
26 April 2024

Repository Istituzionale dei Prodotti della Ricerca del Politecnico di Bari

A Decision Support System for User-Based Vehicle Relocation in Car Sharing Systems / Clemente, Monica; Fanti, Maria
Pia; Iacobellis, Giorgio; Nolich, Massimiliano; Ukovich, Walter. - In: IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS. SYSTEMS. - ISSN 2168-2216. - STAMPA. - 48:8(2018), pp. 1283-1296.
[10.1109/TSMC.2017.2665881]

This is a post print of the following article

Original Citation:

A Decision Support System for User-Based Vehicle Relocation in Car Sharing Systems

Published version
DOI:10.1109/TSMC.2017.2665881

Terms of use:

(Article begins on next page)

Availability:
This version is available at http://hdl.handle.net/11589/123090 since: 2022-06-08



1

A Decision Support System for User-Based Vehicle
Relocation in Car Sharing Systems

Monica Clemente, Maria Pia Fanti, Senior
Member, IEEE, Giorgio Iacobellis, Massimiliano Nolich, Member, IEEE, and Walter Ukovich, Member, IEEE

Abstract—Car Sharing (CS) services are promising solutions
complementary to the classic public transport forms. In or-
der to make CS effectively competitive, suitable planning and
management strategies are required. This paper presents a
Decision Support System for handling the user-based vehicle
relocation problem by applying economic incentives ruled by
a threshold policy. Unlike the existing approaches, a methodol-
ogy is proposed for determining the optimal threshold, which
considers explicitly the stochastic reactions of the customers to
the incentives. To this aim, the CS system is described in detail
by Unified Modelling Language diagrams and is modelled in
a Discrete Event System framework. Moreover, a closed-loop
control strategy is introduced to implement the vehicle relocation
policy on the basis of the system state and the best threshold
values, evaluated by discrete event simulation and Particle Swarm
Optimization. A case study simulation analysis shows that the
proposed DSS management strategy can significantly improve
the system performance.

Index Terms—Car Sharing, Decision Support System, Opti-
mization, Discrete Event Simulation.

I. INTRODUCTION

In recent years, the pressing need of improving the quality
of the air in urban areas encourages the research of new
mobility solutions able to reduce the pollutant emissions and
the traffic congestion. In particular, Car Sharing (CS) solutions
are nowadays widely spread throughout the world: in such a
kind of systems a car is used as a public transport means
but individually, and every user can autonomously rent a car
according to his needs and for a period that can be very short,
unlike the traditional car rental [1].

Nevertheless, in such services it is fundamental to reach an
overall level of efficiency as to make them effectively com-
petitive with the ownership of a private vehicle. However, the
continuous dynamic reconfiguration of the system during its
operation and the coexistence of different and often competing
objectives make the management of CS services very complex.
In this context, the application of the modern Information and
Communication Technologies (ICT) is essential [2].

Rental rules play a central role in determining the attrac-
tiveness of a CS organization. If a so-called two-way rental
system is deployed, only round trips are possible: therefore,
the number of vehicles in each CS parking area is constant, but
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the flexibility of the customer travels is limited. On the other
side, in a one-way rental system users are allowed to pick up
and return the rented vehicle in different parking areas, but the
distribution of the vehicles can become imbalanced during the
day due to the non-uniform demand [1]. Consequently, vehicle
relocation activities are necessary to satisfy users’ requests
at any time: for this reason, the so-called vehicle relocation
problem [3] is a fundamental CS management problem.

Different approaches and solutions for the vehicle relocation
problem have been proposed: in particular, a pursued solution
is to influence the customers travel behavior in order to make
them ensure the vehicles number balance among the park-
ing areas (user-based approach). In this case, a particularly
critical issue is determining how to effectively influence the
customers: a solution proposed by different authors is to
introduce a set of economic incentives based on a thresh-
old policy [4], [5]. However, generally these papers do not
consider a methodology for determining the values of the
thresholds, but they take as reference the mean number of
vehicles available in the system. Hence, they do not consider
the difference of the demands in each parking area and the
real time state of the system.

This paper presents a model based Decision Support System
(DSS) devoted to face the vehicle relocation problem by
a user-based approach. In particular, the proposed vehicle
relocation strategy is a closed-loop control scheme with the
objective of incentivizing the users to drop off the vehicles in
suitable parking areas. The control uses the state of the system
(i.e., the number of vehicles and the customers waiting for an
available vehicle) and an optimization algorithm to determine
the minimum number of vehicles necessary in each parking
areas (threshold). Then, the control applies the incentive policy
in order to influence the customers’ behaviour.

The DSS is specified by following three steps: first, a meta-
modeling technique based on the Unified Modeling Language
(UML) is presented [6]; second, the system is described as
a Discrete Event System (DES) model and is simulated in
a discrete-event simulation framework; third, an optimization
procedure based on the simulation and the Particle Swarm
Optimization (PSO) [7] is formulated to select the best value
of the thresholds. In particular, the thresholds are determined
by utilizing the performance indicators obtained by the dis-
crete event simulation and taking into account two important
aspects: i) the probability that the users drop off the car in a
different parking area from their original destinations; ii) the
degree of the affinity between two parking areas, determined
considering the urban and population characteristics.
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Hence, the contribution of the paper is threefold: i) the
formalization of a CS system model by a UML description
and a DES framework; ii) the development of a discrete-
event simulator to mime the CS system dynamics, taking
into account the users’ behaviour; iii) the presentation of
a user-based relocation strategy for the vehicle relocation
problem and of a simulation-optimization procedure for the
determination of the optimal threshold values on the basis of
the system state knowledge.

The remainder of the paper is structured as follows. In
Section II a taxonomy of the vehicle relocation problem is in-
troduced. Section III proposes the DSS solution and approach.
Section IV describes the CS system by UML diagrams and
Section V presents the DES and simulation models. Moreover,
Section VI outlines the considered optimization procedure and
Section VII analyses the application of the DSS for solving
the relocation problem of a CS system designed for Trieste
(Italy). Finally, in Section VIII conclusions and future works
are summarized.

II. BACKGROUND ABOUT THE VEHICLE RELOCATION
PROBLEM

In this Section, a taxonomy of the vehicle relocation prob-
lem is presented in order to clearly point out the motivation
and the original contribution of this work.

