world conditions, the hitch joint force components are not available, because of 

the lack of dedicated sensors on typical car-semitrailer combination vehicles. Hence, for 

the NMPCs embedding the rigid vehicle model (𝑐 = 1), 𝐹𝑥
𝑗2𝑐

, 𝐹𝑦
𝑗2𝑐

 and 𝐹𝑧
𝑗2𝑐

 are computed 

outside the internal model, under reasonable assumptions, and are kept constant along 

the prediction horizon. More specifically, the three forces are calculated from the hitch 

joint force components in the trailer reference system, 𝐹𝑥,𝑡
𝑗2𝑐

 , 𝐹𝑦,𝑡
𝑗2𝑐

 , and 𝐹𝑧,𝑡
𝑗2𝑐

 , see Figure 

4.4.1a)–b): 

𝐹𝑥
𝑗2𝑐

= 𝐹𝑥,𝑡
𝑗2𝑐
cos(𝜃) + 𝐹𝑦,𝑡

𝑗2𝑐
sin(𝜃) (4.4.39) 

𝐹𝑦
𝑗2𝑐

= 𝐹𝑥,𝑡
𝑗2𝑐
sin(𝜃) + 𝐹𝑦,𝑡

𝑗2𝑐
cos(𝜃) (4.4.40) 

𝐹𝑧
𝑗2𝑐

= 𝐹𝑧,𝑡
𝑗2𝑐

 (4.4.41) 

where 𝜃  can be obtained from ultra-sonic sensors located on the rear bumper of the 

towing car, see Section 4.4.1. By neglecting the yaw and pitch accelerations of the trailer, 

and assuming that the longitudinal and lateral trailer accelerations, i.e., 𝑎𝑥,𝑡 and 𝑎𝑦,𝑡, are 

equal to the acceleration components of the towing car, 𝐹𝑥,𝑡
𝑗2𝑐

 , 𝐹𝑦,𝑡
𝑗2𝑐

  and 𝐹𝑧,𝑡
𝑗2𝑐

  are derived 

from the longitudinal force balance (4.4.42), the yaw moment balance (4.4.43), and the 

pitch moment balance of the trailer (4.4.44): 
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𝐹𝑥,𝑡
𝑗2𝑐

= −𝑚𝑡𝑎𝑥,𝑡 ≅ −𝑚𝑡𝑎𝑥 (4.4.42) 

𝐹𝑦,𝑡
𝑗2𝑐

= −
𝑚𝑡𝑎𝑦,𝑡𝑙𝑅,𝑡

𝑙𝑡
≅ −

𝑚𝑡𝑎𝑦𝑙𝑅,𝑡

𝑙𝑡
 (4.4.43) 

𝐹𝑧,𝑡
𝑗2𝑐

=
𝑚𝑡𝑔𝑙𝑅,𝑡
𝑙𝑡

+
𝑚𝑡𝑎𝑥,𝑡[𝐻𝐶𝑜𝐺,𝑡 − 𝐻𝐻𝑖𝑡𝑐ℎ]

𝑙𝑡
≅ −

𝑚𝑡𝑔𝑙𝑅,𝑡
𝑙𝑡

+
𝑚𝑡𝑎𝑥[𝐻𝐶𝑜𝐺,𝑡 −𝐻𝐻𝑖𝑡𝑐ℎ]

𝑙𝑡
= 𝐹𝑧

𝑗2𝑐,𝑠𝑡𝑎𝑡
+ 𝛥𝐹𝑧,𝑡

𝑥  

(4.4.44) 

The control system performance analyses, see the following Section 4.4.6, highlighted that, 

in the considered extreme cornering conditions, 𝐹𝑥
𝑗2𝑐

  and 𝐹𝑧
𝑗2𝑐

  tend to bring negligible 

effects w.r.t. 𝐹𝑦
𝑗2𝑐

, and therefore the focus must be on the accurate estimation of the lateral 

force component. Figure 4.4.5 shows validation examples of 𝐹𝑦
𝑗2𝑐

  profiles computed 

through (4.4.40) and (4.4.43) against the CarMaker model output. 

4.4.5.2 Trailer parameters estimation 

As shown in Section 4.4.5.1, the estimation of the hitch joint force inputs, required by the 

NMPC implementations based on the rigid vehicle model (NMPC1 in the remainder), 

requires the knowledge of: i) the trailer mass, 𝑚𝑡; and ii) the ratio 𝑙𝑅,𝑡/𝑙𝑡. Additionally, the 

NMPCs based on the articulated vehicle prediction model in Section 4.4.3.3 (referred to as 

NMPC2) need the knowledge of a more complete set of inertial, geometric and component 

parameters of the trailer, including the track width and tire parameters. 

Since the load-independent trailer parameters, such as 𝑙𝑡 , remain constant along the 

trailer lifetime, their values can be assumed to be stored in the trailer, and accurately 

provided to the controller on the towing car, without significant additional cost or 

complexity. To some extent, this can be considered valid also for the trailer tire parameters. 

On the contrary, the mass and longitudinal position of the center of gravity of the trailer 

 

  

(a) (b) 

Figure 4.4.5:  Validation – against the high-fidelity model results – of the proposed simplified method for 
computing the lateral component of the hitch joint force, along: a) a sinusoidal steering manoeuvre at 60 

km/h, with 50 deg of steering wheel angle amplitude; and b) a step steer at 40 km/h, with 150 deg of 
steering wheel angle magnitude. 
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must be estimated in real-time. The following paragraphs provide an overview of the 

estimation algorithms adopted in the implementations of this study. 

As per the trailer mass estimation, 𝑚𝑡 is estimated through a recursive least square (RLS) 

algorithm based on the longitudinal force balance of the car-semitrailer configuration, 

starting from the measured longitudinal acceleration, and the estimated wheel torque 

levels. The RLS formulation is: 

𝜁𝑘 = 𝜁𝑘−1 + 𝐾𝑘[𝑦𝑘 − 𝜑𝑘
𝑇𝜁𝑘−1] (4.4.45) 

where 𝜁 is the vector of the parameters to be estimated, i.e., in this case 𝑚𝑡; the subscript 

𝑘  defines the time step; the measurement vector 𝑦𝑘  includes the total estimated 

longitudinal tire forces of the towing car, 𝐹𝑥,𝑡𝑜𝑡 ; the coefficient 𝜑𝑘
   derives from the 

longitudinal force balance, see [53]; and 𝐾𝑘  is the correction gain, which depends on a 

forgetting factor 𝜆 [54]. 

