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Abstract

This thesis is devoted to the investigation of multi-agent systems theory within the context
of autonomous intersection management. It is divided into two main parts: the first and
main part addresses the problem of autonomous vehicles crossing an intersection; the second
part focuses on the control of multi-agent systems in the scenario of a group of autonomous
agents pursuing the objective of forming a uniformly spaced string.

In the section regarding autonomous intersection management, a geometric approach is
employed to establish the foundations of a framework for modeling autonomous intersections.
After defining the geometry of the trajectories that vehicles follow, the collision conditions are
rigorously modeled to enable the definition of a general optimization problem for describing
the intersection scenario: the Intersection Crossing Problem (ICP). The ICP is a functional
optimization problem and its solution gives the trajectories vehicles must follow in order
to cross the intersection without crashing, while optimizing some predefined quantity of
interest. Convex analysis and optimization theory are used to derive results stemming from
the proposed theory, which are then used to develop an algorithm that is proven to solve a
specialization of the ICP in a finite number of iterations. Practical considerations about the
computation time are given to derive some approximation methods that are used to speed
up the collision avoidance phase of the algorithm while ensuring safety.

The other section deals with the consensus problem in a leaderless network of agents
that have to reach a common velocity while forming a uniformly spaced string. Moreover,
the final common velocity (reference velocity) is determined by the agents in a distributed
and leaderless way. Then, the consensus protocol parameters are optimized for networks
characterized by a communication topology described by a class of directed graphs having
a directed spanning tree, in order to maximize the convergence rate and avoid oscillations.
Finally, necessary and sufficient conditions are derived to guarantee consensus in the presence
of a constant delay. The advantages of the optimized consensus protocol are enlightened by
some simulation results and comparisons with a protocol proposed in the related literature.

This thesis is organized into six chapters. Chapter 1 introduces the work and outlines
its main contributions. Chapter 2 is the review of the available literature on the topic
of autonomous intersection management and multi-agent systems. Chapter 3 covers the
mathematical tools used to develop the proposed results. Chapter 4 presents the ICP and
the proposed distributed algorithm for its solution. Chapter 5 exposes the contributions in
the field of leaderless multi-agent systems. Chapter 6 contains remarks and considerations
for future work.
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Chapter 1

Introduction

For more than a decade, most of the world’s population has been living in urban areas. In 2018
this percentage was 55%, which is expected to increase to 68% in 2050 [1]. This phenomenon
is called urbanism and is a process that began in the nineteenth century, in conjunction with
industrialization. Understanding why more and more people feel encouraged to move towards
cities is quite easy: cities host a great wealth of services, infrastructure, business, and job
demand. Therefore, the causes of urbanism can be summed up in a single motive: the desire
for a better life. Increasing urbanization is a great opportunity for growth, but also a serious
risk. Well-planned urbanization can maximize the benefits of high population density, such
as the reduction of fuel and energy needed for transport, or the lower environmental impact
in terms of occupied area. However, unorganized urbanization can result in unsustainable
development, pollution, and urban degradation. A surge in the number of vehicles on the
road is the natural consequence of the urban migration trend. Worldwide car sales grew
to around 67.2 million automobiles in 2022, up from around 66.7 million units in 2021. In
recent years, the sector experienced a hit due to world-changing events, such as the COVID-
19 pandemic and the Russian war on Ukraine. Despite this, vehicle sales are expected to
keep rising in the next years [2].

Urban planning and traffic management is a major challenge in reducing road congestion,
which is forecasted to increase by 60% by 2030, compared to the levels observed in 2017 [3].
In addition to creating obvious inconveniences, traffic jams reduce people’s productivity and
cause waste of fuel, with consequent pollution. A study by The Texas A&M Transportation
Institute [4] showed how in 2021, the average American commuter has spent 54 hours a year
stuck in traffic - more than a working week! This translates into a total of 8.7 billion hours
lost each year and 13.3 billion liters of fuel burned, for a total cost of 190 billion dollars.

Intersections play a critical role in influencing the efficiency of traffic management systems
within urban areas. Beyond the significant contribution of intersections to congestion, crashes
at crossroads constitute over 40% of all accidents, making it the second-largest category of
incidents on the road [5]. Evidence from various studies highlights the impact of driver error
on both traffic congestion and accidents, as human errors are accountable for 75% of all
roadway crashes [6]. Other estimates indicate that more than 50% of all accidents are caused
by actions taken voluntarily because of evaluation errors; these percentages include accidents
due to driving while drunk or under the influence of drugs, fatigue, and nervousness [7].

Without significant improvements in driving behavior, the primary solution is reducing
traffic density. Remarkably, in conditions of high traffic density, a decrease in the number of
vehicles yields more than a proportional enhancement in traffic flow. Two approaches emerge

1
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for diminishing traffic density: building wider roads and reducing the number of circulating
vehicles. Enlarging roads offers short-term benefits, but an efficient road also attracts more
motorists, ultimately reinstating congestion levels. Therefore, the more sustainable option
lies in reducing the number of vehicles by establishing an efficient public transport system,
which is not the direction the majority of people and most governments are heading towards.

Relying on the spontaneous improvement of human driving skills seems unlikely, but
artificial systems have proven to be a promising alternative. Computers can already fly a
passenger jet better than a trained human pilot, so it is natural to expect the same thing to
happen with cars. Self-driving cars, also known as autonomous vehicles (AVs), are becoming
increasingly common, promising to revolutionize the realm of transportation. These vehicles
use advanced technologies, including artificial intelligence and sensor systems, to navigate
and operate without direct human intervention. Research in this sector has been making
great strides in recent years: companies like Waymo, Tesla, and others have been pioneering
autonomous driving, finally bringing this staggering technology to the public; today, dozens
of automotive companies are testing their AVs. With such technology available, people should
no longer deal with the tedious task of driving in traffic. Furthermore, the efficiency of the
road network will no longer be determined by the presence of human drivers, but by the
automatic driver coordination mechanisms. The concept of using a fully automated vehicle
system dates back to 1939 when General Motors presented their idea of vehicles without
a human pilot at the World’s Fair in New York; their concept cars were supposed to be
controlled by mechanical actuators via radio waves. In 2003, Griffith University’s Intelligent
Control Systems Laboratory completed what, according to them, is the first on-the-road
demonstration of AVs crossing intersections without traffic lights or road signs, although at
speeds much lower than normal. This was achieved cooperatively, on a first-come, first-served
strategy [8].

When AVs become connected, they exchange information and are known as connected
autonomous vehicles (CAVs). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication refer to the ways vehicles can connect to the surroundings to exchange data
and, as of today, there are two major standards: ITS-G5 in Europe [9] and DSRC in US [10].
With this technology available, a lot of effort has been put into investigating the possibilities
of Autonomous Intersection Management (AIM) systems. In contrast to traditional traffic
control systems, which mostly consist of signalized intersections and timed semaphores, AIM
leverages the real-time communication and coordination capabilities of CAVs. These vehi-
cles exchange information about their trajectories, speeds, and intentions, allowing them to
navigate intersections efficiently without the need for traffic signals, significantly improving
overall traffic efficiency and drastically minimizing the risk of accidents and fatalities.

The distributed control problem of multi-agent systems (MASs) also received tremendous
attention in the last decades due to its applications in different areas [11], including control of
CAVs at autonomous intersections. MAS control involves the study of systems of independent
agents that operate, collaboratively or antagonistically, in a shared environment; in the
context of AIM, these agents are the CAVs and effective coordination among them is pivotal
for reaching the desired objectives. In particular, distributed approaches to the coordination
problems of multi-agent systems hold numerous advantages: low operational costs, fewer
system requirements, high robustness, strong adaptivity, and flexible scalability [11]. In the
context of CAVs, they aim to leverage the computational power, sensors, and other features
of autonomous vehicles.

As technology continues to advance and regulatory frameworks evolve, the integration of
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AVs into transportation systems holds the promise of becoming the future of mobility.

1.1 Research objectives

The available literature on AIM and MASs is very extensive. In the AIM field, various surveys
[12, 13, 14, 15] have categorized the approaches to AIM, differentiating them based on their
methodologies, main objectives, and the mathematical and engineering tools employed to
tackle this complex problem. Despite this, very few works have given importance to the
design of solid mathematical foundations to the modeling of intersections and to the problem
of crossing the intersection. Although there are some noteworthy attempts to standardize
the concept of collision, most works rely on pessimistic or overapproximative approaches,
often focusing on other aspects of the model. Instead, a common approach is to model of
the intersection crossing as an optimization problem. In the context of distributed control
of MAS, leader-following control strategies are more common than leaderless algorithms.
Moreover, while the problem of maximizing the convergence speed has been resolved for
first-order systems, challenges have persisted for second-order systems.

The primary objective of this thesis is to propose a robust mathematical framework to
model the problem of autonomous intersection management and collision detection and avoid-
ance. A fundamental aspect of this research involves validating the proposed model through
comprehensive numerical simulations. A secondary objective is to delve into a specific sce-
nario within the domain of MASs, specifically related to AIM. The intention is to contribute
to the existing body of literature by addressing the problem of maximizing the convergence
speed of second-order leaderless systems and evaluating their stability in the presence of time
delays.

1.2 Contributions

In the context of AIM, the main contributions of this thesis are reported hereafter.

1. The primary contribution is the formulation of the intersection crossing problem. This
is a functional optimization problem that models the crossing of intersections with a
focus on optimizing vehicle objectives while ensuring the absence of collisions.

2. The thesis investigates how the kinematics of vehicles approaching intersections influ-
ence the design of an algorithm candidate to solve the intersection crossing problem.

3. A significant contribution is the definition of a general collision model along with an-
alytical collision conditions. Furthermore, reasonable approximations are proposed to
mitigate the analytic complexity of the subject.

4. A novel contribution is in the introduction of convex analysis tools to enhance collision
detection and avoidance. This approach is inspired by robotic trajectory planning
and provides a more rigorous and efficient methodology for addressing collision-related
challenges.

5. Based on the previous results, a distributed algorithm is designed to tackle the inter-
section crossing problem.



CHAPTER 1. INTRODUCTION 4

In the field of MASs, the following contributions are given.

1. A second-order leaderless protocol to allow agents to form a uniformly spaced string
without the need for a leader is proposed.

2. The parameters of this protocol are optimized to obtain the fastest convergence speed,
while avoiding oscillations, in the absence of delays.

3. The effect of delays on the system is studied and the conditions of stability are assessed.

1.3 Thesis outline

This thesis is organized into six chapters. This chapter introduces the context of my work,
outlining the research objectives and the main contributions. Chapter 2 gives an overview of
the related literature by analyzing the state-of-the-art approaches to both AIM and MASs.
Chapter 3 delves into the mathematical tools needed to develop the results exposed in the
following chapters. It contains definitions and explanations of convex analysis, optimization
theory, dynamical systems theory, graph theory, and consensus algorithms. Additionally,
the chapter introduces some useful results that I was not able to find in the mathemati-
cal literature. Chapter 4 introduces the optimization crossing problem and establishes the
mathematical framework proposed for its resolution. Based on the introduced problem, the
chapter ends with the description of a distributed algorithm for its solution, validated through
numerical simulations. Chapter 5 is about the leaderless control of multi-agent systems: it
introduces the main results of optimizing the convergence speed of the proposed second-order
protocol and its sensitivity to delays, validating the obtained results via numerical simula-
tions. Chapter 6 contains the conclusions and highlights topics for future exploration and
development. Appendix A at the end of the thesis consists of proofs of some results presented
during the exposition.

1.4 Notation

Vectors and matrices are denoted in boldface, such as a and A, respectively. The vector
0n represents a vector of n components composed entirely of zeros, whereas 1n denotes a
vector of n components composed entirely of ones. Similarly, On,m represents an n by m
matrix consisting of zeros, and In,m represents an n by m matrix consisting of ones. When
referring to square matrices, On and In denote n by n matrices composed of zeros and ones,
respectively. The inverse of a matrix A is written as A−1. The transposed of a matrix A is
denoted by AT. By combining these notations, A−T indicates the transposed of the inverse
of A. The inner product of vectors a and b is denoted as ïa, bð or aTb. ∥·∥ denotes the
Euclidean norm, i.e., ∥a∥ =

√

ïa, að. Block matrices are denoted by stacking vectors or
matrices horizontally and/or vertically, i.e.,

A =

[

A1,1 A1,2

A2,1 A2,2

]

, P =
[

p1 p2

]

.

The i-th component of a vector is denoted by the subscript i; often, when reporting
the expression of a vector on a single line, the notation a =

[

a1 · · · an
]T

is used, where
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the transposition operator means transforming a row vector into a column vector. When
operations classically defined for scalar values are applied to vectors, they are considered
to be applied component-wise; in particular, |a| =

[

|a1| · · · |an|
]T

and the writing a > b

means ai > bi, ∀i = 1, ..., n. Sets are normally named with capital letters and, occasionally,
with calligraphic capital letters, e.g., N . S(A) and K(A) indicate the span and the kernel
of matrix A, respectively. P(S) denotes the power set of S. N, R, and C denote the sets
of natural, real, and complex numbers, respectively. R̄ is the extended set of reals, that is,
R̄ = R∪ {+∞}. R>a indicates the set of the real numbers strictly greater than a; R<a, Rga,
and Rfa have analogous meaning. R+ denotes the set of strictly positive numbers, hence
R+ = R>0. Rn and R

n×m are the sets of n-dimentional real vectors and the set of n by m real
matrices. Pairs of numbers enclosed in brackets indicate real intervals, with the direction of
the brackets meaning openness or closedness on that interval endpoint, i.e., [a, b] indicates a
closed interval and ]a, b[ indicates an open interval. Integer intervals are denoted by [[a, b]],
i.e., [[a, b]] = [a, b] ∩ N. The writing {ci}i∈[[a,b]] compactly indicates {ci : i ∈ [[a, b]]}. The
restriction of a function f to the [a, b] interval is denoted by f[a,b]. Given a vector a ∈ R

n and
a set S ¢ R

n, with abuse of notation, I write a+S meaning {x+ a : x ∈ S}. Analogously,
given a matrix A ∈ R

m×n, the notation AS indicates the set {Ax : x ∈ S}. Similarly, the
image of a set S under a function g is indicated by g(S). The derivative of a function g(x) of
real variable x is denoted by g′(x) or by ġ(x) when the variable represents time. ∇f(x) is the
gradient of function f and ∇2f(x) is its Hessian matrix. ∂f(x) denotes the subdifferential of
f . For c ∈ C, ℜ (c) and ℑ (c) are its real and imaginary parts, respectively; ȷ is the imaginary
unit, therefore c = ℜ (c) + ȷℑ (c). The magnitude of a complex number c is denoted by |c|.



Chapter 2

Literature review

2.1 Autonomous intersection management

AIM is a relatively new research topic, but the related literature is already vast. One of the
most recent surveys [12] analyzed more than 1200 relevant publications including surveys,
reviews, and short articles taking into account main aspects of intersection management for
heterogeneous vehicles at the signalized, non-signalized, and hybrid intersections. Both [12]
and [13] identify the main goals set by the research as safety, efficiency, passenger comfort,
and ecology, as shown in Figure 2.1.

Figure 2.1: Research goals and sub-goals. [13]

Safety is the tenet of any AIM system: it is unacceptable for an intersection management
protocol to introduce new hazards. Collision avoidance is the primary safety topic, as any

6
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AIM algorithm must be able to anticipate collisions and avert them by controlling the vehicles
appropriately. The other main objective is to improve the efficiency of intersections. This
can be done by increasing its throughput, which is the number of vehicles passing through it
in a given unit of time, or by reducing the delay introduced by it or, moreover, by reducing
the possibilities of congestion. A secondary objective, of ecological scope, is to increase
energy efficiency, for example by trying to make the speed of AVs as constant as possible.
Furthermore, ensuring the comfort of the passengers, who cannot be subjected to intense
accelerations, is also desirable.

Intersection traffic coordination methodologies are typically classified into two primary
groups: centralized and decentralized. Centralized approaches require Vehicle-to-Infrastructure
(V2I) communication. Centralized control strategies typically rely on an intersection manager
for traffic control. In contrast, decentralized strategies use Vehicle-to-Vehicle (V2V) commu-
nication and operate in a distributed fashion, with vehicles coordinating cooperatively by
exchanging information and making decisions locally. Additionally, hybrid methodologies
may occasionally emerge, wherein the infrastructure is less involved, or a vehicle is tem-
porarily elected as a leader and assumes responsibility for intersection coordination.

With respect to intersection modeling, two main approaches are used: Spatio-Temporal
(ST) reservation and Trajectory Planning (TP). The former is based on the idea of dividing
the intersection center, into a square grid. Each square, at a particular interval of time,
is a resource shared among the AVs, which have to exclusively reserve it for passing the
intersection without causing collisions. The granularity of the subdivision depends on the
intensity of the traffic: when the flow of vehicles is low, a coarse grid is sufficient to ensure
both safety and efficiency; conversely, a high volume of traffic requires finer subdivisions, with
consequent increase in computational complexity. The latter is based on analyzing the fixed
trajectories that AVs follow and collision avoidance is performed with various approaches,
specifically safe pattern detection and priority-based.

2.1.1 Centralized approaches

Centralized approaches are characterized by great control and management capabilities over
vehicles, the capacity to handle high computation loads, and less network overhead with
respect to the alternatives.

Starting from 2004, with a series of publications, K. Dresner and P. Stone became pioneers
in the research of the AVs cooperation algorithms, introducing a centralized intersection
management system called AIM (Autonomous Intersection Manager), presented in 2008 [16].
Their work is certainly a milestone in the literature and many authors based their algorithms
on it, showing improvements or variations.

The idea behind this system is to place a centralized controller, called Intersection Man-
ager (IM), at the intersection, able to communicate with all the vehicles that approach it.
The vehicles, called driver agents, make a request (call ahead) to the IM before reaching the
intersection to reserve the part of the road of interest in the time interval of interest. The
controller can accept or reject the request based on the intersection management policy. A
simplified diagram of the communications between the two types of agents is shown in Figure
2.2.
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Figure 2.2: AIM scheme. [16]

One of these policies is called First Come First Served (FCFS) policy, in which the
intersection space is divided into a n × n grid; at the request, the controller simulates the
trajectory of the vehicle, using the parameters provided in the request by the vehicle, and
verifies possible collisions with other vehicles that have reserved space in those moments.
Figure 2.3 shows two possible cases: a successful reservation and a rejected reservation.

(a) Successful (b) Rejected

Figure 2.3: Examples of successful and rejected reservations. [17]

The proposed FCFS-Light strategy takes into account the presence of human drivers: the
controller reserves special corridors for those, in coordination with the green light duty cycle.
Furthermore, it is shown how the assignment of special priorities to emergency vehicles does
not appreciably reduce the efficiency of the intersection. Finally, the authors state that this
protocol, combined with simple safety rules, would reduce accidents by 80% [16]. This work
has had a massive impact on the literature: many authors have studied and analyzed this
system, pointing out its strengths and weaknesses. [18] proved that AIM risks penalizing
some of the vehicles in unbalanced traffic conditions, leading to long waiting times. Besides
AIM by Dresner and Stone, there is a good number of centralized intersection management
algorithms. A rule-based system inspired by the work of Dresner and Stone is the Batch-
Light policy, introduced by Wei et al. in [19], where they propose a strategy to solve the
problem of vehicle starvation caused by unbalanced traffic. The main difference with [16]
is that requests are processed in batches: the time is divided into slots and the IM collects
requests within a time slot and processes them together at the end of the slot. Dahlberg et
al. [20] propose a rule-based algorithm with trajectory planning considering the dynamical
model of the vehicle and PID control. Vasirani et al. [21] suggest the idea of a computational
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market: vehicles buy permission to cross the intersection from the IM; the price is not
fixed and depends on the traffic conditions, with vehicles bidding for acquiring the spatio-
temporal reservation. The same authors extend their work to multiple intersections in [22].
Wang et al. [23] determine the possibility of collisions at T-shaped intersections based on
data produced by GPS, IMU, and other vehicle sensors; real-time state information are fed
to an algorithm that detects collisions between the vehicles approaching the intersection.
Zhang et al. [24] introduce csPriorFIFO, a V2I priority-based service-oriented reservation
scheme mechanism, considering heterogeneous traffic participants, while ensuring Quality
of Service (QoS) in line with vehicle priorities. Morales Medina et al. [25] optimize the
crossing sequence by designing an intersection access management methodology; Cooperative
Intersection Control (CIC) is employed to regulate the safety and efficiency of vehicles in the
intersection, whereas a high-level hybrid queuing model describes the dynamics of the vehicle
queues at each lane. A two-stage optimization algorithm is designed by Feng et al. [26],
with signal optimization at the first stage and vehicle trajectory control at the second stage.
Their objectives contemplate reducing fuel consumption and travel time; moreover, sensitivity
analysis is carried out with respect to the velocities and accelerations of vehicles. Lu et al.
[27] describe a trajectory discretization method named Discrete-Time Occupancies Trajectory
(DTOT) to model the movement of vehicles inside the intersection. The same authors [28]
then study a genetic algorithm that prioritizes emergency vehicles while reducing the delay
caused to other vehicles; later, [29] they propose the usage of Mixed Integer Programming
(MIP) to generate vehicle trajectories for reducing delays while ensuring safety. Critical
situations are also considered in [30], where Chang et al. present a reservation method for
facilitating evacuation in case of an emergency occurring at the intersection. Xu et al. [31]
applied optimal control in a cooperative V2I scenario with existing traffic signals to reduce
travel time and fuel consumption. The same technique is employed by Meng et al. [32]
to achieve optimal acceleration and speed profiles for vehicles approaching an intersection
regulated by traffic lights. The proposed strategy aims at avoiding stops at the intersection,
achieving stop-free traffic flow. Crossroads+ by Khayatian et al. [33] is a time-sensitive
centralized approach for autonomous intersections that encompass practical concepts, such as
synchronization, safety margins, communication delays, and acceleration saturation. Models
that account for human drivers are also present in literature: Katriniok et al. [34] use Model
Predictive Control (MPC) to issue speed advice to the drivers and assess the problem of
collision avoidance considering uncertainties and driver reaction times.

Centralized methods are often easier to work with and to reason about because of the
control logic being confined within a single self-consistent unit; however, they also present
shortcomings and criticalities.

• Poor scalability: this kind of system are not scalable due to the high computational
capabilities that are required to coordinate dozens of vehicles at the same time.

• Poor reliability: a central infrastructure agent is both a bottleneck and a single point
of failure of the system.

• High cost: by removing traffic lights and road signs, almost all intersections should be
regulated by an IM. This would produce high costs, and a waste of resources if the
intersection is scarcely frequented.

To mitigate these weaknesses, hybrid approaches with V2X (V2I + V2V) communication.
Katriniok et al. [35] investigate the role of V2X communication in enhancing the capabilities
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of automated vehicles, focusing on an intersection priority management (IPM) system em-
powered by MPC that aims to streamline vehicle passage without traditional traffic control
measures. Liu et al. [36] present TP-AIM, a cooperative scheduling mechanism whose task
is to assign vehicle priorities and to plan trajectories to ensure safe and efficient passage.
A window-searching algorithm identifies collision-free trajectories with minimal delay, while
also considering backup trajectories in the case of failures. Azimi et al. [37] introduce the
Ballroom Intersection Protocol (BRIP), a spatio-temporal technique designed to facilitate
the safe and efficient passage of autonomous vehicles through intersections. BRIP prioritizes
maximizing intersection throughput, eliminating the need for stopping behind or inside the
intersection area. Kowshik et al. [38] propose a hybrid architecture for intelligent intersec-
tions, integrating centralized coordination with distributed decision-making to ensure safety
and high performance. The approach involves each car maintaining an updated contingency
plan and a dynamically changing partial-order relation to guard against worst-case behav-
iors. Wang et al. [39] propose a vehicle trajectory collision warning system, with trajectory
prediction based on V2V and V2I communication. Real-time collision detection is achieved
through a proposed collision detection algorithm, with time to collision (TTC) serving as
a risk indicator. The paper of Wu et al. [40] proposes a novel approach to traffic control
at intersections utilizing V2I and V2V communications, with vehicles competing for passage
rights. The problem is modeled as a variant of the classic mutual exclusion problem, with
both centralized and distributed algorithms designed to solve it.

2.1.2 Decentralized approaches

In contrast to centralized approaches, decentralized strategies can help assess these points by
leveraging by leveraging the capabilities inherent in individual vehicles, such as computing
power, sensors, communication devices, etc. The computation burden is distributed among
many agents, eliminating the need for expensive centralized controllers. Besides, the over-
all robustness of the system is improved as failures occurring on individual vehicles are less
likely to lead to system-wide breakdowns. Overall, decentralized approaches hold the poten-
tial to address scalability and cost concerns while improving the resilience and efficiency of
intersection management systems.

