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Singular spectrum analysis of two-photon interference from distinct quantum emitters
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Two-photon interference underlies the functioning of many quantum photonics devices. It also serves as
the prominent tool for testing the indistinguishability of distinct photons. However, as their time-spectral
profile becomes more involved, extracting relevant parameters, foremost the central frequency difference, may
become difficult. In a parametric approach, these arise from the need for an exhaustive model combined with
limited count statistics. Here we discuss a solution to curtail these effects on the evaluation of frequency
separation relying on a semiparametric method. The time trace of the quantum interference pattern of two
photons from two independent solid-state emitters is preprocessed by means of singular spectral analysis before
inspecting its spectral content. This approach allows one to single out the relevant oscillations from both the
envelope and the noise, without resorting to fitting. This opens the way for robust and efficient on-line monitoring
of quantum emitters.
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I. INTRODUCTION

The inspection of physical phenomena often confronts
experimentalists with the challenge of monitoring a system
whose evolution is affected by concurrent or even compet-
ing events with different characteristic times. This happens,
for instance, for quantum light sources in the solid state:
while a perfectly isolated two-level system yields a single-
photon source fully defined by the lifetime of the excited
state, real-world systems embedded in a host material are
subject to numerous sources of decoherence acting at distinct
timescales, including charge and spin fluctuations, coupling
to the phonon bath, and the presence of defect dynamics in
the host material [1–4]. Typical consequences are the broad-
ening of the emitter optical transition with respect to the
ideal Fourier limit and the emergence of spectral fluctuations,
also known as spectral diffusion. While the details of the
microscopic origin can vary, these are ubiquitous phenomena
in systems like color centers in diamond [5], semiconduc-
tor nanorods [6], carbon nanotubes [7], quantum emitters in
hexagonal boron nitride [8,9], molecules [10–12], and quan-
tum dots [4,13,14]. It follows that resolving the complete
photophysical characterization of solid-state single-photon
sources and, especially, capturing the dynamic evolution of
their spectral properties is a hard task. It typically requires the
estimation of several interplaying parameters via independent
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measurements [15], which is not only time-consuming but
also limited by the measurement timescale (usually minutes)
during which the single system parameters can vary accord-
ingly to faster decoherence dynamics occurring with different
timescales.

Tackling the problem with the tools of multiparameter es-
timation [16–20] offers an elegant solution. However, in its
standard setting, a statistical model is needed to describe how
the detection probabilities depend on the system parameters.
This demands a high level of knowledge about the whole
process which may not be available or could be compromised
as the measurement progresses [21]. Interestingly, there exists
the possibility of estimating key system features also in the
absence of a statistical model, applying semiparametric meth-
ods [22–25]. In this approach, the values of the parameters
are built by means of a more direct manipulation of the experi-
mental data based on the extraction of the principal oscillatory
components, rather than relying on fitting routines as for
maximum likelihood estimators or on expected probabilities
as for the Bayesian case [26,27]. This allows establishing an
asymmetry between parameters of interest and those acting
as a nuisance [28], a distinction that is less pronounced in
standard approaches. Indeed, the experience of other fields
in dealing with the inspection of complex systems, like cli-
matology [29], shows that isolating oscillatory components
in time series provides a more compelling evidence than
elaborating on fits. To this end, however, a simple approach
relying on Fourier transforming has the drawback of treating
genuine and spurious effects at the same pace. In other words,
even isolating fast ac components of the transform would
not lead to physical insight, since signal and noise would be
present.
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In this work, we show how the application of a semipara-
metric method based on singular spectrum analysis (SSA)
can resolve the problem of analyzing multiscale dynamics
in solid-state quantum emitters. This employs the data them-
selves to determine which are the most informative features of
the time trace of a two-photon interference (TPI) profile (for a
pedagogical guide, see Ref. [30]). In particular, we report on
the application of SSA for the determination of the frequency
separation of two molecule-based single-photon sources from
their Hong-Ou-Mandel TPI profile [31]. Besides standing as
a key enabling process for many photonic protocols for quan-
tum technologies [32,33], TPI is an exquisite probe for the
level of distinguishability [34–38], being extremely sensitive
to the frequency detuning of the photon pair. At the same time,
for solid-state emitters, a faithful extraction of the spectral
information from its profile is challenged by the complexity
of a multiparameter analysis and by a signal-to-noise ratio
(SNR) that is typically low. In this sense, the TPI profile
is particularly suitable to explore the potentials of SSA in
the domain of quantum technologies. Its shape intrinsically
depends on multiple system parameters, related not only to the
emitters pair but also to the setup configuration. In addition,
we can leverage an accurate model of the phenomenon to test
the estimation task via simulations. In particular, we show
that SSA provides a powerful means to extract the spectral
difference of two single-photon streams in a frequency range
of tens of GHz, also in prohibitive SNR regimes in which
standard fitting algorithms would be inconclusive. Differently
from a multiparameter fitting routine, our method requires
no other independent measurement, nor any assumption on
the model. This enables a time-effective analysis of the joint
spectral properties of the photon pair. Via the processing of
multiple interference profiles measured at different times and
separated by only 60 s, we can resolve the spectral dynamics
of the photon pair. This is a promising starting point towards
real-time diagnostics.

