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Abstract. The aim of this work is to provide uniform L∞-estimates for
the solutions of a quite general class of (p, q)-quasilinear elliptic systems
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1. Introduction

Let us consider the following autonomous quasilinear system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div
(
(α + |∇u|2) p−2

2 ∇u
)

= Hs(δ, u, v) in Ω

−div
(
(α + |∇v|2) q−2

2 ∇v
)

= Ht(δ, u, v) in Ω

u = v = 0 on ∂Ω

(1.1)

where Ω is a smooth bounded domain of R
N , N ≥ 3, p, q ∈ [2, N), α ≥ 0

and H : I ×R
2 → R is a function, where I ⊂ R is an interval and H(δ, ·, ·) ∈

C1(R2,R) for any δ ∈ I.
Moreover, we assume that

(∗) there are p′ ∈ (p, p∗), q′ ∈ (q, q∗) and C0 > 0 such that

Hs(δ, s, t) ≤ C0

(

|s|p′−1 + |t|q′ p′−1
p′ + 1

)

Ht(δ, s, t) ≤ C0

(

|s|p′ q′−1
q′ + |t|q′−1 + 1

)

for any (δ, s, t) ∈ I × R
2.

Let X be the product space W 1,p
0 (Ω)×W 1,q

0 (Ω) endowed with the norm

‖z‖ = ‖u‖1,p + ‖v‖1,q

where z = (u, v) ∈ X. In what follows we shall denote respectively by ‖ · ‖s

and ‖ · ‖1,s the usual norms in Ls(Ω) and W 1,s
0 (Ω).
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Weak solutions of problem (1.1) correspond to critical points of the
Euler functional Iα,δ : X → R defined as

Iα,δ(z) = Iα,δ(u, v) =
1
p

∫

Ω

(
α + |∇u(x)|2)

p
2 dx +

1
q

∫

Ω

(
α + |∇v(x)|2)

q
2 dx

−
∫

Ω

H(δ, u(x), v(x)) dx for any z = (u, v) ∈ X.

By (∗), the functional Iα,δ is C1 on X and, for any z0 = (u0, v0) and z = (u, v)
in X, it results

〈I ′
α,δ(z0), z〉 =

∫

Ω

(α + |∇u0|2)
p−2
2 ∇u0∇u +

∫

Ω

(α + |∇v0|2)
q−2
2 ∇v0∇v

−
∫

Ω

Hs(δ, u0, v0)u + Ht(δ, u0, v0)v.

Systems involving this kind of quasilinear operators model some phe-
nomena in non-Newtonian mechanics, nonlinear elasticity and glaciology,
combustion theory, population biology; see [7,9,11,12]. Existence, nonexis-
tence and regularity results for such quasilinear elliptic systems are obtained
by various authors, see for instance [1,3,6,8,14].

More recently we proved that any weak solution of the following system,
not depending on δ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−div
(
(α + |∇u|2) p−2

2 ∇u
)

= Hs(u, v) in Ω

−div
(
(α + |∇v|2) q−2

2 ∇v
)

= Ht(u, v) in Ω

u = v = 0 on ∂Ω

is in (L∞(Ω))2 (see [4, Theorem 1.1]).
In this work we want to extend the previous result to the class of systems

(1.1) depending also on δ. Moreover here we show carefully that, for any
arbitrary z0 ∈ X and r > 0, the (L∞(Ω))2-norm of the weak solutions to
(1.1) belonging to Br(z0) depends just on r and z0, but is independent on α
and δ.

