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Abstract
Intelligent Transportation Systems (ITS) are poised to transform the transporta-

tion landscape by enabling seamless integration of technologies, enhancing road
safety, and optimizing traffic flow. To fully realize the potential of ITS, it is crucial
to address the challenges of cybersecurity and sustainability. This thesis explores
innovative approaches to integrate security measures and sustainability strategies
into vehicular networks.

First, a comprehensive review of digital twin (DT) technologies in the context
of ITS is presented. This review highlights the potential of digital twins to enhance
cybersecurity by providing a holistic view of vehicular networks and enabling
proactive mitigation of threats.

Next, a novel Intrusion Detection System (IDS) is proposed for Vehicular Ad
Hoc Networks (VANETs). The IDS leverages decision tree-based machine learning
techniques to detect anomalies and identify potential intrusions with high accuracy.

To address sustainability challenges, an optimization framework for electric
vehicle (EV) routing in logistics operations is presented. The framework min-
imizes charging/discharging costs while considering the shortest path for each
EV, optimizing route planning, and contributing to reduced environmental impact.
Real-world case studies validate the effectiveness of the proposed optimization
method.

Finally, a simulation-based study on traffic networks and communication pro-
tocols is conducted. The study employs a hybrid methodology that integrates
SUMO, OMNeT++, and VEINS frameworks to model and simulate interactions
within the dynamic urban setting of Bologna, Italy. Focusing on attacks against
VANET networks through IEEE 802.11p protocol / WAVE standard messages, the
simulation-based approach enhances vehicular network security and contributes to
sustainability by ensuring the reliability and efficiency of communication protocols.

In conclusion, the contributions of this thesis provide a strong foundation
for future research in ITS. We can create a more secure, efficient, and sustain-
able transportation ecosystem by applying DT framework on ITS and integrating
cybersecurity measures and sustainability strategies.
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Chapter 1

Introduction

Within the context of intelligent transportation systems (ITS), this work completes
an intensive research journey that has spanned the delicate intersections of digital
twin (DT) technology and security solutions. An investigation begins with a fun-
damental study into the more significant uses of DT technology across numerous
sectors. After navigating the complexities of this digital replication phenomenon,
the research gradually evolved to focus on specific applications within the auto-
motive industry, delving into the implications of DT in electric vehicles (EVs),
self-driving vehicles, and the broader landscape of ITS.

The first steps of this journey started with reviewing DT applications in many
areas and industries, resulting in a comprehensive review study on DT and ITS. This
comprehensive review served as a vital point of reference for later, more focused
inquiries into the function of DT in improving traffic systems and bolstering
security standards within ITS.

As the research progressed, the emphasis switched to the intersection of DT
concepts and network security, focusing on intelligent transport networks. During
this phase, the effectiveness of applying security solutions based on artificial
intelligence (AI) and machine learning (ML) algorithms gained center stage. A
thorough assessment of datasets used for evaluating intrusion detection systems
(IDS) resulted in a comprehensive review laying the foundation for this research’s
subsequent stages. In alignment with the DT principle, the study seamlessly
flowed from theoretical inquiry to practical implementations. The utilization of
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freely available simulation tools for traffic systems, particularly in the Puglia
region of Italy, became a focus point. Simulation-driven optimization studies
emphasized the influence of traffic on travel times, underlining the important need
for validation and potential revisions for best outcomes. In this part of the research,
the practical simulation proves the significance of simulation tools in addressing
routine optimization challenges.

Simultaneously, the network security-focused component of the research jour-
ney emerged by building a multi-level IDS based on ML techniques. This proposed
system was evaluated on CICIDS2017 dataset, showcasing its excellence in de-
tecting a wide range of attacks on Vehicular Ad-Hoc Networks (VANETs). This
achievement became a cornerstone for tackling security issues within ITS.

The research progressed with an in-depth examination of network simulation
technologies that could be seamlessly connected with traffic simulation systems.
The integrated simulation of part of the Italian city of Bologna proved important,
yielding a realistic network dataset that will serve as a core resource for future
research and system evaluations. The primary purpose of this simulation-driven
was to study the network communication protocols within VANETs to improve
vehicle network security. By understanding wireless access in vehicular environ-
ments protocols and messages, we can employ advanced detection algorithms and
undertake careful analysis to detect and block network attacks.

This PhD thesis is a complete trip through the confluence of DT technology
and security solutions inside ITS. From foundational explorations to specialized
inquiries and theoretical frameworks to practical applications, this research con-
tributes to the evolving discourse on the subject. It highlights the depth and breadth
of knowledge already gained in the dynamic and evolving field of ITS.

1.1 Background

1.1.1 Digital Twin

The advent of the DT concept has heralded a transformative era in modeling
complicated physical systems. DT is defined as a virtual representation of a
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physical object, system, or process, constantly updated with real-time data from its
tangible counterpart [1]. This dynamic synchronization enables the DT to serve as a
substitute for the physical system, opening opportunities for simulation, prediction,
and optimization. Adopting DT becomes crucial in literature and research as these
entities become integral to different industries.

DT demonstrates the capacity to effect substantial transformations across vari-
ous sectors, including manufacturing, healthcare, and infrastructure management.
The utilization of such technology in the manufacturing industry is crucial due to
its ability to enhance product design, optimize production processes, and minimize
downtime [2]. This technology is essential in determining the trajectory of the
industrial sector due to its significant effects on the efficiency and productivity
of manufacturing processes. In the healthcare sector, DT is being employed to
facilitate the creation of novel therapies, ensure ongoing health surveillance, and
deliver individualized attention to patients; this signifies a fundamental change
in the methodology of healthcare provision [3]. In infrastructure management,
DT offers solutions to improve traffic flow, predict asset failures, and increase
resource utilization. This phenomenon underscores DT’s critical role in forming
more intelligent and sustainable municipalities, which has substantial implications
for urban development and planning [4]. The multidisciplinary nature of DT raises
significant scholarly interest in the subject. Academically, researchers conduct
various research on the complexities of their implementations and the far-reaching
impacts they apply to multiple industries.

The fundamental components become apparent upon closer inspection of the
technical complexities of DT. These elements comprise the digital representation,
which is a communication channel that facilitates real-time data exchange between
the physical system and its DT model. The physical object represents the tangible
system mirrored in the DT, and the communication channel integrates data from
sensors, actuators, and other supplementary sources.

Many modeling techniques can be employed to construct DT, including physics-
based, data-driven, and hybrid models. The availability of big data from these
applications determines the modeling technique option and creates opportunities
for a thorough investigation into the efficacy of various modeling methodologies
using DT techniques.
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Nevertheless, the extensive implementation of DT is full of obstacles. The
collecting, storing, and processing of large volumes of real-time data presents
a notable challenge in the realm of data management [5]. This is considered a
current challenge in the research community concerning infrastructure, technology,
and the creation of data administration systems. Model complexity represents an
additional obstacle, as the development and upkeep of precise and current models
of intricate systems necessitate substantial labor and proficiency. In addition, data
security and privacy are of the utmost importance in DT, necessitating scrupulous
consideration to safeguard the confidentiality and integrity of the information
undergoing processing.

However, despite these obstacles and challenges, the prospective direction of
DT is promising. Technological developments such as the Internet of Things (IoT),
AI, and ML are expected to contribute to the increased sophistication and broader
utilization of DT.

The application of DT in ITS seamlessly aligns with the broader vision of smart
cities, where adaptive and responsive systems are at the heart of urban development
[6]. By employing real-time data generated by vehicles, infrastructure, and an
intricate network of sensors, DT fosters a comprehensive understanding of traffic
scenarios. This, in turn, enables predictive modeling and scenario simulations,
paving the way for transportation systems to adapt dynamically to ever-changing
conditions. While DT has already proven its transformative potential across various
sectors, its impact on ITS unveils an exciting new frontier ripe for exploration. This
thesis delves explicitly into the realm of DT and its intricate applications within
the ITS. Throughout the subsequent chapters, we will explore this transformative
technology comprehensively and its potential to provide solutions to transportation
infrastructure in smart cities.

1.1.2 Intelligent Transportation System

ITS has unquestionably become a powerful influence, completely transforming
the transportation industry to improve efficiency, safety, and sustainability in our
constantly growing mobility networks [7]. This paradigm change is demonstrated
by a wide range of technologies, including real-time traffic management systems,
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intelligent traffic signal control, the rapid growth of EVs and autonomous vehicles
(AVs) technologies, and the widespread of vehicular networks, including vehicle-
to-vehicle (V2V) and vehicle to infrastructure (V2I) communication [8].

EVs operate on electricity rather than traditional fossil fuels and are crucial
in addressing air pollution and decreasing greenhouse gas emissions [9]. This
makes EVS a vital component of a cleaner and more sustainable transportation
system [10]. AVs, which are equipped with autonomous driving capabilities, can
enhance safety and improve traffic flow simultaneously. This envisions a future
where accidents and congestion on roadways are minimized [11].

The integration of EVs and AVs into the current transportation system is a
challenging but crucial task. This requires the deployment of ITS to navigate this
era of transformation successfully. The role of ITS is vital as it enables the efficient
management of EV charging infrastructure, enhances AV routing techniques, and
delivers up-to-date information to drivers and cars. This coordinated collaboration
aims to promote a balanced and effective transport system that accommodates and
actively encourages the widespread use of these innovative technologies [12].

Beyond this integration, ITS offers extensive benefits, including optimizing
traffic flow, reducing congestion, and improving public transportation efficiency.
As a result, travel times are decreased, and overall productivity is increased [13].
In addition, ITS substantially contributes to safety by providing up-to-date traffic
information and alerts, promoting safe driving behaviors, and facilitating automated
emergency response systems [14]. However, this transforming journey has its
significant challenges. Integrating ITS systems with existing infrastructure provides
complicated logistical and technological issues, requiring careful consideration of
compatibility and interoperability. Ensuring adequate data privacy and security
methods becomes crucial, mainly as these systems rely significantly on real-time
data transmission and communication [15]. Moreover, the high expenses associated
with establishing and maintaining ITS infrastructure demand careful planning and
efficient resource allocation to assure long-term sustainability [16].
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1.1.3 DT and ITS

In these advancements in technology and revolutionary changes, the idea of DT is
emerging as a crucial factor in enhancing and optimizing the capabilities of ITS.
When it comes to transportation, combining DT with ITS has the potential to im-
prove efficiency, safety, and sustainability objectives. DT can function as dynamic
representations for specific vehicles and the broader transportation infrastructure,
such as network components and charging infrastructure. Moreover, DT is essential
in forecasting energy usage trends, optimizing charging timetables, and evaluating
the real-time condition of EV components. DT can replicate various situations
within the AV industry, optimize routing algorithms, and improve decision-making
processes by thoroughly comprehending the vehicle’s virtual model. Furthermore,
this integration can significantly enhance predictive maintenance techniques and
total system reliability by continually monitoring the status and performance of
vehicles and infrastructure components. This anticipates possible difficulties and
enables proactive maintenance, thereby minimizing downtime.

In the context of ITS security, this real-time capability becomes a strategic
advantage, where DT enables ongoing monitoring of vehicular networks, analyzing
real-time data streams to promptly detect anomalies in data traffic, communication
patterns, and overall system behaviors. By leveraging this real-time data, DT
contributes to the identification of potential security threats, cyberattacks, and
unauthorized access attempts. Moreover, DT facilitates the implementation of
predictive security measures by simulating various real-time scenarios, attacks,
and vulnerabilities. This simulation empowers system operators to anticipate
and mitigate real-time risks, enhancing vehicular networks’ overall resilience
against evolving cybersecurity challenges. In summary, the availability of real-time
data and employing it in designing the DT significantly reinforces the security
framework of ITS, ensuring a dynamic and responsive defense mechanism in the
face of emerging threats.
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1.2 Motivation

The evolution of EVs and AV or self-driving into Intelligent ITS represents a
significant leap forward in refining traffic management, ensuring drivers’ and
passengers’ safety, and fostering sustainability within smart mobility networks.
As self-driving vehicles strive to diminish road accidents and alleviate traffic
congestion caused by human error [17], EVs contribute to a cleaner and more
sustainable transportation paradigm by relying on electricity instead of traditional
fossil fuels [18]. Notably, recent research underscores challenges in the security
and privacy of communication systems within self-driving and EVs [19], [20].
Addressing these challenges is the core focus of this thesis, which uniquely explores
and introduces route optimization strategies, IDS for VANETs, and simulation
tools of traffic networks and their communication dynamics to fortify the security
of VANETs.

The thesis draws motivation from four crucial factors applicable to electrified
and self-driving automobiles. The Security Factor emphasizes the need for a com-
prehensive security system that is both lightweight and durable, capable of online
detection, and specifically designed to boost protection against potential threats.
Furthermore, the Economic Factor emphasizes the significant economic conse-
quences of optimizing routes for driverless and EVs, resulting in cost reduction
and increased road capacity. The attacks Type Factor acknowledges the limitations
of conventional security measures in identifying different forms of assaults on the
external communication of autonomous and EVs. This underscores the significance
of IDS in enhancing security. Finally, the Safety Factor prioritizes the creation of
an intelligent, responsive response system for both types of vehicles, guaranteeing
a prompt switch to safe modes to protect passengers and drivers.

To address these motivations, the thesis introduced a tree-based ML model using
techniques such as decision trees, random forests, XGBoost, and extra trees. These
techniques play a pivotal role in enhancing detection rates and minimizing false
alarms within the framework of both autonomous and EVs. These technologies
have the advantage of real-time operation, fault tolerance, and self-organization.
Furthermore, the unique contribution of this thesis lies in the simulation of vehicular
networks that serve in the application of route optimization strategies. Moreover,
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the simulation of communication in traffic networks enhances the ability of IDS to
identify different types of attacks on the network. This simulation not only refines
the security of VANETs but also ensures a more resilient and responsive defense
mechanism against emerging cybersecurity threats in electric and self-driving
vehicles.

1.3 Problem statement

The development and operation of EV and AV systems in ITS highlight the im-
portance of growth in communication systems. Recent research highlights the
significant difficulties associated with ensuring the security of communication
systems in ITS [21]. Understanding the need to safeguard these networks and
implementing strong security measures is essential for promoting progress and
universal acceptance of the revolution in vehicular networks in ITS [22].

Nevertheless, differentiating between normal and abnormal/malicious behavior
in vehicular communication, particularly VANETs in ITS, is a complex challenge.
The complexity stems from the constantly developing infrastructure and the volatile
physical environment inherent in vehicular networks. The security problems in
VANETs, a vital component of ITS, can be classified as follows [23]:

- Online Detection: Real-time identification of online threats is crucial when
designing security systems. In ITS, online detection is vital for addressing security
threats in dynamic vehicular networks. Rapid response is crucial for ensuring
passenger safety and maintaining the integrity of real-time communication, which
is essential for applications like collision avoidance. This ensures that packets can
be exchanged between the source and target without any delay, thereby ensuring
the safety of passengers and drivers.

- High Mobility: The detection algorithm depends on network behavior to col-
lect essential characteristics. However, the high mobility in VANETs complicates
this process, making collecting information about the type and number of features
challenging. Technologies like fuzzification are necessary to bridge this gap caused
by the rapid mobility inherent in VANETs.



1.4 Thesis Contributions 9

- Security Systems: Conventional security systems are inadequate for protecting
the communication systems of vehicles within VANETs. Therefore, developing
new security systems or changing existing protection mechanisms is necessary.

- Internal Attacks: Although successful in countering external attacks, encryp-
tion methods are insufficient in thwarting internal attacks within VANETs. The
absence of adequate security measures motivates researchers to create sophisticated
IDS that can identify and stop internal attacks, therefore enhancing the security of
VANETs within the larger context of ITS.

DT plays a pivotal role in digitally mirroring the environment, providing a
foundation for developing software and models that effectively simulate real-world
networks. It goes beyond simulation and representation, incorporating elements
of construction, design, operations, results analysis, model experimentation, and
generating outcomes that closely parallel reality. This comprehensive functionality
empowers researchers and specialists to thoroughly assess the digital model, under-
standing its strengths and limitations before constructing the physical counterpart.
The main focus of this thesis is to address VANETs security challenges by building
the security framework in DT technology. This digitalization aims to strengthen
and enhance protection mechanisms, ensuring the resilience of communication
systems and contributing to the secure development of VANETs functionalities
within ITS.

1.4 Thesis Contributions

The thesis contributes to addressing several challenges related to sustainability
and security in ITS. The primary objective is improving vehicle network security
effectiveness within ITS. In addition to the focus on security, the contributions
made by this research extend to sustainability, including cost reduction and the
implementation of smart charging strategies. The major contributions are outlined
below:

• Comprehensive Review of Digital Twin Technologies: Review of DT in ITS:
This work is the basic building block on which this thesis is based, as all
previous studies related to DT were reviewed, starting from their inception
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until their use in various fields, especially in ITS and smart cities. The
exploration encompasses technologies integrated with DT, emphasizing their
impact on the development of vehicular networks. Notably, the study delves
into the capabilities of DT to enhance security measures and contribute to the
sustainability of vehicle networks through real-time monitoring and response
capabilities.

• Intrusion Detection Systems for VANETs:

The thesis proposes a new IDS designed explicitly for VANETs. The pro-
posed IDS uses decision tree-based ML techniques. The proposed model
combines two feature selection techniques, Random Forest (RF) and Fast
Correlation-Based Filter (FCBF), and four tree-based algorithms, extreme
gradient boosting decision tree (XGBoost), RF, Decision Tree (DTree), and
ExtraTrees classifier (EXT), for classification performance. Moreover, the
model is evaluated using CICIDS2017 as a benchmark dataset and Python
ML libraries in Jupyter Notebook, such as scikit-learn and Pandas. Ex-
periment results show that the proposed model using the stacking method
achieves 99.86% attack detection accuracy, 99.85% precision with Hyperpa-
rameter Optimization (HPO), and 99.83% attack detection accuracy without
using HPO.

• Routing Optimization under Smart Charging Strategies:

The Electric Vehicle Routing Problem (EVRP) is a crucial topic that has
been addressed in this thesis to solve the problem of optimizing the rout-
ing of EVs for logistics operations. The optimization approach solves the
EVRP and is formulated as an integer linear programming problem. The
goal is to minimize the charging/discharging cost, considering the shortest
path for each EV that must deliver a charge to a group of customers. The
methodology integrates smart charging strategies, contributing to the sustain-
ability aspect of ITS by minimizing charging costs. Moreover, to validate
the performance of the proposed optimization method, Simulation of Urban
MObility (SUMO) software was used to model and simulate the solution
of the EVRP. To demonstrate the effectiveness of this method, a real case
study in the Puglia region (Italy) was considered. Additionally, different
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traffic scenarios were simulated in the SUMO environment, emphasizing the
impact of traffic on travel times, thereby addressing sustainability through
efficient routing and reduced travel times.

• Simulation of traffic and communication protocols:

Comprehensive Network Modeling: The thesis provides a comprehensive
modeling framework for understanding complex interactions within ITS by
simulating traffic networks and communications protocols. The model has
been built within the dynamic framework of an urban setting, employing
the SUMO simulation testbed for the city of Bologna, Italy, as a realistic
traffic simulation model. This study uses a hybrid methodology integrat-
ing the SUMO, Objective Modular Network Testbed in C++(OMNeT++),
and Vehicles in Network Simulation (VEINS) framework to simulate com-
munication within vehicle networks. The main emphasis is examining the
different types of attacks that could happen on the VANETs network through
various messages facilitated by the IEEE 802.11p protocol / WAVE (Wireless
Access in vehicular Environments) standard. The primary objective of this
simulation-based study is to improve vehicular network security by leverag-
ing the inherent benefits of using WAVE standard messages and applying
and analyzing techniques to detect intrusions in the network.

In summary, the contributions of this thesis transcend the realms of security
and extend into sustainability. Leveraging DT capabilities enhances vehicular
network cybersecurity, while the proposed IDS achieves remarkable attack detec-
tion accuracy. Additionally, smart charging strategies optimize electric vehicle
routing, minimizing charging costs. The simulation-based study on traffic networks
and communication dynamics contributes to improving vehicular network security.
These contributions collectively enhance ITS security and sustainability, addressing
crucial challenges and fostering a more secure and efficient transportation ecosys-
tem. These diverse contributions will be detailed and discussed in the subsequent
chapters, highlighting their profound impact on advancing the field of ITS.
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1.5 Thesis Structure

This thesis is presented in three main parts, comprising six chapters in total. Part I
deals with Optimizing Electric Vehicle Routing in Large-scale Traffic Networks
using simulation tools. Part II presents an IDS for Vehicular ad Hoc Network
Attacks Based on ML Techniques. Finally, Part III introduced a simulation-based
study for enhancing security in intelligent transportation.

Starting from Chapter One, the introductory background of the domain, moti-
vation towards the study, Problem Statement, and Thesis Contributions have been
inscribed. The start -of - art was divided into two chapters to study the thesis’s main
components separately and then link them in subsequent chapters. Chapter two
presents the background of DT in ITS and all emerging techniques that apply to DT
technology. Chapter three discussed the background of communication security
for ITS, particularly in VANETs and EVs routing problems and optimization.

Part I starts by illustrating chapter four, which spans the study of the applica-
tions of Routing Optimization, followed by the technological challenges towards
the ITS and EVRP. The chapter also discusses the simulation tools widely applied
to solve EVRP and explains the methodology used in modeling and addressing
the problem. A Case Study was conducted in this chapter to solve EVRP in the
Southern Italian region of Puglia. At the end of this part, the result was presented
with a comprehensive discussion and future work.

Part II embraces the Intrusion Detection System for VANETs. Chapter Five
presents a background on the Intrusion Detection System for VANETs, as well
as techniques and tools. The chapter comprehensively explains the proposed IDS
model and the methods, followed by the experimental setup for the model and the
results achieved with discussion. The chapter sheds light on IDS significance in
ITS security and potential future work.

Part III illustrates the thesis contribution of security and ITS. Chapter Six
contains a comprehensive examination of VANETs security employing simulation
tools, both Traffic and network simulation software, starting from a study on the
simulation approach for VANETs security and the possible attacks that could be
performed on VANETs simulation. The chapter discussed the network protocols
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and standards for vehicular networks, such as IEEE 802.11p protocol / WAVE, and
simulation tools like SUMO, OMNeT++, and VEINS. This chapter conducted a
case study by simulating the entire vehicular network and injecting different types
of attacks. The study aimed to highlight the importance of practical and realistic
simulations and the importance of network protocols to secure VANETs. The study
concluded by presenting the results and discussing future work.

As a conclusion of this dissertation, Chapter 7 provides final reflections, em-
phasizes vital discoveries, and presents a future outlook, offering valuable insights
for the broader research community.



Chapter 2

Background about Digital Twin in
Intelligent Transportation Systems

2.1 Introduction

In the era of the fourth industrial revolution, EV industry is transforming the
manufacturing field of transportation systems. Today, most of the features and
services of EVs are realized through smart technology. Conventional vehicles
with internal combustion engines significantly contribute to the consumption of
fossil fuels and the emission of greenhouse gases, such as carbon oxides and
hydrocarbons. To overcome this issue, EVs have been designed and improved over
the past few years [24]. Many industrial fields adopted IoT technologies to enhance
the electromobility industry and make this transformation smarter. Vehicles are
becoming smart objects using sensors that form the basis for IoT networks. In
turn, the amount of data these sensors provide will constitute a qualitative shift
in the concept of EV management systems. These sensors will cover all vehicle
parts to monitor all movements and changes during the movement and charging,
as well as monitor engines and the internal components. The generated data from
the sensors need to be collected and synchronized, then analyzed and processed to
improve EV service quality and assist EV management system in decision-making.
Despite the significant development of these technologies, there are still difficulties
in using physical sensors; this led many researchers to introduce the concept of
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virtual sensors (VSs) for electromobility [25]. The VS system can analyze, predict,
and estimate the vehicle behavior, Battery State of Charge (SoC), and availability
of charge points.

Improving the EV user experience relies on three essential components: the
physical entities in the real world, the virtual models, and the data-driven by these
models. Integrating these components requires a simulation framework to simulate
large-scale traffic scenarios [26]. The distribution of charging points, EV volume,
and all dynamic operations in the EV network should be managed effectively
and safely. For this goal, simulation platforms can be introduced to simulate the
EV’s network components and their interaction with each other. The simulation of
operations could help us understand the nature of the physical product in each stage
and collect information about the product characteristics, which can be helpful
in the development process. Most simulation platforms support the concept of
DT, which provides an excellent capability to simulate real-world entities in the
industrial environment. DT concept is known as a virtual replica of a real-world
object that can give the ability to study the development of physical objects in a
digital situation/environment. DT was considered one of the world’s ten latest
strategic innovations in 2019, providing autonomous objects (e.g., self-driving
cars), immersive technologies such as virtual reality (VR), augmented reality (AR),
and quantum computing [27]. The main idea of this technology is to replicate
the physical object’s behavior in a virtual environment that can produce the same
output as the actual physical object.

Adopting DT can reinforce the development of the industry and the academic
section. Digital data can improve an engineering system’s intelligence concerning
analytical evaluation, extrapolative diagnosis, and performance optimization. Then,
the results of the analyses can be used to make the product or process run better
in the physical environment [28]. Academically, DT concept was introduced in
2002 by Grieves et al. [29] in a special summit on product life-cycle management
at the University of Michigan Lurie Engineering Center. The first adoption of this
technology is by Tuegelet al. [30], who presents a digital framework to reproduce
the structural behavior of an aircraft. Indeed, DT technology is widely used in
multiple industrial sectors to facilitate maintenance operations and predict failures,
allowing machines and humans to interact with each other. In particular, DTs
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are used in a wide range of applications, including transportation, manufacturing,
medicine, business, education, and more. Integrated machine-driven, electrical,
and computer software systems can be simulated in the virtual workspace through
DT technology [31]. One important example of such systems is EV, for which
new technology is needed to optimize vehicle performance continuously. DT
technology can be an innovative solution for EV optimization. Many features of
an electric EV can be computerized to increase its efficiency, performance, and
smartness.