II. RESULTS

A. TPI from independent solid-state photon sources

The following analysis makes use of the experimental data
appearing in Ref. [15], for which TPI has been achieved be-
tween photons from distinct molecular emitters on the same
chip and brought to resonance via a recently demonstrated
laser-induced tuning technique [39]. Specifically, the quan-
tum emitters consist of single molecules of dibenzoterrylene
(DBT) embedded in anthracene nanocrystals [40], which have
proven to be excellent quantum light sources [41], showing
bright single-photon emission of high purity even at room
temperature [42]. At cryogenic temperature, they exhibit a
narrow zero-phonon line of a few tens of MHz and emit highly
indistinguishable photons, as assessed in recent TPI demon-
strations [15,43]. At the same time, with such a narrow optical
transition, single molecules are uniquely sensitive probes of
their local environment, and this directly impacts their TPI
profile.

More in detail, referring to the experiment in Ref. [15],
we consider two photons originating from distinct sources
operating at central frequencies ν and ν + δν. These are made
to impinge on a beam splitter with reflectivity 1/2 and with

a relative delay t . Hence, two single-photon detectors at the
distinct outputs are used to measure the photon arrival times
and reconstruct the coincidences. According to an adaptation
[15,43] of the model in Ref. [44] for photons from distinct
emitters, the interferogram observed in the histogram of coin-
cidences around zero time delay is expected to follow a curve
described by

g(2)
HOM(t ) = 1

4(τ1 + τ2)
(e−|t |/τ1 + e−|t |/τ2 )

− v

2(τ1 + τ2)
e−γ |t |−2π2�2t2

cos(2π δν t ). (1)

We can here recognize a first term associated with the pho-
tons’ wave packets, with τ1 (τ2) being the time constant in
the exponential envelope of the first (second) photon. This
also describes what is observed when fully indistinguishable
photons interfere. The second term accounts for quantum
beats caused by the frequency separation δν and the delay
t [45], similar to those observed in Refs. [46–49]. This sec-
ond term also contains decoherence effects acting at different
timescales on the molecule transition and arising from its cou-
pling to the environment. In particular, the dephasing rates �i

are included in γ = 1/(2τ1) + 1/(2τ2) + �1 + �2, whereas
spectral wandering effects are described by �2 = σ 2

1 + σ 2
2 ,

which is the sum of the variances of each molecule’s central
emission frequency over the measurement acquisition time.
The phenomenological parameter v, also called the v factor,
identifies an effective quantum interference visibility account-
ing for the deviations from ideal conditions. These include
the beam splitter reflectivity departing from 1/2 and the finite
integration time, which corresponds to a bandpass filtering in
the spectral domain. In Fig. 1(a), we show a typical mea-
surement of the interference profile from our distinct DBT
sources, acquired under pulsed excitation. Each data point n(t )
corresponds to the recorded coincidence counts as a function
of the time delay and is affected by Poissonian fluctuations.
The t-axis range is restricted around the suppressed central
peak at zero delay, which contains the spectral information
we want to extrapolate.