Several approaches to the vehicle relocation problem are
studied in literature and it is possible to categorize them on
the basis of four fundamental factors.

First, the main actors of the relocation activities are con-
sidered and operator-based and user-based strategies can
be distinguished. In an operator-based strategy, system staff
relocates the vehicles when needed, but in this case additional
trips without customers are necessary [8], [9], [10], [11],
[12], [13], [14]. On the other hand, in a user-based relocation
approach, users themselves ensure the rebalancing of the
system with their travel behaviour, conveniently influenced
through different types of incentives [15], [5], [4]. From both
an economic and an environmental point of view, the second
solution is preferable. In recent years, additional solutions to
perform vehicle relocations are examined: for example, an
easy relocation technique exploiting automatic parking and
platooning is studied in [16].

Second, it is possible to characterise the relocation strategies
on the basis of the approach used to determine the timing and
the configuration of such activities. If an off-line method is
considered, relocation activities are performed at a fixed time
regardless of the actual system balance conditions (e. g., at
the end of the working day). In this case, additional strategies
can be considered in order to reduce the number of relocation
operations, such as particular schemes for allocating vehicles
to trips [17]. On the other hand, when a real-time monitoring
of the system is implemented, relocations are performed on
the basis of the current system state.

Third, if relocation events are triggered only when an
established minimum (or maximum) threshold in a parking
area is reached, then a non-predictive relocation method is
considered. However, if relocations are based on the expected

future demand, a predictive relocation approach is carried
out [8].

Fourth, a strategic parameter of the relocation strategies
is the desired number of vehicles in each parking area.
Papers regarding operator-based techniques usually determine
the optimal values of such set-points, as they can directly
control the relocation operations [14], [9]. On the other
hand, several papers addressing user-based techniques do not
consider a methodology for determining the set-points, but
take as reference the mean number of vehicles available in
the system [4], [5].

Table I classifies the works related to the relocation problem
approaches according to the four mentioned factors: reloca-
tion modality (operator-based vs. user-based), relocation time
(offline vs. real-time), relocation control (non-predictive vs.
predictive) and type of set-point (a-priori vs. optimized). If it
is not possible to apply one of the classification factors for a
specific paper, “n.a.” is reported in the corresponding cell of
Table I.
As Table I shows, few contributions deal with the user-based
relocation approach and typically the authors apply such a
strategy by using an a-priori determined set-point. Hence,
investigating methodologies to evaluate and implement the
optimal values of the vehicle thresholds for the user-based
relocation is an open problem.

Due to the complexity of the vehicle relocation problem,
some authors propose a DSS approach to handle it, and
a combination of optimization and simulation is applied:
however, most of such works focus on the operator-based
relocation strategy. In particular, [9] introduces a 3-phase
optimization-trend-simulation DSS to identify a set of near
optimal operating parameters for the operator-based vehicle
relocation problem. In [14] a dynamic optimization-simulation
model for one-way CS organization with operator-based re-
location is introduced and the optimization model is solved
successively in a discrete event simulation. In both these
works the simulation is used to perform what-if analyses after
having optimized the system parameters, i.e., to evaluate the
effectiveness of the optimal solutions already identified by the
optimization models. In [22] two integer programming models
are proposed for strategic and operational decision making in
both two-way CS systems and one-way systems with operator-
based relocation: a Monte Carlo simulation is set up in order
to obtain the required input data for the optimization.

