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The Gent model for rubber-like materials: an appraisal

for an ingenious and simple idea
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aDipartimento di Scienze dell’Ingegneria Civile e dell’Architettura, Politecnico di Bari,
70126 Bari, Italy

bDipartimento di Ingegneria, Università degli Studi di Perugia, 06125 Perugia, Italy

Abstract

We review the main aspects of the celebrated Gent constitutive model for
rubberlike materials. Emphasis is placed on the case of damageable materials
describing possible damage and deformation localization.

Keywords: Gent model, limiting chain extensibility, damage.

1. Introduction

During 1996 Alan Gent publishes a short note [16] where he proposed
a new constitutive equation for the nonlinear elastic behavior of rubberlike
materials. Due to its formal simplicity, this model reached a great popular-
ity in various scientific communities interested in large elastic deformations
of solids. The aim of this note is to present an appraisal of this simple
constitutive model by showing its effectiveness in describing the behavior of
traditional and many new elastomeric and biological materials. We remark
that the Gent model [16] has been applied successfully in several different
fields of material science and in the following we refer only to a small subset
of the many possible applications of the simple idea behind the Gent model.
For a more detailed survey of the scientific literature related to the Gent
model, we refer the reader to the paper by Horgan in this same volume [18].

Rubberlike materials are typically characterized by their ability to un-
dergo very large reversible deformations. As a consequence they are modeled
(at least in appropriate ranges of stretches, temperature and time scales) as
hyperelastic materials. A general treatment of such an approach was given by
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Rivlin [32] and later by many other authors (see, for example, [25]). This pe-
culiar macroscopic behavior arises from the structure of rubber-like materials
at the micro (network) scale and we refer to the classical book by Treloar [34]
for an analysis of the amorphous properties of such macromolecular materials
at these scales.

To be more explicit, let us consider a deformation x̂ of a body Ω, Ω 3
X 7→ x = x̂(X) and let F = Grad(x̂) be the deformation gradient. Let
then B = FF T be the left Cauchy-Green strain tensor and let

I1 = tr(B), I2 =
I21 − tr(B2)

2
, I3 = detB

be its principal invariants. If a material is hyperelastic and isotropic [25] we
may introduce a strain-energy density function W = W (I1, I2, I3). Moreover,
because the bulk modulus of rubber is typically significantly higher than
the tensile modulus, rubber and rubberlike materials are often modeled as
incompressible materials with an energy density depending on only the first
two invariants: W = W (I1, I2).

As a result, the Cauchy stress tensor T is given by

T = −pI + 2
∂W

∂I1
B − 2

∂W

∂I2
B−1, (1.1)

where p is the Lagrange multiplier associated with the incompressibility con-
straint. Moreover, in the absence of body force, the equilibrium equations
are

divT = 0 (1.2)

(here div is the usual divergence operator with respect x).
Schematically, we may consider three distinct classes of constitutive ap-

proaches proposed in the framework of nonlinear elasticity for rubberlike
materials. The first class proposed phenomenological constitutive laws, re-
lating them both to the experimental observations and to the known molec-
ular structure of the material. In this class different simple microstructure
based constitutive equations were taken into account to describe the thermo-
mechanical behavior of rubber-like materials. The most representative strain
energy density function in this class is for sure the basic neo-Hookean model

W =
E

6
(I1 − 3), (1.3)

depending on one single material small strain tensile modulus E that has
been related in various ways to the molecular material properties. This
macroscopic constitutive law results as a homogenized behavior of an isotropic
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network of ideal Gaussian chains. An introduction to this class of models can
be found in the classical work of Treloar [34].

Successively the axiomatic theory of Continuum Mechanics [35] delivered
a systematization of the so-called representation problem by a systematic use
of the methods of Linear Algebra (see for example [32]). Thus, the second
class of constitutive models focussed on the mathematical determination of
specific forms of the general representation formula (1.1). Several new in-
teresting models resulted from the research in this direction among which
the most widely adopted is the Mooney-Rivlin model considering an energy
function depending linearly also on the second invariant

W = C1(I1 − 3) + C2(I2 − 3). (1.4)

Here C1 and C2 are two material moduli. Of course (1.3) is a special case of
(1.4).