B. Singular spectral analysis

The SSA method demands one to arrange the experimen-
tal data as a time series X of L values n(t ). This series is
hence used to construct a matrix Y , called the “embedded
time series” in the literature [29], composed as follows. Y
has Nc rows, with Nc being arbitrarily chosen, and the generic
ith row is a copy of X delayed by i − 1 time positions and
restricted to a length of L − Nc [50]. The resulting matrix Y
is a large-dimensional system, and the purpose of principal
component analysis is to find a reduced space carrying most
of its information. We hence define the correlation matrix
Cx = 1

LY · Y †, with dimension Nc × Nc; we find the eigen-
vectors ρi and finally number them so that the corresponding
eigenvalues λi are in decreasing order (|λ1| � |λ2| � · · · �
|λNc |) [51]. At this point, we are able to extract the principal
components Ai(t ) by projecting the original time series over
the corresponding eigenvectors ρi, i.e., by using the following
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FIG. 1. SSA analysis of a TPI time trace. Data are collected as
coincidence counts in panel (a), with the delay t monitored by time
tagging the events. The measurement time bin is 0.5 ns, while the
overall counting time is 60 s. Principal component analysis is carried
out to deliver the Ai’s by means of Eq. (2) and, from those, the Ri’s
by means of Eq. (3) (b). The Fourier transform f̃ of the filtered
signal is taken (c) and the value corresponding to its highest peak
is considered as the estimated δν.

FIG. 2. Results on a continuously running experiment. The
points refer to measurements acquired in 60 s yielding ntot � 500
events. The solid circles are obtained by including both the second
and third components in the Fourier analysis, the open triangles are
obtained using the second component only (see the Appendix).

FIG. 3. Numerical studies of the impact of imperfections. In
all panels we consider a TPI profile with ntot = 500 on average,
collected with a resolution of Tbin = 0.5 ns on an overall delay of
50 ns—to be compared with the duration τ1 = τ2 = 4.5 ns. Points
and error bars are calculated from 100 Monte Carlo runs as the
average and standard deviation over the sample. (a) Evaluated fre-
quency separation δν as a function of spectral diffusion � with
δν = 0.6 GHz and � = 0.1 GHz. (b) Evaluated frequency separation
δν as a function of the dephasing time 1/� with δν = 0.6 GHz and
� = 0.05 GHz. (c) Results in the presence of a frequency jump
from δν = 0.6 to 0.3 GHz, shown as a function of the weight w

of the fastest component. The set values are � = 0.05 GHz and
� = 0.1 GHz.

expression:

Ai(t ) =
Nc∑
j=1

X (t + j − 1)ρi( j), (2)

where, for the sake of simplicity, we treat time as a discrete
index. From the principal components Ai(t ) we can build the
reconstructed components Ri(t ) of the original signal X (t ),
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FIG. 4. (a) Ideal reconstructed components without noise and
with ideal v factor v = 1 and (b) Fourier transform f̃ . The other
images show analog quantities now for simulated reconstruction
including Poisson fluctuations with ntot = 500 always keeping v = 1.

defined as

Ri(t ) = 1

M(t )

U (t )∑
j=L(t )

Ai(t − j + 1)ρi( j), (3)

where the limits L(t ) and U (t ) and the normalization M(t )
depend on the index t . Their explicit expressions are directly
taken from Ref. [29] (be aware of a typo in their Eq. (12)
where 1/Mt should be read instead of Mt ):

M(t ) =

⎧⎪⎨
⎪⎩

t, 1 � t � Nc − 1,

Nc, Nc � t � L − Nc + 1,

L − t + 1, L − Nc + 2 � t � L,

(4)

U (t ) =
{

t, 1 � t � Nc − 1,

Nc, Nc � t � L,
(5)

L(t ) =
{

1, 1 � t � L − Nc + 1,

t − L + Nc, L − Nc + 2 � t � L.
(6)

FIG. 5. Estimated frequency separation δν as a function of ntot .
Each point with its error bars is obtained by 1000 Monte Carlo
events.

In particular, time-dependent extremes of the series U and L
are introduced to build Ri(t ) without losing information at the
borders of the domain. Hence, the normalization M needs to
change accordingly.

By construction, summing all the reconstructed compo-
nents returns the original signal X (t ). Furthermore, it follows
from the initial decreasing ordering of λi that the recon-
structed components Ri(t ), which more importantly impact
the shape of X (t ), are the ones with smaller i. More specif-
ically, different Ri(t ) values correspond to different system
behaviors, related, for instance, to a general trend of the data,
to their oscillation, or to the presence of noise, and an isolated
spectral content can be easily extracted by performing the
Fourier analysis on a reduced subset of Ri(t ) components. Ac-
cording to this procedure, the estimation task is both simpler,
with respect to the analysis of the whole time series, and also
independent from any model assumption.

