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A B S T R A C T   

In recent years, sustainable eco-friendly vehicles have been demonstrated as an adequate solution for urban 
deliveries and restricted areas facing traffic congestion and traffic zone limitation. Therefore, in this paper, a 
novel Decision Support System has been proposed for evaluating the efficiency of e-grocery home delivery 
through eco-friendly vehicle adoption. A mathematical model, formulated as Electric Vehicle Routing Problem 
with Time Windows and Partial Recharging (EVRPTW-PR), has been applied for selecting the best zero-emission 
vehicle for e-grocery home delivery. The comparison of the most emerging electric light-duty vehicles (e-cargo 
bikes, e-mopeds, and e-vans) has been carried out through key performance indicators related to the drivers’ 
salary, the total delivery time, the fuel (energy) costs, the vehicle investment costs, and the average payload 
capacity utilization. The overall evaluation encourages the adoption of zero-emission strategies and helps e- 
grocery commerce to adopt the best option that fits with the environmental as well as the economic aspects.   

1. Introduction 

The growth of environmental awareness in cities has been enforcing 
different policies implementation by introducing novel technologies for 
achieving environmental-friendly urban freight transportation. For 
instance, Hardy & Wagner (2019) analyzed the energy savings and CO2 
emissions of different vehicles in Munich, Germany. The results showed 
that the usage of Internal Combustion Engine Freight Vehicles would 
lead to CO2 savings of around 49.5 kgCO2 per delivery tour, or 73.3%. 
Instead, Electric Freight Vehicles would lead to the of approximately 58 
kgCO2, or 85.8%. In addition, Ehrler et al. (2021) discussed the chal-
lenges and perspective for shifting to electric trucks for e-grocery de-
liveries by focusing on the German market. The case study of England 
proposed by Motte-Baumvol et al. (2023) showed that online purchases 
of working couples combined with a home delivery system can signifi-
cantly influence CO2 emissions reduction. Especially in large cities, be-
sides environmental benefits, eco-friendly vehicles introduce many 
advantages such as lower operating costs, higher flexibility and reduc-
tion of time needed for loading/unloading operations, parking flexi-
bility, accessibility to historical and/or zones with traffic limitations 
(Caggiani et al., 2021). For example, the evidence from the study pro-
posed by Dalla Chiara et al. (2023), indicates the short parking time for 
cargo cycles of around 4 min, as well as the proximity to the customers’ 

locations (around 30 m on average). Especially in restricted traffic zones 
and historical areas, where traffic regulations are important factors 
when choosing the best route, the application of these vehicles is 
beneficial in terms of delivery time and cost savings e.g., driving dis-
tance reduction, service time reduction, energy savings, fuel economy, 
operational/delivery costs (Vasiutina et al., 2021). However, the lack of 
policies regarding infrastructure requirements is often seen as a limiting 
factor considering the scarce cycling network infrastructure and 
safety-related issues, as well as the low range of recharging stations 
(Carracedo & Mostofi, 2022). From a logistics perspective, the applica-
tion of e-cargo bikes and e-mopeds (bicycle logistics) in urban areas is 
influenced by several parameters such as frequency, size and weight of 
orders, and spatial factors. Consequently, these vehicles are intended for 
payload capacity up to 200 kg and for carrying out packages no greater 
than 25 kg (Gruber et al., 2014). Thus, bicycle logistics is opportunistic 
for the deliveries of small packages and boxes e.g., food, posts, phar-
maceutics, and home deliveries (Vasiutina et al., 2021). 

The recent research has been mostly focused on the e-grocery market 
analysis and strategies for the last mile e-groceries distribution which 
requires an understanding of the patterns between shopping areas and 
individual trips, infrastructure accessibility, development of local 
mobility hubs (Bjørgen et al., 2021). The stated preference and will-
ingness to adopt e-grocery in Rome and Milan showed that the best 
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strategies for increasing the e-grocery shares are the expansion of the 
range of products available online and the differentiation of trans-
portation fees based on delivery criteria or customers’ 
socio-demographic characteristics (Maltese et al., 2021). Moreover, the 
growth of e-grocery services due to the COVID-19 pandemic has 
generated home delivery trips increase, mostly by conventional Internal 
Combustion Engine (ICE) light-duty vehicles. Thus, the environmental 
and economic aspects might be seen as the most challenging ones for 
e-grocery growth. Consequently, the motivation for the presented study 
lies in proposing a sustainable e-grocery service that aims at decreasing 
private car mode e-grocery trips with home delivery services (provided 
by freight operators using zero-emission vehicles). Therefore, in this 
paper, a novel Decision Support System (DSS) has been developed for 
evaluating eco-friendly vehicles’ performance for e-grocery home de-
liveries. In specific, the comparison among zero-emission vehicles 
(e-moped, e-cargo bike, and e-van) has been carried out by adopting a 
modified Electric Vehicle Routing Problem with Time Windows and 
Partial Recharging (EVRPTW-PR) proposed by Caggiani et al. (2021). 
The objective function of the EVRPTW-PR aims at minimizing the total 
costs regarding the energy costs, initial vehicles’ investment costs, and 
drivers’ salary costs, while the constraints of the model are related to 
capacity, time windows, and partial recharging. The scope of this paper 
is to highlight the usage of eco-friendly vehicles and to evaluate the 
comparison between them in terms of Key Performance Indicators 
(KPIs). Moreover, the results of the comparison could be perceived as 
decision-making support for e-grocery companies to adopt the suitable 
Light-Duty Vehicle (LDV) technology that will deal with emissions as 
well as total travel and operation costs minimization. 

The paper is summarized as follows. Section 2 provides insight into 
the papers related to the proposed topic, while Section 3 describes the 
mathematical formulation of the EVRPTW-PR. Section 4 reports the 
results of the numerical application in which the model has been tested 
on the instances proposed by Colovic and Prencipe (2020). Section 5 
reports the discussion of the study followed by the policy recommen-
dations. Finally, conclusion and further developments are reported in 
Section 6. 