The main result of this work is the following:

Theorem 1.1. If (u, v) is a solution of (1.1) and (∗) holds, then (u, v) ∈
(L∞(Ω))2.
Moreover, for any fixed (u0, v0) ∈ X, r > 0, α ≥ 0 and δ ∈ I, denoting by

Dr,α,δ(u0, v0) = {(u, v) ∈ X ‖(u, v) − (u0, v0)‖ ≤ r, I ′
α,δ(u, v) = 0},

there exists C > 0, depending on r and (u0, v0) but independent of α and δ,
such that

‖u‖∞, ‖v‖∞ ≤ C ∀ (u, v) ∈ Dr,α,δ(u0, v0).
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This uniform L∞-estimate will be used in the forthcoming paper [2]
in which we derive some crucial existence results about system (1.1), study-
ing the interaction of the spectrum of the quasilinear operators with the
nonlinearity H which grows (p, q)-linearly at infinity, in continuity with the
Amann–Zehnder type results obtained in [5] for a class of quasilinear elliptic
equations.

2. Proof of Theorem 1.1

We first introduce the following result.

Lemma 2.1. Let s ∈ (1, N) and denote by s∗ the conjugate Sobolev exponent
of s, namely s∗ = sN/(N − s). If r, ε > 0, u0 ∈ W 1,s

0 (Ω) and s′ ∈ [1, s∗),
there is σ > 0 such that

∫

{|u(x)| ≥σ}

|u(x)|s′
dx < ε

for any u ∈ Br(u0) = {u ∈ W 1,s
0 (Ω) ‖u − u0‖1,s ≤ r}.

Proof. By contradiction, assume that there are r, ε > 0, u0 ∈ W 1,s
0 (Ω), s′ <

s∗, hn ≥ n and un ∈ Br(u0) such that
∫

{|un(x)| ≥hn}

|un(x)|s′
dx ≥ ε (2.1)

for any n ∈ N.
Up to subsequences, un strongly converges to some ū in Ls′

(Ω).
Moreover, denoting by En = {x ∈ Ω |un(x)| ≥ hn}, we claim that

|En| → 0. (2.2)

Otherwise, if not, we should have, up to subsequences, |En| ≥ α > 0 for
any n, hence

∫

Ω

|un(x)|s′
dx ≥

∫

En

|un(x)|s′
dx ≥ α ns′ ⇒

∫

Ω

|un(x)|s′
dx → ∞

while
∫

Ω
|un(x)|s′

dx → ∫

Ω
|ū(x)|s′

dx. This proves (2.2), hence the Vitali
convergence theorem gives that

∫

En

|un(x)|s′
dx → 0

which contradicts (2.1). �

Now, inspired by [4] and [10], we prove the main result.
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Proof of Theorem 1.1. For every γ, t, k > 1 we define

hk,γ(s) =

{
s|s|γ−1 |s| ≤ k,

γkγ−1s + sign(s)(1 − γ)kγ |s| > k,

Φk,t,γ(s) =
∫ s

0

∣
∣h′

k,γ(r)
∣
∣

t
γ dr.

Observe that hk,γ and Φk,t,γ are C1-functions with bounded derivative,
depending on γ, t and k. Thus if (u, v) ∈ X = W 1,p

0 (Ω) × W 1,q
0 (Ω), then

Φk,t,γ(u) ∈ W 1,p
0 (Ω) and Φk,t,γ(v) ∈ W 1,q

0 (Ω). Moreover, for every t ≥ γ,
there exists a positive constant C, depending on γ and t but independent of
k, such that

|s| t
γ −1|Φk,t,γ(s)| ≤ C|hk,γ(s)| t

γ (2.3)

|Φk,t,γ(s)| ≤ C|hk,γ(s)| 1
γ (1+t γ−1

γ ) (2.4)

and
∣
∣
∣
∣hk,γ

(

|s| q′
p′

)∣
∣
∣
∣

p′

≤ C

∣
∣
∣
∣h

k
p′
q′ ,γ

(s)
∣
∣
∣
∣

q′

. (2.5)

Let us fix r > 0, α ≥ 0, δ ∈ I and consider an arbitrary z̄ = (ū, v̄) ∈
Dr,α,δ(u0, v0).