Similarly to the studies in [53], [55] and [56], the RLS estimates are reliable when the 

vehicle is in pure longitudinal motion. In particular, the RLS algorithm is activated when 

the following conditions are concurrently met: i) the measured lateral acceleration 

magnitude is very low, i.e., |𝑎𝑦| < 0.3 m/s2; ii) the measured longitudinal acceleration is 

higher than a positive threshold (𝑎𝑥 > 0.3 m/s2), i.e., braking conditions are discarded [56]; 

iii) the estimated slip ratios magnitudes on the car tires are relatively small (|𝜎𝑥,𝑖𝑗| < 0.05) 

[56]; and iv) the vehicle is not operating at very low speed (𝑣𝑥 > 15 km/h) [55], [56]. 

A buffer of the latest valid 50 RLS estimates is generated to compute the average trailer 

mass, 𝑚𝑡,𝑎𝑣𝑔,𝑏𝑢𝑓𝑓𝑒𝑟 , which is the output of the trailer mass estimation algorithm. The 

estimation is considered to be abnormal if: 

|𝑚𝑡,𝑅𝐿𝑆 −𝑚𝑡,𝑎𝑣𝑔,𝑏𝑢𝑓𝑓𝑒𝑟| > 0.1 𝑚𝑡,𝑎𝑣𝑔,𝑏𝑢𝑓𝑓𝑒𝑟 (4.4.46) 
When the previous condition is met, the estimate is neglected in the buffer definition. The 

RLS algorithm is stopped once the estimation is deemed to be complete, based on the 

following conditions: a) the RLS algorithm has run for at least 150 s; b) the estimation in 

the last 150 s stays in a pre-defined range [53], [55]; and c) the vehicle operation time 

during the trip exceeds a defined threshold (600 s) [55]. 
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Figure 4.4.6 reports an example of mass estimation test, along a normal driving 

manoeuvre consisting of concurrent steering, accelerator and brake pedal inputs. 

As per the trailer geometric ratio, i.e. 𝑙𝑅,𝑡/𝑙𝑡, it is estimated in real-time through a second 

RLS algorithm. The information required by the RLS includes the estimated trailer mass, 

the measured lateral acceleration of the towing car, the estimated wheel torque levels, and 

the lateral tire forces of the car, which can be estimated through a UKF [57]. The RLS 

formulation is the same as in (4.4.45), with 𝜁 =  𝑙𝑅,𝑡/𝑙𝑡 ; 𝑦𝑘  includes the estimated 

longitudinal tire forces on the front axle of the car, 𝐹𝑥,𝐹𝑗 ; and 𝜑𝑘  derives from the re-

arranged lateral force balance of the car-semitrailer system. The estimates are deemed 

reliable when the vehicle is in steady-state cornering, hence the RLS is activated when the 

following conditions are concurrently met: i) |𝑎𝑦| > 0.3 m/s2; ii) |𝑎𝑥| < 0.3 m/s2; iii) 𝑣𝑥 > 

15 km/h; and iv) the mass estimation routine has already been successfully completed in 

the previous part of the trip 

Also in this case, a buffer of the latest valid 50 RLS estimates is generated to compute the 

average value of the ratio, i.e., (
𝑙𝑅,𝑡

𝑙𝑡
)
𝑎𝑣𝑔,𝑏𝑢𝑓𝑓𝑒𝑟

 . Similarly to the trailer mass estimation 

routine, the abnormal data are identified and eliminated from the buffer and replaced by 

the latest valid values. The RLS algorithm is stopped once the same conditions a)–c) 

defined for the mass estimation are met [53], [55]. Figure 4.4.7 shows an example of 

geometric trailer ratio estimation during the same manoeuvre as in Figure 4.4.6, under the 

assumption that the estimation of 𝑚𝑡 has already been completed.  

Figure 4.4.6: Example of trailer mass estimation during a manoeuvre with variable steering wheel, 
accelerator and brake pedal inputs, with vehicle speeds ranging from 40 km/h to 120 km/h. The enable 

signal is equal to 200 when the estimation algorithm is inactive, and to 400 when the estimation 
algorithm is active. 

 

 

Figure 4.4.7: Example of trailer ratio estimation during the same test as in Figure 4.4.6. 
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4.4.6 RESULTS AND DISCUSSION 

This section assesses:  

• The proposed integrated AS and TV controllers, referred to as (AS-TV)c. 

• The standalone TV control strategies (TVc).  

• The standalone AS control strategies (ASc). 

• The parallel AS and TV configurations, (ASc//TVc)W/oComm, which do not share any 

information on the respective control inputs. 

• The parallel AS and TV controllers, (ASc//TVc)W/Comm, which share the control input 

information. 

• The baseline versions of the controllers, which embed the rigid vehicle prediction 

model in Section III.B and neglect the presence of the trailer. Such algorithms can 

be implemented as standalone torque-vectoring or active suspension controllers, 

referred to as TVBas and ASBas in the remainder, or in an integrated setup, referred 

to as (AS-TV)Bas.  

• The passive vehicle configuration, with an even motor torque distribution among 

the corners of the towing car, and absence of variable anti-roll moment distribution. 

All cases include active suspension actuation to reduce the roll motions of the towing car. 

The AS notation indicates that the suspension controller also varies the front-to-total anti-

roll moment distribution to achieve a vehicle dynamics benefit. The cost function weights 

of the baseline controllers are optimised for the rigid vehicle, while all the other controllers 

are tuned for the combination vehicle with BMT. In fact, it is supposed that the car 

controllers are aware of whether the vehicle is towing a trailer, and thus a dedicated setting 

can be implemented for this occurrence. Nevertheless, it was verified that all controllers 

tuned for the combination vehicle provide safe performance also for rigid vehicle 

operation. The parallel control configurations have the same tuning as the corresponding 

standalone cases. 