2. Literature review 

Recently, several studies on groceries have been devoted to pro-
posing different strategies and methods for e-grocery delivery (i.e., 
home delivery, pick-up from store, pick-up from locker, crowdsourcing 
strategies, etc.) by taking into account customer preferences (Calzavara 
et al., 2023; Milioti et al., 2021). Mangiaracina et al. (2019) proposed a 
literature review related to innovative solutions to increase last-mile 
delivery efficiency in B2C e-commerce considering the overall logistics 
costs. Following this, Section 2.1 is devoted to the factors that might 
influence e-grocery shopping behavior. The preference towards e-gro-
cery shopping, especially after the COVID-19 pandemic period, required 
new strategies for managing e-grocery last-mile deliveries from both 
economic and environmental perspectives. Some studies dealt with the 
economic comparison between traditional and zero-emission vehicles 
for last-mile logistics, as reported in section 2.2. However, there is a lack 
of studies focusing on developing a DSS eco-friendly vehicle adoption for 
the home delivery service from the e-grocery company perspective. 

2.1. Factors influencing the e-grocery shopping behavior 

The current research studies on e-grocery have been mostly focused 
on the factors affecting customers’ decisions, attitudes, and choices 
regarding online shopping (Lagorio & Pinto, 2021). The evidence from 
the case study of Brazil indicated order fulfillment and delivery service 
price as the main factors influencing the customer willingness for 
e-grocery shopping, (Magalhães, 2021). Another study, proposed by 
Kvalsvik (2022), individuates the health and mobility issues as well as 
the store proximity as trigger factors for elderly e-grocery purchases. 

Gumasing et al. (2022) provided a survey study in the Philippines in 
which they identified that performance expectancy and perceived 
severity were the key indicators that influence customers’ behavior 
regarding the usage of online grocery apps. However, COVID-19 has left 
an impact on e-grocery services and significant changes in supply-chain 
management travel patterns, in-store shopping, and land use planning. 
The results of the study in the USA conducted by Shen et al. (2022) 
stated that females, vehicle ownership, higher income, and health con-
straints are the ones that would increase the probability of selecting 
e-grocery service after the pandemic period; furthermore, elderly people 
and frequent physical grocery store customers are more likely to use 
e-grocery service in the post-pandemic period. Also, the study of the 
Dutch online supermarket, proposed by Baarsma and Groenewegen 
(2021), showed that both local and national COVID-19 conditions have 
affected demand for online food shopping by increasing app traffic by 
7.3% and sales per order by 0.31%. Furthermore, the evidence from a 
large-scale survey in Finland showed the influence of socio-demographic 
characteristics, and in particular, the willingness of those with higher 
household size and earnings, and with less than 45 years to purchase 
e-grocery, due to COVID-19, Eriksson and Stenius (2021). Due to these, 
grocery retail is usually focused on ways of keeping a satisfactory level of 
customer loyalty by offering different pricing strategies such as 
personalized price promotions (Hallikainen et al., 2022). Besides cus-
tomers’ decisions and attitudes regarding e-grocery adoption, Aziz et al. 
(2022) provided an extended literature review by focusing on the factors 
influencing e-grocery from environmental and energy consumption 
perspectives. As the authors stated, there is a scarcity of papers related to 
the eco-friendliness of online grocery channels that would stimulate 
consumers towards sustainable choices when purchasing their groceries. 
Motivated by the outcome of the above-mentioned systematic review, 
this work proposes a DSS that considers these premises and encourages 
zero-emission vehicle adoption. 

2.2. DSS for e-grocery delivery and fleet selection 

To the best of the authors’ knowledge, there are no studies that dealt 
with developing a DSS or framework that would help decision-makers in 
creating more sustainable e-grocery services by incorporating both 
economic and sustainable solutions for last-mile delivery. There are a 
few studies that dealt only with the economic comparison between 
traditional and zero-emission vehicles for last-mile logistics. For 
example, according to a case study in Berlin, the comparison of cargo 
bikes with commercial vehicles showed a reduction of emissions costs by 
up to 22% and delivery costs by up to 28%. Compared with diesel ve-
hicles, this technology offers a wide spectrum of possibilities for deliv-
ering shipments on smaller distances, especially on distances up to 5 km 
(Rudolph & Gruber, 2017). Another case study in Berlin carried out the 
comparison between cargo bikes and car messengers in terms of tra-
versed distance, the volume of shipments, and delivery service (Gruber 
et al., 2014). Total traversed distance on last mile deliveries considering 
zone restrictions, narrow streets, and traffic regulations, accounted for 
5.1 km for cargo bikes and 11.3 for car messengers. The comparison of 
these two modes considering the total weight and volume carried by 
vehicles on last-mile deliveries showed that 42% of shipments could be 
replaced by cargo bikes. Moreover, the comparison between 
eco-friendly technologies, in particular e-cargo bikes and e-mopeds, has 
been scarcely investigated in the literature except by Nocerino et al. 
(2016). The authors made a comparison between traditional and e-fleet 
including e-mopeds, e-cargo bikes, vans, and e-bikes alternatives for 
urban deliveries through a real case study application. Specifically, the 
authors observed through four pilots the effectiveness of e-fleet in terms 
of reduction of CO2 emissions and energy savings in urban logistics. In 
addition, Comi and Savchenko (2021) proposed a methodology for 
choosing the most sustainable mode for delivering goods within urban 
areas. However, the market for LDV e-fleet has not been showing its full 
potential. The opportunities for LDV adoption are mainly determined by 
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the typology, commercial achievements, and targets of stakeholders 
(Rudolph & Gruber, 2017), while the main barrier parameters for 
adopting e-cargo bike technology are social, economic, environmental 
parameters and regulations (Carracedo & Mostofi, 2022). For example, 
the study by Caggiani et al. (2020) provided a DSS that can help e-cargo 
bike drivers choose the optimal route path choice considering two op-
tions such as minimum travel time and minimum emission exposure. On 
the other side, e-mopeds have been barely investigated as last-mile lo-
gistics modes. 

