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Abstract

This PhD thesis explores the challenges and solutions at the intersection of au-

tonomous mobile robots (AMRs) and real-time video streaming, aiming to im-

prove both robot control and communication systems. It begins by digging into

the control strategies that drive AMRs, particularly focusing on Model Predictive

Control (MPC) and Dynamic Programming (DP) to optimize decision-making

and navigation. The research then shifts to industrial vehicles, proposing a fault-

tolerant system designed to detect encoder sensor failures during motor speed

control, which improves safety and reliability in real-world applications. The

thesis also investigates the use of drones for tasks like surveillance and rescue,

addressing the challenge of maintaining high-quality video streams despite fluctu-

ating network conditions. A novel approach using Nonlinear MPC is introduced

to optimize drone altitudes, ensuring clear video transmission and efficient alti-

tude control. Finally, the thesis presents an adaptive bitrate algorithm, RT-MPC,

to enhance video quality in real time by adjusting to network fluctuations. This

work bridges the gap between autonomous robotics and video streaming, provid-

ing practical solutions for both fields.

iii



iv



Abstract (italiano)

Questa tesi di dottorato esplora le sfide e le soluzioni all’intersezione tra i robot

mobili autonomi (AMR) e lo streaming video in tempo reale, con l’obiettivo di

migliorare sia il controllo dei robot sia i sistemi di comunicazione. Partendo dalle

strategie di controllo che guidano gli AMR, concentrandosi in particolare sul Model

Predictive Control (MPC) e sulla programmazione dinamica (DP) per ottimizzare

il processo decisionale e la navigazione, la ricerca si sposta poi sui veicoli industriali

e propone un sistema fault-tolerant progettato per rilevare i guasti dei sensori di

velocità durante il moto del veicolo. La tesi analizza anche l’uso dei droni per

compiti come la sorveglianza e il soccorso, affrontando la sfida di mantenere flussi

video di alta qualità nonostante le fluttuazioni delle condizioni di rete. Viene

introdotto un nuovo approccio che utilizza un MPC Controller non lineare per

ottimizzare le altitudini dei droni, garantendo una trasmissione video chiara e

una gestione efficiente dei dati. Infine, la tesi presenta un algoritmo di bitrate

adattivo denominato RT-MPC, per migliorare la qualità video in tempo reale

adattandosi alle fluttuazioni della rete. Questo lavoro contribuisce a colmare il

divario tra la robotica autonoma e lo streaming video, fornendo soluzioni pratiche

per entrambi i campi.
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Chapter 1

Introduction

Autonomous navigation of mobile robots assumes a critically important role in

many areas such as autonomous cars, robots for logistic domains and exploratory

robots. The progressive automation of manufacturing, industrial and military

processes has led these systems to increasingly operate in irregular and unstruc-

tured environments, which requires a high degree of flexibility in perception, mo-

tion and control. In recent decades, significant milestones have been achieved

in mobile robot technologies. However, autonomous navigation in unstructured

environments is still an open issue.

In the context of logistics systems, one of the most important issues to con-

sider is the movement of materials within industrial environments. Despite the

high performance of static material handling technologies (e.g., rollers or chain

conveyors), the vast majority of industrial applications rely on common pallet

trucks or forklifts as transport systems. The impact of mobile robotics within

warehouses and industries is set to accelerate over the next five years. According

to [4] by research and consulting firm LogisticsIQ, the automation market in lo-

gistics is set to double from $13 billion in 2018 to $27 billion in 2025. There are

1



Introduction 2

many reasons for this: in addition to cost aspects, one of the main advantages

is the unparalleled flexibility with which these simple systems can be integrated

into existing or highly dynamic environments. The extension of the advantages

of these simple forklifts, through the use of available technologies for industrial

automation, has given rise to Autonomous Guided Vehicles (AGVs), which are

highly reliable and useful means of reducing logistics costs and represent the most

advanced automated type of vehicle for logistics environments. With more robots

on the horizon, issues related to the safety of autonomous navigation will become

increasingly important.

In the field of exploration, we can make a distinction between purely ex-

ploratory robots, whose main task is the discovery of a new environment (e.g.,

Mars Rover) and reconnaissance robots used for special tasks (e.g., Search and

Rescue robots used in disasters). For the latter type, Robin Murphy, professor

of computer science and engineering at Texas A&M University, says that “Real

disasters are rare and each one is different. Robots will never be used exactly as

thought out in the design phase and will continue to bring up new bottlenecks

and problems that need to be solved.” [5] For these systems, the open problems

are divided into: sensory information processing, full mobility control, and robot

manipulation skills. Solving them would lead to these robots being able to be

used in all (or almost all) real-world situations.

The control of autonomous robots can be divided into the control of the plat-

form (which falls under the domain of automatic controls) and the control of its

activities (which falls under the domain of artificial intelligence). Thus, the devel-

opment of autonomous mobile robots requires the use of both automatic control

techniques and artificial intelligence techniques. The high mechanical complexity,

of all modes of operation and the various requirements due to the environment
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pose major challenges for automation.

In recent years, video systems have become an integral part of modern robotic

platforms, playing a critical role in expanding their capabilities across a range

of applications. From autonomous mobile robots (AMRs) to unmanned aerial

vehicles (UAVs), video technology enables robots to perceive, interpret, and re-

spond to their surroundings with a level of detail and accuracy that was previously

unattainable. By processing visual information from RGB cameras, infrared sen-

sors, or depth-sensing (RGB-D) cameras, robots can identify features in their

environment, track moving objects, and make decisions based on their surround-

ings. For instance, in autonomous vehicles, video feeds combined with sensor

fusion techniques help create comprehensive situational awareness, allowing the

robot to navigate safely and effectively.

The integration of advanced video processing techniques, such as computer

vision and machine learning, has further enhanced the autonomy of robotic sys-

tems. Algorithms like convolutional neural networks (CNNs) can analyze video

streams in real time, allowing robots to recognize complex patterns and respond

to dynamic environments. This capability is essential in tasks like autonomous in-

spection, where robots use video analysis to detect anomalies in industrial settings

or in search-and-rescue operations, where UAVs equipped with video cameras scan

large areas to locate survivors.

Video systems also facilitate remote monitoring and control [6], which is partic-

ularly valuable in hazardous or inaccessible environments. By transmitting video

feeds to a ground control station (GCS) or a remote operator, robots can perform

tasks in environments that are dangerous or difficult for humans to access, such

as deep-sea exploration or disaster zones.

While video systems significantly extend the functionality of robots, they also
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present unique challenges. High-resolution video data requires substantial band-

width for transmission [c5], and maintaining video quality becomes difficult in

environments with limited or fluctuating network connectivity. Adaptive bitrate

streaming and video compression techniques have been developed to address these

issues, allowing robots to adjust video quality in real-time based on available

bandwidth. This adaptability is essential for maintaining operational reliabil-

ity, particularly in mission-critical applications where consistent video feedback is

necessary.

This thesis explores new ways to improve control, safety, and performance

in autonomous mobile robots and drones, with additional applications in video

streaming. At its core, the research focuses on using Model Predictive Control

(MPC) and Dynamic Programming (DP) to make these systems more effective

and reliable in real-world settings.

One part of the work introduces a fault-tolerant control system designed for in-

dustrial vehicles. Unlike traditional systems that mostly focus on motor or torque

control, this solution emphasizes detecting and handling sensor faults—a critical

safety issue that’s often overlooked. By meeting European safety standards, this

approach enhances the safety and dependability of industrial vehicles.

In another section, the thesis presents a collaborative control strategy for

swarms of drones, particularly useful in complex tasks like search and rescue.

To support real-time video streaming from multiple drones to a Ground Control

Station, an adaptive strategy is proposed that adjusts drone altitude to maintain

video quality even when network conditions vary. This provides consistent, high-

quality footage that can be crucial for real-time decision-making in emergency

scenarios.

The final contribution is Real-Time MPC (RT-MPC ), a new adaptive bitrate
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algorithm for video streaming applications based on Model Predictive Control and

Dynamic Programming. RT-MPC is designed to adjust video quality on the fly,

ensuring smooth playback and a better user experience even when network speeds

fluctuate.

All these advancements bring new levels of safety, efficiency, and user experi-

ence to autonomous systems and streaming technology, making them more capable

and reliable across a wide range of practical applications.

1.1 Model Predictive Control (MPC)

Model Predictive Control (MPC) is a control strategy used to optimize decision-

making processes by predicting and optimizing the behavior of a system over

a future time horizon. MPC leverages a mathematical model of the system to

predict future states, then computes an optimal control sequence by minimizing

a specified cost function subject to constraints.

At each time step t, the controller uses the current state of the system to

predict its future behavior over a finite prediction horizon HP . It calculates an

optimal sequence of control actions u = {ut, ut+1, . . . , ut+HP−1} that minimizes

a given objective function while satisfying system constraints. However, only

the first control action ut is implemented. At the next time step, the process

repeats, using updated system states to re-compute the control sequence. This

iterative process allows MPC to adapt to changing system dynamics and external

disturbances.
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1.1.1 Mathematical Formulation of MPC

Let xt denote the system state at time t, and let ut represent the control action

applied at time t. MPC optimizes a sequence of control actions by minimizing a

cost function J , which is generally formulated as follows:

J(u, xt) =

HP−1∑
k=0

[ℓ(xt+k, ut+k) + ℓf (xt+HP
)] (1.1)

where:

• ℓ(xt+k, ut+k) is the stage cost function, representing the cost associated with

the state xt+k and control action ut+k at each time step k within the pre-

diction horizon.

• ℓf (xt+HP
) is the terminal cost function, representing the cost at the end of

the prediction horizon to encourage certain end-state conditions.

• HP is the length of the prediction horizon, which defines how far into the

future MPC makes predictions.

The system dynamics are often represented by a discrete-time state-space

model:

xt+1 = f(xt, ut) (1.2)

where f is the system function that describes how the state xt transitions to

xt+1 under control action ut. The control objective is to choose the control actions

u such that the cost J is minimized, subject to system constraints.
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1.1.2 Constraints in MPC

MPC typically operates under a set of constraints that represent physical and

operational limitations of the system. These constraints include:

• State Constraints: The system state xt must satisfy certain limits, such

as safe operating conditions. State constraints can be represented as:

xmin ≤ xt ≤ xmax (1.3)

where xmin and xmax define the minimum and maximum allowable states.

• Control Constraints: Control actions ut must remain within feasible

bounds to avoid overstressing the system. Control constraints are given

by:

umin ≤ ut ≤ umax (1.4)

where umin and umax are the lower and upper bounds on control actions.

• Terminal Constraints: At the end of the prediction horizon, additional

constraints may apply to ensure desired end conditions. These terminal

constraints can help stabilize the system and guide it toward a target state

[7].

1.1.3 Optimization Problem in MPC

The MPC optimization problem can be formulated as a constrained optimization

problem, which seeks to find the optimal control sequence u∗ = {ut, ut+1, . . . , ut+HP−1}

that minimizes the cost function J while satisfying all constraints. This problem

is represented as:
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min
u

J(u, xt) =

HP−1∑
k=0

[ℓ(xt+k, ut+k) + ℓf (xt+HP
)]

subject to xt+k+1 = f(xt+k, ut+k), k = 0, . . . , HP − 1

xmin ≤ xt+k ≤ xmax, k = 0, . . . , HP

umin ≤ ut+k ≤ umax, k = 0, . . . , HP − 1

(1.5)

This optimization problem is typically solved at each time step t using numer-

ical methods. Once the optimal sequence u∗ is obtained, only the first control

action u∗
t is applied to the system. At the next time step, the optimization is

repeated with updated system states, making MPC a receding horizon control

strategy.

1.2 Dynamic Programming

Dynamic Programming (DP) and MPC are similar in their capability to address

challenging, multi-stage decision problems as optimization methods. On the other

hand, DP is frequently employed in situations where decisions can span a long or

indefinite horizon, with each overlapping subproblem only needing to be solved

once, instead of recalculating decisions at every time step as in MPC. The DP

approach involves decomposing complex problems into smaller, manageable sub-

problems and storing intermediate results, making it very effective for specific

optimization problems.

DP is based on two fundamental principles: optimal substructure and over-

lapping subproblems. The concept of optimal substructure means that the best

solution to a problem can be found by using the best solutions to its smaller parts.

For example, if a problem involves identifying the most effective mix of individual
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solutions, each of those individual solutions must be of top quality to attain the

best overall outcome.

The second principle of DP sets it apart from methods like MPC that re-

compute the best path each time. DP is especially advantageous when smaller

problems reappear frequently in the overarching problem. DP avoids unnecessary

computations and boosts efficiency by saving subproblem results in a cache or

table to prevent redundant calculations and decrease computational overhead.

DP typically operates in a bottom-up manner, where solutions to smaller sub-

problems are computed first and combined to form the solution to the full problem.

Alternatively, it can be implemented in a top-down recursive approach with mem-

orization, where intermediate results are stored as they are computed. This tech-

nique significantly reduces the computational complexity compared to brute-force

methods, particularly for problems with exponential growth in solution space.

1.2.1 Mathematical Formulation of Dynamic Programming

Let V (x) represent the value function for state x, denoting the best achievable

outcome from that state onward. The recursive nature of DP is captured in the

Bellman equation, which expresses V (x) in terms of the values of subsequent

states. For a minimization problem, the Bellman equation is defined as:

V (x) = min
u∈U

[g(x, u) + V (f(x, u))] (1.6)

where:

• V (x) is the value function at state x,

• U is the set of available actions u at state x,
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• g(x, u) represents the immediate cost or reward of taking action u at state

x,

• f(x, u) denotes the state transition function, representing the next state

from taking action u in state x.

The objective is to select a sequence of actions that minimizes (or maximizes)

V (x), forming an optimal policy. DP often employs a backward induction method,

where the problem is solved recursively from the final state backward to the initial

state, which contrasts with MPC’s forward-predictive approach.

By eliminating redundant calculations through caching or memorization, DP

reduces the computational complexity of solving problems, especially those that

involve recursive subproblems. This approach enables DP to solve complex prob-

lems more efficiently than traditional methods. Additionally, DP systematically

evaluates all potential solutions in cases where optimal substructure is present,

thereby ensuring that it can find globally optimal solutions.
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1.3 Scientific contributions

The research activity carried out during the PhD has led to the following publi-

cations:

International Journals

• Gioacchino Manfredi, Vito Andrea Racanelli, Luca De Cicco, Saverio Mas-

colo, Live Streaming Synchronisation Using Event-triggered Consensus Con-

trol, IEEE Transaction on Control of Network Systems (accepted).