Khoury et al. [41] propose two new distributed algorithms: the first one still partly relies
on the presence of an agent at the intersection that provides vehicles with some information,
while the second version eliminates this agent and relies only on the sensors of vehicles.
The result is a good improvement in intersection efficiency and a guarantee of safety if the
protocol is respected. Bazzi et al. [42] define a distributed algorithm for smart vehicles (with
human driver) to simulate the presence of traffic lights at the intersections that are lacking.
The algorithm is based on a platooning strategy and the consequent election of a leader,
who will be responsible for negotiating the crossing time and space with other leaders. An
example of optimal control applied to distributed scenarios is given by Jiang et al. [43], which
suggests a Least Square Regulator (LQR) that is parallelized and distributed and is based on
the ALADIN method (Augmented Lagrangian-based Algorithm for DIstributed Non-convex
optimization). Each vehicle solves its own optimization problem and exchanges some useful
information with neighboring vehicles to achieve coordination and avoid collisions. The
work of Hassan et al. [7] concerns a heuristic method where vehicles within 200 meters
of the intersection elect a leader for each lane. Then, the heads alternatively assume the
role of schedulers. De Campos et al. [44] propose a system in which conflicts are solved
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in a cooperative and distributed way, via a heuristic algorithm based on the intersection
modeling, resulting in a fast algorithm that is suitable for online computation. Tu et al. [45]
introduce Forwards, a map-free intersection collision-warning system utilizing a triple Kalman
filter-based estimator for calibrated motion state information. The system predicts short-
term trajectories of vehicles and issues hierarchical warnings based on collision-detection
algorithms. Tomas-Gabarron et al. [46] address collision avoidance in scenarios requiring
high-speed vehicles to generate evasive maneuvers within short time intervals, reconducting
the issue to a trajectory generation problem and optimizing routes based on maximizing
lateral distances between vehicles and obstacles; trajectories are computed using a gradient-
descent-based methodology. Lu et al. [47] present a set of rules for determining the sequence
of vehicles passing through uncontrolled intersections, derived from road traffic safety laws.
Based on these rules, vehicles make decisions to preempt or yield to others using information
from vehicle-vehicle communication. Rahmati et al. [48] explore the potential of connectivity
and automation to improve safety and reduce congestion. The study considers both human
and robot drivers and focuses on developing a game theory-based framework able to achieve
high accuracy in predicting real drivers’ choices. Murgowski et al. [49] address optimal control
of autonomous vehicles for intersection crossing by modeling the optimal crossing sequences
as a convex program. The method transforms the problem into the space domain, enhancing
effectiveness. Constrained optimization is utilized by Malikopoulos et al. [50] for coordinating
connected and automated vehicles, and analytical solutions are derived in closed form using
Hamiltonian analysis to minimize a cost function associated with the control input. Joerer
et al. [51] present a metric to estimate vehicle collision probability based on the exchange
of beacon messages, with respect to their trajectories. De Campos et al. [52] introduce
an active safety system for frontal collision detection and prevention/mitigation in complex
traffic scenarios, including a probabilistic motion prediction algorithm, a threat assessment
method, and a reachability-based decision-making protocol for emergency intervention. A
consensus-based cooperative control algorithm is developed by Mirheli et al. [53], formulating
the trajectory planning as a Mixed-Integer Non-Linear Program (MINLP) to minimize travel
time and speed variations while avoiding near-crash conditions. Azimi et al. [54] design
efficient and reliable intersection protocols to prevent vehicle collisions and increase traffic
throughput, demonstrating the benefits of the proposed V2V intersection protocols, and
highlighting significant improvements in throughput while avoiding deadlocks. Some works
make use of the navigation function, which is an idea coming from the realm of robotics,
whose goal is creating feasible paths and avoiding obstacles; in particular, its gradient is used
as a control input for the AVs. For example, Makarem et al. [55] present a novel decentralized
navigation function for coordinating autonomous vehicles at intersections, aiming to avoid
deadlock situations and optimize energy consumption, and considering the expected time of
arrival to the intersection for collision avoidance, accounting for different inertias of vehicles,
and prioritizing heavier vehicles for smoother motion and energy optimization. Katriniok et
al. [56] introduce a distributed motion planning scheme for coordinating highly automated
vehicles at road intersections, addressing the inherently nonconvex nature of the problem by
employing Proximal Averaged Newton method for Optimal Control (PANOC). Each agent
solves a real-time nonlinear model predictive control problem and communicates its trajectory
to other agents, even with conflicting objectives. Conditional constraints enable agents to
decide whether to wait at a stopping line if safe crossing is not possible.
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2.1.3 Related works

This thesis is focused on decentralized scenarios, with TP-based collision detection and avoid-
ance conditions. Among the analyzed papers, there emerge some works that share similar
concepts and ideas.

Hafner et al. [57, 58] tackle the collision avoidance problem by defining the concept
of capture set. The capture set corresponds to the set of vehicle displacements, such that
given the current vehicle velocities, no control signal can prevent an eventual collision [57].
This idea is similar to the concept of collision set that is described later in this thesis,
although with substantial differences. In particular, in [57] they present experimental results
for an active control Intersection Collision Avoidance (ICA) system implemented. Safety
is ensured in potential collision scenarios by controlling vehicle velocities with automatic
brake and throttle commands, ensuring they adhere to predefined upper and lower speed
limits. Furthermore, model uncertainty and communication delays are explicitly addressed
in [58]. An analogous route is taken by Colombo et al. [59], where the maximally controlled
invariant set is described as the largest set of states for which there exists a control that
avoids collisions. This set is complementary to the capture set and in Colombo’s paper,
it is used in the synthesis of the least restrictive controller for collision avoidance, proving
that checking membership in the maximal controlled invariant set is NP-hard for a general
model of vehicle dynamics. At the same time, they present an approximate algorithm with
provable error bounds, utilized to design a collision avoidance supervisor whose complexity
scales polynomially with the number of vehicles.

This work proposes a framework for modeling the problem of autonomous intersections,
and so did Yu et al. in [60], where they consider in detail multiple kinds of collisions, address-
ing the challenges of diverse agent geometries and capabilities. The proposed framework is
claimed to ensure accurate collision prediction and decision-making in various collision con-
figurations.

Wang et al. [61] introduce a temporal-spatial collision warning method tailored for in-
tersection accidents. By incorporating both time and spatial coefficients, the algorithm cal-
culates the probability of accidents, considering safety braking distances. In this paper,
attention is directed to straight paths only, with conflicting trajectories meeting at an an-
gle. An exact geometric approach is undertaken by Belkhouche in [62], where a technique
known as Virtual Configuration Space transformation (VCS) is employed to derive equations
describing unfeasibility conditions inside the space of vehicle velocities. Moreover, the usage
of a Lagrangian function enables the analysis of collaboration in terms of cost and time. The
derived conditions do not consider turning at the intersection, with applicability to straight
trajectories only. The same author [63] had introduced a collaborative approach for collision
avoidance among autonomous vehicles at unsignalized intersections, framing the problem as
an optimization task with safety constraints based on speed ratios, with explicit resolution
of conflicts in a three vehicles-scenario.

The collision set approach I employ is used in robotics for path coordination of multiple
robots. Leroy et al. [64] introduce a geometric approach to coordinate the motion of multiple
mobile robots independently computing their paths to avoid collisions. Utilizing a bounding
box representation of obstacles in a coordination diagram, the resolution-complete algorithm
ensures collision-free trajectories. The study of collisions is conducted inside the configura-
tion space of the robots: a point of the configuration space uniquely determines the position
of robots and the collision set is deemed as the region of that space where a collision between
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robots or fixed obstacles occur. The paper by Gregoire et al. [65] presents a priority-based
framework for coordinating multiple robots with positive velocity along fixed paths, utiliz-
ing a configuration space approach. The framework is applied to intersection management,
demonstrating optimality properties and achieving good performance in numerical experi-
ments. The collision set inside the configuration space is the section of a cylinder, i.e., an
ellipse, or a larger set derived from it, deemed as its closure under a certain priority, as
depicted in Figure 2.4.

Figure 2.4: Obstacle regions and their closures. [65]

This corresponds to conflicts being addressed to straight trajectories only. The same ideas
were used by Qian et al. [66], with the application of MPC and the study of particular ma-
neuvers such as emergency braking. They also consider efficiency, comfort, and fuel economy
requirements while maintaining system-wide safety.

Kneissl et al. [67] propose a distributed control methodology for coordinating AVs, where
each vehicle computes its local trajectory using a model predictive control (MPC) law and
communicates with relevant vehicles to optimize planned trajectories iteratively. They tailor
the Jacobi over-relaxation (JOR) algorithm to vehicle coordination, guaranteeing collision-
free trajectories with any-time feasibility and scalability. The work uses a configuration space
approach, with the collision set referring to the whole intersection, resulting in a mutual
exclusion policy. Another strategy leveraging collision sets is by Mo et al. : in [68] they
introduce novel multiple-collision-set coordination strategies to enhance traffic throughput,
proposing low-complexity methods based on multi-agent Q-learning frameworks.

The paper by Steinmetz et al. [69] introduces a Collision-Aware Resource Allocation
(CARA) strategy for coordinating automated and connected vehicles at intersections via
wireless communication. Compared to collision-agnostic strategies, CARA significantly re-
duces communication requirements without compromising safety, offering flexibility to adjust
control performance and communication load based on specific scenarios. The collision condi-
tions are studied inside the configuration space, with the collision set (named bad set) in the
paper, evaluated for the whole shared region. They even consider probabilities of collisions
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in the presence of uncertainties in the model.
Ultimately, Malikopoulos et al. [70] propose the subdivision of the intersection into zones

and determine the merging zone (MZ) as the region of the intersection where conflicts between
trajectories may happen. Their model considers that vehicles travel with constant speed while
crossing the MZ.

2.2 Control of multi-agent systems

The distributed control problem of multi-agent networks received tremendous attention in the
last decades due to its applications in different areas [11]. Each agent is a dynamical system
and the problem of reaching an agreement on all or some components of their statuses is
known as consensus problem. The consensus problem for first-order multi-agent systems has
been largely studied considering different aspects: switching topology and time-delays [71, 72,
73]; nonuniform time-varying delays [74]; diverse time-delays and jointly-connected topologies
[75]; stabilization problem with time delay controlled by a distributed PID regulator [76];
leaderless and leader-following consensus [77]. Moreover, several types of nonlinear vehicle
dynamics can not be feedback linearized into single, but into double integrators and third
order multi-agent systems [78]. Therefore, formal analysis of consensus problems for second-
order systems is provided by [79, 80, 81, 82, 83, 84, 85, 86]. In particular, Yu et al. [84]
demonstrate that the real and imaginary parts of the eigenvalues of the Laplacian matrix
of the corresponding network play key roles in reaching consensus. In addition, in systems
modeled by double-integrator dynamics, Qin et al. [85] investigate two kinds of different
consensus strategies for multi-vehicle systems with a time-varying reference velocity under a
directed communication topology. In [86], Santini et al. study a decentralized control action
for platooning maneuvers in vehicular networks embedding the spacing policy information as
well as all the time-varying communication delays. Recently, a more general class of high-
power multi-agent systems described by an extension of second-order nonlinear models are
studied in [87] and [88]. Consensus and distributed control of multi-agent systems also find
applications in combination with adaptive neural networks, as shown in [89] where the authors
simultaneously guarantee practical finite-time stability and asymptotic convergence. In the
literature, both the leaderless consensus and the leader-following consensus problems have
been studied, depending on whether or not a virtual leader specifies the global information
[90]. More precisely, in a leaderless consensus problem, there does not exist a virtual leader,
whereas in a leader-following consensus problem, there exists a virtual leader that specifies
the objective for the whole group [77]. For example, Meng et al. [90] study a leader-follower
consensus problem for a set of agents subject to control input saturation. In addition, Fu
et al. [91] consider a distributed leader-following consensus for second-order multi-agent
systems with non-convex velocity and control input constraints. On the contrary, a leader
is not required in the approach proposed by Jafarian et al. [92], but it is mandatory that
at least one agent of the network knows the reference velocity. For a leader-following multi-
agent system, Wei et al. [93] study the consensus control of such systems with heterogeneous
disturbances generated by the Brownian motion, developing an adaptive protocol based on
Riccati inequalities. In addition, Yao et al. [94] integrate the distributed sliding-mode control
algorithm to investigate the tracking control issue for second-order leader–follower multi-
agent systems subject to nonlinearities. Some advantages of leaderless consensus with respect
to the leader-following approach have been enlightened in the related literature. In particular,
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leaderless consensus typically scales better and is more fault-tolerant than leader-following
consensus [95]. Moreover, the presence of leaders also decreases the degree of autonomy of
the network [96], since the leaders generate global desired trajectories of agents, whereas,
in many practical missions, the agents need to reach autonomous agreement on an a priori
unknown quantity. Furthermore, an important problem concerning consensus algorithms is
their convergence speed in order to implement them in real applications. In linear systems,
a measure of the convergence speed is the smallest non-zero real part (for the continuous-
time case) or magnitude (for the discrete-time case) of the system eigenvalues. Some efforts
in this field are performed also in [97, 98, 99, 100, 101, 102]. Yoonsoo et al. [97] propose
an iterative algorithm for maximizing the second smallest eigenvalue of a state-dependent
graph Laplacian. In [98] and [99], communication time delay is considered in the optimal
consensus problem. Furthermore, Jiandong provides a closed form for the optimal gains of
some consensus protocols in [100]. The work of Yu et al. [101] is concerned with the consensus
convergence rate for second-order multi-agent systems: the fastest consensus convergence
rate under the protocol is derived based on the assumption that all the eigenvalues of the
Laplacian matrix are real. In [102], Xing et al. consider the explicit expression of the
maximum convergence rate and analyze the effects of control parameters on the convergence
rate. The convergence speed problems in discrete-time systems are recently analyzed in [103]
and [104]. In [103] Eichler et al. maximize the convergence speed of multi-agent systems
with discrete-time double-integrator dynamics, optimally choosing the free parameters of the
consensus protocol. The same authors in [104] optimize the consensus protocol speed subject
to a lower bound on damping.

2.2.1 Platooning

Multi-agent systems theory is also used in the context of autonomous intersection man-
agement. Some works evaluate the applicability of platoon-based algorithms for efficient
scheduling and intersection crossing. The term platooning refers to a collection of vehicles
that travel together [105]. The most recent works in the study of the control of such kind
of formation consider a platoon a string made up of an infinite number of vehicles [106].
Although, for any platoon, the number of vehicles is finite, an infinite string is considered in
the literature to study concepts like stability independently of the size of the platoon. The
concept of string stability is used to describe the resiliency of the platoon to perturbations:
intuitively, string stability implies uniform boundedness of all the states of the interconnected
system for all time if the initial states of the interconnected system are uniformly bounded
[107]. String stability is a tenet of platoon control: its use is fundamental in ensuring that the
formation of many vehicles stays coordinated and is robust to disturbances for long periods.
According to [108], the platoon formation, that is the formation of strings of vehicles moving
at the same speed and in the same direction, would improve the efficiency of any intersection
scheduling algorithm, besides reducing the communication overhead. If a group of vehicles
moves in coordination as they are a single vehicle, the platoon leader alone can communicate
with other leaders to schedule the intersection crossing. Timmerman et al. [109] investigate
different platoon algorithms for increasing efficiency at the intersection, reporting interesting
results in decreasing the mean delay introduced by the crossing; the authors also acknowledge
the risk of platoon formations penalizing fairness in the crossing schedule.



Chapter 3

Preliminaries

The modeling and development of effective coordination and control strategies for autonomous
vehicles requires some mathematical foundation to be discussed. In this chapter, I present
key mathematical concepts and tools that form the backbone of the subsequent theoretical
analysis.

3.1 Convex analysis

Convexity has been increasingly important in recent years in the study of extremum problems
in many areas of applied mathematics [110]. Convex analysis is a branch of mathematics that
focuses on the study of convex sets and convex functions and is significant in optimization
because of its capacity to address a wide range of practical problems efficiently. I start by
introducing some basic concepts of set theory and convex analysis. Most of the definitions
and statements of this section are taken from [110].

A subset A of Rn is called an affine set if (1 − ¼)x + ¼y ∈ A for every x, y ∈ A and
¼ ∈ R. An (n − 1)-dimensional affine set in Rn is called a hyperplane. For any non-zero
b ∈ Rn and any d ∈ R, the set

H(b, d) = {x ∈ Rn : ïb, xð = d}
is a hyperplane.
A subset C of Rn is said to be convex if (1 − ¼)x + ¼y ∈ C whenever x, y ∈ C and

0 < ¼ < 1. Given a vector ζ ∈ Rn, with ζ ̸= 0n, a subset C of Rn is said to be ζ-convex if
(1 − ¼)x + ¼y ∈ C whenever x, y ∈ C, ζ = y − x, and 0 < ¼ < 1. A convex set is also
ζ-convex for all non-null ζ ∈ Rn.

Half-spaces are important examples of convex sets. For any non-zero b ∈ Rn and any
d ∈ R, the sets

Hf(b, d) = {x ∈ Rn : ïb, xð f d} and Hg(b, d) = {x ∈ Rn : ïb, xð g d}

are called closed half-spaces. The sets

H<(b, d) = {x ∈ Rn : ïb, xð < d} and H>(b, d) = {x ∈ Rn : ïb, xð > d}

16
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are called open half-spaces. These half-spaces are associated to the hyperplane H(b, d),
so that one may speak unambiguously of the open and closed half-spaces corresponding to a
given hyperplane.

The intersection of all the convex sets containing a given subset C of Rn is called the
convex hull of C and is denoted by conv(C). It is a convex set and, more precisely, the
unique smallest one containing C.

A subset K of Rn is called a cone if it is closed under positive scalar multiplication, i.e.
¼x ∈ K when x ∈ K and ¼ > 0. Such a set is a union of half-lines emanating from the
origin. The polar of a cone K is defined to be the set of vectors that form an obtuse angle
with all other vectors of K:

K ° = {y ∈ Rn : ïx, yð f 0, ∀x ∈ K} .
Let C be a non-empty convex set in Rn. We say that C recedes in the direction η if C

includes all the half-lines in the direction η which start at points of C. Equivalently, η is a
direction of recession of C. A convex set C admits a direction of recession if and only if it
is unbounded. In other words, C recedes in the direction of η, where η ̸= 0n, if and only if
x + ¼η ∈ C for every ¼ > 0 and x ∈ C. The set of all vectors η ∈ Rn satisfying the latter
condition, with the inclusion of η = 0n, is be called the recession cone of C, indicated by
KC :

KC = {η ∈ Rn : x+ ¼η ∈ C, ∀x ∈ C, ∀¼ > 0} .
The Minkowski sum (or vector sum) of two subsets A and B of Rn is denoted by A+ B

and is defined as

A+B = {a+ b : a ∈ A, b ∈ B} .
Let A be a convex subset of Rn. A function f : A→ R is said to be convex whenever

f((1− ¼)x+ ¼y) f (1− ¼)f(x) + ¼f(y), ∀x,y ∈ A.

Moreover, if f is differentiable, it holds

f(y) g f(x) + ï∇f(x), y − xð .
The indicator function is a function that indicates whether an element belongs to a specific

set. The indicator function of a set C is defined as follows:

ÇC(x) =

{

0, if x ∈ C,

+∞, otherwise.

3.1.1 Support functions

The conjugacy transformation is a functional that associates with any function f , a convex
function f ∗, called the conjugate of f . Consider an extended real-valued function f : A ¦
Rn → R̄. The conjugate function of f is the convex function f ∗ : A∗ ¦ Rn → R̄ defined by

f ∗(y) = sup
x∈A

(ïη, xð − f(x)) .
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The support function ÃC of a set C ¢ Rn is defined to be the conjugate of the indicator
set ÇC and its expression is given by

ÃC(η) = sup
x∈C
ïη, xð .

A set C and its convex hull have the same support function. The support function of C
describes all the closed half-spaces that contain C. Indeed, one has

C ¢ Hf(η, d) ⇐⇒ d g ÃC(η).

If C is open, the same applies with respect to open half-spaces, i.e.,

C ¢ H<(η, d) ⇐⇒ d g ÃC(η). (3.1)

The support function can be used to determine whether a hyperplane intersects an open
set.

Lemma 3.1. Given η ∈ Rn and d ∈ R and an open set C ¢ Rn, it holds

d f −ÃC(−η) ( d g ÃC(η) ⇒ H(η, d) ∩ C = ∅. (3.2)

Proof. The proof is in Appendix A.

Support functions are positively homogeneous, i.e., given a support function ÃC of a set
C, it holds

ÃC(aη) = aÃC(η),

for any a > 0. This trivially follows from the definition by the linearity of the inner
product and the positive homogeneity of the supremum operator.

The effective domain of ÃC , that is, the set of η ∈ Rn such that ÃC(η) < +∞, indicated
by dom(ÃC) is the polar of the recession cone of C, i.e, K °

C . This means that dom(ÃC) = Rn

if and only if C does not have a direction of recession or, equivalently, a subset C of Rn is
bounded if and only if ÃC(η) is finite ∀η ∈ Rn.

The support function of the Minkowski sum of two subsets A and B of Rn is the sum of
the respective support functions:

ÃA+B(η) = ÃA(η) + ÃB(η).

The subgradients of a support function ÃC are related to the extremum points of C; in
particular, it is verified that

∂ÃC(η) = H(η, ÃC(η)) ∩ C = argmax
x∈C

ïη, xð

and

∂ÃC(η) ¦ ∂C,

where ∂C denotes the boundary of C.
When argmaxx∈C ïη, xð is a singleton, with abuse of notation we can write [111]:
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∇ÃC(η) = argmax
x∈C

ïη, xð .

The notion of support functions can be extended to hypersurfaces. Consider a hypersur-
face determined by ψ : A ¦ Rn−1 → Rn. Its support function Ãψ : Rn → R is defined
as

Ãψ(η) = sup
x∈A
ïη, ψ(x)ð .

This kind of support function is closely related to the support functions of sets, as Ãψ is
the support function of the convex hull of the hypersurface.

Here I write some support functions that are used later in this work. Let B be the open
unit ball, i.e., the set B = {x ∈ Rn : ∥x∥ < 1}. The support function of B is

ÃB(η) = ∥η∥ . (3.3)

Let r ∈ Rn, with ri > 0 for all i ∈ [[1, n]], and consider the open hyperrectangle R =
{x ∈ Rn : |x| < r}. The support function of R is

ÃR(η) = ïr, |η|ð . (3.4)

This section ends with the analysis of the effect of affine transformations on support
functions. Consider the non-singular matrix A ∈ Rn×n and the vector b ∈ Rn. The image of
a set S under the affine transformation x→ Ax+ b is AS + b and its support function is

ÃAS+b(η) = ÃS(A
Tη) + ïη, bð . (3.5)

3.2 Bézier curves

A Bézier curve of degree n is a parametric curve defined by a set of n+1 points p0, ...,pn ∈ R2,
called control points. Given the control points, the resulting curve is

p(¼) =
n
∑

k=0

(

n

k

)

¼k(1− ¼)n−kpk, ¼ ∈ [0, 1] .

Because of their simplicity, powerful control over shape, and efficient computability, Bézier
curves are widely used in graphic design software, computer-aided design (CAD), animation,
and even font creation.

Consider now a quadratic (n = 2) Bézier curve, given by

q(¼) = (1− ¼)2a+ 2¼(1− ¼)o+ ¼2b,

where the control points are a, o, and b. I refer to control points a and b as endpoints
of the curve and to control point o as its control handle.

Proposition 3.1. Provided that a, o, and b are not collinear, the support function Ãq of q
is

Ãq(η) =
ïη, að ïη, bð − ïη, oð2
ïη, a− 2o+ bð , (3.6)
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with η ∈ Hg(a− o, 0) ∩Hf(b− o, 0). Moreover,

∇Ãq(η) =
ïη, b− oð2 a+ 2 ïη, a− oð ïη, b− oðo+ ïη, a− oð2 b

ïη, a− 2o+ bð2
= q(¼∗),

with

¼∗ =
ïη, a− oð

ïη, a− 2o+ bð (3.7)

Proof. The proof is in Appendix A.

3.3 Optimization theory

Optimization theory is a mathematical discipline that addresses the challenge of finding the
best possible solution to a problem from a set of feasible solutions. Its applications span
a multitude of fields, including engineering, economics, and machine learning. The area
of optimization has received enormous attention in recent years, primarily because of the
rapid progress in computer technology, including the development and availability of user-
friendly software, high-speed and parallel processors, and artificial neural networks. A clear
example of this phenomenon is the wide accessibility of optimization software tools such as
the Optimization Toolbox of MATLAB and many other commercial software packages [112].

3.3.1 Constrained optimization

Constrained optimization arises from the need to make optimal decisions or find the best
solution to a problem while considering certain limitations or constraints. A constrained
optimization problem has the form

minimize f(x)

subject to x ∈ Ω.
(3.8)

The function f : Rn → R̄ that we wish to minimize is called the objective function,
or cost function. The vector x ∈ Rn is a vector of independent variables, x1, ..., xn, which
are often referred to as decision variables. The set Ω ¦ Rn is called the constraint set or
feasible set. A point x∗ ∈ Ω is a global minimizer of f over Ω if f(x) g f(x∗), ∀x ∈
Ω. Note that a problem of maximization can be represented in the above form because
maximizing f is equivalent to minimizing −f . Often, the constraint set Ω takes the form
Ω = {x ∈ Rn : h(x) = 0n, g(x) f 0n}, where h : Rn → Rmh and g : Rn → Rmg are given
functions. Such constraints are referred to as functional constraints [112].

In general, this kind of problem can be very hard to solve, especially when the cost
function and the constraint set do not have nice properties, such as convexity. Moreover,
algorithms for solving constrained optimization problems can be computationally expensive,
especially for large-scale problems.

A special class of constrained optimization problems are convex problems. In a convex
optimization problem, the objective function is a convex function, and the constraint set is
a convex set. An interesting and useful property of convex problems is that local minimizers
are also global [112].
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3.3.2 Algorithms for constrained optimization

For most of non-trivial optimization problems, obtaining a closed-form solution is not pos-
sible; fortunately, there are many possible strategies and numerical algorithms for tackling
them.

Gradient descent is a widely-used optimization algorithm that seeks to minimize a func-
tion iteratively. The method relies on the gradient ∇f(x) at a given point x to determine
the direction of steepest ascent, therefore it requires the function to be differentiable at that
point. The idea is to iteratively adjust the current point in the opposite direction of the
gradient to move towards the minimum of the function. To formulate an algorithm that
implements the above idea, suppose that at iteration k we are given a point x(k). To find
the next point x(k+1), we start at x(k) and move by an amount −³(k)∇f(x(k)), where ³(k)

is a positive scalar called the step size. The above procedure leads to the following iterative
algorithm [112]:

x(k+1) = x(k) − ³(k)∇f(x(k)). (3.9)

The choice of ³(k) is a delicate matter because, with a step size that is too large, the
descent might skip the minimizer; conversely, a step size that is too small leads to a high
number of iterations. Newton’s method is an efficient gradient descent method with quadratic
convergence when some conditions apply. In Newton’s method, ³(k) = ∇2f(x(k))−1.