The third, more recent, class of constitutive theories resulted from a crit-
ical reassessment of all previous theories searching for a deeper connection
between the macroscopic response of rubberlike materials and the behavior
at the mesoscopic scale. The aim of these new models was both to cover
the gap between the theoretical predictions and the experimental behavior
and to generalize the elastic constitutive theories to more general material
behaviors (e.g. residual strains and Mullin and Payne effects). In this case
the main contribution was the introduction of models based on the inverse
Langevin function defined as L(x) = coth(x)− 1/x [3].

To understand the role of this function, we briefly recall that rubberlike
materials are amorphous materials consisting of very long flexible chainlike
molecules constituted by a backbone of many non-collinear single valence
bonds around which, due to thermal agitation, barrier free rotations are pos-
sible. Rubbery materials are composed of a network of thousands of these
chains linked through interchain bonds. These topological links deliver the
material a solid behaviour while allowing the molecules to change their shape
easily and continuously at normal temperatures due to their Brownian mo-
tion. If a tensile force is applied to the network then the chains assume
a somewhat oriented configuration. Several interesting material behaviors
descend from this microscale material structure. For example, if the macro-
molecules in the network are highly regular they are able to finely pack (for
stereochemical reasons) so that they easily crystallize due to van der Waals
forces. In this case the polymeric material behaves like a crystalline solid
exhibiting ductile and plastic behavior. In other cases the monomers may
hardly move due to viscous inertial and entanglement effects under thermal
agitation and therefore the polymer behaves in a glassy way.
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The ability of the Gent model to describe important properties of rubber-
like materials can be substantially noted by the following observation of the
behavior of these materials at the network scale. As described above, rubber
materials are constituted by long chains energetically free to switch between
a wide variety of conformations through transitions phenomena which are
governed mainly by the statistics of random processes. For this reason we
say that the elasticity of rubber-like materials is mainly entropic in nature,
because their elasticity is regulated by the configurational entropy of the
chains and not by enthalpic energy contributions. In particular, the statis-
tics that govern the conformation of the macromolecules over short chain
lengths is Gaussian, but, when we approach something like one-third of the
fully stretched length of the chain (contour length), non-Gaussian effects be-
come non-negligible. Macroscopically this is reflected in a large experimental
discrepancy of the predictions of a model such as (1.3) based on the Gaussian
assumption, or its phenomenological generalization (1.4), with experimental
observations.

To overcome this problem, two main methods have been proposed. In
one direction more complex phenomenological forms than (1.4) have been
proposed. Often the main drawback of these constitutive models is that they
contains a large number of empirical parameters that are not always easily
determined by fitting procedures with experimental data. The advantage is
that they are ready to use in the commercial finite element codes as greatly
appreciated by engineers.

The second, successful, direction of research was dedicated to the refine-
ment of the molecular description of the macromolecular network and to the
consideration of the non-Gaussian character of the random processes of the
chains conformations, taking into account that the probability density func-
tion for the end-to-end distance of the chains has compact support, and not
infinite tails as in the Gaussian case, since the macromolecules have finite
contour lengths. These studies generated several models, among which the
most popular is the Arruda-Boyce eight chain model [2] which is indeed based
on the inverse Langevin function. The advantage of such models is that they
usually contain few constitutive parameters and that such parameters are di-
rectly connected to the microscopic properties of the material. On the other
hand the main disadvantage is the numerical and analytical complexity of
such models and the fact that the stress-strain relationship are usually not
expressed in closed explicit form.

The Gent constitutive equation has to be considered in such framework
(Paraphrasing Gent himself [16])

a simple, two-constant, constitutive relation, applicable over the
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entire range of strains. . . . ,

Alan Gent, using the typical British understatement, justifies the introduc-
tion of his model only on the basis of the simple mathematical feasibility. In
reality, it was an ingenious idea that allows, especially because of its mathe-
matical simplicity, exploration of many mechanical issues associated with the
elasticity of rubber-like materials. These aspects are reviewed in detail in the
paper by Horgan in this issue [18] and we refer to this paper for a more de-
tailed survey of the various results obtained in the literature about the Gent
model [18]. The aim of this paper is to show the main features (and limits) of
the Gent model by considering the simple deformation classes of simple shear
and rectilinear shear. Then we show how the idea of Gent led the derivation
of a new generation of models useful also in the description of important
biomaterials like spider silk or protein macromolecular biomaterials.