4.4.6.1 Comparison of the control configurations applied to the benchmarking 

trailer 

Figure 4.4.8 compares the behaviour of the NMPC1 algorithms with the one of their 

respective baseline versions, i.e., those neglecting the hitch joint forces. Figure 4.4.8(a) 

refers to a series of step steers and focuses on the active suspension actuation. The passive 

vehicle becomes unstable following the first steering input, while ASBas handles the first 

counter-steering action, before losing control after ~4 s, which results in trailer rollover. 

On the contrary, AS1 is able to complete the manoeuvre by limiting the magnitude of the 

trailer hitch and roll angles (|𝜃𝑚𝑎𝑥| ≅ 5 deg and |𝜑𝑡,𝑚𝑎𝑥| ≅ 15 deg). Figure 4.4.8(b) reports 

the performance of the torque-vectoring setups during a single sinusoidal steering test at 

high speed. Also in this case, the passive vehicle cannot complete the manoeuvre, and the 

TVBas configuration becomes unstable once the driver steering command goes back to 

zero. Instead, the hitch joint force contributions allow to overcome the flaws of the 
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baseline setups. The benefits of the NMPC1 configurations are confirmed in Figure 4.4.8(c), 

referring to a sweep steering test with the integrated AS and TV controllers. The general 

conclusion is that the baseline AS and TV controllers, or their combination, are unable to 

limit the trailer hitch and roll dynamics. Vice versa, the inclusion of the estimated hitch 

joint forces is sufficient to account for the trailer presence in the rigid vehicle prediction 

model, and to provide stability without significantly increasing complexity.  

Figure 4.4.9 reports the response of the NMPC1 and NMPC2 algorithms along an ISO lane 

change [52], in which the passive car-semitrailer is unstable. Figure 4.4.9(a) and (b) 

highlight that the AS actuation on its own leads to higher trailer roll angle w.r.t. the 

integrated (AS-TV)1 solution, for both internal model formulations. Nevertheless, the 

standalone AS configurations provide comparable performance to (AS-TV)1 in limiting the 

hitch angle peak (4.28 deg for AS1, 4.34 deg for AS2, and 4.37 deg for (AS-TV)1), although 

 

    

(a) 

 

    

(b) 

 

    

(c) 

Figure 4.4.8: Results for the combination vehicle with the BMT in high-𝜇 conditions. Comparison of the passive 
vehicle with: a) ASBas and AS1 during a multiple step steer test with 60 deg of steering wheel angle amplitude, 

1000 Nm of wheel torque demand, from an initial speed of 65 km/h; b) TVBas and TV1 during a single sinusoidal 
steering test with 50 deg of steering wheel angle amplitude, 1000 Nm of torque demand, from 90 km/h; and c) 

(AS-TV) Bas and (AS-TV)1 during a sine sweep steering manoeuvre with 40 deg amplitude, 1000 Nm torque 
demand, from 85 km/h. 
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their results are inferior to those of (AS-TV)2 (with a 3.61 deg peak). Figure 4.4.9(c) and (d) 

highlight that the parallel configurations need to undergo a new calibration process w.r.t. 

their individual optimal settings, otherwise – with the original tuning for the separate 

actuations – they may generate chattering in the yaw rate response. This issue is more 

evident for the peaceful coexistence (AS1//TV1)W/Comm configuration, while the parallel 

configurations AS2//TV2 with and without communication show better overall 

performance than the respective (AS1//TV1). 

 

    

(a) 

 

    

(b) 

 

    

(c) 

 

    

(d) 

Figure 4.4.9: Results for the combination vehicle with the BMT, during an ISO lane change manoeuvre from 88 
km/h, with 200 Nm wheel torque demand, in high-𝜇 conditions. Comparison of the passive vehicle with: a) the 
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The resulting KPIs are reported in Figure 4.4.10. Figure 4.4.10(a) compares the individual 

actuation cases with the integrated (AS-TV)1 and (AS-TV)2, while Figure 4.4.10(b) contrasts 

the parallel control architectures with the integrated ones. To penalise the 𝐽𝐾𝑃𝐼  values 

obtained when the car-trailer configuration is unstable, each KPI is multiplied by a factor 

2 whenever the trailer roll angle exceeds an extreme value (70 deg, corresponding to 

rollover) during the test, condition in which the simulation is also automatically 

interrupted. Figure 4.4.10 does not include 𝑅𝑀𝑆𝐸Δ𝜃, as for the controlled cases Δ𝜃 exceeds 

the error bound of 7 deg defined in Section 4.4.4.2 only in the (AS1//TV1)W/oComm case. 

The analysis of the plots leads to the following observations: 

• TVbas, i.e., the torque-vectoring controller calibrated for isolated vehicle control 

purposes, keeps the car-semitrailer stable, but the performance is degraded w.r.t. 

all the proposed control configurations for articulated vehicles, with the exception 

of (AS1//TV1)W/oComm.  

• As expected, the AS performance on its own is always slightly worse than the one of 

the corresponding standalone TV control configurations, i.e., 𝐽𝐾𝑃𝐼 is ~6.5% higher 

for AS1 w.r.t. TV1, and ~5.1% higher for AS2 w.r.t. TV2. 

• Despite being less effective than the corresponding TV control configurations, the 

standalone AS settings perform better than TVBas, because of the inclusion of some 

form of trailer consideration. For example, w.r.t. TVBas, AS1 and AS2 reduce the cost 

function respectively by ~10% and ~9.5%. 

standalone AS configurations; b) the integrated AS-TV configurations, c) the (AS-TV)1 and AS1//TV1 
configurations; and d) the (AS-TV)2 and AS2//TV2 configurations. 

 

  

(a) (b) 

Figure 4.4.10: KPI summary for the selected ISO lane change manoeuvre of the combination vehicle with BMT. 
Comparison of the integrated strategies with: a) TVBas and the standalone ASc and TVc controllers; and b) the 

parallel and the peaceful coexistence configurations, (ASc//TVc)W/oComm and (ASc//TVc)W/Comm. 
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• When integrated with the torque-vectoring system, the active suspension provides 

only a marginal performance improvement for the NMPC1 case, i.e., the 

𝐽𝐾𝑃𝐼  reduction amounts to less than 0.5% for (AS-TV)1 w.r.t. TV1. Instead, the AS 

benefit is much more evident for the NMPC2 implementations, for which (AS-TV)2 

reduces 𝐽𝐾𝑃𝐼 and |𝜃𝑚𝑎𝑥| by ~5% and ~17% w.r.t. TV2, thanks to the inclusion of the 

continuous hitch angle tracking term in (4.4.29). 