International Conferences

• Walter Brescia, Giuseppe Roberto, Vito Andrea Racanelli, Saverio Mascolo,

Luca De Cicco, Point2Depth: a GAN-based Contrastive Learning Approach

for mmWave Point Clouds to Depth Images Transformation, Proc. 31st

Mediterranean Conference on Control and Automation (MED2023), Limas-

sol, Cyprus, June 26 – 29, 2023

• Gioacchino Manfredi, Vito Andrea Racanelli, Luca De Cicco and Saverio

Mascolo, LSTM-Based Viewport Prediction for Immersive Video Systems,

Proc. of MedComNet 2023, Ponza, Italy, 13-15 June 2023

• Vito Andrea Racanelli,Saverio Mascolo, Safe and Fault Tolerant Control of

Industrial Differential Drive Vehicles, Proc. of 12th IFAC Symposium on

Fault Detection, Supervision and Safety for Technical Processes, Ferrara,

Italy, May 2024

• Mohammad Amin Rezaei, Gioacchino Manfredi, Vito Andrea Racanelli,

Saverio Mascolo, Luca De Cicco, Decentralized Control of UAV Swarms for
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Bandwidth-Aware Video Surveillance Using NMPC, Proc. of International

Conference on Unmanned Aircraft Systems (ICUAS 2024), Chania, Greece,

June 2024

• Vito Andrea Racanelli, Gioacchino Manfredi, Luca De Cicco, Saverio Mas-

colo, Real-Time MPC for Adaptive Video Streaming, IEEE Consumer Com-

munications and Networking Conference (CCNC), Las Vegas, USA, January

2025, (accepted).

• Mohammad Amin Rezaei, Gioacchino Manfredi, Vito Andrea Racanelli,

Luca De Cicco, Saverio Mascolo An Online Path Planner for Bandwidth-

aware Aerial Camera Networks, American Control Conference (ACC), Den-

ver, USA, July 8-10, 2025, (submitted).
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1.4 Thesis Outline

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Pa
rt 

I

Pa
rt 

II

Figure 1.1: Chapter organization of the thesis

The thesis is structured as follows:

• Chapter 1 introduces Autonomous Mobile Robots (AMRs) with a brief his-

torical overview. It focuses particularly on the key techniques of Model Pre-

dictive Control (MPC) and Dynamic Programming (DP), which are central

to the control and optimization of these systems.

• Chapter 2 shows a fault-tolerant control system for industrial vehicles, focus-

ing on detecting failures during speed control. While most research targets

motor and torque control, this work addresses a critical gap in sensor failure

detection. Experimental results show the system effectively handles sen-

sor faults, keeping the vehicle safe and operational. The approach meets

European safety standards, contributing to improved safety in industrial

vehicles.

• Chapter 3 focuses on the use of UAVs, particularly multi-rotor drones, for
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tasks like surveillance, search and rescue, and firefighting. It highlights the

benefits of UAV swarms, including increased coverage and efficiency, espe-

cially in complex tasks like collaborative mapping and sensing. The chapter

emphasizes the need for autonomous capabilities in each drone, such as path

planning and obstacle avoidance, along with coordinated control strategies

to ensure smooth operation within the swarm. The main challenge discussed

is the real-time video streaming from drones to a Ground Control Station

(GCS), where maintaining video quality in the presence of fluctuating net-

work bandwidth is critical. To address this, the authors propose adjusting

the drones’ altitude to improve video quality while managing the overlap

needed for video stitching. To solve these issues, the chapter introduces a

Nonlinear Model Predictive Control (NMPC) framework.

• Chapter 4 provides an overview of video streaming technology, with a special

focus on Quality of Service (QoS) and Quality of Experience (QoE). It also

includes an analysis of different video quality metrics, highlighting their

importance in evaluating streaming performance.

• Chapter 5 presents RT-MPC, an innovative Adaptive Bitrate (ABR) algo-

rithm designed to improve video quality when streaming over time varying

bandwidth channels. RT-MPC efficiently adjusts video quality in real time

to increase the user QoE. It reduces the complexity of traditional Model Pre-

dictive Control (MPC) through dynamic programming and encoding con-

straints, making it suitable for real-time use without compromising perfor-

mance.

• Chapter 6 provides discussions and conclusive remarks along with possible

future research directions.
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Mobile Robotics
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Chapter 2

On Safety Speed Controller for

Differential Drive Vehicles

In this chapter, the practical importance of developing robust and fault-tolerant

controllers is analyzed. Specifically, the problem is set for the case of industrial

vehicles with differential traction, which are inherently more hazardous in the

event of faults [8].

2.1 Background

In manufacturing and logistics, vehicles are essential for carrying out tasks and

transporting loads. These vehicles can vary significantly in weight, ranging from

a few hundred kilograms to several tens of tonnes, depending on their intended

use. Such variations in size and mass mean that these vehicles can pose substan-

tial safety risks during operation, especially when maneuvering around human

operators.

Most incidents involving industrial vehicles are due to operator errors, such as

17
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distraction or carelessness. However, a smaller proportion of accidents are caused

by failures in sensors, actuators, or control systems installed on these vehicles

[9]. To mitigate these risks, the European Union Directive 2006/42/EC [10] and

various international standards (e.g., UNI 280) set mandatory safety requirements

for manufacturers of such machinery.

The required safety levels are directly correlated with the potential hazards

posed by these vehicles. The higher the potential for damage in case of a vehicle

failure, the more stringent the required safety measures. This is assessed using

Safety Integrity Levels (SIL), [11], which quantify a safety system’s reliability

based on the probability of failure on demand (PFD). There are four levels—SIL 1

through SIL 4—with higher SIL levels indicating a lower probability of failure and

a higher assurance of safety. However, increasing the SIL level generally results

in greater costs and system complexity. It is essential for designers to integrate

these safety requirements into the vehicle’s design process to ensure safety without

significantly compromising functionality.

Vehicles in industrial environments are primarily electrically powered and typ-

ically operate with an open-loop control system, where an operator’s input (via

a joystick, lever, or pedal) directly influences the motor’s drive signal. While

straightforward, this method can be less effective for controlling vehicle maneu-

vers. For example, the same control input may produce different vehicle behaviors

when moving uphill versus downhill. This limitation can be addressed by imple-

menting a feedback-controlled speed system using speed sensors (e.g., encoders)

and well-established PID controllers [12]. While designing such systems is rela-

tively straightforward, ensuring their safety and reliability is challenging. As the

complexity of a control system increases, so does the likelihood of failures. Thus,

it is critical to design these systems with a thorough understanding of potential
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failure risks, allowing for the development of effective countermeasures [13, 14].

The literature on fault-tolerant speed control systems is extensive. For ex-

ample, [15] provides a detailed survey of various sectors utilizing these systems.

Despite significant advances in fault-tolerant control techniques, there has been

less focus on managing sensor failures, especially those affecting rotary speed

measurements.

Research in this area includes [16], which explores sensor fault detection within

a reconfigurable direct torque control system applied to an electric vehicle pow-

ered by an induction motor. This study focuses on detecting faults in current,

voltage, and speed sensors, followed by the implementation of fault-tolerant con-

trol measures to maintain vehicle operation. In [17] a posterior reliability voting

algorithm is introduced to evaluate the integrity of an encoder, recalibrating the

weights between encoder-measured velocity and model-based estimated velocity.

In [18] a fuzzy logic for motor state diagnosis and fault detection is proposed.

Moreover, [19] presents an active fault-tolerant control method for 4WD electric

vehicles, based on an unmatched disturbance observer and an adaptive sliding

mode control. This approach ensures stability and tracking performance even

with actuator faults, as demonstrated through hardware-in-the-loop simulations.

The proposed model emphasizes robustness and safety, enabling continued vehicle

operation under various failure scenarios.

This body of work highlights the importance of addressing sensor and actuator

reliability in the design of control systems for industrial vehicles, particularly

given the stringent safety standards required by both regulatory frameworks and

industry practice.
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2.2 Safety regulations and risk metrics

2.2.1 Risk reduction metrics

SIL and PL are both risk reduction metrics used in functional safety standards,

especially in machinery safety, to evaluate and quantify the reliability of safety

functions. They help in setting and achieving appropriate safety performance

levels, ensuring machinery operates safely and reduces risks to an acceptable level.

2.2.1.1 SIL (Safety Integrity Levels)

SIL is defined in IEC 61508 [11] (and referenced in EN 62061 [20] for machinery)

and stands for Safety Integrity Level. It quantifies the probability of failure of a

safety function in a safety-related system. SIL levels range from SIL 1 to SIL 4,

with SIL 4 providing the highest level of risk reduction and reliability. Higher SIL

levels indicate greater safety reliability but also require more robust engineering,

testing, and redundancy.

SIL
Level

Risk Reduction
Factor (RRF)

Probability of Failure on Demand
(PFD)

SIL 1 10 - 100 10−1 to 10−2

SIL 2 100 - 1k 10−2 to 10−3

SIL 3 1k - 10k 10−3 to 10−4

SIL 4 10k - 100k 10−4 to 10−5

Table 2.1: Safety integrity level - target failure measures for a safety function operating
in low demand mode of operation.

Achieving a specific SIL level requires meeting several design requirements

aimed at ensuring system robustness and reliability:

• Fault Tolerance: Higher SIL levels require increased fault tolerance, often
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achieved by system redundancy (e.g., dual or triple channels).

• Failure Rate Calculations: SIL assessment involves evaluating compo-

nent failure rates, determining their effects on the safety function, and en-

suring they meet reliability targets.

• Testing Frequency and Diagnostics: High SIL levels mandate more

frequent testing, diagnostics, and maintenance to detect and rectify faults

before they compromise safety.

For example, a SIL 1 system might require single-channel architecture with

basic diagnostics and lower testing frequency, by contrast, a SIL 3 system might

require dual-channel redundancy, sophisticated diagnostics, and frequent testing

to detect and repair potential failures.

2.2.1.2 PL (Performance Levels)

Performance Level (PL) is defined in ISO 13849-1 [21]. It is another metric used

to assess the reliability of safety-related parts of control systems (SRP/CS). PL

evaluates the safety of control systems in terms of their resistance to dangerous

failures. Unlike SIL, which focuses on Probability of Failure on Demand (PFD),

PL is determined through an analysis that includes the Severity (S) of potential

harm, the Frequency and Duration of Exposure (F) to the hazard, and the Possi-

bility of Avoidance (P). These three factors (S, F, and P) help define the necessary

performance level for a system.

PL levels are categorized from PL a (lowest performance level) to PL e (highest

performance level). Each level represents a probability of dangerous failure per

hour (PFH), which can be translated into the system’s required level of reliability

and robustness.
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PL Probability of Dangerous Failure
per Hour (PFH)

Risk Reduction
Factor (RRF)

PL a ≥ 10−5 to < 10−4 Low

PL b ≥ 10−6 to < 10−5 Moderate

PL c ≥ 3 · 10−7 to < 10−6 Significant

PL d ≥ 10−7 to < 3 · 10−7 High

PL e ≥ 10−8 to < 10−7 Very High

Table 2.2: Performance level - target failure measures for a safety function operating
in low demand mode of operation.

Higher PL levels represent lower probabilities of failure, with PL e being the

highest level of safety and reliability. The required PL level is determined by

evaluating the potential risk using the three main factors (S, F, and P). Once

the required PL is defined, designers use ISO 13849-1 to select or design safety

components and architectures that meet or exceed this level. Key factors in

achieving the appropriate PL include:

• Diagnostic Coverage (DC): PL requires a certain diagnostic coverage,

i.e., a system’s ability to detect failures before they become dangerous.

• Category of Safety Control System: The standard defines categories

(B, 1, 2, 3, 4) that relate to structural design requirements, from basic

designs (B) to highly redundant architectures (4).

• Mean Time to Dangerous Failure (MTTFd): It quantifies the average

time before a dangerous failure occurs and is an important factor in achieving

higher PL levels.

For example, a PL b system could use basic single-channel architecture with

moderate diagnostics, while a PL e system might require multi-channel redun-

dancy, high diagnostic coverage, and frequent inspections.
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2.2.1.3 Comparing SIL and PL

While both SIL and PL address functional safety, their differences make them

suitable for various applications:

• Scope: SIL is often used for complex programmable control systems, while

PL is common in discrete machinery and simpler safety-related systems.

• Assessment Factors: SIL focuses on PFD, while PL considers sever-

ity, frequency, and avoidance potential, making PL a practical choice for

machinery-specific applications.

• Complexity: SIL involves more stringent analysis, typically requiring tools

for failure probability calculations; PL is generally simpler and includes both

electronic and mechanical systems.

In practice, EN 62061 (for SIL) and ISO 13849-1 (for PL) can be used alongside

each other to ensure compliance with Directive 2006/42/EC, allowing manufac-

turers of machinery like Mobile Elevating Work Platforms (MEWPs) to meet

stringent safety requirements for control systems and operations.
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2.3 Speed sensing

In mobile robotics, the accurate measurement of speed is fundamental for achiev-

ing robust control and navigation. Speed information allows the robot to maintain

stable movement, adapt to environmental changes, and execute precise maneu-

vers, which are essential for both autonomous and teleoperated mobile platforms.

Speed sensors, therefore, serve as a critical component of the sensory architec-

ture, enabling the robot to gauge its own motion dynamics with precision and

reliability. Among the various types of speed sensors, encoders stand out due to

their precision, adaptability, and the wealth of information they can provide on

both speed and position, making them indispensable in a wide array of robotic

applications.

2.3.1 Encoders

Encoders work by converting mechanical motion into electrical signals, which

can then be interpreted to determine both the speed and position of a moving

component, such as a wheel or motor shaft. This information is important in

closed-loop control systems, where the robot continually adjusts its actions based

on real-time feedback from its environment. The value of encoders in robotics

lies in their ability to deliver precise feedback even at high speeds, thus enabling

smooth motion control, efficient trajectory following, and consistent response in

complex or dynamic environments.

Encoders are often mounted directly on the drive motors or wheels, facilitating

real-time measurement of linear or angular velocity. This information enables the

robot to adjust its velocity and orientation dynamically, providing a higher degree

of control and autonomy.
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Figure 2.1: Encoders classification scheme

Encoders come in a variety of types and configurations (see Fig. 2.1), each

tailored to specific applications and environmental conditions. Key performance

attributes such as resolution, accuracy, and robustness are crucial considerations

when selecting an encoder, as they directly affect the robot’s overall performance.

High-resolution encoders allow for finer speed and position measurement, enhanc-

ing the robot’s ability to make precise adjustments. However, factors like environ-

mental durability, signal noise immunity, and size constraints also play a role in

determining the suitability of a specific encoder type for a particular application.



On Safety Speed Controller for Differential Drive Vehicles 26

0
1

2
3

4
5

6
78

9

10
11

12
13

14
15

B
3
B

2
B

1
B

0
Figure 2.2: Absolute encoder wheel

Encoders are commonly classified by their sensing mechanisms, with optical

encoders and magnetic encoders being the most prevalent in mobile robotics (see

Fig. 2.1). These encoders leverage different physical principles to convert rota-

tional or linear motion into electrical signals, each type offering unique advantages

and limitations in terms of resolution, robustness, and environmental suitability.