The process defined by (3.9) is usually repeated until a stopping criterion is met, such as
achieving a sufficiently small change in the objective function. This corresponds to∇f(x) ap-
proaching 0n, indicating that the current point is a minimizer of f . However, for constrained
optimization, x∗ being a global minimizer of f over Ω does not imply ∇f(x∗) = 0n.

A class of well-studied and tested algorithms that address this issue is penalty algorithms.
The idea behind all penalty algorithms is to replace problem (3.8) with the equivalent un-
constrained one:

minimize f(x) + ÇΩ(x). (3.10)

ÇΩ ensures that a solution to this reformulated problem is feasible, but, on the other
hand, is non-differentiable, discontinuous, and not even finite. Considering this, ÇΩ is usu-
ally replaced by numerically better-behaving functions [113]. A breakthrough in this area
of mathematics was the development of interior-point methods (or barrier methods). Bar-
rier methods assess this issue by approximating ÇΩ inside the feasible set with a function
called barrier function. These methods are methods to efficiently solve convex optimization
problems, as their time complexity is polynomial [114].

Consider the case when Ω is defined only by inequality constraints given by the functions
gi, for i = 1, ...,mg. One of the simplest, yet most popular, barrier functions is the logarithmic
barrier function, defined by

B(x, µ) = −µ
mg
∑

i=1

ln (−gi(x)),

where the barrier parameter µ is strictly positive. Since the logarithm is undefined for
nonpositive arguments, the logarithmic barrier function is defined only in Ω [115]. As µ
approaches 0, the barrier function B becomes a better approximation of ÇΩ, as shown in
Figure 3.1.
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Figure 3.1: The function curves of logarithmic barrier function under different
values of µ [116].

When in (3.10) the indicator function is replaced by the barrier function, we obtain an
optimization problem that depends on µ

minimize f(x)− µ

mg
∑

i=1

ln (−gi(x)) . (3.11)

The solution to this unconstrained problem x∗(µ) also depends on the value of µ. The
idea behind barrier methods is to solve this unconstrained problem for values of µ that
progressively go to zero and use the last solution as the starting point for solving the next
problem. As µ → 0, x∗(µ) should converge to the minimizer x∗ of (3.8). The classical
interior-point algorithms have the following form [115]:

0. Set the starting value x(0) to a strictly feasible point, so that g(x(0)) f 0n, and set µ(0)

to a positive value.

1. Check whether x(k) qualifies as an approximate local constrained minimizer for the
original problem (3.8). If so, stop with x(k) as the solution.

2. Compute an unconstrained minimizer x∗(µ(k)) of (3.11).

3. Set x(k+1) ← x∗(µ(k)), k → k + 1, and choose µ(k+1) < µ(k). Go back to Step 1.

For convex problems, it is proven that x(k) → x∗ as k → +∞, provided that µ(k) → 0
[115].
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3.4 Dynamical systems theory

Dynamical system theory is an interdisciplinary field focused on the analysis of dynamic
systems. While there isn’t a universally accepted definition of a dynamical system, it is
typically described as an entity that exhibits a reaction, called output, as a response to an
outer stimulus, called input; since the system evolves through time, it is called dynamical.
The INCOSE (International Council on Systems Engineering) has provided a very broad and
inclusive definition: “A system is an arrangement of parts or elements that together exhibit
behavior or meaning that the individual constituents do not.” [117]. Generally, a system is
characterized by a state, which is a set of values defining its current conditions, a law that
describes how the state evolves through time as a consequence of external inputs, and a
relationship between the state and the observed output.

Figure 3.2: Representation of a system with its input, states, and outputs.

3.4.1 Axiomatic definition of a dynamical system

A general and axiomatic definition of dynamical system is the following [118]. A dynamical
system is the 8-tuple:

S = (T, U,Ω, X, Y,Γ,ϕ,η),

where:

• T is the ordered set of times, which can be continuous, (¦ R) or discrete (¦ Z);

• U is the set of the feasible input values;

• Ω is the set of the feasible input functions;

• X is the set of the feasible state values;

• Y is the set of the feasible output values;

• Γ is the set of the feasible output functions;

• ϕ : T ×T ×X×Ω→ X is the state transition function, which describes how the state
x ∈ X moves from one value to another;

• η : T × X × Ω → Y is the output function, which describes how the output y ∈ Y
evolves.
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ϕ describes the evolution of the state x ∈ X given the current time t ∈ T , provided that
the system starts its evolution from the initial state xÄ ∈ X at time Ä ∈ T and the input
function u ∈ Ω is applied to it; therefore, one can write x = ϕ(t, Ä,xÄ ,u). The output y
depends on the state, the input function, and the current time: y = η(t,x,u).

For this work, I will consider continuous-time dynamical systems, i.e., T = R, for which
the sets of feasible states, inputs and output are the vector spaces X = Rn, U = Rm and
Y = Rp, with n,m, p ∈ N, and the evolution of the state and the output are described by
the following set of equations, called the state space representation of the system:

{

ẋ(t) = f(x(t),u(t)),

y(t) = g(x(t),u(t)).

When f and g are linear functions, the system can also be described by the following
equations:

{

ẋ = Ax+Bu

y = Cx+Du
, (3.12)

where the dependency on time was dropped for simplicity, and

• A ∈ Rn×n is the state matrix,

• B ∈ Rn×m is the input matrix,

• C ∈ Rp×n is the output matrix, and

• D ∈ Rp×m is the feedthrough matrix.

A system described by (3.12) is called linear time-invariant (LTI) system.

3.4.2 Stability

The evolution of the state of an LTI system is given by the sum of two terms, named free
response and forced response. The former is the response of the system when the input is
zero, so it is only produced by the initial condition of the system. The latter is the response
of the system when the initial condition is zero and an input u is applied. Denoting the
initial condition by x0 = x(0), the total response of the system is given by the Lagrange
formula:

x(t) = eAtx0 +

∫ t

0

eA(t−Ä)Bu(Ä) dÄ

Stability is a concept of fundamental importance in dynamical system theory. The rigor-
ous definition of stability falls outside the scope of this thesis, so only the practical meaning
will be presented here. If one considers the free response only and takes the limit of it to
infinity, i.e., limt→∞ eAtx0, three cases are possible:

• eAt converges to the null matrix: the system is said to be asymptotically stable;

• eAt converges to a non-null matrix: the system is said to be stable;
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• eAt diverges: the system is said to be unstable.

It is well-known that this depends on the position of the eigenvalues of A on the complex
plane and, in particular:

• the system is asymptotically stable if and only if all eigenvalues have negative real parts;

• The system is stable if and only if all eigenvalues have negative or zero real parts and
all the eigenvalues on the imaginary axis have unitary index;

• the system is unstable if and only if there is an eigenvalue with positive real part or
zero real part and index greater than 1.

3.4.3 The Jordan canonical form

The Jordan canonical (or normal) form provides a structured and canonical representation
of a matrix, highlighting its eigenvalues and their indexes. When used on A, it offers insights
into the inherent behavior and stability of the system it describes.

Let me recall the definition of diagonalizable matrix: a square matrixM is diagonalizable
if it is similar to a diagonal matrix. That is, there exists an invertible matrix P and a diagonal
matrix D such that M = PDP−1.

A Jordan block associated to an eigenvalue ¼ ∈ C of index r ∈ N is the r × r matrix of
the form











¼ 1

¼
. . .
. . . 1

¼











,

i.e., each element on the main diagonal is ¼ and each element on the upper diagonal is
1, while the rest of the elements are 0. A matrix is in the Jordan form if is a block diagonal
matrix and each diagonal block is a Jordan block J i associated with the eigenvalue ¼i:

J =











J1

J2

. . .
J q











.

A square matrix M can always be transformed into a Jordan matrix and the transforma-
tion is unique, up to a permutation of the diagonal blocks, i.e., M = PJP−1 The Jordan
canonical form is particularly useful when it comes to computing the matrix exponential of
A. The following result holds:

eAt = P eJtP−1,

with
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eJt =











eJ1t

eJ2t

. . .
eJqt











.

The exponential of a Jordan block has a known expression:

eJit = e¼it











1 t t2

2
· · · tr−1

(r−1)!

1 t · · · tr−2

(r−2)!

. . .
...
1











.

The transformation matrix P is obtained by putting the generalized right eigenvectors
{pi}i∈[[1,n]] of A side by side; the same thing applies to its inverse Q = P−1 with the gener-
alized left eigenvectors {qi}i∈[[1,n]]:

P =
[

p1 · · · pn
]

, Q =







qT1
...
qTn






.

The eigenvectors must be chosen so that they form a biorthogonal system, i.e., qTi pj = ¶i,j,
where ¶i,j is the Kronecker delta because QP = In.

3.4.4 Lyapunov’s method for stability

In the field of dynamical systems theory, equilibrium states hold significant interest as they
represent states in which a system can persist indefinitely. An equilibrium point, denoted as
x̄ ∈ X, is a state for which there exists an input function ū ∈ Ω satisfying the condition

x = ϕ(t, Ä, x̄, ū) = x̄, ∀t > Ä.

Since x = x̄ ∀t > Ä , then the derivative of the state with respect to time is zero, i.e.,
ẋ(t) = f(x̄, ū(t)) = 0n. In practical terms, controlling a system often involves ensuring that
its state remains at an equilibrium point. While in linear systems, stability is a property of
the entire system, in non-linear systems, stability applies to the movement of the state and
to equilibrium points.

There exists a sufficient condition that proves the stability of an equilibrium point and
it makes use of a function, called the Lyapunov function. Let us consider a time-invariant
system and an equilibrium state x̄. If there exists a function V (x) that satisfies the following
properties:

• V (x) and its gradient are continuous,

• V (x) is positive definite in x̄,

• its time derivative V̇ (x) is negative definite in x̄,
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then x̄ is an asymptotically stable equilibrium point. V̇ (x) is defined as:

V̇ (x) =
∂V (x)

∂x
ẋ =

∂V (x)

∂x
f(x, ū),

with a fixed equilibrium input ū ∈ Ω.

3.4.5 Controllability

Controllability is a concept that addresses the question of whether a system can be directed
from one state to another through a suitable control input. In other words, it explores the
extent to which an external input can influence the evolution of a dynamic system.

Formally, a state x ∈ X of a dynamical system is said to be controllable in the interval
[t0, t] if there exists an input function u ∈ Ω such that ϕ(t, t0,x,u) = 0.

For LTI systems, similarly to the stability property, this property applies in general to
the whole system, instead of a particular state. For an LTI system, it can be shown that
there exists a control input u that transfers the state of the system from x0 at time 0 to
state x at time t > 0 if and only if x− eAtx0 is in the column space of

W (t) =

∫ t

0

eAÄBBTeA
TÄ dÄ.

The symmetric matrixW (t) is called the controllability Gramian of the system. Provided
that this matrix is invertible for every t > 0, then a control input that transfers the state of
the system from x0 to xf in the time interval [0, tf ] is given by

u∗(t) =
(

eA(tf−t)
)T

W−1(tf )
(

xf − eAtfx0

)

. (3.13)

It can be shown that of all the control functions u ∈ Ω that succeed in transfering the
state of the system from x0 to xf in tf seconds, u∗ is a minimizer of the functional:

E[u] =

∫ tf

0

∥u(t)∥2 dt,

which is deemed as the energy associated with the control input u. For this reason, the
control law obtained by equation (3.13) is referred to as minimum energy control.

3.5 Graph theory

Graphs are mathematical structures used to elegantly model connections between objects.
They are broadly used in situations where multiple objects have some kind of relationship
among them. The objects are represented as dots and they are called vertices (or nodes),
while the relationships are drawn as lines that connect two dots and they are called edges
(or arcs). Some concepts that can be modeled by graphs are, e.g., social networks, road
networks, electrical circuits, etc.



CHAPTER 3. PRELIMINARIES 28

Figure 3.3: Representation of a graph with nodes and arcs.

3.5.1 Definition of a graph

A graph is the pair G = (V , E), where V is a set of elements called vertices and E ¦ V×V is a
set of pairs of vertices ei,j = (vi, vj) called edges. If the pair is unordered, i.e., (vi, vj) = (vj, vi),
then the graph is said to be undirected ; conversely, if the pair is ordered, i.e., (vi, vj) ̸= (vj, vi),
the graph is said to be directed. Throughout this dissertation, I will assume that a graph
cannot contain multiple edges between the same pair of vertices and there are no loops, i.e.,
edges connecting a vertex to itself.

3.5.2 Properties of graphs

A list of useful properties and definitions is given here.
A directed graph is symmetric if (vi, vj) ∈ E ⇐⇒ (vj, vi) ∈ E , that is, each edge has a

corresponding reverse edge.
Two vertices vi, vj ∈ V are adjacent if there exists an edge connecting them, i.e., (vi, vj) ∈

E (or (vj, vi) ∈ E if the graph is directed).
For directed graphs, the in-degree of a vertex vi is the number of edges ending in vi, i.e.,

the number of the elements of the form (v, vi) ∈ E . Similarly, the out-degree of v1 is the
number of edges starting from vi, i.e., the number of the elements of the form (vi, v) ∈ E .
For undirected graphs, the in-degree and the out-degree coincide and will be referred to as
the degree of a vertex.

A sequence of vertices (vi1 , ..., vip) is called a path of length p between vi1 and vip if
(vik , vik+1

) ∈ E , ∀k ∈ [[1, p− 1]].
A directed graph is strongly connected (or just connected), if there exists a path for each

pair of vertices of the graph. If a directed graph is not connected but its corresponding
undirected graph is, the directed graph is said to be weakly connected. A strongly connected
component of a digraph is a sub-digraph G ′ = (V ′, E ′), with V ′ ¦ V and E ′ ¦ V ′ ×V ′, that is
connected. The distance between vi and vj is denoted by dist(vi, vj) and is the length of the
shortest path between vi and vj. If vi and vj are not connected, then dist(vi, vj) = +∞.

The set defined as Di(d) = {vj ∈ V : dist(vi, vj) = d} is the set of vertices that are at a
distance d from vi. The vertices that are at a distance 1 from vi are called neighbors of vi;
given vi, the set of its neighbors is denoted by Ni = D(1) = {vj ∈ V : (vi, vj) ∈ E}.

The adjacency matrix A of a graph is a square matrix representing the connections
between vertices. If there are n vertices in V , then A ∈ Rn×n, whose generic element ai,j is
defined as
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ai,j =

{

1 if ei,j ∈ E ,
0 if ei,j /∈ E .

Note that the absence of loops in the graphs considered here implies that the diagonal
elements of the matrix are always 0.

The degree matrix D ∈ Rn×n is a diagonal matrix in which diagonal elements are the
out-degree of the vertices:

di,j =

{

∑n

k=1 ai,k if i = j,

0 if i ̸= j.

The Laplacian matrix L ∈ Rn×n is defined as the difference between the degree matrix
and the adjacency matrix, i.e., L = D − A; thus, its generic entry li,j has the following
expression:

li,j =

{

∑n

k=1 ai,k if i = j,

−ai,j if i ̸= j.

The Laplacian matrix plays an important role in a class of algorithms called consensus
algorithms. These are algorithms that work on multi-agent systems, where each system is rep-
resented by a vertex and edges represent the information flow between two agents. Consensus
algorithms are generally based on computing the difference of the states of adjacent agents,
which can be represented compactly using the Laplacian matrix. The spectral properties of
L are of great importance in this field.

An important property of L is that the sum of the elements of each row is 0:

n
∑

k=1

li,k = li,i +
n
∑

k=1,k ̸=i

li,k =
n
∑

k=1

ai,k −
n
∑

k=1

ai,k = 0.

This can also be written as L1n = 0n, therefore the kernel of L is non-empty: in particu-
lar, L has at least one null eigenvalue and the span of 1n is the eigenspace associated to the
0 eigenvalue.

Let µk ∈ C denote the k-th eigenvalue of L and ³k and ´k denote its real and imaginary
parts, respectively, i.e., ³k = ℜ(µk) and ´k = ℑ(µk). The eigenvalues are indexed from 0 to
n − 1, to highlight the fact that there is always a null eigenvalue µ0 = 0. The spectrum of
L tells some properties of the graph. One of the most important properties is the following:
the Laplacian matrix of a directed graph has a simple zero eigenvalue with an associated
eigenvector 1n and all of the other eigenvalues are in the open right half plane if and only if
the directed graph has a directed spanning tree [119]. In this case, ³k > 0, ∀k ∈ [[1, n − 1]].
Moreover, if the graph is bidirected (or undirected), then L is symmetric and its eigenvalues
are real.

Example 3.1. L being symmetric is not a necessary condition for its eigenvalues to be real.
Consider a digraph G = (V , E) composed of two strongly connected components G = (V1, E1)
and G2 = (V2, E2), with V = V1 ∪ V2 and V1 ∩ V2 = ∅. The set of edges E is the union of
four disjoint sets, namely, E = E1 ∪ E2 ∪ E1,2 ∪ E2,1, with E1,2 ¦ V1 × V2 and E2,1 ¦ V2 × V1
respectively being the edges connecting vertices of V1 with vertices of V2 and vice versa.
If either E1,2 = ∅ or E2,1 = ∅, then the eigenvalues of the Laplacian matrix of L are real.
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To see this, consider E1,2 = ∅ - the case E2,1 = ∅ is analogous. If E1,2 = ∅, then it means
∄v1 ∈ V1, v2 ∈ V2 such that (v1, v2) ∈ E . As a consequence, the Laplacian matrix has the
form

L =

[

L1,1 L1,2

O L2,2

]

.

Because L is block triangular, its spectrum is the union of the spectra of L1,1 and L2,2.
If G1 and G2 are symmetric, then all the eigenvalues of L1,1 and L2,2 are real, despite G not
being symmetric.

3.6 Consensus algorithms

A modern problem in control theory is the coordinated control of a set of systems, or agents.
Typically, the agents must be controlled in a distributed way: the control algorithm is not
implemented on a central controller that directs all agents, but instead, each agent has a
simpler decentralized algorithm that uses information from some of the others. Although
each agent only has access to incomplete information, those algorithms can efficiently lead
the group to reach a common goal. There are multiple reasons to use decentralized algorithms
instead of centralized ones [119].

• Limited bandwidth: the connectivity and communication capabilities of the group are
often limited a control algorithm relying on the full knowledge of the state of each agent
is unrealistic.

• Limited computational resources: cases where a group is composed of many agents are
not rare and sometimes a centralized controller just cannot handle the computational
load. Instead, most of the time embedded computational resources are abundant in the
single agents, that can be exploited by distributed algorithms.

• Scalability: a centralized control algorithm is hardly scalable, while distributed al-
gorithms scale automatically when a new agent is added to the team. Furthermore,
centralized control is more sensitive to faults.

• Cost: coordinating a large number of systems usually leads to unacceptable costs to
make up for the limitations above.

Information exchange is crucial for cooperation. Coordination problems naturally lead
to agreement problems, where the goal is to bring a set of variables, like the states of the
agents, to a common value over time. When this happens, we say that consensus has been
reached [119]. For this to occur, consensus algorithms need to be used: with this class of
algorithms, an agent regulates its dynamics using information coming from the other agents
it communicates with, trying to reach a common value.

Consensus theory finds application in many fields: transportation, aerial traffic control,
military, sensor network coordination, telecommunication, smart grids, and cryptocurrencies.
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Figure 3.4: Centralized (left) and decentralized (right) control.

Now, a mathematical definition of consensus is given. Consider a set of n dynamical
systems, having a state xi, with i ∈ [[1, n]]. Consensus is reached if, for any initial condition
x(0):

lim
t→∞
∥xi(t)− xj(t)∥ = 0, ∀i, j ∈ [[1, n]].

The consensus problem is a problem of convergence. There are continuous-time and
discrete-time consensus algorithms, but here I will consider the continuous case. The set of
agents can be modeled as a directed graph, where nodes represent systems and arcs represent
information flow. The arc direction tells the direction of the flow: for convention, arc ei,j
represents information flowing from agent j to agent i, although it is visually counterintuitive.
An arc between i and j means “agent i receives information from agent j”. This convention
allows to use the definition of the Laplacian obtained with the out-degree instead of the
in-degree of the nodes: with this choice, 1n is a left eigenvector of ¼0 instead of a right
eigenvector.

3.6.1 First-order algorithms

The simplest situation occurs when each agent is described by first-order dynamics, so its
state is a scalar and the dynamic equation is:

ẋi = ui, ∀i ∈ [[1, n]].

We want to choose an appropriate set of inputs {ui(·)}i∈[[1,n]] that guarantees the reaching
of consensus. I recall that each agent has only access to the state of its adjacent agents, so
ui can only depend on those states, as well as the state of the agent i. The input is usually
chosen to be a weighted sum of the differences in the state values of the adjacent agents and
the of agent i:

ui =
∑

j∈Ni

ki,j(xj − xi), (3.14)

where ki,j represents the weight given to agent j by agent i. For simplicity, I will assume
that every agent considers each other agent equally important, therefore ki,j ≡ 1. With this,
equation (3.14) can be written in vector form as
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ẋ = u = −Lx,
with vectors x =

[

x1 ... xn

]T

and u =
[

u1 ... un

]T

.
When consensus is reached, then xi = xj = x∗, ∀i, j, i.e., x = x∗ = 1nx

∗. x∗ is an
equilibrium state, meaning that the time derivative of the state is zero, as ẋ = −Lx∗ =
−L1nx

∗ = 0n.
The evolution of the system depends on the eigenvalues of −L. If the graph is connected,

these eigenvalues, except for the one null eigenvalue, have negative real parts. Since there is
a null eigenvalue, the system is not asymptotically stable, but just stable. This is a desired
behavior because the system can be in equilibrium in all consensus states and not just in the
origin.

The response of the system is:

x(t) = e−Ltx0.

When the system is not unstable, then as t→ +∞, the exponential matrix converges to
a finite matrix R:

x∗ = lim
t→∞

x(t) = lim
t→∞

e−Ltx0 = Rx0.

A well-known result states that if L has a simple zero eigenvalue, then R = p0q
T

0 , with p0
and q0 being the right and left eigenvectors of −L associated to the null eigenvalue, chosen
so that qT0p0 = 1 [119]. Without loss of generality, let us choose p0 = 1n (q0 can still be
chosen adequately). We obtain

x∗ = Rx0 = 1nq
T

0x0 = 1nx
∗.

Hence, consensus is reached, and the consensus value is

x∗ = qT0x0 (3.15)

3.6.2 Average consensus

When the consensus value is the average of the initial state values, we are talking about
average consensus. This occurs when 1n is also a right eigenvector of −L: indeed, in this
case we have q0 = n−1

1n, satisfying qT0p0 = n−1
1
T

n1n = 1. In this case

x∗ = n−1
1
T

nx0 =
1

n

n
∑

i=1

xi(0).

This situation happens depending on the topology of the system: when the in-degree is
equal to the out-degree for all nodes of the graph, then the graph is symmetric and also is
the Laplacian matrix, i.e., L = LT. Intuitively, if every node gives the network the same
contribution it receives, then its state will be as important as every other one, and if all states
are equally important, then the consensus value is the average of those values.



Chapter 4

Cooperative intersection management

In this chapter, I tackle the problem of autonomous intersection crossing using a geometrical
and optimization approach. The goal of an intersection management algorithm is to optimize
the intersection crossing schedule, in order to minimize the crossing time while making sure
that every vehicle safely crosses the junction. Other secondary goals may be ensuring comfort
and minimizing energy losses.

4.1 The Intersection Crossing Problem

In this section, I present the Intersection Crossing Problem (ICP), which is an optimization
problem modeling the intersection and the vehicles crossing it. The problem is formulated
such that a solution to it represents a possible schedule that allows vehicles to safely cross
the intersection, as well as possibly do it efficiently.

First, I introduce the geometrical model used throughout the chapter to describe the
intersection and the vehicles crossing it. The presented results are mostly obtained by ge-
ometrical modeling and minimally involve the physics behind them because the goal is to
obtain high-level requirements and constraints about the vehicles’ kinematics.

4.1.1 Vehicle model

A vehicle is modeled as a point in the 2D plane representing the position of the vehicle on
the ground, with respect to a predetermined origin. Vehicles at an intersection move along a
predefined trajectory, therefore I model the position p(u) =

[

px(u) py(u)
]T

of each vehicle
as a parametrized curve p : R→ R2 with u being its curvilinear coordinate, or abscissa.

Trajectories are parametrized such that the norm of their velocity, denoted by p′, is a
constant, i.e.,

∥p′(u)∥ ≡ w ∈ R+ (4.1)

This does not mean that the speed of the vehicle is always constant: equation (4.1)
only refers to the parametrization of its trajectory. Indeed, let us consider the kinematic
function µ : R → R that maps time instants to abscissas, meaning µ(t) is the abscissa of
the vehicle at time t. µ should be increasing (since a vehicle may not go backward) and p ◦ µ
is a reparametrization of the trajectory with respect to the time variable t. In other words,
p(µ(t)) is the position of the vehicle at time t; moreover,

33
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∥

∥

∥

∥

d

dt
p(µ(t))

∥

∥

∥

∥

= ∥p′(µ(t))µ′(t)∥ = w |µ′(t)| ,

which, in general, is not constant and depends on t.
Not every kinematic function is feasible since the vehicle must be able to physically follow

the trajectory with the given kinematic function. Let us indicate the set of feasible kinematic
functions as

L
, so we can write µ ∈ L

.
Other than its position, a vehicle is characterized by a region of space it occupies at a given

moment. The occupancy set of a vehicle is the set O(u) ¢ R2 of the XY plane containing
the region of space occupied by a vehicle at position p(u). O : R → P(R2) is referred to
as the occupancy function. Like what was said for the position of the vehicle, O(µ(t)) is the
occupancy set of a vehicle at time t.