• Because of their formulation, the standalone and integrated NMPC1 

implementations tend to provide better car yaw rate tracking and worse hitch angle 

tracking performance than the corresponding NMPC2 algorithms. For example, TV1 

reduces 𝑅𝑀𝑆𝐸𝛥𝜓̇  by ~20% w.r.t. (AS-TV)1, and by ~62% w.r.t. (AS-TV)2. However, 

among the controllers that are able to complete the test, TV1 also shows the third 

highest hitch angle peak after (AS1//TV1)W/Comm and TVBas, corresponding to a ~3% 

|𝜃𝑚𝑎𝑥| increase w.r.t. (AS-TV)1, and to a ~25% increment w.r.t. (AS-TV)2. Given the 

focus of the controllers on stable car-trailer operation, 𝐽𝐾𝑃𝐼 more heavily penalises 

the hitch angle error than the yaw rate error, and thus, for example, 𝐽𝐾𝑃𝐼  is ~3% 

lower for (AS-TV)2 w.r.t. TV1. 

• When associated to a single actuation system, the considered real-time NMPC1 

algorithms always provide marginally better performance than the corresponding 

NMPC configurations including the trailer dynamics in the prediction model, i.e., 

𝐽𝐾𝑃𝐼 amounts to 0.251 and 0.253 for AS1 and AS2, and to 0.236 and 0.240 for TV1 and 

TV2. 

• When associated with both chassis actuation methods, the NMPC2 configurations 

provide better performance than the respective NMPC1 versions, i.e., 𝐽𝐾𝑃𝐼 amounts 

to 0.283 and 0.233 for (AS1//TV1)W/Comm and (AS2//TV2)W/Comm, 0.995 and 0.239 for 

(AS1//TV1)W/oComm and (AS2//TV2)W/oComm, and 0.235 and0.227 for (AS-TV)1 and 

(AS-TV)2, where the latter provides the best overall performance for the BMT case 

and reduces 𝐽𝐾𝑃𝐼 by ~3.4% w.r.t. (AS-TV)1. 

• The parallel configurations without communication of the control inputs provide 

worse KPIs than the peaceful coexistence layouts, which, on their end, are already 

less performant than the integrated control solutions. The variation of the KPIs is 

especially evident for the NMPC1 configurations. In fact, while (AS1//TV1)W/Comm 

implies limited performance degradation, amounting to ~17% w.r.t. (AS-TV)1, 

(AS1//TV1)W/oComm brings a ~76% 𝐽𝐾𝑃𝐼 increase, corresponding – very importantly – 

to an unstable vehicle response with trailer rollover. Indeed, (AS1//TV1)W/oComm 

performs by far worse than the individual controllers, including TVbas, and thus 

such configuration is not recommended for further development. On the contrary, 

the parallel NMPC2 architectures are not significantly affected by the absence of 

control action information exchange. In fact, w.r.t. (AS-TV)2, 𝐽𝐾𝑃𝐼  increases by 

~4.9% and ~2.7%, respectively for (AS2//TV2)W/oComm and (AS2//TV2)W/Comm. 
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As a summary, the configuration ranking w.r.t. 𝐽𝐾𝑃𝐼 for BMT operation, from the worst to 

the best controller, is (AS1//TV1)W/oComm; TVbas; (AS1//TV1)W/Comm; AS2; AS1; TV2; 

(AS2//TV2)W/oComm; (AS2//TV2)W/Comm; TV1; (AS-TV)1; and (AS-TV)2. 

Corresponding simulations were run also for the sinusoidal steering test, involving less 

critical roll dynamics and more extreme hitch angle dynamics. The results show similar 

trends, apart from the fact that in these conditions also (AS2//TV2)W/oComm becomes 

unstable.  

The overall recommendation from the previous analyses on the nominal trailer setup is to 

opt for an integrated controller based on the more advanced prediction model. Moreover, 

in Section 4.4.4.1, the real-time implementability of the parallel control solutions was 

verified in terms of the individual controllers running in real-time on the dSpace 

MicroAutoBox II unit. This means that the real-time implementation of the parallel 

architectures would require two control hardware devices, while the proposed integrated 

controllers, i.e., (AS-TV)1 and (AS-TV)2, are able to run in real-time on a single rapid control 

prototyping device, because of their longer sampling time. Hence, a comparison among 

the real-time controller configurations running on the same single device would highlight 

an even more evident advantage of the integrated solutions. 

4.4.6.2 Sensitivity analysis on trailer parameters 

This section analyses the control system robustness w.r.t. the variation of the geometric 

and inertial trailer parameters, according to the configurations in Table A 1, during the 

considered ISO lane change manoeuvre. In the tests of this section, the parameters are 

modified in the high-fidelity CarMaker model at the beginning of each simulation, but are 

kept unaltered in the prediction models, which always use the BMT parameters. In these 

simulations, the trailer parameter estimation algorithms are purposely deactivated, to 

prevent any adaptation to the different trailers, which corresponds to the worst-case 

scenario. The cost function weights are also the same as for the case with nominal trailer. 

For each trailer configuration, Table A 2 in the Appendix highlights the controllers and 

trailer parameters that lead the car-semitrailer to unstable conditions. Table 4.4.4 and 

Figure 4.4.11 report the average (hence the symbol  ̅ ’ in the notations) KPIs obtained 

across the simulated trailer setups. The table also shows the average percentage variation, 

Δ𝐽𝐾̅𝑃𝐼, of 𝐽𝐾𝑃𝐼 for the different control configurations w.r.t. the value (𝐽𝐾𝑃𝐼,𝑇𝑉2) for the TV2 

controller, which represents the current state-of-the-art in hitch angle control, see [18]: 

𝛥𝐽𝐾̅𝑃𝐼 =
1

𝑛𝑡
∑100

𝐽𝐾𝑃𝐼,𝐶𝑡𝑟𝑙,𝑗𝑡 − 𝐽𝐾𝑃𝐼,𝑇𝑉2,𝑗𝑡
𝐽𝐾𝑃𝐼,𝑇𝑉2,𝑗𝑡

𝑛𝑡

𝑗𝑡=1

 (4.4.47) 

where 𝑛𝑡 is the number of considered trailer configurations; 𝑗𝑡 is an index referring to the 

trailer parametrisation; and 𝐽𝐾𝑃𝐼,𝐶𝑡𝑟𝑙,𝑗𝑡 is the objective function value across the trailers for 
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the specific controller, identified through the subscript 𝐶𝑡𝑟𝑙 . Negative Δ𝐽𝐾̅𝑃𝐼  values 

indicate an improvement w.r.t. TV2. 