Integrating big data analytics, IoT, and AI technologies with DT leads to new
significance, prospects, and challenges. Furthermore, an intelligent DT model can
only be created using advanced AI technologies applied to the data [32]. It can tune
the significant challenges for manufacturing, such as improving process stability,
fault diagnosis, reducing downtime, and optimizing logistics processes [33]. AI
can further enhance DT technology by using analytical models to process raw data
into valuable digital forms. In this context, ML algorithms and technologies are
currently used in EVs. In particular, ML algorithms can be used effectively if
combined with predictive testing tools and DT technology. The importance of DT
is also proved in the security and monitoring systems. Lu et al. [34] presented a
DT-enabled anomaly detection system based on industry foundation classes for
asset monitoring solutions. The proposed framework was evaluated using a case
study to control the Heating, Ventilation, and Air Conditioning system, and the
system efficiently contributes to monitoring building assets.

There is a lack of literature reviews that explore the use of DT in ITS, especially
for EVs and AVs. Due to the rapid development of the smart mobility industry,
there is an urgent need to study and analyze the challenges and issues that the
new generation of transportation will produce and how these can be addressed
[35]. In response to the growing adoption of DT technology in ITS, this survey
investigates recent literature, particularly emphasizing the application of DT in
electromobility and self-driving systems. By exploring the integration of emerging
technologies, communication tools, and DT concepts, our findings reveal the poten-
tial of DT technology to address challenges such as cost-effectiveness, reliability,
visualization, charging time, and intrusion detection in electric and AV networks.
Furthermore, this survey highlights the role of data analytics and ML techniques
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in securing ITS networks and improving overall efficiency. The research was
conducted in multiple databases, including Scopus, Google Scholar, and Web of
Science, to identify relevant studies published in the lasquickly years. In addition,
ResearchGate was considered as an additional database and information source.

The provided review is carried out systematically, as shown in Figure 2.1, con-
sidering specific domains within smart manufacturing and transportation in which
DT technology is applied in combination with IoT, ML, AI, and 5G technologies.
First, a set of papers was selected from the publication databases considering the
following keywords: DT, ITS, EVs, Big data, 5G, IoT, and AVs. From such a
paper set, a subset of articles is selected on the basis of their relevance and quality.
Then, the current issues in EV services, such as tracking, monitoring, Battery
Management Systems (BMS), connectivity, privacy, and security, are discussed, as
well as how they can be addressed effectively through DT technology. The next
EV revolution has been highlighted, i.e., electric AV, and the importance of data
analytics roles in applying DT in such a context has been discussed.



2.1 Introduction 18

Figure 2.1: Vehicular Ad Hoc Networks (VANETs)

In figure 2.2, a geographical distribution map has been created to display the
dispersion of the research articles examined in this chapter. The map visually
represents the number of papers originating from each continent, providing a clear
overview of the global research landscape in this field. This illustration allows
readers to easily grasp the contributions on DT and ITS made by researchers from
different parts of the world, showing the regions with the most research output.
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Figure 2.2: Visualization of the geographical distribution of the analyzed articles.

2.2 Digital Twin in Transportation Systems

With the advancement of Big Data, IoT, and AI, a new generation of information
technology, geographic and global positioning data, is to be handled. Combining
these technologies with DT technology is a critical element of the digital wave
trends and takes the lead in transportation applications for planning, maintenance,
security, and other aspects.

Figure 2.3: Digital Twin model in transportation.
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The DT has the potential to improve the transportation sector by providing a
digital identity, synchronized visualization, and virtual and real interaction (see
Figure. 2.3). The DT technology utilizes intelligent technical advantages such as
controlling traffic perception, road warning, and emergency response. Furthermore,
it can provide transportation solutions and new paths, such as intelligent driving,
which will increase efficiency and safety and allow convenient traffic management.
In this context, Wang et al. [36] introduce a DT framework for connected vehicles
using an Advanced Driver Assistance System (ADAS). They used vehicle-to-cloud
communication to calculate the advisory speed based on the information that could
be collected from the sensors on the vehicles. The proposed model helps the driver
to control the speed intelligently. Another example of using DT in the cloud is
presented by Alam and Saddik [37], which developed a DT model for the cloud-
based Cyber-physical system (C2PS). They described the key properties of the
C2PS and introduced a telematics-based prototype driving assistance application
for the vehicular C2PS.

In this context, a review paper on DT technology with smart EVs has been
done by Bhatti et al. [38]. The review has divided the smart vehicle systems into
different categories: autonomous navigation control, advanced driver assistance
systems, vehicle power electronics, vehicle health monitoring, BMS, and electric
power drive systems. As a result of this research, smart EVs and DT technology
are investigated theoretically to see what impacts their integration can have in the
near future.

Due to the amount of data generated by transportation systems, ML and Deep
Learning (DL) technologies are employed to create an ITS. The application of
intelligence in the transportation field is increasing rapidly, and improving the
performance of these systems has become the focus of research. The existing
transportation systems can be controlled, analyzed, and operated using DT. Using
ML and DL in DT can collect real-time data and provide adequate services to the
service provider and the end-user [32]. Moreover, the ITS can effectively optimize
and coordinate traffic conditions based on DL and DT technologies by monitoring
the flow of people, traffic, and roads. It can also maximize the duration of traffic
lights and find the signal light scheme with the shortest transit time. For example,
Zhihan et al. [39] proposed a DL algorithm to solve the security problems of
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the ITS. The proposed model assured a response time to emergency alerts and
increased the prediction accuracy. Moreover, vehicles will travel faster because
they can better adapt to the road environment, transmit data more quickly, and
develop routes considering traffic patterns. Another example of how DT and AI
technologies are utilized in transportation is traffic management, prediction, and
congestion avoidance. Kumar et al. [40] introduced an ITS that uses ML, fog/edge
analytics, data lakes, DT, and blockchain. The authors used cameras to collect
environmental information and then run edge analytics on the collected data. The
DT generated the virtual car model to simulate the real-world scenario. This
work uses ML and DL algorithms to predict drivers’ intentions. By creating a
virtual vehicle model, non-autonomous drivers were able to make better decisions
depending on the current traffic scenario and the intents of other drivers.

The traveler’s driving experience is also important, as the DT can reduce and
redistribute waiting time at intersections. Dasgupta et al. [41] worked on a DT
approach for adaptive traffic signal control to improve the user driving experience.
They developed DTs to emulate vehicles close to the intersection and vehicles’
waiting time at the immediate upstream intersection. The proposed model can
balance waiting time across a signalized network to improve the travel driving
experience in congested areas, and it can be scalable on the city-wide network.
While the Data analytics in the DT concept is still developing, Aslani et al. [42]
developed a real-time DT simulation model that can provide a performance measure.
The study also demonstrated the data scarcity required for real-time applications
that rely on high real-time frequency connected corridor data streams. In summary,
the DT uses all the gathered data and accurately captured city signs to achieve
new insights into urban traffic on different sides, such as the road supply and
traffic demand, optimizing the road network structure through traffic simulation,
and improving overall traffic efficiency in the city. In addition, using DT in
transportation can improve the decision-making execution, safety, and stability of
vehicle driving and accelerate intelligent and safe driving.
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2.2.1 Digital Twin in Electromobility

Many applications of electromobility have been involved in research activities to
give rise to the phenomenon known as smart electromobility. The rapid growth
of smart control systems led to several developments in this industry. The data
generated through this growth are the key factor in improving the smart mobility
sector. The DT’s strength lies in collecting and visualizing data and conducting
statistics in which advanced analysis tools are used to improve manufacturing
processes and help decision-making.

For charging an EV, it is commonly vital to physically attach/connect the EV
plug to a charger located in a household or a public place through a charging cable.
Considering that EVs and self-driving accomplished by automated driving will de-
rive into general use, physical charging is not manageable, and automatic charging
should come in place. Generally, there are two options to charge automatically:
park a vehicle in an accurate position so that the vehicle’s charging connector of
the vehicle automatically fits the charging cable of an available charger or wireless
charging. Shikata et al. [43] introduced a DT’s vehicle simulation technique,
focusing on two factors: 1) power consumption and 2) ride comfort. The simulated
environment contains a vehicle model for interpreting the physical performance of
the vehicle. An electronic control unit (ECU) has also been simulated as a proto-
type for regulating the simulated environment. They also developed an automatic
charging system for EVs to charge the vehicle automatically after parking in an
accurate position.

BMS in electromobility is also essential concerning battery life, safety, and
reliability. It relies on different types of sensors and actuators on the EV to provide
real-time battery performance. Using an IoT platform to build a DT for BMS
in the cloud boosts the robustness of the BMS. Wang et al. [44] reviewed the
solutions for BMS issues based on DT, such as the problems related to real-time
estimation, dynamic charging control, and dynamic equalization control in a smart
BMS. Another important application of the EV is the ADAS, built to enhance
driver experience and passengers’ and pedestrians’ safety by decreasing vehicle
accidents and alerting drivers of possible dangers. Liu et al. [45] introduced a new
vision-cloud data fusion approach to enhance the performance of visual guidance
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systems by leveraging DT technology and cloud servers. This work is one of the
effective studies to visualize the cloud DT data and support the ADAS or driver’s
decision-making.

2.2.2 Digital Twin Networks in Smart Transportation

Digital Twin Networks (DTN) is the natural evolution of the development of DT
technologies in the modern era. DT of any physical object is the first cell of
the DTN; thus, DTN can be defined as a set of virtual digital representations of
different groups of physical objects connected by a high-speed communication
medium to configure an integrated virtual system. The data exchange between the
virtual model and physical object in the DT is done in a one-to-one unidirectional
way. The operational changes in the physical object will directly affect the virtual
model but not the opposite.

On the other hand, DTN allows comprehensive data exchange between DTs
and physical assets in a multidirectional manner [46]. Recently, transportation has
encountered issues that increase with the development of urban cities, such as traffic
congestion and accidents. In this context, DTN can provide a better solution for
such a complex environment and help to optimize the entire transportation system.
DTN also offers innovative transportation services such as traffic information
reporting, vehicle security, and data sharing. To keep pace with the rapid progress
in the electric mobility sector, we need to use and integrate DTN technology with
EV networks in smart cities, whether autonomous or non-autonomous vehicles,
which will provide high possibilities for managing and improving transportation
network systems, not only at the city level but also at a broader level.

The DTN architecture shown in Figure 2.4 is composed of three layers: phys-
ical, network, and virtual. The physical layer consists of EVs, charging stations,
roads, and facilities. These entities are connected to the network layer through
sensors that transmit data about the vehicle positions and velocities, the road
traffic, and the charging station status. The network layer receives information
from the physical layer by communication services provided through 5G or WIFI
technologies. Moreover, this layer sends information and data to the virtual layer,
which is composed of a network of DTs and servers. At the virtual level, the DTs
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are connected to collaborate in executing the simulation and computation tasks
based on new enabling technologies devoted to decision-making, analysis, and
maintenance issues (such as AI, AR, and ML). In this context, Dai et al. [47]
proposed a new DTN model to build network topology and integrate it with the
IoT network. The adopted system significantly solved many problems, such as
computation offloading and resource allocation problems.

Figure 2.4: DTN architecture for electromobility.

2.3 Technologies in Digital Twin for Electromobility

DT applications are increasingly used in electromobility and combined with en-
abling technologies like IoT, 5G, big data, ML, virtual systems, and advanced
communication interfaces. Critical functionalities such as real-time monitoring,
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predictive analysis, or cloud computing may be impacted. However, the DT’s main
concept and basic architecture were always common with all these technologies.
Figure 2.5 shows the key technologies to be used with DT for electromobility,
such as the IoT, VSs, 5G, Data analytics, and AVs. We will discuss the main
contributions of DT in detail in this section and how DT technology will provide
services to heterogeneous fields in different communication networks.

Figure 2.5: Key Technologies in DT for Electromobility.

2.3.1 Internet of Things

Recently, IoT technology has been used in smart and electric mobility. In the
electric mobility revolution, the application of DT technology is facilitated by
advanced data analytics and IoT. Digital and physical interactions are changed by
integrating DT and IoT platforms. IoT enables connection and intelligent access
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to physical devices, and the DT can handle challenges related to integrating IoT
and data analytics, which facilitates rapid real-time analysis and decisions. In
electromobility, IoT establishes a wide platform with connected vehicles that can
send the data from physical devices to the cloud or local servers. Then, the role of
the DT lies in dealing with this information, simulating resources by creating DT
models, establishing virtual connections, and integrating with AI. Therefore, the
DT technology is a substantial technology to improve performance innovatively
in electromobility and advances monitoring, analytics, and predictive capabilities
[48].

Zhao et al. [49] introduced an IoT-based and DT-based model that enabled
tracking solutions for safety management. The proposed framework allows a real-
time safety tracking mechanism for detecting stationary behavior and self-learning
genetic position to recognize abnormal conditions and obtain an accurate location.
The combination of IoT and DT technologies can help operators and stakeholders
make the necessary technological improvements for making electromobility smarter
by connecting DTs of smart vehicles, simulating and managing the EV fleet
data network for value-added services that can not only improve the driving and
charging experience of users but generating benefits for the entire sector. Being
able to simulate the connection of EVs through IoT can, for instance, allow for
optimally scheduling the recharge of such vehicles by prioritizing the charging
operations based on real-time states of charge, available infrastructure, and user
preferences. Finally, DT technology facilitates smart functionalities by leveraging
data gathered consistently from IoT devices. Moreover, DT enables features
such as predictive maintenance, network analysis, energy efficiency optimization,
streamlined resource distribution, and real-time network supervision. Additionally,
seamless interaction between various networking devices is possible, as their digital
counterparts are platform-agnostic and can be managed using standardized methods
without concern for the specific technical details of individual devices [50].

2.3.2 Virtual Sensors

The EVs use many environmental sensors to perceive and act according to their
perceptions. This section illustrates how logical entities called VSs can be used
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in a DT framework as the virtual twins of physical sensors. VSs can support new
services for smart transportation, addressing issues related to battery charging
and route planning for EV drivers based on parameter estimation/prediction. In
particular, VS derives new data from existing information generated by the physical
sensors and utilizes a data processing algorithm to process the data input and
produce the required output [51]. For example, Roccotelli et al. [25] introduced
and designed new VSs to enhance the EV charging experience. The proposed
model provides a smart charging service that allows drivers to find the best charging
point for their vehicles. Another example is given by Gruosso et al. [52], who
proposed a methodology for estimating the state of charge in EVs. The method
relies on the VS and other measurements available in the vehicle, such as speed,
acceleration pedal position, and battery voltage. VSs also play an essential role in
enhancing user experience and optimizing EV services, which could support the
growth of the EV market.

In [53], Fanti et al. developed a new EV service to improve user experience
when preparing for the trip. They designed three VSs that help the driver predict the
cost and required energy for the journey. The proposed VSs can estimate the energy
demand based on historical data from past trips. Some relationships between the
sensors can be determined over time by the virtualization platform, for example, by
utilizing and exploiting ML technologies to improve the functioning of the sensors.
Therefore, combining the technology of VSs with the EVs simulation model can
provide a way to solve complicated issues such as battery management, vehicle
energy management, and vehicle control.

2.3.3 Internet of Vehicles

By guaranteeing greenhouse gas reduction and fuel efficiency, EVs have attracted
a progressively greater share in the private automobile market [54]. Nevertheless,
the charging problem is still a barrier to the EV business’s growth with the present
battery technology. Thus, it is essential to have a wide charging infrastructure area
that holds fast charging poles, battery swapping stations, and individual charging
points for faster EV battery charging. In this scenario, the EV model is simulated
with the DT to replicate the EV in the real world accurately. Introducing a DT
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model makes it easy to simulate mobility behaviors and interactions to study the
efficiency of the charging pole and EVs from the demand side and supply side.

DT for IoV creates virtual representations of vehicles and traffic systems,
connecting the virtual world and physical world spaces. This allows for real-
time vehicle and traffic system performance monitoring, improved situational
awareness, feasibility forecasting, and decision-making through comprehensive,
multidimensional modeling. Continuous, real-time interactions between the virtual
and physical realms are necessary for accurate simulations [55].

One example of the potentiality of DT for IoV is in [56]. In this work, a
simulation platform based on DT models is proposed to replicate and simulate the
charging and discharging processes of large-scale EV fleets in different kinds of dy-
namic scenarios. To replicate the realistic mobility of EVs, the operational motion
parameters such as steering angle, orientation angle, and acceleration are integrated
into the mobility model to simulate the realistic trajectories. A tracking method
of the dynamic position and orientation is proposed to synthesize the reasonable
trajectory of EVs in day-to-day traffic conditions. In this framework, in which the
key elements of the real world are considered, the DT of EVs and charging points
behave and interact with each other as real entities. Then, the simulation result
can be used to evaluate schemes for the deployment and management of EVs and
charging infrastructures. In addition, the DT simulation platform can be used to
verify the design of deployment of charging infrastructure and related impact on
smart grid [57]. Advancements in this area can solve the problem of managing
and exploiting dependent traffic data. The huge traffic data available could help
constitute a DT that creates a virtual representation of the physical vehicles via
various communication means.

2.3.4 5G networks

The 5G network supports a wide range of applications in different industries. The
enhancement in 5G network communication impacts Industry 4.0. Such industries
are smart cities, military applications, health care systems, and transportation
using IoT. The 5G network makes rapid changes in wireless communications
and improves wireless network performance by increasing capacity, improving
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reliability, lowering latency, and increasing network speed [58]. The previous
cellular technologies depend on fixed infrastructure while coming to 5G networks
significantly enhanced the use of small cells and mobile cell sites to increase
network access in congested areas. The 5G network has various applications
and dynamically changes latency, bandwidth, and reliability requirements. These
requirements have a high impact on the deployment of the 5G network in EVs.

The 5G network is primarily used in EVs for communication between the EV
components. The rapid transformation and fusion between industry and commu-
nications systems have resulted in significant highway renovations, especially in
self-driving. This development affected many applications, such as the roll-out
of 5G networks, the Internet of Vehicles, and the adoption of Cellular Vehicle-to-
Everything (C-V2X) connectivity. As a result, when the 5G is connected, vehicles
exchange traffic data, highways, traffic signals information, roundabouts, etc.,
without human interference [59]. The 5G network-connected vehicles will gen-
erate a massive amount of data and have more autonomous functions. The 5G
network integrated with DT can address key variables such as capacity, reliability,
mobility, latency, and security. Recently, a prediction method for 5G-enabled IoV
in Real-time traffic using DT concept was introduced in [60]. Hu et al. worked in
IoV solutions and introduced a DT-assisted real-time traffic data prediction model
using 5G communication. As a result of this work, the proposed model proved to
optimize the scheduling of traffic resources and mitigate possible traffic jams at
peak times. The authors believe the proposed method can be more accurate than
others by analyzing the traffic flow and velocity data measured by IoV sensors and
transmitted over 5G communications.

Deng et al. [61] proposed a combined approach of DT, reinforcement learning,
and expert knowledge for the self-optimization of current 5G networks perfor-
mance, and they described potential application scenarios for 6G to solve the
problem of end-to-end delay and reduce the processing time at the local servers
in many emerging critical applications. However, Dong et al. [62] adopted a
DT framework of the current network. The proposed framework based on DL
algorithm achieved lower energy consumption with minimal computing complexity.
Jagannath et al. [63] proposed an innovative DT framework as an expandable ap-
proach for data-oriented modeling and real-time simulation of extensive systems on
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5G-supported IoT networks. The DT framework employs a tiered architecture for
decentralized deployment on cloud computing platforms. Additionally, it facilitates
the application of AI/ML engines for event identification and prediction models.
It can be concluded that the use of 5G in combination with the DT technology is
essential in real-time scenarios, like the IoV framework, in which the safety and
efficiency of the vehicle fleet traveling depend on the velocity and quality of the
exchanged data.

2.3.5 Artificial Intelligence for Autonomous Vehicles

The recent research in EVs focuses on AV, also known as self-driving or driverless
cars, i.e., vehicles driven without human intervention. Such vehicles are electric
since electric propulsion is more effortless to be autonomously governed. With
advanced technology, the vehicle will sense the surrounding environment, plan
the route, and drive safely, thanks to AI and ML technology [64]. The AV is
still under testing and has not yet become popular globally, but in the coming
years, the AV will occupy the global market and vehicle industry due to its great
benefits. Although AV has been an active research and development area in
the last decades, it still faces many challenges in developing an entirely safe
automated vehicle system. Road conditions, traffic conditions, weather conditions,
and communication expansion have helped the growth of AV systems.

Car navigation systems assist in controlling and making decisions based on the
prior knowledge (sensors or road map) that feeds into the system. Lopes et al. [65]
proposed an efficient approach for vehicle navigation systems based on the velocity
optimization paradigm. The maximum speed is adjusted to the curve of the road,
and the car follows a smooth path to the lane’s center. The approach is integrated
into car navigation architecture and evaluated in two separate simulators before
being tested in AV prototypes. The local route and road geometry are required
for autonomous driving. Therefore, Jo et al. [66] proposed a hybrid local route
generation method. According to the history of performance and map availability,
the algorithm can precisely choose the best route between the available options. The
proposed method is validated and verified in real traffic conditions in an urban area
in Korea. In fact, verification and validation are significant challenges in AV for
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safety assessment. The authors in [67] introduced a systematic review to investigate
the current verification and validation software used in AV. They discussed the
simulation environments and more specific approaches such as mutation testing,
fault injection, techniques for cyber-physical systems, adversarial examples, corner
cases, and formal methods.

Yang et al. [68] developed a framework that integrated the intelligent driving
model with human factors such as driving mode and their reactions and expectations
on the road to enhance autonomous driving performance. The proposed model
helps to reinforce the efficiency and safety of AV. Reinforcement Learning (RL)
is a widely used ML technique to train the agent on rewarding and punishment
approaches. This approach effectively works with the AV industry as the RL
algorithm learns from the driver’s actions to increase a certain reward or take a
decision. Masmoudi et al. [69] designed a framework for car-following based on
video frame processing using RL algorithms. The framework is based on navigation
decisions and automated object detection. The proposed model achieved promising
results and acceptable car-following behavior in AVs.

Employing RL in the AV industry is innovative and will lead to some benefits.
The more information the algorithm processes, the more efficient the algorithm
becomes, and the better the results can be obtained. Software providers that support
DT concept have begun integrating reinforcement learning into their tools. For ex-
ample, Flexsim software [70] recently introduced the RL model and the possibility
of connecting external systems with the Flexsim models. Such additions will make
the software a 3D design tool and a data analysis tool, enhancing the concept of
Rassolkin et al. [26] specify tasks required for a specialized unsupervised progno-
sis and control platform for energy system performance estimation for AV. They
develop several test platforms using DT and ML algorithms to optimize self-driving
EV’ electric propulsion drive systems and monitor sensors autonomously. In addi-
tion, Venkatesan et al. [71] propose a pre-estimation of the service requirement
of EV motors for AV using intelligent DT that employ Artificial Neural Networks
and fuzzy logic in MATLAB/Simulink for monitoring and prognosis of permanent
magnet synchronous motor distance.
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2.3.6 Discussion

The performed analysis highlights DT as a promising technology for ITS, and
the current literature does not exhaustively present the deployment of DT, in
combination with the other discussed technologies, in EVs or AVs. Although some
articles generally talk about DT technology and EVs, there is no comprehensive
coverage of all the technical aspects of applying this technology to electromobility.
There is a lack of coverage of the critical technologies in DT for electromobility,
especially for the next generation of self-driving systems. For instance, the use
of data analytics in this area is promising as data is the most crucial key in the
era of AI, which leads to optimizing performance and enhancing security. During
our research, there were insufficient reviews that considered the importance of
data generated by ITS and how the data could be utilized in DT to generate value-
added electromobility services. The aim is to cover this gap by giving a wider
spectrum of analysis. It can be concluded that having DTs of EVs and AVs, in
combination with other technological solutions like IoV, VSs, IoT, and 5G, can
facilitate technological advancements and give the ability to optimize both the
single vehicle technology and the traveling and charging operations of EV fleet.

2.4 Current Issues in EVs

EV development is considered a successful and promising solution to electrifying
the transportation sector, and the use of EVs can lead to several environmental
benefits, reducing gas emissions. However, EVs are integrated with all emerging
technologies, such as smart grids. This integration will result in several technical
and logistic issues affecting EV diffusion. Figure 2.6 shows the current and
significant issues affecting the electromobility sector regarding EV tracking and
monitoring, the BMS, connectivity, security, and privacy issues.
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Figure 2.6: Current Issues in Electric Vehicles.

2.4.1 Tracking and Monitoring

The use of EVs leads to important changes in mobility. Numerous advantages are
linked to using EVs, including zero emissions, improved fuel economy, and lower
running costs, making them perfect cars for everyday use. Security concerns, route
planning, and battery charging are all challenges that vehicle monitoring systems
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may help to address. When planning long trips, optimal tracks, battery life, state of
health, and charging time have to be planned and monitored.