It must be pointed out that [9], [14] and [22] do not consider
the customers decision process in the proposed approaches,
hence the objective functions of their optimization models
do not strictly depend on the human behaviour. Conversely,
the optimization of the set-points for the user-based relocation
imposes to take into account the difficult tasks of considering
the stochastic human behaviour and the urban and population
models.
This paper gives a contribution in this context: a DSS is
proposed to solve the user-based relocation problem and a
system of economic incentives is introduced in order to invite
the customers to return the cars where they are mostly needed.
With the aim of determining when such incentives have to be
applied, a threshold policy similar to the one considered in
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TABLE I
LITERATURE REVIEW CLASSIFICATION

`````````Reference
Model Relocation Modality Relocation Time Relocation Control Set-point

Operator User Offline Real-time Non-
predictive

Predictive A-priori Optimized

Alfian et al., 2014 [13] * * * *
Barth and Todd, 1999 [8] * * * * *

Bianchessi et al., 2013
[5]

* * * *

Boyaci et al., 2015 [11] * * * *
Bruglieri et al., 2014 [12] * * * *
Correia et al., 2012 [17] * * * * *
Di Febbraro et al., 2012

[4]
* * * *

Jorge et al., 2014 [10] * * * *
Jorge et al., 2015 [18] * * * *
Kek et al., 2006 [19] * * * *
Kek et al., 2009 [9] * * * *

Marouf et al., 2014 [16] * * * n.a. n.a.
Nourinejad and Roorda,

2014 [14]
* * * *

Santos and Correia, 2015
[20]

* * * *

Uesugi et al., 2007 [15] * * * *
Zakaria et al., 2014 [21] * * * *

the classical stochastic inventory problem [23] is defined: if
the number of vehicles in the parking area is less than a given
threshold, then the incentive is applied for such parking area.
Moreover, an optimization algorithm based on the PSO and
the system simulation is presented to solve the critical issue
of the optimal threshold determination.
More precisely, in designing the DSS the following assump-
tions are considered:
• the relocation activities are performed directly by the

users (user-based);
• the incentive for a parking area is triggered only when a

minimum number of available vehicles is reached (non-
predictive);

• the system status is monitored at regular intervals
throughout the day (real-time);

• the minimun number of vehicles that should be available
in each parking area is determined with the aim of
optimizing the overall system performance (optimized set-
point);

• the suggestion of the incentivized parking areas is pro-
posed to the customer at the beginning of the rental period
(before the effective usage of the car).

III. THE DECISION SUPPORT SYSTEM STRUCTURE

In this Section the architecture of the DSS proposed to solve
the user-based vehicle relocation problem is described.

A DSS is an “interactive computer-based system, which
helps decision makers utilize data and models to solve un-
structured problems” [24]. According to [25], the DSS pro-
posed in this work includes three main components: the data
component, which handles all the data and the information
that the DSS needs to operate; the interface component, which
interacts with the real system by means of a set of geograph-
ically distributed communication modules and maintains the
consistency between the models contained in the DSS and the
real system that they represent; the model component, which

includes all the knowledge and the tools useful to provide
support to the decision makers.

Even if both the data component and the interface com-
ponent are fundamental to guarantee the accuracy and the
effectiveness of the DSS, the core of the system is the model
component. It includes three main modules: the simulation
module, the optimization module and the decision module.

Fig. 1 shows the DSS components and modules and the two
main actors with whom it interacts: the decision maker, i.e.,
the park manager, and the CS system, which includes all the
service parking areas and vehicles.
The green arrows represent the information flow among the
DSS components and modules, while the red arrows depict
the information flow between the DSS, the real system and
the park manager.

DECISION

M odule

OPT IM IZAT ION

M odule

SIM ULAT ION

M odule

IN T ERFACE

Component

Decision

M aker

DATA

Component

M ODEL

Component

PA RK

PARK PARK

PARK CS Syst em

DSS

Fig. 1. The Decision Support System architecture and the connections with
the CS System and the Decision Maker.
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The inputs of the decision module are the data character-
izing the system (e.g., the number of available vehicles in
each parking area, the number of customers waiting for a
vehicle, etc.), collected through the interface component and
provided by the data component; the outputs are the objects
of the decisions. The decision module receives the current
system state from the data component and, on the basis of
it, determines if it is necessary to trigger a new simulation-
optimization procedure in order to optimize in real time the
overall system performances.

The simulation module is used to evaluate how the CS
system operates, i.e., to mime accurately the behaviour of
the considered system on the basis of the DSS historical
data and the configuration inputs. Whenever it is necessary,
the decision module triggers a new decision process, the
optimization module starts a new simulation campaign and
the data component provides to the simulation module the
necessary input parameters.

The role of the optimization module is to identify the
optimal thresholds vector for the incentive mechanism. In
order to determine such vector, it is necessary to evaluate
its impact on the overall system performance. However, this
strictly depends on the customers reaction to the received
incentives. Therefore, a closed-loop simulation-optimization
approach is considered: indeed, the simulation is suitable to
take into account the stochasticity of customers’ behaviour
while identifying the optimal threshold vector.

The proposed DSS is designed by a three-phase approach.
• First, a detailed analysis of the problem is carried out:

with the aim of identifying the structure and the behaviour
of the overall system, the role of each component, the
flow of information as well as the required data, a top-
down modeling technique based on the application of
UML is considered [6]. The choice of using such a graph-
ical and textual formalism is due to its straightforward
translation into simulation models [26]. Moreover, the
structural and environmental aspects of the considered
system are modelled by class and activity diagrams,
respectively.

• Second, on the basis of the UML description, a DES
model for a generic CS system is specified: the UML
activity diagram and the DES model allow specifying the
simulation module of the DSS model component.

• Third, the optimization procedure is defined: in order
to solve the user-based vehicle relocation problem, a
simulation-optimization approach is proposed. In partic-
ular, the optimization module of the DSS implements
a PSO algorithm whose fitness function is evaluated
through the simulation module.

IV. CAR SHARING SYSTEM DESCRIPTION

This Section describes the first phase of the development of
the proposed DSS by considering two aspects: i) the structural
description; ii) the behavioral description.

A. Structural description