The choice between encoder types is often influenced by the operational require-

ments of the robot, such as the need for high accuracy in indoor environments

or the demand for durability in outdoor or dusty settings. For our system, we

have chosen differential incremental encoders with TTL output as the speed sen-

sors, furthermore, to exploit the backlash phenomenon, we considered the encoder

mounted after the gearbox. Unlike absolute encoders, incremental encoders do not

provide information about the absolute position of the rotor to which they are

attached. However, this is not a problem since our control objective is velocity

rather than absolute position.

An incremental encoder consists of a disk divided into N slots as depicted in
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Figure 2.3: Incremental encoder wheel

A

B

Z

Figure 2.4: Square wave incremental encoder

Fig. 2.3. A light-emitting diode (LED) and a photodiode are positioned on the

sides of the encoder disk. As the disk rotates, interrupting the light emitted by

the LED, the sensor transmits a signal containing information about the shaft’s



On Safety Speed Controller for Differential Drive Vehicles 28

positional change. These impulses form a square wave as in Fig. 2.4. The longer

the period of this wave, the lower the rotational speed of the motor shaft. Con-

versely, a higher frequency of impulses represents a higher speed. This square

wave signal is transmitted as a dual signal on two channels (denoted ch=A,B)

that are phase-shifted by π/2 radians, allowing us to determine the direction of

rotation. A third channel, denoted as Z, provides an absolute reference position

of the encoder shaft.

While the instantaneous speed cannot be determined with encoders, the av-

erage speed within an observation time ∆T can be calculated by counting the

number of rising and falling edges using the formula:

Nch =
K∑
k=1

|Vch(k)− Vch(k − 1)|
Venc

(2.1)

Normalized with respect to the encoder’s supply voltage Venc, this formula allows

to determine the number of edges within a time ∆T , where K represents the num-

ber of samples acquired during the observation. This computation is performed

for both channels A and B. In addition, Vch denotes the voltage of the channel.

The rotational speed of the encoder is expressed as:

ωch =
2π

4PPR

Nch

∆T
(2.2)

Where, Pulses Per Revolution (PPR) represents the encoder resolution, quantified

as the number of impulses per revolution of the encoder disk. The denominator

of the rotational speed of the encoder is multiplied by 4 times the PPR because

quadrature decoding doubles the count for each state change of both channel A

and B, resulting in 4 times the count for each pulse or period.
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Figure 2.5: Representation of signals originating from channels A and B of the encoder.
The third plot depicts the outcome derived from the exclusive OR (XOR) operation
applied to these channels (A⊕B).

2.4 Differential Drive vehicles

Differential drive vehicles are a category of mobile platforms primarily employed

in industrial settings that enhance maneuverability when compared with the con-

ventional Ackermann kinematics. The fundamental mechanics of differential drive

vehicles involve two (or more) independently driven wheels. Two or more motors

allow the rotational speed of each wheel to be independently set, enabling the

execution of precise maneuvers, including forward and backward movement, pivot

turns, and complex curves (see Fig. 2.6). A forklift is a prime example of a

differential drive vehicle used in warehouses and factories, where its capacity for

intricate movements makes it invaluable for lifting and transporting heavy loads.

Central to the distinctive capabilities of differential drive vehicles is their steer-

ing mechanism, which is realized by the possibility of setting different speeds for

each wheel using one electric motor for each wheel. For instance, to initiate a

right turn, the left wheel accelerates while the right one decelerates, causing the

vehicle to pivot around its central axis. This results in exceptional agility and ac-

curacy, making these vehicles suitable for applications demanding precise control
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in constrained spaces and uneven terrains.

A common practice in differential drive vehicles to obtain precise speed control

and navigation is to use encoders on each wheel to allow closed-loop control of the

speed. These encoders provide real-time feedback on the wheel rotation speed and

position. However, it is of the utmost importance to consider that these encoders

are susceptible to failures, such as signal loss or sensor malfunctions, potentially

leading to a risky uncontrolled vehicle.

Therefore, despite their advantages, these vehicles present specific technical

challenges in terms of safety and reliability. Ensuring the dependable operation

of these vehicles, even in the face of sensor and encoder issues, asks for advanced

fault-tolerant control models and safety measures which is what this paper focuses

on.

The kinematics of a differential drive vehicle can be modeled as follow [22]:

vc =
r(ωR + ωL)

2
ωc =

r(ωR − ωL)

L
(2.3)

where: vc is the linear speed of the vehicle, ωc is the rotational speed of the vehicle,

r is the radius of the wheels, L is the distance between the center of the wheels

and ωi with i = L,R is the rotational speed of the wheels, respectively left and

right.

2.4.1 A Safe Control system

In order to operate a safe feedback control of the left and right wheels in a differ-

ential drive vehicle, we propose the four-state machine depicted in Fig. 2.7.

The starting state is the IDLE state, wherein the machine is expected to

remain stationary while the controller awaits commands from the operator.
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Figure 2.6: Scheme of differential drive vehicle kinematics

Following the operator’s issuance of commands, the machine changes to the

ARMED state, where a meticulous test on the encoder’s functionality must be ex-

ecuted. If the test is successful, then the machine is allowed to enter the MOVING

state; otherwise, the machine enters the FAIL state.

The MOVING state is characterized by the controller’s nominal operation,

involving also real-time analysis of sensor data to identify potential failure condi-

tions. The controller stays in this state until the operator issues further commands

or until a system failure is detected.

Upon the detection of a failure, the FAIL state is entered by the controller,

which is a secure mode. This failure may happen during the encoder test at the

startup time or when the machine operates in the MOVING state. When in the

FAIL state, all outputs to motor drivers are restrained, thereby cutting power and

stopping any movement. Upon the operator’s release of commands, the controller

gracefully reverts to the IDLE state, providing a mechanism for resetting false

positive detections.

In case the detected failure is authentic, upon the operator’s subsequent com-

mand issuance in the ARMED state, the startup test failure ensues, compelling
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the controller to return to the FAIL state. If the fault detected is authentic, the

next command issued by the operator in the ARMED state will cause the startup

test to fail, forcing the controller to return to the FAIL state.

commands
operatedIDLE

Test
fails

Test
passed

ARMED

fail detected

commands release

MOVING

commands released

FAIL

Figure 2.7: The proposed state machine to operate a safe controller
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Figure 2.8: Block diagram of a safe control system for a differential drive vehicle

2.5 Fault Scenarios

In industrial environments, vehicles are exposed to a variety of fault scenarios

that can impact their safety and operational efficiency. These scenarios can be

categorized by both the severity of their impact and the frequency with which



On Safety Speed Controller for Differential Drive Vehicles 33

they occur, providing a structured approach to fault management and response

prioritization.

Faults with high severity pose immediate risks, potentially leading to unsafe

conditions or significant disruptions if not addressed instantly. Critical scenarios,

such as brake failure, loss of steering control, or major sensor faults that com-

promise obstacle detection, require the vehicle’s control system to initiate rapid

interventions. Emergency protocols may involve immediately stopping the vehi-

cle, shifting to backup systems, or alerting nearby personnel to prevent accidents

or equipment damage.

In contrast, low-severity faults may not create an immediate hazard but can

still degrade the system’s performance over time. These faults, including slight

sensor deviations, intermittent communication issues, or minor wear on compo-

nents, are typically less urgent but still require monitoring and timely intervention

to avoid cumulative effects. By adjusting operational parameters or scheduling

regular maintenance, these minor faults can be managed before they escalate into

critical issues.

The frequency of fault occurrences further shapes the response strategy, influ-

encing maintenance schedules and resource allocation. High-frequency faults, even

those of low severity, can disrupt workflow and reduce system reliability if they

recur too often, as these scenarios necessitate frequent inspections, calibrations,

or part replacements. Conversely, low-frequency faults may appear less disruptive

in the short term but could indicate underlying issues that warrant attention to

prevent future critical failures.

Categorizing fault scenarios by severity and frequency enables a balanced ap-

proach to both safety and efficiency. High-severity, high-frequency faults might

demand immediate corrective action or design modifications, while low-severity,



On Safety Speed Controller for Differential Drive Vehicles 34

low-frequency issues can be managed with routine maintenance without impacting

productivity. This structured framework for understanding and addressing fault

scenarios optimizes the operational reliability and safety of industrial vehicles in

demanding environments.

2.5.1 Sensor Faults

Sensor faults, particularly those affecting incremental encoders, are critical con-

cerns in mobile robotics as they directly impact the accuracy of speed and position

measurements. Incremental encoders are vital components that translate mechan-

ical motion into electrical signals, providing feedback necessary for precise control

of the robot’s movement. Faults in these sensors can lead to significant errors

in navigation, control algorithms, and overall system performance. The primary

categories of encoder faults are detailed below:

• Encoder Detachment (∆E1,L and ∆E1,R): This fault occurs when the

encoder becomes physically detached or loose from the motor shaft to which

it is connected. Causes may include mechanical vibrations, improper instal-

lation, or gradual loosening over time due to wear and tear. When an

encoder detaches, it may shift along the shaft axis or completely disconnect,

leading to either zero output or unstable and erratic signals. This severe

fault is relatively rare but poses a high risk to system functionality, as it

disrupts the feedback loop essential for accurate speed and position con-

trol. The immediate consequence is a loss of reliable data, which can cause

the robot to misinterpret its speed, potentially resulting in unsafe behav-

ior or collisions. Preventive measures include secure mounting techniques,

regular inspections, and the use of locking mechanisms to maintain encoder

alignment.
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• Encoder Stuck (∆E2,L and ∆E2,R): An encoder may become stuck due

to mechanical obstructions such as debris, corrosion, or internal component

failures like bearing seizure. Electrically, issues like short circuits, power

supply anomalies, or signal interference can also cause the encoder to output

a constant value regardless of actual motion. When the encoder is stuck,

it provides unchanging speed measurements, misleading the control system

into believing the robot is stationary or moving at a constant speed. This

fault occurs with higher frequency compared to encoder detachment and

is considered critical because it can lead to improper control commands,

inefficient operation, or unsafe conditions. For instance, the robot might fail

to decelerate when approaching an obstacle. Addressing this fault involves

implementing real-time monitoring systems that detect anomalies in encoder

output patterns and trigger fault-handling protocols, such as switching to

alternative sensors or entering a safe operational mode.

• Generic Encoder Failure (∆E3,L and ∆E3,R): This category encom-

passes a broad range of electrical and mechanical issues that result in ran-

dom or nonsensical outputs from the encoder. Potential causes include in-

termittent wiring connections due to frayed cables, degradation of optical

components in optical encoders (e.g., LED burnout or photodetector fail-

ure), and magnetic interference affecting magnetic encoders. Environmental

factors like extreme temperatures, moisture ingress, or exposure to contam-

inants can exacerbate these issues. Although such failures are infrequent,

their severity is high because unpredictable encoder signals can lead to er-

ratic robot behavior, making it difficult for the control system to make

accurate decisions. Mitigation strategies involve robust sensor design with

environmental protections, redundancy through multiple sensors, and ad-



On Safety Speed Controller for Differential Drive Vehicles 36

vanced fault detection algorithms that can filter out erroneous data and

rely on predictive models or alternative feedback mechanisms during failure

conditions.

The impact of sensor faults extends beyond immediate control loops to higher-

level functions such as path planning, localization, and mapping. Inaccurate sen-

sor data can compromise the robot’s ability to build and interpret maps of its

environment, affecting long-term autonomy and mission success. Therefore, inte-

grating fault-tolerant designs, regular maintenance schedules, and comprehensive

diagnostics is essential for ensuring reliable sensor performance in mobile robotic

systems.

2.5.2 Actuator Faults

Actuator faults in electric drive systems are critical to both the performance and

safety of mobile robots. Electric actuators, typically DC motors controlled by

power drivers, are responsible for executing movement commands issued by the

control system. Faults in these components can result in loss of mobility, un-

intended movements, or even hazardous situations. The main actuator faults

considered are elaborated below:

• Motor Detachment (∆ML and ∆MR): This fault occurs when the elec-

trical connection between the motor and its power driver is interrupted.

Possible causes include loose wiring due to vibrations, connector failures

from mechanical stress, or faults within the driver circuitry such as blown

fuses or damaged components. The immediate effect is a temporary loss of

motor function on the affected side, which can lead to asymmetrical thrust

and unintended deviations from the desired trajectory. While the severity
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is considered low because the robot may still retain partial functionality,

this fault can compromise mission objectives and requires timely detection

and remediation. Preventive measures involve secure electrical connections,

strain relief for cables, and the use of connectors designed to withstand the

operational environment’s mechanical stresses.

• Driver Short-Circuit (∆SCL and ∆SCR): A short-circuit within the

motor driver, particularly between two channels of the H-bridge circuit,

can cause the motor terminals to be directly connected to the power sup-

ply without the regulating influence of control signals. This condition can

lead to uncontrolled motor behavior, such as the motor running at maxi-

mum speed uncontrollably or experiencing a sudden stop due to the lack of

proper voltage regulation. The fault is severe due to the risks of overheat-

ing, excessive current draw, potential damage to the motor windings, and

safety hazards including fires or electrical shocks. Although rare, the criti-

cal nature of this fault necessitates immediate shutdown procedures within

the control system, as well as hardware protections like fuses, circuit break-

ers, and current-limiting resistors. Regular diagnostic checks and the use

of high-quality driver components with built-in fault protections can reduce

the likelihood of such occurrences.

• Driver Breakdown (∆DBL and ∆DBR): A driver breakdown involves

the failure of components within the H-bridge motor driver, such as transis-

tors (e.g., MOSFETs or IGBTs) or diodes, leading to unintended electrical

pathways that can expose the motor directly to the supply voltage or ground.

This fault can cause abrupt and unregulated motor movements, stalls, or os-

cillations, posing significant safety risks and potentially damaging the motor
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and other electrical components due to voltage spikes or reverse currents.

The severity of this fault is high, and while its occurrence is infrequent, it

underscores the importance of using drivers with robust designs that in-

clude protections against overvoltage, overcurrent, and thermal overload.

Implementing fault-detection circuits that monitor driver health and incor-

porating software routines that can isolate faulty drivers can enhance system

resilience. Additionally, designing the system to fail safely, where the robot

enters a controlled stop upon detecting such faults, can prevent accidents

and equipment damage.

Managing actuator faults effectively requires a combination of proactive and

reactive strategies. Proactively, the use of high-reliability components, protective

circuit designs, and adherence to proper installation and maintenance procedures

can minimize the occurrence of faults. Reactively, the implementation of real-

time monitoring systems that track motor currents, voltages, temperatures, and

driver statuses enables the early detection of anomalies. Software algorithms can

analyze this data to predict potential failures and initiate appropriate responses,

such as reducing motor load, switching to redundant systems, or alerting opera-

tors. By integrating these approaches, mobile robots can maintain high levels of

performance and safety even in the face of actuator faults.

2.5.3 Safety requirements

The safety requirements are outlined in this subsection, and the fault detection

time TD, for the corresponding failures, is defined as multiple of the control sam-

pling time Ts.