In particular,

〈I ′
α,δ(z̄), (Φk,γp,γ(ū), 0)〉 = 0

for any k, γ > 1.
So, as W 1,p

0 (Ω) ↪→ Lp′
(Ω), there is c > 0 such that

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

≤ c

∫

Ω

|∇hk,γ(ū)|p = c

∫

Ω

|∇ū|p|h′
k,γ(ū)|p

≤ c

∫

Ω

(α + |∇ū|2) p−2
2 |∇ū|2|h′

k,γ(ū)|p = c

∫

Ω

(α + |∇ū|2) p−2
2 ∇ū · ∇Φk,γp,γ(ū)

= c

∫

Ω

Hs(δ, ū, v̄)Φk,γp,γ(ū).

By (∗), we get
⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

≤ cC0

⎛

⎝

∫

Ω

(|ū|p′−1 + 1)|Φk,γp,γ(ū)| +
∫

Ω

|v̄|q′ p′−1
p′ |Φk,γp,γ(ū)|

⎞

⎠ .(2.6)

For any σ > 1 and w in W 1,p
0 (Ω) or w in W 1,q

0 (Ω), we denote by

Ωσ,w = {x ∈ Ω |w(x)| > σ}.
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Therefore, using (2.3), (2.4) and redefining from now on, when necessary, the
positive constant C, depending on γ but independent of k and σ, we have

∫

Ω

(|ū|p′−1 + 1)|Φk,γp,γ(ū)|

≤ (σp′−1 + 1)
∫

Ω

|Φk,γp,γ(ū)| +
∫

Ωσ,ū

|ū|p′−p|ū|p−1|Φk,γp,γ(ū)|

≤ 2σp′−1

∫

Ω

|Φk,γp,γ(ū)| + C

∫

Ωσ,ū

|ū|p′−p|hk,γ(ū)|p

≤ Cσp′−1

∫

Ω

|hk,γ(ū)| pγ+1−p
γ + C

∫

Ωσ,ū

|ū|p′−p|hk,γ(ū)|p.

Using Hölder inequality we deduce

∫

Ω

(|ū|p′−1 + 1)|Φk,γp,γ(ū)| ≤ Cσp′−1

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

γp+1−p
γp

+C‖ū‖p′−p

Lp′ (Ωσ,ū)

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

. (2.7)

We deal with the second integral in (2.6) and similarly, using (2.3), (2.4),
(2.5) and the fact that Φk,γp,γ is non decreasing, we obtain

∫

Ω

|v̄|q′ p′−1
p′ |Φk,γp,γ(ū)|

≤ σq′ p′−1
p′

∫

Ω

|Φk,γp,γ(ū)| +
∫

Ωσ,v̄∩{|v̄|
q′
p′ ≤|ū|}

|v̄| q′
p′ (p′−p)|ū|p−1|Φk,γp,γ(ū)|

+
∫

Ωσ,v̄∩{|v̄|
q′
p′ ≥|ū|}

|v̄| q′
p′ (p′−p)(|v̄| q′

p′
)p−1|Φk,γp,γ(|v̄| q′

p′ )|

≤ Cσq′ p′−1
p′

∫

Ω

|hk,γ(ū)| pγ+1−p
γ + C

∫

Ωσ,v̄∩{|v̄|
q′
p′ ≤|ū|}

|v̄| q′
p′ (p′−p)|hk,γ(ū)|p

+ C

∫

Ωσ,v̄∩{|v̄|
q′
p′ ≥|ū|}

|v̄| q′
p′ (p′−p)|hk,γ

(|v̄| q′
p′

)|p

≤ Cσq′ p′−1
p′

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

γp+1−p
γp
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+ C‖v̄‖
q′
p′ (p′−p)

Lq′ (Ωσ,v̄)

⎛

⎜
⎝

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

+

⎛

⎝

∫

Ω

|h
k

p′
q′ ,γ

(v̄) |q′

⎞

⎠

p
p′

⎞

⎟
⎠ .