Table 4.4.4 – Average KPIs with all the trailers (all the discussed configurations). 

KPI 
(units) 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅
Δ𝜓̇  

(deg/s) 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅
Δ𝜃 

(deg) 
|𝛼𝑅

𝑚𝑎𝑥|̅̅ ̅̅ ̅̅ ̅̅ ̅ 
(deg) 

|𝜃 𝑚𝑎𝑥|̅̅ ̅̅ ̅̅ ̅̅ ̅ 
(deg) 

𝑅𝑊𝐴̅̅ ̅̅ ̅̅ ̅ 
(-) 

𝐽𝐾̅𝑃𝐼  
(-) 

Δ𝐽𝐾̅𝑃𝐼 
(%) 

TVBas 2.44 1.33 3.19 15.18 1.81 0.49 81.48 
AS1 1.64 0 2.45 4.38 1.28 0.25 -7.41 
AS2 2.09 0.48 2.85 7.38 1.51 0.33 22.22 
TV1 0.54 0.2 2.64 5.65 1.38 0.27 0 
TV2 0.98 0.18 2.38 5.73 1.38 0.27 - 

(AS1//TV1 )W/Comm 2.65 0.67 2.92 8.85 1.56 0.38 40.74 
(AS2//TV2 )W/Comm 1.2 0.31 2.61 7.11 1.46 0.31 14.81 
(AS1//TV1)W/oComm 4.92 3.16 5.32 32.2 2.91 0.94 248.15 
(AS2//TV2)W/oComm 1.49 0.32 2.68 7.06 1.44 0.31 14.81 

(AS-TV)1  0.8 0.25 2.45 5.93 1.39 0.28 3.7 
(AS-TV)2 0.99 0.23 2.22 5.22 1.28 0.25 -7.41 

 

The controller configuration ranking is the same in terms of stability (Table A 2) and Δ𝐽𝐾̅𝑃𝐼, 

and sees, from the worst to the best case: (AS1//TV1)W/oComm (13 unstable cases out of 14, 

including the BMT); TVbas (4 unstable cases); (AS1//TV1)W/Comm (3 unstable cases); AS2, 

 

(a) 

 

(b) 

Figure 4.4.11: Average KPIs for the trailer configurations in Table A 1. 
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(AS2//TV2)W/oComm, and (AS2//TV2)W/Comm (2 unstable cases); TV1, TV2, and (AS-TV)1 (1 

unstable instance); and AS1 and (AS-TV)2, which are always stable. 

Interestingly, w.r.t. the nominal case, in the robustness analysis the standalone controller 

configurations provide better performance than the parallel configurations based on the 

articulated vehicle prediction model, excluding and including information exchange on 

the control inputs. 
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4.4.6.3 Sensitivity analysis of the 𝐴𝑆1 performance as a function of the considered 

force contributions 

Since the hitch joint forces that are necessary for the operation of the NMPC1 

configurations are extremely difficult to be accurately estimated, a specific sensitivity 

analysis is carried out to assess the deterioration of the AS1 performance when the 

estimation of some of the hitch joint force components is not available. To this purpose, 

for the ISO lane change test of the previous sections, Figure 4.4.12(a) reports the force 

related deterioration index, 𝐷𝐼𝐹 , of the AS1 KPIs, expressed in terms of 𝑅𝑀𝑆𝐸𝛥𝜓̇ , |𝜃𝑚𝑎𝑥| , 

and 𝑅𝑊𝐴 when only some of the three force components are provided to the controller, 

w.r.t. the case where all the forces are available: 

𝐷𝐼𝐹  = 100
𝐾𝑃𝐼

𝐹ℎ
𝑗2𝑐 −𝐾𝑃𝐼

𝐹𝑥
𝑗2𝑐

,𝐹𝑦
𝑗2𝑐

,𝐹𝑧
𝑗2𝑐

𝐾𝑃𝐼
𝐹𝑥
𝑗2𝑐

,𝐹𝑦
𝑗2𝑐

,𝐹𝑧
𝑗2𝑐

 (4.4.48) 

where 𝐾𝑃𝐼
𝐹𝑥
𝑗2𝑐

,𝐹𝑦
𝑗2𝑐

,𝐹𝑧
𝑗2𝑐  refers to the nominal controller benefitting from the estimation of all 

the trailer force components; and 𝐾𝑃𝐼
𝐹ℎ
𝑗2𝑐  refers to the same controller receiving a limited 

combination of estimated hitch joint forces, whose direction is indicated by the subscript 

ℎ = 𝑥, 𝑦, 𝑧. The main conclusions are: i) the lateral hitch joint force is of the essence for the 

correct operation of the controller, which, when provided only with 𝐹𝑦
𝑗2𝑐

 , shows very 

limited 𝐷𝐼𝐹 – bounded to a peak value of ~3% – w.r.t. to AS1 fed with all the joint forces; ii) 

the AS1 configuration receiving only 𝐹𝑥
𝑗2𝑐

  and 𝐹𝑦
𝑗2𝑐

  has a maximum 𝐷𝐼𝐹  of ~2%, with a 

deterioration trend across the trailers that is similarly shaped to the case in i). This 

observation highlights the low influence of the addition of 𝐹𝑥
𝑗2𝑐

  as input signal in the 

specific test conditions; and iii) the AS1 version receiving 𝐹𝑦
𝑗2𝑐

 and 𝐹𝑧
𝑗2𝑐

 shows negligible 

performance deterioration, i.e., 𝐹𝑧
𝑗2𝑐

 is more beneficial than 𝐹𝑥
𝑗2𝑐

. To analyze the impact of 

the force estimation algorithms on controller performance, Figure 4.4.12(b) compares the 