2. The Gent Model

The energy density function proposed by Gent in [16] for incompressible,
isotropic, hyperelastic materials is, using his exact formulation,

W = −E
6
Jm ln

[
1− I1

Jm

]
. (2.1)

Here E is the small strain tensile modulus that, for incompressible materials,
is related to the infinitesimal shear modulus µ by the relation µ = E/3. Thus,
since W depends on the only first invariant of B, the Gent model belongs to
the class of the generalized neo-Hookean materials such that W = W (I1).

The important parameter Jm represents the maximum value of I1 with the
energy that grows to infinity as I1 → Jm. To better understand its mechanical
meaning we may recall a simple result by Kearsley [22] that states that I1
“is equal to three times the square of the stretch ratio of an infinitesimal line
element averaged over all possible orientations”. As a conseqeunce Jm can
be seen as a fair (and natural) measure of the average contour length of the
chains composing the polymeric network.

Observe also that, in analogy with the entropic models for molecular
chains, showing that the non-Gaussian models converge to a Gaussian one
when the contour length grows to infinity, we observe that when Jm → ∞
(2.1) reduces to (1.3) corresponding to the averaged behavior of an isotropic
network of Gaussian chains. We may then see the Gent model as a simple
and direct generalization of the neo-Hookean strain energy density that takes
into account the non-Gaussian character of the macromolecular chains with
finite contour length.
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The stress-strain relation for (2.1) is easily obtained as

T = −pI +
E/3

1− I1/Jm
B, (2.2)

and the generalized shear modulus function µ̂ is given by

µ̂ =
E/3

1− I1/Jm
(2.3)

and is a function of the only first invariant.

2.1. Simple shear

To describe the behavior of the Gent model we begin by fixing the ideas
on the simple, analytically clear case of simple shear deformations

x = X + κY, y = Y, z = Z. (2.4)

Here κ is the shear deformation parameter. This deformation is probably the
simplest example of finite deformation although it is a deformation which is
difficult to produce experimentally due to the required boundary conditions
such as surface tractions.

In this case, given the energy W = W (I1, I2) the components of the
Cauchy stress are given by

T11 = −p+ 2(1 + κ2)W1 − 2W2, T12 = 2κ(W1 +W2),

T13 = T23 = 0,

T22 = −p+ 2W1 − 2(1 + κ2)W2, T33 = −p+ 2W1 − 2W2,

(2.5)

where Wi = ∂W (I1,I2)
∂Ii

, i = 1, 2.
In the case of Gent material (2.2) the shear stress is given by

T12 = µ
κ

1− (κ2 + 3)/Jm
. (2.6)

To point out the effect of the parameter Jm we observe that

T12 →∞, when κ→
√
Jm − 3

and
T12 → µκ, when Jm →∞.
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The behavior is reproduced in Fig.1 where we show a comparison also
with the 8-chain Arruda-Boyce model [3] for which after easy calculations
one gets

T 8c
12 =

L−1

(√
3+k2

3n

)
2
√

3+k2

3n

µ k,

where n is the number of links in the chain.
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Figure 1: Comparison of the shear stress/strain curves for the Gent model, the neo-
Hookean model and the 8-chain model. Here the values Jm = 21 and n = 7 have been
chosen to let the Gent and 8-chain model attain the same limiting extensibility.

We observe that the Gent model behaves as the neo-Hookean model at
low strain. Moreover the model, while keeping its fundamental analytical
simplicity, approximates very well the macroscopic 8-chain model. This last
model is deduced from a molecular chain model of the inverse Langevin type
as attained under a freely jointed chain behavior hypothesis [3].