Combining with (2.6) and (2.7), we get

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

≤ Cσp′−1

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

γp+1−p
γp

+ C‖ū‖p′−p

Lp′ (Ωσ,ū)

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

+ Cσ
q′
p′ (p′−1)

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

γp+1−p
γp

+ C‖v̄‖
q′
p′ (p′−p)

Lq′ (Ωσ,v̄)

⎛

⎜
⎝

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

+

⎛

⎝

∫

Ω

|h
k

p′
q′ ,γ

(v̄) |q′

⎞

⎠

p
p′

⎞

⎟
⎠ .

Through Lemma 2.1, there is σ1 > 1 such that, for any σ ≥ σ1 and for
any k, γ > 1:

1
2

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

≤ C
(
σp′−1 + σ

q′
p′ (p′−1)

)
⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

γp+1−p
γp

+C ‖v̄‖
q′
p′ (p′−p)

Lq′ (Ωσ,v̄)

⎛

⎝

∫

Ω

|h
k

p′
q′ ,γ

(v̄) |q′

⎞

⎠

p
p′

. (2.8)

If η ∈ (0, 1), using Young inequality we obtain that

axη ≤ x

4
+ (4a)1/(1−η) ∀ a, x ≥ 0.

In particular, as γp+1−p
γp < 1,

C
(
σp′−1 + σ

q′
p′ (p′−1)

)
⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

γp+1−p
γp

≤ 1
4

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

+ C
(
σp′−1 + σ

q′
p′ (p′−1)

) γp
p−1
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so that (2.8) becomes

1
4

⎛

⎝

∫

Ω

|hk,γ(ū)|p′

⎞

⎠

p
p′

≤ C
(
σp′−1 + σ

q′
p′ (p′−1)

) γp
p−1

+ C ‖v̄‖
q′
p′ (p′−p)

Lq′ (Ωσ,v̄)

⎛

⎝

∫

Ω

|h
k

p′
q′ ,γ

(v̄) |q′

⎞

⎠

p
p′

.

Thus there are C > 0 and σ1 > 1 such that
∫

Ω

|hk,γ(ū)|p′

≤ C
(
σp′−1 + σ

q′
p′ (p′−1)

) γp′
p−1

+ C ‖v̄‖
q′
p (p′−p)

Lq′ (Ωσ,v̄)

∫

Ω

|h
k

p′
q′ ,γ

(v̄) |q′
(2.9)

for any (ū, v̄) ∈ Dr,α,δ(u0, v0), any k, γ > 1 and any σ ≥ σ1.
Reasoning in a similar way and exploiting that 〈I ′

α,δ(z̄), (0,Φk,γp,γ(v̄))〉 =
0, we find C > 0 and σ2 ≥ σ1 such that

∫

Ω

|hk̃,γ(v̄)|q′

≤ C
(
σq′−1 + σ

p′
q′ (q′−1)

) γq′
q−1

+ C ‖ū‖
p′
q (q′−q)

Lp′ (Ωσ,ū)

∫

Ω

|h
k̃

q′
p′ ,γ

(ū) |p′
(2.10)

for any (ū, v̄) ∈ Dr,α,δ(u0, v0), any k̃, γ > 1 and any σ ≥ σ2.

Setting k̃ = k
p′
q′ in (2.10) and substituting in (2.9) we obtain

∫

Ω

|hk,γ(ū)|p′ ≤ C
(
σp′−1 + σ

q′
p′ (p′−1)

) γp′
p−1

+ C ‖v̄‖
q′
p (p′−p)

Lq′ (Ωσ,v̄)

⎛

⎝
(
σq′−1 + σ

p′
q′ (q′−1)

) γq′
q−1

+ ‖ū‖
p′
q (q′−q)

Lp′ (Ωσ,ū)

∫

Ω

|hk,γ (ū) |p′

⎞

⎠ .