However, few studies in the literature support the interests of e- 
grocery decision-makers by incorporating customers’ attitudes and 
preferences when developing a DSS. For instance, Fikar et al. (2021) 
created a DSS that focuses on redesigning the e-grocery operations and 
service offers by collecting data on customers’ preferences and by 
applying agent-based simulation for designing e-grocery operations. As 
a result, the design of the e-grocery service required the interaction 
between decision-makers in marketing and logistics by focusing on de-
livery fees, vehicle utilization, and shelf-life requirements. Another 
paper proposed by Fikar (2018) proposed a DSS for investigating food 
losses in e-grocery deliveries by incorporating an agent-based simula-
tion and dynamic routing procedures. On the other side, the study 
proposed by Mkansi and Mugurusi (2023) developed a framework that 
explored the influence of financial inclusion on e-grocery supply chain 
innovation. The outcome of their framework provided a platform for 
e-grocery market business innovation by focusing on subsidized pay-
ment infrastructural costs, e-customer transactional trust, and privacy 
concerns. 

2.3. E-grocery home delivery optimization models 

Several optimization models, such as Vehicle Routing Problems 
(VRPs), have been applied for achieving cost-effective e-grocery home 
delivery by considering aspects related to the hard delivery time- 
windows, parking restrictions, service time, etc. For instance, Pan 
et al. (2017) proposed a novel approach that improved the success rate 
of e-grocery delivery by estimating the absence probability of a 
customer through mining electricity consumption data. The authors 
applied Vehicle Routing Problems with time windows (VRPTW) for 
estimating time windows with a lower probability of inoccupation 
(absence). Differently, Leyerer et al., (2020) proposed a multi-echelon 
optimization model for planning e-grocery deliveries that applies loca-
tion routing problem for finding optimal grocery locker locations, as 
well as VRPTW with split deliveries for calculating van routes from a 
depot to opened lockers, and e-cargo bike routes from lockers to 
customer. Also, Aktas et al. (2021) applied a capacitated VRPTW to 
solve the grocery last-mile delivery problem in Tottenham Hale, UK, by 
minimizing total travel distance. Following the future perspective of 
innovative solutions for e-grocery distribution, Liu et al. (2020) pro-
posed a two-echelon vehicle routing problem with mixed vehicles 
(2E-VRPMV) that optimizes total transport and emissions costs by using 
autonomous delivery vehicles. Also, another paper proposed by Liu et al. 
(2021) applied 2E-VRPMV and mixed satellites to determine the loca-
tion of grocery facilities and optimize the number of parcels delivered to 
customers. 

2.4. Contributions 

To the best of the authors’ knowledge, there is a lack of studies that 
enhanced the application of sustainable urban freight vehicle technol-
ogy when developing DSS for e-commerce logistics (Heumann et al., 
2021; Perboli & Rosano, 2018). Research studies on e-grocery have been 
mostly focused on customer preferences for e-grocery shopping (Gal-
vez-Cruz & Renaud, 2006; Park, 2023) and factors that influence 
e-grocery service (section 2.1). However, none of the found papers 
tackled the e-grocery DSS following the logistics company perspective 
and the possibilities for decreasing the environmental impact of 

e-grocery deliveries. Moreover, from modelling perspective, this study 
differs from the literature by applying a modified version of EVRPTW-PR 
that considers partial recharging for E-LDVs and comprehensive evalu-
ation of costs in the objective function. 

Therefore, in this paper, a further step has been made in proposing a 
new DSS for e-grocery commerce by following a modelling perspective 
for the best vehicle type/service selection (i.e., among e-mopeds, e- 
cargo bikes, and e-van), and evaluating their cost comparison from KPIs 
point of view. Furthermore, the proposed DSS offers the possibility for e- 
grocery commerce to investigate the opportunities for shifting from 
traditional to E-LDVs. 

3. Methodology 

Order fulfillment in e-grocery is especially challenging due to the 
necessity for cost optimization (storage, inventory, and vehicle utiliza-
tion) on one side, and for meeting customers’ special requirements on 
the other side. Moreover, e-grocery is facing high competition due to the 
increasing willingness of customers to purchase products online, and 
lower willingness to pay extra home delivery fees (Magalhães, 2021). 
Consequently, the proposed DSS focuses on providing a novel manage-
ment strategy for e-grocery by adopting eco-friendly vehicles for 
last-mile deliveries. Following this purpose, a novel DSS and a dedicated 
flow chart for e-grocery home delivery through different service delivery 
vehicle alternatives have been developed. In addition, the support for a 
novel fleet management strategy is carried on through the comparison 
among different types of electric LDVs for e-grocery last-mile delivery, 
assuming that e-grocery is already operating with the Internal Com-
bustion Engine (ICE) fleet. 

The proposed DSS for e-grocery provides an overview of main pro-
cesses such as customer, storage, loading, and routing operations. 
Firstly, the Order Management System (OMS) collects the relevant in-
formation for customers dedicated to the type and number of groceries, 
time-window preferences as well as their personal information (ID and 
the address of home delivery) through the customer interface (web 
platform, smartphone app, telephone for vulnerable people such as 
persons with disabilities and the elderly). Here, the proposed study fo-
cuses on home deliveries which require customers to be present at home 
on the day and specified time window of delivery. Thus, the unattended 
home delivery option has not been considered as an alternative in the 
proposed e-grocery framework. All of this information is stored in the 
historical database according to which e-grocery companies can have an 
insight into e-grocery acquisition rate and foster further analysis such as 
annual demand forecasting. Secondly, the information processed in 
OMS is transmitted to the Warehouse Management System (WMS) 
which checks the availability of groceries based on the number of 
packages and the stock levels. In the case of the unavailability of the 
requested grocery article, the proposed DSS, as depicted in Fig. 1, offers 
the following options to customers: i) delete the item from the order; ii) 
replace the item with similar in type and cost; iii) receive a call by an 
operator. After obtaining confirmation from the customers and after the 
accomplishment of warehouse operations, the orders are assigned to the 
vehicle. 