It is important to observe that the generalized shear modulus for the Gent
material is a rational function. In this respect we observe that in typical phe-
nomenological models polynomial (Taylor series) approximations are consid-
ered for the constitutive laws. As a result, these models lose the possibility
of describing well the asymptotic behavior assigned by the contour length
threshold. On the other hand, it is possible to introduce better approxima-
tions using rational functions of given orders such as the Padé approximants
[4] that are usually more accurate than Taylor expansions and are able to
take into account the presence of singularities (such as the limiting value of
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the admissible amount of shear in (2.6)). The first to use a rational approx-
imation for the inverse Langevin function was, to the authors knowledge,
Treloar [34]. Moreover, a Padé approximation was first introduced by Cohen
in 1991 [5] and required the introduction of sixth-order terms. Interestingly,
later Horgan and Saccomandi in [20] realized that by fixing Jm (the maxi-
mum average contour length) the Padé approximant of the the eight-chain
model proposed by Arruda and Boyce [2] delivers exactly the Gent model.
This result gives a natural molecular interpretation of the Gent model.

2.2. Limits of the Gent model

As typical of very simple models, the constitutive assumption (2.1) was
an ingenious intuition, but because it uses only two constitutive parameters
to describe many properties of a huge class of complex statistical models, it
has some important limits. In this section we briefly analyze some of them.
We remark, anyway, that the limits we describe in the following are indeed
shared with all members of the class of generalized neo-Hookean models, i.e.
materials with an energy density depending on the only first invariant: W =
W (I1). Therefore, the resulting unpleasant features that will be discussed in
the following are shared also with models of the Arruda-Boyce type [2, 3].

To be specific, consider again the simple shear deformation and the asso-
ciated universal relations [33] that are assigned by the two trivial conditions
T13 = T23 = 0 plus the celebrated Rivlin universal relation

T11 − T22 = κT12. (2.7)

As a result, if experimentally (2.7) is not satisfied then one may conclude that
the material under investigation is not an isotropic Cauchy elastic material.

Consider now a rectangular elastic body, under the shear deformation
(2.4) and suppose that the two faces perpendicular to the Z direction respect
the boundary conditions T33 = 0. Using (2.5) we obtain

p = 2(W1 −W2).

As a result we have

T11 = 2κ2W1, T12 = 2κ(W1 +W2),

T22 = −2κ2W2, T13 = T23 = T33 = 0.

Now we have three trivial universal relations T13 = T23 = T33 = 0 plus (2.7).
If then we suppose that W = W (I1) (generalized neo-Hookean material), we
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obtain

T11 = 2κ2W1, T12 = 2κW1,

T22 = T13 = T23 = T33 = 0.

This means that the new trivial universal relation T22 = 0 arises from the
peculiar case of generalized neo-Hookean materials.

By comparing these theoretical results with experimental data the authors
in Pucci and Saccomandi [28] and in McKenna et al. [17], could conclude
that

it is shown that at moderate ratios, the eight-chain model does not
provide even qualitative agreement with the experimental stress-
strain data for both the dry and swollen states.

Similar comments can be extended also to the Gent model.
Despite these limitations, the role played in the development of the theory

of rubber-like elasticity by the Gent model has been fundamental due to its
simplicity and its relation with the inverse Langevin function models. As a
result the Gent model has been, in the last decade, a true motor towards
interesting models able to connect the macroscopic scale behavior to the
mesoscopic structure of polymeric networks. Horgan and Saccomandi (see
[18]) and other co-workers have shown that using the model (2.1) it is possible
to solve analytically a huge class of boundary value problems. Moreover, the
simple structure of the Gent model may be generalized to obtain interesting
three-dimensional continuum versions of various molecular models such as
the widely adopted worm-like chain model for biological materials [26].

2.3. Rectilinear Shear

The main effect of the parameter Jm on the solution of a boundary value
problem is here exemplified by considering the simple case of rectilinear shear
deformations

x = X + f(Y ), y = Y, z = Z,

where f(Y ) is a function that must be determined from the balance equations.
To be specific, consider the rectangular body schematized in Fig.2a under

a constant load q with fixed boundaries at the edges Y = 0, 1. The averaged
total potential energy of the system is (Ḡ = G

µ
= 3G

E
)

Ḡ =

∫ 1

0

(
−1

2
Jm ln

(
1− κ2 + 3

Jm

)
− q̄f

)
dY, (2.8)
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where q̄ = q
µ

= 3q
e

and the shear κ is now defined as κ = df
dY

.
If we consider the Dirichlet boundary conditions

f(0) = 0, f(1) = 0, (2.9)

by integrating the Euler-Lagrange equilibrium equations we obtain the bal-
ance equation