• False detections: The number of false positives must be kept as low as
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Fault Severity Occurency Detection time
∆E1,L,∆E1,R Very high Low TD < 50Ts

∆E2,L,∆E2,R Very high Medium TD < 150Ts

∆E3,L,∆E3,R High Low TD < 150Ts

∆ML,∆MR Low Low TD < 50Ts

∆SCL,∆SCR Very high Very Low TD < 50Ts

∆DBL,∆DBR Low Low TD < 50Ts

Table 2.3: Considered faults

possible to avoid the vehicles becoming unusable. We have required that

the minimum time between consecutive false positives should be less than

360,000 samples (approximately 1 hour). In the event of a false positive

detection, the controller will push the machine into the FAIL state, easily

re-set by the operator by releasing the commands to activate the machine

and run the startup test again. The detection will be either confirmed

(correct detection) or refuted (false positive).

• Missed detections: All faults should be detected.

• Safe state behavior: An essential feature is to define a policy regarding

the controller’s behavior in the event of fault detection. In case of a failure,

the controller must promptly bring the speed of both motors to zero. This

is achieved by reducing to zero the power supplied to both motors and, if

available on the vehicle, engaging the brakes.

2.5.4 Controller

The vehicle controller operates within a state machine, as described in the section

2.1. The controller is implemented with a sampling frequency of 100Hz, and it

starts in the IDLE state.

The condition for moving from IDLE to ARMED is that rL ̸= 0 ∨ rR ̸= 0. It
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is evident that, as with industrial vehicles, safety regulations require measures to

prevent accidental activation of the vehicle.

In the ARMED state, the system performs a pre-departure check of the en-

coder and motor functionality. This test leverages the backlash within the gearbox

[23]. Regulations dictate that the vehicle cannot be activated without the explicit

intention of the operator. Typically, a test involving motor activation would vio-

late this requirement. However, by utilizing the backlash within the gearbox, it is

possible to conduct a micro-actuation on the motor shaft that is not transmitted

to the wheel.

Algorithm 1 Algorithm of the start test
direction← 0 ▷ 0 = CCW, 1 = CW
test procedure:
actuateMotorsForTest(direction)
while test is running do recordEncodersData()
end while
NA, NB ← countPulseCh(A,B) ▷ Eq. 2.1
ωA, ωB ← computeSpeedCh(A,B) ▷ Eq. 2.2
AB ← computeXORChannels()
ωAB ← computeSpeedCh(AB)
C1 ← NA − (NA mod 2) == NB − (NB mod 2)
C2 ← ωA == ωB

C3 ← ωAB == 2ωA

if C1 ∧ C2 ∧ C3 then ▷ Test passed
testPassed← 1

else if direction is 0 then
direction← 1 ▷ Retry changing direction
goto test procedure

else
testPassed← 0

end if

The motor is driven with a very low pulse width modulation (PWM) value,

insufficient to move the vehicle but sufficient to rotate the motor shaft freely

within the backlash zone. If, during this operation, waveform edges aligned with
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the model are detected, the test is considered successful.

If no waveform edge is detected at the encoder input, the test is repeated

by activating the motor in the opposite direction, since the gear attached to the

motor shaft might be in contact with the gear attached to the driving wheel. If

this operation detects waveform edges that match the model, the test is considered

successful. Otherwise, if none are detected, the test is deemed definitively failed,

indicating a possible disconnection of the encoder or a broken motor driver. The

controller prevents the vehicle from moving, signals the malfunction, and pushes

the machine into the FAIL state.

Specifically, we check equation (2.4) to make sure that the number of edges

detected on both channels, if even, is the same. In the case of an odd number of

edges on one channel, we subtract 1.

NA − (NA mod 2) = NB − (NB mod 2) (2.4)

After confirming this, we make sure that the detected speed is the same for

both channels of the encoder. If this speed corresponds, it will be the measured

rotational velocity: ωA = ωB ≜ ω.

Confirming that the number of edges and the velocity are the same on both

channels is not enough to ensure safety. One of the two channels (or both) could

show anomalous behavior and manage to overcome the first two checks. Therefore,

we proceed to perform an XOR operation between the two channels (A⊕B) and

calculate the measured velocity (ωA⊕B). By performing the XOR operation, if the

signals are correct, we double the signal frequency. If there are no problems with

the encoder, we must verify that: ωA⊕B = 2ω.

If a higher-than-expected speed is detected during the test, the test will stop



On Safety Speed Controller for Differential Drive Vehicles 42

and fail. This could indicate a short circuit in the motor driver. The controller

prevents the vehicle from moving, signals the failure, and puts the machine in the

FAIL state.

If the test is successful, the controller enters the MOVING state. In this state,

the PI controller operates normally, adjusting the motor speed to the required

setpoint. During this state, the motor current consumption and speed measure-

ments from the encoder are monitored. If the data deviates from the model, a

fault is detected, and the machine enters the FAIL state. Real-time analysis of

the sensor data verifies that the difference between the sensor estimate and the

actual value is always below a certain threshold.

Finally, in the FAIL state, motor activation is inhibited, preventing any move-

ment of the machine.

The PI controllers for both motors, although operating independently, com-

municate with each other when they detect a fault. When one controller detects

a failure, it communicates this information to the other controller, and both si-

multaneously enter the FAIL state.

2.6 Experiments and results

This section describes the experimental validation of the proposed fault detection

system. To assess the vehicle dynamics, it is assumed that the operator follows

the trajectory shown in Figure 2.9. Moving along this trajectory, it is possible to

experiment with right and left movements. Moreover, the experiment has focused

on the forward movement along this trajectory since the backward movement

along the same trajectory does not add any further insight.

In the experimental setup, we built a prototype vehicle shown in Figure 2.10,
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Figure 2.9: Vehicle trajectory considered in the experiment

where we have employed 24V DC motors. Hall effect differential encoders were

mounted on the motor shafts. We utilized a custom control board with a Mi-

crochip microprocessor and a custom power driver capable of working with motors

up to 2kW. The experiments lasts for 5 minutes.

Failures should be detected and managed according to the requirements spec-

ified in Section 3.3. To execute the validation, random failures have been injected

during the experiment. These experiments were repeated 100 times to exhaus-

tively validate the safety system.

Figure 2.11 shows an excerpt of an experiment. It shows the speed set point

(blue solid line), the speed measured by the encoder (Dashed red curve) and the

actual speed (dotted black curve). At the beginning of the experiment, there is

a short transient period after which the motor stabilizes at the reference speed.

At t=23s, a fault is injected that is detected a few milliseconds later, leading the

motor into a quiescent safe state.
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Figure 2.10: Prototype vehicle.

2.7 Concluding Remarks

This chapter has focuses on developing fault-tolerant control systems for indus-

trial vehicles, particularly those with differential drive kinematics. These vehicles

present unique safety challenges due to potential malfunctions, so reliable failure

detection and mitigation are crucial.

While there has been substantial research on fault-tolerant control systems,

much of it focus on motor and torque control, which less attention is given to

rotary speed sensor failures.

Experimental results validate the proposed system, showing that it effectively

detects failures and transitions the motor to a safe state. This ensures that the

vehicle can continue operating safely even in the event of a sensor fault. The

approach meets safety standards like the EU Directive 2006/42/EC and IEC61508,

making it a valuable contribution to improving industrial vehicle safety.
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Figure 2.11: Excerpt of a experiment with fault injection.
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Chapter 3

Decentralized Control of UAV

Swarms

3.1 Introduction

Unmanned Aerial Vehicles (UAVs), especially multi-rotor drones, are increasingly

being used for a wide range of tasks, such as photogrammetry [24], remote sens-

ing [25], search and rescue [26], surveillance [27], and firefighting [28]. These drones

are equipped with various sensors like RGB and RGB-D cameras, LiDARs, and

radars, which allow them to capture data that can be processed locally or trans-

mitted in real-time to a Ground Control Station (GCS). A UAV swarm involves

multiple drones working together on a shared task, offering advantages like in-

creased coverage, efficiency, and resilience. Swarms are particularly valuable for

complex tasks such as collaborative mapping, multi-sensor data fusion, and dis-

tributed sensing. However, to function effectively, each drone in the swarm needs

to have autonomous capabilities, such as path planning and obstacle avoidance,

as well as coordinated control strategies to ensure smooth collaboration.

47
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Figure 3.1: A swarm of drones autonomously patrols a given area of interest while
sending videos to a ground station

Control strategies for UAV swarms are often based on methods developed

in the field of Multi-Agent Systems (MAS), including swarm intelligence [29],

formation control [30], consensus algorithms [31], and decentralized control [32].

Tasks like surveillance and patrolling often require real-time video streaming

from the drones to the GCS. UAV swarms are especially useful in these scenarios

because they can improve mission efficiency, increase coverage, and enhance situ-

ational awareness. The task we focus on in this study involves a swarm of drones

tracking a path, capturing video with onboard cameras, and sending the footage

back to the GCS, typically via a public communication network.

We aim to achieve two main goals: First, we want to maximize the area

covered by the drones along their path, ensuring that the field of view of each

drone overlaps with its neighbors. This overlap allows for dynamic video stitching

at the GCS, giving a complete view of the area. Second, we address the impact
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of fluctuating network bandwidth on video quality. Low bandwidth reduces the

quality of the videos sent to the GCS, which can affect the accuracy of computer

vision tasks. To mitigate this, we propose dynamically adjusting the drones’

altitude in response to bandwidth fluctuations. Lowering the drones’ altitude

increases the pixel density of the video, improving its quality. However, this

also creates challenges in maintaining the desired overlap between drones, making

video stitching more difficult.

To tackle these issues, we propose using a partially distributed Nonlinear

Model Predictive Control (NMPC) framework. NMPC is well-suited to handle

problems with constraints, such as limitations in drone control, energy consump-

tion, and coverage. It has been successfully applied to tasks like collision avoid-

ance, navigation, and formation control.

In our approach, each drone is subject to realistic constraints, such as lim-

ited control inputs and energy consumption, which ensures both efficiency and

practicality in real-world applications.

3.2 Related Work

UAV surveillance, area coverage, and video streaming are rapidly evolving fields

that have attracted attention from a variety of research communities, including

Artificial Intelligence (AI), Graph Theory, and Multimedia Systems. In this sec-

tion, we provide a brief overview of existing research and identify the gaps our

work aims to address.

The Swarm-based UAV (SUAV) algorithm proposed in [33] is designed for

detecting mobile objects during natural disasters, such as floods, using a swarm

of drones. The algorithm focuses on energy-efficient tracking while considering
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visual quality metrics like SSIM and VQM based on drone speed. It also aims to

maintain multi-hop communication links between the drones and the ground to

ensure better image quality. However, this work does not account for the impact

of fluctuating network bandwidth on video transmission.

In [34], the authors tackle the problem of cooperative exploration with multiple

UAVs, ensuring that they maintain line-of-sight (LOS) communication with the

ground through a relay UAV. While the study considers collision avoidance and

feasible flight paths, it doesn’t explore how time-varying network bandwidth might

affect communication and performance, which is a key concern in our work.

The paper by [35] explores how to maximize coverage while minimizing re-

source consumption, specifically by considering the power usage of drones through

a Particle Swarm Optimization (PSO) approach. However, this solution does not

use a collaborative approach or direct communication between drones, as our work

does. Instead, it assumes that drones scan separate areas without interaction.

In [36], the authors discuss UAV-based surveillance with cameras to cover large

areas. While they consider network-related issues, such as packet loss, they do

not take into account how changing network bandwidth affects video quality.

The study in [37] focuses on the communication between UAVs and the ground

station, specifically considering bandwidth for coverage path planning. It employs

a centroidal Voronoi diagram to assign coverage areas to each UAV without direct

communication. In contrast, our work uses a multi-agent system framework that

not only ensures efficient coverage but also incorporates bandwidth-aware motion

control, enabling drones to communicate directly and avoid redundant movements

and collisions.

Another related approach is found in [38], where decentralized monitoring

using drones is achieved through distributed optimal control algorithms that min-
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imize information loss. This approach allows for adding or removing drones from

the team, but it lacks an active collision avoidance system. Unlike this work, our

approach focuses on improving video quality by adjusting the drones’ movements

based on network bandwidth, ensuring both efficient coverage and high-quality

video capture. While our work assumes a predefined path, we recognize that path

planning methods like those in [39] could be adapted for real-time path generation.

3.3 System design

This section outlines the system design used to achieve the goals introduced in

the previous section. First, we define the notation and concepts that will be used

throughout the chapter (Section 3.3.1). Then, the scenario and the proposed

framework are presented in Sections 3.3.2 and 3.3.3, respectively.

3.3.1 Preliminaries

Let ∥·∥p represent the p-norm of a vector, and consider a directed graph (digraph)

G(V , E), where V = {v1, . . . , vN} is the set of nodes (indexed as i = 1, . . . , N), and

E ⊆ V × V is the set of edges. An edge (vi, vj) indicates the flow of information

from node i to node j. The set of neighbors of a node vi is denoted by Ni = {vj ∈

V : (vj, vi) ∈ E}, meaning all nodes that have directed edges towards node vi. A

directed graph is said to be strongly connected if there is a directed path between

every pair of nodes, i.e., for any nodes i and j, there is a path from i to j and

vice versa.

The adjacency matrix A captures the structure of the graph, with entries

aij such that aij = 1 if there is an edge from vi to vj (i.e., (i, j) ∈ E), and

aij = 0 otherwise. The in-degree matrix D = D(G) = (dij) is defined such
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that dij = in-deg(vi) if i = j (the in-degree of node vi), and dij = 0 otherwise.

The in-degree of node vi, in-deg(vi), represents the number of edges directed

towards node vi. The Laplacian matrix is then given by L = D − A. If G

is strongly connected, the eigenvalues of the matrix −L satisfy the condition

−λN−1 ≤ −λN−2 ≤ · · · < −λ0 ≤ 0, where λ0 = 0 and the rank of L is N − 1.

Formation Control is a well-established technique in multi-agent systems used

to maintain a particular shape or distance between agents. In this paper, we

apply this concept to ensure that agents maintain a safe minimum distance from

each other, while the shape of the formation is allowed to change over time. The

goal is to achieve a flexible formation, which ensures that safety distances are

maintained without rigidly enforcing a fixed formation shape. At the same time,

it is important that the agents stay close enough to each other to allow their

on-board cameras to scan overlapping areas for tasks such as stitching and object

detection.
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3.3.2 Scenario definition

In this subsection, we describe the scenario and the control goals that we aim to

achieve. Imagine a swarm of drones equipped with cameras, like the one shown in

Figure 3.1. These drones are tasked with tracking a predefined path and monitor-

ing an area (such as a field, a town, or other environments) for various purposes,

including firefighting, border patrolling, agricultural monitoring, surveillance, ob-

ject detection, and more. Each drone’s camera is pointed directly downward,

capturing a square area whose size depends on the drone’s altitude. The video

feeds from these cameras are sent to a Ground Control Station (GCS) through a

network connection, such as a 5G link. The GCS receives the video streams from

all the drones in real-time and stitches the frames together to create a composite

video that covers the entire area beneath the drones.