The process of vehicle type selection is depicted in the flow chart in 
Fig. 2. The vehicle type selection refers to an alternative a ∈ A, where A 
is the total number of alternatives considered for the e-grocery home 
delivery service. At the beginning of the process, all data are initialized. 
For each alternative a within the stop criteria (a< A), three vehicles’ 
strategies have been evaluated such as vehicle ownership, vehicle 
leasing, and vehicle long-term rental options. Also, for all vehicles’ 
strategies, has been evaluated the adoption of eco-friendly vehicles (E- 
LDVs) or traditional vehicles (ICE-LDVs) by considering their corre-
sponding specifications such as capacity, recharging rate, fuel con-
sumption rate, average speed, battery capacity, electric energy/fuel 
cost, driver salary cost, and vehicle initial investment cost. According to 
the vehicle type selection, the considered vehicle routing problems are 
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EVRPTW-PR for E-LDV and VRPTW for ICE-LDV. The EVRPTW-PR 
model deals with practical issues of logistics regarding the constraints 
of vehicle capacity and partial recharging in the case of eco-friendly 
vehicles, as well as the customers’ specifications related to time win-
dows and service time. Additionally, the vehicle routing optimization 
model calculates the number of needed vehicles and assigned drivers for 
accomplishing customer orders. The total costs are evaluated according 
to the output of the vehicle routing optimization models related to travel 
costs, initial vehicles’ investment costs, and drivers’ salary costs. 
Consequently, the vehicle type selection is evaluated according to the 
available budget resources and KPIs. However, in the case of vehicle 
leasing and vehicle long-term rental strategies (no vehicle ownership) 
the initial investment costs are replaced by leasing and long-term rental 
costs. Furthermore, if none of the vehicle strategies is selected, the op-
tion for e-grocery companies is to choose a third-party delivery service 
and pay for shipping services according to the contractual agreement. 
Finally, the proposed flow chart saves the best vehicle type alternative 
based on the best KPIs evaluation and corresponding vehicle/service 
type selection. 

3.1. EVRPTW-PR description 

In this section, the mathematical formulation of the modified 
EVRPTW-PR proposed by Caggiani et al. (2021) is described. The goal is 
to evaluate which zero-emission vehicle (in this case e-moped, e-van, or 
e-cargo bike) would be the best option for the last-mile e-grocery home 
delivery. The problem is defined on a directed graph G = (Vd,N+1,A)
where sets of arcs A = {(i, j)

⃒
⃒ i, j∈ Vd,N+1, i∕= j}. The set Vd,N+1 is 

composed of the depot Vd, the set of customers Vc, the set of dummy 

stations Ṽs, where the set of dummy stations Ṽs allows several visits to 
each recharging station. Also, the set of homogenous vehicles K =

{1,…,w} is located at the depot Vd so that the total number of vehicles w 
are starting the trip from Vd = {0} and finishing at Vd = {N+ 1}, 
located at the same point. Therefore, sets, parameters, and decision 
variables of the EVRPTW-PR model are reported in Table 1. 

The mathematical formulation of the EVRPTW-PR is then specified 
as follows: 

f (x)=
∑

k∈K

∑

i,j∈Ṽd,N+1

dij ⋅ xkij ⋅ cw
e + cw

v ⋅ w+ cd ⋅
(
w+

(
tij + sij

)
⋅ xkij

)
, i ∕= j (1)  

s.t. 
∑

j∈ṼN+1

xkij = 1, ∀k ∈ K, i ∈ Vd = {0}, i ∕= j (2)  

∑

j∈ṼN+1

xkji = 1, ∀k ∈ K, i ∈ Vd = {N + 1}, i ∕= j (3)  

∑

k∈K
xkij +

∑

k∈K
xkji ≤ 1, ∀i ∈ Ṽd,∀j ∈ ṼN+1, i ∕= j (4)  

∑

k∈K

∑

i∈Ṽd

xkij = 1,∀j ∈ Vc, i ∕= j (5)  

∑

k∈K

∑

i∈ṼN+1

xkji = 1, ∀j ∈ Vc, i ∕= j (6)  

Fig. 1. The proposed e-grocery DSS.  
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∑

i∈Ṽd

xkij −
∑

i∈ṼN+1

xkji = 0, ∀j ∈ Vc, ∀k ∈ K, i ∕= j (7)  

∑

i∈ṼN+1

xkij ≥ 0,∀j ∈ Ṽs,∀k ∈ K, i ∕= j (8)  

∑

i∈ṼN+1

xkji ≥ 0,∀j ∈ Ṽs,∀k ∈ K, i ∕= j (9)  

∑

i∈Ṽd

xkij −
∑

i∈ṼN+1

xkji = 0,∀j ∈ Ṽs,∀k ∈ K, i ∕= j (10)  

xkij + xkji ≤ 1, ∀i ∈ ṼN+1,∀j ∈ Ṽs,∀k ∈ K, i ∕= j (11)  

0≤ uki ≤ C, ∀k ∈ K, i ∈ Vd = {0} (12)  

0≤ ukj ≤ uki − qki ⋅ xkij +C ⋅
(
1 − xkij

)
, ∀i∈ Ṽd, ∀j∈ ṼN+1, ∀k∈K, i ∕= j (13) 

Fig. 2. The proposed e-grocery vehicle/service type selection flow chart.  
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0≤ ykj ≤ ykj − h ⋅ dkij ⋅ xkij +Q ⋅
(
1 − xkij

)
, ∀i∈Vd ∪Vc,∀j∈ ṼN+1,∀k∈K, i ∕= j

(14)  

ykj ≤ Yki − h ⋅ dkij ⋅ xkij +Q ⋅
(
1 − xkij

)
,∀i∈Vd ∪ Ṽs,∀j∈ ṼN+1, ∀k∈K, i ∕= j

(15)  

yki ≤ Yki ≤ Q, ∀i ∈ Vd ∪ Ṽs,∀k ∈ K (16)  

τki +
(
tkij + ski

)
⋅ xkij − l0

(
1 − xkij

)
≤ τkj, ∀i∈Vd ∪Vc,∀j∈ ṼN+1,∀k∈K, i ∕= j

(17)  

τki + tkij ⋅ xkij + g ⋅ (Yki − yki)