Now, I give the definition of a collision between two vehicles. From now on, to distinguish
between quantities referred to different vehicles, I include the index of each vehicle as a sub-
script to the relevant quantity. When unambiguously referring to a single vehicle, subscripts
are omitted.

Definition 4.1. Consider two vehicles with positions p1(u1) and p2(u2) and occupancy sets
O1(u1) and O2(u2). The vehicles are said to be colliding if

O1(u1) ∩O2(u2) ̸= ∅. (4.2)

In other words, two vehicles are colliding if the regions of space they occupy overlap.
Conversely, two vehicles are said to be not colliding if O1(u1) ∩O2(u2) = ∅.

The definition of collision is based on a generic pair of abscissas (u1, u2), but when con-
sidering a pair of kinematic laws (µ1, µ2) the notion of collision course can be introduced.

Definition 4.2. Two vehicles with kinematic laws (µ1, µ2) and occupancy sets (O1, O2) are
said to be on a collision course if

∃t ∈ R : O1(µ1(t)) ∩O2(µ2(t)) ̸= ∅. (4.3)

4.1.2 Problem formulation

The presented model of the vehicles can be already used to define a general optimization
problem that models the crossing of the intersection. Even though I have not discussed what
an intersection is, intuitively it can be pictured as a region of space where the trajectories of
multiple vehicles converge and, possibly, intersect.

Consider a set of n vehicles, where each vehicle i ∈ [[1, n]] is characterized by its occupancy
Oi and feasible kinematic function set

L
i from which it must choose its kinematic law µi.

Given a functional F :
L

1 × ... × L
n → R, which represents a cost associated with the

given choice of kinematic functions, the Intersection Crossing Problem for fixed trajectories
is defined as

minimize F [µ1, ..., µn]

subject to Oi(µi(t)) ∩Oj(µj(t)) = ∅ ∀t ∈ R, ∀i, j ∈ [[1, n]], i ̸= j

and µi ∈
L

i ∀i ∈ [[1, n]]

(4.4)
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The functional F represents the cost associated with the given choice of kinematic laws.
Also, note that pi does not appear in the problem definition, but the occupancy of the
vehicle is strictly related to its trajectory; also, the trajectories might as well determine the
expression of F . Provided that the trajectories are fixed, the generality of the formulation
allows us to consider any kind of cost associated with the motion of the vehicles, as well as
all possible shapes vehicles can have - even shapes that change over time! In the following
sections, assumptions are made about the trajectories, the occupancies, and the relationships
occurring between them, so that this theoretical framework could be specialized for specific
kinds of intersections and vehicles.

4.2 Intersection model

4.2.1 Trajectory model

When a vehicle follows a straight path in space, its trajectory is a straight line which can be
described by the following parametrization

p(u) = p0 + (p1 − p0)u = p0 + vu, (4.5)

with p0,p1 ∈ R2 being the position of the vehicle when u = 0 and u = 1, respectively,
and v = p1 − p0 being the velocity vector, since p′(u) ≡ v; clearly, (4.1) holds.

When a vehicle curves from one direction to another, it follows an arc of circumference.
Let us consider a circumference of radius r that, for simplicity, is centered at the origin. As
shown in Figure 4.1, the vehicle approaches the circumference at an entry angle ³ ∈ [−Ã, Ã],
following a straight line which is tangent to it at the point p0 = p(0); then, it traces an arc
and leaves the circumference at an exit angle ´, such that |´ − ³| ∈ ]0, Ã[ carrying on on a
straight path again, with this second tangency point being p1 = p(1). For left turns, we have
´ > ³, whereas for right turns ³ > ´.

Figure 4.1: Position of a vehicle halfway through a left turn.
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The coordinates of the points p0 and p1 are

p0 = r

[

cos³
sin³

]

, p1 = r

[

cos ´
sin ´

]

,

and the expression of p(u) along the arc, denoted by p[0,1](u) must interpolate between
these two points and respect (4.1). Therefore, the desired expression is

p[0,1](u) = r

[

cos ((´ − ³)u+ ³)
sin ((´ − ³)u+ ³)

]

.

The norm of the velocity along the arc is p′[0,1](u) ≡ r(´−³), which must also hold outside
the [0, 1] interval, so that (4.1) is satisfied. The unit vectors tangent to the circumference at
p0 and p1 are

[

− sin³ cos³
]T

and
[

− sin ´ cos ´
]T

, respectively. Hence, the full expression
of p(u) is

p(u) = r















































[

cos³

sin³

]

+ (´ − ³)

[

− sin³

cos³

]

u : u < 0,

[

cos ((´ − ³)u+ ³)

sin ((´ − ³)u+ ³)

]

: 0 f u f 1,

[

cos ´

sin ´

]

+ (´ − ³)

[

− sin ´

cos ´

]

(u− 1) : u > 1.

(4.6)

For right turns, the expression is analogous, with ´ being the entry angle and ³ being
the exit angle:

p(u) = r















































[

cos ´

sin ´

]

+ (´ − ³)

[

− sin ´

cos ´

]

u : u < 0,

[

cos ((´ − ³)u− ´)

sin ((´ − ³)u− ´)

]

: 0 f u f 1,

[

cos³

sin³

]

+ (´ − ³)

[

− sin³

cos³

]

(u− 1) : u > 1.

(4.7)

The length of the trajectory inside the [0, 1] interval is indicated with l:

l =

∫ 1

0

∥p′(u)∥ du.

4.2.2 Oblique intersections

Equations (4.5), (4.6), and (4.7) can describe the trajectories of a great variety of intersec-
tions. However, I will focus on the kind of intersection produced by two straight two-way
single-lane roads meeting at an angle1 ³ ∈ ]0, Ã[, as shown in Figure 4.2. I refer to this
kind of intersection using the name ³-intersection. The frame of reference is centered at the

1Although α is assumed to belong to the ]0, π[ interval, extreme values of this interval are not realistic.
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intersection of the middle lines of the two roads. Each road has a width of 2 units, resulting
in a single unit width for each traffic lane. For reference, the road directions are labeled by
S, E, N, and W, even though they do not indicate cardinal directions; the angle ³ is assumed
to be determined by directions S and E.

Figure 4.2: Intersection of straight roads meeting at an angle α = 70°.

The middle lines are described by the following equations

SN : x = 0,

EW : cos³x+ sin³ y = 0,

while the borders are given by

SN : x± 1 = 0,

EW : cos³x+ sin³ y ± 1 = 0.

All trajectories are determined by their inbound and outbound lanes and can be described
using (4.5), (4.6), and (4.7), after determining the entry and exit angles and the centers of the
curved parts of the trajectories. The set of all possible trajectories within an ³-intersection
is denoted by P³. Now, I formally define the concept of sharing an inbound or an outbound
lane.

Definition 4.3. Two vehicles with trajectories p1, p2 ∈ P³ share their inbound lane when

∃ū =
[

ū1 ū2

]T

: p1(Rfū1
) = p2(Rfū2

)

and this relation is written as p1 ↑ p2.
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Definition 4.4. Two vehicles with trajectories p1, p2 ∈ P³ share their outbound lane when

∃ū =
[

ū1 ū2

]T

: p1(Rgū1
) = p2(Rgū2

)

and this relation is written as p1 ³ p2.

When the relations of Definitions 4.3 and 4.4 do not hold, I will write p1 ��↑p2 and p1 ��³p2,
respectively.

The trajectory from direction X to direction Y, is denoted by pXY , where X and Y can
be S, E, N, and W; for example, pWN indicates the trajectory of a vehicle that enters the
intersection West and leaves it from North.

It is sufficient to determine the expressions of the trajectories from one single direction
(S) to all the others (E, N, W); all other trajectories can be obtained by manipulating the
expressions of these three.

4.2.2.1 Straight path

The path from S to N, indicated by pSN , is a straight line of equation x = 0.5, hence (4.5)
can be used. The points p0 and p1 of equation (4.5) are determined by the intersections of
the trajectory with the border lines of the oblique road.

p0 :

{

x = 0.5

cos³x+ sin³ y + 1 = 0
p1 :

{

x = 0.5

cos³x+ sin³ y − 1 = 0

Hence, we obtain

p0 =

[

0.5
−1+0.5 cos³

sin³

]

, p1 =

[

0.5
1−0.5 cos³

sin³

]

.

Thus, the expression of the trajectory parametrization is

pSN(u) =

[

0.5
−1+0.5 cos³

sin³

]

+

[

0
2

sin³

]

u. (4.8)

4.2.2.2 Left and right turns

The path from S to W, indicated by pSW , is a left turn and its parametrization can be
obtained by translating (4.6) after finding the appropriate values for the entry and exit
angles. The center of curvature o =

[

ox oy
]T

can be easily found by using the support
function of a circle with radius rSW , of which I recall the expression that can be derived from
(3.3) and (3.5):

ÃSW (s) = ïo, sð+ rSW ∥s∥ .
Since the first and last part of this trajectory are straight lines of equations x = 0.5 and

cos³x+ sin³ y − 0.5 = 0, and they are tangent to the circle; hence:
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ÃSW

([

1

0

])

= rSW + ox = 0.5,

ÃSW

([

cos³

sin³

])

= rSW + ox cos³ + oy sin³ = 0.5.

Solving this system yields

o = (0.5− rSW )

[

1
1−cos³
sin³

]

.

Note that, for this trajectory, the entry angle is 0 and the exit angle is ³; this allows us
to obtain the complete expression of pSW (u):

pSW (u) = (0.5−rSW )

[

1
1−cos³
sin³

]

+rSW















































[

1

0

]

+ ³

[

0

1

]

u : u < 0,

[

cos (³u)

sin (³u)

]

: 0 f u f 1,

[

cos³

sin³

]

+ ³

[

− sin³

cos³

]

(u− 1) : u > 1.

(4.9)

The expression of pSE(u) is obtained in the same way and by using (4.7):

pSE(u) = (0.5+rSE)

[

1
−1+cos³

sin³

]

+rSE















































[

−1
0

]

+ (Ã − ³)

[

0

1

]

u : u < 0,

[

− cos ((Ã − ³)u)

sin ((Ã − ³)u)

]

: 0 f u f 1,

[

cos³

sin³

]

+ (Ã − ³)

[

sin³

− cos³

]

(u− 1) : u > 1.

(4.10)

4.2.2.3 Other inbound lanes

The expression of the trajectories from the other inbound lanes can be obtained by noting
the following facts.

1. By rotating the intersection by ³ degrees clockwise, we get an oblique intersection of
Ã − ³ degrees. Therefore, the expressions of the trajectories from E, i.e., pEW (u),
pES(u), and pEN(u) can be obtained from (4.8), (4.9), and (4.10) by replacing ³ with
Ã − ³ and then by rotating the result by ³ degrees (counterclockwise).

2. Given the symmetry of the crossroad, trajectories from opposite lanes are specular.
This means that pNS(u) = −pSN(u), pNE(u) = −pSW (u), and pNW (u) = −pSE(u).
Similarly, pWE(u) = −pEW (u), pWN(u) = −pES(u), and pWS(u) = −pEN(u).
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Since all expressions are more or less alike, I choose to not report them here.

4.2.3 Collision model

The absolute priority of an autonomous intersection management strategy is to avoid collision
between vehicles; therefore, thoroughly studying the conditions that result in a collision is
imperative. Simplifications over the collision model must not be underapproximative because
the absence of collisions must be guaranteed under any assumption. In other words, any
collision approximation must not be less restrictive than (4.2).

Definition 4.1 suggests that the collision problem should be approached by modeling the
occupancy sets and how they change along the trajectory. Assuming that the shape of a
vehicle does not change over time, the occupancy set can be obtained with a translation and
rotation of a fixed set S ¢ R2, representing the shape of the vehicle.

Consider the tangent vector v̂ =
[

v̂x v̂y
]T

to the trajectory p:

v̂(u) =
p′(u)

∥p′(u)∥ .

The rotation matrix associated with v̂(u) is the matrix Rp(u) ∈ R2×2 defined as

Rp(u) =

[

v̂x(u) −v̂y(u)
v̂y(u) v̂x(u)

]

.

Given the shape set S of a vehicle, the expression of the occupancy function is

O(u) = p(u) +Rp(u)S.

Since cars have an approximately rectangular shape, let us consider S to be a rectangle,

i.e., S =
{

s =
[

sx sy
]T ∈ R2 : |sx| < w ' |sy| < h

}

, with w ∈ R+ and h ∈ R+ being the

half-width and the half-height of the rectangle, respectively, and w > h. However, analytically
determining whether two rectangles overlap based on their positions and orientations is a
hard problem. Therefore, I consider approximations that are easier to work with. A function
Õ : R→ P(R2) is said to be an overapproximating occupancy function of a vehicle if Õ(u) §
O(u), ∀u ∈ R. Note that Õ1(u1) ∩ Õ2(u2) = ∅ ⇒ O1(u1) ∩O2(u2) = ∅.

4.2.3.1 Bounding circle

Analytically determining when two circles overlap is much simpler: two circles overlap when
the distance between their centers is less than the sum of their radii; moreover, a circle is
invariant by rotation. Thus, as a first approximation, let S̃ = {s ∈ R2 : ∥s∥ < Ä} to be a
circle of radius Ä g

√
w2 + h2. We have S ¢ S̃ because for any s =

[

sx sy
]T ∈ S, s2x < w2

and s2y < h2, hence s2x + s2y < w2 + h2 f Ä2. Then, I let Õ(u) = p(u) + S̃.
Given Õ1(u1), Õ2(u2), we have

Õ1(u1) ∩ Õ2(u2) ̸= ∅ ⇐⇒ ∥p1(u1)− p2(u2)∥ < Ä1 + Ä2, (4.11)

which is an easier condition to deal with.
The simplicity of the circular approximation comes with another advantage: it provides

a safety margin, especially laterally. However, this is also a drawback because, as figure
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(a) w/h = 2 (b) w/h = 3

Figure 4.3: Bounding circles of rectangles with different w/h ratio.

4.3 shows, the lateral safety margin exasperates when the rectangle’s width-to-height ratio
increases; when Ä =

√
w2 + h2, with w/h = 2 the area of the bounding circle is 1.96 times

larger than the area of the rectangle, whereas with w/h = 3, it is 2.62 times larger.
Since considered roads are two-way, it would be appropriate that the diameter of the

circle is kept under the size of the lane, hence Ä f 0.5, to avoid complications in the collision
model, since it would detect collisions between vehicles traveling along the same road with
opposite directions. In view of this issue, a more elaborate solution is needed.

4.2.3.2 Straight envelope of circles

As shown in [120], better approximations are achieved when more circles are used to bound
a rectangle. I now consider a continuous envelope of circles bounding the rectangle, that is
the region spanned by a circle that moves along a segment on the major axis of the rectangle,
as shown in figure 4.4. Given ¶ g 0, the points

[

0 ¶
]T

and
[

0 −¶
]T

are the centers of the
extreme circles of the envelope and Ä is their radius. When 0 f ¶ < w, Ä should be grater
than

√

(w − ¶)2 + h2, whereas when ¶ g w, it should hold Ä > h.
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Figure 4.4: Straight envelope of circles.

This bounding shape better approximates a rectangle and works with any width-to-height
ratio. Given some desired longitudinal and lateral margins, mw and mh respectively, ¶ and
Ä can be designed by the following specifications:

¶ = mw −mh + w − h,

Ä = mh + h,

subject to the following constraints.
{

h− w f mw −mh < h

m2
w − 2mwmh − 2hmw + h2 f 0

(
{

mw −mh g h

mh g 0

The ratio of the bounding area to the area of the rectangle can be as low as 1.23 for
a width-to-height ratio of 2 and 1.16 for a width-to-height ratio of 3, which is more than
acceptable.

For this approximation, the expression of S̃ is given by

S̃ =
⋃

»∈[−¶,¶]

{

s ∈ R2 :
∥

∥

∥
s−

[

» 0
]T
∥

∥

∥
< Ä
}

and Õ(u) = p(u) +Rp(u)S̃. The collision condition becomes

Õ1(u1) ∩ Õ2(u2) ̸= ∅ ⇐⇒ ∥p1(u1) + »1v̂(u1)− p2(u2)− »2v̂(u2)∥ < Ä1 + Ä2,

∀»1 ∈ [−¶1, ¶1] , ∀»2 ∈ [−¶2, ¶2] .
(4.12)

Although in a closed analytical form, this condition is less manageable than condition
(4.11), given the presence of »1 and »2 that vary in continuous intervals. This can be
mitigated by checking the condition for a finite number of (»1, »2) pairs, provided that the
union of the obtained circles completely covers the rectangle, as in [120]; obviously, this
results in a jagged safety margin.
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4.2.3.3 Radial envelope of circles

Another approximation strategy would be to consider the envelope of a circle spanning an arc
of trajectory instead of a segment on the axis of the rectangle, as figure (4.5) shows. Firstly,
note that for a straight trajectory, this approximation is identical to the previous one. Since
the considered trajectories are either straight lines or arcs of circumference, let us consider the
latter. In this case, we have an arc of circumference of radius r, and ¶ > 0 is the half-length
of the arc spanned by the circle. Moreover, Ä g

√

(r + h− r cos (¶/r))2 + (w − r sin (¶/r))2

when ¶ < r arctan w
r+h

, and Ä g
√

(r + h)2 + w2 − r otherwise.

Figure 4.5: Radial envelope of circles.

This approximation is not as good as the previous one in terms of the ratio between
the bounding area and the area of the rectangle; furthermore, the safety margins are not
symmetric, with the inner margin being thicker than the outer margin. Nevertheless, these
issues are less evident with larger values of r.

This time, the expression of Õ(u) is not given by the translation and rotation of a fixed
set S̃, but instead by

Õ(u) =
⋃

»∈[−»̄,»̄]

{

s ∈ R2 : ∥s− p (u− »)∥ < Ä
}

,

with »̄ = ¶/l. The collision condition is

Õ1(u1) ∩ Õ2(u2) ̸= ∅ ⇐⇒ ∥p1 (u1 − »1)− p2 (u2 − »2)∥ < Ä1 + Ä2,

∀»1 ∈ [−»̄1, »̄1] , ∀»2 ∈ [−»̄2, »̄2] .
(4.13)

This condition is closer to (4.11) in its form, although, like (4.12) it represents an infinite
number of conditions due to »1 and »2 varying in continuous intervals.
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4.2.4 Intersection zones

Now, I continue with the exposition of the assumptions about the intersection model, in
order to add more details and work with a more concrete version of the problem. I assume
the intersection is divided into three zones, named merging zone (MZ), control zone (CZ),
and scheduling zone (SZ), as Figure 4.6 shows. This assumption is not new in the literature
and, albeit with different variations, was proposed in many works, e.g., [70].

Figure 4.6: Zones of the intersection.

Instead of defining the three zones as physical regions of the XY plane, I define them in
terms of the abscissa of a vehicle along its trajectory.

The merging zone is the region of potential lateral collisions. Rear-end collisions are
possible at any point of the trajectory of a vehicle, whereas lateral collisions are only possible
in the intersection center, where trajectories converge. Given vehicle i with trajectory pi and
its associated occupancy function Oi, the set of the occupancy functions of other vehicles it
may collide laterally with is indicated with O. The merging zone Mi of this vehicle is the set
of abscissas where a collision is possible:
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Mi = conv ({ui ∈ R : (∃Oj ∈ O, uj ∈ R : Oi(ui) ∩Oj(uj) ̸= ∅)}) ,
where the operation of convex hull was used to ensure that the merging zone is an interval.

The merging zone contains a subregion deemed as the intersection center, which corresponds
to the [0, 1] interval. The length of the road segment that precedes the intersection center
within the merging zone is denoted by lM .

Adjacent to the merging zone there is the control zone, which is the region of a road where
vehicles carefully regulate their cruising plan to adhere to a pre-established schedule, thereby
preventing collisions. The physical length of the control zone is indicated by lC . Preceding
the control zone there is the scheduling zone, where vehicles elaborate the schedule they will
follow within the control zone.

Now, I make an important assumption about the kinematic laws of vehicles.

Assumption 4.1. The speed of each vehicle is constant inside the merging zone.

This assumption is not unusual in the literature, as present in [70] and other works. The
speed of a vehicle inside the merging zone is denoted by vM ∈ R+, while the arrival time at
the same zone is ÄM ∈ R. Let Ä be the arrival time at the intersection center, that is the
instant of time in which u = 0. Moreover, let TM be the time interval in which the vehicle is
inside the merging zone. With Assumption 4.1, the expression of µ(t) when t ∈ TM is

µ(t) =
vM
l
(t− Ä) = É(t− Ä), ∀t ∈ TM , (4.14)

with É = vM/l. Therefore, TM = {t ∈ R : É(t− Ä) ∈M}; also, note that ÄM = inf TM .
For ease of thought, É is referred to as the arrival speed at the intersection, although not
physically being a velocity, because I will work with É and not with vM throughout the thesis.

Let us define the vector λ =
[

Ä É
]T

, which I will refer to as the arrival state of the
vehicle. Not all values of λ are possible, because:

• vehicles are subject to speed limits, therefore É is also limited;

• as a consequence of speed limits and physical limitations, a vehicle cannot choose to
arrive at the intersection at an arbitrary instant of time Ä ;

• other constraints must be considered depending on the chosen kinematic law that can
furtherly narrow the domain of λ.

Λµ ¢ R×R+ denotes the domain of λ under kinematic law µ. So, considering all feasible
kinematic laws, we can write λ ∈ Λ =

⋃

µ∈L Λµ. Note that Λµ does not take into account the
interaction with other vehicles.

When a vehicle approaches the intersection, its cruising plan has determined its arrival
time and speed at the intersection, named Ä0 and É0, respectively. In the scheduling zone, the
vehicle knows about the presence of other vehicles arriving at the intersection, which have
possibly conflicting cruising plans, meaning that with their current arrival time and speed,
collisions are possible if no action is taken. Taking the correcting action means adjusting
the value of λ to avoid lateral collision in the merging zone while also ensuring the absence
of rear-end collisions before and after the crossing. Consider a pair of vehicles, their arrival
states λ1, λ2, their kinematic laws µ1, µ2, their merging zone M1, M2 and the time intervals
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TM,1, TM,2 in which they both are inside their merging zones. Assumption 4.1 allows thinking
about the concept of collision with respect to λ1 and λ2, rather than µ1 and µ2, by introducing
a new definition of lateral collision course.

Definition 4.5. Two vehicles with arrival states λ1, λ2 and occupancy sets O1, O2 are said
to be on a lateral collision course if

∃t ∈ TM,1 ∩ TM,2 : O1(É1(t− Ä1)) ∩O2(É2(t− Ä2)) ̸= ∅.

4.2.5 Decentralized solution approach

The ICP can be solved using multiple approaches: with its general formal definition, it is
suitable to be tackled using centralized and decentralized strategies, or a mix of the two.
The effort of this work is to study the problem to enable the development of a distributed
approach, although some information is assumed to be globally known; for example, vehicles
are assumed to be aware of the geometry of the intersection they are approaching.

Vehicles entering the scheduling zone establish a connection with other vehicles in range,
therefore creating a communication graph. This graph is dynamic, as vehicles approach
and leave the intersection and come near each other, creating new communication channels.
Considering a wide time window, I assume there are n vehicles approaching the intersection
and the communication graph is G(t) = (V , E(t)), with V = [[1, n]]. When a connection
between two vehicles is established, they exchange their knowledge and thereby information
spreads across the network; this process is called flooding. Flooding allows vehicles to know
data about other vehicles they are not directly connected with, which is crucial for distributed
collision avoidance strategies.

I assume each vehicle to be selfish, meaning that its goal is to minimize a certain cost as-
sociated with the effort required to deviate from its initial schedule or to the delay introduced
by the intersection crossing. Hence, for each vehicle i ∈ V , problem (4.4) becomes:

minimize Fi[µi]

subject to Oi(µi(t)) ∩Oj(µj(t)) = ∅ ∀t ∈ R, ∀j ∈ V , i ̸= j

and µi ∈
L

i

(4.15)

As mentioned before, vehicle i enters the scheduling zone with an initial value λi,0 and
must solve problem (4.15) inside that zone: this means it enters the control zone with the
final value of λi, which all other vehicles should acknowledge. Then, it uses the control zone
to accelerate or decelerate in order to arrive at the intersection at the agreed time Äi and
with the agreed speed Éi.

4.3 Kinematic laws

There is an infinite number of possible control laws that a vehicle can choose to meet the
agreed schedule. Obviously, the choice of µ has a direct impact on the choice of λ since,
for a given µ, λ ∈ Λµ. I want to stress the fact that, because of Assumption 4.1, the
combination of all {λi}i∈[[1,n]] completely determines the presence or absence of collisions;
therefore, understanding how the choice of µ influences the domain of λ is crucial. Any
chosen control algorithm must ensure the vehicle respects the arrival time and speed that it
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and the other vehicles agreed upon during the scheduling. In this section, I will analyze a
few possible control laws and discuss some of their properties.

I start by introducing some dynamical models that can be used to study the kinematics
of a vehicle. This study is not about the control of the dynamics of a vehicle because the
objective is to obtain results about its kinematics instead; therefore, I disregard the details
on how the control laws are implemented. For the same reason, I neglect the lateral dynamics
and focus on the longitudinal dynamics. I describe two (linear) models that are widely used
in the literature: second-order and third-order longitudinal models.

A second-order longitudinal model of a vehicle consists of a double integrator that relates
the position and the velocity of the vehicle to the acceleration it is subject to:

[

ṡ(t)
v̇(t)

]

=

[

0 1
0 0

] [

s(t)
v(t)

]

+

[

0
1

]

a(t).

The acceleration a is given by the total force acting on the vehicle divided by its mass.
Those forces are typically the thrust of the engine, the drag of the air resistance, and so
on. This is the most simple model and it assumes the acceleration as the control input,
implying the possibility of it instantaneously changing. This is certainly not the case, as
engines have certain dynamics characterized by a response time; however, for not demanding
control algorithms and for reasonably estimating some quantities of interest.