In the specific case of our TPI experimental trace in
Fig. 1(a), by processing the data by means of SSA we ob-
tain the reconstructed components Ri(t ) of Fig. 1(b). We
considered Nc = 5 as a convenient value to recognize three
distinct contributions of Ri(t ) to the original signal: the first
can be associated with the envelope of the coincidence profile,
typically in the first component; the second contains the mod-
ulation associated with the spectral properties of the photons

FIG. 6. Estimated frequency separation δν as a function of v.
Each point with its error bars is obtained by 1000 Monte Carlo
events.
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FIG. 7. (a) Ideal reconstructed components with ideal visibility
v = 0.65 and (b) Fourier transform f̃ . The other images show analog
quantities now for simulated reconstruction including Poisson fluc-
tuations with ntot = 500.

pair, generally in the second component. Finally, higher-order
terms contain faster modulations. Following this empirical
subdivision, we can isolate the oscillating part of the signal
and filter out noise by selecting the second component R2(t )
that contains most of the spectral information we are after.
The final estimator of δν is the value of the frequency at the
maximum peak of the Fourier transform f̃ (ω) = |F[R2](ω)|2
of the filtered signal. We did not rely on fitting procedures or
averaging because those methods are more prone to errors due
to the residual frequency components in R2 coming from spec-
tral diffusion or noise. An explanatory example is shown in
Fig. 1(c) where multiple peaks are present but there is a clear
dominant one. It should be noted that increasing the number
of components does not lead to an improved isolation of the
beats from the noise. An extended discussion is presented in
the Appendix.

Next, we discuss the application of our method to a contin-
uous monitoring of TPI. Leveraging the effectiveness of the
analysis also in the presence of a low SNR, we could apply
the SSA to experimental data acquired over very short time
intervals of 60 s. This enables an almost continuous inspection

FIG. 8. Estimated δν for varying number of the principal com-
ponents Nc. Blue points refer to the estimation keeping only the
R2 components; orange triangles refer to the estimation keeping all
components but R1.

of the spectral detuning of the photon pair, as shown in Fig. 2.
The value of the total integration time and that of the time
binning are chosen according to our experimental parameters,
in particular, the brightness of our sources and the collection
and detection efficiencies, in order to provide a sufficient
number of counts.

The observed frequency separation spans over 500 MHz,
suggesting that spectral diffusion and dephasing occurred dur-
ing the measurement interval. These effects have an impact
and help explain the relatively large uncertainties in Fig. 2.
In particular, these are calculated by first considering the data
points ni(t ) to extract new time series of values n′

i(t ) from
a Poisson distribution of mean ni(t ). Hence, the application
of the SSA method to all the new series yields a distribution
of δν whose standard deviation corresponds to the associ-
ated uncertainties. We must stress that a best-fit procedure
to the expression (1) has been attempted on the same data
in Fig. 2, but this has led to inconclusive results since the
measurement features low total counts and long timescale
frequency wandering. A comparison with the fitting procedure
is shown in the Appendix, thanks to the analysis of Monte
Carlo simulations. The ability to assign a value to δν even in
these extreme SNR conditions vindicates the usefulness of the
SSA approach.

For a deeper understanding of the influence of the different
dissipative mechanisms on the estimation of δν, we ran differ-
ent numerical simulations. Starting this time from the model
(1), we have simulated runs of the experiment in which counts
in each time bin are affected by Poisson noise. We first focus
on the role of the spectral wandering �, presented in Fig. 3(a).
As spectral variations increase, thus lowering the visibility,
recovering a precise value becomes harder. This is also sup-
ported by the study in Fig. 3(b) reporting how the extraction of
δν is influenced by the dephasing rate � = �1 + �2, showing
that the impact of both forms of decoherence is qualitatively
similar. Finally, to emulate a spectral jump, we consider a
variation of the spectral separation from δν = 600 MHz to
δν = 300 MHz occurring while data are being acquired. This
is simulated by mixing the statistics pertaining to the two
values of δν with weights w for the component at 600 MHz,
used as the x axis in Fig. 3(c), and (1 − w) for the other. The
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FIG. 9. Evaluation of δν as a function of �. (a) Set value δν =
0.60 GHz; v factor, v = 1. (b) Set value δν = 0.60 GHz; v factor,
v = 0.6. (c) Set value δν = 0.35 GHz; v factor, v = 0.6 with limited
filtering on the components. (d) Set value δν = 0.35 GHz; v factor,
v = 0.6 using the second component.