− (l0 + g ⋅ Q) ⋅
(
1 − xkij

)
≤ τkj, ∀i∈ Ṽs,∀j∈ ṼN+1,∀k∈K, i

∕= j (18)  

xkij ∈{0, 1},∀i, j ∈ Ṽd,N+1,∀k ∈ K, i ∕= j (19)  

uki, yki,Yki, τki ≥ 0, ∀i ∈ Ṽd,N+1,∀k ∈ K (20) 

The objective function (1) minimizes the total costs, such as travel 
costs, initial vehicles’ investment costs, and drivers’ salary costs. Con-
straints (2)–(3) ensure that each vehicle starts and finishes its route at 
the depot. Constraint (4) avoids the cycles between nodes. Constraints 
(5)–(6) ensure that each customer can be visited by one vehicle once. 
Constraint (7) ensures the number of arcs leaving and entering each 
customer node. Constraints (8)–(9) ensure that each station can be 
visited more times by one or more vehicles. Constraints (10)–(11) are 
related to the number of links entering and leaving each station by 
avoiding cycles between stations. Constraints (12)–(13) meet the de-
mand request at each node and ensure nonnegative remaining cargo 
load. Constraints (14)–(16) are related to the battery’s partial charging 
for each vehicle at the station. Constraints (17)–(18) are related to the 
time window constraints and sub-tour elimination. Constraint (19) is 
related to the binary variable that is equal to 1 if the vehicle k is 

travelling on arc (i, j), 0 otherwise. Constraint (20) ensures that the 
remaining cargo level u, remaining charge level y, battery state of charge 
Y, and arrival time τ are greater or equal to zero. 

4. Application and results 

The EVRPTW-PR has been implemented in CPLEX 12.10 which uses 
the exact method as a solution approach. The proposed model has been 
validated in the instances with 10 and 15 customers proposed by Colovic 
and Prencipe (2020). The values of capacity C, average speed v, capacity 
of battery Q, and recharging rate g for e-moped and e-cargo bikes have 
been set based on Nocerino et al. (2016), while in the case of e-van, the 
values were set according to Caggiani et al. (2021). Additionally, the 
values of fuel consumption rate h, electric energy costs cw

e have been set. 
However, the vehicle’s initial investment costs cw

v for e-mopeds and 
e-cargo bikes were represented as daily costs based on the annual time 
horizon values (Nocerino et al., 2016), while the daily values for e-vans 
were set according to Ploos van Amstel et al., (2018). The value cw

d 
related to the drivers’ hourly salary costs was set according to the 8-h 
working period shift as 10 €/h for each driver. For e-moped and 
e-cargo bike has been assumed one driver, while for e-van has been 
assumed two drivers. All parameters for e-cargo bike, e-van, and 
e-moped are summarized in Table 2. Since the proposed methodology 
considers e-grocery vehicle type selection, the focus in the numerical 
application is only on the alternative sustainable e-grocery E-LDV (i.e., 
e-moped, e-cargo bike, and e-van), considering that the e-grocery is 
currently already operating on existing ICE-LDV vehicles. Thus, ICE-LDV 
vehicles are not a matter of validation in this paper since those KPIs are 
already familiar to each e-grocery company. In this way, the focus is 
only on the performance of the aforementioned type of vehicles (e-cargo 
bikes, e-mopeds, and e-vans) that would encourage the traditional 
ICE-LDV vehicle shift for e-grocery companies. Consequently, the com-
parison of these sustainable vehicles can give a general overview of the 
KPIs that can be seen as a benchmark for their future adoption. The KPIs 
of E-LDV vehicles are expressed in terms of i) Driver salary costs per hour 
[€/h]; ii) Total shipment travel time [h]; iii) Fuel (energy) costs [€]; iv) 
Vehicle investment costs [€/day]; v) Average payload capacity utiliza-
tion [%]. 

4.1. The KPI results 

The results of the KPI comparison between e-mopeds, e-cargo bikes, 
and e-vans are reported in Table 3 (the best values are highlighted in 
bold). For all instances of 10 customers, optimal solutions are obtained 
in a low computation time, while for some instances with 15 customers 
are obtained near-optimal solutions. For instances with 15 customers, 
the time limit was fixed as 3600 s. In general, the number of used e- 
mopeds for the instances of 10 customers is up to 2, while for e-cargo 
bikes is up to 3. However, the number of used vehicles for instances of 15 
customers increased up to 4 for e-cargo bikes and up to 3 for e-mopeds, 
which is due to the higher payload capacity of e-mopeds. Instead, the 
number of used e-vans for all instances is 1 due to their higher capacity. 
Based on the values of the objective function f(y), it is observed that e- 
cargo bikes are the more economically convenient solution than e- 
moped when the number of needed vehicles is equal, as reported for the 
instances r102C10, rc102C10, and r102C15. Even though all KPIs have a 

Table 1 
Nomenclature of the EVRPTW-PR.  

Sets 
Vd Depot, Vd = {0}, Vd = {N+ 1}
Vs Set of stations, Vs = {1,…,m}

Ṽs Set of dummy stations 
Vc Set of customers, Vc = {1,…,n}
ṼN+1 Set of dummy stations and customers, ṼN+1 = Ṽs ∪ Vc ∪ {N+ 1}
K Set of vehicles, K = {1,…,w}

Vd,N+1 Set of all nodes, Vd,N+1 = Vd ∪ ṼN+1 

Parameters 
n Number of customers 
m Number of stations 
w Number of vehicles 
dij Distance between vertices i and j 
tij Travel time between vertices i and j 
C Capacity of vehicles in K 
g Recharging rate of vehicles in K 
h Fuel consumption rate of vehicles in K 
v Average speed of vehicles in K 
Q Battery capacity of vehicles in K 
[ei, li] Time window of each vertex i ∈ ṼVd ,N+1 

si Service time of each vertex i ∈ ṼVd ,N+1 where sVd , sṼs
, sN+1 = 0 

qi Demand of each vertex i ∈ ṼVd ,N+1 [kg]
cw

e Electric energy cost of vehicles w [€ /km]

cw
v Vehicle’s w initial investment cost [€ /h]

cw
d Driver’s salary cost of vehicles w[€ /h]

Decision variables 
τki Arrival time at vertex i ∈ ṼVd ,N+1 for all k ∈ K 
uki Remain cargo on arrival at vertex i ∈ ṼVd ,N+1 for all k ∈ K 
yki Remain charge level on arrival at vertex i ∈ ṼVd ,N+1 for all k ∈ K 
Yki Battery state of charge on departure from vertex i ∈ ṼVd ,N+1 

xkij Binary decision variable where k ∈ K and i, j ∈ ṼVd ,N+1  

Table 2 
The values of the parameter used in EVRPTW-PR.  