A third-order longitudinal model treats the acceleration as a state variable:




ṡ(t)
v̇(t)
ȧ(t)



 =





0 1 0
0 0 1
0 0 0









s(t)
v(t)
a(t)



+





0
0
1



 j(t),

where j denotes the jerk of the vehicle.
This section focuses on the kinematics of a single vehicle inside the control zone. Let ÄC

and vC be the arrival time and speed at the control zone, respectively. The original value of
the arrival state is denoted by λ0 =

[

Ä0 É0

]T

, with Ä0 and É0 being the original arrival time
and speed at the intersection. To simplify the notation, the time axis is shifted so that t = 0
when the vehicle enters the control zone. Moreover, I consider lM = 0, so that the merging
zone coincides with the intersection center and Ä = ÄM ; this is not restrictive since the speed
is constant inside the merging zone. I assume that a vehicle has no reason to accelerate or
decelerate inside the control zone, except to avoid collisions with other vehicles. Therefore,
its speed would be constant inside the control zone if it were not for the schedule change due
to the intersection, which means that vC = lÉ0 and lC = lÄ0É0; in addition to this, we also
have vM = lÉ.

If v(t) > 0 ∀t > 0, the vehicle does not stop before reaching the merging zone; if this
is verified for all vehicles, it results in a stop-free policy, where vehicles efficiently cross the
intersection without idling.

I assume the vehicles are subject to speed and acceleration constraints, so the following
bounds on v and a must be imposed:

{

a− f a(t) f a+

0 f v− f v(t) f v+
∀t > 0; (4.16)

a stop-free policy requires v− > 0. For the second-order system, the control input is a(t)
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and it should transfer the state of the system from the initial state2
[

0 v0
]T

at time t = 0

to the final state
[

lC vM
]T

at time t = Ä . For a third-order system, j(t) is the control

input, whereas the initial and final states are
[

0 v0 0
]T

and
[

lC vM 0
]T

, respectively.
The expression of the control input will depend on these values and, ultimately, inequalities
(4.16) will determine the domain Λµ of the decision variables, for a given µ. If the resulting
domain is incompatible with the collision avoidance conditions, then the designed control law
is unsuitable.

4.3.1 Minimum energy control

As discussed in Section 3.4.5, the minimum energy control (MEC) is a control input that
transfers the state of an LTI system from an initial state to a final state in a finite amount
of time and minimizes its associated energy.

4.3.1.1 Second-order MEC

In the second-order model, the state and input matrices are, respectively,

A =

[

0 1
0 0

]

, B =

[

0
1

]

.

Note that the state matrix is a Jordan matrix consisting of a single Jordan block of index
2 associated with the eigenvalue 0. Given this fact, we immediately obtain the exponential
of A:

eAt =

[

1 t
0 1

]

.

The controllability Gramian of the system is

W (t) =

∫ t

0

[

1 À
0 1

] [

0
1

]

[

0 1
]

[

1 0
À 1

]

dÀ =

[

t3/3 t2/2
t2/2 t

]

,

which is invertible for every t > 0. Therefore, the desired input is given by

a(t) =
(

eA(Ä−t)B
)T

W−1(Ä)

(

l

[

Ä0É0

É

]

− eAÄ l

[

0
É0

])

=

= l

(

6É0(Ä − Ä0)(2t− Ä)

Ä 3
+

2(É − É0)(3t− Ä)

Ä 2

)

.

(4.17)

The expression of v(t) can be found by integration, with initial condition v(0) = vC :

v(t) = vC +

∫ t

0

a(À)dÀ =

= l

(

É0 +
6É0(Ä − Ä0)(t− Ä)t

Ä 3
+

(É − É0)(3t− 2Ä)t

Ä 2

)

.

(4.18)

2The dynamical state of the system is not to be confused with the arrival state λ.
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Inequalities (4.16) can be solved by finding the extrema of v and a, which will depend on
Ä , Ä0, É, and É0. The maxima and minima point of a can be only found on the boundary of
the [0, Ä ] interval, that are:

a(0) = l
6Ä0É0 − 2Ä (É + 2É0)

Ä 2
, a(Ä) = −l6Ä0É0 − 2Ä (2É + É0)

Ä 2
. (4.19)

As for the velocity, assuming that vC already satisfies the constraints, we are interested
in evaluating the extremum of v inside the [0, Ä ] interval. This is found at t∗ defined by
a(t∗) = 0, which yields:

t∗ =
Ä (É + 2É0)− 3Ä0É0

Ä (É + É0)− 2Ä0É0

Ä

3
. (4.20)

If 0 < t∗ < Ä , then the extremum of v is:

v(t∗) = l
(É2 + ÉÉ0 + É2

0) Ä
2 − 6Ä0É0(É + É0)Ä + 9Ä 20É

2
0

3Ä (2Ä0É0 − (É + É0)Ä)
. (4.21)

Using (4.16) in combination with (4.19), (4.20) and (4.21) yields the following constraints,
which define the domain ΛMEC:

ΛMEC :







































6Ä0É0−2Ä(É+2É0)
Ä2

∈ [a−/l, a+/l] ,

−6Ä0É0−2Ä(2É+É0)
Ä2

∈ [a−/l, a+/l] ,

(É2
0
+É0É+É2)Ä2−6Ä0É0(É0+É)Ä+9Ä2

0
É2
0

3Ä(2Ä0É0−(É0+É)Ä)
∈ [v−/l, v+/l] ( 1

3
Ä(2É0+É)−3Ä0É0

Ä(É0+É)−2Ä0É0
/∈ [0, 1] ,

É ∈ [v−/l, v+/l] .

The energy associated to a(t) is

E[a] =

∫ Ä

0

a2(t)dt = 4l2

(

3É2
0 (Ä − Ä0)

2

Ä 3
+

3É0 (Ä − Ä0) (É − É0)

Ä 2
+

(É − É0)
2

Ä

)

. (4.22)

Let us see a numerical example. Suppose the length of the trajectory inside the intersec-
tion center is l = 10 [m] and the control zone is lC = 30 [m] long. A vehicle is approaching
the intersection with a speed vC = 28.8 [km/h], which mean Ä0 = 3.75 [s] and É0 = 0.8 [s−1].
Figure 4.7 shows ΛMEC obtained with these values of Ä0 and É0.
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Figure 4.7: Domain of λ produced by the second-order MEC.

During the collision avoidance phase, the vehicle agrees an arrival time Ǟ = 3.5 [s] and
an arrival speed É = 1.15 [s−1]. The obtained position, speed, and acceleration profiles are
depicted in Figure 4.8, where the red dashed line represents the position graph if the car had
not taken a correcting action.
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Figure 4.8: Position, speed, and acceleration profiles produced by the second-order
MEC.

4.3.1.2 Third-order MEC

The minimum energy control for the third-order system is conceptually similar but more
complex to analyze. In this case, the state and input matrices are, respectively,

A =





0 1 0
0 0 1
0 0 0



 , B =





0
0
1



 .

Once again, A is a Jordan matrix with a single null eigenvalue of index 3, and its expo-
nential is:

eAt =





1 t t2/2
0 1 t
0 0 1



 .

The controllability Gramian of the system is

W (t) =

∫ t

0





1 À À2/2
0 1 À
0 0 1









0
0
1





[

0 0 1
]





1 0 0
À 1 0

À2/2 À 1



 dÀ =





t5/20 t4/8 t3/6
t4/8 t3/3 t2/2
t3/6 t2/2 t



 ,

invertible for every t > 0. The control input is obtained as before, that is:
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j(t) =
(

eA(Ä−t)B
)T

W−1(Ä)



l





Ä0É0

É
0



− eAÄ l





0
É0

0







 =

= l

(

−60É0(Ä − Ä0)(6t
2 − 6Ät+ Ä 2)

Ä 5
− 12(É − É0)(15t

2 − 14Ät+ 2Ä 2)

Ä 4

)

.

(4.23)

The expressions of a(t) and v(t) can be obtained by integration, with initial conditions
a(0) = 0 and v(0) = vC :

a(t) = l

(

−60É0(Ä − Ä0)(2t
2 − 3Ät+ Ä 2)t

Ä 5
− 12(É − É0)(5t

2 − 7Ät+ 2Ä 2)t

Ä 4

)

, (4.24)

v(t) = l

(

É0 −
30É0(Ä − Ä0)(t

2 − 2Ät+ Ä 2)t2

Ä 5
− (É − É0)(15t

2 − 28Ät+ 12Ä 2)t2

Ä 4

)

. (4.25)

Obtaining an analytical expression of (4.16) in this case is burdensome, due to the degrees
of the polynomials involved. However, the same graphical results of the second-order version
can be obtained numerically, and are shown in Figures 4.9 and 4.10.

Figure 4.9: Domain of λ produced by the third-order MEC.
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Figure 4.10: Position, speed, and acceleration profiles produced by the third-order
MEC.

Visually, we can notice the domain ΛMEC is narrower, but the assumptions and the re-
sulting kinematics are more realistic.

Figures 4.7 and 4.9 show that the MEC yields a bounded domain. Intuitively, this is
expected, as É was constrained inside a closed interval and Ä cannot be arbitrarily low, since
that would mean an unrealistic time of arrival. However, having also an upper bound for Ä
is a significant limitation, because it means a vehicle cannot queue up at the intersection;
moreover, the MEC does not allow a vehicle to stop.

4.3.2 Stop and go

The stop-and-go (SnG) dynamics is a simple model of a vehicle stopping at a certain point
before the intersection, waiting for the agreed moment to cross it. Since a vehicle can wait
indefinitely, ΛSnG is expected to be unbounded, as Ä is allowed to be arbitrarily large. In this
situation, I consider a second-order model only, as, in this case, a more complex model does
not lead to substantially different conclusions.

The SnG involves 5 phases.

1. The vehicle proceeds with constant speed vC for t1 seconds, up to the point when it
begins to decelerate.

2. The vehicle decelerates with constant acceleration astop < 0 for tstop seconds, until it
stops at s = lstop. The distance lstop depends on how many vehicles are already in the
queue before the intersection.
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3. The vehicle idles at the stopping point for tidle seconds.

4. The vehicle accelerates with constant acceleration astart > 0 for tstart seconds.

5. The vehicle finishes the acceleration phase and continues with constant speed vM for
t5 seconds until it reaches the merging zone at time Ä = t1 + tstop + tidle + tstart + t5.

Figure 4.11 pictures the described kinematics of a vehicle approaching the intersection
with the same initial arrival state as the MEC scenario, that is, Ä0 = 3.75 [s] and É0 = 0.6 [s−1],
with final arrival time Ä = 10 [s] and arrival speed É0 = 0.5 [s−1]. This is achieved with by
decelerating for tstop ≈ 2.67 seconds with astop = −3 [m/s2], idling at lstop = 20 meters for
tidle ≈ 2.92 seconds, then accelerating for tstart ≈ 2.5 seconds with astart = 2 [m/s2].

Figure 4.11: Position, speed, and acceleration profiles produced by the SnG.

This time, the constraints are computed differently. First, I focus on the fact that the
vehicle must accelerate from v = 0 to v = vM inside lstart = lC− lstop meters with acceleration
astart. From basic physics, it holds vM =

√
2astartlstart; since astart f a+ and v− f vM f v+,

the first constraint is

v− f vM f min(v+,
√

2a+lstart). (4.26)

The values of the durations of phases 1, 2, 4, and 5 are given by the following formulas

t1 =
lstop
vC

+
vC

2astop
, tstop = −

vC
astop

, tstart =
vM
astart

, t5 =
lstart
vM
− vM

2astart
,
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whereas tidle is a free variable, meaning that a vehicle can choose to idle for as long as it
needs to. The value of Ä is given by the sum of these durations:

Ä =
lstop
vC
− vC

2astop
+

lstart
vM

+
vM

2astart
+ tidle.

For a given value of vM , Ä reaches its minimum value when astop = a−, astart = a+, and
tidle = 0; therefore, the second and last constraint is

Ä g lstop
vC
− vC

2a−
+

lstart
vM

+
vM
2a+

. (4.27)

Combining constraints (4.26) and (4.27) produces the domain Λ depicted in Figure 4.9.

Figure 4.12: Domain of λ produced by the SnG.

This kind of control proves that Λ is unbounded, at least in one direction: indeed, because
of (4.27), we can affirm that

∀É ∈ ]Émin, Émax[ ∃Ä :
[

Ä É
]T ∈ Λ, (4.28)

with Ésup = sup
{

É : ∃Ä :
[

Ä É
]T ∈ Λ

}

and Éinf = inf
{

É : ∃Ä :
[

Ä É
]T ∈ Λ

}

.

4.4 Collision avoidance

As seen in Chapter 2, there are two main collision avoidance approaches: Spatio-Temporal
Reservation (ST) and Trajectory Planning (TP). The presented approach is included within
the TP group.

This section is mostly focused on lateral collision avoidance, as it is less trivial than
rear-end collision avoidance. The term lateral collision includes head-on, side-impact, and
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merging collision scenarios. To derive the lateral collision avoidance algorithm that leads
to determining feasible solutions, I initially consider a pair of vehicles; after developing a
collision-avoiding strategy for the pair, I will extend the result to any number of vehicles.

Given a pair of vehicles and their abscissas u1 and u2, the u =
[

u1 u2

]T

vector represents
a configuration of the two vehicles, i.e., a possible combination of their positions. Let us
consider the space of the possible values of u, named the configuration space. I recall that,
by definition, lateral collisions are only possible inside the merging zone, which means that
u ∈M1×M2; since M1 and M2 are intervals, M1×M2 is a rectangle inside the configuration
space.

In the first instance, I consider the bounding circle as the overapproximating occupancy for
the vehicles and, hence, the collision condition is (4.11). After deriving the main idea behind
the lateral collision avoidance strategy, I will consider the other discussed approximations.

4.4.1 Lateral collision detection

Let us consider two vehicles, with trajectories p1 and p2, respectively, and bounding radii Ä1
and Ä2, respectively. I introduce the collision function c:

c(u) = ∥ϕ(u)∥2 − Ä2, (4.29)

with3

ϕ(u) =
p1(u1)− p2(u2)

2
, Ä =

Ä1 + Ä2
2

.

When c(u) < 0, condition (4.11) holds. The open set

C =
{

u ∈ R2 : c(u) < 0
}

(4.30)

is called collision set and contains all pairs of abscissas that result in a collision. On the
other hand, R2 \ C = {u ∈ R2 : c(u) g 0} contains all pais of abscissas that do not result
in a collision.

When C = ∅ no collisions are possible; hence, let us consider the case when C ̸= ∅.
By equation (4.14), the point γ(t) =

[

µ1(t) µ2(t)
]T

, for t ∈ TM,1 ∩ TM,2, describes a curve
Γ = γ(TM,1 ∩ TM,2), with the following parametrization:

{

u1 = µ1(t) = É1(t− Ä1),

u2 = µ2(t) = É2(t− Ä2),
t ∈ TM,1 ∩ TM,2.

Γ is called configuration trajectory and is a segment of the straight line Γ̄ defined by the
equation

Γ̄ : É−1
1 u1 − É−1

2 u2 − (Ä2 − Ä1) = 0, (4.31)

which, when put in explicit form with respect to u2, becomes

u2 =
É2

É1

u1 + É2(Ä1 − Ä2),

3The factor of 2 at the denominator was added to consider the mean of the radii instead of their sum.

This also results in cleaner coefficients in subsequent results.
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with slope É2/É1 > 0 and vertical intercept É2(Ä1 − Ä2). The speeds of the vehicles are
constrained, namely É1 ∈

[

É−
1 , É

+
1

]

and É2 ∈
[

É−
2 , É

+
2

]

. Also, note that Γ ¢M1×M2 because
µ1(t) ∈M1 and µ2(t) ∈M2, ∀t ∈ TM,1 ∩ TM,2.

Proposition 4.1. The two vehicles are not on a collision course if it holds:

Γ ∩ C ̸= ∅. (4.32)

Proof. Indeed, if (4.32) is satisfied, we get

c(γ(t)) g 0 ∀t ∈ TM,1 ∩ TM,2,

implying Õ1(µ1(t)) ∩ Õ2(µ2(t)) = ∅ and (4.3) is averted.

Figure 4.13 shows the configuration space of two vehicles in a perpendicular intersection
(³ = 90°). Specifically, vehicle 1 crosses the intersection in a straight trajectory from South
to North, and vehicle 2 enters the intersection from the East lane and performs a left turn
towards South. This figure is a snapshot at a specific time t, when the vehicles are not
colliding, since γ(t) /∈ C. However, the vehicles are on a collision course, because Γ crosses
C and (4.32) is violated: eventually the vehicles will collide.

Figure 4.13: Collision course displayed inside the configuration space.

My collision detection strategy is based on determining whether Γ intersects C. Similarly,
recalling that λ1 and λ2 determine Γ by (4.31), my collision avoidance strategy consists in
adjusting the arrival state values so that they produce a segment Γ that does not intersect C.
The key concept behind this approach is based on the fact that a hyperplane (in this case, a
line) separates the space it is embedded in (in this case, a plane) into two half-spaces. If C is
entirely enclosed within one of the open half-spaces formed by Γ̄, then Γ does not intersect
C, indicating that the vehicles are not on a collision course.
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To determine whether Γ̄ intersects C, the support function is employed. The support
function of C is denoted by ÃC and defined by

ÃC(η) = sup
u∈C
ïη, uð ,

for η =
[

¸1 ¸2
]T ∈ R2. Let ν =

[

É−1
1 −É−1

2

]T

. Since C is open, (3.2) applies and we
obtain

Ä2 − Ä1 f −ÃC(−ν) ( Ä2 − Ä1 g ÃC(ν) ⇒ Γ̄ ∩ C = ∅. (4.33)

For a given pair (É1, É2), there are two supporting lines of C with the same slope É2/É1,
given by equations

ïν, uð − ÃC(ν) = 0 and ï−ν, uð − ÃC(−ν) = 0.

The intersection of the open half-spaces that contain C associated with these supporting
lines is a strip of the configuration space, called the critical strip. As figure 4.13 shows, if Γ
is contained within the critical strip, then it intersects C.

It is important to take the boundedness of C into consideration. I recall that ÃC(η) < +∞,
∀η ∈ R2 if and only if C is bounded. In this case, for every pair (É1, É2), there are values of
Ä1 and Ä2 that can satisfy both conditions of (4.33). If C is not bounded, there are values of
É1 and É2 such that ÃC(ν) = +∞ and one of the conditions of (4.33), or both, may not hold
for any value of Ä1 and Ä2. In other words, there are values of ν that produce a critical strip
that is not bounded; e.g., it degenerates into a half-space.

Another fact worth noticing is that (4.33) does not hold in reverse: if C is not connected,
there may exist a line that separates its connected components that do not respect the
sufficient condition of (4.33).

Now, I assess another collision model. As discussed in Section 4.2.3, a bounding circle is
a poor approximation of a rectangular shape, and it becomes poorer as its width-to-height
ratio increases. Envelopes of circles have been shown to better approximate the shape of
an elongated vehicle, while still accommodating some safety margins. Condition (4.12) does
not blend well with the results obtained so far, because of the presence of the auxiliary
variables »1 and »2 varying in continuous intervals. Condition (4.13) includes the same
variables, but, because of its form, can be seamlessly integrated within the proposed approach
using the tools developed so far. Let K = [−»̄1, »̄1] × [−»̄2, »̄2] and κ =

[

»1 »2

]T ∈ K.
Condition (4.13) is equivalent to c(u − κ) < 0. With this collision model, the collision set
is CK = {u ∈ R2 : c(u− κ) < 0, κ ∈ K}. The reason why (4.13) can be readily integrated
into the presented theory is that CK can be decomposed as the Minkowski sum of C and K.
Indeed, with a simple change of variable z = u− κ, we obtain

CK = {z + κ : c(z) < 0, κ ∈ K} = C +K.

The set K is the rectangle associated with the vector κ̄ =
[

»̄1 »̄2

]T

: from (3.4), we
immediately obtain the support function of CK :

ÃCK
(η) = ÃC(η) + ÃK(η) = ÃC(η) + ïκ̄, |η|ð .
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4.4.2 Lateral collision avoidance

When a pair of vehicles is determined to be on a collision course with their current value
of λ1 and λ2, they should adjust these values to avoid the crash. A simple way to do so
is by having one of the two vehicles adapt to the other, based on a predetermined priority;
priority-based approach are common in the literature, e.g., [35, 56, 55, 54].

Assumption 4.2. Each vehicle i ∈ V has an associated unique value Çi ∈ R defined as the
priority of vehicle i.

In a situation of potential collision, the vehicle with the highest priority preserves the
value of its decision vector, whereas the other adapts to avoid the collision. I do not propose
any particular policy that determines the priorities, but it may be related to the original
arrival time and the importance of the vehicle: for example, emergency vehicles should have
a higher priority.

A collision avoidance algorithm performs two tasks.

1. Detect if a collision can occur between the vehicles; a sufficient condition to perform
this check is given by (4.33).

2. If a collision is detected, modify the arrival state of the vehicle with lower priority so
that a collision is averted.

Without loss of generality, I assume vehicle 2 has the lowest priority, i.e., Ç2 < Ç1.
Since vehicle 2 has the lowest priority, it performs this check by using condition (4.33);

this means being able to compute the support function of the collision set. If (4.33) is verified,
no action is required. Otherwise, it chooses new value for its arrival state λ2 ∈ Λ2 that verify
(4.33). For a given É2, Ä2 can be chosen such that

Ä2 f Ä1 − ÃC(−ν) (4.34)

or

Ä2 g Ä1 + ÃC(ν). (4.35)

While it may not exist a λ ∈ Λ that verify (4.34), (4.28) ensures that, for É ∈ [Émin, Émax],
there always exists a choice of Ä that verify (4.35). In other words, a vehicle can always choose
to delay its arrival to avoid colliding with another vehicle.

Once the collision avoidance conditions for a pair of vehicles have been assessed, general-
izing to more than two vehicles is straightforward.

Theorem 4.1. Consider m < n different AVs, denoted by indices 1, ...,m. Then there exists
a set of decision vectors {λi}i∈[[1,m]] such that ∀i, j ∈ [[1,m]], with i ̸= j, vehicles i and j are
not in a collision course.

Proof. The proof is by induction. Sufficient conditions that proves the case m = 2 are (4.34)
and (4.35). Without loss of generality, I assume that the vehicles are sorted by priority, i.e.,
Çi > Çi+1, ∀i ∈ [[1,m]]. Suppose that vehicles 1, ...,m − 1 already successfully applied the
collision avoidance strategy and vehicle m, last in priority, must adjust its decision variables.
The result to prove is that there exists at least one choice of Äm and Ém obtained by applying
the procedure described in this section and, more specifically, by equations (4.34) and (4.35),
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that does not produce a collision with the other vehicles. In our scenario with m vehicles,
this must hold for all pairs (i,m), with i ∈ [[1,m−1]]. For an arbitrary value of Ém, condition
(4.34) is satisfied if:

Äm f min
i∈[[1,m−1]]

Äi − ÃC

(

−
[

É−1
i

É−1
m

])

. (4.36)

Similarly, condition (4.35) is satisfied if:

Äm g max
i∈[[1,m−1]]

Äi + ÃC

([

É−1
i

É−1
m

])

. (4.37)

Like the case with m = 2, (4.36) may not produce a feasible value of λ, but (4.37) always
does.

4.5 Computation of the support function

The results obtained in Section 4.4.1 and Section 4.4.2 assume each vehicle can compute
the support function of the collision set associated with any other vehicle. I underscore
that computing the support function is crucial as it enables collision detection by (4.33) and
collision avoidance by (4.36) and (4.37). In this section, various strategies for calculating
these functions are discussed.

By its definition, the value of ÃC(η) is the result of an optimization problem:

maximize ïη, uð
subject to u ∈ C.

(4.38)

The function u → ïη, uð is linear in u, thus it is convex. The same cannot be said for
the set C, which, in general, is not convex. Non-convex optimization problems are hard to
solve; nevertheless, the low dimensionality and the limitedness of the search region are an
advantage. To solve this problem, I adopt some heuristic ideas that leverage the structure of
the problem and the geometry of the setup from which it stems.

4.5.1 Characterization of the collision set

For a given value of ³, there is a finite number of possible pairs of trajectories. Not every
pair of trajectories can produce a collision: for example, two vehicles performing a right
turn will never risk a lateral collision. Table 4.1 shows which pairs of trajectories may
produce a collision, called conflicting trajectories ; the cells representing pairs trajectories
with a common inbound or outbound lane are highlighted in gray. The number of trajectories
is finite, and so it is the number of conflicting pairs. In particular, straight paths conflict
with 9 trajectories, right turns with 6, and left turns with 11, for a total of 26 conflicting
pairs per lane.

Depending on ³, some of the pairs of conflicting trajectories that do not share the inbound
and the outbound lane intersect in either one or two points, or they do not intersect at all.
The number of points of intersection - in which c attains a global minimum - and the value
of Ä are closely related to the structure of C. By inspection of the 26 conflicting pairs, the
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SE SN SW EN EW ES NW NS NE WS WE WN
SE X X X X X X
SN X X X X X X X X X
SW X X X X X X X X X X X
EN X X X X X X
EW X X X X X X X X X
ES X X X X X X X X X X X
NW X X X X X X
NS X X X X X X X X X
NE X X X X X X X X X X X
WS X X X X X X
WE X X X X X X X X
WN X X X X X X X X X X X

Table 4.1: Pairs of trajectories that can produce a collision.

shapes C can assume can be divided into four categories, which are represented in Figure
4.14:

(a) bounded, connected, and convex, which is the structure most pairs of trajectories pro-
duce;

(b) unbounded, obtained in correspondence with merge conflicts;

(c) concave, and

(d) not connected, produced by pairs of specular left turns.