To stitch the video frames together effectively, the algorithm requires some

overlap between the captured areas, meaning the videos need to share common

ground coverage, and the quality of the video needs to be high [40, 27]. The first

step in the stitching process is detecting common features in the video frames

coming from different drones. For this to work well, the videos must be high-

quality, or else the stitching algorithms, which rely on identifying feature points

in the images, might fail. Additionally, since some overlap is required between the

videos, the drones need to stay as close to each other as possible without colliding.

From a practical perspective, each drone has an Internet connection to commu-

nicate with other drones and with the GCS to send the captured video. We assume

that each drone can exchange information with all the other drones, forming a

complete directed graph. In real-world scenarios, the available network bandwidth

depends on the drone’s location in the area and the number of users sharing the
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network. As a result, bandwidth is variable and not known in advance, and it

is treated in this work as a disturbance that can be measured. Techniques for

estimating bandwidth—both passive and active—are available and can be used

for this purpose [41, 42].

Because the bandwidth can vary, the quality of the video each drone sends also

changes. When the bandwidth is low, it is preferable for the drone to lower its

altitude to get closer to the ground, allowing it to capture more detailed frames

that can help with the video stitching process at the ground station. On the other

hand, when the bandwidth is high, the drone can increase its altitude, expanding

the area it covers while maintaining good video quality. A key parameter for mea-

suring the quality of the captured image is the Ground Sample Distance (GSD),

which describes the size of a pixel on the ground and is an important concept in

UAV-based photogrammetry [43].

At the same time, the drone swarm needs to maintain a wide coverage area.

Ideally, the drones should fly as far apart as possible, but without leaving gaps in

the areas they are scanning. To achieve this, the drones would need to fly at their

highest possible altitude, allowing them to capture the largest possible area.

In this scenario, each drone has two conflicting goals: i) ensure a good amount

of overlap between the videos and maintain high visual quality in each video, and

ii) increase the coverage of the region of interest. To achieve the first goal, a drone

would fly at a lower altitude, which results in a smaller GSD and better video

quality. However, increasing the altitude improves coverage because the camera

can capture a larger area of the ground.

To balance both goals, we adopt the following approach: when the bandwidth

is high, the drone can fly higher to increase coverage, while still maintaining

good resolution and visual quality. However, when the bandwidth is low, the



Decentralized Control of UAV Swarms 55

drone descends, as previously mentioned. To achieve this, a mapping between the

altitude and available bandwidth must be defined so that the video quality is only

minimally affected.

Additionally, to monitor the area effectively, one drone is chosen as the leader

to follow a predefined path. The other drones in the swarm are required to follow

the leader while maintaining a safe distance from both the leader and the other

drones. It is important to note that the altitude of each drone will change as they

move along their path, based on the current network bandwidth.

3.3.3 Problem definition

In this section, we introduce the Nonlinear Model Predictive Control (NMPC) that

is executed on each drone. Specifically, we have designed a two-state algorithm

to prevent detachments—situations where there is no overlap between the videos

captured by the drones. Avoiding this condition is crucial for the video stitching

process to work correctly. For each state, we define a specific cost function for

the NMPC. It is also worth noting that the drones communicate with each other

using the same Internet connection they use to send video streams to the Ground

Control Station (GCS). The bandwidth is assumed to be constant in the vertical

(z) direction and over time.

Drone Dynamics and Cost Functions

The dynamics of each drone are modeled in a simple way as discrete-time inte-

grators. This simplification helps describe how each drone’s state evolves over

time.

si(k + 1) = si(k) + Tsui(k), i = 1, . . . , N (3.1)
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Here, N is the total number of drones, si = (xi, yi, zi)
T is the position vector of

drone i, Ts is the sampling time, and ui = (ux,i, uy,i, uz,i) represents the control

input for drone i.

Additionally, the 3D orientation of the drones is not considered in this model.

This is because we assume that the cameras are mounted on gimbals, which are

set to always point straight down at the ground with the same yaw angle for all

drones.

Now, we are ready to introduce the proposed NMPC designed to solve the

problem. The general structure of the optimization problem is as follows:

Minimize
ui

Ji (3.2)

subject to si(k + 1) = si(k) + Tsui(k) (3.3)

hmin ≤ hi ≤ hmax (3.4)

∥Xi(t)−Xj(t)∥2 ≥ 2Rsafe (3.5)

|ui| ≤ umax (3.6)

|∆ui| ≤ ∆umax (3.7)

In these equations, Xi = (xi, yi)
T is the 2D position of drone i, hi is the altitude

of the drone, and ∆ui is the change in control input between two consecutive time

steps. Equation (3.4) ensures that the drone’s altitude stays within a specific

range, which is set for safety reasons and can be considered a mission parameter.

Equation (3.5) guarantees that each drone maintains a minimum distance of 2Rsafe

from other drones to avoid collisions. Equations (3.6) and (3.7) are constraints

on the control input and its rate of change, which help ensure that the control

actions remain realistic.
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One key point to note is that the NMPC for the leader drone, denoted by

i = 1, does not include the collision constraint (3.5). This is because the leader’s

main job is to follow a predefined path, and it’s up to the other drones to ensure

they maintain a safe distance from the leader.

Finally, we describe the two-state Track-Recovery algorithm, where the cost

function Ji is defined depending on the specific state and the drone in question.

Track-Recovery Algorithm

The swarm can operate in one of two possible states: the Tracking State and the

Recovery State. In the Tracking state (T ), the risk of detachment is minimal, as

there is enough overlap between the areas covered by the cameras. On the other

hand, in the Recovery state (S), there is a significant risk of detachment, so the

cost function within the NMPC framework needs to be adjusted for each agent.

During the Recovery state, the leader drone remains stationary, and the system

transitions back to the Tracking state once the required overlap is reestablished

among the agents.
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State T - Tracking

In the Tracking state, the leader follows a desired path, and the other agents

follow the leader, ensuring that the swarm achieves optimal coverage and video

overlap. Each agent also adjusts its altitude dynamically based on the available

network bandwidth to maintain the necessary video quality.

For this state, we define the cost function for the leader, J1,T , for problem

(3.2)-(3.7) excluding the collision constraint (3.5), as described earlier. To avoid

redundancy, the following equations are written generically with index i. However,

for the leader’s cost function, i = 1.

J1,T = wpJp + whJh + wuJu + w∆uJ∆u, (3.8)

Jp =

Np∑
k=1

∥∥Xi(t+ k|t)− X̄(t+ k)
∥∥
∞ (3.9)

Jh =

Np∑
k=1

∥∥hi(t+ k|t)− h̄i(t+ k)
∥∥
2

(3.10)

Ju =
Nc∑
k=1

∥ui(t+ k − 1)∥2 (3.11)

J∆u =
Nc∑
k=1

∥∆ui(t+ k − 1)∥2 (3.12)

Here, Jp represents the cost of path tracking, where X1(t) is the 2D position of

the leader at time t, Np is the prediction horizon, and X̄(t) is the reference path

at time t. Jh is related to altitude tracking, where h1(t) is the leader’s altitude
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and h̄1(t) is the reference altitude. Ju and J∆u are terms that limit control effort

and changes in control input. The control horizon is denoted by Nc.

For the other agents, Ji,T for i = 2, . . . , N is given by:

Ji,T = wlJl + whJh + wuJu + w∆uJ∆u, (3.13)

Jl =

Np∑
k=1

(∥Xi(t+ k|t)−X1(t+ k)∥∞ − r(Ri +R1))
2 (3.14)

Here, Jl encourages agent i to follow the leader’s path.

State S - Recovery

In some cases, the swarm risks losing its formation, which is critical for maintain-

ing video overlap among agents. This can lead to detachments, where at least

one agent’s video feed does not overlap with any other agent’s video. Since each

agent knows the positions of all other agents, they can detect this risk and switch

to the Recovery state (S). In this state, the leader halts and waits for the other

agents to reassemble. Once the agents have properly aligned and adjusted their

altitudes, the system transitions back to the Tracking state (T ).

The leader’s cost function during the Recovery state ensures it does not follow

the path and instead waits for the others to catch up. Meanwhile, the leader

adjusts its altitude according to the reference altitude, while penalizing control

input and its variations. The cost function is defined as:

J1,S = whJh + wuJu + w∆uJ∆u (3.15)

For the other agents in the Recovery state, the cost function does not penalize
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control input or its variation, allowing them to use maximum control effort to

recover quickly while still respecting input and variation constraints.

Furthermore, agents are required to stay close to one another. To avoid issues

with altitude tracking or leader following, we use a communication graph with

fewer edges in the Recovery state. Specifically, we consider a topology without

the leader, as shown in Figure 3.3, where each agent communicates with one or

two other agents. For this simplified graph, we define Ni = {j ∈ V : (j, i) ∈ E}

to represent the neighbors of agent i. The term Jf in the cost function ensures

that the agents stay together and maintain some overlap in their scanning areas

through the term r(Ri +Rj), where Ri and Rj are the coverage radii for agents i

and j, respectively. Jf is defined as:

Jf =
∑
j∈Ni

Np∑
k=1

(∥Xi(t+ k|t)−Xj(t+ k)∥∞ − r(Ri +Rj))
2 (3.16)

From simple geometric principles, we know that the relationship between Ri

and hi is given by Ri = hi tan(ϕ/2), where ϕ is the angular aperture of the video

camera [44]. The parameter r controls the desired overlap: setting r close to 1

results in minimal overlap, while lowering r brings the agents closer together. Al-

though the communication graph is a complete directed graph (since every agent

can communicate with any other agent via the Internet), the subgraph used for

Jf is reduced to avoid issues with altitude tracking and redundant communi-

cation. This approach of using different graph topologies for specific tasks has

been discussed in the literature, such as in [45], where three topologies—Sensing

Topology, Communication Topology, and Actuation Topology—are introduced,

each designed for different goals.
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The cost function for the other agents, i = 2, . . . , N , in the Recovery state is

then:

Ji,S = wlJl + whJh + wfJf (3.17)

Lastly, the weights wp, wl, wf , wh, wu, w∆u need to be carefully tuned to achieve

the best performance. This tuning can be done empirically or using optimization

tools.

Depending on the agent and its state, the cost function in (3.2) can be J1,T ,

Ji,T , J1,S, or Ji,S for i = 2, . . . , N .

Correlation Between Bandwidth and Altitude

To determine h̄i in (3.10) for each agent, we use the following function to relate

the estimated available bandwidth b to h̄i, as explained in Section 3.3.2:

h̄i(b) =


hmin if b < bmin

S · b+ hmax − S · bmax if bmin ≤ b ≤ bmax

hmax if b > bmax

(3.18)

where S is defined as S = hmax−hmin

bmax−bmin
.

This function could be replaced by a different model that better captures the

relationship between altitude, visual quality, and available bandwidth. Identifying

such a model is outside the scope of this study and could be a topic for future

work.
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3.4 Simulations

In this section, we present the results of simulations that validate the effectiveness

of the proposed approach. We consider several scenarios with different numbers

of agents, specifically N ∈ {3, 5, 6}, and for three predefined paths: a sine-like

path, a semicircular path, and a generic path designed to simulate a road. The

key parameters, including the weights in the cost functions, are summarized in

Table 3.1.

Table 3.1: Values of the weights in the cost functions of the NMPCs

wl wp wf wh wu w∆u

J1,T 1.5 - - 5 0.001 0.001
Ji,T - 0.5 - 1.5 0.001 0.001
J1,S - - - 0.5 0.001 0.001
Ji,S 1.5 - 0.3 1.5 - -

For the NMPC, the parameters were set to r = 0.4, Np = 5, Nc = 2, Rsafe = 2,

hmin = 4, and hmax = 10. The upper and lower bounds for ∆ux,∆uy,∆uz were set

to 0.1 for all agents. To ensure the swarm maintained its formation, the leader’s

velocity was intentionally set slower than that of the follower agents. Specifically,

the leader’s velocity bounds were ux,max = 0.7, uy,max = 0.7, while the followers

were allowed to go up to ux,max = 1 and uy,max = 1. For altitude control, uz,max

was set to 0.1 for all agents to avoid abrupt altitude changes.

The network bandwidth was modeled using a uniform random distribution,

varying between 500 kbit/s and 5000 kbit/s, to simulate realistic conditions. While

no specific dataset is available for drone channel measurements based on geo-

graphic position, this distribution serves as a reasonable approximation for the

simulations.
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3.4.1 Overall Results
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Figure 3.4: Drones’ trajectories and area covered for N = 3

First, we examine the case of N = 3, with the leader following a sine-like path.

The drones’ trajectories and the area they cover are shown in Figure 3.4. Here,

the agents start from their initial positions (marked with round markers) and

attempt to follow the leader while maintaining formation. The leader’s reference

path is shown by the black dashed line, and the leader’s trajectory (projected

onto the x-y plane) is depicted in light blue, demonstrating good tracking. The

gray region represents the area covered by the swarm, and the z-axis shows the

altitude, which varies along the path based on available bandwidth.

Figure 3.5 illustrates the case with N = 6 agents tracking the same sine-
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Figure 3.5: Drones’ trajectories and area covered for N = 6

like path. As expected, the agents stay well-coordinated, ensuring overlap and

preventing collisions. The larger swarm also results in significantly more area

being covered compared to the N = 3 case. Similar results were observed for

N = 5 agents and for the other paths considered.

Figure 3.6 shows the altitude tracking error for the N = 6 case. Each agent

starts at the same altitude, and after a brief transient period, all agents quickly

converge to their reference altitudes. The altitude for each agent is dependent

on its position and the available bandwidth at each step. Similar results were

observed for the other cases.

As expected, increasing the number of agents leads to a larger total scanned

area. Table 3.2 shows the normalized scanned areas for N = 3, 5, 6. As the
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Figure 3.6: Altitude tracking error for N = 6

number of agents increases, the area covered grows accordingly, with about a 30%

increase in area when moving from N = 3 to N = 6, across all three paths.

3.4.2 In-depth Analysis

Next, we perform a sensitivity analysis with N = 5 agents tracking the sine-like

path. We vary the leader’s maximum velocity, ux,max and uy,max, within the set

{0.7, 0.8, 0.95} to understand the impact on system performance. We also evaluate

the time the swarm spends in the Recovery state, during which the leader pauses

to allow the followers to catch up. The higher the time spent in Recovery, the less

efficient the system becomes.

We define an efficiency index η as follows:

η = 1− TS

Ttot
(3.19)

where TS is the time spent in Recovery, and Ttot is the total time taken for the

mission. A higher η indicates better performance, as it means less time spent in
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Recovery.