C [kg] 175 80 700 
v [km/h] 16 17 25 
Q [kWh] 4.00 0.54 40.00 

g [kWh/h] 0.035 0.010 4.444 
cw

e [€/km] 0.0021 0.0006 0.0318 
cw

v [kWh/km] 8.300 0.274 69.863 
cw

d [€/h] 10 10 20  
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significant impact on the minimization of the total costs, the overall 
costs of using e-vans are the highest compared to e-mopeds and e-cargo 
bikes in all instances due to the higher initial investment costs. However, 
the required travel time for delivering from grocery to customers is the 
lowest for e-vans due to the higher average speed. 

The first KPI related to the driver’s salary considering the total time 
[h] needed for delivering goods is more cost-effective for e-grocery 
when utilizing e-cargo bikes or e-mopeds with slight differences in the 
range from 0.03 to 1.88 [€/h], while the costs of e-vans are mostly twice 
higher. The KPIs related to the energy costs and the vehicle’s investment 
costs are the lowest for e-cargo bikes in all instances. However, the 
highest KPI related to the average capacity utilization is in the range of 
75%–97% considering e-cargo bikes and e-mopeds which is due to the 
lower capacity requirements for visiting 10 or 15 customers. In all in-
stances with 10 customers, the average capacity utilization of e-cargo 

bikes is from 6% to up to 43% higher than for e-mopeds; differently, in 
the case of the instance c106C15, the number of vehicles/drivers and, 
consequently, the average capacity utilization of vehicle had a signifi-
cant influence on the minimization of the total costs. However, the 
lowest capacity utilization resulted to be for e-vans. In addition, the total 
cost evaluation of e-vans can be more convenient in the case when the 
number of customers, as well as the distance between the e-grocery shop 
and customers is higher. Since it has been assumed that e-grocery de-
liveries are generally small packages for a low number of clients, the 
advantages of e-cargo bikes or e-mopeds are more user-friendly, espe-
cially when in the case of shorter distances between customers, or nar-
row streets in restricted traffic zones. 

Table 3 
The KPIs comparison results among e-cargo bikes, e-mopeds, and e-vans.  

Instance Type of 
vehicle 

No. 
vehicles 

No. 
drivers 

Driver salary based on 
delivery time [€/h] 

Total travel 
time [h] 

Fuel costs 
[€] 

Vehicle investment 
costs [€/day] 

Obj. fun. f(y)
[€/day] 

Average payload 
capacity utilization [%] 

c101C10 e-cargo 
bike 

3 3 14.48 1.45 0.0071 0.82 45.31 83.33% 

e-moped 2 2 14.58 1.46 0.0238 16.60 51.20 57.14% 
e-van 1 2 26.50 1.33 0.4571 69.86 116.82 28.57% 

c103C15 e-cargo 
bike 

4 4 18.41 1.84 0.0073 1.10 59.52 81.25% 

e-moped 2 2 18.17 1.82 0.0232 16.60 54.79 74.29% 
e-van 1 2 32.58 1.63 0.4005 69.86 122.84 37.14% 

c104C10 e-cargo 
bike 

3 3 13.40 1.34 0.0060 0.82 44.23 75.00% 

e-moped 2 2 12.87 1.29 0.0180 16.60 49.48 51.43% 
e-van 1 2 21.25 1.06 0.2483 69.86 111.36 25.71% 

c106C15 e-cargo 
bike 

3 3 16.36 1.64 0.0052 0.82 47.19 70.83% 

e-moped 1 1 17.68 1.77 0.0216 8.30 36.01 97.14% 
e-van 1 1 30.74 1.54 0.3274 69.86 120.93 24.29% 

r102C10 e-cargo 
bike 

2 2 5.68 0.57 0.0049 0.55 26.23 96.88% 

e-moped 1 1 6.15 0.61 0.0210 8.3 25.30 88.57% 
e-van 1 2 8.99 0.45 0.2912 69.86 99.15 22.14% 

r102C15 e-cargo 
bike 

3 3 7.96 0.80 0.0068 0.82 38.79 79.58% 

e-moped 3 3 7.99 0.80 0.0226 24.90 62.91 36.38% 
e-van 2 4 11.87 0.59 0.3723 139.73 191.96 13.64% 

r103C10 e-cargo 
bike 

2 2 3.85 0.39 0.0031 0.55 24.40 86.88% 

e-moped 1 1 3.92 0.39 0.0104 8.30 22.23 79.43% 
e-van 1 2 5.62 0.28 0.1571 69.86 95.64 19.86% 

r105C15 e-cargo 
bike 

3 3 7.45 0.74 0.0063 0.82 38.28 87.92% 

e-moped 2 2 8.80 0.88 0.0254 16.60 45.43 60.29% 
e-van 1 2 14.44 0.72 0.4747 69.86 104.78 30.14% 

rc102C10 e-cargo 
bike 

3 3 7.87 0.79 0.0072 0.82 38.69 75.42% 

e-moped 2 2 7.98 0.80 0.0240 16.60 44.61 51.71% 
e-van 1 2 11.34 0.57 0.3844 69.86 101.58 25.86% 

rc103C15 e-cargo 
bike 

3 3 8.13 0.81 0.0070 0.82 38.96 85.00% 

e-moped 2 2 7.97 0.80 0.0226 16.60 44.60 58.29% 
e-van 1 2 10.90 0.54 0.3339 69.86 101.10 29.14% 

rc108C10 e-cargo 
bike 

2 2 7.08 0.71 0.0064 0.55 27.63 91.25% 

e-moped 1 1 7.20 0.72 0.0214 8.30 25.52 83.43% 
e-van 1 2 9.74 0.49 0.3208 69.86 99.92 20.86% 

rc108C15 e-cargo 
bike 

4 4 9.68 0.97 0.0086 1.10 50.79 86.56% 

e-moped 2 2 7.80 0.78 0.0220 16.60 44.42 79.14% 
e-van 1 2 10.43 0.52 0.3153 69.86 100.61 39.57%  
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4.2. Cost analysis 

The graphical comparisons of the e-cargo bikes, e-moped, and e-vans 
in terms of the investigated KPIs are reported in the following figures: i) 
The total travel time comparison in Fig. 3; ii) The driver salary com-
parison in Fig. 4; iii) The average capacity utilization comparison in 
Fig. 5 iv) The overall costs comparison in Fig. 6. 