The structural view of the CS service is described by the

UML class diagrams [6], useful to represent the different types

of objects that compose a generic system and the relationships
between them. In Fig. 2 the class diagram representing the
structure of a generic CS service is depicted: all the involved
actor categories are represented with their main attributes,
operations and relationships. The values of the attributes of
these classes determine the specific CS organization.

In particular, the following structural components are iden-
tified: the Customer; the Operator, i.e., the employee of the
CS organization, with the child class Park Manager; the
Vehicle, with the two child classes Traditional Vehicle and
Electric Vehicle; the Parking Area, with the two child classes
Traditional and Charging Station, i.e., a parking equipped with
an EV charging infrastructure.

Moreover, the following association classes are highlighted:
Rental (between the classes Customer, Parking Area and Ve-
hicle); Relocation (between the classes Parking Area, Vehicle
and Operator); Maintenance (between the classes Vehicle
and Operator); Emergency (between the classes Vehicle and
Operator); Purchase/Substitution (between the classes Vehicle
and Operator); Share a Vehicle (between different instances
of class Customer).

The structure highlighted by the class diagram determines
the requirements of the data component of the DSS and,
therefore, guides its development.

B. Behavioural Description

Every process characterizing the dynamics of the CS system
can be described by an activity diagram. Indeed, the purpose
of the activity diagrams is to clarify the sequence and the
dependences of the actions representing a process occurring in
the system. Every process involves different actors, which are
objects derived from the class diagram of Fig. 2: in the activity
diagrams it is clearly defined which actors are responsible for
which actions and the sequences of such actions.

Fig. 3 describes the vehicle rental process after the intro-
duction of the proposed user-based relocation strategy. Such
diagram is the base of the implemented simulation module.
Three actors are involved in this case: the Customer represents
the generic service user; the Vehicle represents the generic
vehicle of the CS fleet; and the CS Information System is
the centralized information system of the CS. Six phases
characterize this process:

1) the “vehicle request” phase, representing the user arrival,
request of a vehicle and waiting: after a maximum
waiting time, the user leaves the system without being
served;

2) the “checking vehicle availability” phase, during which
the CS information system checks the vehicles avail-
ability and, if there is a car not yet rented, it grants the
hire;

3) the “incentive determination” phase, during which the
CS information system determines the state of activation
of the incentives for the different parking areas and
communicates it to the customer;

4) the “rental and use of the vehicle” phase, when the
customer refines the rental of the vehicle and makes his
trip. In particular, during this phase the customer chooses
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+Modify Rental Rules()

+Modify Payment Rules()

+Determine incentives activation()

Car Sharing Information System

+Company Name

+Rental Rules

+Payment Rules

+Transmit ID()

+Transmit Position()

+Relocate Vehicles()

+Help in Emergencies()

Operator

+OperatorID

+Position

+State

+Task
1..*

+Sign Up()

+Rent Vehicle()

+Delete Vehicle Rental()

+Modify Vehicle Rental()

+Modify Personal Data()

+Modify Payment Method()

Customer

+UserID

+Personal Data

+User Type

+Payment Method

1..*

+Transmit ID()

+Transmit Position()

+Request Maintenance()

+Transmit Travel Data()

Vehicle

+VehicleID

+Type

+State

+Position

1..*

+Transmit Refuelling Request()

Traditional Vehicle

+Fuel Level

+Transmit Charging Request()

Electric Vehicle

+Battery State of Charge+Transmit Available Vehicles()

+Transmit Vehicles State()

Parking Area

+ParkingID

+Location

+Number of Available Vehicles

+State

1..*

Traditional

+Request Assistance()

Charging Station

+Number of Available Chargers

+Chargers State

Rental

+ReservationID

+Date

+Departure Time

+Origin

+Arrival Time

+Destination

Maintenance

+Maintenance ID

+Date

+Type

Emergency

+Operation ID

+Date

+Type

Purchase/Substitution

+Purchase ID

+Date

+Cost

Relocation

+Origin

+Destination

0..4

share a vehicle

+Monitor Vehicles Distribution()

+Trigger the Incentives()

+Add Vehicle Reservation()

Park Manager

1..*

Fig. 2. The CS service class diagram pointing out the main components of a generic CS system and their relationships: Customer, Parking Area, Vehicle,
Operator, CS Information System.

his destination and, if there are active incentives, the
customer can accept or not the received incentive.

5) the “vehicle restitution” phase, during which the cus-
tomer drops off the vehicle in one of the parking areas
of the service and leaves the system;

6) the “maintenance” phase, which occurs only when the
vehicle needs a repair service before being again avail-
able for rental or, in case of electric vehicle, if the
vehicle needs to be recharged. Only after this phase the
vehicle is again available for rental.

V. DISCRETE EVENT SYSTEM AND SIMULATION MODELS

This Section describes the second phase of the development
of the proposed DSS. In particular, first a DES model for a
generic CS system is described. Second, the proposed user-
based relocation strategy is introduced and the DSS simulation
model is designed.

A. Discrete Event System Model

In this subsection a CS system constituted by N parking ar-
eas is formally modelled as a DES described by the automaton
A={E ,X , f}, where E is the event set, X is the state set, and
f is the state transition function [27].

Denote by P = {1, 2,. . ., N} the set of the N CS parking
areas and by V the total number of vehicles composing the
service fleet. In accordance to the activity diagram of Fig. 3,
the following events are defined for the parking area i ∈ P:
ai is the arrival of a customer; ri is the quit of a customer
without having rented a vehicle; pi is the vehicle pick-up; di
is the vehicle drop off; mi is the maintenance operation for a
vehicle.

Hence, the set of the events that determine the evolution of
the CS system is the following:

arrive at the 

parking

request the 

vehicle

check vehicle 

availablity

destination park 

selection

[available]

wait 

rented

[else]

rental duration 

selection

leave the 

parking area

make his 

trip

give back 

the vehicle

check the vehicle 

condition

maintenance

[need maintenance]

available again

leave the 

system

determine the 

incentives 

activation

evaluate the 

received 

incentives

change 

destination

[accept]

[else]

check vehicle availability 

in each parking area

[else][imbalance][else] [incentives active]

[else]

[waiting time < 

max waiting time]

Customer Vehicle

[else]

CS Information System

Fig. 3. The vehicle rental process activity diagram.

E={ai, ri, pi, di,mi : i ∈ P} (1)

.
Moreover, the state of the parking area i ∈ P is denoted by

the following vector:
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xi=

[
qi
vi

]
, (2)

where qi ∈ N is the number of customers waiting to rent a
vehicle at the parking area i, vi ∈ N is the number of vehicles
available at the parking area i and N is the set of natural