Our results show that when the leader’s velocity is set to 0.7, the efficiency is

η = 0.9. Increasing the leader’s velocity to 0.8 results in a decrease in efficiency

to 0.86, and further increasing to 0.95 leads to an efficiency of 0.82. This confirms

that higher velocities for the leader lead to more time spent in the Recovery state,

reducing the overall efficiency.

N = 3 N = 5 N = 6
Sine 1.0 1.3 1.35

Semicircle 1.0 1.3 1.38
Generic 1.0 1.31 1.37

Table 3.2: Normalized scanned area with respect to N = 3

3.4.3 Comparison with Existing Work

Finally, we compare our approach with two existing strategies from the literature:

the Independent strategy, where each agent follows its own path independently,

and the Centralized strategy, where all agents follow the same reference path,

with the leader moving at a constant speed and the followers maintaining relative

distances.

The results show that our approach outperforms both the Independent and

Centralized strategies in terms of coverage and coordination. The Independent

strategy struggles with inefficient coverage and the potential for collisions, while

the Centralized strategy is better at maintaining formation but more prone to

detachment issues when the leader moves too quickly. Our approach provides

better area coverage while keeping the swarm coordinated, avoiding detachment,

and ensuring efficient task completion.
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3.5 Concluding Remarks

A decentralized NMPC-based control framework for a swarm of drones has been

proposed to monitor a designated area through onboard cameras. These cameras

capture videos that are transmitted in real-time to a ground station. To maximize

video quality, the method considers both available bandwidth and the altitude of

each drone.

The proposed framework utilizes leader-follower multi-agent system formation

control to maintain close proximity among drones, preventing collisions and en-

suring sufficient overlap in the captured videos for stitching at the Ground Control

Station. The leader drone follows a specified path, with the other agents adjusting

their positions accordingly. Each agent applies NMPC to optimize a cost function

that facilitates all these objectives.

Specifically, the algorithm incorporates two operational states, namely Track-

ing and Recovery. These states are designed to minimize potential gaps in the

area covered by the drones. In each state, the agents are assigned distinct cost

functions tailored to the objectives of that state. Results demonstrate the ef-

fectiveness of the proposed approach, which ensures video overlap for stitching,

precise path and altitude tracking, and adequate area coverage.
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Chapter 4

Introduction

Video streaming is a fundamental component in mobile robotics, since it enables

the transmission of visual data that are critical for tasks such as remote mon-

itoring, teleoperation, and autonomous navigation. Advancements in wireless

communication and embedded computing on mobile robotic platforms made pos-

sible to implement real-time video streaming, even under challenging operational

conditions. Video streaming for mobile robotics presents unique challenges, such

as ensuring low latency, maintaining bandwidth efficiency, and optimizing energy

consumption.

The demand for high-quality, real-time video streaming is essential for a wide

range of robotic applications, including search and rescue, industrial automation,

and environmental surveillance [6]. These applications require robust and efficient

video streaming systems capable of supporting real-time data-driven decision-

making processes. Although progress in adaptive streaming protocols, data com-

pression, and low-latency networking has improved video streaming capabilities,

further advancements are necessary to address the specific requirements of mobile

robotics.

71
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One of the major challenges in streaming video for mobile robots involves

balancing the trade-offs between video quality, latency, and bandwidth usage.

High-definition video demands greater bandwidth and processing power, which

may be unavailable in remote or bandwidth-limited environments. As a result,

adaptive streaming techniques and optimized data compression algorithms have

become critical in managing these resources effectively.

Moreover, latency is a crucial factor in mobile robotics, as delays in video

transmission can negatively impact the robot’s performance, particularly in time-

sensitive applications.

Emerging technologies such as edge computing and advanced wireless commu-

nication protocols (e.g., 5G and 6G) offer promising solutions to reduce latency,

yet more research is needed to adapt these technologies to the constraints of mobile

robotics.

In this chapter, we explore recent advancements in video streaming technolo-

gies aimed at enhancing the performance and reliability of mobile robotic systems.

We review adaptive streaming protocols, examine the role of data compression

in optimizing bandwidth usage, and discuss the impact of cutting-edge wireless

communication technologies on latency. Our goal is to provide a comprehensive

overview of these improvements and their implications for mobile robotic appli-

cations.
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4.1 The Adaptive Video Streaming Model

A video v is encoded into different representations or levels l ∈ L, where each

representation corresponds to a nominal encoding bitrate level li.

Each video level is divided into K segments of fixed duration τ . Video segments

are identified by an index s ∈ S, where S = {1, 2, . . . , K} is the set of video

segment indices. Let c : L → R denote a non-decreasing function that maps a

selected bitrate video level ls with the video quality perceived by the user while

playing the s-th segment.

Downloader Playback
Buffer

Bitrate
Controller Video Player

Video
Server

Internet

GET
Client

Figure 4.1: Abstract model of an adaptive video streaming system.

To formulate the mathematical model for a video streaming system, we have

drawn upon the analysis carried out in [46] and depicted in Figure 4.1. When a

streaming session is initiated, the controller, whose goal is to optimize the Quality

of Experience (QoE) perceived by the user, instructs the downloader to request

and download video segments encoded at the proper quality level that are stored

in the playback buffer to be displayed.

The control law is computed upon completion of each segment download and

is followed by the download of the next chunk at the bitrate level ls ∈ L computed
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by the controller’s output us ∈ L.

The downloader fetches video segments from the server at the bitrate deter-

mined by the controller.

More precisely, the download of segment s starts at time ts, and ends after the

download time tDs , i.e., the time interval between ts and the completion of the

download of segment s. After that, the downloader waits for ws seconds before

requesting the next segment s+1. This waiting time depends on the time required

to compute the level of the next chunk to be downloaded. The downloader stops if

the queue length in the playback buffer exceeds the threshold QH and waits until

it is below the threshold before resuming the download. This approach is useful

when the video is paused by the user, as it prevents unnecessary data network

resources consumption.

Hence, the download of segment s+ 1 occurs at:

ts+1 = ts + tDs + ws (4.1)

Let Bs be the average bandwidth measured during the download of the s-th

chunk and Cs(us) the size of the s-th chunk downloaded at bitrate us ∈ L, then

tDs can be expressed as:

tDs =
Cs(us)

Bs

(4.2)

The video player is responsible for draining the playout buffer, decoding, and

rendering the video on the user’s screen. Notice that the player’s state at time t,

denoted as α(t), can be equal to 1 when the video is playing and the playout buffer

is being drained, or 0 when the video is paused and no video is drained from the

playout buffer. The player is in the latter state when either the buffer is empty
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α(t) = 0
paused

α(t) = 1
playing

q > QL

q ≤ QL

q = 0

q > 0

Figure 4.2: Depiction of player state as finite state machine.

or at the beginning of a video streaming session. While in this state, the player

remains paused until the playback buffer is filled up to a threshold QL. The state

of the player can be modelled as the finite state machine shown in Figure 4.2.

The video playback rate PR is the rate at which the video content is drained

from the buffer and played on the user’s screen. Although such a rate can be

slightly adjusted for synchronization purposes in the context of live video stream-

ing events [47], it is in general considered constant and equal to 1, which means

that 1 second of video is played in 1 second.

Hence, the player’s drain rate can be expressed as follows:

dr(t) = PR · α(t) (4.3)

The client’s playback buffer, which stores the video content, has a length q(t)

measured in seconds. The downloader fills the playback buffer with an impulse

of amplitude τ seconds when segment s is downloaded at ts+1. Then, the player

drains the buffer through the continuous-time process (4.3).

Thus, the queue length resulting after downloading the s-th segment can be

expressed as:

q(ts+1) = q(ts) + τ −
∫ ts+1

ts

dr(ξ) dξ (4.4)

Before starting a streaming session, the server sends to the client all the nec-
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essary information, such as the set L, the video clip duration T , and the chunk

length τ , through a manifest file in DASH standard or Playlist file in HLS stan-

dard.

4.2 Quality of Experience in video streaming

Quality of Experience (QoE) is defined as “the degree of delight or annoyance

of the user of an application or service. It results from the fulfilment of his or

her expectations with respect to the utility and/or enjoyment of the application

or service in the light of the user’s personality and current state” [48]. In the

context of communication services, QoE is influenced by a complex interplay of

factors, which include not only the technical performance of the network but also

the content, the device, the specific application, the user expectations, and the

specific context in which the service is used [49].

Figure 4.3: Conceptual difference of QoS and QoE [1]

Quality of Service (QoS) and QoE are both essential concepts in assessing

the performance of communication services; however, they represent fundamen-

tally different perspectives. While QoS is a network-centric metric that quantifies

the technical performance of a service (such as latency, bandwidth, and packet

loss), QoE is user-centric, aiming at capturing the subjective perception of service

quality from the user’s perspective (Fig. 4.3).
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QoS is primarily concerned with measurable network performance indicators

and provides a quantifiable view of service quality. In contrast, QoE relies on a

broader, multidimensional perceptual space encompassing:

• System Factors: These include technical attributes, such as QoS metrics

(e.g., packet loss, latency), network protocols, and device-specific parame-

ters. While these factors can impact user satisfaction, they are not sufficient

to capture the full spectrum of user experience.

• Human Factors: Subjective elements such as mood, personality traits, ex-

pectations, and previous experiences significantly impact QoE. For instance,

a user’s mood or their expectations from a service may alter their perception

of quality independently of the measured QoS.

• Contextual Factors: Context, including the user’s physical location, the

nature of the task, and even cost considerations, can greatly influence QoE.

For example, a user may tolerate lower quality when streaming a video for

leisure but may demand higher quality in professional or critical applica-

tions.

These factors do not operate in isolation but often interact, complicating the

mapping between QoS and QoE. For instance, users may rate their experience

differently with the same service depending on external factors such as environ-

ment or expectations, indicating that QoE depends on a broader set of influence

factors that extend beyond measurable QoS metrics.

4.2.1 QoE metrics

In order to grasp users’ perception of video quality in streaming, the industry and

researchers depend on particular Quality of Experience (QoE) metrics, referred
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to as Key Performance Indicators (KPIs). These key performance indicators for

quality of experience in adaptive video streaming gather important elements of

user perception, offering understanding of service quality from the user’s point of

view. Overall, we can say that several factors could be taken into account when

trying to estimate the user’s QoE[50, 51].

• Average Video Quality: The bitrate determines the quality of the video,

usually measured in kilobits per second (kbps). In streaming applications

where quality is adjusted based on network conditions, the average bitrate

indicates the overall quality experienced throughout the session, considering

all displayed bitrates and their durations.

• Average quality switch: Counting the number of times the video quality

switches during the session measures how well the stream adjusts to network

fluctuations and reliability.

• Buffering Ratio: Video playback pauses temporarily when there is no

more content to display. This break, known as buffering, can greatly affect

the watching experience. The buffering ratio shows how much time the video

player is paused for buffering compared to the total session time.

• Buffering Frequency: The rate at which buffering interruptions happen

in a streaming session, calculated by dividing pauses by session duration.

• Startup Delay: This measure calculates the duration, in seconds, from

when a user initiates a video to when it starts playing. Another related

idea, rebuffering delay, is when there is a pause in video playback before it

resumes.
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A metric that is widely adopted in the literature to estimate the QoE is defined

as [2]:

QoElin
K
1 =

K∑
k=1

c(uk)︸ ︷︷ ︸
Quality reward

−λ
K−1∑
k=1

|c(uk+1)− c(uk)|︸ ︷︷ ︸
Smoothness penalty

− µ
K∑
k=1

rs︸ ︷︷ ︸
Rebuffering penalty

−µs Ts︸︷︷︸
Startup delay

(4.5)

where λ, µ, µs are non-negative weighting parameters. The Quality reward term

denotes the total reward in terms of the visual quality of each level. The Smooth-

ness penalty term penalizes video level switch. The Rebuffering penalty term

negatively affects the QoE and is the sum of all the rebuffering durations rs for

any chunk s ∈ S. Finally, the Startup delay is the time the player requires before

starting to reproduce the video.

Name Quality reward c(uk) Rebuffering
penalty
weight µ

QoElin c(u) 4.3

QoElog log(c(u)/c(umin)) 2.66

QoEhd 0.3→ 1, 0.75→ 2, 1.2→ 3, 1.85→ 12, 2.85→
15, 4.3→ 20

8

Table 4.1: The QoE metrics weight we considered [3]. Each metric is a variant of
Equation 4.5.

It’s important to note that [2] introduces additional QoE metrics, such as

QoElog and QoEhd. The QoElog metric reflects the idea that, for some users, the

perceived quality improvement lessens at higher bitrates—a concept also utilized

in the work by [52]. Conversely, QoEhd emphasizes High Definition (HD) quality

by assigning lower scores to non-HD streams and higher scores to HD streams.
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These metrics differs by varying c(uk) and µ as depicted in Table 4.1.

4.3 Video Codecs in Video Streaming

Video codecs are essential components in video streaming, as they compress and

encode video data for efficient transmission over networks, then decode it for play-

back on the user’s device. Without codecs, transmitting raw video data would re-

quire substantial bandwidth, resulting in excessive data consumption and latency.

In streaming applications, codecs strike a balance between video quality, file size,

and computational efficiency, making them critical for delivering a seamless view-

ing experience, especially in adaptive streaming and low-latency environments.

4.3.1 Overview of Video Codec Functionality

A video codec operates by analyzing video frames to identify and compress redun-

dant data, which reduces file size without significantly impacting visual quality.

Codecs use two main types of compression: intra-frame and inter-frame compres-

sion. Intra-frame compression reduces redundancy within a single frame, whereas

inter-frame compression identifies similarities between successive frames to reduce

redundancies across a sequence. By employing both compression types, video

codecs maintain video quality while minimizing file size and bandwidth require-

ments.

The codec processes video data in real-time to balance quality and bandwidth

based on current network conditions. For adaptive bitrate streaming protocols

like DASH and HLS, multiple encoded versions of each video segment at different

bitrates are generated and stored on the server. The client then dynamically

selects the version that matches its available bandwidth, ensuring optimal quality
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while avoiding buffering interruptions.

4.3.2 Common Video Codecs in Streaming

Several video codecs are widely used in video streaming due to their balance of

efficiency, compatibility, and quality:

• H.264/AVC (Advanced Video Coding): is one of the most popular

codecs in video streaming, known for its high compression efficiency and wide

compatibility across devices and platforms. It achieves a balance between

quality and file size, making it suitable for various streaming applications,

from live broadcasting to on-demand content. H.264 is widely supported in

both hardware and software, providing versatility across different environ-

ments [53].

• H.265/HEVC (High Efficiency Video Coding): also known as HEVC,

is the successor to H.264, offering up to 50% better compression efficiency

while maintaining similar quality. This codec is ideal for high-definition

(HD) and ultra-high-definition (UHD) content, as it can reduce file sizes,

thus saving bandwidth. However, H.265’s higher computational require-

ments may limit its use in devices with low processing power or energy

constraints, such as in mobile and battery-operated systems [54].