Figure 4.14 also depicts some level curves of c and its global minima. Note that the mini-
mum value that c may assume is −Ä2, obtained when p1(u1) = p2(u2), i.e., in correspondence
with the intersection points of the trajectories.

If the trajectories do not intersect, then its global minimum is greater than −Ä2. The
minimizers are characterized as follows:

(a) a single isolated minimizer;

(b) a continuum of minimizers;

(c) either 1 or 2 isolated minimizers;

(d) 2 isolated minimizers.

The number of minimizers in case (c) depends on whether p1 and p2 intercept in two
points or do not intercept at all, based on ³ and the radius of curvature.

The structure of C must be very carefully considered before attempting to compute its
support function ÃC(η) by means of (4.38), for a given η. First of all, I want to remark that
C is the constraint set of (4.38), and a constraint set that is not convex - and sometimes not
even connected - means the optimization problem is hard to solve. Furthermore, when C is
unbounded, conv(C) has at least one direction of recession, and the effective domain of ÃC
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(a) Bounded, connected and convex (b) Unbounded

(c) Non-convex (d) Not connected

Figure 4.14: Possible shapes of the collision set.



CHAPTER 4. COOPERATIVE INTERSECTION MANAGEMENT 63

is not R2, meaning +∞ can be a solution of (4.38), for some values of η; however, this only
happens when the trajectories share an inbound or outbound lane. Before quantitatively
describing the domain of ÃC with a proposition, I recall that p′1(u1) ≡ w1 and p′2(u2) ≡ w2.

Proposition 4.2. Consider two trajectories p1,p2 ∈ P³ that share the outbound direction

only, i.e., p1 ³ p2 and p1 ��↑p2. Let w′ =
[

w2 w1

]T

. Then

dom(ÃC) = Hf(w
′, 0) =

{

η ∈ R2 : ïη, w′ð f 0
}

.

When, instead, p1 ↑ p2 and p1 ��³p2, then

dom(ÃC) = Hg(w
′, 0) =

{

η ∈ R2 : ïη, w′ð g 0
}

.

Proof. The proof is in Appendix A.

Corollary 4.1. If two trajectories are equal, the domain of ÃC is given by

dom(ÃC) = H(w′, 0) =
{

η ∈ R2 : ïη, w′ð = 0
}

.

Proof. Follows from Proposition 4.2 by noting that p1 = p2 ⇐⇒ p1 ↑ p2 ' p1 ³ p2, hence
dom(ÃC) = Hf(w′, 0) ∩Hg(w′, 0) = H(w′, 0)

Remark 4.1. As a consequence, dom(ÃC) is always convex.

4.5.2 Computation algorithm

With a clearer characterization of C and dom(ÃC), it is now possible to describe a possible
algorithm for computing ÃC(η) for a given η ∈ dom(ÃC).

For a pair of straight trajectories, the ÃC(η) can be computed in closed form. To see this,
let us first write the expression of the straight paths p1 and p2 in the following form:

p1(u1) = p̄1 + v1u1, p2(u2) = p̄2 + v2u2.

Then, ϕ(u) is

ϕ(u) =
p̄1 + v1u1 − p̄2 − v2u2

2
=
p̄1 − p̄2 + V u

2
,

with V =
[

v1 −v2
]

. In this case, ϕ(u) is an affine transformation and the resulting
collision set is an ellipse:

C =

{

u ∈ R2 :

∥

∥

∥

∥

p̄1 − p̄2 + V u
2

∥

∥

∥

∥

2

− Ä2 < 0

}

.

In this situation, computation of the collision function is straightforward. Let us make
a simple change of variable z = Ä−1ϕ(u). The inverse transformation is also an affine
transformation, and it is given by u = V −1(2Äz + p̄2 − p̄1), hence C can be written as

C =
{

V −1(2Äz + p̄2 − p̄1) : ∥z∥ < 1
}

= 2ÄV −1B − V −1(p̄1 − p̄2),
where B is the unit circle. By using (3.3) and (3.5) we easily obtain ÃC in the case of

straight trajectories:
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ÃC(η) = 2Ä
∥

∥V −Tη
∥

∥−
〈

V −Tη, p̄1 − p̄2
〉

.

This strategy is not effective with other kinds of conflicting trajectory pairs. To solve
(4.38) in general, I propose to use a barrier method. Since the function c defines C by (4.30),
problem (4.38) is transformed into the following unconstrained optimization problem:

min
u∈R2

−ïη, uð − µ ln (−c(u)).

Interior-point methods are guaranteed to converge to the global extremizer of the opti-
mization problem they are applied to if the constraint set is convex. Here, C is, in general,
not convex. However, by inspecting all conflicting pairs and their collision set, I lay out two
conjectures that can be used to guarantee that an interior-point method is suitable for solv-
ing (4.38). Let QII,IV = {η : ¸1¸2 < 0} denote the union of the second and fourth quadrant
of the R2 plane. We are interested in computing ÃC in dom(ÃC) ∩ QII,IV, because the main
objective is verifying condition (4.33). Since É1 > 0 and É2 > 0, then ν ∈ QII,IV.

Conjecture 4.1. Every local maximum of (4.38) is strict, ∀η ∈ int(dom(ÃC)) ∩QII,IV.

This conjecture also implies the existence of ∇ÃC(η) on int(dom(ÃC)) ∩QII,IV.

Conjecture 4.2. Let η ∈ dom(ÃC) ∩ QII,IV and ζ ∈ R2 a vector perpendicular to η. Then,
C is ζ-convex.

Based on these two conjectures, I give the following result.

Proposition 4.3. Provided that C is path-connected, for all η ∈ int(dom(ÃC))∩QII,IV, every
local maximizer of (4.38) is also a global maximizer.

Proof. The proof is in Appendix A.

Given this result, although not proven, it is to be expected that if an interior-point algo-
rithm converges, the solution is the value of the support function of the connected component
that contains the starting point u(0). The choice of u(0) is crucial, as it must belong to the
right connected component of C, if there is more than one. Suppose that such a suitable
starting point is provided. Although interior-point methods are efficient algorithms, solving
problem (4.38) yields the value of the support function only for the given value of η. A
naïve approach would be to run the optimization algorithm each time the support function
is needed for a given value of η; however, this is not practical, as it would need too much
time, whereas vehicles need to compute it as fast as possible. To speed up the computation
of ÃC(η), two approximation methods are proposed. Both methods leverage the knowledge
about support functions and their gradients and are based on some kind of interpolation
between known values of ÃC . Furthermore, since support functions are positively homoge-
neous, the algorithm only needs to compute ÃC(η) for ∥η∥ = 1, i.e., η =

[

cos ¹ sin ¹
]T

, with
¹ ∈ [Ã/2, 0] ∪ [Ã/2, Ã], so that η ∈ QII,IV.

In particular, suppose that ÃC(ηa), ÃC(ηb), a = ∇ÃC(ηa), and b = ∇ÃC(ηb) were com-
puted, with ηa =

[

cos ¹a sin ¹a
]T

and ηb =
[

cos ¹b sin ¹b
]T

, ¹a, ¹b ∈ [Ã/2, 0] ∪ [Ã/2, Ã], and
we need to compute ÃC(η), with ¹a < ¹ < ¹b. ηa and ηb are the endpoints of the approx-
imation. Then, given a tolerance ϵ > 0, the approximation Ã̃C must be good enough, that
is, |Ã̃C − Ã(η)| < ϵ. If this is not the case, the approximation can be still used to find a
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starting point that is close to argmaxu∈C ïη, uð, in order to reduce the execution time of
the interior-point method. The values computed by solving (4.38) are stored so they can be
used as endpoints: this way, the ÃC(η) is sampled and eventually the sampling becomes fine
enough that the values obtained by approximation are within the given tolerance.

The computation algorithm separately considers the second and fourth quadrant of the
η-plane, hence it starts by computing the endpoints corresponding to the extreme values of
dom(ÃC) with respect to the unit circles. This determines two separate intervals and four
initial endpoints. These endpoints are computed exactly by using an interior-point method
where the starting point is evaluated considering the different shapes of C. In particular,
when C is bounded, the two initial points are computed by gradient descent starting from
[

1 0
]T

and
[

0 1
]T

, as shown in Figure 4.15; when C is non-convex, it results into two
separate starting points, corresponding to the minimizers of c; conversely, when C is convex,
the starting points coincide. When the trajectories share the inbound lane, the starting
point is determined by gradient descent starting from the point

[

0 0
]T

; in the case of shared

outbound lane, the gradient descent starts from
[

1 1
]T

.

Figure 4.15: Gradient descent for computation of the starting points.

4.5.2.1 Approximation by bounding

The first proposed method leverages the convexity of ÃC . Since ηa, ηb, and η are not collinear,
η cannot be expressed as ¼ηa+(1−¼)ηb, for some ¼ ∈ [0, 1]. Consider the secant vectors η′

a

and η′
b that are obtained by extending the directions of ηa and ηb on the line that is tangent

to the unit circle at η, as shown in Figure 4.16.



CHAPTER 4. COOPERATIVE INTERSECTION MANAGEMENT 66

Figure 4.16: Construction of η′a and η′b.

The expressions of η′
a and η′

b are given by

η′
a =

1

ïη, ηað
ηa, η′

b =
1

ïη, ηbð
ηb.

Note that both ïη, ηað > 0 and ïη, ηbð > 0 because we are operating inside one quadrant
of the plane. Because of the positive homogeneity of ÃC , it holds

ÃC(η
′
a) =

1

ïη, ηað
ÃC(ηa), ÃC(η

′
b) =

1

ïη, ηbð
ÃC(ηb).

η′
a, η

′
b, and η are collinear, therefore we can write

η = ¼η′
a + (1− ¼)η′

b,

with

¼ =
∥η′

b − η∥
∥η′

b − η′
a∥

.

With this setup, the goal is to find an upper bound Ã̃
(up)
C and a lower bound Ã̃

(low)
C of

ÃC(η). Because of the convexity of ÃC and dom(ÃC), ∀ηa,ηb ∈ dom(ÃC) it holds

ÃC(η) = ÃC (¼η′
a + (1− ¼)η′

b) f ¼ÃC(η
′
a) + (1− ¼)ÃC(η

′
b) = Ã̃

(up)
C (4.39)

and

{

ÃC(η) g ÃC(η
′
a) + ï∇ÃC(η

′
a), η − η′

að , (4.40a)

ÃC(η) g ÃC(η
′
b) + ï∇ÃC(η

′
b), η − η′

bð . (4.40b)
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Let us use ¼ to create a convex combination of these two inequalities. By multiplying
(4.40a) by ¼ and (4.40b) by 1− ¼ and by adding the results, we obtain

ÃC(η) g ¼ÃC(η
′
a) + (1− ¼)ÃC(η

′
b) + ¼ ï∇ÃC(η

′
a)−∇ÃC(η

′
b), η − η′

að = Ã̃
(low)
C (4.41)

Then, the approximation is given by averaging the upper bound in (4.39) and the lower
bound in (4.41):

Ã̃C =
Ã̃
(up)
C + Ã̃

(low)
C

2
= ¼ÃC(η

′
a) + (1− ¼)ÃC(η

′
b) +

¼

2
ïa− b, η − η′

að . (4.42)

The maximum error produced by this approximation is

sup
η

|Ã̃C − Ã(η)| = Ã̃
(up)
C − Ã̃

(low)
C

2
,

therefore, if this value is smaller than the given tolerance ϵ, Ã̃C can be taken as an
approximation of Ã(η).

Conversely, if the obtained approximation is not good enough, a and b are used to heuris-
tically construct a new starting point for the interior-point method, given by

u(0) = ¼a+ (1− ¼)b.

4.5.2.2 Approximation by Bézier curves

The boundary ∂C is a planar curve and it is known that a, b ∈ ∂C. The idea behind this
method is to use a quadratic Bézier curve q(¼) to approximate ∂C: then, its support function
can be computed in closed form by (3.6).

The quadratic Bézier curve is constructed so that its endpoints correspond to a and b
and its tangent vector is also tangent to ∂C in both a and b. To do so, I take the intersection
of the tangent lines to ∂C in a and b to be the control handle of the Bézier curve, as Figure
4.17 shows.

Figure 4.17: Approximation of ∂C via a quadratic Bézier curve.

Therefore, the point o is given by
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{

ïηa, oð − ÃC(ηa) = 0,

ïηb, oð − ÃC(ηb) = 0,

hence, since ηa and ηb are not parallel, we have

o =
[

ηa ηb

]−1
[

ÃC(ηa)
ÃC(ηb)

]

.

Since ηa ̸= ηb, a, b, and o are not collinear, thus they can be used to construct a Bézier
curve and to compute the approximation of ÃC(η) by (3.6):

Ã̃C =
ïη, að ïη, bð − ïη, oð2
ïη, a− 2o+ bð , (4.43)

and the tangency point q(¼∗) is obtained for ¼ = ¼∗ given by (3.7). Although not proven,
it was experimentally determined that (4.43) produces a slightly better approximation than
(4.42). Ultimately, when the approximation is not good enough, the new starting point is
given by

u(0) = ¼∗a+ (1− ¼∗)b.

4.6 Distributed scheduling

Given the results of Section 4.3, I propose a version of (4.15) which uses the energy associated
with the control input as the cost functional. Considering a generic vehicle i, its initial arrival
state λi,0, and its agreed arrival state λi, there may be multiple kinematic laws that can be
used to transfer the arrival state value from λi,0 to λi. I assume that the vehicle chooses the
kinematic law with the least associated cost. Given this, I consider the cost to depend on λi

only, and not on µi. The cost of vehicle i as a function of λi is:

fi(λi) = min
µi∈

L
i

Fi [µi(λi, ·)] ,

where µi was expressed as a function of both λi and t. For example, let us assume that
the energy associated to the acceleration is the chosen cost functional. The expression of
each kinematic law µi depends on λi within the control zone and so does the energy fi(λi),
as can be seen in (4.22). The agent chooses µi so that the resulting f(λi) is minimal with
that value of λi. Furthermore, I use (4.11) as the collision condition for simplicity, but the
results apply to any overapproximation of the occupancy functions.

Now, we can rewrite the functional optimization problem (4.15) as a normal optimization
problem where λi is the decision variable:

minimize fi(λi)

subject to
∥

∥pi(µi(t))− pj(µj(t))
∥

∥ < Äi + Äj ∀t ∈ R, i ̸= j

and λi ∈ Λi.

(4.44)

Also, I present the full distributed algorithm for problem (4.44), which does not need a
central infrastructure agent.
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The algorithm is based on a flooding strategy, where at each iteration k, each AV shares
data about itself and about other vehicles it knows of with its neighbors. It then uses
the received information to carry out collision avoidance, while minimizing its own cost
function. The value of λi at iteration k is denoted with λ(k)

i , whereas the collision set and
the configuration trajectory of vehicles i and j are denoted by Ci,j and Γi,j, respectively.

For the generic vehicle i, the algorithm is described by the following sequence of steps.
Step 0: The vehicle starts with the initial value λ(0)

i .
Step 1: The vehicle broadcasts λ(k)

i , along with pi, Äi and Çi to all connected vehicles of
Ni. This means that it receives λ(k)

j from all j ∈ Di(1), as well as λ(k−1)
j , ∀j ∈ Di(2) and so

on. In general, vehicle i is provided with λ(k−d+1)
j for all j ∈ Di(d), for d = 1, ..., k. The set

of vehicles known by vehicle i at iteration k is denoted with K(k)
i = {j ∈ V | ¶(i, j) = 1, ..., k}.

For each j ∈ K(k)
i , vehicle i estimates λj to be λ̃

(k)

j = λ
(k−d+1)
j ; the components of λ̃

(k)

j are

Ä̃
(k)
j and É̃

(k)
j .

Step 2: Firstly, a feasible value of λi is sought. A value of λi is considered feasible if
does not produce collisions with any known vehicle with higher priority, i.e., Γi,j ∩ Ci,j = ∅,
∀j ∈ K(k)

i , Çj > Çi, and λi ∈ Λi. The output of this step is denoted by λ̄
(k+1)
i . If λ(k)

i

is feasible, then λ̄
(k+1)
i = λ

(k)
i ; otherwise, the output of this step is computed by using the

results exposed in Section 4.4. Specifically, for a set of possible values of Éi ∈
[

É−
i , É

+
i

]

, Äi is
chosen so that Γi,j supports Ci,j, as follows:

λ̄
(k+1)
i = argmin

λi

fi(λi)

s.t. Äi = Äj − ÃC(−νj,i) ( Äi = Äj + ÃC(νj,i)

and λ̄
(k+1)
i ∈ Λi ' Γ̃

(k)
i,j ∩ Ci,j = ∅, ∀j ∈ K(k)

i ,

where νj,i =
[

É−1
j −É−1

i

]T

and Γ̃
(k)
i,j is Γi,j obtained with the estimate λ̃

(k)

j . Theorem 4.1
guarantees that there exists at least one solution to this problem; if multiple solutions exist,
the vehicle indifferently chooses one of them. The pseudocode that implements this step is
described in Algorithm 3.

Step 3: Once the feasible value λ̄
(k+1)
i is determined by Step 2, the vehicle can safely

proceed to further minimize its cost function fi(λi); gradient descent can be employed to
perform this step. Given a predetermined sufficiently small number ϵ > 0, the descent
function is defined as desc(λ) = λ − ϵ∇fi(λ) and I use a subscript to denote repeated
application, e.g., desc2(λ) = desc(desc(λ)). The next value λ(k+1)

i is computed by applying
gradient descent for a predefined number of times, or until it yields an unfeasible solution.
Therefore λ(k+1)

i = descN(λ̄
(k+1)
i ), where N is equal to a predefined maximum number of

successive applications of the gradient descent or such that descN+1(λ̄
(k+1)
i ) is unfeasible.

Until the Stop criterion is not met, the vehicle goes back to Step 1.
Stop criterion: The algorithm stops if the vehicle has reached the CZ.
This sequence of steps is implemented by the pseudocode described in Algorithm 1. Now,

I prove that this algorithm converges to a feasible solution.

Theorem 4.2. If G is connected, Algorithm 1 produces a feasible solution to problem (4.44)
in a finite number of iterations.
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Proof. The proof is by induction. Without loss of generality, I assume that the vehicles are
sorted by priority, i.e., Çi > Çi+1, ∀i = 1, ..., n− 1.

At iteration k = 0, vehicle 1 has already reached the final value of its decision vector λ1,
since it is the vehicle with maximum priority.

Then, I show that when the first m− 1 vehicles have reached their final decision values,
at iteration Km, the m-th vehicle can determine a feasible value of λm in a finite number
of iterations. For i = 1, ...,m, we have that λ(k+1)

i = λ
(k)
i , ∀k g Km, since these values

are final. The graph is connected, therefore after km = maxi∈V ¶(m, i) iterations, we have

λ̃
(km)

i = λ
(km)
i , ∀i ∈ V , i ̸= m; therefore, Step 2 and Step 3 produce a feasible value of

λ(km)
m .

Hereafter the pseudocode of the described algorithm is reported. In particular, Algorithm
2 performs the collision detection part; it returns true when a collision between vehicle i and
any other known vehicle is detected and false otherwise. Algorithm 3 implements collision
avoidance by taking the current value of λi and returning a new feasible value. Algorithm 1
is the full algorithm that comprises collision avoidance and optimization.

Algorithm 1 Full algorithm

Step 0:

Define k ← 0, λ(0)
i ← λi,0

while the vehicle is in the MZ do

Step 1:

Broadcast all available data to each j ∈ Ni

Receive data from each j ∈ Ni

Step 2:

k ← k + 1
λ

(k)
i ← AVOID(λ

(k−1)
i )

Step 3:

Assign a predefined value to N and ϵ
while N > 0 do

λ̄i ← λ
(k)
i − ϵ∇fi(λ(k)

i )
if ¬DETECT(λ̄i) then

λ
(k)
i ← λ̄i

N ← N − 1
else

N ← 0
end if

end while

end while
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Algorithm 2 DETECT function (Collision detection)

Input: λi =
[

Äi Éi

]T

Output: true or false

for j ∈ K(k)
i do

νj,i ←
[

É−1
j −É−1

i

]T

.
Ã+
C ← ÃC(νj,i) and Ã−

C ← ÃC(−νj,i).
if −Ã−

C < Äi − Äj < Ã+
C then

return true

end if

end for

return false

Algorithm 3 AVOID Function (Collision avoidance)

Input: λi

Output: λi

if ¬DETECT(λi) then

return

end if

F ← +∞.
for j ∈ K(k)

i do

for Éi ∈ É−
i , ..., É

+
i do

νj,i ←
[

É−1
j −É−1

i

]T

.
Äi ← Äj − ÃC(−νj,i) or Äi ← Äj + ÃC(νj,i)

if
[

Äi Éi

]T ∈ Λi ' ¬DETECT(Äi, Éi) ' fi(Äi, Éi) < F then

λi ←
[

Äi Éi

]T

F ← fi(Äi, Éi)
end if

end for

end for

4.7 Simulations and numerical results

In this section, I present the numerical results obtained by testing the proposed algorithm
through a simulation in MATLAB. The case study is an intersection of perpendicular roads
(³ = 90°), with a lane width of 5 meters. 30 seconds of continuous traffic were simulated,
with a total of n = 44 vehicles, which makes an average of 0.37 vehicles per second per lane.
The interarrival time at the SZ is generated using an exponential distribution while ensuring
a minimum safety distance of 3 meters between the vehicles. The bounding radii range from
1.5 to 2.1 meters. Both the SZ and the CZ are 30 meter long and connections between vehicles
are established as soon as their distance is less than 60 meters; the communication happens
at a frequency of 10 Hz, which means that each iteration must take 0.1 seconds at most. All
vehicles use the minimum energy control and the employed cost function is proportional to
(4.22):



CHAPTER 4. COOPERATIVE INTERSECTION MANAGEMENT 72

fi(λi) =
3É2

0,i (Äi − Ä0,i)
2

Ä 3i
+

3É0,i (Äi − Ä0,i) (Éi − É0,i)

Ä 2i
+

(Éi − É0,i)
2

Äi
.

As for the constraints, I considered a minimum speed of v− = 10 km/h and a maximum
speed of v+ = 50 km/h, whereas the maximum acceleration/deceleration value is a+ = −a− =
1.5 m/s2. The fmincon function of MATLAB’s Optimization Toolbox was used to compute
the support function ÃC by (4.38). The presented results are obtained by a personal computer
equipped with an Intel Core i7-9750H CPU, 16 GB of RAM and a NVIDIA GeForce GTX
1650 graphics card.

In the simulation, all vehicles crossed the intersection without rear-end or lateral collisions.
The average delay caused by the intersection was 1.02 seconds and the histogram showing
the distribution of the delays is shown in figure 4.19.

Figure 4.18: Average cost over time.

Figure 4.18, instead, shows the average cost over time. We can distinguish three phases.

1. In the very first iterations, vehicles from different lanes are too far apart to communi-
cate, therefore only rear-end collision avoidance happens between vehicles of the same
lane (pink and blue regions of the plot).

2. As soon as the leading vehicles come near enough, the communication graph gets con-
nected and the lateral collision avoidance is performed.

3. After a finite amount of time, 3 seconds in this case, the vehicles reach consensus on
the crossing schedule.
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Figure 4.19: Distribution of delays caused by the intersection.

As for performances, the maximum duration of a single iteration was 44 milliseconds,
which is small enough for the 10 Hz communication frequency.

The video output of the simulation can be visualized on YouTube at https://youtu.be/
Y6wzARyBVog.



Chapter 5

Leaderless control of multi-agent systems

The aim of this section is to study a consensus protocol to be applied by a leaderless network
of autonomous agents that have to reach a common velocity while forming a uniformly
spaced string. The main objective is to optimize the protocol parameters to maximize the
convergence speed by avoiding oscillations. A secondary objective is to study the effect of
constant delay on the dynamics and the stability of the system, given the proposed control
strategy. I propose and prove the conditions that the consensus parameters have to satisfy
to guarantee the asymptotic stability of the multi-agent system dynamics. Then, I show that
the consensus protocol parameters can be optimized in order to maximize the convergence
speed and avoid oscillations if the network topology is described by a class of connected
digraphs. For what concerns delays, a necessary and sufficient condition that guarantees
consensus achievement under constant communication time delay is proved, and an explicit
expression on how large the delay can be to guarantee consensus is reached.

5.1 A second-order consensus problem

In this context, first-order consensus algorithms are not suitable due to the governing dynam-
ics of physical systems, such as vehicles, being dictated by Newton’s laws of motion, implying
a second-order dynamic system. The foundation of this work lies in existing second-order
consensus protocols proposed, for instance, in [83], [101], [121], and it considers a protocol to
be applied by a leaderless network of autonomous agents that have to reach a common veloc-
ity while forming a uniformly spaced string. More precisely, the value of the final common
velocity (reference velocity) is decided by the agents through the consensus protocol, start-
ing from an initial desired value for each agent. Furthermore, the agents communicate in a
communication network described by a directed graph (digraph) having a directed spanning
tree.

5.1.1 Consensus problem statement

The communication topology of the group of agents is described by a directed graph (digraph)
that consists of a set of n vertices V = [[1, n]] connected by a set of edges E ¢ V × V . The
dynamics of agent i, for i ∈ [[1, n]], is described by a second-order system where xi denotes
the position of the agent, vi its velocity and ui the control input:

74
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[
ẋi

v̇i

]

=

[
0 1
0 0

] [
xi

vi

]

+

[
0
1

]

ui.

The positions, velocities, and inputs of the multi-agent system are grouped in the n-
dimensional vectors x, v, and u, respectively. Thus, the multi-agent system dynamics can
be written as

[
ẋ

v̇

]

=

[
On In
On On

] [
x

v

]

+

[
0n

u

]

.