numbers.

Therefore, the system state is denoted by the following
matrix:

X=
[
x1x2 . . .xN

]
=

[
q
v

]
(3)

with q=[q1q2 . . . qN ] and v=[v1v2 . . . vN ].
Since it is reasonable to suppose that every user is willing

to wait for a limited time interval before leaving without
being served, the queue in each parking area cannot increase
indefinitely. Hence, assuming Q ∈ N+ a sufficiently large
integer and qi ≤ Q ∀i ∈ P , the set of the system states is
the following:

X =
{
X | vi = 0, 1, . . . , V qi = 0, 1, ..., Q i = 1, 2, ..., N

}
.

(4)
The system dynamics is described by the state equation

vector f : X × E → X defined as follows:

Xk= f(Xk−1, ek), (5)

where Xk = [xk
1xk

2 . . .x
k
n], with xk

i = [qki vki + 1]T is the
state that the system reaches after the occurrence of event
ek ∈ E , starting from state Xk−1.

In particular, for each parking area i∈P , the state transition
function is the defined as follows:

xk
i = fi(x

k−1
i , ek)=



[qki vki + 1]T if ek = di

[qki − 1 vki − 1]T if ek = pi

[qki − 1 vki ]
T if ek = ri

[qki + 1 vki ]
T if ek = ai

[qki vki − 1]T if ek = mi.

.

(6)

Moreover, the occurrences of the events in E can be char-
acterized as follows for each i ∈ P:
• events ai and mi are the independent inputs of the

system;
• events pi may occur if vi > 0, i.e., they are function of

the system state;
• events ri may occur if vi = 0, i.e., they are function of

the system state;
• events di are controlled events, i.e., the occurrences of

such events are affected by the relocation strategy in order
to guarantee a suitable number of available vehicles in
each parking station.

In addition, regarding the state updating the following
aspects are enlightened:

• events pi, ri and ai, with i ∈ P , affect the number qi of
customers waiting to rent a vehicle in the parking area i;

• events di, pi and mi, with i ∈ P , affect the number vi
of vehicles in the parking area i.

B. User-Based Relocation Strategy

The relocation strategy is specified by introducing two
matrices that allow describing the availability of a customer
to drive to an incentivized parking area, considering two
important aspects: i) the willingness of the customer to drop
off the rented car in a parking area different from his original
destination; ii) the topographical relationship between two
different parking areas, i.e., their distance and reciprocal
positions. The two matrices are the following.
• The routing matrix R ∈ R N×N . The element rij ∈ [0, 1]

is the probability that the customer drops off the car in the
parking area j provided that the car is rent in the parking
area i: such value is determined considering the time
necessary to reach the parking area j from the parking
area i on foot or using the public transport, the time of
the day, the day of the week and the type of customers.

• The affinity matrix A ∈ {0, 1, . . . , N − 1}N×N . Ma-
trix A is introduced in order to model the attitude of
typical customers to accept incentives to change their
final destinations. Such attitude depends mainly on the
specific pair of original and suggested destinations but it
takes into account also other factors, such as the time of
the day, the day of the week, weather conditions, public
transport alternatives and type of customers. Formally,
aij = 0 (= N − 1) means that parking area i has no
affinity (maximum affinity) with respect to parking area
j.

Now, the following variables are defined:
• Sopt ∈ NN is the threshold vector suggested by the DSS:
sopti ∈ N with i ∈ P denotes the minimum number of
vehicles that should be available in the parking area i;

• v∗ ∈ NN is the threshold vector validated by the decision
maker;

• u ∈ {0, 1}N is the control vector: ui = 1, with i ∈ P ,
if the incentive is activated for the parking area i and
ui = 0 otherwise.

The closed-loop control scheme to manage the user-based
relocation problem is sketched in Fig. 4.
In particular, the DSS receives vector q of the CS system
state, denoting the number of customers waiting for a vehicle,
and compares it with an expected value q̄, determined by the
DSS on the basis of historical data. Denoted with h = q̄−q,
if for some i ∈ P it holds hi < 0 then the DSS triggers
a new simulation-optimization campaign and determines the
value Sopt of the vehicle threshold in each parking area.

Vector Sopt is then checked by the decision maker and
v∗=Sopt is the new set point for the successive control loop
that manages the number of vehicles in each parking area.

Hence, the CS information system compares v∗ with the
system state and applies the following control law:
if vi ≤ v∗i then ui = 1 for i ∈ P , i.e., users are encouraged
to drop off the vehicle in the parking area i.
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Now denote with ν(ei) the number of occurrences of event
ei ∈ E during a working day. The proposed control strategy
affects the event occurrences ν(di) of the described automaton
A={E ,X , f} and therefore the number of vehicles vi available
in each parking area.

C. Discrete Event Simulation Module

The DES model and the UML activity diagram of Fig. 3
can be translated in a discrete event simulation model, whose
dynamics depends on the interaction of the described events.
Indeed, even if the CS system can be modelled by the automa-
ton A, the complexity of the complete CS system dynamics
needs a more detailed description by simulation models. In
particular, the UML activity diagrams can be easily translated
in the Arena environment, a discrete-event simulation software
particularly suitable for dealing with large-scale and modular
systems [28], [29]. More in detail, the Arena simulation model
can be implemented by applying the following three steps [26].
• The Arena modules are associated with the UML activity

diagram elements by establishing a kind of mapping
between each Arena module and the UML graphical
element.

• The simulation parameters are included in the Arena envi-
ronment, i.e., the activity times, the process probabilities,
the resource capacities, and the average input rates are
assigned.

• Simulations are run and the performance indices are
determined and evaluated by means of suitable statistics
functions.

In order to realistically evaluate the availability of a cus-
tomer to drive to an incentivized parking area, the following
probabilities influenced by the control strategy and the affinity
matrix A can be defined:
• pselect(i|j,u) is the probability that the parking area i

is selected among the incentivized parking areas instead
of the original destination j. Such a probability can be
determined as follows:

pselect(i|j,u) =
aijui∑N

h=1 ahjuh
(7)

Note that pselect(i|j,u) = 0 if the parking area i is not
incentivized (ui = 0) or if there is no affinity between i
and j (aij = 0). Moreover, pselect(i|j,u) = 1 if i is the
only incentivized parking area and aij > 0.

• pavailable(ij) is the probability that the driver accepts the
selected parking area i instead of the original destination
j. Such a probability can be determined as follows, using
the affinity matrix:

pavailable(ij) =
aij

maxh aih
· ϑ, (8)

where ϑ is the maximum value of the probability
that a user accepts the new destination. Note that
pavailable(ij) = ϑ if aij = maxh aih, i.e., the acceptance
probability is maximum; pavailable(ij) < ϑ in the other
cases.

• paccept(i|j,u) is the probability that the customer accepts
the incentive and returns the rented vehicle at the parking