κ

1− (κ2 + 3)/Jm
+ q̄ Y = c1 (2.10)

where c1 is an integration constant.
Observe that, since for Jm > 3 the energy density (2.1) is a strictly convex

function of κ and the coercivity condition W ≥ Jm ln
(

Jm
Jm−2

)
+ Jm

Jm−2
κ2 is

satisfied, the solution to the BVP we are considering exists and it is unique
in a suitable deformation space [1].

To search for the explicit solution, we first observe that since the problem
is symmetric around Y = 1/2 the considered BVP can be recast as the
standard IVP

κ

1− (κ2 + 3)/Jm
= q̄

(
1

2
− Y

)
, f̂(0) = 0.

Thus, by using simple algebraic methods, we may obtain by quadrature the
exact solution in terms of the function

Φ(Y ) =

J log

(∣∣∣∣Y − 1

2

∣∣∣∣)− J arcsinh

(
J√

J − 3q̄|2Y − 1|

)
2q̄

−
√
J2 + 4(J − 3)q̄2(Y − 1)Y + (J − 3)q̄2

2q̄

as
f(Y ; Jm; q̄) = Φ(Y, Jm, q̄)− Φ(0, Jm, q̄). (2.11)

This solution is represented in Fig.2.
The peculiarity of this solution, first proposed in [27], is obtained in the

limit q̄ → ∞ (see Fig.2). Indeed, while for the neo-Hookean material the
solution blows up as q̄ →∞, the asymptotic solution for (2.11) is given by

f(Y ; Jm; q̄ →∞) =

√
Jm − 3

2
(1− |2Y − 1|) ,

k(Y ; Jm; q̄ →∞) =
√
Jm − 3,

Ḡ(Y ; Jm; q̄ →∞)→∞.

(2.12)
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Figure 2: Rectilinear shear for a rectangular body of a Gent material (here we assumed
Jm = 21). a) scheme of the deformation class and assigned load q. b) displacement, c)
shear strain, and d) energy density fields at different values of the load q̄.

Observe that in the limit of growing load the system tends to a solution
that is uniform everywhere up to a point where the amount of shear has a
jump. A clear phenomena of localization of the strain, but what is more
important is that everything happens with finite values of strain and stress
with possible important applications in fracture mechanics: a first attempt in
this direction has been provided in [19] and with more details and interesting
insights in [23]. The results contained in such papers confirm that the use of
the idea of limiting chain extensibility may be a possible solution for some
of the paradoxes of classical fracture mechanics.
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3. Beyond elasticity

As remarked above the constitutive parameter Jm is connected to a meso-
scopic characteristic of the polymeric material (contour length). As a conse-
quence it is natural to extend the Gent model (2.1) to capture stress-softening
and healing effects related to the variations of this mesoscale parameter.
Specifically, we point out that damage in polymeric and many biological
materials represents a macroscopic homogenized effects of complex phenom-
ena of breaking [10] and re-crosslinking [6] at the network scales related to
the evolution during the history of deformation of the average length of the
macromolecular chains. The analysis of such behavior at network scales sug-
gested the introduction of microstructure inspired approaches such as the
ones proposed in [29] and [10]. These models have been shown to be effective
in describing the complex history dependent dissipative behavior of rubber-
like materials also in non-trivial inhomogeneous deformation histories [9],
showing the ability of describing experimentally verified damage localization
effects [11, 7] or instabilities observed in rubberlike balloons [8].

In this perspective and in relation to the Gent model, we remark that
recent advances in experimental techniques, that allow the analysis of the be-
havior of single macromolecule thermomechanical behavior [30, 31], showed
the fundamental role in the macroscopic dissipation of the continuous varia-
tions of the chain contour length. These variations are accompanied by en-
tropy variations revealed at the micro scale by a sequence of stress drops in
the chains. Based on these observations an energetic microstructure inspired
approach [12] or statistical mechanics multiscale approaches [13, 14] have
recently been proposed to describe the dissipative behavior of macromolecu-
lar materials undergoing unfolding phenomena. Despite the ability of these
models to deliver a direct connection between the microstructure properties
and the macroscopic behavior of these materials, fundamental in particular in
the field of the design of new bio-inspired materials, the possibility of models
as simple as the Gent model, with a clear connection with the microstructure
properties of the material, appears appealing both for numerical computa-
tions and for the clearness of the resulting analytical interpretations. This
suggests extending the Gent model to non-elastic behavior of biological and
rubberlike materials [21].