AS1 KPIs when the hitch joint forces used by the controller are those generated by the high-

fidelity CarMaker model, which corresponds to the notation 𝐾𝑃𝐼
𝐹ℎ,𝐶𝑀
𝑗2𝑐  , with the KPIs, 

referred to as 𝐾𝑃𝐼
𝐹ℎ,𝑒𝑠𝑡
𝑗2𝑐  , for the same controller when the input force values are those 

estimated through (4.4.42)–(4.4.44). In this case, the deterioration index, 𝐷𝐼𝐸, is defined as: 

𝐷𝐼𝐸  = 100
𝐾𝑃𝐼

𝐹ℎ,𝑒𝑠𝑡
𝑗2𝑐 − 𝐾𝑃𝐼

𝐹ℎ,𝐶𝑀
𝑗2𝑐

𝐾𝑃𝐼
𝐹ℎ,𝐶𝑀
𝑗2𝑐

 (4.4.49) 

For generality, in the figure 𝐷𝐼𝐸 is computed for each of the considered combinations of 

input forces provided to the controller. The AS1 configuration with the estimated forces 

shows limited KPI deterioration w.r.t. its counterpart fed with the correct values of the 

joint forces from the plant model, e.g., 𝐷𝐼𝐸   never exceeds 6%. Moreover, the selected 

combinations of hitch joint forces does not have any significant impact on the estimation-

related performance deterioration level, i.e., the subplots in Figure 4.4.12(b) are 

approximately the same regardless of the assessed combination. 
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4.4.7 CONCLUDING REMARKS 

This study explored the potential of controlling the hitch dynamics of a car-semitrailer 

combination through an active suspension (AS) system installed on the towing car, 

capable of varying the anti-roll moment distribution, and operating in isolation or 

concurrently with a torque-vectoring (TV) controller based on the actuation of the electric 

 

 

(a) 

 

(b) 

Figure 4.4.12: Degradation indices of the average AS1 performance associated with: a) different 
combinations of estimated hitch joint forces provided to the controller; and b) the proposed estimation 
method of the hitch joint forces w.r.t. their true value, for controller versions using different input force 

combinations. 
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powertrains and friction brakes, to stabilise the semitrailer during limit cornering 

manoeuvres. The proposed algorithms are based on nonlinear model predictive control. 

Two alternative prediction model formulations were embedded in the controllers: i) the 

model of the isolated car, supported in its prediction by the consideration – which 

represents a novelty point – of the estimated forces currently applied by the trailer at the 

hitch joint. The related controller formulations are referred to with the superscript  1’; and 

ii) the model of the articulated vehicle, i.e., considering the hitch angle dynamics. The 

related controllers are indicated with the superscript  2’.  

By using a high-fidelity simulation model for control system assessment and optimised 

controller parameters for operation with a nominal trailer, the comparison considered the 

real-time versions of: a) controllers for the actuators operating in a standalone setup (AS1, 

AS2, TV1, and TV2 configurations); b) individual controllers for each actuation method 

operating in parallel without ((AS1//TV1)W/oComm and (AS2//TV2)W/oComm) or with 

((AS1//TV1)W/Comm and (AS2//TV2)W/Comm) communication exchange of the respective 

control inputs; and c) integrated controllers, i.e., (AS-TV)1 and (AS-TV)2, concurrently 

generating the control inputs for the two actuations. The algorithms in a)–c) were 

compared with a conventional NMPC-based TV controller (TVBas) neglecting the presence 

of the trailer. The study involved consideration of controller robustness w.r.t. significant 

variations of the main geometric and inertial trailer parameters, where these were not 

communicated to the algorithms.  

The main conclusions are: 

• TVBas cannot guarantee safe vehicle behaviour during the assessed extreme 

cornering manoeuvres, i.e., the trailer tends to be subject to rollover or hitch angle 

instability. 

• The consideration of the lateral force at the hitch joint is sufficient for effective 

operation of the NMPC1 formulations. Also, it was verified that the level of 

approximation associated with the proposed hitch joint force estimation routines 

does not significantly affect the results across the variety of investigated conditions. 

• The NMPC1 configurations are characterised by lower computational burden due 

to the simpler internal model formulation, and can be implemented at more than 

halved sample times w.r.t. the NMPC2 algorithms, on the considered control 

hardware.  

• With the nominal trailer, AS1 and AS2 provide equivalent performance, with an 

evident improvement w.r.t. TVBas. Nevertheless, the proposed standalone TV 

algorithms are more effective than the AS counterparts. However, in the robustness 

analysis on the trailer parameters, although remaining beneficial w.r.t. TVBas, AS2, 

which shows two instances of instability, becomes significantly less effective than 

AS1, which is never associated with instability in the considered test cases, and thus 

proves to be the most robust controller together with (AS-TV)2. 
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• The integrated or parallel control configurations based on the articulated vehicle 

prediction model always correspond to better performance indicators than the 

counterparts using the rigid vehicle prediction setup and the estimated hitch joint 

forces. 

• Among the considered algorithms, (AS-TV)2 consistently guarantees the best 

performance, and therefore is the control version that will be characterised by 

further analyses at higher technology readiness levels. 
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5  

CONCLUSIONS 
You’ve got to constantly keep challenging yourself and keep raising the bar. 

Lewis Hamilton 
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This chapter summarises all the findings, limitations open questions and guidelines for 

future developments from Chapters 2–4. 

5.1 RESEARCH FINDINGS 

This dissertation aimed to explore the fundamentals of motion sickness (MS) in 

automated vehicles, focusing on understanding its underlying mechanisms. It also sought 

to design and evaluate a motion planning algorithm that can optimise either journey time 

or minimise motion sickness. Additionally, multi-actuation control strategy for various 

vehicle types to ensure stability in safety-critical situations are designed and presented, 

aiming to integrate them within the motion planner to assess their effectiveness in 

mitigating motion sickness.  