weight can be interpreted as a rescaled acquisition time with
a jump in δν occurring at the start of the measurement. We
observe that SSA gives an intermediate value, depending on
w, with an increase in the uncertainty as the result of the
reduced contrast. This suggests that in real cases the most
cautious interpretation of δν is a weighted average over the
measurement time, rather than an instantaneous value. In the
Appendix, a comparison of the experimental data with simu-
lations is also presented.

TABLE I. Standard parameters employed in the numerical
simulations.

Parameter Value

τ1,2 4.5 ns
� 20 MHz
�1,2 50 MHz
Tbin 0.5 ns
ntot 500
v 1
δν 0.6 GHz

III. DISCUSSION

A close inspection of the performance of our method from
the metrological point of view has also been performed—the
details can be found in the Appendix. The study reveals an
evident dependence of the expected error on δν. This can be
explained by the fact that the time binning imposes a filter on
the fastest frequencies that can be observed. At the same time,
we also observed a bias in the estimation of δν. We attribute it
to the discretization of the time profile dictating, in turn, a dis-
crete set of frequencies. Its impact is also present in the small
error bars in Fig. 3(a) at low �. Indeed, the reduction of uncer-
tainties in the presence of biased estimators is a well-known
effect [27]. We have addressed this by using an interpolation
in the frequency domain, which may become less effective in
the presence of narrow peaks. We conclude that our method
represents an efficient tool for on-line monitoring, while it
needs further refinement if meant to be adopted as a tool for
metrology.

The application of semiparametric singular spectral analy-
sis is demonstrated as an intriguing solution for the inspection
of TPI. The main advantage stems from the fact a model is
not needed, sparing us from the need to estimate multiple pa-
rameters. This makes the method resource effective, and, with
improvement on the photon flux collection, the monitoring
rate can realistically be implemented every 10 s.

Considering more general perspectives, the development
of model-independent methods is key to fostering secure
schemes for quantum metrology [52,53]. While the security
analysis of quantum channels makes minimal assumptions,
standard metrology postulates its full knowledge and control.
The inclusion of nonparametric techniques, including SSA,
constitutes a middle ground between the two approaches, on
which new protocols can be built.
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FIG. 10. Comparison of the experimental reconstructed components with the ones obtained from a simulation and the theoretical ones.
The parameters are set according to Table I, with the separation δν fixed at the estimated value and the visibility v as a free parameter—the
corresponding values are reported in Table II.

APPENDIX

The availability of a model for our experiment allows us to
assess the performances of the singular spectral analysis via
numerical simulations, in correspondence to different values
of the main experimental parameters.

We consider simulations based on the expected profile
g(2)

HOM(t ) with parameters as in Table I when not otherwise
specified. These are close to the actual experimental condi-
tions. The finite resolution of the detection is included by
integrating around t for a time Tbin:

g̃(t ) =
∫ t+Tbin/2

t−Tbin/2
g(2)

HOM(t ′)dt ′. (A1)

The full time profile is taken as the interval [−Tmeas, Tmeas]
symmetric around zero; this then results in a collection of
2Tmeas/Tbin normalized points gi = g̃(ti)/

∑
i g̃(ti ). These are

used to generate simulated coincidence counts ni in each
bin by multiplying gi by the number of events ntot: ni =
ntotgi. Finally, fluctuations are accounted for by extract-
ing a new value n′

i from a Poisson distribution of mean
ni.

1. Effects of finite statistics

We first inspect how the collection of a finite sample af-
fects the spectral content of the reconstructed components (3).
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FIG. 11. Comparison of the experimental reconstructed components with the ones obtained from a simulation and the theoretical ones.
The parameters are set according to Table I, with the separation δν fixed at the estimated value and the visibility v as a free parameter—the
corresponding values are reported in Table II.