An increasing number of charging stations are appearing. Since they are not
as widely spread and prominent as gas stations, regular route planning and daily
charging station check-ups are necessary. The issue of range anxiety is still critical
in EVs and needs to be considered in the upcoming research. Sarrafan et al. [72]
proposed a novel framework to solve this issue by introducing a real-time mixed
SoC estimation algorithm. The proposed system was implemented in an advanced
driver assistance system. The proposed modified method includes the recalibration
technique for estimating the battery state of health (SoH), the initial battery SoC,
and the adequate battery capacity, considering external parameters, the environmen-
tal factors such as the traveling factors, vehicle factors, traffic congestion factor, and
the driver’s behavior factor to make the model more accurate than the traditional
models available in the literature where the environmental conditions and driver’s
behavior have been not considered. Both laboratory and field tests have been con-
ducted using a Nissan Leaf. As a result, the SoC estimation of lithium-ion batteries
improved with great accuracy and high real-time capability. In [73], a discrete
scheduling process was formulated to track arbitrary power profiles and control
charging, limiting it to the maximum rated power. The coordinated charging of
PEVs is formalized considering the realistic case of PEVs with different charging
rates. In addition, a novel algorithm has been developed to ensure plug-in EV
charging and eliminate the need for a central aggregator. It guarantees tracking and
not exceeding the power profile the power utility imposes while maximizing the
user’s comfort. The algorithm’s effectiveness has been demonstrated in realistic
scenarios with a heterogeneous PEV population, but no performance comparison
with other methods has been provided.

Thus, the vehicle monitoring systems significantly affect the research and
development and improve the operations of industrialization of EVs. In addition,
Wang et al. [74] designed a remote monitoring system for EVs, a combination
of remote monitoring platforms and onboard terminals installed on the vehicle.
On the contrary, with respect to [73], the idea was to aggregate the data from the
onboard terminal, such as battery status, temperature, SoC, running status, etc., and
send them to the server cluster model for processing and monitoring. This model
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can improve communication reliability and enhance the real-time performance of
the system. The system structure of the EV remote monitoring system is based
on CAN and GPRS technology. It aims to provide a specific guiding significance
for the design of remote real-time monitoring systems for new energy vehicles.
It results in the necessity to monitor the parameters of EVs to avoid electrical
malfunctions because problems of this type are costly to solve. In this context,
adopting the DT concept can provide solutions to the discussed issues about EV
monitoring and tracking.

2.4.2 Battery Management Systems

Worldwide, serious challenges such as global warming and greenhouse emissions
due to the use of petrol and diesel in vehicles, as well as excessive levels of toxic
gas (CO2). EVs are now being promoted and widely regarded as eco-friendly
and substitutes for other vehicles based on combustion engines. Rechargeable
batteries are widely used as a power supply for EVs. There are many different types
of batteries, including lithium-ion, lead-acid, nickel-cadmium, and nickel-metal
hydride [75]. The lithium-ion battery is the most used battery, which provides a
high density of electric energy, is eco-sustainable and has a long life cycle. To keep
the EV battery’s state of health at a good quality level, we must take proper care of
the battery and adhere to appropriate charging operations (over-charging, current,
voltage, or discharging). These operations may cause problems and may damage
the battery and the EV.

Several studies have been done on applying IoT and cloud computing to solve
the BMS issues. Recently, Kim et al. [76] developed a cloud-based battery system
to monitor stationary batteries and help in fault diagnosis platforms for large-scale.
As the authors claimed, it is a new model, with no comparison in the previous
literature, made of a cloud-based battery condition monitoring and fault diagnosis
platform, incorporating IoT-enabled wireless battery module management systems
and the proposed cloud battery management platform to support onboard battery
health monitoring and to provide intelligent and cost-effective maintenance of the
large-scale BESSs. The hybrid filter (HF)-based condition monitoring algorithm
of cells and the proposed outlier detection-based fault diagnosis algorithm are
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implemented in the platform. Compared to the Kalman Filter-family and Sliding
Mode Observer, the HF leads to less computational cost and chattering issues,
respectively.

Tanizawa et al. [77] introduced a cloud framework for EVs to manage the
battery information related to the battery replacement system. This cloud-connected
battery management system will maximize the value of the shared batteries by using
a location data cloud to continuously connect to the batteries, manage the SoC, and
monitor changes in their characteristics. Friansa et al. [78] presented a solution
for battery monitoring in a microgrid system based on IoT, but differently from
[76], the authors present a smart microgrid integrating a battery pack, PV system,
Intelligent Electronic Device (IED) hybrid inverter, grid connection, and electricity
load where no fault diagnosis is considered. In this framework, the IoT is realized
through a communication channel with the IED, data acquisition algorithm, cloud
system, and Human Machine Interface (HMI). The data stored in the cloud system
database are processed and analyzed to produce information that users can access
through the desktop and mobile devices using ExtJS/HTML5 framework. The
analytical results show good performances for the average execution and connection
times within the architecture for overall BMS-IoT-based data acquisition to the
cloud server. Also, the availability of monitored data shows satisfactory results for
the BMS-IoT system data acquisition reliability.

The above studies have some drawbacks as the technical details were not
introduced in the cloud, and the battery diagnostic algorithms that can help improve
accuracy and data storage in the cloud are not exhaustively analyzed. Therefore,
Li et al. [79] tried to overcome these drawbacks by introducing a cloud BMS for
battery systems to improve the computational power and data storage capability of
cloud computing. The proposed cloud computing system provides computational
power and data storage capacity with greater speed and utility. In EVs, charging
operation is done by a graded control structure controlled by an aggregator, which
controls all EV charging rates. For example, Nour et al. [80] proposed a new
approach for smart charging in EVs. A fuzzy logic controller controls and manages
the EV charging process to maximize electric utility and EV owner benefits. In
particular, the controller regulates the EV charging power based on the electricity
price signal provided by the electric utility and EV battery SoC. The proposed
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technique was evaluated using simulation with MATLAB/SIMULINK, and the
impact of EV charging on the distribution network decreased compared with
uncontrolled charging. Many EV drivers still face a limited driving range. However,
in only a few years, the range of most EVs has considerably improved by increasing
the battery size and improving lithium-ion battery technology. Anyway, the current
EV range is still not convenient for users. The ranges of an EV and its higher
purchase cost are two main deterrents to the widespread use of EVs [81]. Therefore,
we need to work around this limitation of driving range in the future, and DT can
support further advancements in battery technology.

2.4.3 Connectivity

Connected cars will inevitably improve user experiences and the ability to manage
the network of interconnected vehicles. Two types of connectivity can be distin-
guished: Intra-vehicle connectivity and Inter-vehicle connectivity. The bandwidth
requirements in vehicles have increased dramatically because of recent innovations
and changes in automotive technology. However, modern vehicles have gradu-
ally developed in entertainment and networking with advanced capabilities [82].
Intra-vehicle or internal networks are designed to share data across the various sub-
systems, ECUs, sensors, and actuators so that a single vehicle can operate easily.
Although the sensors and the networks are exclusive to original vehicle companies,
these technologies typically meet standards that permit vehicle diagnostics and
future applications to communicate with the vehicle using external technologies or
devices.

Inter-vehicle connectivity is a networking approach that allows data to be
transferred from the vehicle to other vehicles, remote computers, and other cloud
infrastructures. Remote applications can combine the vehicle’s data with external
sources (such as traffic or weather data) [83]. Gupta and Sandhu [84] developed
an authorization framework describing data exchange scenarios on the Internet
of Vehicles (IoV). The development of IoV has produced a considerable amount
of real-time traffic data. These traffic data are used to generate a kind of DT that
connects the physical vehicles and their virtual representation via 5G. Moreover,



2.4 Current Issues in EVs 38

Khan et al. [85] presented an effective communication framework to mitigate
cyber-attacks on Connected and Autonomous Vehicles (CAVs).

In this context, data will be collected from different networks and heterogeneous
resources, including charge management software, weather sites, live EV modeling,
battery modeling, telemetric devices, and route maps like Google Maps. Data
integration in such platforms is complex and needs to support data interoperability
in connected vehicles to communicate effectively and efficiently. Paper [86]
deals with AV collaboration as a service and proposes a DT-based scheme to
facilitate collaborative and distributed autonomous driving. Specifically, a DT is
designed for each AV, and a DT-enabled architecture is developed to help AVs
make collaborative driving decisions in the virtual networks. This architecture
uses an auction game-based cooperative driving mechanism to decide each group’s
head DT and tail DT. After that, by considering each group’s computation cost
and transmission cost, a coalition game-based distributed driving mechanism is
developed to decide the optimal group distribution for minimizing the driving cost
of each DT.

2.4.4 Security and privacy

The security issues seriously influence the CAV sector due to the comprehensive
connectivity over the Internet and cloud. The essential threat in CAV derives from
exchanging information with other vehicles and servers. CAV can share the ID
details, battery information, or vehicle location. This data exchange between CAVs
and the server might be subject to cyber-attacks such as (DoS, spoofing, privacy
attacks, modification, etc). Several studies in the literature surveyed the issue
of security and privacy in electromobility. Many approaches and technologies
have been innovated to increase the protection level of EVs. Guo et al. [87]
proposed an anomaly detection system to enhance the cyber security of the steering
stability control system in the CAV. The proposed approach can identify the threats
to control inputs and sensors by combining two approaches, physics-based and
learning-based approaches. The results have shown an improvement in the cyber-
physical security of EVs. Babu et al. [88] introduced a robust authentication
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protocol for charging electric cars while driving. Secure and lightweight primitives
like elliptic curves and hash functions are used in the proposed protocol.

The protocol’s security is being investigated to show it can handle different
attacks. Kavousi-Fard et al. [89] developed a cyber-resistive model for detecting
vehicle cyber-attacks. A hybrid smart structure built of wavelet decomposition
technology and a modified support vector machine detects any malicious behavior
in the controller area network bus. The proposed approach performs excellently in
detecting cyber-attack communications while also detecting regular data. Thus, it
is essential to find a way to validate the data exchange and transformation between
the vehicles and infrastructures before the system implementation. DT will give the
ability to validate the security and privacy over the IoV by simulating the network
scheme and using AI and ML technologies; it will allow predicting threats that
can harm the vehicular network [90]. Safety and security functions are of basic
importance in AV. Paper [91] aims to identify a standard vehicular DT framework
that facilitates the data collection, processing, and analytics phases. DT is explored
to automate the decision-making process inside an AV using radar sensor data
collected from initial, analytics, and reporting phases and generate reports to be
sent to AVs. The recommended model aims to identify, analyze, and assess the
threats and allow the user to take appropriate countermeasures to ensure safety and
security using DTs in driverless vehicles. Some of the advantages presented using
the car follower model include the benefit of reducing the risk of cyber-attacks and
accidents.

2.4.5 Data Analytics

Big Data Analytics influences ITSs by enabling EV internet connections to optimize
their performance. The plug-in EVs should be connected and able to revolutionize
energy use, creation, and redirection. Smart grids and EVs generate equal amounts
of significant Big Data among the connected devices. As consumers and big data
producers, EVs produce data from various sources, such as sensors, logs, etc. By
utilizing big data technologies, the data can be used to develop smart charging
algorithms, solve energy efficiency issues, develop policies and strategies for the
location of electric charging stations, and turn smart cities into green cities [92].
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Technology integration transforms the transport and the automotive industry by
tracking, analyzing, and evaluating the demographics of EVs. The demographic
data of the EV include statistics on charging stations, battery features, analysis
of energy usage, and route profiles. In this framework, the goal is to overcome
obstacles such as battery capacity, battery prices, charge time, and the availability
of charging stations to take full advantage of EV’s potential. Using data science
and AI technology could improve operations and overcome the main obstacles
[93]. Nowadays, every industry is affected by the role of data. We are facing
an increase in the volume of data produced, particularly in transportation. The
transportation industry promised to develop better information systems to optimize
energy consumption in highly complex environments through the electrification of
vehicles. Car manufacturers, governments, and charging infrastructure providers
utilize data analysis and data science tools to use and analyze the available data to
provide services for optimizing EV use.

Big data analytics is often used to assess the driving range and effectively
reduce user anxiety. In [94], the authors propose an approach for classifying the
range estimate. The data is classified into standard, historical, and real-time data. In
addition to the range estimation, data produced from EVs can be used to determine
the position of public charging stations. Different types of information, including
traffic density, gas station distribution, and vehicle ownership, are used in this
respect. In [95], the authors proposed a solution to site public EV charging stations
using a large-scale trajectory dataset. They examined the model based on data from
11,880 taxis in Beijing. Security is one of the most important features that data
analysis offers for ITS. In this direction, various ML and DL technologies have been
developed to secure transportation systems and improve prediction accuracy. Lv et
al. [39] developed a DT framework based on the DL algorithm, combined using
the Convolutional Neural Network and Support Vector Regression. The proposed
model can reduce the system data transmission delay, improve prediction accuracy,
and reasonably modify pathways to reduce traffic congestion. By combining the
power of predictive analytics and data intelligence, the predictive maintenance
analysis of batteries can be improved. The integration of these technologies aims
to achieve high battery efficiency and reliability. Sreedhar et al. [96] introduced a
simulation design of common BMSs. The proposed system is designed to handle
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and control battery parameter values such as battery voltage, consumption of power,
current, and SoC.

Data analytics improved EV efficiency rapidly, and DT technology provides
smart modeling capabilities in this field. Tang et al. [97] proposed a novel model
utilizing an ML algorithm to increase computational efficiency and precision. In
smart EVs, it is also important to focus on other essential aspects, such as the safety
of drivers and passengers. A safety-based intelligent approach in EV, presented
in [98], uses a fuzzy adaptive control method for vehicle following, decreasing
accident rates. Another safety application proposed by Guo et al. [99] is direct yaw
control, which enables EV to keep the vehicle within the allowed path and increase
the stability of the steering system. Behrendt [90] developed a hybrid architecture
using the DT technology to perform analytics operations and increase real-time
driver safety. The information that comes from the physical smart vehicle through
sensors is analyzed to detect privacy anomalies in the transportation ecosystem and
minimize other privacy risks. As a result, Data science, AI, and big data tools are
emerging use cases in this context. They can significantly impact the current EV
market to improve the end-product performance.

2.4.6 Intrusion Detection Systems

Network security has developed as a critical research subject due to the advanced
development of internet and communication technologies over the previous decade.
It uses firewalls, antivirus software, and IDS to keep the network and its assets safe
in cyberspace. Therefore, researchers have conducted many studies in network
security, with various approaches and technologies employed by researchers to
develop algorithms for detecting unusual activities on different network platforms
[100].

To meet network security needs in electromobility, various IDS have been
developed. IDS is a security framework that continuously monitors network traffic
to detect any abnormal behavior that may violate the network policy and threaten its
confidentiality, integrity, or availability. The vehicular IDS architecture proposed
by Loukas et al. [101] ensures onboard IDS, collaborative detection, and offloaded
intrusion detection: onboard IDS where the vehicle identifies illegal behavior
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on networks on its own; collaborative detection is where vehicles collaborate to
determine whether they are under attack or not; offloaded intrusion detection is
where the detection process is done in the cloud. In this context, Zeng et al. [102]
developed an end-to-end intrusion detection using a DL algorithm to detect malware
intrusions for onboard units. Different from previous intrusion detection methods,
the proposed method only requires raw traffic instead of private information features
extracted by humans. The performance is compared to prior methods on a public
dataset and a simulated real-life VANET dataset. The experimentations show that
the model can achieve higher performance with a minimum resource requirement.

Shams et al. [103] introduced a trust-aware Based IDS; they used the combina-
tion of modified promiscuous mode and support vector machine to ensure the safety
of vehicles and detect malicious behavior in any network node. Liang et al. [104]
proposed an intelligent IDS model based on hidden Markov methodology to filter
out malicious messages and reduce detection time without affecting the detection
rate. The authors claim it is the first work in the literature to model the state pattern
of each vehicle in VANETs as a Hidden Markov Model (HMM) to quickly filter the
messages from the vehicles instead of detecting these messages. It consists of three
modules: schedule, filter, and update. In the schedule module, the Baum–Welch
algorithm is used to produce an HMM and its parameters for each neighbor vehicle.
In the filter module, multiple HMMs are used with their parameters to forecast
the future states of neighbor vehicles with which the messages from them are
filtered. In the update module, a timeliness method is used to update HMMs and
their parameters. The experiments show that the IDS with FM-HMM has a better
performance in terms of detection rate, detection time, and overhead. Sedjelmaci
et al. [105] designed an efficient, lightweight IDS simulator for the vehicular
network. The model can protect VANETs against denial-of-service attacks, false
alert generation, and integrity target attacks. They used the NS-3 simulator (a
discrete event network simulator for Internet systems) to present the detection
mechanism’s performance analysis. The simulation framework shows high-level
security and an accurate detection rate.
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2.4.7 Discussion

In this section, the main challenges for electromobility were discussed, and how
DT technology is used and can be used in future applications to address them. The
complexity of integrating ITS with emerging technologies and communication
tools using the DT concept emerges. In this part, several technical and logistic
issues under different topics were presented that could represent a risk for the future
of smart and green mobility. Researchers have done several works so far to find
effective solutions, especially for monitoring and tracking the vehicles, replicating
the battery and vehicle technology to improve energy consumption, charging time,
driving ranges, etc.

In some cases, DTs of batteries and vehicles have helped to perform simulations
and validate experiments, achieving better performances and pushing technological
advancements. Future works must further develop technologies and tools able to
answer the needs of connected and smart EV fleets in which a large amount of data
needs to be safely exchanged, collected, and elaborated in real time, respecting
security and privacy issues. In the next section, taking into account the previous
challenges and issues, the benefits and significant challenges in EV networks,
and how DT could provide solutions that help integrate modern technologies and
provide the best services at lower costs will be discussed.

2.5 DT Solutions and Future Directions

DT concept involves feeding data from the real world back into the virtual envi-
ronment to improve model accuracy. This approach reduces the gap between the
real and virtual worlds, allowing real-world simulation. As a result of this survey,
the important challenges in EV networks were presented, as well as how DT can
provide solutions.
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2.5.1 Cost-Effective and Reliability

The implementation of EV networks is one of the most relevant challenges due to
the shortage of infrastructure and safety measurements. Providing infrastructure
services to implement EV networks is very cost-effective. The maintenance of EV
services is also cost-effective. The DT model of the EV can be evaluated before de-
ployment, thus lowering maintenance costs and making DT a cost-effective option.
The present state of the EV system doesn’t have reliability in data transmission.
Reliability is the main challenge in EV transportation systems to operate EVs
safely under various conditions. In the future, EV transportation systems should
maintain data reliability and scalability.

2.5.2 Visualization and Charging Time

The data visualization gives complete scope for EV consumers to plan long-distance
transportation. However, the EV system has visualization limitations that lead to
the problem of testing EV functions and efficiency. DT integrates 3D graphics
and audio with real-world objects to solve this issue using IoT and AI. Using such
technologies, the operator can monitor and control the EVs and allow them to
communicate and interact with DT model to improve efficiency during and after
the design process. Whether the charging system is standard, fast, or quick, the
charging time is still quite long. This is one of the main reasons holding back the
growth of the EV industry. There is also the need to research wireless charging.
The DT simulation can improve the charging time by analyzing the data from the
virtual model, and the result can be used to evaluate charging infrastructures and
charging efficiency.

2.5.3 Intrusion Detection Systems for EV and AV

Data attacks are significantly mitigated with DT technology, which provides greater
security for the mechanism against attacks and protects the privacy of EV users.
The DT enables the development of high-accuracy models for real-time systems
using massive quantities of operational data with expert observation. DT archi-
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tecture could be built to effectively detect intrusions or anomalies that behave
abnormally inside the vehicular (EV and AV) network. Available studies have
explored this technology for industrial applications using data analytics and ML
technologies such as One-Class Support Vector Machine, Local Outlier Factor,
and deep unsupervised learning. For example, in [106], Fraser et al. proposed DT
architectural enhancements to improve the security of Unmanned Aerial Systems.
Gao et al. [107] introduced an anomaly detection system to monitor abnormal
behaviors in DT-based Cyber-Physical Systems.

Gehrmann et al. [108] investigated how the DT model and security architecture
can share data and control security-critical processes. They introduced a new secu-
rity framework that provides the foundation for future research work in automation
and control systems. Xu et al. [109] presented a two-phase digital-twin-assisted
fault approach based on deep transfer learning, detecting faults during development
and maintenance in a vehicle body-side production line. Snijders et al. [110] used
the Convolutional Neural Network model to improve the predictive power of DT
for Cyber-Physical Energy Systems. The behavior of ten batteries was predicted
using real-world data. They conclude that ML for DT can aid in maintaining a
heterogeneous energy ecosystem. Castellani et al. [111] presented cluster cen-
ters, a clustering-based method, and Siamese Auto-encoders, which is a neural
architecture designed for weakly supervised environments with few labeled data
samples. The methods utilize a DT model to create a training dataset that repli-
cates the machinery’s usual operation. The above research employed DT to detect
intrusions and abnormal behaviors in Unmanned Aerial Systems, manufacturing,
and energy systems utilizing ML and DL. In conclusion, the same technologies
could be applied to EVs and AVs to obtain benefits.

2.5.4 Case studies

The paper [112] establishes and compares a traffic infrastructure efficiency assess-
ment Data Envelopment Analysis model based on DT and a traffic flow prediction
model based on Long Short-term Memory. The traffic flow data of a certain road
section in Zhenjiang City has been simulated and predicted. Taking the transporta-
tion infrastructure of 12 cities in J province as the research object, the two models
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are verified to make the intelligent transportation facilities have a greater potential.
The results show that the established DEA model based on DT can estimate the ef-
ficiency of transportation infrastructure more reasonably and accurately. Compared
with other models, the traffic flow prediction model based on Long Short-term
Memory is more accurate in traffic flow prediction, which can provide a reference
for intelligent transportation system infrastructure investment planning.

A case study about safety and security functions in AVs is tested in [86] to
demonstrate the effectiveness of the proposed approach: a vehicle follower model
is analyzed when radar sensor measurements are manipulated to cause a collision.
Almeaibed et al. [91] proposed a standard framework for DT that facilitates data
collection from Vehicular network, processing, and analytics. A vehicle follower
case study was presented to prove the model’s efficiency. The vehicular model
was analyzed during the manipulation of measurements of the radar sensors in an
attempt to make a collision. This research can light the way for future research
using the DT concept in the EV and AV industry. Another case study proposed
by [84] introduced a real-time case study on smart cities to improve the defense
mechanism for connected AV attacks. To reduce security and privacy attacks such
as DOS, hijacking, man-in-the-middle, GPS spoofing, privacy attacks, and replay
attacks, they proposed a blockchain-based architecture providing a secure and
decentralized connected AV.

2.6 Chapter Summary

Table 2.1 shows interesting works in DT from different perspectives and applica-
tions. The table classifies the existing contributions in this field based on the use of
DT in combination with other technologies and services.
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Table 2.1: Classification based on the technologies and services applied for DT.

Services BMS and User experience Tracking Privacy and Reviews
Technology charging Monitoring Security

and control
5G& Networks [52] [31], [32] [33], [25] ,[35] [59],[60],[75] [5,6,7,9, 14] AI, ML, and Big

[76] Data in DTning
[8] DT for cyber physical system

AI & ML [19],[35],[65], [20], [16],[17] , [15, [37][64],[69] [61],[66],[74] [22] Survey on Digital Twin Networks
[67],[68] [79] [10 ,24] Enabling technologies, challenges and

open research in manufacturing using IIoT
IoT and cloud [20], [29], [30],[45],[48], [18],[21],[55] [12], [13],[23] [11],[56] [39] A Systematic Literature Review

[49],[50],[51]
VS and IoV [26], [27],[44] [2],[28] [46],[70] [58],[77] [79], [53] A review of electric

vehicle life-cycle emissions
AV - [40] [37],[38],[41],[3], [57][71],[78],[80] [72] review of current ML approaches

[43] for anomaly detection

This literature review is based on the classification of the main issues and
challenges of electric and autonomous mobility, exploiting the DT technology
and tools in combination with modern technologies related to the automation,
telecommunications, and Information and communication technology (ICT), as
shown in table 2.2. The proposed review can be a reference for researchers and
practitioners who want to have an overview of the (current and future) use of DT
for supporting the technological growth of EVs and AVs.

Table 2.2: DT reviews comparison based on the analyzed technologies.

Big Data IoT Digital Security 5G Mobility AV
& ML Digital Manufacturing

Q.L et al. [5] - Yes Yes - - - -
Grieves [6] - Yes Yes - - - -
Weyer et al. [8] Yes Yes Yes - - Yes - -
Rathore et al. [13] Yes Yes Yes Yes - Yes -
Bhatti et al. [19] Yes Yes Yes - - Yes -
Kharachenko et al. [14] Yes - Yes Yes - Yes -
Tao et al. [16] Yes - Yes - - Yes -
Fuller et al. [27] Yes Yes Yes - Yes Yes -
Rajabli et al.[42] Yes Yes - Yes - Yes Yes
Wu et al.[47] Yes Yes - - Yes Yes -
Vidhi et al. [57] - - Yes - - Yes -
Ali et al. [76] Yes Yes - Yes Yes - -
Our Survey Yes Yes Yes Yes Yes Yes Yes
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This chapter aims to provide a complete survey of the existing literature in the
last five years on adopting DT technology in ITS. The awareness of DT has recently
been growing exponentially due to the number of applications that demonstrate
their capabilities for connecting the physical and digital worlds. EVs are physical
objects for which DT can overcome some important limitations and enhance their
functionalities. There is a lack of coverage of the analysis of critical technologies
in DT for electromobility, especially for the next generation of self-driving systems.
We found insufficient reviews that consider the importance of data generated by
ITS and how the data could be utilized in DT to allow value-added services to be
created.

The chapter addresses the complexity of integrating ITS with emerging tech-
nologies and communication tools using the DT concept to accelerate the tech-
nological advancement goals and achievements of EVs and AVs. It highlighted
the potential of DT technology based on several aspects, such as tracking and
monitoring, security and privacy, data analytics, and intrusion detection, that could
enhance efficient electric and AV network management.

Finally, several significant issues and major challenges that continue to in-
fluence this field of research were discussed, as well as solutions that DT can
offer.