In Chapter 2, a systematic review of motion sickness (MS) is presented. This review begins 

with an in-depth analysis of MS theories developed over centuries, detailing the 

fundamentals of each theory and their key differences. A central aspect of understanding 

MS is the interaction between the vestibular and visual systems. While theories such as 

sensory conflict, postural instability, and subjective vertical mismatch provide valuable 

insights, future advances in MS research may require a more integrative approach that 

synthesises these perspectives. The chapter then examines MS assessment methods, 

covering questionnaires, scales, indexes, and models. These models are discussed 

extensively, with key information summarised in Table 2.1. Finally, the chapter explores 

MS mitigation strategies, highlighting a diverse array of approaches—behavioural, 

medical, and technological—each with its unique advantages and limitations. Although 

behavioural methods, like habituation, and pharmacological solutions can provide relief, 

they often face limitations in effectiveness or side effects. Notably, technological 

innovations, particularly in motion planning, hold significant promise for mitigating MS. 

By influencing vehicle dynamics to keep translational accelerations within comfort limits 

and reducing the most provocative frequencies associated with MS onset, motion 

planning offers a powerful strategy to counteract MS effectively.  

Chapter 3 focuses on designing a motion planning algorithm specifically for MS mitigation. 

It begins with a review of the state-of-the-art, identifying gaps in the literature. Key issues 

highlighted include the need to incorporate a precise seat-to-head transfer function 

within the optimal control problem to avoid underestimating MS, applying frequency 

weightings that emphasise frequencies most likely to trigger MS, and developing motion 

planning algorithms through nonlinear model predictive control (NMPC) to improve both 

MS mitigation and postural stability. The chapter details the comfort assessment process, 

emphasising the importance of carefully designing sets of filters for integration within the 

optimal control problem, even though this increases complexity and computational 

demand. Four distinct motion planners are developed, each differing in how the MS 

metric is calculated: the first uses vehicle-based accelerations, the second applies seat-to-

head transfer functions, the third incorporates frequency-weighting filters, and the fourth 
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combines both seat-to-head transfer functions and frequency-weighting filters. 

Additionally, given the diverse terms in the cost function, normalisation factors are 

applied to ensure fair representation of each term. The results reveal that the motion 

planner without normalised terms in the cost function can effectively mitigate MS and 

minimise journey time. However, it also introduces greater complexity in defining the 

weights of the cost terms and shows inconsistent weight magnitudes in extreme cases (i.e., 

minimum time and minimum MS), complicating the interpretation of control priorities. 

In contrast, the motion planner with a normalised cost function offers simpler weight 

definitions and produces more consistent control actions. Overall, the algorithm proves 

effective in mitigating MS, and the relationship between journey time and cumulative MS 

is clearly illustrated by the generated Pareto front. 

Chapter 4 devles into the design of several NMPC approaches for torque-vectoring and 

traction controller, solely torque-vectoring for mitigation of trailer sway and integrated 

torque-vectoring and active suspension system. For the first control agorithm, in this work 

five NMPC strategies for torque-vectoring and tracion control, focusing on both 

centralised and multi-layer architectures are compared. The key findings include: i) 

peformance, All proposed strategies significantly enhance vehicle response over baseline, 

even with parameter variations; ii) efficiency, the multi-layer architecture with torque 

feedback, despite its reduced complexity and fewer control inputs, achieve comparable 

vehicle dynamics results to the centralised setup but with significantly lower 

computational time; iii) optimisation, reducing controller’s time steps is more effective for 

enhancing performance than extending the prediction horizon; iv) slip control, the 

centralised architecture excels in lateral control, but induces slip oscillations, which are 

avoided with the multil-layer designs; robustness, the multi-layer setups exhibit more 

stable control performance than the centralised setup, especially under parameter 

variations. The second set of NMPCs focues on torque-vectoring control in car-trailer 

system, incorporating hitch angle data for more stable and safe operation. The main 

conclusions are: i) in terms of controller comparison, the controllers based on the rigid 

vehicle model, struggles with heavier trailers, underscoring the need for advanced control 

strategies in vehicle combinations; ii) the top-performing controllers, i.e. 𝑌𝑅 + 𝐻𝐴𝐸𝑓𝑢𝑛 

and 𝑌𝑅 + 𝑆𝐶𝐻𝐴𝐸, include the car-trailer dynamics in the prediction model and use hitch 

angle error in control objectives, providing stable trailer sway management across varied 

trailer conditions; iii) the controllers with car-trailer models perform well across a range 

of trailer parameters, demonstrating adaptability and safety, even with short prediction 

horizons, thus proving their robustness. Finally the last set of NMPCs investigates the 

control of hitch dynamics in car-semitrailer setup, using an active suspension system, 

both alone and combined with a torque-vectoring controller. The conclusions highlight 

that: i) the standard NMPC for torque-vectoring alone is inadequate for safety in extreme 

cornering; ii) the NMPC formulations using the estimated hitch joint forces, maintain 

effectiveness reducing the computational demands and allowing for shorter sampling 
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times; iii) the solely active-suspension performs better than torque-vectoring for safety 

but is less effective than torque-vectoring; however the active suspension shows more 

robust performance across varied trailer parameters; and iv) integrated controllers, 

especially those based on articulated vehicle model, outperform others in terms of safety 

and robusness, indicating strong potential for turther testing at higher techinology 

readiness levels. 

5.2 STUDY LIMITATIONS 

The study limitations in this dissertation stem from the inherent challenges of modeling 

complex vehicle dynamics, the controlled experimental settings, and the assumptions 

made during the design and implementation of motion planning and control algorithms. 

While the proposed solutions show promising results in mitigating motion sickness and 

enhancing vehicle stability, certain factors such as the simplification of models, the 

reliance on simulation-based assessments, and the specific conditions under which the 

experiments were conducted may limit the generalisability of the findings to broader real-

world scenarios. Furthermore, the computational demands of the advanced control 

strategies and the need for optimisation routines present additional constraints that could 

impact practical application. These limitations are important to address for future 

research, as they will contribute to refining and validating the proposed methodologies.  