As represented in Fig. 3, the total delivery travel time comparison is 
lowest for e-vans due to the assumed higher average speed and the lower 
number of required vehicles. Specifically, the average travel time of e- 
cargo bikes, e-mopeds, and e-vans for all instances is around 60.18min, 
60.97min, and 48.69min, respectively. Additionally, the average travel 
time for all instances with 10 customers, i.e., 49.20min, is around 20min 
lower than the average travel time of the instances with 15 customers 
due to the lower number of required vehicles. Furthermore, in instances 
c103C15 and c106C15 is observed that the e-cargo bikes and e-mopeds 
required higher shipment travel times due to the hard time windows 
constraints, while for the other instances, the required shipment travel 
time was almost twice lower. However, the maximum delivery time is 
less than 2h for both types of instances considering all types of vehicles. 
This outcome points out a good opportunity for e-groceries growth 
compared to time-consuming in-store shopping. 

The comparison of drivers’ salary costs among e-cargo bikes, e- 
mopeds, and e-vans is shown in Fig. 4. As reported, driver’s salary costs 
of e-vans are the highest since two drivers (one as a driver and another 
one as the delivery person) have been assumed due to a common de-
livery practice within specified time-windows. For example, e-vans 
drivers’ salary is highest for the instances c101C10, c103C15, and 
c106C15, while for the other instances, the costs of e-vans drivers’ salary 
were only slightly higher compared to e-cargo bikes and e-mopeds. The 
influence of the number of required vehicles is noted in the overall 
drivers’ salary costs evaluation e.g., instance c103C15 required 4 e- 
cargo bikes and 2 e-mopeds. Differently, the instance r102C15 resulted 
in the lowest costs due to the lower number of needed vehicles i.e., 2 e- 
cargo bikes and one e-moped. 

Fig. 5 depicts the vehicle average capacity utilization comparison 
among e-cargo bikes, e-mopeds, and e-vans. For all instances, e-cargo 
bike, e-moped, and e-van resulted on average in 83.33%, 68.10%, and 
26.41%, respectively. Additionally, the average payload capacity utili-
zation of e-vans is around 57% lower than e-cargo bikes and around 42% 
than e-mopeds. Therefore, e-cargo bike resulted to be the best option 
regarding the average capacity utilization (i.e., up to 96.88%), while the 
average capacity utilization for e-vans was lower than 30%. It is noticed 
that e-cargo bikes are the most efficient solutions in terms of payload 
capacity utilization considering a low/medium number of customers for 
e-grocery home delivery. 

The comparison of the overall costs is similar for e-cargo bikes and e- 
mopeds while for e-vans is more than twice higher, as shown in Fig. 6. In 
specific, the overall costs for all instances with 10 and 15 customers for 
e-cargo bikes, e-mopeds, and e-vans are on average 40€, 41.54€, and 
113.89€, respectively. It is worth noticing that the initial investment 
costs have the greatest influence on overall e-van costs. Differently, e- 
cargo bikes and e-mopeds resulted in similar overall costs, even though 
e-moped investment costs are higher than e-cargo bikes. This is probably 
based on the similar values in the required travel delivery time and 
drivers’ salary costs. Furthermore, it can be noticed that overall costs are 
not influenced by the number of visited customers in all instances. For 
example, the total overall costs for all types of vehicles in the case of 
instance c104C10 are higher than for instances r105C15 and rc103C15 
with 15 customers due to the higher number of required vehicles and 
capacity utilization. 

Based on the above-mentioned, the comparison among e-mopeds, e- 
cargo bikes, or e-vans can be resumed as follows. For all instances, e- 
cargo bikes and e-mopeds resulted in being the best options for e-grocery 
home delivery considering average overall costs. Furthermore, from 
Table 3 is observed that the driver’s salary costs are the ones that have 
the greatest influence on the overall costs of e-cargo bikes and e-mopeds. 
However, for all instances, e-vans resulted in the highest costs due to the 
high vehicles’ investment costs, and the best option regarding total 
delivery time. Thus, in most cases, one e-van can be substituted with 
two/three e-cargo-bikes/e-mopeds since the gap between e-cargo bikes/ 
e-mopeds and e-van is around 12 min. For all instances, the KPI related 
to drivers ‘salary costs of e-cargo bike, e-moped, and e-van resulted in 
10.02€/day, 10.09€/day, and 16.20€/day on average, respectively. 

Finally, after the overall cost evaluation, the e-grocery needs a price 
strategy in order to obtain profits for the home delivery service. Ac-
cording to Figliozzi and Keeling (2019), there are several pricing stra-
tegies such as per-trip fees, membership fee requirements, minimum 
delivery fees, and extra fees in item prices. For all pricing strategies, the 
minimum delivery fee is required and if combined with other pricing 
strategies may generate profits for e-grocery. For example, two per-trip 
fee strategies, i.e., such as 5€ (scenario A) and 10€ (scenario B), have 
been assumed for evaluating e-grocery home delivery profits. As shown 
in Fig. 7, the profits for all instances for both scenarios can be obtained 
by adopting e-cargo bikes and/or e-mopeds while the adoption of e-vans 
requires a higher per-trip fee, i.e., more than 10€ per trip per customer. 
For example, the adoption of e-cargo bikes and/or e-mopeds on the 
instance r103C10 with 10 customers, can return profits of around 27€ 
with scenario A and around 77€ with scenario B. However, the adoption 
of e-vans returns a profit only in scenario B. 