Chapter 3

Communication Security for
Intelligent Transportation Systems

3.1 Security and Intelligent Transportation Systems

3.1.1 Introduction

ITS represents a technological leap forward in optimizing the utilization of trans-
portation infrastructure. By harnessing real-time data, predictive analytics, and
smart communication, these systems aim to alleviate traffic congestion, enhance
mobility, and reduce environmental impact. From smart traffic management to the
advent of autonomous vehicles, ITS is reshaping the way people and goods move,
promising a future of safer, more efficient, and sustainable transportation.

The fusion of Security and ITS has emerged as a critical factor in the advance-
ment and sustainability of modern transportation ecosystems during this age of
accelerated technological advancement and urbanization [113]. Beyond physical
barriers and surveillance, the realm of transportation security has evolved to include
measures that ensure the resilience of digitally interconnected infrastructures and
protect against cyber-attacks [114]. ITS optimizes transportation systems in terms
of environmental sustainability, safety, and efficiency through the utilization of
cutting-edge technologies.
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The essence of security within transportation systems encompasses a broad
spectrum, ranging from protecting critical physical infrastructure such as bridges
and tunnels to securing data transmitted across interconnected networks [15]. With
the digitization of transportation, there is a growing need for robust cybersecurity
measures to thwart potential threats and vulnerabilities [115]. The integration of
sensors, communication networks, and AI in transportation networks brings about
a paradigm shift, introducing new dimensions of complexity to security challenges.

As ITS grows in sophistication, the implementation of strong security practices
becomes critical. It is essential to maintain a balance between technological
progress and strict safety requirements in order to protect the integrity, reliability,
and public trust in these technologies. This introduction establishes the context for
an examination of the complex association between security and ITS, encompassing
innovative resolutions, challenges, and prospective directions that will shape the
intelligent and secure transportation systems of the future. The technological
requirements, policy, and methodologies that are necessary to realize this objective
will be elucidated in subsequent discussions.

3.1.2 Intrusion Detection Systems

Intrusion Detection Systems (IDS) constitute pivotal components in the realm of
cybersecurity, designed as software or tools with the explicit purpose of identifying
and flagging malicious activities and unauthorized transactions within a network.
These systems serve as vigilant guardians, constantly monitoring system activities,
scrutinizing file integrity, and conducting pattern analyses to pinpoint potential
threats. The overarching goal of an IDS is to fortify computer systems against
various forms of cyber threats [116].

The functionality of an IDS is multifaceted, involving the continuous scanning
of systems for vulnerabilities that might serve as entry points for malicious attacks.
This proactive approach ensures a heightened state of readiness against potential
security breaches. An IDS achieves its objectives by collecting data from diverse
sources within networks and systems, subsequently cross-referencing this informa-
tion with pre-established discriminatory patterns. The outcome of this comparison
determines the existence of potential threats or vulnerabilities [117].
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Classified based on their detection locations, IDS can be broadly categorized
into two main types: Host-based IDS (HIDS) and Network-based IDS (NIDS).
HIDS is tailored to detect suspicious user activities on the local host machine,
while NIDS focuses on detecting potential attacks primarily through the analysis
of network traffic. Both HIDS and NIDS leverage log files and databases to cross-
verify and validate results, creating a comprehensive security net for the entire
system [118].

The approach taken by an IDS in identifying threats can further be classified into
two main categories: signature-based detection and anomaly-based detection. The
former, also known as misuse-based detection, involves the continuous collection of
malware signatures, which are then used to create a comprehensive database. When
the system identifies a network traffic flow or activity that matches a signature in the
malware database, it is flagged as abnormal, signaling a potential security breach.
Conversely, anomaly-based detection relies on a comparison with a predefined
baseline, involving an analysis of network packet patterns to identify deviations
from the norm [119].

Figure 3.1: Classification of an intrusion detection system.

Figure 3.1 illustrates the classification of IDS based on their data collection
methods and detection techniques. This intricate categorization underscores the
diverse strategies employed by IDS to fortify cybersecurity, emphasizing the
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importance of a multi-faceted approach to threat detection and prevention in
modern computing environments.

3.1.3 Network Attacks

A network attack is defined as unauthorized actions targeted at network devices
or exploiting vulnerabilities within the network infrastructure. These malicious
endeavors are aimed at circumventing system protections with the intent to alter,
compromise, destroy, or steal confidential data. The evolution of network attacks
has witnessed a transformation in how they are classified and understood.

In the nascent stages of cybersecurity discourse, network attacks were often
dichotomized into two broad categories: external and internal [120]. External
attacks typically originate from sources outside the secure network perimeter,
attempting to breach defenses from the external environment. Conversely, internal
attacks emanated from within the network itself, posing a threat to the integrity
and confidentiality of sensitive information from within the organization.

However, as the complexity and sophistication of network attacks have grown,
the need for a more nuanced classification system has become evident. Notably,
researchers and cybersecurity experts [121] have responded to this challenge by
delineating network attacks into a more comprehensive taxonomy. This catego-
rization, as depicted in Table I, identifies seven distinct categories based on the
strategies employed in executing these attacks.

The expanded classification not only acknowledges the external and internal
dimensions but also delves deeper into the specific methodologies and tactics
employed by attackers. These categories include but are not limited to:

Denial of Service (DoS) Attacks: Overwhelming a network or system with
excessive traffic to render it unavailable to legitimate users.

Malware Attacks: Introducing malicious software, such as viruses, worms, or
trojans, to compromise the functionality or integrity of a network.

Phishing Attacks: Deceptive attempts to trick individuals into revealing sensi-
tive information, often through disguised communication.
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Man-in-the-Middle (MitM) Attacks: Intercepting and potentially altering
communication between two parties without their knowledge.

SQL Injection Attacks: Exploiting vulnerabilities in a database by injecting
malicious SQL code to gain unauthorized access or manipulate data.

Cross-Site Scripting (XSS) Attacks: Injecting malicious scripts into websites
viewed by other users, compromising their browsing experience.

Password Attacks: Employing various techniques to gain unauthorized access
to a network or system by exploiting weak or compromised passwords.

This refined classification not only enriches our understanding of network
attacks but also aids in developing targeted and effective cybersecurity strategies to
mitigate the evolving threats in today’s interconnected digital landscape.

3.1.4 Machine Learning Techniques

An extensive survey was conducted in this section focusing on ML techniques
commonly employed in IDS applications. We intend to build a robust IDS that
can effectively address the unique challenges posed by the dynamic and real-time
nature of VANET environments.

The survey delves into the landscape of ML algorithms utilized in IDS, aiming
to identify techniques that are particularly well-suited for VANETs. By understand-
ing the strengths and applications of various ML methods used in IDS, we aim to
select algorithms that align with the specific requirements of VANETs.

ML contributes to systems acquiring and enhancing automated capabilities
without direct manual intervention or explicit programming. In the context of
Intrusion Detection Systems (IDS), a range of ML methods is employed. Diverse
ML algorithms have been incorporated into the development of IDS, as depicted in
Figure 3.2. A comprehensive review conducted by the authors in [100] elucidated
the distinctions between unsupervised and supervised learning methodologies
applied in the context of IDS.

Among the several ML methods applied in IDS, prominent ones include Sup-
port Vector Machines (SVM), K-means clustering, Logistic Regression, the Naive
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Bayes method, Artificial Neural Networks (ANN), and Principal Component Analy-
sis (PCA). These methods collectively contribute to the efficiency and effectiveness
of IDS by enabling automated recognition and response to potential intrusion
events, showcasing the versatility of ML in enhancing cybersecurity measures.

Figure 3.2: Machine learning techniques used in IDS.

These methods effectively and adeptly identify irregularities and intrusions
within the network. The subsequent sections provide a detailed description of
several ML methods employed to recognize and address such threats.

Support Vector Machines
SVM algorithm is a supervised ML method commonly applied to both regression
and classification tasks. Its core concept involves constructing an optimal hyper-
plane capable of effectively classifying two distinct classes. A recent study by
authors in [122] introduced an IDs model using the Particle Swarm Optimization
(PSO) algorithm. This model integrates an information gain feature selection



3.1 Security and Intelligent Transportation Systems 55

method with an SVM classifier. The research demonstrates that the amalgama-
tion of feature selection and parameter optimization for SVM results in reduced
training time and enhanced classifier performance. Moreover, the proposed FS
PSO-SVM model exhibits a high detection rate and minimal false-positive in-
stances. The efficiency of this model was evaluated using the NSL-KDD Dataset,
which encompasses four diverse network attack types: DoS, R2L, U2R, and Prob.

K-means algorithm
K-means algorithm, a distance-based unsupervised technique, stands out as one of
the most prevalent clustering methods. Its fundamental objective is to minimize the
distance between points within a cluster and their respective centroid. Clustering is
achieved by assessing the distances between objects for classification, consolidating
observations into homogeneous groups [123]. In the context of time series data, the
K-means algorithm is frequently employed to uncover patterns for matching and
clustering connections within datasets. The algorithm employs k items as cluster
centers, calculates the distance between each center and an item, and assigns the
item to the nearest center. Subsequent updates and repetitions refine the clusters,
a process particularly relevant in the context of stream mining for large datasets.
Despite its efficiency, the K-means algorithm faces challenges such as anomaly
detection, outlier detection, and fraud detection [124].

While the K-means algorithm is fast and efficient, its application in unsuper-
vised methods is not as widespread. Addressing this, researchers in [19] proposed
a model enhancing the K-means approach by utilizing the Calinski-Harabasz
indicator to determine the optimal number of clusters for effective clustering.
The proposed model underwent evaluation on two datasets: NSL-KDD and CI-
CIDS2017.

In contrast to the supervised SVM classifier, experimental findings reveal that
the model proposed in [125] exhibited remarkable efficiency in both detection
capabilities and time consumption. Another innovative approach presented in
[126] involved the integration of two clustering and optimization methods, namely
the K-means algorithm and Simulated Annealing, to achieve optimal classification.
Although evaluated on the NSL-KDD dataset, the proposed method demonstrated
satisfactory accuracy, showcasing improvements in IDS efficiency and misdetection
rates. These studies underscore the evolving landscape of clustering algorithms,
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emphasizing their potential to enhance the accuracy and efficiency of intrusion
detection systems.

Logistic Regression
Logistic Regression, a supervised ML approach, is adept at identifying discrete
class sets. Employing sigmoid functions in its algorithms, logistic regression
transforms various predictions into probabilities [127].

In IDS development, a strategy known as Sparse Regularized Optimization
(SPLR) is proposed for feature selection and intrusion classification [128]. SPLR
involves selecting a subset of features from the original set and utilizing them to
model data for classification. Unlike traditional feature selection methods that
treat feature selection and classification as separate entities, SPLR integrates both
into a unified framework. In a linear SPLR model, characteristics from a dataset
repository are used to construct a linear classifier, with subsequent discovery of
classifier coefficients.

Binary classification methods like Logistic Regression find applications either
independently or in conjunction with various data mining techniques to discern
abnormal traffic from normal patterns within a network. An exemplary study
by authors in [129] showcases the development of a two-stage anomaly-based
Network Intrusion Detection System (N-IDS) using the UNSW-NB15 dataset. The
research utilizes techniques such as Recursive Feature Elimination and Random
Forests for optimal feature selection in ML. The Logistic Regression method, in
combination with other data mining techniques, is then employed to effectively
distinguish intrusive from normal network traffic, exemplifying the versatility of
logistic regression in enhancing intrusion detection capabilities.

Naïve Bayes
Naïve Bayes algorithm, grounded in the Bayes theorem, deals with probability up-
dating based on provided evidence. This algorithm operates under the assumption
of attribute independence, where the probability of one entity does not influence
the probability of another [130]. It calculates the total output cases and then deter-
mines the conditional probability for each data class. It is characterized by a short
implementation time, compatibility with both continuous and discrete attributes,
and rapid learning capabilities.
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Recent studies, such as the one presented in [131], have proposed innovative
paradigms for IDS built upon the Naïve Bayes algorithm. Specifically designed to
enhance the security of IoT infrastructures, the model aims to combat prevalent
attacks, including DDoS attacks. DDoS attacks are particularly widespread in IoT
networks due to the diverse and vulnerable resources available to attackers. The
authors introduced an IDS called NB-MAIDS, comprising multiple agents, where
the MA (Multi-Agent) agent is strategically deployed over the network for Naïve
Bayes classifier implementation. The IoT system is equipped with sensors that
gather data on network nodes exhibiting abnormal behavior. The proposed multi-
agent Naïve Bayes classifier methodology demonstrates its efficacy in promptly
thwarting attacks with a lower execution cost. The NSL-KDD dataset serves as the
evaluation benchmark for assessing the performance of the suggested classifier.

Artificial Neural Networks
ANNs draw inspiration from the intricate connectivity of the human brain, where
numerous neurons form parallel pathways, engaging in complex interactions.
Nodes within ANNs are interconnected through multiple links, creating a net-
work that possesses the ability to learn and adapt. In a study outlined by authors
in [132], Convolutional Neural Network (CNN), a specific type of neural network
model, is utilized. The authors emphasize the advantages of employing CNNs for
intrusion detection, highlighting their ability to incorporate traffic characteristics
in raw data. The CNN model demonstrates enhanced accuracy and a reduced
false alarm rate, addressing challenges associated with unbalanced datasets. The
study also introduces a method for transforming raw traffic data into image format,
mitigating computational costs.

In a separate research endeavor [133], a model for detecting network attacks
is proposed, leveraging Neural Networks and DL. Evaluated on the CICIDS2017
dataset, this neural network algorithm proves highly accurate in identifying various
types of network attacks. Additionally, an innovative technique for NIDS is
presented in [134], utilizing a genetic algorithm (GA) to identify an improved
feature subset referred to as Fuzzy C-Means (FCM). This approach significantly
enhances overall detection performance, as demonstrated through evaluations
on the NSL-KDD dataset. These advancements underscore the versatility and
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effectiveness of Artificial Neural Networks in bolstering the accuracy and efficiency
of intrusion detection systems across diverse datasets and scenarios.

Principal Component Analysis
PCA stands as a statistical technique employed for dimensionality reduction in
datasets characterized by numerous variables with interrelationships. An intriguing
feature of PCA is its applicability to unlabeled data in training sets, making it a
valuable unsupervised learning approach for dimensionality reduction.

A pioneering anomaly detection technique, Robust PCA (RPCA), was intro-
duced in [135]. This technique is showcased through its application to network
packet capture data, revealing its impact on various network attack detection sys-
tems. The proposed RPCA technique is rigorously tested on the DARPA dataset,
encompassing diverse attack scenarios such as DDoS, assaults, IP sweeps, probing,
and breaking. Impressively, the model achieved the lowest false positives while
maintaining a high positive rate. Furthermore, the RPCA approach demonstrated its
capacity to identify network threats, even in the case of an assault that had not been
previously encountered or trained, emphasizing its robustness and effectiveness in
anomaly detection.

3.1.5 Current Datasets for Intrusion Detection Systems

In instances where an abundance of datasets is available online, models undergo
training and testing using these datasets. While training datasets serve as a crucial
method to validate proposed approaches, the challenge lies in evaluating these
techniques and understanding their impacts across diverse datasets [136].

In the context of our research objectives, we conducted a comprehensive survey
to assess the current datasets available for IDS. This exploration is motivated by
our intention to develop an IDS tailored for VANETs. The unique characteristics
of VANETs, including their dynamic nature and real-time data requirements,
necessitate the careful selection of datasets that align with these specific parameters.

Our goal is to choose datasets that are suitable for VANETs and capable of
providing real-time data to evaluate our forthcoming IDS model effectively.
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The landscape of network threats has evolved, necessitating a continuous update
of datasets used for IDS testing. Although datasets typically consist of both normal
and abnormal network traffic, enabling the model to classify data based on labeled
examples, they may not perform optimally when faced with new attacks, such
as zero-day exploits. Various techniques have proven effective for IDS; however,
each method employs distinct training and testing methodologies on datasets like
NSL KDD, KDD CUP 99 [137], or DARPA [138]. Evaluation and comparison
of the produced models hinge on criteria such as dataset variability, feature, and
parameter optimization [139].

Selecting an appropriate performance metric is critical in IDS techniques.
While accuracy and the confusion matrix are commonly used metrics, precision and
recall derived from the confusion matrix, offer insights into algorithm efficiency and
classification quality [140]. Despite their ability to measure algorithm efficiency,
these metrics may not provide sufficient granularity in estimating IDS algorithms’
performance, especially considering variations in accuracy across different types
of attacks and the persistence of false-positive and false-negative issues.

This section outlines the existing datasets that show an apparent absence of real-
world threats, attack representation, and outdated threats, limiting the efficiency
of ML IDS techniques. However, limited attention has been given to the datasets
employed for evaluating and scrutinizing proposed IDS models. IDS datasets are
curated by amalgamating data from diverse sources, including network traffic flows
[141], encompassing details about hosts, user activities, and system configurations.
This information is indispensable for analyzing network attack patterns and identi-
fying unusual activities. Therefore, the ongoing update and classification of IDS
datasets based on their advantages and limitations are imperative.

Additionally, the study presents recent advancements in IDS datasets, offering
research communities valuable resources for developing efficient ML-based IDS.
The paper emphasizes the necessity for real-time datasets to yield results more
pertinent to real-world scenarios and to substantiate the efficiency of proposed IDS
in future applications.
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The Current IDS Datasets

In the contemporary landscape, organizations utilize diverse data formats for their
specific objectives, contributing to public repositories. This section elucidates
relevant pre-existing datasets:

1. DARP The Defense Advanced Research Project Agency (DARPA) dataset,
among the earliest IDS datasets, comprises real-time and offline evaluations. Mod-
eled on a US Air Force set up with restricted personnel, data was collected through
computers connected to the internet, capturing host log files or network data pack-
ets. The dataset includes 41 attributes distinguishing normal and abnormal data,
featuring a variety of TCP sessions simulating different attacks [142].

2. KDD CUP 99 Derived from the DARPA 98 dataset, the public KDD 99
dataset is a crucial resource for IDS researchers. With 41 attributes assigned
to each connection instance, it designates incidents as "normal" or "abnormal,"
categorizing attacks into four types: DoS, Probe, R2L, and U2R. KDD99 remains
a standard in the IDS research community, given the limited availability of freely
accessible public datasets [143].

3. NSL-KDD Developed to address KDD CUP 99’s limitations, the NSL-
KDD dataset in [137] stands out for its reasonable record count, making it cost-
effective for running experiments on the entire set. Notably, it excludes redundant
data records, ensuring classification is not biased towards frequently occurring
instances. With 125,973 records in the training dataset and 22,544 in the test dataset,
its size allows for full utilization without random sampling, yielding repeatable
and comparable results across studies.

4. UNSW-NB15 Introduced in [144], the UNSW-NB15 dataset comprises
42 features, including both categorical and numeric attributes. Split into training
(UNSW-NB15-TRAIN) and testing (UNSW-NB15-TEST) sets, this dataset covers
various network attack categories such as Shell code, worms, DoS, and Backdoor.
It employs innovative techniques to generate features and is available online for
research use.

5. ISCX2012 Addressing the need for dynamic datasets due to evolving
intrusion patterns, the ISCX2012 dataset captures traffic like SMTP, SSH, FTP, and
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HTML. With features like realistic network and traffic, labeled dataset, complete
interaction capture, and diverse intrusion scenarios, ISCX2012 provides entire
packet payloads and profiles in pcap format, freely accessible for researchers [145].

6. CIC-DDoS2019 CIC-DDoS2019 [146], a recent dataset, overcomes existing
limitations and is designed for evaluating IDS algorithms on DDoS attacks. It
includes 11 DDoS attacks captured over a real-time network, covering protocols
like MSSQL, UDP, NTP, DNS, and SNMP [147].

7. CIC-IDS-2017 & CSE-CIC-IDS-2018 Created with crucial criteria in mind,
including attack variety, access protocols, labeled data samples, and network traffic
capture, CIC-IDS-2017 [148], and CSE-CIC-IDS-2018 [149] datasets offer in-
depth information on attacks and a conceptual understanding of network elements.
The CIC-2017 dataset, widely used in research, has a signature similar to PCAP,
and the latest CIC-2018 dataset introduces updated malware detection methods,
featuring seven attack types, including brute-force, DoS, and Botnet, along with
extensive network traffic and system logs [150].

Table 3.1 provides a comprehensive comparison of various datasets used in
IDS; each dataset serves distinct purposes, such as DARPA and KDD CUP 99
for historical context, NSL-KDD for reduced redundancy, UNSW-NB15 for di-
verse attack categories, ISCX2012 for dynamic scenarios, CIC-DDoS2019 for
DDoS evaluations, and CIC-IDS-2017 & CSE-CIC-IDS-2018 for detailed attack
information.
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Table 3.1: A Comparison of The Various Datasets.

Data Set Developed Features Attack Volume Description
By Type of data

DARPA MIT Laboratory 41 Dos,U2R, R2L, Probe - Absence of false-positive instances,
R2L, Probe No represent of real network traffic,

Attack data patterns with differing consistency.
KDD CUP 99 University of 41 Dos, U2R, 5M points Contains redundant and

California R2L, Probe duplicate data samples
NSL-KDD University of California 41 Dos, U2R, 150,000 points An optimized dataset of KDD CUP

California R2L, Probe 99 but has a restricted number of
attack types

UNSW-NB15 Lab of UNSW 49 DoS, Backdoors, 2M points The training set is 175,341 records,
Canberra worm, Fuzzers and the testing set is 82,332

records, some issues like over-
fitting, dimensionality, and

imbalance in the dataset
ISCX2012 University of IP flows DoS, DDoS, 2M flows consist of network scenarios with

New Brunswick Brute-force, intrusive activities and labelled
Infiltration data instances.

CIC- University of 80 DDoS attacks More than 10GB containing 12 different DDoS
DDoS2019 New Brunswick LDAP, PortMap, attacks, and a completely labelled

UDP-Lag, dataset can be executed using
NetBIOS,etc TCP/UDP.

CIC-IDS University of New Brunswick 80 Brute Force FTP, 4.6 GB for 2017 solve the issue of high-class
-2017 & 2018 New Brunswick Botnet Heartbleed, and more than imbalance, have a wide

Brute Force SSH, 50GB for 2018 range of attack categories,
Infiltration, DoS, have limitations in data samples,

Web Attack, and DDOS and analyze files created
by network flow

Limitations and Challenges

Defining or substantiating the completeness and correctness of any proposed IDS
without rigorous evaluation of current datasets poses a formidable challenge. Study
outcomes reveal the formidable task of creating an accurate, scalable, robust, and
protective IDS. Future research is anticipated to confront several limitations and
challenges in dataset usage, including:
-Availability of Known Attacks: Openly available datasets primarily encompass a
small fraction of known attacks, presenting a significant hurdle to real-world IDS
implementation.
-Zero-Day Attacks: Despite escalating attack speeds and data collection lags,
alternative dataset production methods are necessitated to address the detection
gap for zero-day attacks. Timely public availability of datasets is crucial to keeping
pace with evolving IDS models.
-Specialized Datasets: A limited selection of datasets is available for specialized
IDS applications, such as SCADA, IoT, and Tor networks, posing a constraint on
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tailored model development.
-Fresh Malware Dataset: The continual evolution of malicious activity neces-
sitates a fresh malware dataset, as existing approaches often rely on outdated
assumptions about the absence of new threats in current datasets.
-Documentation Challenges: Inadequate documentation accompanying newly
available datasets hinders researchers, requiring custom techniques for tasks re-
lated to data collection, documentation, anonymization, and publication due to the
absence of standardized tools.
-Privacy Concerns: Privacy emerges as a significant challenge in collecting new
attack data, compelling researchers to employ customized methods for data-related
tasks, given the absence of standard tools.
-Data Mapping and Integration: The lack of comprehensive data documentation
complicates the mapping of datasets, rendering it impractical to introduce new
attacks into existing datasets. Moreover, despite the existence of standard methods
for exporting realistic traffic, insufficient information exists on integrating freshly
gathered data into older datasets.

Discussion

In the dynamic realm of cybersecurity, the behavioral patterns of network cyber
attacks undergo constant evolution, necessitating the frequent update of avail-
able datasets. This iterative process ensures the development of diverse network
traffic scenarios and adaptable attack patterns that are easily understandable and
modifiable [151]. The careful selection of an appropriate dataset is paramount,
considering that some datasets are collected by individual organizations and labs
for specific research objectives, often remaining proprietary. Moreover, publicly
available datasets may include records incompatible with current technological
standards, and their statistical insufficiency poses challenges in attaining an ideal
dataset [152].

This section delves into the examination of current datasets used to evaluate
developed models in network IDS. It underscores the significance of an optimal
dataset encompassing all communications involving various protocols, including
both normal and attack scenarios. The emphasis is on the necessity for a diverse
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range of up-to-date malware and attack categories to empower new IDS models
to safeguard systems in contemporary contexts effectively. Furthermore, the
datasets should come with comprehensive documentation detailing the testing
environment, attack system infrastructure, victim system infrastructure, and various
attack scenarios.

Notably, the CIC-IDS-2017 and CSE-CIC-IDS-2018 datasets emerge as meet-
ing these criteria, featuring seven attack categories that vividly describe contem-
porary attack scenarios. These datasets have garnered significant attention from
developers and researchers for building IDS using benchmark datasets [153] [154]
[155] [156]. Given the robust characteristics of the CIC-IDS-2017 and CSE-
CIC-IDS-2018 datasets, we have chosen to utilize them in our forthcoming IDS
model, which will be presented in the upcoming chapter, recognizing them as the
best-suited datasets for our specific IDS application.

3.2 Vehicular Ad-hoc Networks

Advancements in mobile communications and current trends in ad hoc networks
allow for diverse deployment architectures of vehicular networks in highways, ur-
ban, and rural environments to support various applications with distinct Quality of
Service (QoS) requirements [157]. The primary objective of VANET architecture,
depicted in Figure 3.3 [158], is to facilitate communication among vehicles and
between vehicles and fixed roadside equipment.