Figure 4(a) depicts the expected reconstructed components
with separation δν = 0.6 GHz and perfect contrast v = 1: we
observe how the first component broadly describes the enve-
lope, with the modulation appearing in the following ones. In
particular, we can inspect the second component R2 as well

as the the amplitude squared f̃ of its Fourier transform, as
described in the main text. In this ideal case, obtained apply-
ing the method directly to the analytic g̃(t ), the modulation
is well isolated, as shown in Fig. 4(b). When we include
Poisson fluctuations in the counts, new modulations appear
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FIG. 12. Fisher information on δν. The upper panel refers to
different values of resolution: from top to bottom, the integration
time bins are 0.25, 0.5, and 1 ns; the visibility is set to v = 1; and
all other parameters are the same as those in Table I. The lower panel
describes the Fisher information at different δν as a function of v:
from top to bottom, the separation is 140, 440, and 650 MHz; the
time bin is 0.5 ns; and all other parameters are the same as those in
Table I.

which affect the spectral content of f̃ . In Figs. 4(c), 4(e),
and 4(g) we show instances of simulated profiles affected by
such noise at the standard conditions: the envelope is subject
to overt distortions, while the higher-order components show
different oscillations than before. The analysis of f̃ , however,
reveals that the band of the signal still appears around the
expected value, although new peaks may appear.

Reducing ntot increases the impact of Poisson noise, thus
reducing accuracy and precision in determining δν. A quan-
titative assessment of this effect is obtained by Monte Carlo
simulations, reported in Fig. 5. We can observe a bias for
counts below ntot = 300, thus being a consequence of low
signal along with the increased uncertainty. When a smaller
sample is collected, it becomes more likely that one of the
spurious peaks observed in Fig. 4 takes over the one at the
real modulation. The Monte Carlo average then shifts to-
wards the center of the allowed frequency interval. This is a
general behavior that can be observed every time an experi-
mental feature washes out the footprint of the beatings in the
signal.

2. Effects of a loss of contrast

A decrease of the v factor alters the performance of the
method similarly to a decrease of total coincidence counts.

FIG. 13. Estimation errors as a function of the total number of
events ntot . The panels refer to δnu = 140, 440, and 650 MHz, from
top to bottom. The visibility is set to v = 1, all other parameters are
the same as those in Table I. In all panels, the blue points are for εV,
the red ones are for εRMS, and the dashed line is the prediction based
on the single-parameter Cramér-Rao bound.

In Fig. 6 we present Monte Carlo simulations as a function
of v for 500 total coincidence counts. At small v, the errors
increase and the estimation becomes biased, since the peak in
f̃ [R2](ω) decreases in amplitude, eventually becoming com-
parable to Poisson fluctuations.

Here we detail the case for v = 0.65, shown in Fig. 7.
For the ideal cases in Figs. 7(a) and 7(b), the modulation
depth is reduced, as made evident from the smaller oscillating
components. This has a detrimental effect when including
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FIG. 14. Estimation errors as a function of the total number of
events ntot . The panels refer to δν = 440 MHz with Tbin = 0.25 ns
(top panel) and 1 ns (bottom panel). The visibility is set to v = 1,
and all other parameters are the same as those in Table I, except for
Tbin. In all panels, the blue points are for εV,the red ones are for εRMS,
and the dashed line is the prediction based on the single-parameter
Cramér-Rao bound.

the Poisson fluctuations, as their size may be comparable to
the expected modulation. As illustrated in Figs. 7(c)–7(h),
these factors may contribute to widen the bandwidth and
add features. Nevertheless, a distinct peak is often identified,
obtaining a value for δν.

3. The choice of Nc

Simulations guided our choice of the number of compo-
nents Nc = 5, as well as the restriction to R2 for the spectral
analysis. We ran the Monte Carlo simulation for different val-
ues of Nc reported in Fig. 8. The blue points show the results
obtained keeping only the second reconstructed component
R2 and the orange points show those obtained by summing up
all components except for the first one. In this ideal case with
v = 1, the performances are comparable. The increase in the
error bars at Nc = 11 and 12 is ascribed to the fact that, for
high enough Nc, the information on δν is spread out on many
reconstructed components Ri and thus is less robust.

The restriction to R2 only finds its justification in the ap-
pearance of an artifact at lower δν at reduced v, demanding
caution in the selection of the components. Figures 9(a) and
9(b) report the evaluated δν vs the spectral width � for the set

TABLE II. Values of visibility used in the simulations, and the
number of components adopted for frequency estimation.