area i, provided that the original chosen destination is
area j. In particular, it turns out that

paccept(i|j,u) = pselect(i|j,u) · pavailable(ij) (9)

Remark that p0 = 1 −
∑N

h=1 paccept(h|j,u) is the
probability that the customer does not accept the received
incentive.

The performance of the system is evaluated by studying the
Level Of Service (LOS), a typical index suitable for evaluating
the behaviour of this kind of services [22], [14], [13], [5]. In
paricular, in this case the LOS is defined as follows:

LOS =
number of served users per day

total number of vehicle requests per day
(10)

and, according to the DES model, as

LOS =

∑N
i=1 ν(pi)∑N
i=1 ν(ai)

(11)

VI. OPTIMIZATION MODULE SPECIFICATION

This Section specifies the decision and optimization modules
of the DSS model component. Fig. 5 sketches the interactions
among the decision, optimization and simulation modules.
On the basis of the value of h, the decision module triggers a
new optimization-simulation campaign: the decision variable
is the threshold vector S ∈ NN and the objective function to be
optimized is the system LOS. The CS system dynamics is very
complex and it is not possible to obtain an explicit formulation
of the objective function. Therefore, a simulation-optimization
approach is considered: in particular, the simulation module of
the DSS is exploited to evaluate the LOS and an optimization
algorithm is used to choose the threshold vector that maxi-
mizes it.

Different techniques are applied in the related litera-
ture for optimizing objective functions obtained by simula-
tions [30], [31], [32], [33]. Such strategies consist of searching
iteratively in the domain of decision variables variation, and
this approach necessitates a connection between the opti-
mization algorithm and the simulation model. Analysing re-
cent trends on evolutionary optimization, several evolutionary
strategies can be considered to solve this kind of problems,
including PSO, genetic algorithms, differential evolution and
hybrid systems [34], [35], [36], [37]. In the considered applica-
tion context, we implement a PSO technique for the following
reasons:
• the search space of the threshold vector has a straight-

forward representation using PSO particles, thus avoiding
complex encoding and decoding operations;

• the combined global and local search mechanism allows
fast convergence, which is necessary for the proposed
DSS real-time operations;

• the evaluation of the objective function requires a limited
number of simulations that are typically time consuming.
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Fig. 4. Complete control scheme resulting from the introduction of the proposed DSS.

In the proposed DSS, the optimization module identifies
the candidate values of S on the basis of the actual number q
of customers waiting in the system. When the optimal value
for the thresholds Sopt

new has been reached, the optimization
module provides it to the decision module that suggests to
the decision maker the new candidate threshold vector Sopt

through the interface component.

DECISION
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Soptnew

S LOS

M ODEL Component

Fig. 5. Interactions among the decision, optimization and simulation modules
of the DSS model component.

A. Particle Swarm Optimization of the Thresholds

In the PSO algorithm a number of components, called
particles, are placed in the search space of the problem, and
each of them evaluates the fitness (or objective) function at
its current location. Each particle determines its movement
through the search space by combining some aspects of the
history of its own current and best positions with those of the
nearest members of the swarm. The swarm as a whole moves
close to an optimum of the fitness function.
The swarm is composed by K particles, denoted by pj ,
j = 1, ..,K, and each particle is composed of three D-
dimensional vectors (where D is the dimension of the search
space) defined as follows:

pj = (pposj ,pbestj ,pvelj) (12)

where pposj is the current position of particle j, pbestj is
the best position reached so far by particle j, and pvelj is the
current velocity of particle j, which directs the movement of
the particle.

The current position pposj is evaluated as a possible
problem solution. If that position results to be better than
the previous ones in terms of fitness function value, then its
coordinates are stored in the vector pbestj . The position
corresponding to the global best function obtained by any
particle in the storm is stored in a variable called global
best, denoted by gbest. The objective of the algorithm is
to move towards better positions and update pbestj and
gbest vectors. Moreover, the algorithm iteratively updates the
velocity vector pvelj and calculates new points by adding the
pvelj coordinates to pposj .

In the present implementation, the current position pposj
is the candidate incentives threshold vector Sj ∈ NN . For
each particle of the swarm, the simulation module is used to
evaluate the fitness function LOSj for the given value of Sj .

The steps followed during the simulation-optimization cam-
paign are summarised in Algorithm 1, that consists of five
main phases.

1) Initialize particles. The PSO operates on K particles.
Each particle has D ·3 elements, where D = N , i.e., the
number of parking areas. The K particles are initialized
at a random generated values.
The target value LOS∗ to be reached is determined
by the decision maker. If such value is not reached,
the optimization process terminates after completing a
maximum number of iterations (MAXITER).

2) Calculate fitness values. The fitness value LOSj for
each particle pj is evaluated invoking the simulation
module with Sj as input. Moreover, the current number
of performed iterations (numiter) is updated.

3) Performances analysis. The fitness of each current
position Sj is evaluated in order to determine how
to move towards the optimum values. The best stored
position pbestj is updated for each particle. Moreover,
the actual global best value of the LOS, LOSgbest,
is computed and the corresponding particle position is
stored in gbest.

4) Stop criteria. The optimization process is completed if
one of the following stop criteria is reached: LOSgbest

is greater than LOS∗ or numiter =MAXITER.
5) Particle swarm update. Each particle pj is updated

in order to reach potentially better fitness values: first
the new velocity pvel′j is computed, second the new
position S′j is obtained. The update of pvelj uses two
weights ϕ1 and ϕ2, with ϕ1 = c1 ·R1 and ϕ2 = c2 ·
R2: c1 and c2 are acceleration coefficients, R1 and R2

are vectors of random values uniformly distributed in
the interval [0, 1]. The expression ϕ1 ·

(
pbestj−Sj

)
is
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Algorithm 1 Optimization-simulation procedure.

Phase 1 - PSO: Initialize particles
1: Set K, LOS∗, MAXITER . swarm size, minimum required LOS,

maximum number of iterations
2: Set LOSgbest = 0, numiter = 0 . maximum value of LOS reached

so far, current number of performed iteration
3: Set K = {pj , j = 1, ..,K}, where pj = (Sj ,pbestj ,pvelj) .

particle swarm, composed by pj particles
4: for j = 1 : K do
5: Set randomly Sj

6: pj = (Sj , (0, 0, 0, 0, 0), (0, 0, 0, 0, 0))
7: end for

Phase 2 - PSO: Calculate fitness values
8: numiter=numiter+1
9: for j = 1 : K do

10: Simulate system behaviour
11: LOSj = getsol(simulation(Sj)) . system performance using as