The aim of this section is to show how it is possible to modify the consti-
tutive equation (2.1) to take into account damage. In the framework of the
internal variable Thermodynamics, under the hypothesis of isotropic dam-
age, we may simply introduce an internal damage variable α with a new
history dependent energy density function W = W (F , α). In this approach
the main problem is the deduction of the dependence of the energy density
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on the internal variable itself and of its evolution equation. In [7, 14] the
authors showed the possibility of deducing such informations by considering
multiscale approaches.

Another, more phenomenological approach is to consider evolution equa-
tions reflecting the macroscopic hysteretic and damage behavior of the system
[15] or to deduce, knowning the energy density function, the evolution equa-
tion of the damage variable based on a hypothesis of maximization of the
dissipation rate (see [29]). To be more explicit, consider the usual definition
of the dissipation rate

ξ = T ·D − Ẇ =

(
T − ∂W

∂F
F T

)
·L + gα̇, (3.1)

where L = Ḟ F−1, the stretching tensor is defined as D = (L + LT )/2 and
g := −∂W

∂α
is the generalized force working for the damage increment [36]. To

maximize the dissipation rate subjected to the isochoricity condition

L · I = 0

and to the requirement
ξ ≥ 0, (3.2)

representing the Clausius-Duhem dissipation inequality [36], we introduce
the Lagrangean function

L = ξ + η1

{(
T − ∂W

∂F
T T

)
·L + gα̇− ξ

}
+ η2L · I.

The Euler-Lagrange necessary condition (modulo a relabeling of the Lagrange
multipliers η1, η2) delivers the usual formula for the Cauchy stress tensor of
incompressible materials

T = −pI +
∂W

∂F
F T , (3.3)

where p = −η2
η1

and the relationship

η
∂ξ

∂α̇
= g

where η = 1+η1
η1
. As a result we have

ξ = gα̇ = η
∂ξ

∂α̇
α̇. (3.4)
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This equation defines the rate of damage depending on the rate of dissipation
of the material.

Since here we are interested in the description of materials showing a
rate-independent behavior we assume that the driving force g = g(α) is
independent of α̇. Moreover, since with the progression of the damage the
average contour length of the macromolecular network increases we assume
that

Jm(α) = J0
m + αJ1

m, α ∈ (0, 1) (3.5)

so that in this context the damage of the material coincides with a variation
of the parameter Jm. Here Jm = J0

m represents the value of Jm for the
undamaged material, whereas Jm = J0

m + J1
m is the value of Jm at damage

saturation. As a result we have

g = g(I1, α) =
I1 + (Jm − I1) log (1− I1/Jm)

6(Jm − I1)
EJ1

m > 0, (3.6)

so that, using (3.1), (3.2), and (3.3), we obtain the reduced dissipation in-
equality

ξ = gα̇ ≥ 0, (3.7)

showing that in this simple setting the Clausius-Duhem inequality for this
simple model is respected iff damage grows:

α̇ ≥ 0

or, using (3.5), equivalently
J̇m ≥ 0.

Regarding the choice of the evolution law, it must be fixed through a
phenomenological approach or deduced by an analysis of the behavior at the
network scale [14]. Here we are interested in describing deterioration effects
in materials such as rubber showing a Mullins type damage effect [24] whose
memory is restricted to the only maximum values of the attained stretches.
Then, based on the Gent idea, on the microstructure considerations reported
above and on the results in [13] and [14], we assume that the damage variable
α depends only on the maximum attained value of the first invariant, Imax1 .
In particular we may simply choose a growing function of Imax1 (see again
[14] for a microstructure justification of this choice or [21] for the application
of this simple idea to describe the Mullins effect). As a result the system
undergoes damage only when I1 = Imax1 , with a dissipation potential

D = g(α, Imax1 )α̇.
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The maximization of the entropy production associated with this type of
potential delivers the conditions (3.3), (3.4) and the consistency condition

(g(α, Imax1 )− g(α, I1))α̇ = 0

that, due to the fact that g grows with I1, ensures that damage is attained
only when I1 = Imax1 . As a result we obtain the history dependent elastic
domain I ∈ (3, Imax1 ).