• VP9: Developed by Google, is an open-source codec that provides similar

compression efficiency to H.265 without licensing fees, making it popular for

web-based streaming platforms, such as YouTube. VP9 is also optimized for

high-definition content and is increasingly supported across modern devices

and browsers, although it may lack the same hardware support as H.264

and H.265 [55].
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• AV1: is a royalty-free codec developed by the Alliance for Open Media,

designed to offer higher compression efficiency than both H.265 and VP9.

AV1 is optimized for internet-based streaming and is well-suited for environ-

ments where bandwidth is constrained. While AV1 is still gaining support

in hardware, its adoption is expected to increase as streaming services and

device manufacturers incorporate this efficient, cost-effective codec [56].

Codec Compression Efficiency Computational Demand
H.264 Moderate Moderate
H.265 High High
VP9 High Moderate-High
AV1 Very High High

Table 4.2: Comparison of Common Video Codecs in Streaming.

Selecting an appropriate codec is crucial in adaptive streaming applications,

as it directly impacts the user experience, bandwidth usage, and computational

load. In adaptive bitrate streaming, such as DASH or HLS, the choice of codec

affects both the storage requirements and streaming efficiency. High-compression

codecs like H.265 and AV1 can reduce bandwidth usage and enhance video quality,

particularly for high-definition and ultra-high-definition content, but they may

require more processing power. Codecs such as H.264, with lower computational

demands, are often favored for live streaming, low-latency applications, or devices

with limited processing capacity.

The choice of codec can also influence Quality of Experience (QoE) by de-

termining video quality at different network speeds and ensuring compatibility

across user devices. For instance, H.264’s broad compatibility makes it a safe

choice for diverse streaming applications, whereas H.265 and AV1 may be pre-

ferred in high-quality streaming scenarios where higher compression can reduce

data consumption without compromising visual fidelity.
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For mobile robotics, which may operate in environments with limited or unsta-

ble connectivity, efficient codecs can play a critical role in transmitting video with

minimal latency and maintaining quality under bandwidth constraints. The abil-

ity to adaptively stream video at different quality levels in real-time enhances the

robot’s ability to interpret visual data, supporting applications such as navigation,

remote operation, and environmental monitoring.

4.4 Video Streaming Standards

In the context of video streaming for mobile robotics, several protocols enable

efficient and reliable video transmission over networks with varying bandwidth

and latency constraints. Among the most widely used are the Dynamic Adaptive

Streaming over HTTP (DASH) protocol, HTTP Live Streaming (HLS) protocol,

and Real-Time Communication (RTC) protocol. Each protocol has unique char-

acteristics that address different aspects of transmission, such as adaptive bitrate,

latency, and connection stability.

4.4.1 Dynamic Adaptive Streaming over HTTP (DASH)

Dynamic Adaptive Streaming over HTTP (DASH) [57] is the standard adopted

for video streaming. YouTube, Netflix, to name just the most famous streamers,

adopt such a standard. DASH is also used for 360 degree video streaming and for

volumetric or 6DoF video streaming. As of today, more than half of the global

Internet traffic is due to video contents [58]. DASH is designed to optimize video

delivery in varying network conditions, allowing a seamless viewing experience by

adjusting video quality in real-time.

The DASH standard segments video content into small chunks, each encoded
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at multiple bitrates and resolutions. These segments are served over standard

HTTP servers, and a client device can dynamically select the most appropriate

segment quality based on current bandwidth, device capabilities, and network sta-

bility. A key component in DASH is the Media Presentation Description (MPD)

file, called the manifest that provides metadata about the stream, including seg-

ment URLs, available bitrates, and timing information.

One of DASH’s strengths is that it gives clients control over bitrate selec-

tion, making it highly flexible and compatible with a wide range of network and

device conditions. This design allows the protocol to deliver high-quality video

content while minimizing buffering and interruptions, making it suitable for ap-

plications like Video on Demand (VoD) and live streaming. DASH has become

a fundamental protocol for adaptive streaming, supported across various devices

and platforms, and continues to evolve to meet the demands of modern video de-

livery, including integration with emerging transport protocols like HTTP/3 over

QUIC for enhanced performance on unstable networks.

4.4.2 HTTP Live Streaming (HLS)

HTTP Live Streaming (HLS) [59] is an adaptive bitrate streaming protocol devel-

oped by Apple to deliver high-quality video content over the internet, particularly

optimized for devices in the Apple ecosystem. As DASH, it allows for dynamic

adjustment of video quality based on network conditions, enabling smooth play-

back with minimal buffering and interruptions, even in fluctuating bandwidth

environments.

HLS works by dividing video content into small segments, typically between

2 to 10 seconds in duration, each encoded at multiple bitrates and resolutions. A

client device retrieves these segments sequentially based on current network per-
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formance, choosing the bitrate that best balances quality and buffering avoidance.

The protocol relies on an M3U8 playlist file, a manifest that contains URLs and

metadata for each video segment, guiding the client’s playback decisions.

As DASH, HLS has evolved to include support for protocols like HTTP/3 over

QUIC, which enhances streaming performance in networks prone to latency and

packet loss. While HLS is widely supported on iOS devices, its compatibility has

since extended to other platforms.

4.4.3 WebRTC

Web Real-Time Communication (WebRTC) [60] differs fundamentally from stream-

ing protocols like DASH and HLS in that it enables direct, peer-to-peer commu-

nication between devices, eliminating the need for a central server to manage

media delivery. Whereas DASH and HLS depend on HTTP servers to store and

distribute video segments to clients, WebRTC establishes a direct link between

users’ devices, allowing for low-latency, bidirectional streaming of audio, video,

and data in real time.

The serverless design of WebRTC makes it especially suitable for applications

where instant, interactive communication is critical, such as video conferencing,

teleoperation, and live collaboration tools. This direct connection minimizes la-

tency by avoiding the buffering and adaptive bitrate adjustments typical of DASH

and HLS, which are designed to optimize video delivery over varying network con-

ditions and often introduce delay.

In WebRTC, peer-to-peer connections are established through a signaling pro-

cess, which uses STUN (Session Traversal Utilities for NAT) and, if necessary,

TURN (Traversal Using Relays around NAT) servers only to handle initial con-

nection setup, network traversal, and firewalls. Once a connection is established,



Introduction 86

media flows directly between peers without relying on an intermediate server for

content delivery. When more than two clients join a WebRTC call, the peer-to-

peer setup can start to struggle. As more clients join, each device has to send

and receive streams for every other participant, which can quickly overload both

bandwidth and processing power. To solve this problem, many WebRTC systems

use something called a Selective Forwarding Unit (SFU). An SFU acts as a smart

relay for the media streams, so instead of each device connecting directly to every

other device, they all connect to the SFU. The SFU then selectively forwards each

stream to the right client, adjusting the quality and the number of streams based

on needs and network capacity.

While DASH and HLS are optimized for streaming prerecorded and live con-

tent to multiple viewers with adaptive quality based on network conditions, We-

bRTC is tailored to scenarios requiring immediate, low-latency media exchange.

4.5 Adaptive Bitrate Algorithms

Adaptive bitrate (ABR) algorithms are essential in video streaming, enabling dy-

namic adjustment of video quality to ensure smooth playback despite fluctuations

in network conditions. These algorithms optimize the user experience by balancing

video quality and buffering to adapt to changing bandwidth, thereby minimizing

playback interruptions and maximizing visual quality. In the literature, ABR al-

gorithms are generally classified into two primary categories: rate-based (RB) and

buffer-based (BB) algorithms [2]. Each approach offers unique strengths but also

presents limitations, leading to interest in hybrid models that incorporate both

throughput prediction and buffer occupancy.
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Figure 4.4: Design space of algorithms for the video adaptation problem [2]

4.5.1 Rate-Based Algorithms

Rate-based (RB) algorithms select video bitrate primarily based on real-time or

predicted network throughput. By estimating the available bandwidth, RB algo-

rithms choose the highest possible bitrate that the current network conditions can

support without causing buffering. The fundamental idea behind RB algorithms

is to continuously monitor network throughput and dynamically select a bitrate

that aligns with available bandwidth. This approach is well-suited to network en-

vironments where bandwidth fluctuations are minimal or gradual, as throughput

predictions can remain relatively stable.

However, they can struggle in networks with abrupt bandwidth changes or high

variability. When bandwidth suddenly decreases, a rate-based algorithm may not

respond quickly enough, leading to playback interruptions or buffering. Addition-

ally, relying solely on throughput predictions makes RB strategies susceptible to
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inaccuracies in bandwidth estimation, particularly when historical data is sparse

or unreliable.

4.5.2 Buffer-Based Algorithms

Buffer-based (BB) algorithms, in contrast, make bitrate decisions based on the

level of video data buffered at the client. This approach assumes that maintaining

a stable buffer is critical to avoid playback interruptions, particularly in environ-

ments with highly variable bandwidth. The client continuously monitors buffer

occupancy and adjusts the bitrate accordingly: when the buffer is nearly full, the

algorithm may increase the bitrate to enhance video quality, while a low buffer

level prompts a decrease in bitrate to prevent interruptions.

Buffer-based strategies are effective in handling abrupt network fluctuations

since they react directly to buffer levels rather than throughput predictions. This

design makes BB algorithms more resilient in networks with frequent or unpre-

dictable bandwidth shifts. However, BB algorithms may select bitrates that ex-

ceed the available network bandwidth, especially when buffer levels are high, lead-

ing to congestion and potential rebuffering. Furthermore, because BB algorithms

do not account for network throughput, they may choose overly conservative bi-

trates in situations where higher quality could be sustained, thus limiting video

quality unnecessarily.

4.5.3 Hybrid Algorithms: Combining Rate-Based and Buffer-

Based Approaches

While both RB and BB algorithms provide viable strategies for bitrate adapta-

tion, each approach has inherent limitations when used in isolation. An ideal
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adaptive bitrate algorithm would leverage both buffer occupancy and throughput

prediction, thereby drawing from a broader design space (see Fig. 4.4). By com-

bining the strengths of both approaches, hybrid algorithms can optimize video

quality and stability more effectively than single-parameter strategies.

In a hybrid model, the algorithm assesses both the buffer level and the esti-

mated throughput before making a bitrate selection. For example, if both the

buffer level and throughput are high, the algorithm can safely choose a higher bi-

trate to enhance video quality. Conversely, when the buffer is low and throughput

predictions indicate limited bandwidth, the algorithm reduces the bitrate to main-

tain smooth playback. This integrated approach enhances the responsiveness of

hybrid algorithms to dynamic network conditions and improves their adaptability

in balancing video quality with rebuffering control.
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Chapter 5

Real-Time MPC Controller

This chapter presents the design and implementation of a new Real-time Adaptive

Bitrate (ABR) algorithm, which is based on Model Predictive Control (MPC) and

Dynamic Programming (DP) [61].

5.1 Related work

In [62] a Buffer-Based (BB) approach is presented to select the most appropriate

bitrate during video playback. Such a strategy is designed to ensure smooth video

playback by aiming at keeping the buffer occupancy above a predefined threshold.

This algorithm is particularly effective in maintaining a high QoE for users, even

during network fluctuations, due to the fact that it prioritises the buffer occupancy

and adjusts the bitrate accordingly. Another BB technique is BOLA [52], which

leverages Lyapunov optimization to select the best bitrate based only on the buffer

occupancy.

Beside buffer occupancy, RobustMPC [2] also takes into account throughput

predictions to determine the best bitrate that maximises a given QoE metric based

on previous errors between predicted and observed throughputs.

91
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The first work leveraging Deep Reinforcement Learning to design an ABR

algorithms is Pensieve [3]. In particular, a neural network model is trained to

learn the appropriate bitrates for future video chunks based on the data collected

from individual client video players.

Another learning-based approach is proposed in [63], which employs Bayesian

Neural Networks (BNN) combined with an MPC-based ABR algorithm to pre-

dict the probability distribution of the future throughput based on throughput of

previously downloaded chunks to better adapt to dynamic networks and users.

To combine the advantages of buffer-based and learning-based ABR approaches,

the authors of [64] introduce Stick. This ABR algorithm employs a Deep Rein-

forcement Learning (DRL) method to compute the buffer-bound needed by the

buffer-based approach to maximise the QoE. This way, computational improve-

ments are obtained wrt previous state-of-the-art techniques. In [65], a Meta Re-

inforcement Learning (Meta-RL) based ABR is designed. The algorithm rapidly

adapts its control policy to changing network throughput dynamics by separating

the inference of throughput dynamics from the universal control mechanism. Such

an approach utilises a model-free system framework, consisting of a probabilistic

latent encoder and a policy network conditioned on latent variables, to meta-learn

the ABR policy.

All the aforementioned techniques are rather impractical when it comes to

an actual implementation in a real-time streaming scenario. This is mainly due

to the computational overhead introduced, which is usually neglected in simu-

lated environments. The proposed RT-MPC aims at bridging this gap since it is

particularly suitable for realistic implementations due to the low processing time

required.
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5.2 The proposed approach

At this point, the proposed control strategy to control an Adaptive Bitrate system

can be presented.

5.2.1 Considerations on improving the QoE

As already explained in Section 4.2.1, frequent changes of bitrate levels adversely

impact the QoE (Smoothness penalty term in (4.5)). When a change in the video

level would contribute to a considerable enhancement in the visual quality and

a significant portion of the video has elapsed without level changes, it might be

advantageous to switch the video level to improve the QoE by paying a small

penalty in terms of smoothness. This is based on the insight that isolated video-

level switches might end up being beneficial for a user’s QoE even at the cost of

reduced smoothness.

To exploit this observation, we introduce the Smoothness Window which is a

vector of size w defined as follows:

W = [us−w+1, us−w+1, us−w+2, ...us]. (5.1)

containing the last values of coding levels u belonging to the window. At the

beginning, when filling the window vector W, if the index s − w + i < 0 then

us−w+i = u0.

The idea is to modify the QoE (4.5) by adding a new component, named

the Smoothness window penalty, that takes into account how the video levels

have changed in the past window. This new added component penalizes frequent

video level transitions over time, which is known to be detrimental to the user’s
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experience [66].

Thus, the QoE to be maximised by the RT-MPC controller over the prediction

window HP is defined as follows:

QoEs+HP
s =

s+HP∑
k=s

c(uk)︸ ︷︷ ︸
Quality reward

−λ1

s+HP−1∑
k=s

|c(uk+1)− c(uk)|︸ ︷︷ ︸
Smoothness penalty

− µ1

s+HP∑
k=s

rs︸ ︷︷ ︸
Rebuffering penalty

−β
W−1∑
k=0

|us−k − us−k−1|︸ ︷︷ ︸
Smoothness window penalty

(5.2)

where λ1, µ1, and β are non-negative weighting parameters.

5.2.2 Considerations on bandwidth estimation

The literature presents several approaches to estimate the network bandwidth

[67].