Using again Lemma 2.1 and choosing a suitable σ ≥ σ2, we find C > 0
such that, for any k, γ > 1

∫

Ω

|hk,γ(ū)|p′ ≤ C

where C depends on r and γ but is independent of k.
Analogously, we can prove that there is C > 0, independent of k, such

that
∫

Ω

|hk,γ(v̄)|p′ ≤ C

for any k, γ > 1.
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Thus we can use Fatou Lemma and, passing to the limit for k → +∞,
we get

∫

Ω

|ū|γp′
,

∫

Ω

|v̄|γq′ ≤ C ∀(ū, v̄) ∈ Dr,α,δ(u0, v0) (2.11)

where C depends on r and γ.
Since γ > 1 is an arbitrary number, we have that ū, v̄ ∈ Lt(Ω) for any

t > 1.
In particular, by (∗), we derive that there is m > max{N/p,N/q} such

that Hs(δ, ū, v̄), Ht(δ, ū, v̄) ∈ Lm(Ω), for any (ū, v̄) ∈ Dr,α,δ(u0, v0), and

‖Hs(δ, ū, v̄)‖m, ‖Ht(δ, ū, v̄)‖m ≤ C1 (2.12)

where the constant C1 > 0 depends on r but is independent of α and δ.
We want to prove that for any (ū, v̄) ∈ Dr,α,δ(u0, v0), ū and v̄ are in

L∞(Ω) and

‖ū‖∞, ‖v̄‖∞ ≤ C2

where the constant C2 > 0 still depends on r but is independent of α
and δ.

Denoting by p∗′ = p∗

p∗−1 , from m > N/p we see that

m > p∗′ and
p∗

p − 1

(
1

p∗′ − 1
m

)

> 1.

Once fixed (ū, v̄) ∈ Dr,α,δ(u0, v0), for any k ∈ N, let us denote by
Ak = {x ∈ Ω |ū(x)| ≥ k} and by

Gk(r) =

⎧
⎪⎨

⎪⎩

0 if |r| ≤ k,

r − k if r ≥ k,

r + k if r ≤ −k.

As Gk(ū) ∈ W 1,p
0 (Ω) and 〈I ′

α,δ(ū, v̄), (Gk(ū), 0)〉 = 0, denoting by f̄ =
Hs(δ, ū, v̄) and redefining, when necessary, a positive constant C independent
on k, we have

⎛

⎝

∫

Ω

|Gk(ū)|p∗

⎞

⎠

p/p∗

≤ C

∫

Ω

|∇Gk(ū)|p = C

∫

Ω

|∇ū|pG′
k(ū)

≤ C

∫

Ω

(α + |∇ū|2) p−2
2

(∇ū · ∇Gk(ū)
)

= C

∫

Ω

f̄Gk(ū) = C

∫

Ak

f̄Gk(ū) ≤ C

(∫

Ak

|f̄ |p∗′
)1/p∗′

⎛

⎝

∫

Ω

|Gk(ū)|p∗

⎞

⎠

1/p∗
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hence
⎛

⎝

∫

Ω

|Gk(ū)|p∗

⎞

⎠

(p−1)/p∗

≤ C

(∫

Ak

|f̄ |p∗′
)1/p∗′

≤ C

(∫

Ak

|f̄ |m
)1/m

|Ak| 1
p∗′ − 1

m . (2.13)

Moreover, for any h > k
⎛

⎝

∫

Ω

|Gk(ū)|p∗

⎞

⎠

(p−1)/p∗

≥
(∫

Ah

|Gk(ū)|p∗
)(p−1)/p∗

≥
(∫

Ah

(h − k)p∗
)(p−1)/p∗

= (h − k)p−1|Ah| p−1
p∗ ,

so that, combining with (2.12) and (2.13),

|Ah| ≤ C

(h − k)p∗ |Ak| p∗
p−1 ( 1

p∗′ − 1
m )

where p∗

p−1 ( 1
p∗′ − 1

m ) > 1.
Thereby, applying Lemma 4.1 in [13], there is C2, depending just on r,

such that

|Ah| = 0 ∀h ≥ C2

which means that ū ∈ L∞(Ω) and ‖ū‖∞ ≤ C2. As m > N/q, reasoning in the
same way, we find that also v̄ ∈ L∞(Ω) and ‖v̄‖ ≤ C2, choosing a suitable
C2 > 0. �
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