Communication in VANETs involves three primary possibilities [159], with addi-
tional variations based on these fundamentals.
V2V Communication: Utilizing OnBoard Units (OBUs) installed on vehicles,
direct vehicular communication is established without relying on a fixed infrastruc-
ture.
V2I Communication: Vehicles communicate with the roadside infrastructure
through equipped Road Side Units (RSUs). This communication is primarily used
for information and data-gathering applications.
Hybrid Communication: Combines both V2V and V2I. In this scenario, a ve-
hicle can communicate with the roadside infrastructure either in a single-hop or
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multi-hop fashion, enabling long-distance connections to the Internet or to vehicles
that are far apart.

Figure 3.3: Basic architecture of VANETs.

As a specific class of Mobile Ad Hoc Networks (MANETs), VANETs inherit
several characteristics, such as self-organization and mobile nodes. However,
VANETs has features that make it more powerful and promising network [160],
such as the following:
Sufficient Power: Power scarcity is less severe in VANETs compared to MANETs
due to communication devices in vehicles being supported by stronger, recharge-
able batteries.
Fruitful Capabilities: Vehicles have enough space, allowing the installation of de-
vices with significant computing, communication, and sensing capacities, enabling
powerful functions and high computational abilities.
Predictable Mobility: Unlike MANETs with random node movements, vehicle
movements in VANETs are controlled by street topologies, traffic lights, and regu-
lations. Future vehicle positions can be predicted based on roadway information.
Large-Scale Application Scenarios: VANETs are deployed in highway/urban
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environments, constituting large networks with a high number of mobile nodes. In
contrast, MANETs are typically studied in limited-size environments.
Rapid Network Topology Changes: Vehicles in VANETs move at varying speeds
and change directions constantly, leading to dynamic network topologies and un-
stable communication links, potentially causing network partitions.

These characteristics of VANETs foster the development of diverse applications,
categorized into three main groups: road safety applications, traffic efficiency and
management applications, and infotainment applications.

3.2.1 Security in Vehicular Ad-hoc Networks

VANETs, functioning as distributed systems, present significant security and pri-
vacy challenges. Specifically, to fully harness the application potential of VANETs,
particularly in traffic safety applications, security measures are essential to ensure
their proper operation. Without adequate security, VANETs could potentially be
exploited, posing risks to both traffic safety and management [161]. For example,
a misbehaving vehicle broadcasting false warnings about an emergency braking
event could lead to collisions with vehicles trailing behind. Moreover, the unique
characteristics of VANETs, including limited infrastructure access, high node mo-
bility, and the presence of valuable assets at risk, create additional complexities in
security provisioning compared to general ad hoc networks [162].

Security in VANETs is a critical consideration, given the dynamic and intercon-
nected nature of vehicular communication. Addressing the multifaceted challenges
inherent in these networks involves a comprehensive understanding of various
aspects. In particular, the security landscape in VANETs can be delineated into
three primary aspects, each presenting unique concerns and requiring tailored
solutions. See figure3.4.

Attack and Threats: One of the foremost aspects of VANET security involves
safeguarding against potential attacks and threats. Threat vectors encompass the
entire VANET ecosystem, from the vulnerability of RSUs to the integrity of commu-
nication among connected vehicles. Security measures must contend with potential
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attacks on the wireless interface, ensuring the reliability and trustworthiness of
data exchanged in the network.

Challenges: VANETs operate in dynamic, real-time environments, presenting
specific challenges for ensuring robust security. Key distribution, a fundamental
challenge, involves securely managing cryptographic keys across a multitude of
vehicles and RSUs. Real-time constraints dictate the need for security protocols
to respond swiftly to dynamic vehicular conditions. Additionally, maintaining
verification and consistency in data exchanges amid the network’s dynamic nature
poses a significant challenge.

Requirements: To establish a secure and resilient VANET environment, specific
security requirements must be met. Access control mechanisms are essential for
regulating interactions between vehicles and infrastructure based on predefined
policies. Availability of communication services is paramount, even in the face
of potential attacks. Authentication protocols play a crucial role in verifying the
identity of vehicles and RSUs, preventing unauthorized entities from compromising
the integrity of VANET communication.

Figure 3.4: Security in VANET.
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In addition, other security aspects have been considered for VANET in the
following section:
Identity management is crucial in VANETs to ensure message integrity, authen-
ticity, node authentication, and non-repudiation. Schemes for identity management
are necessary to represent the identities of both vehicular nodes and RSUs securely.
In essence, to establish its identity and eligibility for participating in VANET
communications, an entity requires a certificate issued by the VANET Authority.
In addition to common public key cryptography techniques, various specialized
digital signature techniques, such as group signature [163], ring signature [164],
and identity-based signature, are employed in VANET identity management.
To ensure privacy-preserving node authentication, several anonymous authenti-
cation protocols [165] have been proposed for VANETs. Addressing the issue
of nodes assuming the identity of others through Sybil attacks, various existing
schemes [166] can be adopted.

Message verification in VANETs, crucial for ensuring message integrity and
authenticity, requires each node to verify the content [167] and the digital signature
of each received message. Due to the potential influx of numerous messages each
node can receive, existing schemes aim to make message verification efficient and
scalable. Some studies, for example, [168], attempt to reduce the resources needed
for verifying each message. In contrast, others [169] aim to minimize the number
of messages to be verified by each vehicle. However, these proposals currently
face challenges in simultaneously ensuring efficiency, security, and application-
friendliness.

For Cooperation Enhancement and Misbehavior Detection in VANETs, it
is crucial to identify node misbehaviors to ensure the reliability of traffic safety
applications and robust communications [170]. Various existing studies focus on
verifying the content, such as location information, broadcasted by vehicular nodes.
Additionally, some others leverage watchdog mechanisms designed for ad hoc
networks to detect routing and packet relaying behaviors, which can be adapted for
VANETs. To incentivize cooperation, schemes utilize mechanisms such as credit
and reputation.
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Trust and Reputation play a crucial role in VANETs and general networks,
serving as influential tools to incentivize node cooperation and deter node mis-
behaviors [171]. Diverse trust models and metrics have been proposed, drawing
from information theory [172], Bayesian theory, graph theory, and abstract algebra,
applicable to both general ad hoc networks and VANETs.
However, a notable challenge remains in efficiently and reliably maintaining the
reputation history of vehicular nodes, especially considering the high node mobility
and potential pseudonym changes for privacy protection [173].

Privacy protection arises from the widespread use of wireless vehicular com-
munications and periodic beacons in VANETs, posing significant challenges [174].
Eavesdropping on VANET communications allows a determined adversary to un-
cover the real identities of targeted nodes and create profiles based on application
usage and personal information. To address this, various solutions have been pro-
posed to enable privacy-preserving node authentication in VANETs [175], [176],
[177]. However, the interception of periodic beacons by adversaries raises the risk
of collecting the location history of any node. To safeguard the identity privacy of
each node, pseudonyms are often employed instead of real identities in VANET
communications. A pseudonym serves as a temporary identifier with no obvious
link to the real identity, typically comprising a certificate, MAC address, and IP
address. Despite this measure, adversaries can potentially deduce the real identity
by aggregating personal information and movement trajectories associated with a
specific pseudonym.

In summary, this discussion of security aspects highlights several critical research
issues in VANETs. Addressing these open challenges is vital for the successful
implementation of VANETs, making them pivotal concerns within this dissertation.
Furthermore, existing security and privacy protection applications often lack metic-
ulous consideration of the practical constraints inherent in VANETs. Therefore,
as part of this dissertation, we aim to study VANET networks and build a realistic
simulation that enables us to apply ML techniques to solve VANET security issues
and be readily applicable in real-world VANET scenarios.
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3.2.2 Simulation for Vehicular Ad-hoc Networks

The evaluation process of existing trust models designed for external communica-
tion systems within autonomous systems primarily relies on simulation systems
[178]. Researchers emphasize the pivotal role of simulation systems, defined by
Shannon as "the process of designing a model of a real system and conducting
experiments with this model for the purpose of understanding the behaviour of the
system and evaluating various strategies for the operation of the system" [179].
Within the domain of VANETs, simulation systems play a crucial role, necessitat-
ing the application of any new protocol or security method within these systems
due to the substantial costs associated with real-world implementations. The field
of VANETs employs various simulation systems classified into three categories, as
depicted in Figure 3.5 [180]:

Figure 3.5: Taxonomy of VANET Simulation Software.

Vehicular Mobility Generators: These programs are designed to generate
realistic vehicular mobility patterns within simulation environments, enabling the
assessment of communication systems’ performance under diverse vehicular move-
ment scenarios.
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Network Simulators: Focused on broader network functionalities, these simula-
tors provide a platform to evaluate communication protocols and strategies in the
context of vehicular networks, including aspects beyond vehicular mobility.
VANET Simulators: Specifically tailored for simulating VANETs, these programs
offer a comprehensive environment to assess the performance of communication
protocols and security measures within the unique dynamics of VANETs.
The utilization of simulation systems, categorized into these three classes, facili-
tates a cost-effective and efficient means of evaluating and refining protocols and
security methods within the challenging and dynamic domain of VANETs.

In VANET simulation, researchers have harnessed the power of various tools
renowned for their effectiveness and extensive capabilities. In addition to the three
key simulation software tools discussed below, three more standout tools have
played a pivotal role in shaping the research landscape of VANET simulation:

1-Mobility simulator: SUMO
SUMO is a prominent mobility simulator widely recognized for its capabilities.
Developed by the German Aerospace Center, it has been freely available since
2001 and became part of the Eclipse Project foundation in 2017. SUMO is struc-
tured into distinct modules, each addressing specific aspects of the network to be
simulated. As described in [181], SUMO facilitates traffic simulation and analysis,
enabling the implementation and analysis of new traffic strategies before real-world
deployment. Additionally, SUMO has been suggested as a tool for developing
and validating automated driving functions through various X-in-the-loop and DT
approaches. To effectively use SUMO, a network topology file is crucial, serving
as the starting point for defining routes in a separate file. A typical SUMO project
includes files like file.net.xml for network topology, file.rou.xml for routes within
the network, and file.add.xml containing additional network-related information.
SUMO operates as a purely microscopic traffic simulation platform, where each
vehicle is explicitly defined by essential parameters such as an identifier name,
departure time, and the specified route through the network, see figure 3.6. For
more detailed representation, additional properties like departure and arrival charac-
teristics, including lane choice, velocity, and position, can be defined. Vehicles are
categorized by type, encapsulating their physical attributes and movement model
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variables. SUMO also incorporates pollutant and noise emission classes for each
vehicle, with supplementary variables enabling the definition of their appearance
in the simulation’s graphical user interface.

Figure 3.6: Map and Vehicles in SUMO simulator.

In terms of outputs, SUMO offers a versatile array of results for each simulation
run. These outputs range from simulated induction loops to detailed information
about single vehicle positions recorded at each time step for all vehicles. Addi-
tionally, SUMO provides complex data, such as details about each vehicle’s trip or
aggregated measures along streets or lanes. Beyond conventional traffic metrics,
SUMO includes models for noise emission and pollutant emission/fuel consump-
tion. Furthermore, the simulation allows interaction with an external application
through a socket connection, enhancing its capabilities.
In SUMO project, Traffic Control Interface (TraCI) serves as a method to establish
a connection between road traffic and network simulators [182]. This integration
allows access to a live road traffic simulation, enabling the extraction of simulated
object values and the real-time manipulation of their behavior. This dynamic
interaction facilitates the control of vehicle behavior during the simulation run-
time, offering valuable insights into the impact of VANET applications on traffic
patterns.

TraCI employs a client/server architecture based on TCP to facilitate access to
Sumo, with Sumo operating as the server in this setup. This approach enhances
the ability to retrieve and manipulate information seamlessly within the simulation
environment.
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2- Network simulator: OMNeT++
On the other hand, OMNeT++ stands for Objective Modular Network Testbed
in C++, and it is the most renowned network simulator. It’s a component-based
simulation library written in C++ developed to simulate various communication
networks. OMNeT++ is not a network simulator but a framework that allows you
to design and construct your network simulations [183].
Model frameworks, developed as independent projects, provide domain-specific
functionalities like support for sensor networks, wireless ad-hoc networks, Internet
protocols, performance modeling, and photonic networks. OMNeT++ boasts an
Eclipse-based Integrated Development Environment (IDE), a graphical runtime
environment, and various accompanying tools.
The framework consists of different components, including a simulation kernel
library (C++), the Network Description (NED) topology description language, an
Eclipse-based IDE, a graphical runtime environment (Qtenv), a command-line
interface for simulation execution (Cmdenv), utilities like a makefile creation tool,
and comprehensive documentation.

3- VANET simulator: VEINS
Delving deeper, VANET simulators represent a combination of mobility and net-
work simulators. The network simulator focuses on modeling communication
protocols and the transmission of messages among nodes, while the mobility simu-
lator governs the movement of individual nodes. To achieve our objective of this
thesis, the chosen framework for VANET simulation is VEINS [184].
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Figure 3.7: High-level architecture of Veins.

Veins is an open-source framework dedicated to simulating vehicular networks
and operates based on the SUMO and OMNeT++ platforms. Figure 3.7 illustrates
all the modules comprising the Veins architecture [185]. Initially, an OMNeT++
node is instantiated for each CAV within the simulation and is then synchronized
with its movement in the road traffic simulator. This parallel simulation approach,
encompassing both network and mobility simulations, occurs simultaneously due to
a bidirectional coupling facilitated by the standardized TraCI connection protocol.
This protocol enables message exchange between OMNeT++ and SUMO via TCP
connections during the ongoing simulation. Veins incorporates different extensions
to support various protocol stacks like IEEE 802.11p. In essence, Veins serves as an
execution environment for user-programmed applications, facilitating the modeling
of new environments and applications. However, it is essential to note that Veins
relies on both SUMO and OMNeT++ for accurate results, and any discrepancies or
bugs in either can compromise the reliability of Veins’ output. Veins is compatible
with Linux, Windows, and macOS, offering a versatile simulation environment with
interconnected modules for seamless communication, as depicted in the previous
figure.
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3.3 Electric Vehicles Routing Simulation and Opti-
mization

In contemporary logistics, the integration of EVs into corporate fleets has become a
prevalent practice [186]. This shift towards adopting EVs underscores the growing
importance of addressing the EVRP within the realm of logistics, primarily driven
by the environmental imperative to reduce carbon emissions [187]. The EVRP
model entails assigning a single EV to each client node, with multiple EVs po-
tentially utilizing a single charging station [[188]; [189]]. A fundamental element
of this vision is anticipated to be the next generation of vehicles, integrating new
sensing, communication, and social capabilities. By providing mobile wireless
sensing and communications, vehicles can facilitate data access, which is essential
for realizing smart cities.

Given the extensive adoption of EVs in logistics transportation, there has been a
growing focus on EVRPs in recent times. These problems pose significant com-
plexity, involving the joint optimization of routes and recharging strategies. The
integrated recharging strategies encompass various factors, including the selection
of recharging stations, the choice between fast or slow recharging modes, and
decisions related to partial or full charging. The lack of supporting charging infras-
tructure is a pivotal factor, and deploying such infrastructure poses a challenging
problem [190]. It inadvertently requires changes to existing civil infrastructure,
incurring significant costs and time for implementation. While the car industry
experiments with larger and more powerful batteries, suggesting coverage up to
400km without intermediate charge, it is argued that, for environmental reasons,
future batteries should have reduced capacity. This creates a need for new ap-
proaches to charging EVs that overcome the lack of supporting infrastructure,
adapt to the existing civil infrastructure (i.e., road network), and avoid the need for
new, space-consuming, and environmentally unfriendly batteries in cars.

Crucially, SoC of EV batteries within an acceptable range is imperative to en-
sure optimal performance. The introduction of smart charging methods, as a novel
approach, plays a pivotal role in maintaining balance by facilitating both charging
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and discharging activities to prevent exceeding energy peaks [191]. This innova-
tive technique also enables EV batteries to supply energy back to the grid during
discharge. Using the on-board unit, vehicles can communicate with each other
and with RSUs, enabling smart application solutions and enhancing road safety
and traffic management. To effectively address the complexities inherent in the
EVRP, a multi-objective optimization strategy has been employed, as detailed in
[192]. Furthermore, [193] proposes a two-stage simulation-based heuristic for the
EVRP. In the initial stage, EV routes are determined by considering factors such as
expected waiting times at charging stations, while the subsequent stage corrects
any infeasible solutions by penalizing time-window violations and late returns to
the depot.

Simulation tools, such as SUMO, play a crucial role in addressing the challenges
posed by EVRPs and optimizing both conventional and EV journeys [194], [195].
There are huge benefits of using such software specifically aids in solving EVRP:
Route Optimization: Simulation software allows for the modeling and simulation
of various routes for EVs. It considers factors such as traffic conditions, road lay-
outs, and charging station locations to optimize routes. This helps in determining
the most efficient paths for EVs to minimize travel time and energy consumption.
Recharging Strategy Analysis: EVRPs involve optimizing not only the routes but
also the recharging strategies. Simulation software like SUMO enables the analysis
of different recharging strategies, including the selection of charging stations, the
timing and duration of recharging, and the choice between fast or slow recharging.
This allows for a comprehensive evaluation of the impact of different strategies on
the overall efficiency of the EV fleet.
Performance Evaluation: Through simulation, researchers and planners can as-
sess the performance of EV fleets under various scenarios. This includes studying
the effects of different traffic conditions, vehicle types, and charging infrastructure
layouts on the overall efficiency of EV operations.
Scenario Testing: Simulation software facilitates scenario testing, allowing stake-
holders to assess the feasibility and effectiveness of different EVRPs under diverse
conditions. This helps identify potential challenges and refine routing and recharg-
ing strategies accordingly.
Risk Mitigation: By simulating EVRPs before actual implementation, stakehold-
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ers can identify and mitigate potential risks. This includes evaluating the impact
of uncertainties such as fluctuating energy prices, changes in traffic patterns, and
variations in charging station availability.
Decision Support: Simulation results provide valuable insights into the perfor-
mance and feasibility of different EVRPs. This information serves as a foundation
for decision-making, allowing planners and decision-makers to choose optimal
routing and recharging strategies based on the simulation outcomes.
In summary, simulation software acts as a powerful tool for modeling, analyzing,
and optimizing EVRP. It provides a virtual environment for testing different scenar-
ios, refining strategies, and making informed decisions to enhance the efficiency of
EV logistics in various settings. In the upcoming chapter, we will introduce an EV
Routing Simulation and Optimization framework designed to address an EVRP
through a detailed examination of a real-world case study.



Chapter 4

Routing Optimization for Electric
Vehicle Using SUMO Simulation

4.1 Introduction

EVRP has gained significant attention in recent years, driven by the global push to
adopt sustainable transportation methods and reduce environmental impact. How-
ever, the widespread adoption of EVs is hindered by factors such as limited driving
range and the availability of charging infrastructure [196]. Numerous studies have
addressed these challenges to develop algorithms and optimization techniques
for EVRP [197] [198]. These approaches aim to optimize the routing of EVs by
considering factors such as energy consumption, travel time, and charging station
availability. These solutions are essential to ensure that EVs can efficiently travel
between origins and destinations while considering the constraints imposed by
their limited battery capacity [199]. In recent years, microscopic traffic simulators
have become an essential tool for understanding the complexities of urban trans-
portation systems. SUMO has gained popularity among these simulators due to its
open-source nature, flexibility, and extensibility [200]. SUMO provides a platform
for researchers to simulate different traffic scenarios and evaluate the performance
of various traffic management strategies [201]. TraCI is an integral component of
SUMO, allowing for real-time interaction with the traffic simulation. With TraCI,
researchers can dynamically modify the behavior of vehicles, traffic lights, and
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other elements of the traffic environment, providing a powerful tool to investigate
and optimize traffic flow [202].

This chapter proposes a new contribution to solving EVRP using SUMO sim-
ulation and the TraCI interface. The primary objective is to optimize traffic flow
and determine the best route for each EV in the given scenario. Additionally, the
TraCI model used in our approach can dynamically choose the best alternative route
for EVs in case of heavy traffic in the main route. This could avoid unnecessary
waiting time and improve the system’s overall efficiency. Our approach considers
the current state of the traffic, the battery capacity of EVs, and the availability
of charging infrastructure, providing an adaptive and efficient solution to the EVRP.

This study tested the applied approach in a large-scale area in Apulia, Italy, effec-
tively demonstrating its practicality and success in addressing real-world challenges.
Our approach enabled vehicles to select the best route to reach their destinations,
considering traveling time in varying traffic conditions. This demonstrates the
practical benefits of our methodology in optimizing EV routing under diverse
circumstances.

4.2 Background: Routing Optimization Review

4.2.1 Electric Vehicle Routing Problem

EVRP is an extension of the classic Vehicle Routing Problem (VRP) that incor-
porates the unique characteristics of EVs, such as limited driving range, battery
charging requirements, and charging infrastructure availability. Indeed, EVRP has
gained significant attention in recent years due to the growing adoption of EVs
and the need to develop efficient routing strategies to support their widespread
use. Hiermann et al. [203] introduce the Electric Fleet Size and Mix Vehicle
Routing Problem with Time Windows and Recharging Stations (E-FSMFTW) for
decision-making on fleet composition and vehicle routes. They develop a hybrid
heuristic combining Adaptive Large Neighborhood Search and labeling procedures,
demonstrating its effectiveness using a benchmark set for E-FSMFTW. Schiffer
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et al. [204] present a location routing method that simultaneously addresses EVR
and charging station siting to support the decisions of logistics fleet operators.
It considers various real-world recharging constraints and alternative objective
functions, such as minimizing distance, vehicle count, charging station count, and
total costs. Goeke and Schneider [205] investigated routing a mixed fleet of EVs
and other vehicles, further emphasizing the importance of considering charging
infrastructure in routing decisions. María A. et al. [206] developed an optimization-
based approach for the EVRP, incorporating smart charging methods to minimize
charging/discharging costs. The model considers power grid limits and balancing
needs to avoid exceeding maximum energy peaks.

4.2.2 Simulation of Urban Mobility

SUMO is a popular open-source software framework that enables modeling, simu-
lation, and analysis of various transportation systems, including cars, buses, and
trains [181]. SUMO has been used in numerous studies to investigate and evaluate
traffic management strategies, road infrastructure design, and transportation plan-
ning [207][208]. The software’s flexibility and versatility have made it popular
for simulating a wide range of urban mobility scenarios, such as investigating the
impacts of ITS on traffic flow and optimizing public transportation networks [209].
In recent years, SUMO has been enhanced with various advanced features, such
as support for parallel processing and real-time traffic data integration, further
expanding its capabilities [210][211]. Furthermore, SUMO has been integrated
with other simulation tools like MATSim and Omnet++ to support modeling more
complex and interconnected transportation systems [212] [213]. Yin, R et al. [214]
proposed a simulation-based bi-level model for the continuous network design
problem (CNDP). The approach integrates micro and macro traffic dynamics in
SUMO and proposes lane width expansion as a decision variable. The flexibility
and robustness of SUMO make it a valuable tool for studying and developing ITS
that can effectively accommodate EVs in large-scale traffic scenarios.
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4.2.3 Traffic Control Interface

TraCI is an interface that allows real-time interaction with SUMO simulations,
enabling the dynamic manipulation of traffic elements such as vehicles, traffic
lights, and routes. TraCI has been employed in various studies to evaluate and
optimize traffic management strategies, such as developing adaptive signal control
algorithms to improve intersection performance [215]. Another study by Yang
et al. [216] integrated SUMO and middleware tool TraCI with NS3 to evaluate
the performance of four different topology-based routing protocols for VANETs.
Similarly, Kusic et al. [217] proposed an approach that uses TraCI as an interface to
talk to outside controllers and ensure that the simulated traffic situation is constantly
calibrated as actual traffic dynamics change.

4.2.4 Optimization Techniques for EVRP

Researchers have used many optimization techniques to solve the EVRP efficiently.
Metaheuristics such as genetic algorithms, particle swarm optimization, and ant
colony optimization are examples of these techniques. [218]. Laporte et al. [219]
proposed a metaheuristic algorithm based on tabu search and guided local search to
solve the EVRP with stochastic travel times. Sadati et al. [220] proposed a mixed
integer linear programming model and a hybrid General Variable Neighborhood
Search and Tabu Search approach to solve the Multi-Depot Green Vehicle Routing
Problem. Bruglieri et al. [221] presented a variable neighborhood search method
for the EVRP with charging stations, which achieves better performance than cur-
rent state-of-the-art techniques. The present study builds upon the existing research
on EVRP, SUMO, TraCI, and optimization techniques to develop a novel approach
for optimizing EV routing in large-scale traffic scenarios. Our methodology ad-
dresses the challenges posed by EV routing and traffic optimization, contributing
to the development of intelligent transportation solutions tailored to the unique
characteristics and requirements of EVs. In addition to considering time windows
as constraints, our approach also focuses on minimizing traveling time, which is the
actual time it takes for a vehicle to travel from one location to another, considering
various factors such as distance, speed limits, and traffic conditions. Minimizing
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traveling time is often one of the primary objectives in routing problems, as it
directly impacts the overall efficiency of the transportation system.

4.3 Modeling and Methodology

The EVRP is a well-known optimization problem in transportation planning, in-
volving the determination of the optimal routes for a fleet of EVs to serve a set
of customers while considering factors such as travel time, battery capacity, and
charging infrastructure availability. The problem can be formulated as follows:
Given a set of n Points of Interest (POI) and a set of m EVs with a limited driving
range, find the optimal routes to serve all the customers while minimizing the total
travel time and ensuring that the EVs can complete their tours without running
out of battery power or delay. The problem must also consider the availability and
location of charging infrastructure along the routes. This study proposes a new
approach for solving the EVRP using the SUMO traffic simulation software and
the TraCI interface. The proposed approach involves three main steps: (1) model
initialization and input data preparation, (2) simulation-based optimization using
TraCI, and (3) output analysis.