input the vector Sj of pj

12: end for

Phase 3 - PSO: Performances analysis
13: for j = 1 : K do . update pbestj
14: if LOSj > LOSpbestj

then
15: pbestj =Sj

16: end if
17: end for
18: LOSgbest= max

(
LOSgbest,maxj=1:K

(
LOSpbestj

))
.

update gbest
19: gbest = selectj=1:K

{
pj s.t. LOSj = LOSgbest

}
Phase 4 - PSO: Stop criteria
20: if LOSgbest≥LOS∗ or numiter>=MAXITER then . stop

criteria
21: Sopt

new=Sgbest . optimal value of threshold S computed by PSO
22: Return Sopt

new

23: End of the optimization-simulation process . EXIT
24: end if

Phase 5 - PSO: Particle swarm update
25: for j = 1 : K do
26: pvel′j =

(
ϕ1 ·

(
pbestj−Sj

)
+ϕ2 · (gbest−Sj)

)
. new velocity

27: S′j =Sj+ pvel′j . new position
28: pj = ( S′j , pbestj , pvel′j ) . update position and velocity of

particle j
29: end for
30: Go to Phase 2

called cognitive component and represents the tendency
of the particles to move towards its best position, while
the expression ϕ2 ·(gbest−Sj) is the social component
and represents the attraction of the particle towards the
position associated to the global best value [7].

VII. A CASE STUDY

This Section describes the application of the DSS for
solving the relocation problem of a CS system designed for
Trieste, a city in the north of Italy. Considering the dimension
of the town and the necessary services, five parking areas are
proposed and positioned in strategic locations. In the following
the CS system and the parking areas are specified for the
simulation model by determining the necessary parameters on
the basis of stored city data or suitable interview analysis.
Obviously, during the practical operations the used parameters
and data will be obtained from the service historical data.
• Number of parking areas: N = 5.

• Daily customer demand. Three levels of demand char-
acterized by different inter-arrival times are considered,
in correspondence to different levels of demand during
a typical day: high (λh minutes), medium (λm minutes)
and low (λl minutes).

• Routing. The following matrix is determined by consid-
ering the proposed locations for the five parking areas:

R =


0.08 0.20 0.32 0.10 0.30
0.15 0.05 0.35 0.25 0.20
0.23 0.23 0.08 0.23 0.23
0.18 0.25 0.20 0.02 0.35
0.15 0.30 0.20 0.30 0.05

 (13)

In particular, rij � 1 means that there is a low probability
that a car rented in the parking area i is dropped off in
the parking area j. On the other hand, if rij ∼= 1 then
there is a high probability that a car rented in the parking
area i is dropped off in the parking area j. The values of
elements rij are determined by considering a particular
period of the year (the winter), during the rush hours,
and by evaluating the walking distance and the possible
public means that connect parking area i and parking area
j. However, the probabilities on the principal diagonal of
R (i = j) are chosen with low values in order to stress
the relocation problem. Of course, during the practical
operations the values of R will be derived from historical
data.

• Maximum waiting time. Considering the dimensions
of the town and the high frequency of service that the
local public transport offers, it is assumed that, if a user
cannot rent a vehicle within 10 minutes from his arrival
to a parking area, he will leave the system without being
served.

• Vehicles maintenance and EVs charging operations.
The 10% of the total number of rented vehicles need
maintenance operations after the rental period. Moreover,
among them, the 99% are available again at the parking
area after 1 hour, while the remaining need an 8-hour
service. In case of EVs, such maintenance operations
represent the necessary charging operations.

• Service and rental times. The times associated to the
vehicle rental operations, the maintenances and the charg-
ing operations, as well as the length of the rental period,
have triangular distribution. Indeed, it is reasonable to
consider times centred around a most likely value, avoid-
ing extreme and unrealistic values.

• User acceptance probability. The maximum value of
the probability that a user accepts the new destination is
assumed equal to ϑ=0.50.

• Degree of Affinity. The affinity matrix A associated to
the considered parking areas is the following:

A =


0 3 4 2 1
2 0 1 3 4
3 2 0 3 2
2 3 4 0 1
3 4 1 2 0

 (14)

In particular, the elements aij of A are determined
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considering two aspects: the distance between parking
areas i and j and the possibility of using quick and
reliable public transport means between the two parking
areas. In particular, aij = 4 if the walking distance
between parking area i and parking area j is smaller
than 15 minutes and high frequency public transport
services from j to i are available; aij = 3 if the walking
distance between parking areas i and j is greater than
15 minutes and high frequency public transport services
from j to i are available; aij = 2 if the walking distance
between parking areas i and j is smaller than 15 minutes
and low frequency public transport services from j to i
are available; aij = 1 if the walking distance between
parking areas i and j is greater than 15 minutes and
low frequency public transport services from j to i are
available.

• System monitoring. The status of the system is moni-
tored every 10 minutes in order to determine the incentive
activation status.

With the aim of assessing the effectiveness of the proposed
approach, a set of scenarios is considered: in each test,
the estimates of the service performance are deduced by a
simulation campaign of 100 independent replications, with a
95% confidence interval, whose half width is about 1.4% in
the worst case. The length of each replication is 960 minutes
(i.e., a complete working day is simulated), with a transient
period of 30 minutes.

In order to identify the best number of particles for the PSO
implementation, a set of different sizes of the swarm are tested.
Such tests showed that, in the proposed case study, the results
do not improve using a swarm of size greater than 10 particles.
Therefore, in the considered test case the PSO algorithm runs
with K = 10 particles. Moreover, c1 and c2 are both set to 2,
as suggested in the related literature [7].

Two different models to describe the user demand are
considered: deterministic and stochastic interval times between
customer arrivals. The deterministic model is proposed as a
benchmark for the incentive approach, and can be used to
estimate a typical value for the thresholds based on historical
data. On the other hand, the stochastic scenarios take into
account more realistic demand behaviour and random variation
among the users’ inter-arrival times.

A. Effects of the Incentive Mechanism

In order to assess the impact of the proposed incentive
mechanism, five scenarios (denoted by A,B,C,D and E) char-
acterized by different service fleet sizes and different inter-
arrival times λh, λm, and λl are considered. Each scenario
is studied in two cases: deterministic and stochastic inter-
arrival times. Table II reports the inter-arrival times expressed
in minutes: in the case of deterministic demand the values are
the deterministic inter-arrival times; in the case of stochastic
demand the average values of the exponential distribution of
the inter arrival times are reported.

The values of the LOS are determined by the simulation in
three Operative Conditions (OC):

1) OC1: the incentives are not applied (LOSni);