δν (MHz) v Components

736 0.85 2 and 3
684 0.80 2 and 3
220 0.70 2
440 0.70 2 and 3
274 0.50 2
473 0.50 2 and 3
320 0.50 2
706 0.50 2 and 3
355 0.60 2 and 3
300 0.70 2

value δν = 0.60 GHz at v = 1 and v = 0.6, respectively. Fig-
ure 9(c) reports the same quantity for δν = 0.35 GHz and v =
0.6. For larger values of � we observe the expected increase
of the uncertainties, as well as a tendency to overestimate δν

when components are included according to a looser criterion.
We attribute this behavior to the presence of fast oscillations in
the higher components deriving from the Poisson fluctuations.
The effect is curtailed when only the second component is
included as illustrated in Fig. 9(d), although at the cost of
larger uncertainties. This dictates the decision of limiting the
number of components in the analysis to R2 only.

4. Performance of the best-fit analysis

A comparison with a standard best-fit procedure has been
carried out for a set of 100 simulated data in standard con-
ditions using the MATLAB built-in function f itnlm to the
expression in Eq. (1) in the main text, up to an extra mul-
tiplicative normalization factor, for a total of 7 free fitting
parameters. A Monte Carlo routine proved to be unfeasible
since the fit procedure is much slower than the SSA (approx-
imately 1000 times slower without any optimization on either
approach). Even when initializing the best-fit parameters to
their true values, with ntot = 500 the routine converged in
75 cases out of 100 to values �ν � 1 GHz that cannot be
measured with a temporal resolution of 0.5 ns.

5. Comparison of the simulation with the experimental data

We can carry out a qualitative comparison between the ex-
perimental reconstructed components and those obtained from
our model in Figs. 10 and 11. The parameters are set according
to Table I, with the separation δν fixed at the estimated value
and the visibility v as a free parameter—the corresponding
values are reported in Table II. The components used for the
estimation of δν are also indicated: preferentially, we have
included both components 2 and 3, except when fast oscil-
lations are observed in component 3. Since these occur at
frequency close to 1/Tbin, they are likely an artifact from the
finite statistics, as corroborated by the simulations presented
in Fig. 9.
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6. Metrological considerations

Collecting gi at different discrete times can be considered
as a postselected operation, in which the different values of ti
label the outcomes of a generalized measurement. The asso-
ciated Fisher information F (δν) is calculated by its standard
expression:

F (δν) =
∑

i

(∂δνgi )2

gi
. (A2)

This accounts for the fact we only consider the coincidence
counts, neglecting the contribution from the individual de-
tectors. The behavior of F (δν) is shown in Fig. 12. The
derivatives have been evaluated numerically as a finite ra-
tio, since the integral in Eq. (A1) of the binned distribution
prevents one from obtaining analytical expressions. We ob-
serve modulations due to the ratio of δν to the sampling
frequency. Also, F falls to zero as δν → 0, as a manifes-
tation of Rayleigh’s curse: increasing the resolution does
not mitigate this detrimental effect. This occurs in spite
of the fact that ours is not a simple measurement of the
intensity, but of the second-order coherence. In addition,
the information in Eq. (A2) is a strictly relevant quan-
tity for the single-parameter problem: a decrease of the

available Fisher information is expected also due to the cor-
relations to the other parameters describing the interference
pattern.

The expected variability can be estimated by a Monte
Carlo routine generating events from a Poisson distribution
in each time bin, and proceeding with the SSA. The relevant
quantities are the standard deviation of the estimated
parameter δν,

εV =
√

〈(δν − 〈δν〉)2〉, (A3)

and the root-mean-square departure from the target value δν0,

εRMS =
√

〈(δν − δν0)2〉, (A4)

both calculated over the Monte Carlo sample. While the
former quantifies the variability of the SSA estimator, the
latter captures its bias. The results are illustrated in Figs. 13
and 14: these report the errors that have been evaluated as
a function of the total number of events ntot. These reveal
the presence of a bias in the estimator: this is due to the fact
that the frequency is discretized, although the effect is partly
mitigated by the interpolation. Improving the time resolution
does not necessarily lead to a corresponding improvement of
the bias (see Fig. 14): in fact, the separation of the discrete
frequencies is dictated by the time span of the time series.
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