4.3.1 Model Initialization and Input Data Preparation

The first step involves initializing the SUMO simulation model and preparing input
data for the EVRP. The SUMO model consists of a road network, a set of charging
stations, a set of POI, a fleet of EVs that will serve the customers, and a fleet of
other vehicles that represent the real traffic conditions on the network. The input
data for the EVRP includes the customer locations, the EV driving range, battery
capacity, the charging station locations, and the charging infrastructure availability
and capacity.
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4.3.2 Simulation-Based Rerouting Using TraCI

The second step involves the simulation-based optimization of the EVRP using
the TraCI interface to communicate between SUMO simulation model and the
optimization algorithm. The TraCI interface allows real-time interaction with the
SUMO simulation, enabling the dynamic manipulation of traffic elements such as
vehicles, roadside units, traffic lights, and routes.

The proposed model employed in this study consists of a set of steps written in
Python on TraCi interface as follows:

• Import required libraries (os, sys, traci, sumolib).

• Set up the SUMO_HOME environment variable if it is not present.

• Start SUMO and TraCI with necessary command-line arguments.

• Define time horizon and time slot duration.

• Define threshold battery capacity.

• Define the function to get available charging stations.

• Define a function to check traffic congestion.

• Define a function to get the least congested route.

• Get the list of charging stations.

• Loop through time slots and advance the simulation.

• Get the list of vehicles and their current battery capacity.

• Get the charging station status at the current time slot.

• Check the battery capacities of all vehicles and choose the shortest route
based on battery capacity and charging station availability.

• Retrieve the route with the minimal congested route and update the vehicle’s
route to the least congested path.
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• Update the charging station availability status.

• Save the simulation results and close the TraCI connection.

The code starts by setting up the SUMO environment and defining the time hori-
zon, time slot duration, and battery capacity threshold. It then defines three main
functions: get_available_charging_stations, is_congested, and get_least_congested_route.
The first function returns a list of available charging stations at the current time
slot, the second checks if a road segment is congested based on average speed and
vehicle count, and the third finds the least congested route between two points. The
simulation iterates through the defined time slots, updating the charging stations’
status and obtaining each vehicle’s current battery capacity. It then checks if the
battery capacity of a vehicle is below the defined threshold. If so, it selects the
shortest route to the nearest available charging station or, if none are available,
the shortest route to the vehicle’s destination. If the battery capacity exceeds the
threshold, it selects the shortest route to the destination. Then, the code checks for
traffic congestion on the selected route and finds the least congested alternative.
It updates the vehicle’s route to the least congested path and sets the route color
based on the vehicle’s battery capacity and the availability of charging stations.
Finally, the code saves the simulation results in a CSV file and closes the TraCI
connection.

4.3.3 Output Analysis

After running the simulation, the output data can be analyzed and visualized
to gain insights into the system’s behavior. The simulation output files include
"tripinfo.xml," which provides information on each vehicle’s trip; "summary.xml,"
which provides a summary of the simulation results; and "battery.xml," which
provides information on the battery capacity of each EV at each time step. The
tripinfo.xml file can calculate metrics such as travel time, waiting time, and distance
traveled for each vehicle. The summary.xml file provides system-level metrics
such as total travel time, total waiting time, and total distance traveled.
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4.4 Case Study: The Southern Italian Region of
Puglia

4.4.1 Description of the simulation model

A real case study was carried out in the southern Italian region of Puglia to analyze a
network of customer nodes and their transportation requirements. The microscopic
traffic simulation tool SUMO was utilized to simulate this scenario accurately.
By replicating actual traffic conditions, a realistic environment was established to
study the behavior of EVs in this network.
Each vehicle in the simulation had explicit definitions for its unique starting point
and endpoint. These vehicles traveled independently across the network, taking into
account road conditions and traffic flow. This approach facilitated an assessment of
the efficiency and effectiveness of the transportation system in meeting customer
demands.
Figure 4.1 showcases the SUMO simulation graphic interface, where the key
components of the network are visualized. The Depot, represented by the light
green color, serves as the starting point for the EVs. The customer nodes (CN),
depicted in blue, indicate the locations where deliveries need to be made. The
charging stations (CP), represented in yellow, are strategically placed throughout
the network to facilitate the recharging of EV batteries.

Figure 4.1: SUMO Simulation view of Region of Puglia
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The node network itself consists of several interconnected nodes. At the
core is the Depot Node, from which all EVs originate. There are 25 customer
nodes (CN1..CN25) spread across the network, representing the destinations where
freight needs to be delivered. Additionally, 10 charging station nodes (CP1..CP10)
are strategically placed to provide charging facilities for the EVs. The distances
between the connected pairs of nodes, measured in kilometers, are detailed in Table
4.1, and the location of connected nodes and charging points are shown in Figure
4.2.

Table 4.1: Distance Between the Nodes

tdij (km)
CN7 CN13

CN1 22 59
DEPOT CN5 CP2

CN2 38 49 21
DEPOT CP3 CP4

CN3 72 63 48
CN14 CP3

CN4 29 31
CN2 CN14 CP2

CN5 49 27 53
CN12 CP4 CP5

CN6 51 19 63
DEPOT CP4 CN1 CP2

CN7 64 30 22 38
DEPOT CN9

CN8 59 53
CN8 CN15

CN9 53 32
DEPOT CP4 CP5

CN10 41 67 21
DEPOT CN13 CP1

CN11 61 97 51
CN6 CP3 CP4

CN12 51 38 59
DEPOT CN1 CN11 CP1

CN13 103 59 97 73
CN4 CN5

CN14 29 27
CN1 CP1 CP5

CN15 32 66 73
CP5 CN8 CP8

CN16 55 52 37
CP7

CN17 63
CN11 CP7
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CN18 40 6
CN25

CN19 22
DEPOT CP5 CN25

CN20 30 34 36
CN13 CN5 CN2 CP9

CN21 56 46 23 34
CP3

CN22 56
CN6

CN23 43
CP3 CN12

CN24 30 23
CP1 DEPOT CN19 CP6 CN20

CN25 29 31 21 16 36
CN11 CN13 CN15

CP1 51 73 66
CN2 CN5 CN7

CP2 21 53 38
CN3 CN4 CN12 CP4

CP3 63 31 38 68
DEPOT CN3 CN6 CN10 CN12 CP4

CP4 73 48 19 67 59 68
DEPOT CN6 CN10 CN15

CP5 51 63 21 73
CN25 CN15

CP6 16 21
CN18 CN17

CP7 6 63
CN16 CN13

CP8 89 25
CN21 CN4

CP9 34 66
CN1 CN12

CP10 100 142
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Figure 4.2: Traffic on connected nodes and charging points

The objective of this study was to efficiently meet customer demands using
a fleet of 14 EVs (EV1. . . EV14). Each vehicle in the fleet was characterized by
specific parameters, such as battery capacity, charging rate, and weight capacity, as
outlined in Table 4.2. The EVs operated at an average speed of 100 km/h, aiming
to deliver goods and fulfill customer requests on time.

Table 4.2: Distance Between the Nodes

Bk Ck Qk gk endk
EV1 3.8 300 58 43 CN1
EV2 5.5 350 100 22 CN15
EV3 4.4 400 80 22 CN6
EV4 2 250 52 22 CN12
EV5 3.4 450 52 43 CN4
EV6 3.3 600 60 22 CN14
EV7 8.3 300 100 43 CN7
EV8 2.2 450 58 43 CN23
EV9 3.5 350 80 22 CN19
EV10 4 400 52 43 CN17
EV11 3.8 250 90 22 CN24
EV12 3.1 450 52 43 CN5
EV13 4.8 600 80 22 CN22
EV14 2.6 300 100 43 CN4
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Where Bk is the amount of time to charge EV fully k ∈ K [h], Ck is the weight
capacity of EV k ∈ K [kg], Qk is the battery capacity of EV k ∈ K [kWh], gk is
the recharging rate of EV k ∈ K [kW], and endk is the end node of EV k ∈ K .

To model the time dynamics of the system, we divided the 12-hour time
horizon into 20-minute time slots, resulting in 36 time slots in total (3 per hour).
Each time slot represented a specific period during which customer demands and
charging station services could be initiated. By incorporating time frames for
customers and charging stations, we ensured that services were provided within
the designated time frames. Customers were also required to provide information
about their freight demand and the estimated duration of service required at their
respective nodes. To evaluate the efficacy of our approach, we conducted four
distinct scenarios within the simulation framework. The first scenario utilized
the default SUMO routing algorithm without considering traffic conditions. The
second scenario also has the same default algorithm as the traffic of other vehicles
during the simulation. The third scenario involved the implementation of the TraCi
script, which incorporated traffic conditions. The fourth scenario included the
TraCi script and a Rerouting algorithm to adapt dynamically to changing traffic
conditions. In each scenario, we simulated a traffic scenario consisting of 2000
vehicles. These scenarios allowed us to assess the impact of our approach under
various traffic conditions and determine its effectiveness in optimizing routing
decisions.

4.5 Results and Discussion

The experiments were conducted using high-performance hardware, including an
Intel processor I9 with a clock speed of up to 5.20 GHz, DDR4 64GB RAM, and an
RTX 3090 24G GPU. This powerful computing setup ensured efficient processing
and execution of the experiments, enabling us to gather accurate and reliable results.
In our scenario, the travel of EVs was simulated using the SUMO simulation model,
which integrated various parameters such as energy consumption, battery SoC,
and delivery schedules. The EVs followed customized routes to efficiently reach
the customer nodes (CNs) and complete their cargo deliveries while considering
the availability of energy usage and charging points (CPs) along their routes. By
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incorporating the Traci script with rerouting capabilities, the EVs in the simulation
could dynamically adjust their routes in response to real-time traffic conditions.
This algorithmic approach aimed to optimize energy usage and played a crucial
role in minimizing waiting times caused by traffic congestion or blockages on the
road, as shown in Figure 4.3. During the simulation, it was observed that using
the default SUMO Algorithm with traffic, certain EVs, namely EV2, EV3, EV4,
EV6, EV8, EV9, and EV11, encountered blockages and experienced delays in their
travel due to high traffic or adverse road conditions. Even in the 3rd scenario, the
basic Traci model experienced blockage for some EVs, namely EV3, EV6, EV8,
and EV11, which also caused delays in travel time. However, thanks to the Traci
script’s rerouting capabilities in the fourth scenario, these EVs were redirected to
alternative paths to bypass the congestion or blockages. As a result, they could
continue their journeys without prolonged waiting times, ensuring smoother and
more efficient travel.

Figure 4.3: Blocked EVs in the waiting process

The Traci rerouting algorithm significantly reduced waiting times on the road.
By avoiding areas with heavy traffic or incidents, the EVs could reach their desti-
nations more quickly, improving overall travel time. Additionally, the algorithm
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allowed the EVs to adapt their routes based on energy considerations and the
availability of charging infrastructure. By considering the energy levels of the
EVs and the proximity of charging stations, the algorithm guided the EVs to make
optimal decisions regarding recharging or discharging their batteries, ensuring they
remained within acceptable energy limits without compromising their delivery
schedules. Integrating the Traci script with rerouting capabilities in the SUMO
simulation offered multiple advantages. It enabled the EVs to dynamically respond
to real-time traffic conditions, avoiding waiting times and optimizing travel routes.
Simultaneously, the algorithm accounted for energy considerations, ensuring ef-
ficient usage and management of the EVs’ battery resources. The results of our
analysis were generated efficiently, with the outcomes compiled and presented in
a concise format in Table 4.3. This table encompasses the total traveled time and
distance for each investigated scenario. These metrics provide valuable insights
into the performance and efficiency of our proposed approach.

Table 4.3: SCENARIOS RESULTS

SUMO without traffic
condition

SUMO with traffic
condition

TraCi with traffic
condition

TraCi with Rerouting

route duration (s) route duration (s) route duration (s) route duration (s)
Length(m) Length(m) Length(m) Length(m)

EV1 112848 4108 112848 4108 112848 4108 112848 4108
EV2 177361 7944 177361 8479 177361 7944 177361 7944
EV3 114169 6705 114169 7311 114169 7047 115743 6881
EV4 201936 9928 201936 10486 201936 9928 201936 9928
EV5 155567 8221 155567 8221 155567 8221 155567 8221
EV6 285311 19865 285311 20194 285311 19613 288155 19283
EV7 586229 29546 586229 29546 586229 29546 586229 29546
EV8 145830 8615 145830 8845 145830 8825 149512 8735
EV9 141339 7808 141339 8127 141339 7808 141339 7808
EV10 159699 7683 159699 7683 159699 7683 159699 7683
EV11 286680 14835 286680 17562 286680 17809 291719 17562
EV12 238759 14151 238759 14151 238759 14151 238759 14151
EV13 219753 11087 219753 11087 219572 11087 219572 11087
EV14 157981 8268 157981 8268 157981 8268 157981 8268

As traffic volume was limited to 2000 vehicles in the 2nd and 3rd scenarios,
the overall average percentage of time reduction achieved by using the rerouting
algorithm in the third scenario compared to the first scenario is 7.59%, compared
to the second scenario is 2.63%. This indicates that the rerouting algorithm has
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significantly reduced travel time across all EVs in the simulation compared to the
scenario without the rerouting method.

In conclusion, the presented work introduces a novel solution for addressing
EVRP using SUMO, Traci, and a rerouting algorithm. The simulation model
effectively captured real-time traffic dynamics, allowing EVs to adapt their routes.
Results indicated the efficacy of the Traci script with rerouting capabilities in
reducing waiting times and optimizing energy usage for EVs within the network.
Furthermore, comparing different traffic scenarios highlighted the impact of traffic
conditions on travel time. The findings of this work contribute to the understanding
of EVRP optimization, the role of real-time traffic conditions, and the potential of
rerouting algorithms in improving the efficiency and performance of EVs.



Chapter 5

Intrusion Detection System for
Vehicular Ad-Hoc Network

5.1 Introduction

The evolution in ICT and networks has accelerated ITS applications. With the
application of information and communication technologies such as IoT, intelligent
sensors, AI, big data, cloud computing, 5G networks, and DT, the new generation
of automotive systems and assisted driving technologies are rapidly improving.
However, while modern communication technologies bring users easy connection
and convenience, they also bring increasingly severe cybersecurity threats to trans-
portation networks and smart cities [222]. In recent years, and with the vast data
availability, the increase in information security needs has attracted significant
attention from researchers.

EVs and AVs have the characteristics of close integration of network infor-
mation and physical components, especially with VSs technology. VS added an
innovation service for the vehicle industry to enhance the privacy and security
aspects [25]. Attacks on the ITS network will not only cause privacy leakage and
economic losses but also endanger human life and even become a national public
safety issue.
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The new generation of automotive systems relies on two network types: in-
vehicle networks and external networks, which allow the EVs to share communi-
cation bandwidth, storage, and computing resources to realize the collaborative
processing of a large amount of real-time data. The development of ITS is a
double-edged sword for both the external vehicle network and the in-vehicle net-
work, which faces new problems and challenges. However, the current automotive
network environment is full of issues and challenges regarding information security.
These challenges mainly include an open external environment (multiple ways
of wireless access), limited resources (bandwidth resources, computing power
and energy, storage resources, cache, etc.), strict time requirements (real-time and
schedulable analysis), and cost sensitivity brought by large-scale applications.

Vehicle-to-everything (V2X) technologies connect vehicles to the exterior
world via external networks. Modern vehicles can communicate with other vehicles
in different ways, such as V2V and V2I, thanks to V2X technology [223]. The ad-
hoc mobile communication technology applied to vehicular network applications
was introduced as VANET. Generally, researchers and industry agree that VANET
holds great potential for implementing ITS, which would simultaneously improve
safety and dependability on our increasingly crowded highways [224].

The communication medium in EV and AV is VANET, which comprises ad
hoc infrastructure and mobile vehicles communicating via open wireless channels.
Shared wireless medium, high mobility, and lack of centralized security services
make VANET more susceptible to attacks. Using ML and data analytics in IDS
model development to spot network threats is widely considered a new promising
area in cybersecurity [225]. However, the current detection techniques have limited
prevention as they are designed for a set of known attacks, which makes it difficult
to avoid the recent attacks designed to penetrate existing security systems [100].
Therefore, the need for IDS has increased to protect V2X communication EV and
AV from potential and updated attacks [226].

Authors in [227] proposed a Secure and Efficient Conditional Privacy-Preserving
Authentication scheme in VANETs for resisting impersonation attacks and achiev-
ing better performance efficiency. The proposed model reduces the computation
costs of signing and verifying the message simultaneously and the communication
costs of the message size. Some authentication methods, such as the Intrusion Pre-
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sentation System (IPS), detect unauthorized users and prevent them from accessing
the network [228]. However, an IPS can bypassed by a skillful intrusion. Therefore,
an IDS can be the second layer of security to detect these types of intrusions. The
role of an IDS is to continuously monitor network activity and collect relevant data
for further analysis to make appropriate decisions in different situations.

Due to the growth of knowledge and technology, the problem of decision-
making is becoming more complicated to handle; thus, developing new techniques
to solve it is critical. Classifier combination in IDS is a promising direction in
ML techniques. Today’s main challenge in massively connected networks, includ-
ing VANET, is keeping valuable information away from intruders and hackers.
Moreover, ML algorithms can be used effectively if combined with predictive
testing tools and Digital Twin technology in order to address the safety and security
aspects of VANET [229]. Despite these threats, the developers of IDS make every
effort to combat cyber-attacks. There are two types of IDS: misuse and anomaly
detection. Misuse detection aims to detect instances of network intrusions by
comparing current activities to an intruder’s expected actions [230]. In anomaly
detection, the typical traffic flow over a network is first established by the system
administrator; any deviation from this baseline or pattern that does not match an
expected normal state will be considered an anomaly [231].

IDS is installed inside network gateways to monitor the traffic on the external
network [232]. Suspicious network activity is detected when abnormal traffic
passes through gateways in external vehicular networks. Then, any packet trans-
mitted in the VANET is collected by network packet taps and examined by the
developed IDS before passing to the connected vehicle [233]. Traditional networks
have utilized IDS-based techniques for years because they efficiently deal with net-
work attacks. However, fundamental features of these networks, such as restriction
in power supply, node storage, poor transmission range, and processing capacity
[234], provide significant challenges to deploying IDS-based systems in highly
mobile and delay-sensitive networks such as VANET. Due to these restrictions,
classic IDS and other security solutions for wired/wireless networks cannot apply
to VANETs [235]. VANET has distinct characteristics that must be dealt with
and considered during the development of IDSs. The most important of these
characteristics is the high mobility in the network and the new protocols used in
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connecting VANET networks [236] since the constant movement in the mobility
makes monitoring intrusions difficult, affecting the detection of malicious attacks.

On the other hand, VANET does not use traditional network protocols but
deals with new and special protocols, such as 802.11p and Dedicated Short-Range
Communication [237], as well as 5G communications. Moreover, 5G technology-
enabled vehicular network and facilitates communication among VANET compo-
nents. Authors in [238] proposed a fog computing-based authentication scheme to
decrease performance overhead in 5G-enabled vehicular networks by applying one
scalar multiplication operation of elliptic curve cryptography to prove information.
The proposed model satisfies privacy-preserving and pseudonym authentication and
identifies the common security attacks. With the development of communications
protocols and the increasing sources of attacks, tremendous types of intrusions
and attacks target VANET network. Therefore, developing an IDS for the VANET
network requires special considerations to enhance the network’s security and
detect the new generation of attacks in time.

This chapter focuses on the information security threats VANET encountered
in developing intelligent connected vehicles. In the related literature, many ML
techniques are used in the classification stage, either individually or collectively.
Feature Selection (FS) techniques are used to select the features that help get better
results. Despite this, some ML techniques need considerable resources to give the
desired results. Most of the current research used one type of FS method, either
filter, wrapper, or embedded methods, which allows the model to select specific
features that may not affect the results or are redundant.

To preserve the effort that the model requires in literature and achieve better
results, we adopt ML techniques from the same category, i.e., Decision Tree-based
models. We also use the hybrid FS method (Filter and Embedded methods) to
assist the model in selecting relevant and significant features from the dataset
without duplicating data. More precisely, in the IDS model, we propose a feature
engineering model based on RF [239] and Fast Correlation-Based Filter [240] to
reduce the dataset dimensionality and select the best features that enhance the
detection rate and model accuracy. After feature engineering, we implement four
ML models, each consisting of tree-based algorithms to detect unpredicted attacks
and achieve precise results with higher accuracy and considering the alarming
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rate. The proposed tree-based algorithms are XGBoost [241], RF, DTree, and
EXT Classifiers [242]. The model is evaluated on the CICIDS2017 benchmark
[243], considering parameters such as packet delivery, dropped and delays, and
network latency. We used the stacking method to improve the proposed model’s
performance. Stacking is a common ensemble learning strategy involving using
each algorithm’s output labels as input to train a robust stack model, which is
responsible for making the final prediction [244].

The main contributions of this chapter are the following: • a tree-based IDS
methodology is introduced to accurately detect intrusions and identify 14 classes
of attacks on VANET, such as DoS, DDoS, PortScan, and Botnet [245], by using
multiple ML algorithms; • a feature engineering model is proposed based on RF
and FCBF techniques to reduce the dataset dimensionality and select the best
features that enhance the detection rate and model accuracy; • Stacking has been
used to aggregate the ML algorithms by applying a parallel ensemble model, which
allows for improved detection rate and efficiency and reduces training time.

The remaining sections of the chapter are structured as follows. The related
works in VANET security, IDS, and type of attacks on VANET are recalled in
Section 2, and the proposed model is presented in Section 3. Then, Sections 5
and 6 discuss the experiment, outcomes, and new directions in VANET security
research.

5.2 Intrusion Detection System for VANET

5.2.1 VANET Security & IDS

Privacy and security are considered challenging issues in private and public trans-
portation, especially with emerging technologies such as 5G-enabled vehicular
networks. Authors in [246] introduced a modular square root-based to resist DoS
attacks in 5G-enabled vehicular networks. The proposed scheme satisfies the
following: authenticity of the source, integrity of the message, pseudonym privacy
preservation, traceability, and revocability. Recent years have seen an increase in
studies focusing on developing IDS for VANET and connected vehicles. Detecting
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cyber-attacks on vehicular networks (V2V/V2I) is a hot topic in the academic
community. Multicluster anomaly-based has been proposed by [235] to detect
attacks in VANET. The Dolphin Swarm Algorithm optimizes the model, which can
accurately identify various forms of cyber-attack. The results were compared with
many existing models in different parameters, such as detection rate, detection time,
and alarm rate. They concluded that the proposed multi-cluster model performs
better on VANET than existing IDS.

Authors in [247] developed a classification framework to detect malicious
attacks on internal vehicular networks with the help of hybrid algorithms, which
are k-nearest neighbor (KNN) and SVM. The model is built based on KNN as
a hybrid model with the support of SVM and utilizes the "DoS dataset" and the
"fuzzy dataset" to simulate vehicle hacking. In order to effectively detect attacks
on AVs’ communication networks, authors in [248] presented an approach using
a bidirectional Long Short-Term Memory (LSTM) architecture based on DL in
addition to the conventional state-based approach. The developed framework is
tested using two benchmark datasets: UNSWNB-15 for communications with
external networks and the car hacking dataset for in-vehicle communications.

In the recently published work [249], a novel DL-based IDS was introduced
to identify suspicious network behavior in In-Vehicle Networks, V2V, and V2I
networks. Two benchmark datasets were used to assess the proposed IDS: the
car hacking dataset for internal communication and the UNSWNB15 dataset for
external communication networks. Moreover, in [155], the authors introduced a
DL framework to detect in-vehicle attacks and external intrusions on VANET. The
suggested model relies on LSTM and the gated recurrent unit. The model’s perfor-
mance was examined on a combined DDoS dataset for external communication
and a car-hacking dataset for internal. The authors in [230] presented a hybrid
IDS approach for VANET to optimize the performance of IDSs by combining
RF classifier and a posterior detection method based on coresets to enhance the
detection accuracy.

The most recent dataset, CICIDS2017, includes the cyber-attack scenarios,
such as the most common types of assaults in VANET, such as DoS Slowloris
and DDoS attacks. An anomaly-based IDS was proposed in [250] to detect CAN
attacks using the adaptive cumulative sum method. Based on the changes in
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statistical patterns, this method can efficiently identify intrusions with a minimal
figure of delay. They tested how well the detection system worked by employing
the CAN logs in the Car-Hacking Dataset. A unique hybrid IDS was proposed in
[251], which accurately identifies the various cyber-attack forms, including those
launched on internal and external vehicular networks. The model was evaluated
and tested on the CICIDS2017 and CAN-intrusion datasets.

An effective two-layer IDS mechanism for vehicular communication networks
was introduced in [252], which uses collaborative detection between two IDSs
located on the vehicle and at the network’s edge. The proposed model was tested
on a widely used CICIDS2017 dataset for IDS systems. To detect Bot attacks on
IoV, in [253], an ML model was developed representing these attacks in a VANET
system. Moreover, they did not include any other attacks from the CICIDS2017
dataset. A network IDS based on a multi-layer presented in [254] perceptron to
identify cyber-attacks on connected vehicles. The model has been evaluated on
two versions of CICIDS2017 dataset and installed on a vehicle microprocessor.