Now, if we fix again our attention on the simple shear deformation class,
we may for the sake of algebraic simplicity assume the following monotonic
damage law, depending only on the maximum previously attained value of
the shear strain kmax:

α = 1− exp

{
−β
(√

κ2max − κ20
)γ}

, (3.8)

where β and γ are positive material parameters, and κ0 <
√
J0
m − 3 is the

activation shear threshold. As a result we deduce the shear stress-shear strain
relation

T12 =


κµ

1− κ2+3
J0
m

if kmax < k0

κµ

1− κ2+3
J0
m+αJ1

m

if kmax ≥ k0.
(3.9)

The corresponding stress-strain curves are represented in Fig. 3 for the
two different damage functions represented in Fig. 3a,c. Interestingly, accord-
ing to the choice of this function, two different scenarios of damage evolution
can be obtained. If the contour length grows slowly as Imax1 grows, the
system shows a continuous damage evolution up to damage saturation as
shown in Fig. 3c. If instead the contour length grows fast the corresponding
softening can prevail with a non monotone stress-strain diagram. This possi-
bility was evidenced in the microstructure inspired damage model proposed
in [11] where the authors showed the resulting possibility of damage and
deformation localization. The analytical variational approach in this case
(non-convex energy densities) can be found in [7] where damage localization
for antiplane shear deformations was described.

4. Concluding Remarks

In the theory of polymer mechanics many constitutive forms of the strain-
energy density have been proposed, but only few of these constitutive equa-
tion delivered true breakthroughs. An example is the Mooney-Rivlin strain
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Figure 3: Shear stress - shear strain diagrams for a damageable Gent material under simple
shear. Here we assumed µ = 1, J0

m = 3.5, J1
m = 1.0. In b) we show the behavior for a

material with a damage function represented in a) assigned by δ = 1 and n = 2. In d)
we show the non monotone shear stress-strain corresponding to the damage function in c)
corresponding to δ = 4 and n = 6.

energy density function at the basis of the Rivlin research on finite elasticity.
Another example is the Ogden strain energy density function, the first func-
tional form that allowed to fit in a careful way the experimental data for a
variety of deformations and a significant range of strains. Such constitutive
equations were at the base of clear advancements in rubber constitutive mod-
eling in various directions. On the same pathway the Gent model, because
of its mathematical feasibility, was at the base of a new impetus of research
analyzing the multi-scale behavior rubber-like materials.

The use of models based on the inverse Langevin function is clearly re-
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stricted by the fact that even for very simple deformation fields it is not
possible to obtain results in closed form. On the other hand, the Gent model
which has the same accuracy in fitting experimental data as the Arruda-
Boyce model based on the inverse Langevin function, allows closed form
solutions for a huge class of deformations with a much clearer mechanical
interpretation.

Moreover, the simple and clear mathematical structure of the Gent model
allows us to understand how it is possible to generalize constitutive theories
beyond classical Taylor expansions. Interestingly the damage extension of
the Gent model here proposed, considering a history dependent parameter
Jm, let us describe complex phenomena such as the transition from homo-
geneous to localized damage configurations, relating them to microstructure
properties such as the rate of contour length variations of the chains. The
clear interpretation of the material moduli involved in the Gent model is the
key ingredients for such an intuitive way of extending this model.

We are sure that the Gent model will continue to stimulate in the next
decades many interesting researches in the field of macromolecular materials
and, as we have tried to show in this paper, not only in the framework of
nonlinear elasticity, but also in its extension to dissipative behaviors.

All people engaged in the mechanics of elastomeric materials have to be
grateful to the simple idea of Alan Gent a true gentleman who has always
communicated his findings professionally, with enthusiasm, humility and an
open mind.
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