The analysis carried out in [2] compares different approaches for bandwidth

estimation. Our approach starts by assuming that the network bandwidth is an

unpredictable stochastic process. While some bandwidth estimators demonstrate

accuracy when the network is in stationary conditions, the estimation becomes

less accurate when either the bandwidth varies abruptly or the forecast horizon

becomes longer. We assume the following bandwidth estimator:

B̂s+1
s = γBs (5.3)

In other words, the bandwidth at the next step is estimated as a fraction

0 < γ ≤ 1 of the current measured bandwidth, which is a sort of worst-case

assumption when performing optimization.
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5.2.3 The controller

Ideally, an ABR algorithm should have a control strategy that starts to download

the next segment instantaneously when the previous download is ended. In the

reality, the controller has a computational delay ws that retards the download of

the next segment. The majority of approaches presented in 5.1 neglects this fact,

focusing only on the QoE maximization problem. Yin et al. in [2] raise concerns

about computational overhead developing the idea of an offline approach called

FastMPC where they enumerated possible scenarios and create a table indexing

the optimal decision for each scenario. In theory this would be a good method

but in practical it has some issues that although they have been addressed, have

not been resolved:

• Inefficient in case of an high dimensional state space;

• Memory overhead needed to store the table of all possible cases;

• Offline computation cost could be higher when is needed to rerun the opti-

mization in case of changing the operating conditions.

Starting from scratch by analyzing the problem, we observed that the opti-

mal bitrate selection involves traversing a tree structure as the one illustrated in

Figure 5.1 and identifying the path that maximizes the solution. An exhaustive

exploration of the tree along the prediction horizon would require O(|L|HP ) states

while evaluating each state would involve an O(HP ) search plus some constant

time operations. Thus, the overall computational cost of the algorithm would be

O(|L|HPHP ), which is exponential in the prediction horizon.

In light of the fact that the proposed optimization problem is a multi-stage

decision process, we exploit the Bellman’s optimality principle [68] to reformulate
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Figure 5.1: The recursive tree for computing the optimal sequence of bitrate consid-
ering L = {l0, l1}, HP = 4, HU = 3.

the optimization problem as follows:

J∗ = max
us

[
QoEs+1

s + max
us+Hp−1

[
QoEs+Hp

s+Hp−1

]]
(5.4)

By using Dynamic Programming to solve (5.4), it is possible to turn the expo-

nential cost to a polynomial one, specifically achieving a complexity of O(|L|HP
2).

By examining the reward function (5.2), it is clear that the Quality Reward,

Smoothness Penalty and Smoothness Window Penalty terms depend only on the

input sequence from s to s + Hp. Given their independence from the system’s

state, these terms can be computed a priori. In light of this key observation, dur-

ing the initialization phase, the RT-MPC algorithm generates a table of potential

rewards for all possible paths in the tree (Figure 5.1), thus further reducing the

computational cost to O(|L|HP ).
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Figure 5.2: Testbed setup representation

5.3 Experimental results

This section will provide an overview of the experimental results.

5.3.1 Testbed setup

Let L = {300, 750, 1200, 1850, 2850, 4300} kbps be the set of available bitrate lev-

els. The duration of each video chunk is set to τ = 4 seconds, and the total

number of video chunks is 48, which corresponds to a video duration of 192 sec-

onds. The calibration of the controller parameters has been carried out utilising

Optuna [69], which is tool for parameter tuning based on the maximization of a

reward function. The resulting values for the parameters are as follows: Hp = 4,

Hu = 4, W = 4, c(ls) = ls/1000, γ = 1.45, β = 7.21, ∆u = 3, λ1 = 2.48 and

µ1 = 0.33.
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Regarding the QoElin (4.5) used for performance comparison, we set λ = 4.3

and µ = 1 as in [2]. Finally, the buffer capacity is limited to 1 minute. All

experiments were performed on a machine running Ubuntu 22.04 with 32GB of

RAM and an Intel i7 8th generation CPU.

5.3.2 Scenarios

The goal is to investigate different bitrate adaptation techniques under realistic

network conditions. To the purpose, the following pre-existing datasets of network

bandwidth available over the Internet have been used:

• Federal Communications Commission (FCC) [70]: the dataset con-

sists of more than 1 million sets of throughput measurements during a 5s

interval. We extract throughput traces of the same server and client IP

address and concatenate these to match the length of the video. For exper-

iments, we randomly pick 1000 concatenated traces.

• High Speed Downlink Packet Access (HSDPA) [71]: the dataset

consists of 30 minutes of continuous 1s measurements of video streaming

throughput of a moving device in Telenor’s 3G/HSDPA mobile wireless net-

work in Norway. We randomly pick 1000 throughput traces.

• Oboe dataset [72]: it is a set of bandwidth traces of real video streaming

sessions. The data corresponds to 500 video sessions. For each session, the

bandwidth observed for each downloaded video chunk is provided.

5.3.3 Adaptation algorithms

We compare RT-MPC against the following algorithms, which represent the state-

of-the-art in bitrate adaptation techniques: Buffer-Based (BB) [62], Rate-Based
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(RB), BOLA [52], RobustMPC [2], Pensieve [3], BayesMPC [63], and Merina [65].

Furthermore, to provide an absolute reference for comparison, we also include the

results obtained using the offline optimal strategy, which gives the best achievable

solution. The offline optimal strategy represents the maximum QoE that an oracle

policy with complete and perfect knowledge of future network throughput could

achieve. This strategy is obtained through dynamic programming with complete

information about future throughput, which is never available in practice. It is

therefore to be considered as a reference in the testing phase.

5.3.4 Results

Figure 5.3 illustrates the Cumulative Distribution Function (CDF) of the average

QoElin values obtained for each video chunk using the FCC dataset. This CDF al-

lows us to visually assess the performance distribution across different approaches

by showing the proportion of chunks achieving or exceeding a given QoElin score.

In examining the figure, we observe that, aside from the offline optimal strategy,

represented by the red dashed line on the far right of the CDF curve, RT-MPC

(shown as the orange solid line) achieves the highest average QoElin among the

other adaptive bitrate algorithms considered. This suggests that RT-MPC consis-

tently maximizes quality perception as measured by QoElin, positioning it close

to the optimal solution while operating in real-time conditions.

Further validation of RT-MPC’s performance in delivering high QoE can be

observed in Figure 5.4. This figure breaks down the average contributions of the

first three components of the QoElin metric, as defined in Equation (4.5), for each

algorithm analyzed, once again utilizing the FCC dataset. Specifically, RT-MPC

demonstrates the highest Quality reward, meaning that it maintains superior video

quality levels across chunks compared to the other methods. This achievement is



Real-Time MPC Controller 100

balanced with a low Rebuffering penalty, indicating that the algorithm effectively

minimizes interruptions in playback. However, this enhanced performance comes

with a trade-off in the form of a slightly higher Smoothness penalty relative to

the other algorithms. The elevated smoothness penalty is largely due to RT-

MPC’s use of a conservative worst-case bandwidth estimator, which occasionally

results in bitrate fluctuations as it adjusts for potential variations in network

capacity. Nonetheless, this trade-off is minor and does not detract significantly

from the overall QoE. Additional tests performed using the HDSPA and Oboe

datasets showed similar patterns, underscoring RT-MPC’s robust performance

across diverse network conditions, though we omit these results here for brevity.

Overall, RT-MPC achieves notable improvements in average QoE values, with

gains ranging between 3% and 6% across different segments of the FCC dataset.

These improvements demonstrate RT-MPC’s effectiveness in enhancing user ex-

perience in adaptive streaming contexts, where maintaining high QoE is a critical

objective.

A comparison of computational times across the different datasets is provided

in Table 5.1. The results in this table reveal that RT-MPC delivers a substantial

reduction in computation time compared to the other algorithms. This improve-

ment highlights the algorithm’s capability to make adaptive decisions efficiently,

meeting the demands of real-time processing with minimal delay. Furthermore,

RT-MPC’s computational performance is characterized by a variance close to zero,

as shown in Table 5.1, underscoring its reliability in achieving near-deterministic

precision in execution times. Such consistency makes RT-MPC an ideal candi-

date for live video streaming applications, where the processing time per chunk

is constrained to intervals as short as half a second. This deterministic perfor-

mance is crucial for real-time streaming scenarios, where the timeliness of bitrate
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adaptation directly impacts user experience.
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Figure 5.4: Comparison of the single terms in the QoElin metric over the FCC dataset.

5.4 Concluding remarks

In this chapter, we have presented RT-MPC, a novel Adaptive Bitrate (ABR)

algorithm designed specifically to enhance video quality selection in streaming
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FCC HSDPA Oboe

Pensieve

µ = 1.79
σ2 = 1.32
min = 0.79
max = 108.84

µ = 2.84
σ2 = 1.66
min = 0.82
max = 122.64

µ = 4.89
σ2 = 1.46
min = 0.90
max = 167.84

RobustMPC

µ = 3.58
σ2 = 5.53
min = 0.02
max = 35.40

µ = 6.13
σ2 = 7.04
min = 0.02
max = 40.57

µ = 10.95
σ2 = 8.62
min = 0.02
max = 38.37

BayesMPC

µ = 39.80
σ2 = 3.18
min = 37.71
max = 211.74

µ = 42.31
σ2 = 3.44
min = 36.12
max = 325.89

µ = 56.67
σ2 = 3.18
min = 37.71
max = 190.33

Merina

µ = 1.04
σ2 = 1.84
min = 0.96
max = 157.68

µ = 2.77
σ2 = 2.31
min = 0.90
max = 156.80

µ = 3.08
σ2 = 2.25
min = 1.39
max = 227.68

RT-MPC

µ = 0.10
σ2 = 0.02
min = 0.05
max = 0.21

µ = 0.38
σ2 = 0.04
min = 0.11
max = 0.55

µ = 0.28
σ2 = 0.02
min = 0.07
max = 0.42

Table 5.1: Computational time comparison over different datasets. Values are ex-
pressed in ms.

applications. By focusing on maximizing the user’s Quality of Experience (QoE),

RT-MPC addresses the challenges posed by fluctuating network conditions and

the need for real-time decision-making in video streaming environments. To tackle

the computational complexity typically associated with Model Predictive Control

(MPC) in ABR applications, RT-MPC integrates Bellman Dynamic Program-

ming, alongside constraints on maximum encoding level changes. These con-

straints effectively reduce the scope of optimization, making it computationally

feasible to implement the algorithm in real time without sacrificing performance

or quality.

The effectiveness of RT-MPC has been rigorously evaluated against several

leading ABR algorithms widely recognized in the literature, demonstrating sub-
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stantial improvements not only in QoE metrics but also in computational effi-

ciency, both of which are crucial for real-time streaming applications. Specifi-

cally, RT-MPC significantly reduces the average, standard deviation, and maxi-

mum computation times by several orders of magnitude compared to traditional

ABR approaches. This improvement is pivotal, as it enables the algorithm to

make rapid adjustments to video quality, thereby mitigating buffering events and

maintaining smooth playback, which are central to enhancing the user experience

in dynamic network environments.

Moreover, the design of RT-MPC incorporates real-time adaptability, ensuring

that the algorithm can effectively respond to variations in network bandwidth and

user device constraints. The integration of predictive control and optimization-

based adjustments allows RT-MPC to balance video quality and stability, resulting

in fewer quality fluctuations and a more consistent viewing experience. This

balance is particularly relevant for applications where low latency and seamless

video playback are essential, such as live streaming, remote collaboration, and

virtual reality environments.

In conclusion, RT-MPC sets a new benchmark in ABR algorithm design by

combining the theoretical rigor of Model Predictive Control with practical con-

straints set by real-time performance. Its ability to deliver superior QoE while

significantly reducing computation time makes RT-MPC a promising solution for

future streaming applications that demand both high responsiveness and high-

quality media delivery. The findings presented in this chapter underscore the

potential of RT-MPC to advance the state of ABR technology, paving the way for

further research into optimization techniques that enhance real-time adaptability

and computational efficiency in video streaming.
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Chapter 6

Conclusions and Future Research

Directions

The thesis has explored the field of autonomous mobile robots. In the first part,

we focused on mobile robotics, specifically developing a safe and fault-tolerant

controller for industrial differential drive vehicles. The second part shifted to

the decentralized control of drone swarms, while also addressing video streaming

systems and presenting a novel Adaptive Bitrate (ABR) algorithm, RT-MPC,

which outperforms existing solutions.

The contributions of this thesis are:

• Development of a Fault-Tolerant Control System for Industrial

Vehicles: A novel system designed to detect and mitigate rotary speed

sensor failures in differential drive industrial vehicles, ensuring safe operation

even in the event of sensor faults, and fully compliant with European safety

standards.

• Formalization and Development of a Framework for Decentralized

Control of Bandwidth-Aware Drone Swarms: A framework that inte-

105
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grates decentralized control strategies to optimize video streaming quality

in drone swarms, considering both drone altitude and available bandwidth.

• Development of a New MPC-Based Adaptive Bitrate Algorithm:

A new Adaptive Bitrate (ABR) algorithm based on Model Predictive Con-

trol (MPC), which outperforms current state-of-the-art solutions in terms

of Quality of Experience (QoE) and computational efficiency. Our tailored

solution reduces the problem’s computational complexity from exponential

to polynomial time.

Future Research

While this thesis has made significant strides in addressing key issues in both

autonomous robotics and video streaming, several avenues for future research re-

main. In the area of fault-tolerant control systems for industrial vehicles, further

studies could explore the integration of machine learning techniques to improve

sensor fault detection and prediction, especially in environments with more com-

plex fault patterns. Additionally, extending this work to multi-vehicle fleets could

provide valuable insights into optimizing fault detection and vehicle coordination

at scale.

For drone swarm systems, future research could investigate more advanced

algorithms that combine NMPC with machine learning-based path planning and

obstacle avoidance. These approaches could further enhance the autonomy of

UAVs in highly dynamic and unpredictable environments. Furthermore, the inte-

gration of real-time video analytics with drone systems could be explored, allowing

for intelligent decision-making based on video streams, such as object detection

or event recognition, to improve the effectiveness of drone-based missions.
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In video streaming, the RT-MPC algorithm could be expanded to handle more

complex network conditions. Additionally, incorporating Quality of Service (QoS)

metrics into the algorithm’s optimization framework could lead to further improve-

ments in overall streaming performance. Exploring the application of RT-MPC in

scenarios with low-latency requirements, such as remote surgeries or autonomous

vehicle communication, could open new possibilities for real-time, high-quality

media delivery.

Ultimately, the intersection of autonomous robotics and real-time communica-

tion is a rapidly evolving field with vast potential for innovation. The methodolo-

gies and solutions presented in this thesis lay the groundwork for further explo-

ration and development, with the goal of advancing the capabilities of autonomous

systems and enhancing the user experience in complex, dynamic environments.

Future research in these areas will undoubtedly contribute to the continued evolu-

tion of both autonomous technologies and communication systems, making them

more reliable, efficient, and adaptable to a wide range of real-world applications.
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