Starting from the current research results, this chapter proposes a new methodol-
ogy for intrusion detection based on the synergistic use of tree-based ML techniques.
Moreover, the novel hybrid FS method to assist the intrusion detection model is
presented for selecting relevant and significant features from the dataset without
duplicating data. By such choices, we accurately identify VANET intrusions and
current assaults like DoS, DDoS, Ports can, and Bot by obtaining improved results
concerning the related literature considering basic indices such as accuracy and
precision.

5.2.2 Attacks on Vehicular Networks

There are two types of attacks on the current vehicular networks: internal and
external.

Internal attacks Currently, the primary defensive techniques against intrusions
are firewalls, access control, and cryptography. These processes serve as the initial
line of protection for connected vehicular networks. Cryptography provides secure
communication, while access control was implemented for user authentication.
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However, the level of internal security that they provide to in-vehicle systems is
insufficient. A CAN is a bus standard for EVs, and it has been exposed to several
attacks due to its broadcasting approach, data encryption needs, and insecure
priority mechanism [255]. By inserting malicious messages into CAN packets,
attackers may intrude on a system and have complete vehicle control in various
ways, including gear and RPM spoofing. This type of assault is referred to a
message injection attack and can result in legitimate nodes or vehicles. The most
common kind of intra-vehicle assault is called a message injection attack [256].

External attacks VANET is a wireless mobile network that facilitates com-
munication between Roadside Units, V2I, and V2V. The absence of firewalls and
gateways in such wireless networks makes them vulnerable to attacks from any-
where within the radio range. Furthermore, unlike wired networks, an attacker
does not need physical access to the car to launch an attack. Each vehicle can
be compromised since they are exposed, and the cars can travel autonomously
without any protection from attack [257]. As external communication employs a
decentralized design, self-driving cars depend on the cooperation of other vehicles
inside their radio coverage region. In VANETs, systems security measures such
as encryption/decryption processes and digital signatures may reduce the number
of possible vulnerabilities, serving as the first line of defense. Nevertheless, self-
driving cars need a second layer of protection to detect and even identify unknown
attacks, which the current system’s security techniques cannot avoid.
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Figure 5.1: Cyber-attacks goals on VANET based on CIA triad.

Confidentiality, Integrity, and Availability, also known as the CIA triad, are
highlighted as the three primary data and information security goals in any network,
including VANET [258]. Figure 5.1 reports the cyber-attacks that can occur in
VANET, divided into the different CIA attacks.

• Attacks on Confidentiality: This attack aims to breach the confidentiality of
VANET and makes it possible for the attacker to listen to the conversation
between nodes and try to steal the user credentials and other important
information [259].

• Attacks on Integrity: The attacker hacks the network without changing the
message’s content and adding delay, which makes the user get the message
later than expected. Therefore, information and messages must be sent
to VANET users at the right time because breaching the network integrity
results in disasters [260].

• Attacks on Availability: To accomplish the primary objective of VANET,
it must always be accessible to allow users access to all applications and
services. However, its main purpose will be useless if users cannot commu-
nicate across the network [261]. These attacks are associated with network
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resources’ accessibility, reliability, performance, and data processing. Net-
work attacks have recently been a concern for many institutions that provide
wired and wireless services, including government and private organizations.
With the emergence of VANET and smart cars, there has been increased
concern about these attacks, which may lead to tragic accidents and pri-
vacy breaches. Table 5.1 reports the common types of attacks on network
availability.

Table 5.1: Common attacks on availability.

DoS DoS attack is an attempt to disable a computer system or network
so its intended users cannot access it.

DDoS A DDoS attack attempts to block a server, service, or network’s
traffic by overloading the target and its surrounding infrastructure
with an enormous amount of Internet traffic.

PortScan Attackers send packets to specified ports on a host and find
vulnerabilities and determine which service versions are running.

Brute-Force Attackers use trial and error to get login credentials by
cracking passwords and encryption keys.

Botnet Attackers hack many connected vehicles and network components
with one or more bot viruses and use this swarm of infected
systems to launch different attacks on the connected systems.

Blackhole Attack on communication protocol where the malicious
node attempt to decrease the availability of VANETand block
vehicles’ communication

Syble The attacker takes over the network and the service’s system
by operating many active fake identities.

Infiltration Attackers disconnect hacked network systems and
malicious implant nodes for future attacks

GPS Spoofing It is an attack on GPS where the attacker sends
a wrong geographic location to the victim node.
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5.3 The Proposed IDS Model

The proposed system is an IDS framework focused on protecting the external
vehicular network and built to obtain optimal results such as high accuracy and
detection rate. We present a multi-level IDS model to classify normal and abnormal
activities across VANET accurately. Figure 5.2 shows the proposed model flowchart
and the methods used to build the IDS. The proposed IDS model begins with data
pre-processing, including feature selection using RF and FCBF methods.

Figure 5.2: Flowchart of ID.

The data are then split into 80% training set and 20% test set. Tree-based
algorithms (DTree, RF, XGBoost, EXT) are applied to the training set, and their
parameters are optimized using HPO method. The detection model is established
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and tested on the test set if the optimal parameters are found. Next, a stacking
ensemble is implemented to combine the four tree-based algorithms to improve the
detection efficiency. The model evaluation concludes the process. The model is
evaluated on well-known data benchmarks (CICIDS2017) containing recent attacks
with 80 network flow features. In the following section, we describe the system
architecture in detail, including CICIDS2017 dataset, and explain the phases in the
architecture of the proposed model.

Figure 5.3: Multi-level IDS model architecture.

5.3.1 System architecture

In this section, the architecture of the proposed IDS model is described in detail
and depicted in Figure 5.3. The framework is divided into four phases: data prepa-
ration, feature engineering, ML model, and evaluation. The first phase implements
data pre-processing techniques such as data sampling, normalization, and data
imbalance solutions like Synthetic Minority Over Sampling Techniques (SMOTE)
[262]. The data should be prepared in order to create a representative subset for
training and testing while avoiding outliers and class imbalance issues. The second
phase implements feature selection techniques, i.e., RF and FCBF, that are used
to remove unnecessary and redundant features, as well as low dimensionality and
noisy features that might affect the accuracy of the prediction result.

Then, in the ML classification phase, the four tree-based ML methods are
applied synchronously to detect unpredicted attacks and combined by a stacking
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method to improve the attack detection accuracy further. In the final phase, the
attack prediction accuracy is evaluated by standard performance metrics like accu-
racy, recall, precision, and score. The aim is to detect whether an attack occurs or
does not occur and, consequently, whether a corrective action is needed or not.

5.3.2 Benchmark description

The CICIDS2017 dataset is used as a benchmark of network data from the real
world devoted to IDS analysis. The dataset is created on an internet-connected
testbed with a network infrastructure hosting various client devices and operat-
ing systems that simulate real-world scenarios. CICFlowmeter-V3.0 (Canadian
Institute for Cybersecurity 2017) is applied to this dataset to extract features and
labels, from which 80 network flow features have been extracted. The attacks in
this dataset can break down into botnet, infiltration, brute force FTP/ SSH, DoS
and DDoS attacks, heartbeat, and web, which are not found in any other datasets
[243]. Using the B-Profile system, CICIDS2017 abstractly profiles how people
interact with each other and simulates different multi-stage attack scenarios. These
datasets differ because they are based on real-world data generated from wireless
local area networks (WLANs) and mobile networks and can be trusted. On the
other hand, others in [263] provided a comparative study of current datasets used
to evaluate the efficiency of ML IDS techniques.

The study concluded that the CICIDS2017 dataset is built and designed to
overcome all the limitations of other available datasets, such as the variety of
communication protocols, network traffic scenarios, and new patterns of attack
discovered in the vehicular network. To ensure the evaluation is accurate, the
benchmark uses 11 criteria, such as total traffic and available protocols[264]. How-
ever, VANET datasets are unavailable for evaluating external vehicular network
IDS for many reasons, such as data privacy, distribution, and availability. Despite
that, WLANs and mobile networks are the communication techniques used in
VANET. Therefore, all the attacks on such networks are similar to malicious in-
trusions executed on VANET. Since CICIDS2017 is the most comprehensive and
illustrative available cyber-attack dataset, the proposed IDS uses such benchmark



5.3 The Proposed IDS Model 106

data to evaluate the model’s efficiency in detecting attacks on VANET. Furthermore,
the types of attacks included in the CICIDS2017 dataset are reported in Table 2.

5.3.3 Data Pre-processing

The first phase in the data analysis process is data pre-processing. Various tech-
niques, data sampling, normalization, and data imbalance solutions are used in this
phase as described in the following sections.

Normalization Some features in an IDS available public dataset are nomi-
nal, while others are not normalized. Normalization of data is an essential pre-
processing step for learners who learn from the statistical properties of features.
Data normalization is the process of normalizing each attribute’s value so that
it falls within a specified range, preventing the influence of one attribute from
dominating the effects of the others. Linear and non-linear techniques can be used
to normalize feature-based data. In particular, Z-score normalization is used to
normalize the numerical attributes between 0 and 1, minimize their values, and
decrease the training processes [265]:

z =
x−µ

σ

where Z stands for the Z-score normalization, σ refers to the standard deviation
of features, x stands for the values, and µ the mean of the sample.

Data encoding Since most ML algorithms cannot work with string data type,
the dataset is encoded using a label encoder. This encoder method helps to convert
categorical features in the dataset into numerical features, which are accepted as
input to the proposed ML model.

Data sampling It is challenging to train ML models on enormous amounts of
network data, which requires repeatedly training an ML model. Data sampling is a
standard ML approach that can create a portion of the original dataset to simplify
the training phase and improve the performance of the model training process. The
proposed model for data sampling uses the K-means-based algorithm to produce a
highly representative portion of the original data (10% of the dataset is used in the
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considered experiments). K-means seeks to find the optimal values for each of the
distances between each data point and cluster’s centroid by minimizing the sum of
the squares of those distances [266]:

J =
k

∑
j=1

n

∑
i=1

∥∥∥x j
i −µ j

∥∥∥2

where J is the objective function, k is the number of clusters, n is the number
of cases, x j

i is the data point of case i in cluster j and µ j is centroid for cluster j.
K-means is a widely used technique for sampling because of its simplicity and low
computational requirements.

SMOTE It is used to solve the class imbalance problem, particularly oversam-
pling. The oversampling issue occurs when the dataset classes are imbalanced
regarding samples. In this case, SMOTE is applied to solve the oversampling
problem to balance the class dimensions.

5.3.4 Feature Engineering

Feature engineering aims to select the best features from the pre-processed dataset,
enhancing the IDS’s accuracy and helping to detect any vulnerable attacks on the
vehicle network at low cost. Using feature selection techniques helps to decrease
the cost of the ML workflow in terms of time and resource usage. Additionally,
it enables feature transformation and removing unnecessary features to improve
the quality and accuracy of results. Generally, the quality of datasets would be
enhanced for more precise and effective model learning by choosing the ideal set of
features. This work implements a double feature selection method based on RF and
FCBF before the training stage. In particular, RF is well known as the best method
to select features with high accuracy and faster results. Anyway, RF method gives
the same importance level to the relevant features, leading to redundancy in the
selected features. Hence, we use the FCBF method to filter the relevant features
and remove the redundancy in the final set of selected features. In the following,
we describe in detail the RF and FCBF methods.
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RF method: RF is an ensemble-learning method utilized for data classification
and regression. The regression tree is a hierarchical arrangement of criteria or
constraints gradually executed from the root to the tree’s leaf. Trees are generated
using chosen bootstrap samples and randomly picked n-estimator parameters in
each node separation in the RF technique [239]. RF method delivers a unique
validity and model interpretation estimate within ML approaches. In the first stage
of feature selection, RF technique calculates the importance of a feature based on
its ability to increase the pureness of the leaves. It selects the 38 features as shown
in Table 5.2, and these features are fed to the second filtering method. Figure 4
explains how RF method works for class prediction and feature selection. In the
scheme, RF randomly selects a subset of important features and builds multiple
decision trees based on these subsets. Each tree provides its prediction, and the
final class prediction is determined by majority voting, where the class with the
most votes becomes the final prediction. This approach reduces overfitting and
enhances the model’s generalization in classification tasks.

Figure 5.4: Random Forest structure.
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FCBF method: FCBF is used in addition to the RF method since RF method
removes the insignificant features to manage and decreases the time complexity but
does not avoid feature redundancy. Indeed, the model accuracy is not optimized as
many redundant and unneeded features remain in the dataset after RF application.
The model’s time and space complexity may also rise due to feature redundancy.
Therefore, reducing duplicated features and computing the input correlation char-
acteristics might positively impact the model’s efficiency. Moreover, the FCBF
technique is applied as a second FS technique because it shows excellent perfor-
mance, especially on high-dimensional datasets, by reducing time complexity and
removing redundant features while preserving important features.

Table 5.2: Selected features by RF.

No Features NO Features
1 SubflowFwd Bytes 20 Fwd IAT Min
2 Total Length of Fwd Packets 21 Flow IAT Max
3 Total Length of Bwd Packets 22 InitWinbytesforward
4 SubflowBwd Bytes 23 Avg Bwd Segment Size
5 Flow IAT Std 24 Bwd Packet Length Max
6 Bwd Packets/s 25 Destination Port
7 Fwd Packet Length Std 26 Bwd Packet Length Std
8 InitWinbytesbackward 27 SYN Flag Count
9 Fwd IAT Total 28 Max Packet Length
10 Bwd Packet Length Min 29 Flow IAT Min
11 Flow Duration 30 Fwd Packet Length Mean
12 Fwd Packet Length Max 31 Average Packet Size
13 Bwd IAT Total 32 Packet Length Variance
14 Fwd IAT Mean 33 min_seg_size_forward
15 Fwd Header Length.1 34 Packet Length Std
16 Fwd Header Length 35 Packet Length Mean
17 Flow IAT Mean 36 Active Min
18 Fwd IAT Std 37 Total Fwd Packets
19 Bwd Packet Length Mean 38 Bwd Header Length
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The first step in the FCBF process is to select a collection of features with a
high degree of correlation with the FCBF class. After that, the resulting values are
sorted into a list based on the feature importance. It uses heuristics to eliminate
features that are not necessary and retain the features that are more important to the
class. The proposed method selects the best 25 features in the dataset, as shown in
Table 5.3, directly impacting the model accuracy.

Table 5.3: Selected features by FCBF.

No Features NO Features
1 Total Length of Fwd Packets 14 Flow IAT Mean
2 SubflowFwd Bytes 15 Flow IAT Std
3 Bwd Packet Length Std 16 Flow IAT Max
4 Fwd IAT Std 17 Max Packet Length
5 Fwd IAT Min 18 Destination Port
6 Bwd Packets/s 19 Fwd Packet Length Std
7 Avg Bwd Segment Size 20 Fwd Header Length.1
8 Bwd Packet Length Mean 21 Total Length of Bwd Packets
9 Init_Win_bytes_backward 22 Fwd Header Length
10 Packet Length Std 23 Bwd Packet Length Max
11 Init_Win_bytes_forward 24 Flow Duration
12 Fwd IAT Total 25 min_seg_size_forward
13 Flow IAT Min - -

5.3.5 The ML model

According to Intel Corporation [267], four terabytes of data are generated daily
due to the necessary technological improvement of connected vehicles. Strong
IDS based on ML is often suggested to achieve vehicle security related to road and
human life safety, protecting vehicular network communications. In this phase,
we aim to examine the considered pre-processed dataset to detect the attacks by
classifying the traffic as normal and abnormal. For that goal, we implement a multi-
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ML algorithms model consisting of four tree-based algorithms to detect unpredicted
attacks and achieve accurate results. The proposed tree-based algorithms are
XGBoost, RF, DTree, and EXT classifiers.

The DTree algorithm is a typical ML technique that fits data into a tree structure
in order to generate predictions. The depth of the tree, minimum weight, full sample
nodes, minimum sample split, fraction leaf, and minimum sample leaf are some of
the DTree hyper-parameters that need to be tuned. The DTree is the foundation of
all the tree-based algorithms designed to increase model processing speed through
parallelization. In addition, XGBoost algorithm structure is shown in Figure 5.5.
It works by creating an ensemble of decision trees. The trees are constructed to
correct the errors in the other trees, considering the previous prediction errors. The
final prediction is made by combining the predictions of all the trees, with each
tree’s contribution weighted based on its performance. XGBoost is known for its
speed and performance and is widely used for both classification and regression
tasks. RF is also used for classification, and it is a tree-based algorithm that utilizes
the majority voting rule to merge many different DTree classifiers.

On the other hand, EXT method combines several randomized decision trees
that have been constructed using various subsets of a dataset. The reason behind
selecting tree-based algorithms is that they make it possible to execute many tasks
simultaneously, which notably minimizes the time required for model training
and improves performance. Moreover, a tree-based algorithm determines the
significance of features during the training phase. Since traffic data on the vehicular
network is non-linear, tree-based algorithms are the best choice to deal with it.

Finally, in the ensemble stage, tree-based algorithms use randomization to en-
courage the development of a flexible ensemble model with higher generalizability
on various domains compared to existing ML approaches. It is also essential to
optimize each tree-based algorithm’s parameters to avoid using default parameter
values. We apply the HPO method to select the best hyperparameter configuration
in each model. In addition, the stacking technique is used to ensemble the four tree-
based algorithms. This technique is an ensemble ML method aiming at learning
how to combine the predictions at best from several well-performing ML models
[244].
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Figure 5.5: Structure of XGBoost Algorithm.

The Bayesian Optimization (BO) [268] technique is applied with the Tree
Parzen Estimator (TPE) [269] in this phase. The BO is an iterative method fre-
quently adopted for supporting HPO process. In particular, BO is used in ML to
tune the hyper-parameters of a given model with good performance on a validation
dataset. TPE is a sequential model-based optimization approach. These methods
sequentially construct models to approximate hyperparameters performance based
on historical measures and then consequently find new hyperparameters to evaluate.

In order to use TPE, the observation results are first separated into excellent
and bad results using a pre-defined percentile y. Then, the two different sets of
results are modeled using basic Parzen windows:

p(x | y,D) =

{
l(x), if y < y∗
g(x), if y > y∗

.
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Where y∗ is the threshold value of the objective function, x is the proposed set
of hyperparameters, y is the actual value of the objective function using hyperpa-
rameters x, and p(y | x) is the conditioned probability expressing the probability
of y given x. In addition, g(x) and l(x) represent the probability of identifying
hyper-parameters in areas that have performed well and areas that have performed
poorly, respectively. BO-TPE can determine the ideal hyperparameter values by
increasing the ratio l(x)/g(x). The complexity of BO-TPE in terms of time is
O(n logn), which is less than what the other methods require.

In conclusion, the proposed IDS model training process could be performed on
an external server machine on VANET with high performance and computational
speed. The model can also minimize the latency and fulfill the vehicle system’s
real-time requirements. The implemented multi-level IDS tree-based model that
integrates feature selection technologies, ML algorithms, HPO-BO optimization,
and stacking processes allows for optimizing the detection rate of attacks on
VANET by outperforming existing approaches.

5.3.6 Evaluation methods

During the evaluation of an IDS, the detection rate, as well as the false-positive
rate, are important criteria that should be taken into consideration. Many different
measures may be utilized for IDS performance evaluation. Confusion matrix
in Table 5.4 used as standard evaluation metrics, Table 5.5 presents accuracy,
recall, precision, and f-score, which are metrics commonly used to evaluate the
performance of the proposed model [270].

Table 5.4: Confusion Matrix (CM).

Prediction

Actual
Intrusion Legitimate

Intrusion TP FN
Legitimate FP TN
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Table 5.5: Selected features by FCBF.

Accuracy
The percentage of correctly
predicted instances in
the testing dataset

Acc = T P+T N
(T P+T N+FP+FN)

Precision
The number of true positives
divided by the total of true
positives and false positives

Precision = T P
T P+FP

Recall
The number of true positives
divided by the total of true
positives and false negatives

Recall = T P
T P+FN

F-score
The harmonic average of recall
and precision knew

FM = 2× precision × recall
precision+recall

Assessing the efficacy of our proposed intrusion detection model involves
employing the confusion matrix, which is particularly useful in classification
scenarios. This matrix precisely illustrates the correspondence between predicted
and actual class outcomes, offering insights into the model’s accuracy. Leveraging
pairwise similarity metrics, the confusion matrix comprehensively analyzes class
relationships, providing a nuanced evaluation of intrusion detection performance.

The confusion matrix has four alarm rates that have to be calculated during the
evaluation process, providing the value of the evaluation metrics:

True positive rate T PR = T P
T P+FN

True negative rate T NR = 1−FPR

False positive rate FPR = FP
T N+FP

False negative rate FNR = 1−T PR

Where TP is the number of intrusions correctly detected, TN is the number of
non-intrusions correctly detected, FP is the number of non-intrusions incorrectly
detected, and FN is the number of intrusions incorrectly detected.
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5.4 Experimental Setup

The model is developed in the Jupyter environment (Pimentel et al., 2021) and uses
Python and its libraries, which support feature engineering, ML, and HPO, such
as Pandas, Xgboost, Hyperopt, and Scikit-learn. The experiments are carried out
on a Toshiba Satellite Pro with Core i5-1135G7 (CPU) (4.20 GHz) and 16GB of
memory 3200MHz, Intel Iris Xe Graphics 8GB, and Windows 10 Home 64Bit.
The experiment takes approximately 200 hours (around 9 days), and the model is
run in different cases. First, we download CICIDS2017 dataset from the Canadian
Institute for Cybersecurity website [271], the version for ML, which is in the form
of a CS file in a compressed size of about 1GB. The data are divided into 8 CSV
files; each file is generated on a different day and with different types of attacks.

The files were combined into one file to enable the model to read the data
from a unified source, which is the best way to save time and reduce effort on the
processor reading from one source. Then, a normalization process is performed
for the data using Z-score. Data sampling is done using the K-mean technique,
where the algorithm chooses the best 10% of the data with a size of 100 megabytes,
representing the entire dataset. Successively, we apply feature selection methods:
the first RF method selects 38 features, and then the second FCBF method selects
25 features. We ran the model seven times with different packs of features: 10,
15, 20, 25, 30, 35, and 38 features. We found that when selecting 25 features, the
accuracy and evaluation metrics results are the best, as shown in Table 5.6. Figure
5.6 shows the results of testing the IDS model with different features.

Table 5.6: Model evaluation with a different set of features in CICIDS2017 dataset

Accuracy Precision Recall F1 Score
10 features 0.9959 0.9973 0.9967 0.9964
15 features 0.9962 0.9974 0.9969 0.9965
20 features 0.9967 0.9978 0.9971 0.9968
25 features 0.99856 0.99849 0.9985 0.99851
30 features 0.9981 0.9982 0.9977 0.9978
35 features 0.9980 0.9981 0.9979 0.9980
38 features 0.9975 0.9979 0.9976 0.99768
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Figure 5.6: Feature selected performance with evaluation matrices.

An imbalance in the classes was observed, and the use of SMOTE is necessary
to address the class imbalance issue. It works by generating synthetic samples for
minority categories and avoiding bias in the ML model [262]. In the proposed ML
model, each tree-based algorithm is executed under three different cases:

1) without the feature selection,
2) with the feature selection but without the optimization algorithm HPO, and
3) using feature selection techniques and HPO algorithms.
It is noticed that when FS and HPO are used, the model can detect intrusions with
a higher accuracy of up to 98.86%, as shown in Table 5.7. Table 5.8 presents
a comparison with outcomes achieved by other researchers employing diverse
techniques on the same dataset. Moreover, Figure 5.7 shows the results obtained
by the proposed model with various evaluation matrices.
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Figure 5.7: Performance of model on CICIDS2017 with different evaluation
matrices.
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5.5 Results and Discussion

The proposed IDS model shows its effectiveness in predicting different kinds of
attacks on VANET. It is based on different strategic levels:

• Data processing is applied to purify the initial dataset from errors and missing
data; Z-score is used for normalization, K-means-based algorithm is used for
data sampling, and SMOTE technique for solving the imbalanced problem;

• Feature selection is applied to choose the features that can improve the accu-
racy of detecting intrusions. In particular, we propose a feature engineering
model based on RF and FCBF to reduce the dataset dimensionality and select
the best features that enhance the detection rate and model accuracy;

• ML algorithms are applied to discover gaps by classifying the normal and
the abnormal traffic based on the classes available in the dataset. A multi-ML
algorithms model is implemented consisting of four tree-based algorithms to
detect unpredicted attacks and achieve accurate results;

• the prediction accuracy is evaluated by using standard metrics, i.e., accuracy,
recall, precision, and f-score;

• To optimize the parameters of each tree-based algorithm, we apply HPO
method, selecting the best hyper-parameter configuration in each model.

Although this field has received the attention of many researchers and several
research works have been submitted in this context, a hybrid IDS framework can
rarely obtain such a high prediction accuracy. Using two methods to filter the
features led to selecting the essential features that help the model deal with a real
dataset containing data similar to the real-time data.

Tree-based ML algorithms are used since they work perfectly on non-linear
data and can perform many tasks simultaneously, which is needed during the
training process. Moreover, we used the stacking technique to ensemble the four
tree-based algorithms, and this technique is an ensemble ML method aiming to
learn how to combine the predictions from tree-based models at best. In addition,
tree-based model uses randomness during the building process, which helps to
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construct a flexible model that can be generalized to any domain case in the future.
During the feature selection phase, we carefully picked 25 features, resulting in
impressive performance metrics. The proposed model achieved a 99.86% accuracy,
with 99.85% precision, recall, and F1 Score, as detailed in Table 6.

We conducted three different experiments: one without feature selection, one
without HPO, and one with HPO, for each algorithm separately. Then, we com-
bined all the algorithms using the ensemble technique, referred to as the stacking
method. The experiments with HPO showed better performance in various evalua-
tion metrics. However, the stacking method stood out with the highest accuracy,
precision, and recall, reaching 99.86%, 99.85%, and 99.85%, respectively, as
indicated in Table 5.7.