TABLE II
SCENARIOS CONSIDERED TO ASSESS THE IMPACT OF THE PROPOSED

INCENTIVE MECHANISM

Scenario Fleet size Demand
λh λm λl

A 20 12 20 60
B 40 6 10 30
C 60 4 6 15
D 80 2.5 5 10
E 100 2 2.5 5

2) OC2: the incentives are applied with the thresholds Sav

equal to the average number of vehicles available in the
system (LOSav),;

3) OC3: the incentives are applied with optimized thresh-
olds SPSO obtained by Algorithm 1 (LOSPSO).

Table III reports the 5-elements vectors Sav and SPSO for
OC2 and OC3. Moreover, Table III shows the values of the
LOS obtained in the three simulated operative conditions and
in the five scenarios with stochastic and deterministic interval
times: the LOS is low when no control is applied; the LOS
increases if a control rule based on the incentives is applied;
the application of the optimization-simulation procedure leads
to a LOS increase of about 4% compared to the case without
optimized thresholds.

What is worth noting is that in each scenario the values of
the thresholds determined by the PSO are significantly lower
than the mean number of available vehicles: this is due to the
fact that in OC3 the thresholds are not determined a-priori
but on the basis of the customers preferences and the relative
locations of the parking areas. As a consequence, the incentive
for each parking area is triggered less frequently in OC3 than
in OC2.

In order to enlighten this result, the following additional per-
formance indexes are determined and compared in Table IV:

tav =

(
average time during which
the incentives are active in OC2

)
working day duration

, (15)

tPSO =

(
average time during which
the incentives are active in OC3

)
working day duration

, (16)

δ = (1− tPSO

tav
)100. (17)

In particular, tav is the average fraction of time during which
the incentive mechanism is active in OC2 case; tPSO is the
average fraction of time during which the incentive mechanism
is active in the OC3 case; finally, δ is the reduction, expressed
in percentage, of the incentive activation time guaranteed by
the introduction of the optimized threshold.

It is apparent that the period of activation of the incentives
is significantly reduced in OC3, with clear benefits for the
CS company, which obtains a better LOS while incentivizing
fewer customers.
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TABLE III
TESTS FOR INCENTIVE MECHANISM EVALUATION

Scenario System LOS S
LOSni LOSav LOSPSO Sav SPSO

A deterministic demand 0.65 0.72 0.76
[4 4 4 4 4]T

[1 4 2 2 1]T

stochastic demand 0.61 0.68 0.70 [1 1 2 1 1]T

B deterministic demand 0.65 0.73 0.76
[8 8 8 8 8]T

[4 4 1 3 3]T

stochastic demand 0.63 0.71 0.73 [1 3 4 4 3]T

C deterministic demand 0.68 0.75 0.80
[12 12 12 12 12]T

[3 9 2 3 4]T

stochastic demand 0.67 0.74 0.77 [7 6 10 3 7]T

D deterministic demand 0.63 0.70 0.74
[16 16 16 16 16]T

[5 7 3 1 2]T

stochastic demand 0.62 0.68 0.72 [3 6 2 0 2]T

E deterministic demand 0.69 0.73 0.76
[20 20 20 20 20]T

[1 4 2 2 1]T

stochastic demand 0.68 0.72 0.75 [1 2 2 2 1]T

TABLE IV
AVERAGE FRACTION OF TIME DURING WHICH THE INCENTIVES ARE

ACTIVE

Scenario Incentive activation
tav tPSO δ

A deterministic demand 0.67 0.49 27%
B deterministic demand 0.77 0.56 27%
C deterministic demand 0.87 0.65 25%
D deterministic demand 0.84 0.66 21%
E deterministic demand 0.88 0.74 16%

TABLE V
SCENARIOS WITH A FLEET SIZE OF 20 VEHICLES.

Scenario Demand
λh λm λl

AA 12 20 60
AB 10 15 30
AC 6 10 15
AD 3 6 10
AE 2.5 3 6
AF 2 3 4

As Fig. 6 highlights, the application of the incentive
mechanism with the threshold determined by the simulation-
optimization procedure leads to a LOS increase of about
16% in all the cases and the stochastic demand does not
affect the effectiveness of the solution. The observed LOS
increase is coherent with the values typically observed in
the related literature, both for user-based and operator-based
policies [22], [14], [13], [5], [12].

B. Sensitivity Analysis about Acceptance Variation.

In order to assess the robustness of the proposed solution
to the customers’ acceptance variation, the optimal incentive
configuration identified by the PSO for scenario A (both in
deterministic and stochastic cases) is considered with 0.30 ≤
ϑ ≤ 0.80. Fig. 7 points out that, even in the worst case, i.e.,
for ϑ = 0.30, there is a LOS increase of about 8% under both
deterministic and stochastic demand assumptions.

C. Discussion about of the Proposed Solution

The effectiveness of the proposed solution relies on the fleet
size in relation with the demand. In order to highlight such

a behaviour, a fleet of 20 vehicles, as in the Scenario A, is
considered and the demand is gradually increased as described
in Tab. V. Fig. 8 points out that the incentive mechanism is
very effective if the fleet size is coherent with the demand,
and, obviously, the benefit decreases if the demand increases
too much.

Moreover, comparing the proposed DSS with the systems
presented in the related literature [9], [14], [22], two main
differences are pointed out: i) the presented DSS considers a
user-based vehicle relocation strategy based on the optimiza-
tion of the selected performance index; ii) the simulation is
used in a closed-loop strategy to optimize the performance
index and it is not only a mean to evaluate the performance;
iii) the proposed relocation strategy is applied in closed-loop
on the basis of the system state knowledge.

VIII. CONCLUSION

This paper proposes a Decision Support System (DSS)
devoted to an effective Car Sharing (CS) system management:
in particular, the DSS is designed for the solution of the user-
based vehicle relocation problem. To this aim, the system
is described in detail by Unified Modeling Language tools
and a Discrete Event System model is formulated. A closed-
loop control strategy is proposed in order to invite the users
to drop off the vehicles in suitable parking areas through
the application of an incentivation policy. The choice of the
parking areas is performed by a PSO optimization procedure
that optimizes the Level Of Service (LOS) obtained by a
discrete event simulation.

The DSS is assessed by a case study analysis of a CS system
designed for Trieste, a city in the north of Italy: the results
show that the economic incentives allow an effective relocation
and can be used to improve the system LOS even in the case
of nearly saturated offer. Indeed, for typical demand levels,
the LOS improvement is about 16% for a wide range of fleet
sizes. The proposed incentives operate before car rental, so no
special equipments are required on board of the vehicles.

Future research will focus on the evaluation of other solu-
tions that could improve the effects of the proposed optimal
user-based relocation policy. First, the incentive proposal could
be performed during the trips, and not only at the beginning
of the rental period. In this case, the time at which the
users are asked to change their destinations has to be taken
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Fig. 6. System LOS before and after the application of the incentive with optimized thresholds.

into account, leading to a more complex customers decision
process. Second, the determination of the optimal economic
incentives on the basis of the specific considered population
will be studied. Finally, the results obtained by applying
genetic algorithms could be compared with the use of the PSO
algorithm.
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