More in detail, while this dissertation focuses on motion planning and mitigation 

strategies for motion sickness in automated vehicles, the vehicle models used may not 

encompass the full complexity of all potential vehicle configurations. For instance, certain 

vehicle-specific dynamics or non-linearities might not be fully represented, which could 

limit the generalisation of the results to a broader range of vehicles. Furthermore, given 

the advances in future vehicle designs, the results may not be diretly applicable to all 

vehicle types or configurations. Regarding the evaluation of motion sickness, despite the 

different methods explored in this dissertation, i.e. questionnaires, indexes, scales and 

modes, it still remains an highly subjective phenomenon, influenced by many factors such 

as personal sensitivity, environment and context, thus the results might not fully reflect 

real-world variability. The test cases showed in Chapter 3, evaluate motion sickness 

cumulation under controlled conditions, i.e. maximum speed of 50 km/h, which may not 

completely replicate real-world driving situations. Factors such as road surface variation, 

weather conditions, or real-world driving styles might not be fully accounted for. 

Moreover, as mentioned before, the test environment may not capture the full spectrum 

of factors that influence MS in real-world driving conditions. As for the NMPC strategies 

implemented in simulations, the real-time application of these algorithms might face 

computational challenges, especially when accounting for complex vehicle dynamics and 

environmental factors. The computational burden of these strategies, though optimised, 

could still be a limitation for practical implementation in autonomous vehicles. 

Furthermore, the real-time implementation of advanced motion planning algorithms may 

still be computationally expensive and may require further optimisation or hardware 
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advancemetns to work effectively in commercial systems. In this dissertation is highly 

stressed that motion planning holds the potential to represent a technological solution for 

mitigating motion sickness, potentially downplaying other complementary strategies, 

however, focussing on the solely motion planning as primary mitigation strategy might 

overlook the potential for integrated, multi-modal approaches that combine motion 

planning with other solutions, which could improve overall efficacy in mitigating motion 

sickness. The designed motion planning and related findings regarding motion sickness 

mitigation, are strictly linked to the use of automated vehicles, however, the same results 

might not be directly transferable to non-automated vehicles or partially atuomated 

vehicles, where human control is involved, thus a re-designing of the strategies might be 

necessary in driving scenarios where the driver control and feedback could play a 

significant role in motion sickness development. Given the uncertainty in the 

understading of motion sickness, and the way metrics used to measure its cumulation are 

developed, a full coverage of individual passenger sensitivities might not be ensured, 

therefore the variations in passengers’ tolerance to motion sickness could not be fully 

captured.  

5.3 OPEN QUESTIONS TO BE ADDRESSED 

While this dissertation provides valuable insights into theories that try to describe the 

phenomenon of motion sickness, mitigation strategies and optimisation of vehicle control 

strategies for trasnlational motion, several open questions remain that could further 

enhance the understanding of motion sickness and application of these solutions in real-

world scenarios: 

• Will there ever be a comprehensive unified theory that can fully explain all the 

complexities of motion sickness? Despite the significant advances made over the 

years in terms of theoretical frameworks, including sensory conflict theory, postural 

instability, and subjective vertical mismatch, a complete and universally accepted 

explanation of motion sickness remains elusive. The interactions between the 

vestibular system, visual input, and other sensory modalities are incredibly 

complex, and individual differences (such as genetic predispositions, psychological 

factors, and previous experiences) add layers of unpredictability to the 

phenomenon. These nuances challenge the creation of a singular theory that can 

encompass all possible causes and effects of motion sickness in every scenario. 

• A comprehensive theory that fully captures all aspects of motion sickness would be 

great, but what about the effectiveness of mitigation strategies? While 

understanding the underlying mechanisms may lead to more targeted 

interventions, control strategies will still play a vital role in managing and 

mitigating motion sickness in practice. For instance, technological solutions, such 

as motion planning algorithms, real-time control systems, and vehicle design 

considerations, can adapt the driving environment to minimise the effects of 
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motion sickness. These solutions are crucial, as they allow for real-time 

adjustments that can alleviate symptoms for passengers, even when theoretical 

understanding continues to evolve. Ultimately, motion sickness mitigation will 

require a combination of well-founded theoretical knowledge and practical, real-

time implementation of control strategies that can address the individual needs 

and preferences of passengers. 

• Can the advanced control systems be fine-tuned to not only enhance vehicle 

performance but also significantly improve the comfort and well-being of 

passengers, reducing motion sickness to a level where it no longer poses a major 

issue for passengers? While these actuation methods are known to improve vehicle 

dynamics, their direct impact on mitigating motion sickness remains an area that 

requires further investigation. Specifically, how will these control strategies 

influence passengers’ perceived comfort in different driving conditions, and will 

they be sufficient to effectively reduce or prevent motion sickness? Traction control 

and torque vectoring systems work by adjusting the distribution of forces between 

the wheels to optimise vehicle handling, while active suspension control can adapt 

the vehicle’s ride characteristics in real-time to manage excessive accelerations. 

While these systems can improve vehicle stability and reduce uncomfortable 

motion, the extent to which they can specifically target the factors that contribute 

to motion sickness – such as unwanted accelerations, oscillations, or high-

frequency motions – remains unclear. Moreover, the interaction between these 

actuation methods and human physiological responses to motion is not yet fully 

understood. While reducing harsh or unpredictable vehicle movements can reduce 

motion sickness, it is uncertain whether these technologies can address the broader 

spectrum of factors that contribute to motion sickness, such as sensory conflict or 

postural instability. 

• A provocative question to consider is whether motion sickness will remain a "major 

issue" for future generations, particularly as we transition into an era where 

autonomous vehicles are the norm. For our generation, who has experienced the 

shift from human-driven to automated vehicles, motion sickness represents a 

significant challenge – especially as it stems from the sensory mismatches between 

how we perceive movement and how the vehicle actually moves. But will this issue 

persist for future generations who may never know the traditional human-driven 

vehicle experience? Or perhaps, over time, human physiology will adapt through 

evolution to the new modes of transportation, rendering motion sickness obsolete 

in the context of automated vehicles? In other words, as we move further into a 

world where control is increasingly taken over by machines, could we eventually 

become more attuned to the motions of self-driving cars, reducing or even 

eliminating the phenomenon of motion sickness? Will our bodies learn to interpret 

the vehicle's movement differently, no longer causing the discomfort we currently 

experience? It’s a thought-provoking question that challenges us to consider 
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whether motion sickness is truly an insurmountable issue, or whether it is simply a 

temporary discomfort that will fade as we adjust – both technologically and 

biologically – to the new realities of autonomous transportation. 
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