Looking at these results and comparing them with previous studies in Table
5.8, our model excelled in detecting attacks, especially regarding the accuracy
and other necessary metrics. This achievement is realized through combining
feature selection techniques, effectively refining the selected features to optimize
the model’s outcomes. Additionally, the performed experiments are based on a
subset comprising 10% of the CICIDS2017 dataset, containing 14 common attack
types, enabling us to design a more comprehensive IDS for VANET that can detect
attacks effectively.

To the best of our knowledge, integrating the selected FS techniques and
detecting this number of attack classes for VANET has not been previously reported
in the literature. There is a need to secure EV networks for internal or external
communication, and developing such systems is essential in the future of smart
cars. Correct information may save lives and prevent disasters, while lacking data
or giving the wrong position may cause unfortunate accidents.



Chapter 6

Security and Intelligent
Transportation Systems

6.1 Introduction

The development of ITS and the broader concept of Smart Cities have catalyzed
significant advances in urban mobility, introducing disruptive changes. Central to
this evolution are VANETs, which have become a pivotal element in facilitating
V2V and V2I communications. These networks are instrumental in the design of
intelligent and adaptable transportation systems [272]. As a specialized subset of
mobile ad hoc networks, VANETs focus on improving inter-vehicle communication,
optimizing routing protocols, and fostering a dynamic networking infrastructure
[273].

VANETs have attracted considerable interest due to their potential to enhance
road safety and traffic efficiency. Research in this domain spans various areas,
including broadcasting, Quality of Service (QoS), routing, and security. The
integration of network communication in EV and AV significantly enhances their
situational awareness and decision-making capabilities [274]. In VANETs, each
vehicle acts as a wireless receiver and transmitter, relaying data to nearby vehicles
or infrastructure [275]. Standard protocols like IEEE 802.11p [276] and IEEE
1609.4 [277] are employed for inter-vehicle communication (IVC), with IEEE
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802.11p being an adaptation of IEEE 802.11 [278], tailored for the dynamic and
complex environments of VANETs. This protocol is also known as Wireless Access
in Vehicular Environment (WAVE) [279]

Dedicated Short-Range Communications (DSRC) is a technology designed
for short-range wireless communication, operating within the 5.9 GHz ITS band
(5.85–5.925 GHz) [280]. It plays a crucial role in improving public and private
safety by enabling effective V2I and V2V communications [237]. WAVE, which
operates under the IEEE 802.11 standard, utilizes the DSRC band and is based on
the IEEE P1609 family standards. This framework defines vehicular communica-
tions’ structure, communication model, management, and security aspects, with
key components including RSUs, Onboard Units (OBUs), and the WAVE interface.
The WAVE protocol stack comprises the IEEE 1609 family, IEEE 802.11p, and the
Society of Automotive Engineers (SAE). Illustrating the key components of the
WAVE protocol architecture in Figure 6.1, these elements are briefly outlined as
follows [281]:

• IEEE P1609.0 Draft Standard for WAVE - Architecture.

• IEEE 1609.1 Trial Use Standard for WAVE - Resource Manager.

• IEEE 1609.2 Trial Use Standard for WAVE - Security Services for Applica-
tions and Management Messages.

• IEEE 1609.3 Trial Use Standard for WAVE - Networking Services.

• IEEE 1609.4 Trial Use Standard for WAVW - Multi-Channel Operations.

• IEEE P1609.11 Over-the-Air Data Exchange Protocol for ITS.

• IEEE 802.11p Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications – Amendment: WAVE.
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Figure 6.1: Architecture of DSRC communication.

The coming Section will explain the significance of WAVE protocol and the
message types exchanged among the network in the context of the IEEE 802.11p
protocol in VANETs.

In VANETs, continuous exchange of messages is vital to sharing crucial infor-
mation. However, unauthorized access to these data introduces security risks and
potential network vulnerabilities [282]. Current research is focused on improving
security through AI-driven anomaly and IDS. These systems, deployed in vehi-
cles and roadside units, scrutinize network behavior to identify patterns indicative
of security threats, ensuring real-time monitoring and a robust network security
strategy.

This research aims to simulate VANET communication protocols, study WAVE
standards, and analyze message exchanges to bolster vehicle security and detect
attacks using AI and ML tools. The approach involves integrating network and
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traffic simulations into a unified framework, enabling the simulation of real net-
works, vehicle communications, WAVE message analysis, and developing security
solutions based on simulation data.

A case study was conducted using the SUMO to model vehicle traffic, explicitly
focusing on the real traffic dynamics of the Pasubio region of Bologna in Italy, as
per a previous study by [283]. Additionally, the OMNeT++ software was used to
simulate communication and network protocols [284], with the VEINS framework
integrated into OMNeT++ to simulate the vehicular environment, linking traffic
and network simulations into a cohesive model that accurately represents VANETs.

The sections of the chapter are organized as follows. Section 2 provides a
general description of VANET security. Section 3 presents the IEEE 802.11p
(WAVE) protocol. Section 4 describes simulation tools. Section 5 proposes a
case study and discusses the study results, and Section 6 draws conclusions and
considers future work.

6.2 Simulation Approach for VANET Security

VANETs usher in a new era of intelligent transportation by enabling vehicles to
communicate wirelessly, enhancing road safety and traffic efficiency seamlessly.
At the heart of this technological transformation are advancements such as IEEE
802.11p, which empowers VANETs to facilitate swift and real-time data exchange
among vehicles [285]. This exchange of information fosters improved road safety
and enable sophisticated features such as collision warnings and efficient traffic
management systems [286].

While VANETs exhibit tremendous potential in revolutionizing how vehicles
interact with each other and with infrastructure, they also present many challenges,
particularly concerning preserving data integrity and security [287]. The complex
interplay between vehicles and network components in VANETs necessitates robust
mechanisms to safeguard against potential threats and unauthorized access. These
challenges are exemplified in Fig. 6.1, underscoring the critical importance of
addressing security concerns in the context of VANET applications.
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Figure 6.2: Vehicular Ad Hoc Networks (VANETs)

In the dynamic landscape of VANETs, the continuous and bidirectional flow
of information between vehicles and infrastructure introduces vulnerabilities that
must be addressed to ensure the data’s reliability and trustworthiness [288]. Cyber-
security threats such as data tampering, eavesdropping, and unauthorized access
pose significant risks that could compromise the integrity of communication within
the VANET ecosystem [289].

Moreover, the need for real-time responsiveness and the decentralized nature
of VANETs amplify the complexity of implementing robust security measures
[272]. Striking a delicate balance between facilitating seamless communication
and fortifying the network against potential breaches becomes paramount [290].
This intricate dance requires innovative solutions that leverage state-of-the-art
encryption techniques, authentication protocols, and IDS [291].

As the deployment of VANETs becomes more widespread, researchers and
practitioners are actively engaged in developing comprehensive security frame-
works [292]. These frameworks aim to mitigate risks, ensuring that VANETs
enhance road safety and traffic efficiency and operate within a secure and trust-
worthy communication environment. The ongoing pursuit of advancements in
cryptographic algorithms, secure key management, and anomaly detection mecha-
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nisms signifies a commitment to overcoming the challenges posed by the dynamic
and interconnected nature of VANETs [293].

Securing VANETs is paramount for thwarting potential threats and upholding
the trustworthiness of vehicular communication systems. Adopting robust security
measures is essential to ensure the integrity and confidentiality of data transmitted
within these dynamic networks. Encryption techniques play a pivotal role in
safeguarding the content of exchanged information, shielding it from unauthorized
access and tampering. Simultaneously, authentication mechanisms validate the
identities of participating entities, establishing a foundation of trust within the
VANET ecosystem.

To enhance VANET security further, anomaly detection systems have emerged
as a vital component, enhancing the overall resilience of the network [294]. These
systems scrutinize behavior patterns, promptly identifying deviations that may
indicate potential security threats [295]. Extensive studies have delved into the
multifaceted challenges and solutions for VANET security, contributing to the
evolving landscape of secure vehicular communication [296].

One notable contribution is a comprehensive survey on AI techniques for
VANET security, meticulously presented in [272]. This survey explores the diverse
applications of AI in addressing the unique security challenges posed by VANETs,
providing valuable insights into cutting-edge methodologies.

The work by [297] delves into the advances and challenges within VANETs,
specifically focusing on security aspects. This research sheds light on the evolving
nature of vehicular communication and the concurrent efforts to enhance security
measures in this dynamic domain.

To pursue a robust IDS, [298] proposes the Secure and Private-Collaborative
IDS (SP-CIDS). This innovative system aims to detect network attacks efficiently,
thereby mitigating security concerns and ensuring the integrity of vehicular com-
munication within VANETs.

Addressing the intricate challenge of message congestion and accurate attack
detection, [299] introduces a novel IDS tailored for VANETs. This system not only
contributes to the mitigation of potential security threats but also optimizes the
network’s performance by alleviating message congestion.
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Notably, previous studies in the field have commonly utilized VANETs as
dynamic wireless networks for vehicle communication. However, a notable gap
has been identified concerning the lack of integrated simulation models for traffic
and networking. This discrepancy motivated the present study to construct a holistic
simulation model using SUMO and Omnet++, incorporating the WAVE protocol.
The study analyzes the diverse messages exchanged between vehicles within this
simulated environment, aiming to uncover anomalies that may signify potential
security threats. The ensuing sections will delve into a detailed exploration of these
messages and their implications in the context of VANET security.

6.3 The IEEE 802.11p - WAVE Protocol

6.3.1 Dedicated Short-Range Communications

Dedicated Short-Range Communications (DSRC) is a specialized communication
service operating within the 5.9 GHz frequency band and purposefully designed
for short-range wireless communication between devices. DSRC is an innovative
solution that facilitates direct communication over short-to-medium distances,
typically within a range of approximately 300 meters [237]. Functioning as an
extension of Wi-Fi, DSRC marks a significant advancement, offering a means for
devices to communicate directly without relying on intermediaries.

The distinctive feature of DSRC lies in its capability to enable seamless device-
to-device data transmission. This direct communication is particularly advan-
tageous when telecommunication infrastructure is limited or unavailable. By
operating independently of external networks, DSRC ensures reliable and immedi-
ate connectivity between devices, thereby overcoming potential limitations posed
by the absence of traditional communication infrastructure.

DSRC technology finds widespread application in vehicular networks, playing
a pivotal role in V2V and V2I communication. In vehicular environments, where
real-time communication is crucial for ensuring road safety and optimizing traffic
flow, DSRC establishes itself as a critical enabler. Its short-range communication
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capabilities make it well-suited for supporting communication between vehicles
nearby, fostering a dynamic and responsive vehicular communication network.

6.3.2 Wireless Access in Vehicular Environments

IEEE 802.11p protocol, also known as the Wireless Access in Vehicular Environ-
ments (WAVE) protocol, stands as a pivotal standard within the realm of vehicular
communication, operating seamlessly in the 5.9 GHz frequency band [300]. Con-
ceived and developed by the Institute of Electrical and Electronics Engineers
(IEEE), this protocol was tailored to meet the distinctive requirements of VANETs.
WAVE provides a comprehensive framework to facilitate DSRC among vehicles
[301]. This, in turn, enables direct and reliable information exchange, spanning
distances from short to medium range. The widespread adoption of the IEEE
802.11p protocol marks a fundamental stride toward enhancing crucial aspects
of modern transportation, including road safety, traffic efficiency, and the overall
efficacy of ITS.

Within the context of VANETs leveraging the IEEE 802.11p protocol, three
primary types of messages play instrumental roles in orchestrating effective com-
munication. The Basic Safety Message (BSM), colloquially called "Beacon mes-
sages," constitutes the first message type [302]. These messages are dispatched
regularly and convey essential vehicle information, including identification details,
route specifics, and current location. The consistent dissemination of BSMs forms
a foundational element in the continuous exchange of critical data among vehicles
within the network.

The second message type, the WAVE Short Message (WSM), extends the
functionality of BSMs by incorporating additional details about road conditions and
specific requests. These requests may include route requests (RRQ), authentication
certificates, and network verification. Unlike BSMs, WSM messages are not
transmitted periodically but are dispatched selectively when necessary, contributing
to the efficiency of the WAVE Short Message Protocols (WSMP) [303].

The third message type is the WAVE Service Advertisement (WSA), which
incorporates Vendor Specific Action (VSA) within organizational networks to
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broadcast service advertisements. WSA frames play a crucial role in announcing
the availability of various services, issuing alerts, and conveying information related
to parking, commercial purposes, and more. These messages can be transmitted
across all communication channels or selectively directed to a specific service
channel, providing flexibility within the VANET ecosystem.

In summary, the IEEE 802.11p /WAVE protocol lays the groundwork for
efficient vehicular communication. The orchestrated transmission of BSMs, WSMs,
and WSAs represents a sophisticated mechanism for enhancing communication
reliability and supporting diverse functionalities critical for advancing ITS.

6.4 Simulation Tools for VANET

Simulation tools play an essential role in understanding and optimizing network
dynamics. VANETs operate in diverse real-world environments. The simulation
replicates these environments, incorporating road structures, traffic patterns, and
urban layouts. This ensures a realistic representation to evaluate the network
performance. Simulation tools facilitate scalability by comprising many vehicles
and infrastructure elements in VANET. Communication protocols such as IEEE
802.11p can be enabled and evaluated in such simulation environments. Finally,
security analysis is a critical issue for VANET.

Before implementing security measures in the real world, researchers can eval-
uate vulnerabilities, test countermeasures, and model and analyze security systems
using simulation tools. Researchers use different tools for research purposes to
evaluate vehicular networks, including SUMO, UNITY, OMESON, NS3, NS2,
OMNeT++, OPNET, VISSM, and VISUM. This study uses the software and tools
described in the following subsections. Many reasons drive the choice to use
SUMO with OMNeT++ in this study. SUMO is designed to simulate complex
traffic scenarios, which is crucial for studying realistic traffic.

Moreover, OMNeT++ is widely used for network simulations and allows re-
searchers to model traffic and network communication in a unified simulation
environment. VEINS framework within OMNeT++ is the key factor to this inte-
gration. It also provides the ability to simulate VANET protocols, which may not
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be available in other simulation tools. Finally, all these tools are open-source tools
that can be modified and extended based on specific simulation requirements.

6.4.1 SUMO, OMNeT++ and VEINS

SUMO is a powerful microscopic traffic simulator that simulates realistic automo-
tive dynamics in urban environments. Due to its microscopic methodology, the
system constructs individual models for each vehicle, capturing small and complex
details of their movements. Integration of the software with other simulators, such
as OMNeT++, provides researchers with a comprehensive platform for VANET
simulations. Researchers frequently leverage SUMO’s capabilities to analyze and
optimize VANET behavior in urban scenarios, making it an important software in
vehicular network research.

OMNeT++, a discrete-event simulation toolkit, is essential for network sim-
ulations. It is easier to model complex VANET communication protocols and
behaviors with OMNeT++ due to its adaptability and ability to simulate different
scenarios. Oment++ has provided several frameworks that can be integrated into
the software so that the researcher can simulate all types of networks, including
LTE and 5G, and VEINS framework dedicated to the vehicular environment. The
research community prefers it because of its robust and extendable C++ archi-
tecture, which helps them investigate communication dynamics in complicated
networks such as VANET.

VEINS is an open-source framework built to simulate vehicular networks in
OMNeT++. It integrates seamlessly with SUMO through TraCi [182] to realisti-
cally represent urban and suburban mobility. VEINS supports multiple VANET
communication protocols such as IEEE 802.11p, AODV, UDP, TCP, etc. Its acces-
sibility helps researchers study vehicle communication, and the integration between
VEINS and SUMO makes VANET simulations more realistic and accurate.
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Figure 6.3: VEINS Architecture with SUMO and OMNeT++

Those simulators and tools were used in this study as they can provide realistic
emulation and let us focus on the study objectives at hand rather than side concerns
such as networks, signals, and traffic. Figure 6.3 shows the integration between the
tools and how VEINS can be connected to SUMO and OMNeT++.

SUMO generally provides authentic mobility patterns and integrates real-world
road networks and traffic conditions into simulations. On the other hand, OMNeT++
facilitates the modeling of communication protocols, adding a layer of realism
to the exchange of messages in V2V and V2I communications. The integration
process encounters challenges arising from the distinct paradigms employed by
SUMO and OMNeT++. Real-time communication between these tools is enabled
through the TraCI interface, embedded in the VEINS framework and represented
in the TraCiDemo11p.cc and TraCiDemo11p.h files. An integration script was
built, and the scenario functions within C++-based TraCiDemo11p files to execute
code seamlessly in OMNet++, as shown in Figure 6.4.

Furthermore, making these different simulations work together requires adjust-
ing the parameters, data formats, nodes, RSUs, and communication setup, and
all these parameters are adjusted in the omnet.ini file as shown in Figure 6.5. De-
spite integration challenges, the simulation successfully handled these intricacies,
proving its strength in accurately representing different attack scenarios.
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Figure 6.4: TraCiDemo11p.h implementation in OMNeT++

Implementing the IEEE 802.11p protocol and the WAVE standard enables
modeling specific attack scenarios, such as evading vehicles from charging stations
and DDOS attacks. The flexibility of these tools has been demonstrated in the
ability to simulate different types of attacks and analyze the messages exchanged
between vehicles through the WAVE protocol to identify malicious traffic. The
amalgamation of SUMO, OMNeT++, and VEINS provides a robust platform that
harmoniously blends scalability and realism to help implement security solutions
for vehicular networks.

6.5 Case Study: Bologna City - Pasubio Region

6.5.1 Simulation Description

This study used a realistic traffic simulation scenario from Bologna, specifically
focusing on the Pasubio area during the city’s peak traffic hour (8:00 - 9:00 a.m.)
as shown in Figure 6.6. The simulation incorporates additional datasets provided
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Figure 6.5: Sample of parameters setup in omnet.ini file

by the municipality of Bologna, including the positions and plans of traffic lights,
the positions of the inductive loops, and measurements, among others. Initially,
the scenario featured 3700 conventional vehicles. However, in order to align with
the study objective of simulating the behavior of EV in the network, I adapted
the vehicle specifications in SUMO to represent EVs and scaled the number
down to 500. This adjustment aims to create a more realistic representation of
EV communication within the network. The authenticity of the simulated traffic
scenario is further enhanced by integrating real traffic data from Bologna into the
OMNeT++ model.
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Figure 6.6: Realistic traffic environment in Bologna city.

The design of the network model in OMNeT++ is based on the SUMO simula-
tion, and the network components are meticulously defined. As depicted in Figure.
6.7, two RSUs were strategically positioned to cover a large map area. Additionally,
three charging stations was incorporated on the map. These stations can send and
receive beacons from RSUs, EVs, and other objects within the network’s range,
enhancing the simulation’s realism and applicability.
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Figure 6.7: RSU and attackers position in OMNeT++

6.5.2 Attacks Simulation

The simulation, as illustrated in Figure. 6.7, introduced two vehicles designated as
attackers. Having gained unauthorized access to the network through fake identities
or other hacking methods, these attackers are positioned at fixed locations to initiate
their attacks at varying intensities.

The first attacker, represented in red, has a relatively mild impact on the network.
Their strategy involves exploiting the WAVE protocol’s WSA messages, typically
used for network advertisements. The attacker broadcasts false alerts about an
accident in a specific location to neighboring vehicles every 60 seconds, as depicted
in Figure 6.8. This misleading information misleads other vehicles, forcing them
to reroute away from charging stations.
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Figure 6.8: First attack: broadcast fake accident advertisement

While this attack does not entirely hinder the network, it disrupts the charging
reservation system and the coordination between vehicles and charging stations.
Consequently, many vehicles miss their opportunity to secure a charging slot at the
desired time, potentially allowing the attacker to monopolize charging availability.
Moreover, such attacks can undermine the credibility and reliability of service
providers, leading to significant losses due to the compromised reservation system.

The second attacker, shown in blue in Figure 6.9, poses a more severe threat to
the network. They aim to execute a DoS attack to disrupt the network and deny ser-
vice to all antennas and vehicles. DoS attacks in VANETs involve malicious efforts
to overload communication channels, leading to service unavailability or degrada-
tion. These attacks typically target the communication infrastructure, exploiting
vulnerabilities to hinder the exchange of crucial safety and traffic information. In
this case study, the attacker floods the RSUs with 1000 WSM messages per second,
far exceeding the network’s capacity of 300 messages per second. This deluge of
messages overloads the communication channel, leading to the shutdown of the
RSUs and rendering the entire network inoperative.
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Figure 6.9: Second attack: DDoS attacks on the entire network

6.6 Result and Discussion

This study observed that the hackers, who had gained legitimate access to the
network, could exploit WAVE message broadcasting. They misused this access by
flooding the WSM with numerous requests, such as RRQ, verification certificates,
and permissions, or using WSA to disseminate false advertisements. As a standard
mode of communication within the VANET network, this form of broadcasting
poses a challenge in distinguishing legitimate operations from malicious activities.

Due to the limited duration of the simulation and the number of vehicles in-
volved, the simulation yielded a relatively small unlabeled dataset. Consequently,
traditional machine learning techniques were not feasible for evaluating the simu-
lation. Instead, I developed a simple Python script based on threshold analysis to
identify anomalies in the dataset.
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The simulation results, as shown in Table 6.1, are credible and applicable,
making a significant contribution to the field of VANET simulation, particularly in
network security. After simulating for 3600 seconds, critical data was captured,
including the number of generated WSMs and WSAs and packets sent by the
injected attackers. The data highlight the extensive number of DoS attacks initiated
by Hacker Type2 and the volume of misleading messages propagated by Hacker
Type1. Additional metrics such as TimesIntoBackoff, Channel Busy, and Total-
BusyTime were also recorded, providing information on network behavior under
attack conditions.

Table 6.1: Simulation Results

Hacker Type1 Hacker Type2 Antena

generatedWSMs 0 3599900 0

generatedWSAs 2000 0 0

SendPackets 840 359985 3600

SlotsBackoff 1207 5400510 5312

Channel Busy 1.1433333E-5 0.01049956 1.05E-4

totalBusyTime 0.04116 37.798 0.378

totalTime 3600s 3600s 3598s

In future work, there is a plan to evolve this model to mirror real-world con-
ditions more closely. This will involve incorporating a mix of regular and EVs,
extending the simulation duration, and introducing a wider array of attack types.
The focus will be replicating real-life events and potential faults within the simula-
tion environment. This approach is expected to generate a larger dataset suitable
for applying machine learning algorithms to detect and analyze network intrusions
and attacks more effectively.



Chapter 7

Conclusion

This thesis marks a significant milestone in exploring ITS. It focuses on the integra-
tion of security measures and sustainability strategies to enhance the effectiveness
of vehicular networks. This research underscores the imperative need to address
the complex challenges inherent in modern transportation systems.

Comprehensive Review of Digital Twin Technologies:

The foundational element of this thesis rests upon an exhaustive review of DT
technologies in the context of ITS. This thorough exploration spans the inception of
DT to its diverse applications, particularly within ITS and smart cities. The insights
gained from this review serve as the underpinning framework for subsequent
research and highlight the pivotal role of DT in providing real-time monitoring and
response capabilities, thereby fortifying the overall cybersecurity framework.

Intrusion Detection Systems :

IDS tailored for VANETs represents a substantial leap forward in ensuring the
security of vehicular networks. Leveraging decision tree-based ML techniques, this
IDS combines sophisticated feature selection methods and tree-based algorithms
to achieve remarkable attack detection accuracy. Beyond its efficacy in fortifying
vehicular network security, the proposed IDS aligns with sustainability goals by
minimizing potential security breaches and the associated costs.

Routing Simulation and Optimization under Smart Charging Strategies:
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A holistic approach to sustainability within ITS is introduced by optimizing
EV routing for logistics operations. Formulated as an integer linear programming
problem, the optimization method minimizes charging/discharging costs while
considering the shortest path for each EV. Integrating smart charging strategies
contributes to sustainability by minimizing charging costs and reflects an innovative
paradigm in optimizing logistics operations. Real-world case studies, including
scenarios in the Puglia region (Italy), validate the effectiveness of the proposed
optimization method.

Simulation of Traffic Networks and Communication Protocols:

A simulation-based study on traffic networks and communication protocols
further enriches the contributions of this thesis. Employing a hybrid methodology
that integrates SUMO, OMNeT++, and VEINS frameworks, the study compre-
hensively models and simulates interactions within the dynamic urban setting of
Bologna, Italy. Emphasis is placed on examining different types of attacks on
VANET networks through IEEE 802.11p protocol / WAVE standard messages. This
simulation-based approach enhances vehicular network security and contributes to
sustainability by ensuring the reliability and efficiency of communication protocols.

Synthesis of Contributions and Future Perspectives:

DT Technologies is the global framework that integrates and unifies many pro-
cesses, including this thesis’s diverse proposals and techniques. Rather than each
section being independent work, they collectively constitute integral components
within the broader concept of DT. Every section contributes to the comprehensive
understanding and application of DT in the context of ITS.

The Comprehensive Review of DT Technologies sets the stage by providing a
foundational understanding of their evolution and applications. Subsequently, the
proposed IDS, routing optimization under smart charging strategies, and simulation
of traffic networks and communication protocols are all intricately working within
the DT paradigm. Each section represents a crucial facet of DT to simulate physical
ITS networks, analyze outcomes, and store data for processing. The conclusions
of these sections underscore its role as a holistic approach to enhancing VANET
security by simulating, analyzing, and making decisions within the DT concept.
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The future holds promising avenues for further exploration and refinement of
the proposed methodologies. The ongoing advancement of technology, particularly
in AI and simulation tools, provides opportunities for continual improvement and
application in real-world scenarios. As we strive toward a more secure, efficient,
and sustainable transportation ecosystem, the contributions of this thesis lay a solid
foundation for continued progress in the dynamic field of ITS.
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