The multi-agent system control problem is to attain the following behavior of the agent
dynamics:

1. Each agent must reach and steadily keep a common reference velocity v̄.

2. All the agents must be spaced with uniform interspace gap d̄.

Denoting by d(t) = Hx(t) ∈ Rn−1 the inter-agent distance vector, the objective of the
multi-agent system control problem can be formally denoted as follows:

lim
t→∞

d(t) = d̄, lim
t→∞

v(t) = v̄, (5.1)

where d̄ = 1n−1d̄ and v̄ = 1nv̄. I assume the common reference velocity that each agent
has to reach is unknown to the agents, hence they must estimate it to have a reference velocity
to follow. More precisely, each agent i starts from an initial estimate yi(0) of the reference
velocity; this estimate is updated using the values communicated by the other agents, using
the following first-order consensus protocol:

ẏi = −¸
∑

j∈N (i)

(yi − yj), (5.2)

with ¸ ∈ R+. This equation can be put in vector form, resulting in

ẏ = −¸Ly. (5.3)

5.1.2 Control law synthesis via Lyapunov’s method

In addition to its usefulness in stability analysis, Lyapunov’s direct method can be used to
design control laws. This time, stability in its strictest sense is not of interest: in fact, the
movement of a group of cars at constant speed can certainly not be called stable, since their
position coordinates increase indefinitely over time. Therefore, a new system that encodes
the goals of the multi-agent system control problem is defined, such that its stability implies
(5.1).

Before introducing this new system, I introduce the difference matrix and provide a basic
result that is used throughout the chapter. The difference matrix is the matrixH ∈ R(n−1)×n

defined as
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H =








1 −1
1 −1

. . . . . .
1 −1







.

It is called difference matrix because the product of its i-th row with a vector equals
the difference between the i-th and (i + 1)-th components of the vector. H has full row-
rank, therefore its (right) Moore-Penrose inverse can be computed as H+ = HT(HHT)−1.
H+ is also called the (right) pseudo-inverse of H because HH+ = HHT(HHT)−1 = In.
Moreover, it is easy to check K(H) = S(1n). Now, I provide a basic result.

Lemma 5.1. Let T ∈ Rn×n and U ∈ Rm×n, with m < n. If K(U ) ¦ S(T ), then the
following equality holds:

T = TU+U . (5.4)

Proof. The proof is in Appendix A.

In this case of study, we have that K(H) = S(1n) ¦ K(L); therefore, Lemma 5.1 can be
applied to L and H :

L = LH+H . (5.5)

In other words, regardless of the graph topology, L can be decomposed as the product of
matrix LH+ and the difference matrix H .

We can use H to define the variables of the new system as follows:

p =Hx− d̄, q = v − v̄. (5.6)

Note that this transformation is not a change of coordinates: in fact, it reduces the
dimensionality of the system, from 2n to 2n − 1; therefore it is not even invertible. Noting
that Hv̄ = 0, the dynamics of the new variables (5.6) are given by

ṗ =Hẋ =Hv =H(q + v̄) =Hq,

q̇ = v̇ = u.

The control input u must be chosen such that the origin of the system is made an
asymptotically stable equilibrium point. This would imply (5.1), as

qi = 0 ⇒ xi − xi+1 − d̄ and ri = 0⇒ vi = v̄.

A standard Lyapunov function is used in the design of a control law with the goal of
stabilizing the origin:

V (p, q) =
1

2
∥p∥2 + 1

2
∥q∥2 ,

which is obviously positive-definite in the origin. The computation if its time derivative
is immediate; with abuse of notation, I write:
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V̇ (p, q) =
∂V

∂p
ṗ+

∂V

∂q
q̇ = pTṗ+ qTq̇ = pHq + qTu = qT(HTp+ u).

It is apparent that one cannot choose u so that V̇ is negative-definite in the origin, but
at least it can be made negative-semidefinite, and then one can prove the stability with other
methods. A desirable choice of u would be

u = −HTp+Kq, (5.7)

with K being a negative definite matrix. A possible choice for K was proposed from
[122] and [123]:

K = −(µL+ »In),

with µ and » being positive scalars. Unfortunately, −HTp is not always a feasible control
input, in the sense that agents might not be able to compute it. In fact, considering its
expression,

HTp =HT(Hx− d̄) =HTHx−HTd̄,

the HTHx part can be computed if and only if each vehicle can communicate with its
predecessor and its successor, except for the first and last vehicles that must have access
to their successor and predecessor only, respectively. This is apparent by considering the
components of the HTHx vector. Firstly, the product HTH is:

HTHx =










1
−1 1

−1
. . .
. . . 1

−1

















1 −1
1 −1

. . . . . .
1 −1







=










1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1










.

Then, we have

HTHx =










1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

















x1
...

xi

...
xn







=










x1 − x2
...

−xi−1 + 2xi − xi+1
...

−xn−1 + xn










.

However, this result provides useful insights into the structure of a possibly feasible control
law. I consider a different control law that is feasible and similar to (5.7):

u = −(Lx− h)− (µL+ »In)q,

with h being a constant vector whose expression is to be determined. Intuitively, u
should depend on p, because the control law must be able to react adequately when p ̸= 0n.
Therefore, I exploit (5.5) and choose of h = LH+d̄:
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Lx− h = LH+Hx−LH+d̄ = LH+(Hx− d̄) = LH+p.

By noting that Lv̄ = 0n, the control law has now the following expression:

u = −LH+p− (µL+ »In)q = −Lx+LH+d̄− µLv − »(v − v̄). (5.8)

Finally, I clarify how LH+d̄ is computed by each agent.

Proposition 5.1. The expression of the i-th component of vector h = LH+d̄ is given by

hi = d
∑

j∈N (i)

(i− j).

Proof. The proof is in Appendix A.

5.1.3 Consensus protocol

The proposed consensus protocol is based on (5.8), but assumes each vehicle i uses yi as an
estimate of v̄. The proposed control law is

u = −Lx+LH+d̄− µL(v − y)− »(v − y). (5.9)

The actual control law for agent i is obtained by breaking down (5.9) into individual
components:

ui = −
∑

j∈N (i)

(
(xi − xj)− d̄(i− j)− µ(vi − vj) + µ(yi − yj)

)
− »(vi − yi). (5.10)

In other words, by using (5.10), each agent can communicate its own velocity and the rela-
tive distance with its neighbors. Such an assumption is very common in the related literature
[85], [103], [104], [121]. Assuming that each agent has to reach a common reference velocity v̄
and the same inter-space distance d̄, the rationale of algorithm (5.10) is the following: by the
first terms each agent communicates the actual distance from its neighbor and the objective
inter-space to be imposed between two nearby agents; analogously by the second term, the
agents communicate the actual difference between the velocities of its neighbors and the ref-
erence velocity. Parameters µ and » determine the weights given to the relative and absolute
velocity feedbacks, respectively, with respect to the distance (relative) feedback. Therefore,
µ and » can be referred to as realtive feedback and absolute feedback, respectively. In other
words, with a higher value of µ, the control puts more weight on the global error. Instead,
with a higher value of » each agent becomes more “selfish”, giving its absolute velocity error
more importance.

Protocol (5.2), instead, makes yi, for i = 1, ..., n converge to a common value, which is the
agreed velocity of the group and depends on the communication topology and on the initial
values yi(0). This avoids the need for a leader and is independent of the initial velocities
vi(0).

The complete dynamics of the system are given by combining (5.9) and (5.3):
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ẋ

v̇

ẏ



 =





On In On

−L −(µL+ »In) µL+ »In
On On −¸L





︸ ︷︷ ︸

A





x

v

y



+





0n

LH+d̄

0n



 . (5.11)

Matrix A can be partitioned as follows:

A1,1 =

[
On In
−L −(µL+ »In)

]

, A1,2 =

[
On

µL+ »In

]

,

A2,1 =
[
On On

]
, A2,2 = −¸L.

Because of the block structure of matrix A, its spectrum is the union of the spectra of
matrices A1,1 and A2,2. Let µi, with i = 0, ..., n− 1, denote the eigenvalues of the Laplacian
matrix L. As it is shown in [124], the characteristic polynomial of A1,1 is the following:

pA1,1
(¼) =

n−1∏

i=0

(
¼2 + (»+ µµi)¼+ µi

)
,

hence, the eigenvalues of A1,1 are

¼i,± =
−(»+ µµi)±

√

(»+ µµi)2 − 4µi

2
. (5.12)

Moreover, the characteristic polynomial of A2,2 is

pA2,2
(¼) =

n−1∏

i=0

(¼+ ¸µi).

It is clear that all eigenvalues of A2,2, except for the null one, have negative real parts
if and only if the graph is connected. The dynamics of y are independent of the dynamics
of the rest of the multi-agent system. Under the assumption of connectedness, by (3.15), we
obtain the convergence value of this protocol:

lim
t→∞

y(t) = v̄1n, (5.13)

with v̄ = ξTy(0), where ξ is the left eigenvector of −¸L associated to its null eigenvalue,
chosen so that ξT1n = 1.

5.2 Convergence

For a given communication topology, hence considering fixed values of µi, as (5.12) shows,
the values of µ and » have a direct impact on the eigenvalues of the system.

Firstly, note that each eigenvalue µi of L has two associated eigenvalues of A1,1, namely
¼i,+ and ¼i,−. The two eigenvalues ¼0,+ and ¼0,− associated with µ0 = 0 are

¼0,+ = 0, ¼0,− = −».
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To prove the convergence of the system so that (5.1) is reached, a necessary condition is
for all other eigenvalues to have negative real parts. However, this is not sufficient, because
the asymptotic behavior of the system cannot be deduced from its eigenvalues only.

To solve this problem, I perform a change of variables on the lines of (5.6), by defining
the transformations

p =Hx− d̄,
q = v − y,
r =Hy

(5.14)

The derivatives of the new variables are

ṗ =Hẋ =Hv =H(q + y) =Hq + r,

q̇ = v̇ − ẏ = −Lx+LH+d̄− µL(v − y)− »(v − y)− ¸Ly =

= −LH+p− (µL+ »In)q + ¸LH+r,

ṙ =Hẏ = −¸HLy = −¸HLH+Hy = −¸HLH+r.

(5.15)

By putting these three equations in a compact form, we obtain the dynamics of system
(5.11) under transformations (5.14):





ṗ

q̇

ṙ



 =





On−1 H In−1

−LH+ −(µL+ »In) ¸LH+

On−1 On−1,n −¸HLH+





︸ ︷︷ ︸

F





p

q

r



 . (5.16)

In this state space, control law (5.9) is written as follows:

u = −LH+p− (µL+ »In)q. (5.17)

Lemma 5.2. Equations (5.1) and (5.13) hold if and only if system (5.16) is asymptotically
stable.

Proof. (Only if) Suppose equations (5.1) and (5.13) are verified. Then, trivially,

d̄ = lim
t→∞

d(t) = lim
t→∞

Hx(t) = lim
t→∞

p(t) + d̄

and limt→∞ p(t) = 0n follows. Then,

v̄ = lim
t→∞

v(t) = lim
t→∞

y(t),

therefore limt→∞ q(t) = 0n and limt→∞ r(t) = 0n follow.
(If) Suppose system (5.16) is asymptotically stable. Then, limt→∞ r(t) = limt→∞Hy(t) =

0n. K(H) = S(1n) implies limt→∞ y(t) = 1nv̄, for some v̄. From this and 0n = limt→∞ p(t) =
limt→∞ q(t), (5.1) immediately follows.

Asymptotic stability of (5.16), is implied by the eigenvalues of F having strictly negative
real parts. Let us partition F into 4 blocks:
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F 1,1 =

[
On−1 H

−LH+ −(µL+ »In)

]

, F 1,2 =

[
In−1

¸LH+

]

,

F 2,1 =
[
On On,n−1

]
, F 2,2 = −¸HLH+.

Again, because of the block structure, the spectrum of F is the union of the spectra
of F 1,1 and F 2,2. Now, I prove it coincides with the spectrum of A, up to the two null
eigenvalues.

Lemma 5.3. The eigenvalues of F are the solutions to

(¼+ »)
n−1∏

i=1

(¼+ ¸µi)
(
¼2 + (»+ µµi)¼+ µi

)
= 0.

Proof. Let us start with the determination of the characteristic polynomial of F 2,2. The
Jordan canonical form of L is expressed by highlighting the null eigenvalue and the corre-
sponding eigenvectors:

L = PJQ =
[
1n P ′]

[
0
J ′

] [
ξ∗

Q′

]

= P ′J ′Q′.

Furthermore, the product of P and Q is the identity matrix and can be written as

In = PQ =
[
1n P ′]

[
ξ∗

Q′

]

= 1nξ
∗ + P ′Q′.

The characteristic polynomial of F 2,2 is

pF 2,2
(¼) = |¼In−1 − F 2,2| =

∣
∣¼HInH

+ + ¸HLH+
∣
∣ =

=
∣
∣¼H(1nξ

∗ + P ′Q′)H+ + ¸HP ′J ′Q′H+
∣
∣ =

∣
∣HP ′(¼In−1 + ¸J ′)Q′H+

∣
∣ .

The eigenvalues of F 2,2 are the solutions to pF 2,2
(¼) = 0, which are also the eigenvalues

of ¼In−1 + ¸J ′, given by:

n−1∏

i=1

(¼+ ¸µi) = 0. (5.18)

The characteristic polynomial of F 1,1 is

pF 1,1
(¼) = |¼I2n−1 − F 1,1| =

∣
∣
∣
∣

¼In−1 −H
LH+ (¼+ »)In + µL

∣
∣
∣
∣
.

Since the first block of this matrix is invertible, the determinant becomes

pF 1,1
(¼) = |¼In−1|

∣
∣(¼+ »)In + µL+LH+¼−1H

∣
∣ = ¼−1 |¼(¼+ »)In + (1 + µ¼)L|

As shown in [124], we have that
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|¼(¼+ »)In + (1 + µ¼)L| =
n−1∏

i=0

(¼(¼+ ») + (1 + µ¼)µi) ,

therefore, the eigenvalues of F 1,1 are given by

¼−1

n−1∏

i=0

(¼(¼+ ») + (1 + µ¼)µi) = ¼(¼+ »)
n−1∏

i=1

((¼+ ») + (1 + µ¼)µi) = 0. (5.19)

The thesis is obtained by combining (5.18) and (5.19).

The characterization of the eigenvalues of F given by this lemma is now used to prove the
conditions that µ and » must satisfy to ensure that system (5.16) is asymptotically stable,
implying protocol (5.9) successfully achieve (5.1). Before introducing the result, I recall that
³i = ℜ (µi) and ´i = ℑ (µi).

Theorem 5.1. System (5.16) is asymptotically stable if G has a directed spanning tree and

³i(³
2
i + ´2

i )µ
2 + (2³2

i + ´2
i )µ»+ ³i»

2 − ´2
i > 0, ∀i = 1, ..., n− 1. (5.20)

Proof. If G has a directed spanning tree, then we know that ³i > 0, for all i = 1, ..., n − 1.
The eigenvalue ¼i given by (5.18) has negative real part, since ℜ (¼i) = ℜ (−¸µi) = −¸³i < 0,
for all i = 1, ..., n− 1. Now, let us consider the eigenvalues given by (5.19), namely

¼2
i + (»+ µµi)¼+ µi = 0.

Using the Routh-Hurwitz criterion for second-order polynomials with complex coefficients,
we have that matrix F 1,1 is Hurwitz-stable if and only if

ℜ (»+ µµi) > 0, ∀i = 1, ..., n− 1 (5.21)

and

ℜ (»+ µµi)ℜ ((»+ µµi)µi)−ℑ (µi)
2 > 0, ∀i = 1, ..., n− 1. (5.22)

Condition (5.21) is always verified, since µ > 0, » > 0, and ³i > 0, for all i = 1, ..., n− 1.
If we write condition (5.22) with ℜ (µi) = ³i and ℑ (µi) = ´i, we obtain

(»+ µ³i)
(
(»+ µ³i)³i + µ´2

i

)
− ´2

i > 0 ∀i = 1, ..., n− 1.

After some calculations, (5.20) follows.
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Figure 5.1: Two critical hyperbolae determining the stability region.

Let us consider the (µ, ») plane: each inequality of (5.20) defines a region of stability in
the plane, limited by a hyperbola. More precisely, in order to obtain stability, (µ, ») must lie
beyond a set of critical hyperbolae, where the i-th hyperbola depends only on µi. Figure 5.1
shows the stable and unstable regions of the plane that such inequalities produce.

Theorem 5.1 generalizes the stability conditions presented in the related literature [86],
[101] and [102] that consider either µ = 0 or » = 0. Indeed, if µ = 0 (no relative feedback on
velocity control), (5.20) becomes

» >
|´i|√
³i

,

as found by [86]. Moreover, if » = 0 (no absolute feedback on velocity control), we get

µ >

√

1

³i

´2
i

³2
i + ´2

i

,

aligned with [101] and [102].

5.3 Eigenvalue allocation

In this section the eigenvalues of matrix F are optimized by choosing parameters µ, », and
¸ in order to maximize the convergence speed and avoid large oscillations. The hypothesis I
make is to consider a digraph G with real eigenvalues. This applies to all symmetric digraphs
and digraphs with symmetric strongly connected components communicating like Example
3.1. In this case, µi ∈ R, for all i = 0, ..., n − 1. Without loss of generality, the eigenvalues
{µi}i∈[[0,n−1]] are in non-decreasing order.

The objectives of the eigenvalue allocation problem are:

1. To avoid large oscillations and speed up the convergence by selecting a real dominant
eigenvalue and maximizing its absolute value;
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2. Allocating the non-dominant eigenvalues as far away as possible from the imaginary
axis.

Let Λ(µ, ») denote the spectrum of F , that is, the set of its eigenvalues, obtained with
the given values of µ and ». The eigenvalues are also functions of µ and », therefore we can
write ¼(µ, ») ∈ Λ(µ, »). I define the following function:

f1(µ, ») = min {−ℜ (¼(µ, »)) : ¼(µ, ») ∈ Λ(µ, »)} .
Moreover, let Λ̄(µ, ») denote the set of eigenvalues with minimum absolute real part for

given values of µ and »

Λ̄(µ, ») = {¼(µ, ») ∈ Λ(µ, ») : −ℜ (¼(µ, »)) = f1(µ, »)}
and let Λ′(µ, ») = Λ(µ, ») \ Λ̄(µ, ») be the set of the remaining eigenvalues.
Now, a second function is defined as follows:

f2(µ, ») = min {−ℜ (¼(µ, »)) : ¼(µ, ») ∈ Λ(µ, »)} .
Problems 1 and 2 can be formally defined by the following optimization problems P1 and

P2, respectively:

P1): maxµ,»∈R+
f1(µ, »), s.t. ℑ (¼(µ, »)) = 0;

P2): maxµ,»∈R+
f2(µ, »).

The following theorem provides a solution to problems P1 and P2 in closed form.

Theorem 5.2. Consider a set of agents that communicate in a network topology described
by a symmetric digraph G that has a directed spanning tree. Then the eigenvalues of the
controlled system (5.16) that solve P1 and P2 are obtained by the following values of µ, »,
and ¸:

µ̄ =
2
√
µ1

µ1 + µ2

, »̄ =
2µ2

√
µ1

µ1 + µ2

, (5.23)

and ¯̧ > 1√
µ1

.

Proof. Firstly, the eigenvalues of F 2,2, provided by (5.18) depend on ¸, but not on µ and ».
Therefore, they can be allocated after optimizing µ and ». Given this fact, I initially do not
consider them in the computation of f1 and f2.

Let us consider the eigenvalues of the F 1,1 block, whose expression is given by (5.12).
Firstly, note that for each pair (¼i,+, ¼i,−), their real part is maximized in absolute value
when they are real and coincident (»+ µµi − 2

√
µi = 0), therefore

max
µ,»∈R

{−ℜ (¼i,+) ,−ℜ (¼i,−)} =
√
µi.

Next, to solve P1, the (µ, »)-plane, for µ, » ∈ R+, is divided into four regions (A, B, C,
and D) by the following straight line, as shown in Figure 5.2:

µ1µ + »− 2
√
µ1 = 0. (5.24)
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Then, I determine or bound the value of the objective function f1 in each region.

Figure 5.2: The (γ, κ)-plane divided into regions A, B, C, and D.

Region A is the segment defined by (5.24) and

0 < µ f 1√
µ1

⇐⇒ √
µ1 f » < 2

√
µ1. (5.25)

In this region, ¼1,+ = ¼1,− = −√
µ1, whereas, by substituting (5.24) into (5.12), we get

¼i,± = −√
µ1 −

µ(µ1 − µi)

2
±
√

µ2(µi − µ1)2 + 4(µi − µ1)(µ
√
µ1 − 1)

2
,

for i = 2, ..., n − 1. Imposing (5.25), it holds −ℜ (¼i,+) = −ℜ (¼i,−) g
√
µ1, −ℜ (¼0) g√

µ1. Therefore, in region A the value of the objective function is f1(µ, ») =
√
µ1.

Region B is the segment defined by (5.24) and

1√
µ1

< µ <
2√
µ1

⇐⇒ 0 f » <
√
µ1.

It is immediate that −ℜ (¼0) = » <
√
µ1, hence in this region f1(µ, ») <

√
µ1.

Region C is defined by µ1µ + » − 2
√
µ1 < 0. In this case, ¼1,± are complex conjugates

and it holds

−ℜ (¼1,±) =
µ1µ + »

2
<

√
µ1.

As a consequence, f1(µ, ») <
√
µ1 in this region.

Region D is defined by µ1µ + »− 2
√
µ1 > 0. In this case, ¼i,+ and ¼i,− are both real and

it holds

−¼1,+ =
»+ µµ1 −

√

(»+ µµ1)2 − 4µ1

2
<

√
µ1.

I conclude that P1 is solved when (µ, ») is in region A defined by (5.24) and (5.25), and
maxµ,»∈R+

f1(µ, ») =
√
µ1.

To solve P2, I note that the eigenvalues ¼2,± associated with µ2 are vertically aligned with
¼0 = −» when
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ℜ
(

−(»+ µµ2)±
√

(»+ µµ2)2 − 4µ2

2

)

= −»,

which holds when

» = µµ2. (5.26)

By combining (5.26) and (5.26), we obtain (5.23). Now, I prove that µ̄ and »̄ solve both
P1 and P2. If (5.26) holds, there are 3 possible cases to consider: » = »̄, » < »̄, and » > »̄.

Let us consider case 1: as just shown, −ℜ (¼2,±) = −» = −»̄. The other eigenvalues are

¼i± =
»̄

2



−
(

1 +
µi

µ2

)

±
√
(

1 +
µi

µ2

)2

− µi(µ1 + µ2)2

µ1µ2
2



 , (5.27)

for i = 3, ..., n − 1. Let us verify that −ℜ (¼i,±) > »̄. If ¼i,± are complex conjugates or
real coincident, we have

−ℜ (¼i,±) =
»̄

2

(

1 +
µi

µ2

)

=
»̄

2

(

2 +
µi − µ2

µ2

)

> »̄,

because µi − µ2 > 0. If ¼i,± are real distinct, we only have to check that −ℜ (¼i,+) > »̄,
since −ℜ (¼i,−) > »̄ is trivially verified. Since the inequality

(µi − µ2)−
√

(µi − µ2)2 −
µi

µ1

(µ2 − µ1)2 > 0

holds, we have that (5.27) implies −ℜ (¼i,+) > »̄. Thus, in case 1 we have f2(µ, ») = »̄.
In case 2, since ¼0 = » < »̄, we have f2(µ, ») < »̄.
Lastly, in case 3 it is verified that ¼2,± are complex conjugates. If we compute the

derivative of −ℜ (¼2,±) with respect to », we obtain

∂ (−ℜ (¼2,±))

∂»
=

1

2

(

1 + µ2
∂µ

∂»

)

=
1

2

(

1− µ2

µ1

)

< 0.

Since the derivative is negative for all » < »̄, we conclude that −ℜ (¼2,±) < »̄, hence also
f2(µ, ») < »̄.

The last thing to prove is that (µ̄, »̄) are in region A and solve P1. (5.25) is satisfied when
0 <

√
µ1µ f 1. When µ = µ̄, we have

√
µ1µ =

2µ1

µ1 + µ2

=
2

1 + µ2

µ1

.

Obviously, µ̄ > 0. Since µ2 > µ1, µ2/µ1 > 1, hence
√
µ1µ < 1 is verified.

Finally, I place the eigenvalues of F 2,2 so that they are farther away from the imaginary
axis than the dominant eigenvalues ¼i,± = −√

µ1. This is simple, as it is sufficient to impose
−¯̧µi > −√

µ1 for all i = 1, ..., n− 1, i.e.,

¯̧ >
1√
µ1

.
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The reason why f1 attains a maximum when ¼1,+ = ¼1,− = −√
µ1 is that these eigenvalues

of F are associated with the smallest non-null eigenvalue µ1 of L, therefore they are more
critical than the others, meaning that they are more subject to getting closer to the imaginary
axis when µ and » vary. This is also the rationale behind the specific subdivision of the plane
into 4 regions determined by (5.24).

5.4 Communication delays

The practical application of a consensus protocol needs information flow among the agents,
which may be accompanied by a communication time delay. This section aims to study
consensus protocol (5.10) in the presence of communication delay. In particular, a necessary
and sufficient condition that guarantees the consensus achievement under constant commu-
nication time delay is proved and an explicit expression on how large the delay can be to
guarantee consensus is obtained; then, a modified control law to ensure stability with an
arbitrary constant time delay is proposed.

I assume that each agent compares its position and speed values with the respective values
of the other agents with a delay Ä . The problem is determining the maximum admissible
value of Ä , that is, the critical value Äc so that if Ä > Äc, then the system is unstable. To
account for this delay in the model, each term of (5.15) that is multiplied by L is assumed
delayed by Ä seconds:







ṗ(t) =Hq(t) + r(t),

q̇(t) = −LH+p(t− Ä)− µLq(t− Ä)− »q(t) + ¸LH+r(t− Ä),

ṙ(t) = −¸HLH+r(t− Ä),

and using the Laplace transform we obtain







sp̃(s) =Hq̃(s) + r̃(s),

sq̃(s) = −LH+e−Äsp̃(s)− µLe−Äsq̃(s)− »q̃(s) + ¸LH+e−Äsr̃(s),

sr̃(s) = −¸HLH+e−Äsr̃(s).