Fig. 3. The total travel time comparison among e-cargo bikes, e-mopeds, and e-vans.  
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5. Discussion 

With respect to the existing literature, this work presents a novel e- 
grocery DSS that investigated the opportunities for switching from 
traditional diesel to E-LDVs through KPI analysis. The literature review 

section showed that most of the recent works on e-grocery have been 
focused on the behavior, attitude, and willingness of users to make on-
line purchases, as well as on the factors that influence customer de-
cisions, such as order fulfilment and customer loyalty. In addition, the 
COVID-19 pandemic has generated the growth of e-grocery requests, 

Fig. 4. The driver salary comparison among e-cargo bikes, e-mopeds, and e-vans.  

Fig. 5. The vehicle average capacity utilization comparison among e-cargo bikes, e-mopeds, and e-vans.  

Fig. 6. The overall cost comparison among e-cargo bikes, e-mopeds, and e-vans.  

L.P. Prencipe et al.                                                                                                                                                                                                                              



Research in Transportation Economics 104 (2024) 101429

10

which has left an impact on e-grocery services. Thus, the challenges of e- 
grocery delivery are related to meeting a high number of requests by 
optimizing KPIs, such as travel time and vehicle utilization, and main-
taining an efficient level of customer order satisfaction. Those aspects 
have been implemented in the proposed EVPTW-PR through time- 
windows delivery constraints that manage customers’ requests based 
on their service time preferences. However, the proposed model con-
siders not only delivery fulfillment, but also the interest of e-grocery 
logistics company perspective related to minimization of travel costs, 
initial vehicles’ investment costs, and drivers’ salary costs when deter-
mining the best delivery vehicle type selection. 

Even though several DSS on the supply chain can be found in the 
literature (e.g., Heumann et al., 2021; Mkansi & Mugurusi, 2023; Per-
boli & Rosano, 2018), only a few of them focused on e-grocery following 
customer preferences/e-commerce strategies (Fikar, 2018; Fikar et al., 
2021). Instead, this work is the first that evaluates the economic aspects 
of adopting E-LDVs as a suitable solution for e-grocery home delivery 
moving towards CO2 targets. In addition, the carried-out evaluation of 
the E-LDVs comparison highlights the future economic benefits for 
e-grocery companies such as better average capacity utilization and 
lower total delivery travel time, as shown in Table 3. Moreover, E-LDVs 
are demonstrated as efficient and more suitable for urban deliveries, 
especially for e-grocery commerce, which often handles customers’ re-
quests for small packages up to a total of 25 kg. This resulted in better 
vehicle average capacity utilization as well as the reduction of “empty” 
rides. Also, the dimensions of e-cargo bikes and e-mopeds can contribute 
to reducing the total service time required for home delivery service to 
e-grocery customers located in historical zones, city centers with park-
ing regulations (restricted traffic zones), or congested narrow streets. 
Therefore, the outcome of this analysis reflects the importance of 
adopting E-LDVs as an alternative e-grocery last-mile home delivery 
solution, especially in high-density urban areas and for people with 
limited mobility. 

6. Conclusions 

The paper proposes a novel DSS that supports a novel management 
strategy related to the best vehicle/service type selection for e-grocery 
home deliveries. In particular, a modified mathematical formulation of 
the Electric Vehicle Routing Problem with Time Windows and Partial 
Recharging (EVRPTW-PR) has been applied to selecting the best zero- 
emission vehicle (i.e., e-cargo bike, e-moped, or e-van) for e-grocery 
home delivery. The comparison was tested on a set of instances with 10 
and 15 customers provided by Colovic and Prencipe (2020), considering 
the parameters in the literature which might vary based on different 
socio-economical aspects and vehicle type specifications. Based on the 

comparison, the obtained results showed the benefits of adopting 
E-LDVs (see Table 3). This result supports the objective of e-grocery 
companies to accomplish a higher number of deliveries within hard time 
windows fixed by customers. Furthermore, this could increase cus-
tomers’ satisfaction and incentivize a higher adoption of e-grocery home 
delivery services (Calzavara et al., 2023; Milioti et al., 2021). 

The novel DSS for e-grocery E-LDVs selection encourages imple-
menting the public authority’s initiative related to environmental 
impact reduction in the urban areas devoted to the city logistics freight 
deliveries. The growth of e-grocery would have an impact on the 
transportation system, resulting in higher traffic congestion and travel 
time, especially during peak hours. According to a recent study proposed 
by Lezcano et al. (2023), if e-grocery deliveries are shifted to off-peak 
hours is possible to obtain a congestion reduction of about 3.4%. 
Thus, government initiatives and incentives to shift from diesel to 
electric vehicle technologies could benefit transportation planners by 
reducing travel costs and creating less pollution in cities. The public 
authorities should financially support the development of sustainable 
logistics systems, and thus, the transition to sustainable last-mile 
transportation solutions. At the same time, the advantages of E-LDVs 
should allow e-grocery companies to achieve not only environmental 
aspects but also economic and competitive logistics markets. However, 
the recommendation of future transport policy implications should be 
also focused on investing in charging infrastructure installation. As a 
consequence, the existence of charging infrastructure could also play a 
key role in promoting E-LDV adoption, and mobility habits and enhance 
the utilization of sustainable vehicle technologies. In addition, e-grocery 
companies could encourage customers to choose eco-friendly delivery 
methods through incentives or discounts on purchases/home deliveries 
(Sarkar, 2023). 

The proposed work could be perceived as a first-step analysis for 
evaluating eco-friendly vehicle adoption for e-grocery companies. 
However, the evaluation of the initial investment costs of the vehicles 
did not take into account the maintenance and depreciation costs of the 
vehicles, which will be included in the forthcoming benefit-cost anal-
ysis. Additionally, it would be worthwhile to investigate the resolution 
of real case studies involving a larger number of customers by utilizing 
agent-based or metaheuristic/heuristic approaches as potential solu-
tions. Another development will be introduced in the comparison of 
Environmental Life Cycle Costing (ELCC) to better understand the con-
venience of the systems from a wider perspective. 
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