(5.28)

Let us introduce the delayed Laplacian matrix LÄ (s) = Le−Äs and its eigenvalues are
µie

−Äs, for i = 0, ..., n − 1. This matrix encodes both communication topology and commu-
nication delay. (5.28) can be represented compactly by





sIn−1 −H In−1

LÄ (s)H
+ µLÄ (s) + (s+ »)In −¸LÄ (s)H

+

On−1 On−1,n sIn−1 + ¸HLÄ (s)H
+





︸ ︷︷ ︸

Ω(s)





p̃(s)
q̃(s)
r̃(s)



 =





0n−1

0n

0n−1



 (5.29)

This equation resembles (5.16) and can be obtained from it by taking a Laplace transform
and replacing L with LÄ (s). The poles of the system are the values of s that make Ω(s)
singular, i.e., the solutions to |Ω(s)| = 0.

Lemma 5.4. The poles of Ω(s) are the solutions to
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(s+ »)
n−1∏

i=1

(
s+ ¸µie

−Äs
) (

s2 +
(
»+ µµie

−Äs
)
s+ µie

−Äs
)
= 0. (5.30)

The proof is omitted, since it is identical to the proof of Lemma 5.3, except for the fact
that ¼ is replaced by s and µi is replaced by µie

−Äs.
Now, the following theorem determines the maximum value that the delay can assume to

guarantee the dynamics of the multi-agent system (5.29).

Theorem 5.3. System (5.29) is asymptotically stable if G has a directed spanning tree, (5.20)
holds and

0 f Ä < Äc = min (Ǟ¸, Ǟµ») ,

with

Ǟ¸ = min
i∈[[0,n−1]]

1

¸ |µi|
arctan

(

−³i

´i

)

Ǟµ,» = min
i∈[[0,n−1]]

1

É̄i

arctan

(
(³i − ´iµÉ̄i)»− (´i + ³iµÉ̄i) É̄i

(´i + ³iµÉ̄i)»+ (³i − ´iµÉ̄i) É̄i

)

,

and

É̄i =

√
√
√
√
(
µ2 |µi|2 − »2

)
+

√
(
µ2 |µi|2 − »2

)2
+ 4 |µi|4

2
.

Proof. Let us consider the factor of (5.30) given by

s+ ¸µie
−Äs = 0, (5.31)

for some i. This is a pseudo-polynomial of order 1 and to determine whether its all roots
have negative real part, I first find the conditions under which it admits a pair of imaginary
roots s = ±ȷÉ, with É > 0. Let us consider only one of the two roots (the same applies to
the other one); by setting s = ȷÉ, in (5.31), we obtain

ȷÉ + ¸µie
−ȷÉÄ = 0. (5.32)

Let us evaluate µie
−ȷÉÄ :

µie
−ȷÉÄ = (³i + ȷ´i) (cos (ÉÄ)− ȷ sin (ÉÄ)) =

= (³i cos (ÉÄ) + ´i sin (ÉÄ)) + ȷ (´i cos (ÉÄ)− ³i sin (ÉÄ)) .

With this, (5.32) becomes

ȷÉ + ¸ (³i cos (ÉÄ) + ´i sin (ÉÄ)) + ȷ¸ (´i cos (ÉÄ)− ³i sin (ÉÄ)) = 0.
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This equation can be split into two equations by considering the real and imaginary parts
of each member:

{

¸ (³i cos (ÉÄ) + ´i sin (ÉÄ)) = 0,

¸ (´i cos (ÉÄ)− ³i sin (ÉÄ)) = −É.
(5.33)

Squaring these two equations and adding them up yields

É2 = ¸2(³2
i + ´2

i ),

whose positive solution is É = ¸ |µi|. The smallest positive value of Ä that satisfy the first
equation of (5.33) is

Ǟ =
1

¸ |µi|
arctan

(

−³i

´i

)

.

Since the delay-free case (Ä = 0) was proven in Theorem 5.1, by continuity [125], the
stability of (5.31) is guaranteed for all values of Ä < Ǟ . This condition must hold for all
i = 1, ..., n− 1, that is,

Ä < Ä¸ = min
i∈[[0,n−1]]

1

¸ |µi|
arctan

(

−³i

´i

)

. (5.34)

Now, let us take the other kind of factors of (5.30), namely,

s2 +
(
»+ µµie

−Äs
)
s+ µie

−Äs = 0. (5.35)

This time, we have a pseudo-polynomial of order 2. I repeat the same procedure, by
letting s = ȷÉ and obtaining

−É2 + ȷ»É + µµie
−jÉÄ ȷÉ + µie

−ȷÉÄ = 0,

that, when separating the real and imaginary parts, becomes:
{

(³i − ´iµÉ) cos (ÉÄ) + (´i + ³iµÉ) sin (ÉÄ) = É2,

(´i + ³iµÉ) cos (ÉÄ)− (³i − ´iµÉ) sin (ÉÄ) = −»É.
(5.36)

Again, the sum of the squares of the two equations produces

É4 +
(
»2 − µ2 |µi|2

)
É2 − |µi|2 = 0,

whose only acceptable solution is denoted by É̄i:

É̄i =

√
√
√
√
(
µ2 |µi|2 − »2

)
+

√
(
µ2 |µi|2 − »2

)2
+ 4 |µi|4

2
.

Solving system (5.36) for cos (É̄iÄ) and sin (É̄iÄ) yields

tan (É̄iÄ) =
(³i − ´iµÉ̄i)»− (´i + ³iµÉ̄i) É̄i

(´i + ³iµÉ̄i)»+ (³i − ´iµÉ̄i) É̄i

.

The smallest value of Ä that satisfies this equation is
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Ǟ =
1

É̄i

arctan

(
(³i − ´iµÉ̄i)»− (´i + ³iµÉ̄i) É̄i

(´i + ³iµÉ̄i)»+ (³i − ´iµÉ̄i) É̄i

)

and, by continuity [125], the stability of (5.35) is guaranteed for all values of Ä < Ǟ . This
condition must hold for all i = 1, ..., n− 1, that is,

Ä < Ǟµ,» = min
i∈[[0,n−1]]

1

É̄i

arctan

(
(³i − ´iµÉ̄i)»− (´i + ³iµÉ̄i) É̄i

(´i + ³iµÉ̄i)»+ (³i − ´iµÉ̄i) É̄i

)

. (5.37)

Combining (5.34) and (5.37) completes the proof.

5.5 Simulations and numerical results

In this section, I provide numerical results and comparisons to show the performance of the
proposed consensus protocols. Two scenarios are tested: a delay-free system and a system
where communication delays are present.

5.5.1 Delay-free scenario

I assume that the communication topology is described by a graph GC , shown in Figure 5.3,
that is characteristic of a group of agents that have to move in a chain and do not include a
leader.

Figure 5.3: Chain communication topology corresponding to the digraph GC .

By Theorem 4 of [126], the real eigenvalues of the corresponding Laplacian matrix are
the following:

µi = 2

(

1− cos

(
iÃ

n

))

, for i = 0, ..., n− 1.

The tested scenario consists of n = 8 agents, e.g., robots or AGVs in industrial envi-
ronments. The agents queue up to each other with the initial conditions reported in Table
5.1 that shows the initial inter-agent distance vector d(0) (in meters), the initial velocities
v(0) (in m/s), the initial reference velocities y(0) (in m/s, selected higher than the initial
velocities), the fixed distance d̄ (in meters) and the values of the parameters µ = µ̄ and » = »̄
and chosen according to (5.23), with ¸ = 10/

√
µ1.

The simulation outputs are reported in Figure 5.4 and 5.5, showing the position and
velocity trends over time, respectively.
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Parameters UM Values

µ̄ unit 1.0574
»̄ unit 0.6194
¯̧ unit 25.62
d̄ m 4
d(0) m [4.26, 1.44, 5.40, 2.73, 2.11, 2.85, 2.32]T

v(0) m/s [0.47, 0.10, 1.58, 0.70, 1.35, 1.74, 1.25, 1.34]T

y(0) m/s [1.94, 1.62, 1.99, 2.35, 2.37, 1.77, 1.71, 2.07]T

Table 5.1: Simulation values used in the delay-free scenario.

Figure 5.4: Positions over time for the network topology GC .
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Figure 5.5: Velocities over time for the network topology GC .

Now, I consider the same protocol applied to a different communication topology. The
new setup is shown in Figure 5.6, where two connections of GC are dropped, obtaining a new
graph, GC′ .

Figure 5.6: Representation of GC′ .

It is apparent that has a directed spanning tree and by analyzing the structure of its
Laplacian matrix, its eigenvalues are real. The results of the simulation are reported in
Figure 5.7 and 5.8, showing how the agents reach the convergence values of positions and
velocities, respectively.
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Figure 5.7: Positions over time for the network topology GC′ .

Figure 5.8: Velocities over time for the network topology GC′ .

Now, I compare the proposed protocol with similar methods presented in the related
literature. In particular, I consider the protocols proposed in [101] and [102] that are applied
to undirected graph topologies characterized by Laplacian matrices with real non-negative
eigenvalues:
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ui = −
n∑

i=1

(xi − xj)− µ1

n∑

i=1

(vi − vj). (5.38)

Note that by choosing the parameter values according to (5.23), the dominant eigenval-
ues of the controlled system (5.11) determine an exponential decay of type te−

√
µ1t, so the

convergence speed is said to be
√
µ1. The maximum convergence speed of (5.38) is

√
µ1µn−1

2µn−1µ1

=
√
µ1

√
µn−1

µn−1 + (µn−1 − µ1)
<

√
µ1.

It is apparent that by introducing the new parameter », the proposed protocol can reach a
greater convergence speed than protocol (5.38). Let us compare the two algorithms by some
numerical results. I test some scenarios where agents communicate by the network topology
G shown in Figure 5.3. The initial conditions of protocol (5.10) are selected randomly using
uniform distributions with the same mean and variance of the data that Table 5.1 reports.
Moreover, the values of d̄, µ, », and ¸ are shown in Table 5.1. In addition, for the comparison
algorithm (5.10) is adapted to algorithm (5.38) by imposing d̄ = 0 and v(0) = y(0). Fur-
thermore, I set µ1 = 3.6609 in (5.38). The comparison is performed by defining the following
scalar function:

V (t) =
∥
∥v(t)− n−1

1n1
T

nv(0)
∥
∥ . (5.39)

n−1
1
T

nv(0) is the average of the initial values of the speeds and, because of the symmetry
of G, i.e., L = LT, it is also the convergence value of v(t). I use as t0.5% as performance
index, defined by

V (t) g 0.005V (0) ∀t g t0.5%.

I ran 1000 cases for each of the two algorithms and averaged out the results. By applying
protocol (5.10), I obtained

t0.5% = 27.05 [s],

whereas, by applying (5.38) the resulting performance index is

t0.5% = 29.82 [s].

The proposed protocol with respect to the similar protocol (5.38) offers a better conver-
gence speed and the possibility of reaching a consensus value of the velocities, independently
of the initial values of the velocities.

5.5.2 Delayed communication scenario

I consider a system composed of 8 agents with the communication topology shown in Figure
5.6. The initial conditions and the parameter values used for this simulation are listed in Table
5.2. The critical value of the delay is Äc = 0.3727 and the simulation used Ä = Äc/2 = 0.1864.

The simulation outputs for the delayed system is reported in Figure 5.9.
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Parameters UM Values

µ̄ unit 1.0461
»̄ unit 0.2072
¯̧ unit 1.6649
d̄ m 4
Ä s 0.1864
Äc s 0.3727
d(0) m [1.54, 4.49, 3.32, 3.20, 1.58, 4.41, 3.49]T

v(0) m/s [1.27, 0.51, 1.59, 0.70, 1.35, 1.74, 1.25, 1.34]T

y(0) m/s [1.85, 2.01, 1.90, 1.58, 1.74, 1.62, 1.68, 1.74]T

Table 5.2: Simulation values used in delayed communication scenario.

Figure 5.9: Velocities over time for the network topology GC with delay.

In order to compare the convergence speed in the absence and in the presence of time
delays, another simulation campaign is carried out. In particular, (5.39) is used again to eval-
uate the performance. The value of the t0.5% index that was obtained after 1000 simulations
with random initial conditions is

t0.5% = 40.11 [s].

The simulation results show that the introduction of the delay slows down the convergence
in the two communication topologies.

Lastly, I confirm the correctness of the computed critical delay value by running a sim-
ulation with Ä = Äc, obtaining an undamped oscillatory speed profile, depicted in Figure
5.10.
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Figure 5.10: Velocities over time for the network topology GC with critical delay.



Chapter 6

Conclusions

In this study, a novel framework for modeling autonomous intersections has been introduced,
accompanied by new results in the realm of multi-agent systems. The proposed theoretical
framework not only enhances the understanding of this complex problem but also establishes a
robust mathematical foundation for addressing it. I believe the formulation of the Intersection
Crossing Problem emerges as a promising perspective within the autonomous intersection
management scenario.

The novelty of the proposed approach leaves ample room for future developments. Al-
though self-consistent, the proposed theory is general enough to allow integration with ex-
isting state-of-the-art approaches, some of which dive deeper into practical issues that have
not been fully considered as of today. Real-world scenarios are often far from theory: in-
cluding nonidealities in the model and studying their impact on the given results is crucial
for developing a framework that works in practice. The sensitivity to disturbances, model-
ing errors, and uncertainties is a broad topic that requires extensive analysis and grounded
mathematical considerations, suggesting possibilities for future research in this domain. Fur-
thermore, despite including safety margins in the vehicle occupancy model, the available
approximations within the realm of collision detection could be further refined. In this work,
the focus was directed towards a specific type of intersection termed ³-intersection. Given
the generality of the theory, I expect it could be easily extended to encompass a broader cat-
egory of intersection types, potentially encompassing all variations: different shapes, angles,
varying numbers of roads, and configurations featuring more than one lane per road. Since
the proposed distributed algorithm relies on specific properties of the communication graph,
such as connectedness, it is appropriate to incorporate the theory of dynamic graphs into the
proposed model. This aims to define the requirements for the communication topology and
protocols, especially when analyzing the propagation time of exchanged information. As for
theory, there remain numerous aspects requiring further assessment. Certain concepts and
results currently rest on conjectures that should be transformed into theorems via rigorous
proofs. Future endeavors should be dedicated to addressing these fundamental issues, enrich-
ing the theoretical foundation of the proposed model. In Section 4.6, the ICP was converted
from a functional optimization problem to a regular one. It would be interesting to solve the
ICP as a functional optimization challenge, seeking a closed-form solution within a simplified
scenario; perhaps with only two vehicles crossing the intersection. The proposed collision
avoidance system and the distributed algorithm are based on the concept of a priority associ-
ated with each vehicle. Although it is very common in literature, it is a simplistic model. An
intriguing avenue for future exploration involves incorporating more sophisticated methods,
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such as game theory, into the collision avoidance and optimization framework. The applica-
tion of game-theoretic approaches could enhance the overall effectiveness and adaptability of
the collision avoidance system within the context of autonomous intersection management.
From a practical standpoint, refining the computation strategy for the support function of
the collision set could significantly reduce its computation time, making it more viable for
real-time applications. Finally, to ensure the broad applicability of the proposed results, rig-
orous validation across an extensive range of scenarios must be undertaken. This validation
step is essential for ensuring that the proposed model is not only theoretically sound but also
practically reliable across a spectrum of real-world scenarios.

Within the context of multi-agent systems, this work considers a leaderless consensus pro-
tocol that a MAS can apply in order to reach a common velocity while forming a uniformly
spaced string. The advantage of the method is that a leader is not required and by the
optimized protocol parameters the fastest rate of convergence avoiding oscillations is guaran-
teed. However, the optimization of control parameter values depends on the communication
graph topology: if the topology changes, the parameters must be updated by calculating the
eigenvalues of the Laplacian matrix. Future research directions will focus on the assessment
of the protocol in the presence of constraints on agent velocities and accelerations. Moreover,
investigations about the impact on the stability and convergence of the delays of communi-
cation will be analyzed. To this aim, suitable conditions will be sought to guarantee correct
behavior and good performance of the protocol.
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Appendix A

Proofs

A.1 Chapter 3

Proof of Lemma 3.1

The intersection of the half-spaces H<(η, a) and H<(−η, b), with a, b ∈ R̄, is the strip
S(η, a, b) = H<(η, a) ∩ H<(−η, b):

S(η, a, b) = {x ∈ Rn : ïη, xð < a} ∩ {x ∈ Rn : ï−η, xð < b} =

= {x ∈ Rn : −b < ïη, xð < a} .

For a given d ∈ R, the intersection between the hyperplane H(η, d) and the strip S(η, a, b)
is

H(η, d) ∩ S(η, a, b) = {x ∈ Rn : −b < ïη, xð < a ' ïη, xð = d} =

=

{

H(η, d) if − b < d < a,

∅ if d > a ( d < −b.

By (3.1), we have that C ¢ H<(η, ÃC(η)) and C ¢ H<(−η, ÃC(−η)), hence C ¢
S(η, ÃC(η), ÃC(−η)). From here, it follows that

d f −ÃC(−η) ( d g ÃC(η) ⇒ H(η, d) ∩ S(η, ÃC(η), ÃC(−η) = ∅,
thus the thesis.

Proof of Proposition 3.1

By the definition of Ãq, we have

Ãq(η) = sup
¼∈[0,1]

ïη, q(¼)ð .

First, note that the derivative of q is

q′(¼) = −2(1− ¼)a+ 2(1− 2¼)o+ 2¼b.
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To find the extremum of ïη, q(¼)ð inside the [0, 1] interval, let us first compute its deriva-
tive:

d

d¼
ïη, q(¼)ð = ïη, q′(¼)ð = −2(1− ¼) ïη, að+ 2(1− 2¼) ïη, oð+ 2¼ ïη, bð .

¼∗ is the value of ¼ in which this derivative vanishes:

−2(1− ¼∗) ïη, að+ 2(1− 2¼∗) ïη, oð+ 2¼∗ ïη, bð = 0.

By simple calculations, we obtain

¼∗ =
ïη, a− oð

ïη, a− 2o+ bð

and

1− ¼∗ =
ïη, b− oð

ïη, a− 2o+ bð
.

It must be verified that

ïη, a− 2o+ bð ≠ 0, (A.1)

otherwise, ¼∗ would not be defined.
Imposing 0 f ¼∗ f 1 yields

0 f ïη, a− oð f ïη, a− 2o+ bð . (A.2)

and, then, the following set of inequalities
{

ïη, a− oð g 0,

ïη, b− oð f 0,

which is equivalent to the intersection of the closed half-spaces Hg(a− o, 0) and Hf(b−
o, 0).

Under the hypothesis of non-collinearity of the control points, we can verify (A.1): to
see this, suppose that ïη, a− 2o+ bð = 0. Then, by (A.2), it implies ïη, a− oð = 0 and
ïη, b− oð = 0, which means that a, o, and b are collinear, leading to a contradiction.

Now, it is easy to verify that ïη, q(t)ð attains a maximum at ¼∗ by evaluating its second
derivative:

d2

d¼2
ïη, q(¼)ð = 2 ïη, að − 4 ïη, oð+ 2 ïη, bð = 2 ïη, a− 2o+ bð ,

which, by (A.1) and (A.2), is strictly greater than 0.
Before directly evaluating ïη, q(¼∗)ð, let us first report the expression of q(¼∗):

q(¼∗) =

(

ïη, b− oð

ïη, a− 2o+ bð

)2

a+
2 ïη, a− oð ïη, b− oð

ïη, a− 2o+ bð2
o+

(

ïη, a− oð

ïη, a− 2o+ bð

)2

b =

=
ïη, b− oð2 a+ 2 ïη, a− oð ïη, b− oðo+ ïη, a− oð2 b

ïη, a− 2o+ bð2
.
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Then, after some calculations, we obtain

Ãq(η) = ïη, q(¼∗)ð =
ïη, að ïη, bð − ïη, oð2

ïη, a− 2o+ bð
.

By its expression, we can see that Ãq is differentiable in every point of its domain, thus
its gradient ∇Ãq(η) equals argmax¼∈[0,1] ïη, q(¼)ð = q(¼

∗).

A.2 Chapter 4

Proof of Proposition 4.2

To prove the first statement, it is enough to show that w′ is the only direction of recession
of conv(C).

If p1 ³ p2, by definition it exists ū1 and ū2 such that p1(Rgū1
) = p2(Rgū2

). Given that
every trajectory of P³ is a straight line when its abscissa is greater than 1, ū1 and ū2 can
be chosen so that both p1(u1) and p2(u2) are straight lines for u1 g ū1 and u2 g ū2. Let
p̄ = p1(ū1) = p2(ū2). Then, we can write

{

p1(u1) = p̄+ v1(u1 − ū1), ∀u1 g ū1 (A.3a)

p2(u2) = p̄+ v2(u2 − ū2), ∀u2 g ū2. (A.3b)

Since p1 and p2 share the same image within the intervals of interests, they are reparametriza-
tions of the same curve, i.e., there exist ¼̄ ∈ R and two non-decreasing ´1 : Rg¼̄ → Rgū1

,
´2 : Rg¼̄ → Rgū2

, such that p1 (´1(¼)) = p2 (´2(¼)), ∀¼ > ¼̄. To see this, let us equal (A.3a)
and (A.3b):

p̄+ v1(u1 − ū1) = p̄+ v2(u2 − ū2). (A.4)

It is easy to show that (A.4) can hold only if v1 and v2 are parallel, hence we can write
v1 = v̂w1 and v2 = v̂w2. Then, (A.4) becomes

v̂ (w1(u1 − ū1)− w2(u2 − ū2)) = 0.

From here, we derive that p1(u1) = p2(u2) if and only if
{

u1 = ū1 + w2¼,

u2 = ū2 + w1¼,
¼ g 0. (A.5)

In this case, we obtained ´1(¼) = ū1 + w2¼, ´2(¼) = ū2 + w1¼, and ¼̄ = 0. Equations
(A.5) can be written more compactly as

u = ū+w′¼, ¼ g 0.

Now, showing that w′ is the only direction of conv(C) is straightforward: c(ū + ¼w′) =
−Ä2 < 0, ∀¼ g 0, that is,

ū+ ¼w′ ∈ C, ∀¼ g 0.

The proof of the second statement is analogous and shows that when p1 ↑ p2, −w
′ is the

only direction of recession of conv(C).
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Proof of Proposition 4.3

The proof is by contradiction. Suppose that u∗ and ū are a local and a global maximizer of
(4.38), respectively. Because, by hypothesis, C is path-connected, then there exists a path
from u∗ to ū, i.e., a continuous function φ : [0, 1] → C, such that φ(0) = u∗ and φ(1) = ū.

Let g denote the objective function of problem (4.38), that is, g(u) = ïη, uð. Since u∗ is
a strict maximizer, by definition, it exists ϵ > 0 such that

g∗ = g(u∗) > g(u), ∀u ∈ C \ {u∗} : ∥u− u∗∥ f ϵ. (A.6)

Let us choose ϵ small enough so that ∥ū− u∥ < ϵ. By the continuity of φ, there exists
¼0 ∈ [0, 1] such that ∥φ(¼0)− u

∗∥ = ϵ. Let g0 = g(φ(¼0)) < g∗ and ḡ = g(ū) > g∗. g ◦ φ is
continuous because it is a composition of continuous functions, hence the intermediate value
theorem applies: in the [¼0, 1] interval, g ◦ φ assumes all values between g(φ(¼0)) = g0 and
g(φ(1)) = ḡ. In particular, since g0 < g∗ < ḡ, there must exist ¼1 such that g(φ(¼1)) = g∗ and
φ1 = φ(¼1) ̸= u

∗, because g(φ(¼)) is decreasing whenever φ(¼) = u∗. Now let ζ = φ1 −u
∗.

ζ is perpendicular to η, since

ïη, ζð = ïη, φ1 − u
∗ð = ïη, φ1ð − ïη, u∗ð = g∗ − g∗ = 0.

Consider the vector uϵ = u
∗ + ϵ ζ

∥ζ∥ . The value of g at uϵ is

g(uϵ) =

〈

η, u∗ + ϵ
ζ

∥ζ∥

〉

= ïη, u∗ð = g(u∗).

Because u∗ is a local maximum and ∥uϵ − u
∗∥ = ϵ, by (A.6) the only possibility is uϵ /∈ C,

contradicting the hypothesis of C being ζ-convex.

A.3 Chapter 5

Proof of Lemma 5.1

Let us rewrite (5.4) as

T (In −U
+U ) = On. (A.7)

It is known that U+U is the projector onto K§(U ) along K(U ) and In − U+U is the
projector onto K(U ) along K§(U ). This implies that S(In−U

+U ) = K(U ). Therefore, for
any vector w ∈ Rn, we have

(In −U
+U )w ∈ K(U ).

Since, by hypothesis, K(U ) ¦ K(T ), it holds

T (In −U
+U )w = 0n.

This equation holds ∀w ∈ Rn, hence (A.7) is proven.
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Proof of Proposition 5.1

Let us report the expression of h:

h = −LH+d̄.

Let g = H+d̄ ∈ Rn, so that h = −Lg. Since HH+ = In, we can write d̄ = HH+d̄ =
Hg, or, by considering its i-th component,

d̄ = gi − gi+1.

This equations defines the arithmetic progression gi+1 = gi − d̄, whose general term is

gi = g1 + (i− 1)d̄.

Considering the i-th component of h = −Lg, we obtain

hi = −
∑

j∈N (i)

(gi − gj) = −
∑

j∈N (i)

((

g1 + (i− 1)d̄
)

−
(

g1 + (j − 1)d̄
))

= d̄
∑

j∈N (i)

(i− j).


